WO2004016723A1 - 半導体基板洗浄用オゾン水技術 - Google Patents

半導体基板洗浄用オゾン水技術 Download PDF

Info

Publication number
WO2004016723A1
WO2004016723A1 PCT/JP2003/010254 JP0310254W WO2004016723A1 WO 2004016723 A1 WO2004016723 A1 WO 2004016723A1 JP 0310254 W JP0310254 W JP 0310254W WO 2004016723 A1 WO2004016723 A1 WO 2004016723A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ozone
cleaning
semiconductor substrate
organic solvent
Prior art date
Application number
PCT/JP2003/010254
Other languages
English (en)
French (fr)
Inventor
Makoto Takemura
Yasuo Fukuda
Kazuaki Hayata
Masaaki Kato
Eiji Suhara
Original Assignee
Sumitomo Mitsubishi Silicon Corporation
Puretron Ltd.
Echo Giken Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsubishi Silicon Corporation, Puretron Ltd., Echo Giken Co., Ltd. filed Critical Sumitomo Mitsubishi Silicon Corporation
Priority to DE60321015T priority Critical patent/DE60321015D1/de
Priority to EP03788086A priority patent/EP1541667B1/en
Priority to US10/522,717 priority patent/US7678200B2/en
Publication of WO2004016723A1 publication Critical patent/WO2004016723A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5004Organic solvents
    • C11D7/5022Organic solvents containing oxygen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2203/00Details of cleaning machines or methods involving the use or presence of liquid or steam
    • B08B2203/005Details of cleaning machines or methods involving the use or presence of liquid or steam the liquid being ozonated
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors

Definitions

  • the present invention relates to an ozone water technology for cleaning a semiconductor substrate, more specifically, when cleaning a semiconductor substrate using ozone water, the concentration of ozone in the ozone water before the ozone water is ejected from the cleaning nozzle onto the semiconductor substrate.
  • the present invention relates to an ozone water technology for cleaning a semiconductor substrate, which prevents a phenomenon in which the temperature is significantly reduced. Background technology,
  • Ozone water has attracted attention in semiconductor substrate manufacturing processes. This is because a strong oxidation reaction occurs, and the product after decomposition is oxygen, which facilitates wastewater treatment after washing the substrate. Ozone water is used for removing organic compounds and metal impurities attached to the surface of a semiconductor substrate, and for oxidizing the semiconductor substrate.
  • Ultrapure water is water whose total organic carbon (TOC) has been significantly reduced, as well as particles and metallic impurities.
  • TOC total organic carbon
  • As a method of reducing the total amount of organic carbon there is known a method of irradiating ultrapure water with ultraviolet rays to decompose and remove organic carbon (carbon atoms contained in organic compounds) contained in the ultrapure water. I have.
  • dissolved ozone concentration the concentration of ozone dissolved in water decreases over time due to diffusion into the atmosphere, self-decomposition, etc., except when ozone itself is consumed by a chemical reaction.
  • Dissolved ozone concentration decreases over time Ozone half-life is known as an index to be used. This represents the time it takes for the amount of ozone dissolved in water to halve.
  • the half-life of ozone in pure water is usually 10 to 30 minutes, depending on the area of the liquid surface (gas-liquid contact area). In the case of a container with a large opening such as a washing tank, it takes about 2 to 5 minutes.
  • the following three methods are known as methods for extending the half-life of ozone.
  • the method of extending the processing time in (2) reduces the cleaning capacity of the cleaning device. Furthermore, the method of producing ozone water with a higher concentration than necessary in (3) requires a large-capacity ozone water production device. Therefore, in the methods (2) and (3), the equipment cost rises.
  • ultra-pure ozone water containing ultrapure water containing ozone (hereinafter, ultrapure ozone water).
  • ultra-pure ozonized water has a significantly shorter half-life of ozone than conventional ozone water using pure water, and as a result, semiconductor substrates cannot be sufficiently cleaned using ozone water. I found it.
  • the inventors also studied a method of adding a small amount of an organic solvent. As a result, it was found that it was effective to use a water-repellent porous polymer membrane and add organic carbon in an organic solvent to ultrapure ozone water.
  • the present invention suppresses the reduction of the ozone half-life (extends the ozone half-life) of ozone water having a reduced total organic carbon content, particularly ozone water obtained from ultrapure water having an extremely low total organic carbon content, It is an object of the present invention to provide ozone water for cleaning a semiconductor substrate, a method for manufacturing the same, and a method for cleaning a semiconductor substrate, which can enhance the cleaning performance and cleaning efficiency for a semiconductor substrate.
  • Another object of the present invention is to provide a method for producing ozone water for cleaning a semiconductor substrate and a method for cleaning a semiconductor substrate, in which a trace amount of an organic solvent can be accurately added to water. Disclosure of the invention
  • an ozone water for cleaning a semiconductor substrate in which ozone is contained in water wherein an ozone water for cleaning a semiconductor substrate is added to the water, wherein an organic solvent containing organic carbon for suppressing a reduction in the half life of ozone is added. It is.
  • Semiconductor substrates to be cleaned include, for example, silicon wafers, gallium. Arsenic wafers can be employed.
  • the semiconductor substrate may be a single unit,
  • a bonded substrate obtained by bonding two semiconductor substrates may be used.
  • a semiconductor substrate includes a semiconductor substrate on which semiconductor elements (LSI, VLSI, ULSI, etc.) are mounted.
  • water containing ozone for example, pure water or ultrapure water can be adopted.
  • organic solvents those that have high solubility in water, are inexpensive and easy to obtain organic solvents of high purity (metal impurity concentration of 0.5 ppb or less), and are particularly effective in extending the half-life of ozone preferable.
  • organic solvents include alcohol, particularly ethanol and isopropyl alcohol.
  • the amount of the organic solvent added is not limited. However, among addition amounts that can sufficiently obtain the effect of cleaning the semiconductor substrate, for example, several / i liter is preferable. If a large amount of the organic solvent is added, organic carbon remains on the surface of the semiconductor substrate after cleaning, and the characteristics of the substrate deteriorate. Ozone is consumed in the decomposition of organic carbon added in excess, which may shorten the ozone half-life.
  • a second invention is the ozone water for cleaning a semiconductor substrate according to claim 1, wherein the amount of the organic solvent is 0.1 g / liter to 0.1 g / liter.
  • the half-life of ozone Shortening cannot be sufficiently suppressed. If the amount of the organic solvent exceeds 0.1 gZ liter, a carbon component remains on the surface of the semiconductor substrate, deteriorating the substrate characteristics (electrical characteristics, etc.) or conversely consuming ozone. Shorten the zone half-life.
  • a particularly preferred addition amount of the organic solvent is from 5 g liter to lmgZ liter. Within this range, the dissolved ozone concentration is hardly reduced, and no organic carbon remains on the surface of the semiconductor substrate, so that the characteristics of the semiconductor substrate after cleaning are not deteriorated.
  • a third invention is the ozone water for cleaning a semiconductor substrate according to claim 1 or claim 2, wherein the organic solvent is ethanol or isopropyl alcohol.
  • a fourth invention is the ozone water for cleaning a semiconductor substrate according to claim 1 or claim 2, wherein the water is ultrapure water.
  • ultrapure water is water with a metal impurity concentration of 0.5 ppb or less.
  • Total organic carbon content of ultrapure water 5. is 0 X 1 0 13 at oms Zc m 3 or less.
  • a fifth invention is the ozone water for cleaning a semiconductor substrate according to claim 3, wherein the water is ultrapure water.
  • the sixth invention comprises an ozone water production step of dissolving ozone gas in water to generate ozone water, and a solvent addition step of adding an organic solvent containing organic carbon that suppresses a reduction in the half life of ozone to the water.
  • This is a method for producing a semiconductor substrate cleaning ozone water provided.
  • the semiconductor substrate to be cleaned for example, silicon wafer or gallium arsenide wafer can be adopted.
  • the semiconductor substrate may be a single substrate or a bonded substrate obtained by bonding two semiconductor substrates.
  • water containing ozone for example, pure water or ultrapure water can be adopted.
  • organic solvents those which have high solubility in water, are readily available at low cost and have high purity (metal impurity concentration is less than 0.5 ppb), and are particularly effective in extending the half-life of ozone preferable.
  • Specific examples include alcohol, particularly ethanol and isopropyl alcohol.
  • the amount of the organic solvent added is not limited. However, the minimum amount of the addition amount that can sufficiently obtain the effect of cleaning the semiconductor substrate is preferable. If a large amount of the organic solvent is added, organic carbon remains on the surface of the semiconductor substrate after cleaning, and the substrate characteristics deteriorate. Ozone is consumed to decompose excessively added organic carbon, which may shorten the ozone half-life.
  • the method for generating ozone gas is not limited. For example, a silent discharge method in which ozone gas is generated from oxygen gas or an electrolysis method in which water is decomposed to generate ozone gas can be adopted. As described above, in any of the generation methods, the use of ultrapure water subjected to ultraviolet irradiation or the like causes a reduction in the ozone half-life.
  • the method for adding the organic solvent to water is not limited. However, in order not to cause deterioration of the characteristics of the semiconductor substrate due to the addition of a large amount of the organic solvent, a method of adding the organic solvent by a general weighing and blending method is not suitable. Therefore, an addition method using a porous polymer film having water repellency is preferred.
  • ozone water with an increased total organic carbon content can be obtained. That is, organic carbon is present in the organic solvent, and adding this to water increases the total organic carbon content of the ozone water. As a result, the ozone half-life can be extended even with ozone water having a reduced total organic carbon content.
  • the ozone water for cleaning a semiconductor substrate according to claim 6, wherein the amount of the organic solvent added is from 0.1 tg norr to 0.1 g / U. It is a manufacturing method. If the amount of the organic solvent is less than 0.1 X g / liter, the reduction of the ozone half-life cannot be sufficiently suppressed. If the amount of the organic solvent exceeds 0.1 gZ liter, carbon components remain on the surface of the semiconductor substrate, deteriorating the substrate characteristics, and conversely, consuming ozone to shorten the ozone half-life. You.
  • a particularly preferred addition amount of the organic solvent is 5 ⁇ gZ liter to 1 mgZ liter. In this range, the dissolved ozone concentration hardly decreases, and no organic carbon remains on the surface of the semiconductor substrate, and the characteristics of the semiconductor substrate after cleaning do not deteriorate.
  • the eighth invention is the method for producing ozone water for cleaning a semiconductor substrate according to claim 6 or claim 7, wherein the organic solvent is ethanol or isopropyl alcohol.
  • a ninth invention is the method for producing ozone water for cleaning a semiconductor substrate according to claim 6 or claim 7, wherein the water is ultrapure water.
  • ultrapure water is water with a metal impurity concentration of 0.5 ppb or less.
  • Total organic carbon content of ultrapure water 5. is 0 X 1 0 13 at om s Zcm 3.
  • the tenth invention is the method for producing ozone water for cleaning a semiconductor substrate according to claim 8, wherein the water is ultrapure water.
  • ozone is obtained by a silent discharge method of generating ozone from oxygen gas or an electrolysis method of generating ozone by electrolyzing water. 7.
  • ozone gas generated from oxygen gas is dissolved in water.
  • the water may be water to which an organic solvent has been added in advance.
  • water is electrolyzed to generate ozone.
  • a solvent not only as a solvent, but also as a raw material for ozone gas
  • ultrapure water can be used. Therefore, if an organic solvent is added in advance to the ultrapure water to be electrolyzed, the reduction of the ozone half-life of ozone gas from the point of generation of ozone can be suppressed.
  • the semiconductor substrate according to claim 8, wherein the ozone is obtained by a silent discharge method of generating ozone from oxygen gas or an electrolysis method of generating ozone by electrolyzing water. This is a method for producing ozone water for cleaning.
  • the semiconductor substrate according to claim 9, wherein the ozone is obtained by a silent discharge method of generating ozone from oxygen gas or an electrolysis method of generating ozone by electrolyzing water. This is a method for producing ozone water for cleaning.
  • the organic solvent is added to water through a water-repellent porous polymer membrane, wherein the addition of the organic solvent is performed through a water-repellent porous polymer membrane.
  • the porous polymer membrane is generally a membrane made of a synthetic resin that can transmit a gas but does not transmit a liquid. Therefore, if the ultrapure water and the organic solvent are separated by the porous polymer membrane, a very small amount of the organic solvent can be added to the ultrapure water through the porous polymer membrane. Specifically, an organic solvent is placed on the primary side of the porous polymer membrane filter, and ultrapure water is supplied to the secondary side. This allows the organic solvent on the primary side to penetrate into the ultrapure water side on the secondary side through the porous polymer membrane.
  • a fluorine-based synthetic resin is preferable from the viewpoints of corrosion resistance, deterioration resistance and elution of impurities from the filter itself.
  • a film material made of tetrafluoroethylene resin (PTFE) is used to make a tetrafluoroethylene-fluoroalkylvinylether copolymer resin (PFA).
  • PFA tetrafluoroethylene-fluoroalkylvinylether copolymer resin
  • a porous polymer membrane reinforced by a net made of a polymer can be employed.
  • the fifteenth invention is the method for producing ozone water for cleaning a semiconductor substrate according to claim 8, wherein the addition of the organic solvent to water is performed through a porous polymer film having water repellency.
  • the sixteenth invention is the method for producing ozone water for cleaning a semiconductor substrate according to claim 9, wherein the addition of the organic solvent to water is performed through a water-repellent porous polymer film.
  • a seventeenth invention is the method for producing ozone water for cleaning a semiconductor substrate according to claim 11, wherein the addition of the organic solvent to water is performed through a water-repellent porous polymer film. is there.
  • An eighteenth invention is an ozone water production step of dissolving ozone gas in water to generate ozone water, a solvent addition step of adding an organic solvent containing organic carbon that suppresses a reduction in ozone half-life to the water, A cleaning step of cleaning the semiconductor substrate with ozone water to which the organic solvent has been added.
  • the semiconductor substrate to be cleaned for example, silicon A / E and gallium arsenide A / E can be employed.
  • the semiconductor substrate may be a single substrate or a bonded substrate obtained by bonding two semiconductor substrates.
  • water containing ozone for example, pure water or ultrapure water can be adopted.
  • organic solvents those which have high solubility in water, are readily available at low cost and have high purity (metal impurity concentration is less than 0.5 ppb), and are particularly effective in extending the half-life of ozone preferable.
  • Specific examples include alcohols, particularly ethanol and isopropyl alcohol.
  • the amount of the organic solvent added is not limited. However, the minimum amount of the addition amount that can sufficiently obtain the effect of cleaning the semiconductor substrate is preferable. Large amount of organic solvent If added to the substrate, organic carbon will remain on the surface of the semiconductor substrate after cleaning, and the characteristics of the substrate will be degraded. Decomposition of excessively added organic carbon also consumes ozone, which may shorten the ozone half-life.
  • the method for generating ozone gas is not limited. For example, a silent discharge method in which ozone gas is generated from oxygen gas or an electrolysis method in which water is decomposed to generate ozone gas can be adopted. As described above, in any of the generation methods, the use of ultrapure water subjected to ultraviolet irradiation or the like causes a reduction in the ozone half-life.
  • the method of adding the organic solution to water is not limited. However, in order not to cause the deterioration of the characteristics of the semiconductor substrate due to the addition of a large amount of the organic solvent, it is inappropriate to add the organic solvent by a general weighing and blending method. Therefore, an addition method using a porous polymer film having water repellency is preferred.
  • the cleaning method is an immersion method, that is, the manufactured ozone-containing cleaning liquid is stored in a cleaning tank, and one or more semiconductor substrates are immersed in the cleaning liquid in the cleaning tank. Then, due to the strong oxidizing power of ozone, organic substances and metal impurities are decomposed and removed from the semiconductor substrate. The ozone concentration of the cleaning solution is maintained at a high level until the cleaning solution reaches the cleaning tank. Therefore, the cleaning time can be reduced as compared with the conventional case.
  • a cleaning method for example, spin cleaning can be adopted.
  • a semiconductor substrate is placed on a table or rotated while being held by a holding jig, and an ozone-containing cleaning liquid is sprayed onto the semiconductor substrate to perform cleaning.
  • an ozone-containing cleaning liquid is sprayed onto the semiconductor substrate to perform cleaning.
  • the distance of the ozone water supply path from the ozone gas production apparatus to the ozone dissolution apparatus for dissolving ozone gas in water and the distance of another ozone water supply path from the ozone dissolution apparatus to the semiconductor substrate cleaning apparatus are as follows: Possible It is preferable to configure and set as short as possible. As a result, the cleaning capability and cleaning efficiency of the semiconductor substrate can be further improved by the synergistic effect of the ozone-containing cleaning liquid and the suppression of shortening of the ozone half-life.
  • ozone water with an increased total organic carbon content can be obtained by adding an organic solvent to water. That is, organic carbon is present in the organic solvent, and adding it to water increases the total organic carbon content of the ozone water. As a result, the ozone half-life is extended even for ozone water with reduced total organic carbon content.
  • the semiconductor substrate is cleaned as an ozone-containing cleaning liquid. Ozone-containing cleaning liquids exhibit excellent cleaning performance in cleaning semiconductor substrates.
  • a nineteenth invention is the method for cleaning a semiconductor substrate according to claim 18, wherein the amount of the organic solvent added is 0.1 lg / liter to 0.1 g Z liter.
  • a particularly preferred addition amount of the organic solvent is from 5 ⁇ g / liter to 1 mg / liter. In this range, the dissolved ozone concentration hardly decreases, and no organic carbon remains on the surface of the semiconductor substrate, and the characteristics of the semiconductor substrate after cleaning do not deteriorate.
  • the 20th invention is the method for cleaning a semiconductor substrate according to claim 18 or claim 19, wherein said organic solvent is ethanol or isopropyl alcohol.
  • a twenty-first invention is the method for cleaning a semiconductor substrate according to claim 18 or claim 19, wherein the water is ultrapure water.
  • ultrapure water is water with a metal impurity concentration of 0.5 ppb or less.
  • Total organic carbon content of ultrapure water 5. is 0 X 1 0 1 3 at om s / cm 3 or less.
  • a twenty-second invention is the method for cleaning a semiconductor substrate according to claim 20, wherein the water is ultrapure water.
  • ozone is obtained by a silent discharge method for generating ozone from oxygen gas or an electrolysis method for generating ozone by electrolyzing water.
  • ozone gas generated from oxygen gas is dissolved in water.
  • the water may be water to which an organic solvent has been added in advance.
  • ultrapure water can be used not only as a solvent but also as a raw material for ozone gas. Therefore, if an organic solvent is added in advance to the ultrapure water to be electrolyzed, the reduction of the ozone half-life of ozone gas from the point of generation of ozone can be suppressed.
  • the porous polymer membrane is generally a membrane made of a synthetic resin that allows gas to permeate but does not allow liquid to permeate. Therefore, if the ultrapure water and the organic solvent are separated by the porous polymer membrane, the organic solvent can be added to the ultrapure water in trace amounts through the porous polymer membrane. Specifically, an organic solvent is arranged on the primary side of the porous polymer membrane filter, and ultrapure water is supplied to the secondary side. This allows the organic solvent on the primary side to penetrate into the ultrapure water side on the secondary side through the porous polymer membrane.
  • a fluorine-based synthetic resin is preferable from the viewpoints of corrosion resistance, deterioration resistance and elution of impurities from the filter itself.
  • a porous polymer membrane reinforced with a membrane made of tetrafluoroethylene resin (PTFE) with a net made of tetrafluoroethylene-perfluoroalkylbutyl ether copolymer resin (PFA) Can be.
