WO2004007919A1 - Regelstruktur für den verstellmotor eines elektrischen nockenwellenverstellers - Google Patents

Regelstruktur für den verstellmotor eines elektrischen nockenwellenverstellers Download PDF

Info

Publication number
WO2004007919A1
WO2004007919A1 PCT/EP2003/006956 EP0306956W WO2004007919A1 WO 2004007919 A1 WO2004007919 A1 WO 2004007919A1 EP 0306956 W EP0306956 W EP 0306956W WO 2004007919 A1 WO2004007919 A1 WO 2004007919A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
adjustment
camshaft
control
controller
Prior art date
Application number
PCT/EP2003/006956
Other languages
English (en)
French (fr)
Inventor
Jens Schäfer
Martin Steigerwald
Martin Overberg
Original Assignee
Ina-Schaeffler Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ina-Schaeffler Kg filed Critical Ina-Schaeffler Kg
Priority to JP2004520443A priority Critical patent/JP4662765B2/ja
Priority to AU2003280981A priority patent/AU2003280981A1/en
Priority to EP03740391.2A priority patent/EP1521901B1/de
Publication of WO2004007919A1 publication Critical patent/WO2004007919A1/de
Priority to US11/015,520 priority patent/US7059285B2/en
Priority to US11/350,165 priority patent/US7152561B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/022Chain drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/024Belt drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • F02D2041/1419Several control loops, either as alternatives or simultaneous the control loops being cascaded, i.e. being placed in series or nested
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2101Cams
    • Y10T74/2102Adjustable

Definitions

  • the invention relates to a control structure for achieving the target adjustment speed of an adjustment motor of an electric adjustment device of the camshaft of an internal combustion engine, in particular according to the preamble of patent claim 1.
  • camshaft adjuster One of the main requirements for an ideal camshaft adjuster is to ensure that the camshaft is adjusted to the desired angle. In reality, however, there are deviations between the target and the actual adjustment angle curve. These are due to mechanical and electrical inertia and the influence of disturbance variables such as camshaft torque.
  • a reduction in the deviations from the target adjustment angle curve of the camshaft leads to a reduction in pollutant emissions and fuel consumption, an increase in engine power and torque as well as a reduction in the electrical system load and the high emission values in the starting phase.
  • the latter assumes that the camshaft adjuster can be controlled before or during engine start. This requirement is only through one electrical camshaft adjuster, because hydraulic adjusters are inoperable before and during the starting phase due to a lack of lubricating oil pressure.
  • An electric camshaft adjuster requires minimal energy consumption of the electric variable motor by appropriately training the controller.
  • the quality of the controlled system is determined by the target-actual adjustment angle curve of the camshaft. It is increased by minimizing the deviations from the target adjustment angle.
  • US Pat. No. 5,787,848 B1 discloses a control structure for reaching the target adjustment speed of an adjustment motor of an electrical adjustment device of the camshaft of an internal combustion engine, the camshaft adjuster having at least one controller which generates control signals for the adjustment motor from measurement signals of the internal combustion engine.
  • This pressure step is about controlling an internal exhaust gas recirculation by changing the valve timing.
  • the exhaust gas recirculation reduces the torque of the internal combustion engine.
  • a low-pass filter is provided in the controller, by means of which a partial overshoot or undershoot of the original torque curve is to be avoided.
  • the invention has for its object to provide a control structure for the electric adjustment motor of a camshaft adjuster, which has the smallest possible deviation of the actual adjustment angle from the desired adjustment angle of the camshaft and a low power consumption of the adjustment motor in the entire operating range of the internal combustion engine.
  • the object is achieved by the features of patent claim 1. Since the input signal is a differential signal, it approaches size 0 with increasing agreement between the actual value and the setpoint. This also applies to the output signal, which supplies a regulated setpoint speed of the servomotor, which then comes to a standstill. However, if the camshaft is to be held in a certain angle of rotation, the adjustment motor must rotate at the camshaft speed. A stationary adjustment motor leads to an adjustment of the angular position of the camshaft, the adjustment speed of which increases with the speed of the internal combustion engine.
  • the required target speed is predetermined for the adjusting motor during the operating time of the internal combustion engine.
  • a position control which relates to the camshaft adjustment angle
  • a speed control which relates to the adjustment motor speed
  • P, PI, PID, prediction or observer controllers can be used as controllers for position and speed control. Combinations of the above-mentioned controllers depending on the operating point are also possible. For example, a Pl controller is advantageous in the case of small setpoint / actual adjustment angle deviations and a P controller in the case of large setpoint / actual adjustment angle deviations. Fuzzy logic controllers are also conceivable.
  • One advantage of the prediction controller is that, depending on the respective adjustment angle jump of the camshaft, this adjustment speed is just decelerable by the adjustment motor in the period available for this pretends. In this way, the overshoot of the angle of rotation of the camshaft is avoided and adjustment energy is saved.
  • the prediction controller of the position control and the PID controller of the speed control are used individually or in series.
  • An advantageous embodiment of the invention consists in that when the prediction controller is in position control, the difference signal between an actual adjustment angle and a set adjustment angle of the camshaft as the input signal and a regulated set adjustment speed for the adjustment motor as the output signal, and that the added speed is the camshaft speed.
  • the added-up camshaft speed prevents the servomotor from coming to a standstill in the entire operating range of the internal combustion engine and thus prevents faulty control.
  • the PID controller has as input signal the difference signal between an actual adjustment speed and a target adjustment speed of the adjustment motor and as an output signal a regulated set adjustment speed for the adjustment motor in the form of a voltage value or a duty cycle modulated voltage, and that the added speed is the unregulated and voltage-converted setpoint speed of the variable motor.
  • the added, uncontrolled setpoint adjustment speed of the adjustment motor, in which the camshaft speed is contained prevents the adjustment motor from coming to a standstill and the associated faulty regulation.
  • An advantageous development of the invention consists in the fact that when the prediction controller and the PID controller are connected in series, the output signal of the Prediction controller with added camshaft speed in voltage-converted form also serves as an activation signal for the output signal of the PID controller. Since the camshaft speed is added to the output signals of both controllers, standstill of the servomotor is also reliably prevented in this case.
  • the PID controller of the speed control has a current limiting function, preferably a two-point current controller.
  • the current regulator takes back the voltage or the duty cycle-modulated voltage, as a result of which the current drops. If the current falls below the current limit, the current control acts in the opposite direction.
  • a cost saving results from the fact that the angular position of the camshaft cannot be measured by a camshaft sensor but by a Hall sensor of the variable motor. Since the stator of a brushless DC motor has at least one Hall sensor anyway, a special camshaft sensor is therefore unnecessary.
  • Figure 1 is a schematic of an electrical camshaft adjuster with control electronics and separate camshaft sensor
  • FIG. 2 shows the diagram from FIG. 1, but with a Hall sensor of the adjusting motor instead of the camshaft sensor;
  • FIG. 3 shows a camshaft adjuster with a stator of the electric adjusting motor fixed to the housing;
  • FIG. 4 shows a control structure of a position control with a PID controller and an addition of the camshaft speed to its output signal;
  • FIG. 5 shows the control structure of a position control with a prediction controller and an addition of the camshaft speed to its output signal
  • FIG. 6 shows a control structure of a speed control with a PID controller and the addition of a voltage or duty cycle-modulated voltage of a non-regulated target adjustment speed of the adjustment motor to the output signal of the PID controller;
  • Figure 7 shows a control structure of a position and speed control with a
  • Figure 8 is a flow chart for engine start and driving.
  • an internal combustion engine 1 is shown schematically. Its crankshaft 2 drives a camshaft drive wheel 4 of a commercial vehicle via a crankshaft drive wheel 3 by means of a chain or a toothed belt (not shown)
  • Camshaft 5 in a 2: 1 ratio has an nNW electric camshaft adjuster 6 with an adjustment gear 7 and an electric adjustment motor 8.
  • the angular position of the crankshaft 2 is measured by means of a crankshaft sensor 9, and the angular position of the camshaft 5 is measured by means of a camshaft sensor 10.