  • the twenty-seventh invention is the method for cleaning a semiconductor substrate according to claim 20, wherein the addition of the organic solvent to water is performed through a porous polymer film having water repellency.
  • a twenty-eighth invention is the method for cleaning a semiconductor substrate according to claim 21, wherein the addition of the organic solvent to water is performed through a water-repellent porous polymer film.
  • a twenty-ninth invention is the method for cleaning a semiconductor substrate according to claim 23, wherein the addition of the organic solvent to water is performed through a water-repellent porous polymer film.
  • FIG. 1 is a configuration diagram of a semiconductor substrate cleaning facility according to a first embodiment of the present invention.
  • FIG. 2 is a vertical sectional view of an ozone gas producing apparatus used in the semiconductor substrate cleaning equipment according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view of an ozone water producing apparatus used in the semiconductor substrate cleaning equipment according to the first embodiment of the present invention.
  • FIG. 4 is a perspective view of a hollow fiber module incorporated in the ozone water producing apparatus of FIG.
  • FIG. 5 is a perspective view of a spin-type single-wafer cleaning apparatus used in a semiconductor substrate cleaning equipment according to a second embodiment of the present invention in use.
  • FIG. 6 is a longitudinal sectional view of an ozone gas producing apparatus used in a semiconductor substrate cleaning facility according to a third embodiment of the present invention.
  • FIG. 7 is a sectional view taken along the line S7-S7 in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • reference numeral 10 denotes a semiconductor substrate cleaning facility according to a first embodiment of the present invention.
  • the semiconductor substrate cleaning facility 10 includes a solvent tank 11 for storing an organic solvent b containing organic carbon, Solvent adding device 12 for adding organic solvent b to ultrapure water a, ozone gas producing device 13 for generating ozone gas d from pure water, ozone gas d for solvent added ultrapure water c containing organic solvent b Of ozone water (ozone water for semiconductor substrate cleaning) e by dissolving water and a washing tank 15 for cleaning semiconductor substrates with ultrapure ozone water e I have.
  • An organic solvent b containing organic carbon is stored in the solvent tank 11.
  • isopropyl alcohol having a metal impurity concentration of 0.5 ppb or less is employed. Ethanol may be used instead of isopropyl alcohol.
  • Organic solvent b is previously mixed and diluted with ultrapure water a. This is because the concentration of an undiluted solution of isopropyl alcohol is too high to add a very small amount of the organic solvent b at a level of several gZ liters to ultrapure water. Is irradiated ultraviolet ultrapure water a, total organic carbon content of ultrapure water a is reduced to 5. 0 X 1 0 1 3 at om s / cm 3 order.
  • the ultrapure water a is supplied to the ozone water production device 14 through the ultrapure water supply line 16.
  • a bypass pipe 18 provided with a solvent addition device 12 is connected. Part of the ultrapure water a flowing through the ultrapure water supply line 16 can be supplied to the solvent addition device 12.
  • the solvent addition device 12 includes a sealed cell 19 and a porous polymer membrane filter 20 having a sealed container shape with a gap in the cell 19.
  • the porous polymer membrane filter 20 is a filter made by reinforcing a water-repellent membrane made of tetrafluoroethylene resin (PTFE) with a net made of tetrafluoroethylene-perfluoroalkylvinyl ether copolymer resin (PFA). It is evening.
  • the gap between the cell 19 and the porous polymer membrane filter 20 is the primary chamber 12 a of the solvent addition device 12.
  • the primary chamber 12 a is supplied with the organic solvent b from the solvent tank 11.
  • the internal space of the porous polymer membrane filter 20 is the secondary chamber 12 b of the solvent addition device 12. Ultrapure water a is supplied to the secondary chamber 12b from outside.
  • a solvent supply pipe 21 is connected between one end of the outer peripheral plate of the cell 19 and the solvent tank 11.
  • a solvent discharge pipe 22 is connected between the other end of the outer peripheral plate of the cell 19 and the solvent tank 11.
  • a pump 23 is provided in the middle of the solvent supply pipe 21. By the operation of the pump 23, the organic solvent b in the solvent tank 11 is stably and intermittently supplied to the primary chamber 12a. Then, it is returned to the solvent tank 11 via the solvent discharge pipe 22. At that time, in the primary chamber 12a, a part of the organic solvent b permeates the porous polymer membrane filter 20 and is added to the ultrapure water a of the secondary chamber 12b.
  • the ozone gas producing apparatus 13 is an electrolytic ozone gas generating device and has an electrolytic cell 24.
  • the electrolytic cell 24 is a sealed tank made of Teflon (registered trademark of Dubon) and having a horizontally long rectangular cross section.
  • the electrolytic cell 24 has a pair of side walls 35, 35, an upper wall 39, and a lower wall 40.
  • an ion exchange membrane 25 for dividing the internal space of the electrolytic cell 24 into a force source chamber 29 and an anode chamber 30 is provided.
  • the ion exchange membrane 25 is a cation exchange membrane.
  • a lead oxide catalyst is supported on the anode chamber 30 side of the ion exchange membrane 25, and a porous anode electrode 26 made of titanium, which has gas-liquid permeability and covers the entire area of the membrane, is adhered to the anode chamber 30.
  • a cathode electrode 27 made of platinum-supporting carbon having a diameter of 10 to 20 m and a thickness of 100 / m is adhered to the side of the force source chamber 29 of the ion exchange membrane 25.
  • a current collector (not shown) made of zirconium is connected to 27.
  • a flow pipe 31 is connected to each of the force sword chamber 29 and the anode chamber 30.
  • Each distribution pipe 31 supplies ultrapure water to the power source chamber 29 and the anode chamber 30.
  • the solvent-added ultrapure water c may be used instead of the ultrapure water.
  • half of the ozone in ultrapure ozone water e The effect of suppressing the shortening of the life is enhanced.
  • a power supply is connected to each of the kaleid electrode 27 and the anode electrode 26 to allow current to flow to ultrapure water.
  • the anode compartment 3 0, ozone discharge pipe 3 2 for discharging ozone gas generated from ⁇ node electrode 2 6 (0 3 gas) d ozone water production apparatus 1 4 are communicated.
  • a hydrogen gas discharge pipe 33 for discharging hydrogen gas (H 2 gas) generated from the cathode electrode 27 is connected to the power source chamber 29.
  • Both end portions of both side walls 35, 35 of the electrolytic cell 24 are pressed with a predetermined urging force against both end surfaces of the upper wall 39 and the lower wall 40 via rubber sealing members 41,. It is attached.
  • This pressing force is exerted by a pair of pressing plates 42, 42 abutting on the outer surfaces of the side walls 35, 35, respectively.
  • a pair of rods 36 project from the outer surfaces of both ends of the pressing plates 42, 42, respectively.
  • Each of the rods 36 is loosely passed through a through hole formed in the corresponding guide member 38.
  • Each of the rods 36 has a coil spring 37 at a portion between each of the guide members 38 and the side walls 35, 35.
  • the urging forces of the coil springs 37 press the pressing plates 42, 42 against the side walls 35, 35 with a predetermined urging force.
  • both side walls 35, 35 move outward against the spring force of each coil spring 37,. Excess pure water leaks from between both ends of the side walls 35, 35 and the sealing members 41. Thereby, breakage of the ion exchange membrane 25 due to excessive pure water can be prevented.
  • FIG. 1 the ozone water producing apparatus 14 'will be described with reference to FIGS. 3 and 4.
  • FIG. 1 the ozone water producing apparatus 14 'will be described with reference to FIGS. 3 and 4.
  • the ozone water production device 14 has a cylindrical shape, and has a large number of hollow fiber modules 51 in which their axes are spaced apart in parallel.
  • the hollow fiber module 51 is an elongated hollow body made of tetrafluoroethylene resin and having a diameter of 0.001 to 0.01 mm and a length of 100 mm or more.
  • the hollow fiber module 51 is made of tetrafluoroethylene resin, a part of the ozone gas d flowing outside can be permeated into the tube.
  • the solvent-added ultrapure water c is conducted inside the hollow fiber module 51 and the outside of the hollow fiber module 51 is made to have an atmosphere of the ozone gas d, the solvent-added ultrapure water passing through the hollow fiber module 51 can be obtained.
  • c is ultrapure ozone water e in which ozone gas d is dissolved.
  • the obtained ultrapure ozone water e is transferred from the outflow nozzle 54 disposed at the bottom of the cleaning tank 15 into the cleaning tank 15 by the pumping force of the supply source via the ozone water supply pipe 52. Supplied.
  • Ultrapure water a is supplied from the ultrapure water supply line 16 to the ozone water production apparatus 14 at 10 liter / min. However, a part thereof flows into the bypass pipe 18 at 1 to 2 liters / minute and is supplied to the secondary chamber 12 b of the solvent addition device 12.
  • a part of the organic solvent b in the solvent tank 11 is supplied to the primary chamber 12 a of the solvent adding device 12 by the operation of the pump 23 for about 5 liters Z.
  • the solvent addition device 12 a part of the organic solvent b in the primary chamber 12a is transmitted to the secondary chamber 12b via the porous polymer membrane filter 20.
  • a small amount of an organic solvent is added to the solvent-added ultrapure water c.
  • the addition amount of the organic solvent b is several hundred g Z liter level.
  • the solvent-added ultrapure water c to which the organic solvent b has been added is returned from the bypass pipe 18 to the downstream portion of the ultrapure water supply line 16 and supplied to the ozone water production device 14.
  • ozone water production equipment 14 is produced by ozone gas production equipment 13
  • the generated ozone gas d is supplied at about 50 g / hr.
  • the hydrogen gas generated from the kaleid electrode 27 is stored in the cathode chamber 29, and then the hydrogen gas is discharged to the outside via the hydrogen gas discharge pipe 33.
  • the ozone gas d generated from the anode electrode 26 is stored in the anode chamber 30 and introduced into the ozone water producing device 14 via the ozone gas discharge pipe 32.
  • the solvent-added ultrapure water c introduced into the ozone water production device 14 is conducted to the inside of a large number of hollow fiber modules 51, and the outside of each hollow fiber module 51 is set to an atmosphere of ozone gas d.
  • the ultrapure water added with the solvent passing through the hollow fiber module 51 becomes the ultrapure ozone water e in which the ozone gas d is dissolved.
  • the obtained ultra-pure ozone water e is washed by the pumping power of the supply source from the ozone water production device 14 through the ozone water supply pipe 52, through the discharge nozzle 54 at the bottom of the cleaning tank 15 Spill into tank 15.
  • the semiconductor substrate immersed in the cleaning tank 15 is cleaned with the ultrapure ozone water e.
  • the organic solvent b composed of high-purity isopropyl alcohol to the ultrapure ozone water e, the ozone half-life can be reduced even in the ultrapure ozone water e having an extremely small amount of total organic carbon. Can be suppressed.
  • ultrapure ozone water e containing high-concentration ozone can be reliably supplied to the cleaning tank 15. This makes it possible to enhance the cleaning ability and cleaning efficiency for organic impurities and metal impurities attached to the semiconductor substrate by the strong oxidizing action of ozone.
  • a method for adding the organic solvent b to the ultrapure water a a method using a water-repellent porous polymer membrane filter 20 was employed. Can be accurately added. That is, it is possible to eliminate the contamination of the ultrapure ozone water e of the organic carbon generated by excessively adding the organic solvent b.
  • isopropyl alcohol (metal impurity concentration is 0.5 ppb or less) is actually used as the organic solvent b, and the amount of addition is adjusted so that the addition concentration becomes a target value.
  • the dissolved ozone concentration (A) of the ultrapure ozone water e immediately after being generated by the ozone water producing apparatus 14 and the dissolved ozone concentration (B) of the ultrapure ozone water e in the cleaning tank 15 are calculated as follows. The results of each measurement, with or without the addition of organic solvent b, are reported. The ultraviolet absorption method was used for ozone concentration measurement. In addition, the total amount of organic carbon on the surface of the semiconductor substrate at the time of measurement was measured by substrate thermal desorption-mass spectrometry. Table 1 shows the results.
  • the semiconductor substrate cleaning equipment 60 is an example in which a spin-type single-wafer cleaning apparatus 61 is employed in place of the cleaning tank 15 of the first embodiment.
  • the spin-type single-wafer cleaning apparatus 61 includes a holding plate 62 that holds the semiconductor substrate W by vacuum suction, a rotating motor 64 that rotates the holding plate 62 via a rotating shaft 63, and a rotation.
  • a pair of upper and lower jet nozzles 65, 65 for jetting the ultrapure ozone water e obtained by the first embodiment are provided on both front and back surfaces of the semiconductor substrate W in the middle.
  • the semiconductor substrate W is vacuum-adsorbed onto the holding plate 62, and the semiconductor substrate W is rotated at 500 rpm by the rotating motor together with the holding plate 62.
  • ultrapure ozone water e is sprayed from the pair of upper and lower spray nozzles 65, 65 toward each central portion of the front and back surfaces of the semiconductor substrate W at a rate of 1.0 liter Z, respectively.
  • the front and back surfaces of the semiconductor substrate W are cleaned with ozone using ultrapure ozone water e.
  • the dissolved ozone concentration (C) of e was compared with the presence or absence of the organic solvent b.
  • the addition amount of the organic solvent b was 50 g Z liter.
  • the same ultraviolet absorption method as in the first example was employed. The test conditions are as follows.
  • a semiconductor substrate whose surface has been previously hydrogen-terminated by dilute hydrofluoric acid treatment Using the plate W, the semiconductor substrate W was vacuum-adsorbed to the holding plate 62. Then, the semiconductor substrate W was spun at 500 rpm integrally with the holding plate 62. At this time, ultrapure ozone water e was continuously supplied from both the injection nozzles 65 and 65 toward the center of the semiconductor substrate W for about 3 seconds. At that time, the contact angle of the ultrapure ozone water e on the surface of the semiconductor substrate W was measured. The contact angle refers to the angle between the water droplet and the substrate surface when a water droplet (ultra pure ozone water e) is dropped on the surface of the semiconductor substrate W.
  • the surface of the hydrogen-terminated semiconductor substrate W is easy to repel water. Therefore, the contact angle increases.
  • the oxidation reaction on the substrate surface is promoted, and the contact angle is reduced.
  • Table 2 shows the dissolved ozone concentrations (A) and (C) and the contact angles at the center and the outer periphery of the semiconductor substrate W.
  • the dissolved ozone concentration (C) of the ultrapure ozone water e ejected from the injection nozzles 65, 65 is similar to that in the case of the first embodiment with the addition of the organic solvent b. Is clearly higher than without the addition.
  • the contact angle of ultrapure ozone water e on the surface of the semiconductor substrate W was compared. At the center of the semiconductor substrate W to which the ultrapure ozone water e sprayed from the spray nozzles 65 and 65 is directly applied, there is almost no difference in the presence or absence of the organic solvent b. It was found that oxidation was progressing. On the other hand, it was found that the contact angle was larger at the outer peripheral portion of the semiconductor substrate W than at the central portion of the semiconductor substrate W without the addition of the organic solvent b, and the ozone was not sufficiently oxidized.
  • the ultrapure ozone water supplied to the center of the semiconductor substrate oxidizes the center of the semiconductor substrate and then sufficiently extends to the outer periphery of the semiconductor substrate. It is probable that ozone did not remain to the extent that ozone oxidation was possible.
  • Such a semiconductor substrate If non-uniform oxidation occurs in the plane of the plate, particle contamination or the like may occur at the outer peripheral portion of the semiconductor substrate that has not been sufficiently oxidized.
  • the semiconductor substrate cleaning equipment 70 shown in FIGS. 6 and 7 is an example in which a silent discharge type ozone gas production apparatus is used as the ozone gas production apparatus instead of the electrolytic ozone gas production apparatus of the first embodiment. It is.
  • the ozone gas producing apparatus 70A shown in FIGS. 6 and 7 has a main body 71 which is a long body in the axial direction. At one end of the outer peripheral plate of the can 71, a raw material air inlet 71a for introducing air as a raw material is formed. Further, at the other end of the outer peripheral plate of the can 71, an ozone gas outlet 71b for discharging the obtained ozone gas d is formed.
  • a water jacket 72 having an outer peripheral plate as an outer peripheral wall is provided inside.
  • a cooling water inlet 72a for introducing cooling water is formed at one end of the water jacket 72.
  • a cooling water outlet 72 b through which cooling water is discharged is formed at the other end of the water jacket 72.
  • a test tube-shaped high-voltage electrode tube 73 with an opening directed toward the other end of the can 71 is accommodated along the axis of the can 71.
  • the high-voltage electrode tube 73 is made of a dielectric material such as glass.
  • the high-voltage electrode 73 is connected to the water jacket 72 via a number of spacers 73a, which are arranged between both ends of the inner peripheral wall of the water jacket 72.
  • a predetermined discharge gap 74 is formed.
  • a conductive film 75 is formed on the inner peripheral surface of the high-voltage electrode tube 73.
  • power feeders 76 for applying an AC high voltage to the conductive film 75 are arranged.
  • Each of the power supply terminals 76 is connected to a leading end of a power supply line 78 introduced from the outside via a pushing 77 provided at the other end of the can body 71.
  • the ozone water for cleaning a semiconductor substrate the method for producing ozone water for cleaning a semiconductor substrate, and the method for cleaning a semiconductor substrate of the present invention, the total amount of organic carbon is reduced by adding an organic solvent to the ozone water. Even with reduced ozone water, especially ozone water obtained from ultrapure water having a very small amount of total organic carbon, the reduction of ozone half-life can be suppressed. As a result, if this ozone water for cleaning a semiconductor substrate is used as a cleaning liquid for a semiconductor substrate, high-concentration ozone water can be reliably supplied to the cleaning device. This makes it possible to enhance the cleaning ability and cleaning efficiency against organic impurities, metal impurities, and the like attached to the semiconductor substrate by the strong oxidizing action of ozone.
  • the method for producing ozone water for cleaning a semiconductor substrate and the method for cleaning a semiconductor substrate if a method using a water-repellent porous polymer film is adopted as a method for adding an organic solvent to water, water can be obtained. A small amount of organic solvent can be accurately added to the mixture. In other words, the ozone water is not contaminated by the organic carbon excessively added to the organic solvent, and no carbon component causing the deterioration of the substrate characteristics is present on the surface of the semiconductor substrate. In addition, there is no adverse effect of excess organic carbon on the ozone gas generation section of the ozone water production system. Furthermore, since the amount of organic solvent to be added is very small, explosion-proof equipment specified by the Fire Service Law of Japan is not required. Industrial applicability
  • the ozone water technology for cleaning a semiconductor substrate according to the present invention can be applied to, for example, cleaning of a single silicon wafer or a gallium arsenide wafer.
  • the present invention can be applied to cleaning of a substrate in which two semiconductor substrates are bonded, such as a bonded substrate (including a bonded SOI substrate).
  • the present invention is extremely effective in extending the ozone half-life of ultrapure ozone water having a reduced total organic carbon content.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Emergency Medicine (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Detergent Compositions (AREA)
  • Weting (AREA)