  • Control unit 10 reach a via a control unit 11 of the internal combustion engine 1
  • FIG. 2 shows the diagram of the internal combustion engine 1 from FIG. 1, but the camshaft sensor 10 has been replaced by a Hall sensor 13 of the adjusting motor 8 which is present in any case in the case of brushless DC motors.
  • the camshaft adjuster 6 is shown schematically.
  • the adjusting gear 7 is designed as a three-shaft gear, with an input shaft connected to the camshaft drive wheel 4, an output shaft connected to the camshaft 5 and an adjusting shaft 14 which are connected in a rotationally fixed manner to a rotor 15 of the adjusting motor 8.
  • the adjusting motor 8 has a stator 16 which is designed to be fixed to the housing.
  • FIG. 4 shows the control structure according to the invention.
  • a difference signal 17 ⁇ 18 of an actual adjustment angle 17 and a target adjustment angle 18 between the crankshaft 2 and the camshaft 5 is the input signal of a PID controller 19.
  • Its output signal 20 contains a regulated target adjustment speed for the Adjusting motor 8.
  • the difference signal 17 + 18 approaches the value 0.
  • the output signal 20 and thus the regulated target adjustment speed of the servomotor 8 also approaches this value.
  • the camshaft speed 21 is added to the output signal 20 of the controller 19 and is thus given to the adjusting motor 8 as the target adjusting speed 20 + 21.
  • the adjusting motor 8 rotates at least at the camshaft speed 21, as a result of which the control position of the camshaft 5 is maintained.
  • FIG. 5 shows in the control structure of a position control. Depending on the jump size of the adjustment angle, this specifies an adjustment speed that is just decelerable in the available time by the adjustment motor 8.
  • the size of the input signal 17 ⁇ 18 of the prediction controller 22 corresponds to the difference between the actual adjustment angle 17 and the target adjustment angle 18 in FIG. 4.
  • the prediction controller 22 specifies that regulated target adjustment speed as the output signal 20 ′ . which can be decelerated by the adjusting motor 8 within the available time in order to overcome the predetermined angular deviation.
  • the current camshaft speed 21 is applied to the output signal 20 'of the prediction controller 22 and the sum 20 ' + 21 is given to the servo motor 8 as the target adjustment speed.
  • the overshoot of the actual adjustment angle is avoided by the prediction controller 22 and at the same time the power consumption of the adjustment motor 8 is considerably reduced.
  • the regulators 19, 22 described above are used to control the position of the camshaft 5. For optimal control results, an inner control circuit with a speed control or alternatively a current or torque control of the adjusting motor 8 is also necessary.
  • the relevant control structure is shown in FIG. 6.
  • the input signal of the PID controller 19 ' is the difference signal 23 + 24 between a target adjustment speed 24 and an actual adjustment speed 23 of the adjustment motor 8.
  • a voltage is obtained as the output signal 20 " which is used to control the adjustment motor 8
  • the voltage corresponding to the target adjusting speed 24 of the adjusting motor 8 is added to the output signal 20 " via a voltage converter 25. This ensures that the actuator 8 is always given a voltage corresponding to the target adjustment speed 24 during operation.
  • P, Pl and prediction controllers can also be used as controllers.
  • FIG. 7 shows the control structure of a complete control system for the adjustment motor 8 with a position control according to FIG. 4 and a speed control according to FIG. 6 connected in series.
  • the position control has a prediction controller 22, the input signal as a difference signal 17 ⁇ 18 between the actual adjustment angle 17 and the setpoint Adjustment angle 18 is formed and processed to the output signal 20 'of a regulated target adjustment speed.
  • the camshaft speed 21 is added to this, which together form the target adjustment speed 20 ′ + 21 of the adjustment motor 8.
  • the difference signal 20 ′ + 21 + 23 from the target adjusting speed 20 ′ + 21 and the actual adjusting speed 23 forms the input signal of the PID controller 19 ′ of the speed control, the output signal 20 ′′ of which is added to the target adjusting speed 20 converted in a voltage converter 25 ' + 21 is processed to the voltage 20 " + 20 ' + 21 which drives the adjusting motor 8.
  • the prediction and PID controllers 22, 19 'shown other controllers such as P and PI controllers can also be used.
  • a current limiting function for example a two-point current regulator, into the PID controller 19 'of the speed control to protect the adjusting motor 8 and control electronics, which reduces the voltage or the duty cycle when the predetermined current limit value is exceeded.
  • FIG. 8 shows a flow diagram in which it is shown how the adjustment motor 8 is regulated when the internal combustion engine 1 starts and when it is operated.
  • position 26 the ignition lock is actuated, in position 27 the starter starts and ends the starting process.
  • position 28 the angular position of the camshaft 5 is recognized, in position 29 the adjustment angle comparison is made, the result of which leads to the actuation of the adjustment motor 8 in position 30.
  • Driving can mean stopping according to position 31, early adjustment according to position 32 or late adjustment according to position 33. The respective result is reported back to position 28 via the return line 34, with which a new run begins.
  • Target adjustment angle 19 ' PID controller, 20 ' , 20 " controlled output signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Die Erfindung betrifft eine Regelstruktur für den Verstellmotor (8) eines elektrischen Nockenwellenverstellers (6) eines Verbrennungsmotors (1) mit einem Regler (19), der Messsignale des Verbrennungsmotors (1) zu Steuerdaten für den Verstellmotor (8) verarbeitet. Ein Regler (19), der auch bei einem Nullwert des Eingangs-Differenzsignals sinnvolle Werte für die Sollverstelldrehzahl des Verstellmotors (8) aufweist, wird dadurch erreicht, dass dem Ausgangssignal (20) einer geregelten Solldrehzahl das Signal einer ungeregelten Drehzahl (21) aufgeschaltet wird.

Description

Bezeichnung der Erfindung
Regelstruktur für den VerStellmotor eines elektrischen Nockenwellenverstellers
Beschreibung
Gebiet der Erfindung
Die Erfindung betrifft eine Regelstruktur zum Erreichen der Soll-Verstelldreh- zahl eines Verstellmotors einer elektrischen VerStelleinrichtung der Nockenwelle eines Verbrennungsmotors, insbesondere nach dem Oberbegriff des Patentanspruchs 1.
Hintergrund der Erfindung
Eine Hauptforderung an einen idealen Nockenwellenversteller besteht darin, eine exakte Einhaltung des Soll-Verstellwinkelverlaufs der Nockenwelle sicherzustellen. In der Realität kommt es jedoch zu Abweichungen zwischen dem Soll- und dem Ist-Verstellwinkelverlauf. Diese sind begründet in mechanischen und elektrischen Trägheiten sowie im Einfluss von Störgrößen wie zum Beispiels des Nockenwellendrehmoments.
Eine Verringerung der Abweichungen vom Soll-Verstellwinkelverlauf der Nokkenwelle führt zu einer Senkung von Schadstoffemission und Kraftstoffver- brauch, zur Steigerung von Motorleistung und Drehmoment sowie zu einer Verringerung der Bordnetzbelastung und der hohen Emissionswerte in der Startphase. Letzteres setzt voraus, dass der Nockenwellenversteller schon vor bzw. während des Motorstarts regelbar ist. Diese Forderung ist nur durch einen elektrischen Nockenwellenversteller zu erfüllen, da hydraulische Versteller vor und während der Startphase mangels Schmieröldrucks funktionsunfähig sind.
An einen elektrischen Nockenwellenversteller besteht die Forderung nach mi- nimalem Energieverbrauch des elektrischen Verstellmotors durch entsprechende Ausbildung des Reglers. Die Güte des geregelten Systems wird durch den Soll-Ist-Verstellwinkelverlauf der Nockenwelle bestimmt. Sie wird durch eine Minimierung der Abweichungen vom Soll-Verstellwinkel erhöht.