Abstract

有機溶剤の添加で、有機炭素が微量な超純水は有機炭素が増えた超純度オゾン水となり、オゾン半減期の低減を抑制できる。その結果、超純度オゾン水で半導体基板を洗浄すると、高濃度のオゾンで基板を洗浄できる。よって、オゾンの酸化作用で、基板に付着した有機不純物、金属不純物などの洗浄能力、洗浄効率が高まる。

Description

明 細 書 半導体基板洗浄用オゾン水技術 技術分野
この発明は、 半導体基板洗浄用オゾン水技術、 詳しくはオゾン水を利 用して半導体基板を洗浄する際、 洗浄ノズルからオゾン水が半導体基板 に噴出されるまでの間に、 オゾン水中のオゾン濃度が著しく低下する現 象を防止する半導体基板洗浄用オゾン水技術に関する。 背景技術 ,
近年、 半導体基板の製造プロセスでは、 オゾン水が注目されている。 これは、 強力な酸化反応を起こし、 しかも分解後の生成物が酸素で、 基 板洗浄後の排水処理が容易になるからである。 オゾン水は、 半導体基板 の表面に付着した有機化合物および金属不純物の除去と、 半導体基板の 酸化などに利用されている。
また、 今日では、 清浄度の高い半導体基板が求められている。 そのた め、 基板洗浄時に使用される洗浄水には、 極めて純度が高い超純水が汎 用されている。 超純水は、 パーティクル、 金属不純物だけでなく、 全有 機炭素 (TO C : T o t a l O r g a n i c C a r b o n) 量が、 著しく低減された水である。 全有機炭素量の低減方法としては、 紫外線 を超純水に照射し、 超純水中に含まれる有機炭素 (有機化合物に含まれ る炭素原子) を分解して除去する方法などが知られている。
ところで、 水中に溶解したオゾンの濃度(以下、 溶存オゾン濃度) は、 オゾン自身が化学反応により消費される場合などを除き、大気への拡散、 自己分解などにより経時的に減少する。 溶存オゾン濃度が経時的に低下 する指標として、 オゾン半減期が知られている。 これは、 水中に溶解し たオゾンの量が半減するまでの時間を表す。液面の面積(気液接触面積) などの影響もあるが、 通常、 純水中のオゾンの半減期は 1 0〜 3 0分で ある。 また、 洗浄槽のように開口部が大きい容器の場合は、 2〜 5分程 度となる。
従来、 オゾンの半減期を延長させる方法として、 以下の 3つの方法が 知られている。 ( 1 )オゾンガスを超純水に溶解させるオゾン溶解部から, オゾン水を使用する洗浄装置のユースボイント、 例えば洗浄水を半導体 基板に吹ぎ付ける吹き付けノズルまでの距離を短縮すること ( 2 ) 洗浄 装置でのオゾン水の処理時間を延長すること、 ( 3 )半導体基板の洗浄に 必要とされる濃度の数倍、 数十倍の溶存オゾン濃度を有したオゾン水を 製造可能なオゾン水製造装置の導入が、 それである。
( 1 ) の使用経路を短縮する方法の実施は、 容易である。 例えば、 洗 浄槽内にオゾンガスを直接パブリングし、 オゾン水を得ることが考えら れる。 しかしながら、 この方法では高濃度のオゾン水は得られず、 半導 体基板に対する高い洗浄力は期待できない。
また、 ( 2 ) の処理時間を延長する方法では、 洗浄装置の洗浄処理能力 が低下する。 さらに、 ( 3 ) の必要以上に高濃度なオゾン水を製造する方 法では、 大容量のオゾン水製造装置を必要とする。 よって、 ( 2 ) , ( 3 ) の方法では、 設備コストが高騰する。
一方、 発明者らは、 超純水にオゾンを含有させたオゾン水 (以下、 超 純度オゾン水) のオゾン半減期について調査した。 その結果、 超純度ォ ゾン水は、 従来の純水を使用したオゾン水に比べてオゾンの半減期が著 しく短く、 その結果、 オゾン水を利用して半導体基板を十分に洗浄でき ないことを突き止めた。
そこで、 発明者らは、 超純度オゾン水のオゾン半減期が大幅に短縮さ れる原因を調査した。 その結果、 オゾンの自己分解を抑制する水中の有 機炭素が、 超純水の作製時に照射される紫外線により分解され、 その結 果、超純度オゾン水中のオゾンの自己分解が促進されることを知見した。
これを踏まえ、 発明者らはさらなる鋭意研究を行い、 超純度オゾン水 に対する有機炭素を含む有機溶剤の添加が、 オゾン半減期の短縮を抑制 することに極めて有効であることを突き止めた。
しかも、 有機溶剤の添加量は非常に微量で、 必要以上に有機溶剤を添 加すると、 半導体基板の表面に有機溶剤中の有機炭素が残留し、 半導体 基板の品質の低下を招く ことも分かった。 そこで、 発明者らは有機溶剤 を微量に添加する方法についても検討した。 その結果、 撥水性を有した 多孔質高分子膜を利用し、 有機溶剤中の有機炭素を超純度オゾン水に添 加することが有効であることが判明した。
この発明は、 全有機炭素量が低減されたオゾン水、 特に全有機炭素量 が極めて少ない超純水から得られたオゾン水のオゾン半減期の低減を抑 制 (オゾン半減期を延長) し、 半導体基板に対する洗浄能力と洗浄効率 とを高めることができる半導体基板洗浄用オゾン水およびその製造方法、 半導体基板の洗浄方法を提供することを目的としている。
また、 この発明は、 水に微量の有機溶剤を正確に添加することができ る半導体基板洗浄用オゾン水の製造方法および半導体基板の洗浄方法を 提供することを目的としている。 発明の開示
第 1の発明は、 水にオゾンを含有させた半導体基板洗浄用オゾン水に おいて、 前記水に、 オゾン半減期の短縮を抑制する有機炭素を含む有機 溶剤を添加した半導体基板洗浄用オゾン水である。
洗浄される半導体基板としては、 例えばシリコンゥエーハ、 ガリウム 砒素ゥェ一ハを採用することができる。 半導体基板は単体でもよいし、
2枚の半導体基板を貼り合わせた貼り合わせ基板でもよい。 なお、 半導 体基板には、 半導体素子 (L S I、 VL S I、 UL S Iなど) を搭載し た半導体基板を含む。
オゾンを含む水としては、 例えば純水、 超純水を採用することができ る。
有機溶剤としては、 水への溶解性が高く、 安価で高純度 (金属不純物 濃度が 0. 5 p p b以下) の有機溶剤の入手が容易であり、 特にオゾン 半減期の延長に効果が高いものが好ましい。 具体的にはアルコール、 特 にエタノール、 イソプロピルアルコールなどが挙げられる。
有機溶剤の添加量は限定されない。 ただし、 半導体基板の洗浄効果が 十分に得られる添加量のうち、 例えば数/ i リッ トルが好ましい。 有 機溶剤が多量に添加されると、 洗浄後の半導体基板の表面に有機炭素が 残留し、 基板特性が劣化するからである。 また、 過剰に添加された有機 炭素の分解にはオゾンが消費され、 反対にオゾン半減期が短くなるおそ れもある。
有機炭素によるオゾンの自己分解抑制作用の詳しい機構については不 明である。 ただし、 有機炭素を含有した有機溶剤の添加が、 オゾン水の 低減した全有機炭素 (TO C) 量を、 ある程度高めることは例えば表 1 の試験データより確かである。 そのため、 有機溶剤の添加は、 全有機炭 素量が低下したオゾン水のオゾン半減期の延長に極めて有効と考えられ る。
第 2の発明は、前記有機溶剤の添加量が、 0. 1 g/リッ トル〜 0. 1 gノリッ トルである請求の範囲第 1項に記載の半導体基板洗浄用ォゾ ン水である。
有機溶剤の添加量が 0. 1 g/リッ トル未満では、 オゾン半減期の 短縮を十分に抑制することができない。 また、 有機溶剤の添加量が 0. 1 gZリッ トルを超えると、 半導体基板の表面に炭素成分が残留し、 基 板特性 (電気特性など) を悪化させたり、 反対にオゾンを消費してォゾ ン半減期を短くする。 有機溶剤の特に好ましい添加量は、 5 g リツ トル〜 lmgZリッ トルである。 この範囲であれば溶存オゾン濃度は殆 ど低減せず、 しかも半導体基板の表面に有機炭素は残存せず、 洗浄後の 半導体基板の特性を悪化させない。
第 3の発明は、 前記有機溶剤が、 エタノールまたはイソプロピルアル コールである請求の範囲第 1項または請求の範囲第 2項に記載の半導体 基板洗浄用オゾン水である。
第 4の発明は、 前記水が超純水である請求の範囲第 1項または請求の 範囲第 2項に記載の半導体基板洗浄用オゾン水である。
ここでいう超純水とは、 金属不純物濃度が 0. 5 p p b以下の水であ る。 超純水の全有機炭素量は 5. 0 X 1 013 a t oms Zc m3以下で ある。
第 5の発明は、 前記水が超純水である請求の範囲第 3項に記載の半導 体基板洗浄用オゾン水である。
第 6の発明は、 水にオゾンガスを溶解させてオゾン水を生成させるォ ゾン水製造工程と、 前記水にオゾン半減期の短縮を抑制する有機炭素を 含む有機溶剤を添加する溶剤添加工程とを備えた半導体基板洗浄用ォゾ ン水の製造方法である。
洗浄される半導体基板としては、 例えばシリコンゥエーハ、 ガリウム 砒素ゥエーハを採用することができる。 半導体基板は単体でもよいし、 2枚の半導体基板を貼り合わせた貼り合わせ基板でもよい。
オゾンを含む水としては、 例えば純水、 超純水を採用することができ る。 有機溶剤としては、 水への溶解性が高く、 安価で高純度 (金属不純物 濃度が 0 . 5 p p b以下) の有機溶剤の入手が容易であり、 特にオゾン 半減期の延長に効果が高いものが好ましい。 具体的にはアルコール、 特 にエタノール、 イソプロピルアルコールなどが挙げられる。
有機溶剤の添加量は限定されない。 ただし、 半導体基板の洗浄効果が 十分に得られる添加量のうち、 最低限の量が好ましい。 有機溶剤が多量 に添加されると、 洗浄後の半導体基板の表面に有機炭素が残留し、 基板 特性が劣化するからである。 また、 過剰に添加された有機炭素の分解に はオゾンが消費され、 反対にオゾン半減期が短くなるおそれもある。 オゾンガスの発生方法は限定されない。 例えば、 酸素ガスからオゾン ガスを発生させる無声放電法、 水を分解してオゾンガスを発生せさる電 気分解法を採用することができる。 何れの発生方法においても、 紫外線 照射などを施した超純水を用いた場合、 オゾン半減期の短縮を引き起こ すことは前述した通りである。
水への有機溶剤の添加方法は限定されない。 ただし、 有機溶剤の多量 添加による半導体基板の特性の劣化を招かないためには、 一般的な秤量 調合法などで有機溶剤を添加する方法は不適である。 したがって、 撥水 性を有した多孔質高分子膜を利用した添加方法が好ましい。
第 6の発明によれば、 水に有機溶剤を添加することにより、 全有機炭 素量が増加されたオゾン水が得られる。 すなわち、 有機溶剤中には有機 炭素が存在し、 これを水に添加することでオゾン水の全有機炭素量が増 える。 その結果、 全有機炭素量が低減されたオゾン水であっても、 ォゾ ン半減期を延長させることができる。
第 7の発明は、前記有機溶剤の添加量が、 0 . 1 t gノリ ツ トル〜 0 . 1 g / Uッ トルである請求の範囲第 6項に記載の半導体基板洗浄用ォゾ ン水の製造方法である。 有機溶剤の添加量が 0. 1 X g /リッ トル未満では、 オゾン半減期の 短縮を十分に抑制することができない。 また、 有機溶剤の添加量が 0. 1 gZリッ トルを超えると、 半導体基板の表面に炭素成分が残留し、 基 板特性を悪化させたり、 反対にオゾンを消費してオゾン半減期を短くす る。 有機溶剤の特に好ましい添加量は、 5 ^ gZリッ トル〜 1 mgZリ ットルである。 この範囲であれば溶存オゾン濃度は殆ど低減せず、 しか も半導体基板の表面に有機炭素は残存せず、 洗浄後の半導体基板の特性 を悪化させない。
第 8の発明は、 前記有機溶剤が、 エタノールまたはイソプロピルアル コールである請求の範囲第 6項または請求の範囲第 7項に記載の半導体 基板洗浄用オゾン水の製造方法である。
第 9の発明は、 前記水が超純水である請求の範囲第 6項または請求の 範囲第 7項に記載の半導体基板洗浄用オゾン水の製造方法である。