In der US-5,787,848 B1 ist eine Regelstruktur zum Erreichen der Soll-Verstelldrehzahl eines Verstellmotors einer elektrischen VerStelleinrichtung der Nokkenwelle eines Verbrennungsmotors offenbart, wobei der Nockenwellenversteller zumindest einen Regler aufweist, der aus Messsignalen des Verbrennungsmotors Steuersignale für den Verstellmotor generiert. In dieser Druck- schritt geht es um die Steuerung einer internen Abgasrückführung durch Verändern der Ventilsteuerzeiten. Die Abgasrückführung senkt das Drehmoment des Verbrennungsmotors. Um eine Drehmomentkurve ähnlich der eines Verbrennungsmotors ohne Abgasrückführung zu erreichen, ist in dem Regler ein Tiefpassfilter vorgesehen, durch den ein teilweises Über- oder Unterschreiten der ursprünglichen Drehmomentkurve vermieden werden soll.
Aufgabe der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, eine Regelstruktur für den elektri- sehen Verstellmotor eines Nockenwellenverstellers zu schaffen, die im gesamten Betriebsbereich des Verbrennungsmotors eine geringstmögliche Abweichung des Ist-Verstellwinkels vom Soll-Verstellwinkel der Nockenwelle und einen geringen Stromverbrauch des Verstellmotors aufweist.
Zusammenfassung der Erfindung
Erfindungsgemäß wird die Aufgabe durch die Merkmale des Patentanspruchs 1 gelöst. Da das Eingangssignal ein Differenzsignal ist, nähert sich dieses mit wachsender Übereinstimmung von Ist- und Sollwert der Größe 0. Dies trifft dann auch für das Ausgangssignal zu, das eine geregelte Soll-Verstelldrehzahl des Verstellmotors liefert, der dann zum Stillstand kommt. Soll die Nockenwelle aber in einer bestimmten Verdrehwinkellage gehalten werden, muss sich der Verstellmotor mit Nockenwellendrehzahl mitdrehen. Ein stillstehender Verstellmotor führt zu einer Verstellung der Drehwinkellage der Nockenwelle, deren Verstellgeschwindigkeit mit der Drehzahl des Verbrennungsmotors zunimmt.
Erfindungsgemäß wird durch Aufaddieren des ungeregelten und damit von dem Differenzsignal unabhängigen Drehzahlsignals die erforderliche Solldrehzahl dem Verstellmotor während der Betriebszeit des Verbrennungsmotors vorgegeben. Dadurch kann die Position der Nockenwelle zur Kurbelwelle gehalten werden.
Für eine hohe Regelqualität ist es von Vorteil, dass eine Lageregelung, die sich auf die Nockenwellenverstellwinkel bezieht, und zusätzlich eine Drehzahlregelung, die sich auf die Verstellmotordrehzahl bezieht, vorgesehen sind. Auf diese Weise werden die für die Drehwinkellage der Nockenwelle relevanten Parameter des Nockenwellenverstellwinkels und der Verstellmotordrehzahl berücksichtigt.
Es ist von Vorteil, dass als Regler für die Lage- und Drehzahlregelung unter anderem P-, Pl-, PID-, Prädiktions- oder Beobachterregler einsetzbar sind. Es sind auch betriebspunktabhängige Kombinationen der obengenannten Regler möglich. So ist zum Beispiel bei kleinen Soll-Ist-Verstellwinkelabweichungen ein Pl-Regler und bei großen Soll-Ist-Verstellwinkelabweichungen ein P-Regler vorteilhaft. Auch Fuzzy-Logik-Regler sind denkbar.
Ein Vorteil des Prädiktioπsreglers liegt darin, dass dieser, abhängig von dem jeweiligen Verstellwinkelsprung der Nockenwelle, eine von dem Verstellmotor in dem dafür verfügbaren Zeitraum gerade noch verzögerbare Verstelldrehzahl vorgibt. Auf diese Weise wird das Überschwingen der Verdrehwinkel der Nokkenwelle vermieden und dadurch Verstellenergie eingespart.
Bei einem Beobachtungsregler ist es vorteilhaft, dass parallel zum Regler ein Modell der Regelstrategie gerechnet wird. Dieses Modell nutzt die Reglerausgangsgröße und versucht der realen Strecke zu folgen. Dadurch wird die Regelgüte verbessert und ebenfalls Verstellenergie eingespart.