ここでいう超純水とは、 金属不純物濃度が 0. 5 p p b以下の水であ る。超純水の全有機炭素量は 5. 0 X 1 013 a t om s Zcm3である。 第 1 0の発明は、 前記水が超純水である請求の範囲第 8項に記載の半 導体基板洗浄用オゾン水の製造方法である。
第 1 1の発明は、 前記オゾンは、 酸素ガスからオゾンを発生させる無 声放電法または水を電気分解してオゾンを発生させる電気分解法により 得られる請求の範囲第 6項、 請求の範囲第 7項、 請求の範囲第 1 0項の うち、何れか 1項に記載の半導体基板洗浄用オゾン水の製造方法である。 第 1 1の発明によれば、 例えば無声放電法した場合には、 酸素ガスか ら発生させたオゾンガスを水に溶解させる。 水は、 予め有機溶剤が添加 された水でもよい。
また、 電気分解法を採用した場合には、 水を電気分解してオゾンを発 生させる。 この場合には、 溶媒としてだけでなく、 オゾンガスの原料と しても超純水を採用することができる。 そのため、 電気分解される超純 水に予め有機溶剤を添加しておけば、 オゾンの発生時点から、 オゾンガ スのオゾン半減期の短縮を抑制することができる。
第 1 2の発明は、 前記オゾンは、 酸素ガスからオゾンを発生させる無 声放電法または水を電気分解してオゾンを発生させる電気分解法により 得られる請求の範囲第 8項に記載の半導体基板洗浄用オゾン水の製造方 法である。
第 1 3の発明は、 前記オゾンは、 酸素ガスからオゾンを発生させる無 声放電法または水を電気分解してオゾンを発生させる電気分解法により 得られる請求の範囲第 9項に記載の半導体基板洗浄用オゾン水の製造方 法である。
第 1 4の発明は、 前記有機溶剤の水への添加は、 撥水性を有する多孔 質高分子膜を通して行われる請求の範囲第 6項、 請求の範囲第 7項、 請 求の範囲第 1 0項、 請求の範囲第 1 2項、 請求の範囲第 1 3項のうち、 何れか 1項に記載の半導体基板洗浄用オゾン水の製造方法である。
多孔質高分子膜は、 一般的に気体を透過することは可能であるが、 液 体は透過させない合成樹脂製の膜である。 したがって、.超純水と有機溶 剤とを多孔質高分子膜により隔離すれば、 多孔質高分子膜を通して有機 溶剤を超純水に極微量ずつ添加させることができる。 具体的には、 多孔 質高分子膜フィル夕の 1次側に有機溶剤を配置し、 2次側に超純水をそ れぞれ供給する。 これにより、 多孔質高分子膜を介して 1次側の有機溶 剤を、 2次側の超純水側に浸透させることができる。
多孔質高分子膜の素材としては、 耐蝕性、 耐劣化性およびフィルタ自 身からの不純物の溶出の懸念などから、フッ素系の合成樹脂が好ましい。 具体的には、 四フッ化工チレン樹脂 (P T F E ) による膜材を、 四フッ 化工チレンーパ一フロロアルキルビニルエーテル共重合樹脂 (P F A ) 製のネッ トによって補強した多孔質高分子膜を採用することができる。 第 1 5の発明は、 前記有機溶剤の水への添加は、 撥水性を有する多孔 質高分子膜を通して行われる請求の範囲第 8項に記載の半導体基板洗浄 用オゾン水の製造方法である。
第 1 6の発明は、 前記有機溶剤の水への添加は、 撥水性を有する多孔 質高分子膜を通して行われる請求の範囲第 9項に記載の半導体基板洗浄 用オゾン水の製造方法である。
第 1 7の発明は、 前記有機溶剤の水への添加は、 撥水性を有する多孔 質高分子膜を通して行われる請求の範囲第 1 1項に記載の半導体基板洗 浄用ォゾン水の製造方法である。
第 1 8の発明は、 水にオゾンガスを溶解させてオゾン水を生成させる オゾン水製造工程と、 前記水にオゾン半減期の短縮を抑制する有機炭素 を含む有機溶剤を添加する溶剤添加工程と、 半導体基板を、 前記有機溶 剤が添加されたオゾン水により洗浄する洗浄工程とを備えた半導体基板 の洗浄方法である。
洗浄される半導体基板としては、 例えばシリコンゥエー八、 ガリウム 砒素ゥエーハを採用することができる。 半導体基板は単体でもよいし、 2枚の半導体基板を貼り合わせた貼り合わせ基板でもよい。
オゾンを含む水としては、 例えば純水、 超純水を採用することができ る。
有機溶剤としては、 水への溶解性が高く、 安価で高純度 (金属不純物 濃度が 0 . 5 p p b以下) の有機溶剤の入手が容易であり、 特にオゾン 半減期の延長に効果が高いものが好ましい。 具体的にはアルコール、 特 にェタノール、 ィソプロピルアルコールなどが挙げられる。
有機溶剤の添加量は限定されない。 ただし、 半導体基板の洗浄効果が 十分に得られる添加量のうち、 最低限の量が好ましい。 有機溶剤が多量 に添加されると、 洗浄後の半導体基板の表面に有機炭素が残留し、 基板 特性が劣化するからである。 また、 過剰に添加された有機炭素の分解に はオゾンが消費され、 反対にォゾン半減期が短くなるおそれもある。 オゾンガスの発生方法は限定されない。 例えば、 酸素ガスからオゾン ガスを発生させる無声放電法、 水を分解してオゾンガスを発生せさる電 気分解法を採用することができる。 何れの発生方法においても、 紫外線 照射などを施した超純水を用いた場合、 オゾン半減期の短縮を引き起こ すことは前述した通りである。
水への有機溶 の添加方法は限定されない。 ただし、 有機溶剤の多量 添加による半導体基板の特性の劣化を招かないためには、 一般的な秤量 調合法などで有機溶剤を添加する方法は不適である'。 したがって、 撥水 性を有した多孔質高分子膜を利用した添加方法が好ましい。
洗浄方法としては、 浸漬法、 すなわち製造されたオゾン含有洗浄液を 洗浄槽に貯留させ、 半導体基板の一枚または複数枚を洗浄槽の洗浄液中 に浸す。 すると、 オゾンの強い酸化力により、 有機物、 金属不純物が分 解して半導体基板より除去される。 また、 洗浄液のオゾン濃度は、 洗浄 液が洗浄槽に達するまで高い濃度で維持される。 そのため、 洗浄時間を 従来より短縮することができる。
別の洗浄方法として、 例えばスピン洗浄を採用することができる。 こ れは、 半導体基板をテーブル上に載置または保持治具に保持した状態で 回転させ、 オゾン含有洗浄液を半導体基板に噴射して洗浄する方法であ る。 この洗浄方法を採用すれば、 半導体基板を短時間で十分に洗浄する ことができる。
この発明において、 オゾンガス製造装置から、 オゾンガスを水に溶解 させるオゾン溶解装置までのオゾン水供給路の距離と、 オゾン溶解装置 から半導体基板の洗浄装置までの別のオゾン水供給路の距離とは、 可能 な限り短くなるように構成、 設定する方が好ましい。 その結果、 オゾン 含有洗浄液のオゾン半減期の短縮抑制との相乗効果により、 半導体基板 の洗浄能力および洗浄効率をより以上に高めることができる。
第 1 8の発明によれば、 水への有機溶剤の添加により、 全有機炭素量 が増加されたオゾン水が得られる。 すなわち、 有機溶剤中には有機炭素 が存在し、 これを水に添加することでオゾン水の全有機炭素量が増加す る。 その結果、 全有機炭素量が低減されたオゾン水であっても、 オゾン 半減期が延長される。 得られたオゾン水を洗浄液に使用し、 オゾン含有 洗浄液として半導体基板を洗浄する。 オゾン含有洗浄液は、 半導体基板 の洗浄において優れた洗浄能力を発揮する。
第 1 9の発明は、 前記有機溶剤の添加量が、 0 . l g /リッ トル〜 0 . 1 g Zリッ トルである請求の範囲第 1 8項に記載の半導体基板の洗 浄方法である。
有機溶剤の添加量が 0 . 1 g Zリッ トル未満では、 オゾン半減期の 短縮を十分に抑制することがでぎない。 また、 有機溶剤の添加量が 0 . 1 g Zリッ トルを超えると、 半導体基板の表面に炭素成分が残留し、 基 板特性を悪化させたり、 反対にオゾンを消費してオゾン半減期を短くす る。 有機溶剤の特に好ましい添加量は、 5 ^ g /リッ トル〜 1 m g /リ ッ トルである。 この範囲であれば溶存オゾン濃度は殆ど低減せず、 しか も半導体基板の表面に有機炭素は残存せず、 洗浄後の半導体基板の特性 を悪化させない。
第 2 0の発明は、 前記有機溶剤が、 エタノールまたはイソプロピルァ ルコ一ルである請求の範囲第 1 8項または請求の範囲第 1 9項に記載の 半導体基板の洗浄方法である。
第 2 1の発明は、 前記水が超純水である請求の範囲第 1 8項または請 求の範囲第 1 9項に記載の半導体基板の洗浄方法である。 ここでいう超純水とは、 金属不純物濃度が 0. 5 p p b以下の水であ る。 超純水の全有機炭素量は 5. 0 X 1 01 3 a t om s /c m3以下で ある。
第 2 2の発明は、 前記水が超純水である請求の範囲第 2 0項に記載の 半導体基板の洗浄方法である。
第 2 3の発明は、 前記オゾンは、 酸素ガスからオゾンを発生させる無 声放電法または水を電気分解してオゾンを発生させる電気分解法により 得られる請求の範囲第 1 8項、 請求の範囲第 1 9項、 請求の範囲第 2 2 項のうち、 何れか 1項に記載の半導体基板の洗浄方法である。
第 2 3の発明によれば、 例えば無声放電法を採用した場合には、 酸素 ガスから発生させたオゾンガスを水に溶解させる。 水は、 予め有機溶剤 が添加された水でもよい。
また、 電気分解法を採用した場合には、 水を電気分解してオゾンを発 生させる。 この場合には、 溶媒としてだけでなく、 オゾンガスの原料と しても超純水を採用することができる。 そのため、 電気分解される超純 水に予め有機溶剤を添加しておけば、 オゾンの発生時点から、 オゾンガ スのオゾン半減期の短縮を抑制することができる。
第 2 4の発明は、 前記オゾンは、 酸素ガスからオゾンを発生させる無 声放電法または水を電気分解してオゾンを発生させる電気分解法により 得られる請求の範囲第 2 0項に記載の半導体基板の洗浄方法である。 第 2 5の発明は、 前記オゾンは、 酸素ガスからオゾンを発生させる無 声放電法または水を電気分解してオゾンを発生させる電気分解法により 得られる請求の範囲第 2 1項に記載の半導体基板の洗浄方法である。 第 2 6の発明は、 前記有機溶剤の水への添加は、 撥水性を有する多孔 質高分子膜を通して行われる請求の範囲第 1 8項、請求の範囲第 1 9項、 請求の範囲第 2 2項、請求の範囲第 2 4項、請求の範囲第 2 5項のうち、 何れか 1項に記載の半導体基板の洗浄方法である。
多孔質高分子膜は、 一般的に気体の透過は可能であるが、 液体は透過 させない合成樹脂製の膜である。 したがって、 超純水と有機溶剤とを多 孔質高分子膜により隔離すれば、 多孔質高分子膜を通して有機溶剤を超 純水に極微量ずつ添加させることができる。 具体的には、 多孔質高分子 膜フィルタの 1次側に有機溶剤を配置し、 2次側に超純水をそれぞれ供 給する。 これにより、 多孔質高分子膜を介して 1次側の有機溶剤を、 2 次側の超純水側に浸透させることができる。
多孔質高分子膜の素材としては、 耐蝕性、 耐劣化性およびフィルタ自 身からの不純物の溶出の懸念などから、フッ素系の合成樹脂が好ましい。 具体的には、 四フッ化工チレン樹脂 (P T F E ) による膜材を、 四フッ 化工チレン一パーフロロアルキルビュルエーテル共重合樹脂 (P F A ) 製のネッ トによって補強した多孔質高分子膜を採用することができる。 第 2 7の発明は、 前記有機溶剤の水への添加は、 撥水性を有する多孔 質高分子膜を通して行われる請求の範囲第 2 0項に記載の半導体基板の 洗浄方法である。
第 2 8の発明は、 前記有機溶剤の水への添加は、 撥水性を有する多孔 質高分子膜を通して行われる請求の範囲第 2 1項に記載の半導体基板の 洗浄方法である。
第 2 9の発明は、 前記有機溶剤の水への添加は、 撥水性を有する多孔 質高分子膜を通して行われる請求の範囲第 2 3項に記載の半導体基板の 洗浄方法である。 図面の簡単な説明
第 1図は、 この発明の第 1の実施例に係る半導体基板洗浄設備の構成 図である。 第 2図は、 この発明の第 1の実施例に係る半導体基板洗浄設備に用い られるオゾンガス製造装置の縦断面図である。
第 3図は、 この発明の第 1の実施例に係る半導体基板洗浄設備に用い られるオゾン水製造装置の斜視図である。
第 4図は、 第 3図のオゾン水製造装置に組み込まれた中空糸モジュ一 ルの斜視図である。
第 5図は、 この発明の第 2の実施例に係る半導体基板洗浄設備に用い られるスピン型枚葉式洗浄装置の使用状態の斜視図である。
第 6図は、 この発明の第 3の実施例に係る半導体基板洗浄設備に用い られるオゾンガス製造装置の縦断面図である。
第 7図は、 第 6図の S 7— S 7断面図である。 発明を実施するための最良の形態
以下、 この発明の実施例を参照して説明する。 また、 この発明は、 こ の実施例に限定されないことはもちろんである。 まず、 第 1図〜第 4図 を参照して第 1の実施例を説明する。
第 1図において、 1 0はこの発明の第 1の実施例に係る半導体基板洗 浄設備で、 この半導体基板洗浄設備 1 0は、 有機炭素を含む有機溶剤 b を貯留する溶剤タンク 1 1 と、 超純水 aに有機溶剤 bを添加する溶剤添 加装置 1 2と、 純水からオゾンガス dを生成するオゾンガス製造装置 1 3と、 有機溶剤 bが添加された溶剤添加超純水 c にオゾンガス dを溶解 させて超純度オゾン水 (半導体基板洗浄用オゾン水) eを生成するォゾ ン水製造装置 1 4と、 半導体基板を、 超純度オゾン水 eにより洗浄する 洗浄槽 1 5とを備えている。
以下、 半導体基板洗浄設備 1 0の各構成体を詳細に説明する。
溶剤タンク 1 1には、 有機炭素を含む有機溶剤 bが貯留されている。 有機溶剤 bとしては、 金属不純物濃度が 0. 5 p p b以下のイソプロピ ルアルコールが採用されている。 イソプロピルアルコールに代えて、 ェ タノ一ルを採用してもよい。 有機溶剤 bは、 予め超純水 aと混合され、 希釈されている。 これは、 数 gZリッ トルレベルの超微量な有機溶剤 bを超純水に添加するには、 ィソプロピルアルコールの原液では濃度が 高すぎるためである。 超純水 aに紫外線が照射され、 超純水 aの全有機 炭素量は 5. 0 X 1 0 1 3 a t om s / c m 3程度まで低下している。 超純水 aは、 超純水供給ライン 1 6を通してオゾン水製造装置 1 4に 供給される。 超純水供給ライン 1 6の途中部には、 溶剤添加装置 1 2が 配置されたバイパス管 1 8が連通されている。 超純水供給ライン 1 6を 流れる一部の超純水 aを、 溶剤添加装置 1 2に供給することができる。 溶剤添加装置 1 2は、 密封されたセル 1 9と、 セル 1 9内に隙間をあ けて密封式の容器形状を有した多孔質高分子膜フィル夕 2 0とを備えて いる。 多孔質高分子膜フィルタ 2 0は、 撥水性の四フッ化工チレン樹脂 (P T F E) による膜材を、 四フッ化工チレン一パーフロロアルキルビ ニルエーテル共重合樹脂 (P F A) 製のネッ トにより補強したフィル夕 である。 セル 1 9と多孔質高分子膜フィル夕 2 0 との隙間が溶剤添加装 置 1 2の 1次室 1 2 aである。 1次室 1 2 aには、 溶剤夕ンク 1 1の有 機溶剤 bが供給される。 一方、 多孔質高分子膜フィルタ 2 0の内部空間 が溶剤添加装置 1 2の 2次室 1 2 bである。 2次室 1 2 bには、 外部か ら超純水 aが供給される。
セル 1 9の外周板の一端部と溶剤タンク 1 1 との間には、 溶剤供給管 2 1が連通されている。 また、 セル 1 9の外周板の他端部と溶剤タンク 1 1 との間には、 溶剤排出管 2 2が連通されている。 溶剤供給管 2 1の 途中部には、 ポンプ 2 3が設けられている。 ポンプ 2 3の作動により、 溶剤タンク 1 1の有機溶剤 bが 1次室 1 2 aに安定して断続的に供給さ れ、 その後、 溶剤排出管 2 2を経て溶剤タンク 1 1に戻される。 そのと き、 1次室 1 2 aでは有機溶剤 bの一部が多孔質高分子膜フィルタ 2 0 を透過し、 2次室 1 2 bの超純水 aに添加される。 イソプロピルアルコ 一ルの原液を使用した場合、 有機溶剤 bの透過量 (添加量) は数百 g Zリッ トルレベルとなる。 数^ リッ トルレベルのさらなる超微量の イソプロピルアルコールを添加する場合には、 アルコール希釈槽内でィ ソプロピルアルコールを希釈する。 ' 次に、第 2図を参照して、オゾンガス製造装置 1 3を詳細に説明する。 第 2図に示すように、 オゾンガス製造装置 1 3は電解式のオゾンガス 発生装置で、 電解槽 2 4を有している。 電解槽 2 4は、 テフロン (デュ ボン社の登録商標) 製で、 横長な断面矩形状を有する密閉槽である。 電 解槽 2 4は、 1対の側壁 3 5, 3 5、 上壁 3 9および下壁 4 0とを有し ている。
電解槽 2 4の中央部には、 電解槽 2 4の内部空間を力ソ一ド室 2 9 と アノード室 3 0とに区画するイオン交換膜 2 5が設けられている。 ィォ ン交換膜 2 5は、 陽イオン交換膜である。 イオン交換膜 2 5のアノード 室 3 0側には、 鉛酸化物触媒が担持され、 膜の全域を被った気液透過性 を有するチタン製で多孔質のァノ一ド電極 2 6を密着させている。また、 イオン交換膜 2 5の力ソード室 2 9側には、 直径 1 0〜 2 0 m、 厚さ 1 0 0 / mの白金担持カーボン製のカソード電極 2 7を密着させている < カソード電極 2 7には、 ジルコニウム製の図示しない集電体が接続さ れている。
また、 力ソード室 2 9およびアノード室 3 0には、 流通配管 3 1がそ れぞれ連結されている。 各流通配管 3 1は、 力ソード室 2 9およびァノ —ド室 3 0に超純水を供給する。 超純水に代えて、 前記溶剤添加超純水 cを採用してもよい。 これにより、 超純度オゾン水 eにおけるオゾン半 減期の短縮の抑制効果が高まる。
カリード電極 2 7およびァノ一ド電極 2 6にはそれぞれ電源が接続さ れ、 超純水への電流の流通を可能としている。 アノード室 3 0には、 ァ ノード電極 2 6から発生したオゾンガス (0 3 ガス) dをオゾン水製造 装置 1 4に排出するオゾンガス排出管 3 2が連通されている。 また、 力 ソード室 2 9には、 カソード電極 2 7から発生した水素ガス (H 2ガス) を排出する水素ガス排出管 3 3が連通されている。
電解槽 2 4の両側壁 3 5 , 3 5の両端部は、 ゴム製のシール部材 4 1 …を介して、 上壁 3 9 と下壁 4 0との両端面に、 所定の付勢力で押し付 けられている。 この押し付け力は、 両側壁 3 5, 3 5の外面に当接され た 1対の押圧板 4 2, 4 2によりそれぞれ作用されている。 両押圧板 4 2 , 4 2の両端部の外面には、 1対のロッ ド 3 6がそれぞれ突設されて いる。 各ロッ ド 3 6…は、 対応するガイ ド部材 3 8…に形成された揷通 孔にゆとりをもって揷通されている。 各ロッ ド 3 6…には、 各ガイ ド部 材 3 8…と側壁 3 5, 3 5との間の部分に、 コイルばね 3 7…がそれぞ れ外揷されている。
各コイルばね 3 7…の付勢力により、押圧板 4 2 , 4 2が両側壁 3 5 , 3 5に所定の付勢力で押し付けられる。 カソ一ド室 2 9およびァノード 室 3 0に過剰の超純水が供給されると、 各コイルばね 3 7…のばね力に 抗して両側壁 3 5, 3 5が外方に移動し、 過剰の純水が両側壁 3 5, 3 5の両端部とシール部材 4 1…との間から漏水する。 これにより、 過剰 な純水によるイオン交換膜 2 5の破損を防止することができる。
次に、 第 3図および第 4図を参照して、 オゾン水製造装置 1 4'を説明 する。
第 3図に示すように、 オゾン水製造装置 1 4は円筒形状を有し、 互い の軸線を平行に離間させた多数本の中空糸モジュール 5 1を有している, 第 4図に示すように、 中空糸モジュール 5 1は四フッ化工チレン樹脂製 の直径 0 . 0 0 1〜 0 . 0 l m m、 長さ 1 0 0 0 m m以上の細長い中空 体である。 中空糸モジュール 5 1を四フッ化工チレン樹脂製とすること で、外部を流れるオゾンガス dの一部を管内に透過させることができる。 そのため、中空糸モジュール 5 1の内部に溶剤添加超純水 cを導通させ、 中空糸モジュール 5 1の外部をオゾンガス dの雰囲気とすれば、 中空糸 モジュール 5 1 を通過中の溶剤添加超純水 cは、 オゾンガス dが溶解さ れた超純度オゾン水 eとなる。
その後、得られた超純度オゾン水 eは、オゾン水供給管 5 2を介して、 供給源の圧送力により、 洗浄槽 1 5の底部に配置された流出ノズル 5 4 から洗浄槽 1 5内に供給される。
次に、 第 1の実施例の半導体基板洗浄設備 1 0を用いた半導体基板の ォゾン洗浄方法を説明する。
超純水 aは、 超純水供給ライン 1 6からオゾン水製造装置 1 4に 1 0 リッ トル/分で供給される。 ただし、 その一部は、 1〜 2 リッ トル/分 でバイパス管 1 8に流れ込み、 溶剤添加装置 1 2の 2次室 1 2 bに供給 される。 一方、 溶剤添加装置 1 2の 1次室 1 2 aには、 ポンプ 2 3の作 動により溶剤タンク 1 1の有機溶剤 bの一部が 5 リッ トル Z分程度で供 給されている。 これにより、 溶剤添加装置 1 2内では、 多孔質高分子膜 フィルタ 2 0を介して、 1次室 1 2 aの有機溶剤 bの一部が 2次室 1 2 bに透過される。 これにより、 溶剤添加超純水 cに微量の有機溶剤 が 添加される。 有機溶剤 bの添加量は数百 g Zリッ トルレベルである。
その後、 有機溶剤 bが添加された溶剤添加超純水 cは、 バイパス管 1 8から超純水供給ライン 1 6の下流部に戻され、 オゾン水製造装置 1 4 に供給される。
一方、 オゾン水製造装置 1 4には、 オゾンガス製造装置 1 3により生 成されたオゾンガス dが 5 0 g / h r程度で供給されている。 オゾンガ ス製造装置 1 3では、 カリード電極 2 7から発生した水素ガスがカソ一 ド室 2 9に貯留し、 その後、 水素ガスは水素ガス排出管 3 3を経て外部 に排出される。 また、 アノード電極 2 6から発生したオゾンガス dはァ ノ一ド室 3 0に貯留され、 オゾンガス排出管 3 2を介して、 オゾン水製 造装置 1 4に導入される。
オゾン水製造装置 1 4に導入された溶剤添加超純水 cは、 多数本の中 空糸モジュール 5 1の内部に導通され、 各中空糸モジュール 5 1の外部 をオゾンガス dの雰囲気とすることで、 中空糸モジュール 5 1を通過中 の溶剤添加超純水じが、 オゾンガス dを溶解した超純度オゾン水 e とな る。
その後、 得られた超純度オゾン水 eは、 供給源の圧送力により、 ォゾ ン水製造装置 1 4からオゾン水供給管 5 2を経て洗浄槽 1 5の底部の流 出ノズル 5 4を通して洗浄槽 1 5内に流出する。 これにより、 洗浄槽 1 5内に浸漬された半導体基板が超純度オゾン水 eにより洗浄される。 このように、高純度のイソプロピルアルコールからなる有機溶剤 bを、 超純度オゾン水 eに添加したことにより、 全有機炭素量が極めて少ない 超純度オゾン水 eであっても、 オゾン半減期の低減を抑制することがで きる。 これは、 超純水 aの作製時、 オゾンの自己分解を抑制する有機炭 素の大半が、 超純水 aに照射された紫外線により分解されても、 溶剤添 加装置 1 2において有機溶剤 bが添加されることで補われるためと考え られる。