Je nach geforderter Regelqualität werden der Prädiktionsregler der Lagerege- lung und der PID-Regler der Drehzahlregelung einzeln oder in Reihe geschaltet eingesetzt.
Eine vorteilhafte Ausbildung der Erfindung besteht darin, dass bei Lageregelung der Prädiktionsregler als Eingangssignal das Differenzsignal zwischen einem Ist-Verstellwinkel und einem Soll-Verstellwinkel der Nockenwelle und als Ausgangssignal eine geregelte Soll-Verstelldrehzahl für den Verstellmotor aufweist und dass die aufaddierte Drehzahl die Nockenwellendrehzahl ist. Die aufaddierte Nockenwellendrehzahl verhindert im gesamten Betriebsbereich des Verbrennungsmotors einen Stillstand des Verstellmotors und damit eine fehler- hafte Regelung.
Ebenso ist es vorteilhaft, dass bei Drehzahlregelung der PID-Regler als Eingangssignal das Differenzsigπal zwischen einer Ist-Verstelldrehzahl und einer Soll- Verstelldrehzahl des Verstellmotors und als Ausgangssignal eine geregelte Soll- Verstelldrehzahl für den Verstellmotor in Form eines Spannungswertes oder einer tastverhältnismodulierten Spannung aufweist und dass die aufaddierte Drehzahl die ungeregelte und spannunsgewandelte Soll-Verstell-drehzahl des Verstellmotors ist. Auch hier verhindert die aufaddierte ungeregelte Soll-Verstelldrehzahl des Verstellmotors, in der die Nockenwellendrehzahl enthalten ist, einen Stillstand des Verstellmotors und die damit verbundene fehlerhafte Regelung.
Eine vorteilhafte Weiterbildung der Erfindung besteht darin, dass bei Reihenschaltung des Prädiktionsreglers und des PID-Reglers das Ausgangssignal des Prädiktionsreglers mit aufaddierter Nockenwellendrehzahl in spannungsge- wandelter Form zugleich als Aufschaltsignal für das Ausgangssignal des PID- Reglers dient. Da den Ausgangssignalen beider Regler die Nockenwellendrehzahl aufaddiert ist, wird auch in diesem Fall ein Stillstand des Verstellmotors sicher verhindert.
Es dient der Haltbarkeit der Regler, dass vorzugsweise der PID-Regler der Drehzahlregelung eine Strombegrenzungsfunktion, vorzugsweise einen Zweipunkt-Stromregler aufweist. Der Stromregler nimmt beim Überschreiten des vorgegebenen Stromgrenzwertes die Spannung bzw. die tastverhältnismodu- lierte Spannung zurück, wodurch der Strom abfällt. Bei Unterschreiten des Stromgrenzwertes wirkt die Stromregelung in umgekehrter Richtung.
Eine Kostenersparnis ergibt sich daraus, dass die Drehwinkellage der Nok- kenwelle nicht durch einen Nockenwellensensor sondern durch einen Hallsensor des Verstellmotors messbar ist. Da der Stator eines bürstenlosen Gleichstrommotors ohnedies mindestens einen Hallsensor aufweist, erübrigt sich somit ein spezieller Nockenwellensensor.