その結果、 高濃度のオゾンを含む超純度オゾン水 eを確実に洗浄槽 1 5に供給することができる。 これにより、 オゾンの強力な酸化作用で、 半導体基板に付着した有機不純物、 金属不純物などに対しての洗浄能力 と洗浄効率とを高めることができる。 また、 有機溶剤 bの超純水 aへの添加方法として、 撥水性を有する多 孔質高分子膜フィルタ 2 0を利用した添加法を採用したので、 超純水 a 中に微量の有機溶剤 bを正確に添加することができる。 すなわち、 有機 溶剤 bを過剰に添加することで発生する有機炭素の超純度オゾン水 eに 対する汚染を解消することができる。 しかも、 過剰な有機炭素が半導体 基板の表面に付着し、 半導体基板の基板特性を劣化させることも解消さ れる。 さらに、 オゾン水製造装置 1 4に対する過剰な有機炭素の供給に よる悪影響 (例えば不純物混入による電極の劣化など) も発生しない。 さらに、 添加する有機溶剤 bが超微量であることから、 溶剤添加装置 1 2に、 日本国消防法で定められた防爆装置を設置する必要がない。
ここで、 実際に有機溶剤 bとしてイソプロピルアルコール (金属不純 物濃度が 0 . 5 p p b以下) を用い、 添加濃度が目標値になるように添 加量を調整する。 その際のオゾン水製造装置 1 4により生成された直後 の超純度オゾン水 eの溶存オゾン濃度 (A ) と、 洗浄槽 1 5内の超純度 オゾン水 eの溶存オゾン濃度 (B ) とを、 有機溶剤 bの添加の有無を条 件にしてそれぞれ測定した結果を報告する。 オゾン濃度測定には、 紫外 線吸収法を採用した。 また、 測定時の半導体基板の表面上の全有機炭素 量を、 基板昇温脱離一質量分析法により測定した。 これらの結果を表 1 に示す。
表 1
Figure imgf000023_0001
表 1から明らかなように、 0. 1 g /リッ トルの超微量の有機溶剤 bをそれぞれ添加すると、 有機溶剤を添加しない場合に比べて、 溶存ォ ゾンの半減期が、 ある程度延長されることが分かった。 また、 有機溶剤 の添加量を 5 g Zリッ トル、 1 0 0 g Zリッ トル、 1 m g /リッ ト ルに増加すると、 洗浄槽 1 5内の超純度オゾン水 eの溶存オゾン濃度 (B) は、 オゾン水製造装置 1 4により生成された直後の超純度オゾン 水 eの溶存オゾン濃度 (A) とほとんど同じである。 これにより、 溶存 オゾン濃度が維持されていることが分かる。
しかしながら、 添加量を 1 0 m g /リ ッ トルまで増加させると、 半導 体基板の表面に有機溶剤 bが原因と思われる有機炭素 (炭素成分) が残 存し始める。 また、 1 0 O mg/リッ トルでは、 残存炭素量は 1 O mg Zリツ トルの場合より増加するが、 半導体基板の基板特性は劣化しなか つた。 さらに、 1 g/リッ トルの添加では残存した有機溶剤 bが原因と 思われる基板特性の劣化が見られた。 これらの溶存オゾン濃度および残 存炭素量の評価から、 超純水 aへの有機溶剤 bの添加量は、 0. l ^ g /リ ッ トル〜 1 0 0 m g /リ ッ トルが好ましいことが分かつた。 また、 5 g /リッ トル〜 1 m g Zリッ トルが最適であることもわかった。 次に、 第 5図を参照して、 この発明の第 2の実施例に係る半導体基板 洗浄設備を説明する。
第 5図に示すように、 半導体基板洗浄設備 6 0は、 第 1の実施例の洗 浄槽 1 5に代えてスピン型の枚葉式洗浄装置 6 1を採用した例である。 スピン型の枚葉式洗浄装置 6 1は、 半導体基板 Wを真空吸着により保 持する保持板 6 2と、 保持板 6 2を回転軸 6 3を介して回転させる回転 モー夕 6 4と、 回転中の半導体基板 Wの表裏両面に、 第 1の実施例によ り得られた超純度オゾン水 eを噴射する上下 1対の噴射ノズル 6 5, 6 5とを有している。
洗浄時には、 まず半導体基板 Wを保持板 6 2上に真空吸着し、 回転モ —夕 6 4により保持板 6 2と一体的に半導体基板 Wを 5 0 0 r p mで回 転させる。 この回転中、 上下 1対の噴射ノズル 6 5, 6 5から半導体基 板 Wの表裏両面の各中央部に向けて超純度オゾン水 eを 1 . 0 リッ トル Z分でそれぞれ噴射する。 これにより、 半導体基板 Wの表裏両面が超純 度オゾン水 eによりオゾン洗浄される。
その他の構成、 作用、 効果は、 第 1の実施例と同様であるので説明を 省略する。
ここで、 第 1の実施例のオゾン水製造装置 1 4により生成された直後 の超純度オゾン水 eの溶存オゾン濃度 (A ) と、 噴射ノズル 6 5, 6 5 から噴射される超純度オゾン水 eの溶存オゾン濃度 (C ) とを、 有機溶 剤 bの添加の有無を条件に比較した。 なお、 ここでは有機溶剤 bの添加 量は 5 0 g Zリッ トルとした。 オゾン濃度の測定には、 第 1の実施例 と同じ紫外線吸収法を採用した。 試験条件は以下の通りである。
すなわち、 予め希フッ酸処理により表面が水素終端化された半導体基 板 Wを用い、 半導体基板 Wを保持板 6 2に真空吸着した。 そして、 保持 板 6 2と一体的に半導体基板 Wを 5 0 0 r p mでスピン回転させた。 こ のとき、 両噴射ノズル 6 5 , 6 5より半導体基板 Wの中央部に向けて超 純度オゾン水 eを約 3秒間だけ連続して供給した。 その際、 半導体基板 Wの表面における超純度オゾン水 eの接触角度を測定した。 接触角度と は、 半導体基板 Wの表面に水滴 (超純度オゾン水 e ) を滴下させた際の 水滴と基板表面との角度をいう。 水素終端化処理された半導体基板 Wの 表面は水を弾き易い。そのため、接触角度は大きくなる。 これに対して、 超純度オゾン水 eにより基板表面を洗浄 (オゾン処理) した半導体基板 Wでは、 基板表面の酸化反応が促進され、 接触角度は小さくなる。
溶存オゾン濃度 (A ), ( C ) と、 半導体基板 Wの中心部および外周部 における接触角度とを表 2に示す。
表 2から明らかなように、 噴射ノズル 6 5, 6 5から噴出された超純 度オゾン水 eの溶存オゾン濃度 (C ) は、 第 1の実施例と同様に有機溶 剤 bを添加した方が、 添加しない場合より高いことは明らかである。 次に、 半導体基板 Wの表面内での超純度オゾン水 eの接触角を比較し た。 噴射ノズル 6 5, 6 5から噴射された超純度オゾン水 eが直接塗布 される半導体基板 Wの中心部では、 有機溶剤 bの添加の有無の違いはほ とんどなく、何れの場合でもオゾン酸化が進行していることが分かった。 これに対して、 半導体基板 Wの外周部では、 有機溶剤 bの添加がなけれ ば半導体基板 Wの中心部よりも接触角度が大きくなり、 十分にオゾン酸 化されないことが分かった。
すなわち、 従来の有機溶剤を含まない超純度オゾン水でのスピン洗浄 では、 半導体基板の中心部に供給された超純度オゾン水が半導体基板の 中心部を酸化後、 半導体基板の外周部まで十分にオゾン酸化が可能なほ どにはオゾンが残存していなかったと考えられる。 このような半導体基 板の面内での不均一酸化が発生すると、 十分に酸化されていない半導体 基板の外周部において、パーティクル汚染などが発生するおそれがある。 これに対して、 第 2の実施例の有機溶剤 bを含む超純度オゾン水 eでの スピン洗浄では、 溶存オゾン濃度が高く、 わずか 3秒の洗浄でも半導体 基板 Wの外周部まで十分にオゾン酸化され、 洗浄効果が高くなることが 分かった。 表 2
Figure imgf000026_0001
次に、 第 6図および第 7図を参照して、 この発明の第 3の実施例に係 る半導体基板洗浄設備を説明する。
第 6図および第 7図に示す半導体基板洗浄設備 7 0は、 オゾンガス製 造装置として、 第 1の実施例の電解式のオゾンガス製造装置に代えて、 無声放電式のオゾンガス製造装置を採用した例である。
第 6図および第 7図に示すオゾンガス製造装置 7 0 Aは、 本体である 軸線方向に長い缶体 7 1 を有している。缶体 7 1の外周板の一端部には、 原料である空気を導入する原料空気入口 7 1 aが形成されている。また、 缶体 7 1の外周板の他端部には、 得られたオゾンガス dを排出するォゾ ンガス出口 7 1 bが形成されている。
さらに、 缶体 7 1の長さ方向の両端部を除く部分には、 外周板を外周 壁としたウォー夕一ジャケッ ト 7 2が内設されている。 ウォータージャ ケッ ト 7 2の一端部には、 冷却水が導入される冷却水入口 7 2 aが形成 され、 ウォー夕一ジャケット 7 2の他端部には冷却水が排出される冷却 水出口 7 2 bが形成されている。
缶体 7 1の中心部には、 缶体 7 1の軸線に沿って、 開口部を缶体 7 1 の他端部側に向けた試験管形状の高電圧電極管 7 3が収納されている。 高電圧電極管 7 3は、 ガラスなどの誘電体を素材としている。 高電圧電 極管 7 3は、 ウォータージャケッ ト 7 2の内周壁の両端部との間に配設 された多数のスぺーサ 7 3 a…を介して、 ウォータージャケッ ト 7 2と の間に所定の放電空隙 7 4が形成されている。 また、 高電圧電極管 7 3 の内周面には、 導電皮膜 7 5が形成されている。
導電被膜 7 5の両端部付近には、 導電被膜 7 5に交流高電圧を印加す る給電子 7 6…が配設されている。 各給電子 7 6…には、 缶体 7 1の他 端部に設けられたプッシング 7 7を介して外部から導入された給電線 7 8の先部がそれぞれ接続されている。
次に、 この無声放電式のオゾンガス製造装置 7 O Aによるオゾンガス dの生成方法を説明する。 高電圧電極管 7 3の導電被膜 7 5に交流高電 圧を印加すると、 放電空隙 7 4に無声放電と呼ばれる穏やかなグロ一放 電が発生する。 これにより、 原料空気入口 7 1 aから缶体 7 1内に導入 された原料空気がオゾン化されてオゾンガス dとなる。 その後、 得られ たオゾンガス dは、 オゾンガス出口 7 1 bからオゾン水製造装置 1 4に 供給される。 放電空隙 7 4では、 放電による発熱が生じる。 発熱を放置 すると放電空隙 7 4のガス温度が上昇し、 オゾン発生量が減少する。 そ のため、 冷却水入口 7 2 aおよび冷却水出口 7 2 bを利用してウォー夕 一ジャケッ ト 7 2内に冷却水を流し、 放電空隙 7 4を通過するガスを外 周方向から冷却する。
その他の構成、 作用および効果は、 第 1の実施例と同様であるので説 明を省略する。 以上説明したように、 この発明の半導体基板洗浄用オゾン水、 半導体 基板洗浄用オゾン水の製造方法および半導体基板の洗浄方法によれば、 有機溶剤をオゾン水に添加したことで全有機炭素量が低減されたオゾン 水、 特に全有機炭素量が極めて少ない超純水から得られたオゾン水であ つても、 オゾン半減期の低減を抑制することができる。 その結果、 この 半導体基板洗浄用オゾン水を半導体基板の洗浄液として使用すれば、 高 濃度のオゾン水を確実に洗浄装置に供給することができる。これにより、 オゾンの強力な酸化作用で、 半導体基板に付着した有機不純物、 金属不 純物などに対しての洗浄能力と洗浄効率とを高めることができる。
特に、 半導体基板洗浄用オゾン水の製造方法および半導体基板の洗浄 方法によれば、 有機溶剤の水への添加方法として、 撥水性を有する多孔 質高分子膜を利用する方法を採用すれば、 水に微量の有機溶剤を正確に 添加することができる。 すなわち、 有機溶剤に過剰に添加された有機炭 素によりオゾン水を汚染することもなく、 基板特性の劣化を引き起こす 炭素成分も半導体基板の表面に存在しない。 また、 オゾン水製造装置の オゾンガス発生部などに対する過剰な有機炭素の悪影響もない。さらに、 添加する有機溶媒が超微量であることから、 日本国消防法で定められた 防爆装置も不要になる。 産業上の利用可能性
以上のように、 この発明に係る半導体基板洗浄用オゾン水技術は、 例 えば単体のシリコンゥエーハ、 ガリゥム砒素ゥエーハの洗浄に適用する ことができる。 また、 貼り合わせ基板 (貼り合わせ S O I基板を含む) のように、 2枚の半導体基板を貼り合わせた基板の洗浄に適用すること もできる。 特に、 この発明は、 全有機炭素量が低下した超純度オゾン水 のオゾン半減期の延長に極めて有効である。

Claims

6冃 求 の 範 囲
1. 水にオゾンを含有させた半導体基板洗浄用オゾン水において、 前記水に、 オゾン半減期の短縮を抑制する有機炭素を含む有機溶剤を 添加した半導体基板洗浄用ォゾン水。
2. 前記有機溶剤の添加量が、 0. l ^ g/リッ トル〜 0. l g/リツ トルである請求の範囲第 1項に記載の半導体基板洗浄用オゾン水。
3. 前記有機溶剤が、 エタノールまたはイソプロピルアルコールである 請求の範囲第 1項または請求の範囲第 2項に記載の半導体基板洗浄用ォ ゾン水。
4. 前記水が超純水である請求の範囲第 1項または請求の範囲第 2項に 記載の半導体基板洗浄用オゾン水。
5. 前記水が超純水である請求の範囲第 3項に記載の半導体基板洗浄用 ォゾン水
6. 水にォゾンガスを溶解させてオゾン水を生成させるオゾン水製造ェ 程と、
前記水にオゾン半減期の短縮を抑制する有機炭素を含む有機溶剤を添 加する溶剤添加工程とを備えた半導体基板洗浄用オゾン水の製造方法。
7. 前記有機溶剤の添加-量が、 0. 1 1 8 リッ トル〜 0. l gZリツ トルである請求の範囲第 6項に記載の半導体基板洗浄用オゾン水の製造 方法。
8. 前記有機溶剤が、 エタノールまたはイソプロピルアルコールである 請求の範囲第 6項または請求の範囲第 7項に記載の半導体基板洗浄用ォ ゾン水の製造方法。
9. 前記水が超純水である請求の範囲第 6項または請求の範囲第 7項に 記載の半導体基板洗浄用オゾン水の製造方法。
1 0 . 前記水が超純水である請求の範囲第 8項に記載の半導体基板洗浄 用オゾン水の製造方法。
1 1 . 前記オゾンは、 酸素ガスからオゾンを発生させる無声放電法また は水を電気分解してオゾンを発生させる電気分解法により得られる請求 の範囲第 6項、 請求の範囲第 7項、 請求の範囲第 1 0項のうち、 何れか 1項に記載の半導体基板洗浄用オゾン水の製造方法。
1 2 . 前記オゾンは、 酸素ガスからオゾンを発生させる無声放電法また は水を電気分解してオゾンを発生させる電気分解法により得られる請求 の範囲第 8項に記載の半導体基板洗浄用オゾン水の製造方法。
1 3 . 前記オゾンは、 酸素ガスからオゾンを発生させる無声放電法また は水を電気分解してオゾンを発生させる電気分解法により得られる請求 の範囲第 9項に記載の半導体基板洗浄用オゾン水の製造方法。
1 4 . 前記有機溶剤の水への添加は、 撥水性を有する多孔質高分子膜を 通して行われる請求の範囲第 6項、 請求の範囲第 7項、 請求の範囲第 1 0項、 請求の範囲第 1 2項、 請求の範囲第 1 3項のうち、 何れか 1項に 記載の半導体基板洗浄用オゾン水の製造方法。
1 5 . 前記有機溶剤の水への添加は、 撥水性を有する多孔質高分子膜を 通して行われる請求の範囲第 8項に記載の半導体基板洗浄用オゾン水の 製造方法。
1 6 . 前記有機溶剤の水への添加は、 撥水性を有する多孔質高分子膜を 通して行われる請求の範囲第 9項に記載の半導体基板洗浄用オゾン水の 製造方法。
1 7 . 前記有機溶剤の水への添加は、 撥水性を有する多孔質高分子膜を 通して行われる請求の範囲第 1 1項に記載の半導体基板洗浄用オゾン水 の製造方法。
1 8 . 水にオゾンガスを溶解させてオゾン水を生成させるオゾン水製造 工程と、
前記水にオゾン半減期の短縮を抑制する有機炭素を含む有機溶剤を添 加する溶剤添加工程と、
半導体基板を、 前記有機溶剤が添加されたオゾン水により洗浄する洗 浄工程とを備えた半導体基板の洗浄方法。
1 9 . 前記有機溶剤の添加量が、 0 . 1 g Zリッ トル〜 0 . 1 g / U ッ トルである請求の範囲第 1 8項に記載の半導体基板の洗浄方法。
2 0 . 前記有機溶剤が、 エタノールまたはイソプロピルアルコールであ る請求の範囲第 1 8項または請求の範囲第 1 9項に記載の半導体基板の 洗浄方法。
2 1 . 前記水が超純水である請求の範囲第 1 8項または請求の範囲第 1 9項に記載の半導体基板の洗浄方法。
2 2 . 前記水が超純水である請求の範囲第 2 0項に記載の半導体基板の 洗浄方法。
2 3 . 前記オゾンは、 酸素ガスからオゾンを発生させる無声放電法また は水を電気分解してオゾンを発生させる電気分解法により得られる請求 の範囲第 1 8項、 請求の範囲第 1 9項、 請求の範囲第 2 2項のうち、 何 れか 1項に記載の半導体基板の洗浄方法。
2 4 . 前記オゾンは、 酸素ガスからオゾンを発生させる無声放電法また は水を電気分解してオゾンを発生させる電気分解法により得られる請求 の範囲第 2 0項に記載の半導体基板の洗浄方法。
2 5 . 前記オゾンは、 酸素ガスからオゾンを発生させる無声放電法また は水を電気分解してオゾンを発生させる電気分解法により得られる請求 の範囲第 2 1項に記載の半導体基板の洗浄方法。
2 6 . 前記有機溶剤の水への添加は、 撥水性を有する多孔質高分子膜を 通して行われる請求の範囲第 1 8項、 請求の範囲第 1 9項、 請求の範囲 第 2 2項、 請求の範囲第 2 4項、 請求の範囲第 2 5項のうち、 何れか 1 項に記載の半導体基板の洗浄方法。
2 7 . 前記有機溶剤の水への添加は、 撥水性を有する多孔質高分子膜を 通して行われる請求の範囲第 2 0項に記載の半導体基板の洗浄方法。
2 8 . 前記有機溶剤の水への添加は、 撥水性を有する多孔質高分子膜を 通して行われる請求の範囲第 2 1項に記載の半導体基板の洗浄方法。
2 9 . 前記有機溶剤の水への添加は、 撥水性を有する多孔質高分子膜を 通して行われる請求の範囲第 2 3項に記載の半導体基板の洗浄方法。
PCT/JP2003/010254 2002-08-13 2003-08-11 半導体基板洗浄用オゾン水技術 WO2004016723A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE60321015T DE60321015D1 (de) 2002-08-13 2003-08-11 Verwendung von ozonwasser beim reinigen von halbleitersubstrat
EP03788086A EP1541667B1 (en) 2002-08-13 2003-08-11 Technique on ozone water for use in cleaning semiconductor substrate
US10/522,717 US7678200B2 (en) 2002-08-13 2003-08-11 Technique on ozone water for use in cleaning semiconductor substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002235425A JP4039662B2 (ja) 2002-08-13 2002-08-13 半導体基板又は素子の洗浄方法
JP2002-235425 2002-08-13

Publications (1)

Publication Number Publication Date
WO2004016723A1 true WO2004016723A1 (ja) 2004-02-26

Family

ID=31884377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010254 WO2004016723A1 (ja) 2002-08-13 2003-08-11 半導体基板洗浄用オゾン水技術

Country Status (8)

Country Link
US (1) US7678200B2 (ja)
EP (1) EP1541667B1 (ja)
JP (1) JP4039662B2 (ja)
KR (1) KR100737877B1 (ja)
AT (1) ATE395406T1 (ja)
DE (1) DE60321015D1 (ja)
TW (1) TWI224526B (ja)
WO (1) WO2004016723A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112135681A (zh) * 2018-05-30 2020-12-25 三菱电机株式会社 膜清洗装置及膜清洗方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349266C (zh) * 2004-07-23 2007-11-14 王文 高效能臭氧水清洗半导体晶圆的系统及其方法
JP2006073747A (ja) 2004-09-01 2006-03-16 Sumco Corp 半導体ウェーハの処理方法およびその装置
JP5638193B2 (ja) * 2007-11-09 2014-12-10 倉敷紡績株式会社 洗浄方法および洗浄装置
CN101875048A (zh) * 2010-06-30 2010-11-03 国电光伏(江苏)有限公司 一种去除硅片表面杂质的方法
WO2014178289A1 (ja) 2013-04-30 2014-11-06 オルガノ株式会社 銅露出基板の洗浄方法および洗浄システム
JP6177381B2 (ja) * 2016-05-10 2017-08-09 ヤンマー産業株式会社 ノズル
TW202112452A (zh) * 2019-05-21 2021-04-01 日商東京威力科創股份有限公司 基板處理裝置及基板處理方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116809A (ja) * 1996-10-11 1998-05-06 Tadahiro Omi 洗浄方法及び洗浄システム
JPH1129795A (ja) * 1997-07-08 1999-02-02 Kurita Water Ind Ltd 電子材料用洗浄水、その製造方法及び電子材料の洗浄方法
JPH11340182A (ja) * 1998-05-25 1999-12-10 Wako Pure Chem Ind Ltd 半導体表面洗浄剤及び洗浄方法
JP2000037671A (ja) * 1998-07-24 2000-02-08 Mitsubishi Electric Corp 基板表面処理方法および装置
JP2000147793A (ja) * 1998-11-12 2000-05-26 Mitsubishi Electric Corp フォトレジスト膜除去方法およびそのための装置
JP2000176265A (ja) * 1998-12-10 2000-06-27 Kurita Water Ind Ltd オゾン含有超純水の供給装置
JP2000331977A (ja) * 1999-05-20 2000-11-30 Kurita Water Ind Ltd 電子材料の洗浄方法
JP2000355699A (ja) * 1999-06-15 2000-12-26 Permelec Electrode Ltd オゾン含有浄化液、その製造方法及び浄化方法
JP2002001243A (ja) * 2000-06-23 2002-01-08 Kurita Water Ind Ltd 電子材料の洗浄方法
JP2002118085A (ja) * 2000-10-06 2002-04-19 M Fsi Kk 基板処理方法および基板処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645702A (en) * 1987-06-29 1989-01-10 Kobe Steel Ltd Turning tool
JPS6463685A (en) * 1987-09-04 1989-03-09 Toshiba Corp Scroll compressor
JPH0997440A (ja) * 1995-09-29 1997-04-08 Victor Co Of Japan Ltd 光学情報記録再生装置
DE19825063A1 (de) * 1998-06-04 1999-12-09 Astex Sorbios Gmbh Verfahren zur Unterdrückung der Zerfallsgeschwindigkeit von Ozon in ultrareinem Wasser
US6129849A (en) 1998-10-23 2000-10-10 Kansai Electric Power Co., Inc. Process for accelerating reaction of ozone with AM catalyst
JP2001035827A (ja) * 1999-07-16 2001-02-09 Memc Kk 高濃度オゾン水、同オゾン水の調製方法、および同オゾン水を使用した洗浄方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116809A (ja) * 1996-10-11 1998-05-06 Tadahiro Omi 洗浄方法及び洗浄システム
JPH1129795A (ja) * 1997-07-08 1999-02-02 Kurita Water Ind Ltd 電子材料用洗浄水、その製造方法及び電子材料の洗浄方法
JPH11340182A (ja) * 1998-05-25 1999-12-10 Wako Pure Chem Ind Ltd 半導体表面洗浄剤及び洗浄方法
JP2000037671A (ja) * 1998-07-24 2000-02-08 Mitsubishi Electric Corp 基板表面処理方法および装置
JP2000147793A (ja) * 1998-11-12 2000-05-26 Mitsubishi Electric Corp フォトレジスト膜除去方法およびそのための装置
JP2000176265A (ja) * 1998-12-10 2000-06-27 Kurita Water Ind Ltd オゾン含有超純水の供給装置
JP2000331977A (ja) * 1999-05-20 2000-11-30 Kurita Water Ind Ltd 電子材料の洗浄方法
JP2000355699A (ja) * 1999-06-15 2000-12-26 Permelec Electrode Ltd オゾン含有浄化液、その製造方法及び浄化方法
JP2002001243A (ja) * 2000-06-23 2002-01-08 Kurita Water Ind Ltd 電子材料の洗浄方法
JP2002118085A (ja) * 2000-10-06 2002-04-19 M Fsi Kk 基板処理方法および基板処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112135681A (zh) * 2018-05-30 2020-12-25 三菱电机株式会社 膜清洗装置及膜清洗方法

Also Published As

Publication number Publication date
EP1541667B1 (en) 2008-05-14
JP2004079649A (ja) 2004-03-11
JP4039662B2 (ja) 2008-01-30
ATE395406T1 (de) 2008-05-15
TWI224526B (en) 2004-12-01
KR100737877B1 (ko) 2007-07-10
EP1541667A1 (en) 2005-06-15
US7678200B2 (en) 2010-03-16
US20060154837A1 (en) 2006-07-13
EP1541667A4 (en) 2005-11-30
TW200403110A (en) 2004-03-01
DE60321015D1 (de) 2008-06-26
KR20050075746A (ko) 2005-07-21

Similar Documents

Publication Publication Date Title
CN1163946C (zh) 清洗电子元件或其制造设备的元件的方法和装置
TWI442464B (zh) 清洗方法、清洗系統及製造微細構造之方法
US8999069B2 (en) Method for producing cleaning water for an electronic material
JP5087325B2 (ja) 洗浄システム及び洗浄方法
KR20190053816A (ko) 희석 약액 제조 장치 및 희석 약액 제조 방법
WO2019212046A1 (ja) 加熱オゾン水の製造方法、加熱オゾン水および半導体ウエハ洗浄液
EP2733724B1 (en) Method for cleaning metal gate semiconductor
US20150303053A1 (en) Method for producing ozone gas-dissolved water and method for cleaning electronic material
JP3313263B2 (ja) 電解水生成方法及びその生成装置、半導体製造装置
US20140076355A1 (en) Treatment apparatus, method for manufacturing treatment liquid, and method for manufacturing electronic device
WO2001051187A1 (fr) Appareil de traitement d&#39;ozone
WO2004016723A1 (ja) 半導体基板洗浄用オゾン水技術
JP2000354729A (ja) 洗浄用機能水製造方法及び製造装置
JP2897637B2 (ja) ウエット処理装置
TWI443190B (zh) 清洗液、清洗方法、清洗系統、及製造微細構造之方法
JPWO2017188325A1 (ja) 組成物、組成物収容体、組成物の製造方法
JPH08264498A (ja) シリコンウエーハの清浄化方法
JP3639102B2 (ja) ウェット処理装置
JP2006278838A (ja) 硫酸リサイクル型洗浄システム
JPH1129794A (ja) 電子材料用洗浄水、その製造方法及び電子材料の洗浄方法
JP2004296463A (ja) 洗浄方法および洗浄装置
JP5037748B2 (ja) オゾン水の濃度調整方法及びオゾン水供給系
JP4053805B2 (ja) 機能水、その製造方法及び製造装置
JPH1129795A (ja) 電子材料用洗浄水、その製造方法及び電子材料の洗浄方法
JP4354575B2 (ja) オゾン含有浄化液及びレジスト除去方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003788086

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057002149

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003788086

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057002149

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006154837

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10522717

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10522717

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003788086

Country of ref document: EP