Kurze Beschreibung der Zeichnungen
Weitere Merkmale der Erfindung ergeben sich aus der folgenden Beschreibung und den Zeichnungen, in denen mehrere Ausführungsbeispiele der Erfindung schematisch dargestellt sind. Es zeigen:
Figur 1 ein Schema eines elektrischen Nockenwellenverstellers mit Steuerelektronik und separatem Nockenwellensensor;
Figur 2 das Schema von Figur 1 , jedoch mit einem Hallsensor des Ver- Stellmotors anstelle des Nockenwellensensors;
Figur 3 einen Nockenwellenversteller mit einem gehäusefesten Stator des elektrischen Verstellmotors; Figur 4 eine Regelstruktur einer Lageregelung mit einem PID-Regler und einer Aufaddierung der Nockenwellendrehzahl auf dessen Ausgangssignal;
Figur 5 die Regelstruktur einer Lageregelung mit einem Prädiktionsregler und einer Aufaddierung der Nockenwellendrehzahl auf dessen Ausgangssignal;
Figur 6 eine Regelstruktur einer Drehzahlregelung mit einem PID-Regler und der Aufaddierung einer spannungs- bzw. tastverhältnismodu- lierten Spannung einer nicht geregelten Soll-Verstelldrehzahl des Verstellmotors auf das Ausgangssignal des PID-Reglers;
Figur 7 eine Regelstruktur einer Lage- und Drehzahlregelung mit einem
Prädiktions- und einem PID-Regler und mit einer Drehzahl- sowie einer Spannungsaufschaltung auf das jeweilige Ausgangssignal;
Figur 8 ein Ablaufdiagramm für den Motorstart und den Fahrbetrieb.
Ausführliche Beschreibung der Zeichnungen
In Figur 1 ist ein Verbrennungsmotor 1 schematisch dargestellt. Dessen Kurbelwelle 2 treibt über ein Kurbelwellenantriebsrad 3 mittels einer nicht darge- stellten Kette oder eines Zahnriemens ein Nockenwellenantriebsrad 4 einer nKW
Nockenwelle 5 im Verhältnis 2: 1 an. Die Nockenwelle 5 weist einen nNW elektrischen Nockenwellenversteller 6 mit einem Verstellgetriebe 7 und einem elektrischen Verstellmotor 8 auf. Die Drehwinkellage der Kurbelwelle 2 wird mittels eines Kurbelwellensensors 9, die Drehwinkellage der Nockenwelle 5 mittels eines Nockenwellensensors 10 gemessen. Die Signale der Sensoren 9,
10 gelangen über ein Steuergerät 11 des Verbrennungsmotors 1 zu einem Steuergerät 12 des Verstellmotors 8. Dort werden sie zu Steuersignalen für den Verstellmotor 8 umgewandelt.
Figur 2 zeigt das Schema des Verbrennungsmotors 1 von Figur 1 , jedoch ist der Nockenwellensensor 10 durch einen bei bürstenlosen Gleichstrommotoren ohnedies vorhandenen Hallsensor 13 des Verstellmotors 8 ersetzt worden.
In Figur 3 ist der Nockenwellenversteller 6 schematisch dargestellt. Das Verstellgetriebe 7 ist als Dreiwellengetriebe ausgebildet, mit einer Antriebswelle, die mit dem Nockenwellenantriebsrad 4, einer Abtriebswelle, die mit der Nokkenwelle 5 und einer Verstellwelle 14, die mit einem Rotor 15 des Verstellmotors 8 drehfest verbunden sind. Der Verstellmotor 8 weist einen Stator 16 auf der gehäusefest ausgebildet ist.
Figur 4 stellt die erfindungsgemäße Regelstruktur dar. Ein Differenzsignal 17 ± 18 eines Ist-Verstellwinkels 17 und eines Soll-Verstellwinkels 18 zwischen der Kurbelwelle 2 und der Nockenwelle 5 ist das Eingangssignal eines PID-Reglers 19. Dessen Ausgangssignal 20 beinhaltet eine geregelte Sollverstelldrehzahl für den Verstellmotor 8.
Wenn sich Ist- und Soll-Verstellwinkel 17, 18 nähern, nähert sich das Differenzsignal 17 + 18 dem Wert 0. Dadurch nähert sich auch das Ausgangssignal 20 und damit die geregelte Soll-Verstelldrehzahl des Verstellmotors 8 diesem Wert.
Wenn die Drehwinkellage der Nockenwelle 5 gehalten werden soll, muss der Rotor 15 des Verstellmotors 8 mit Nockenwellendrehzahl umlaufen. Abweichungen von dieser Drehzahl wirken sich vor allem bei höheren Drehzahlen des Verbrennungsmotors 1 als erhebliche Regellagenabweichungen aus.
Dies wird dadurch verhindert, dass erfindungsgemäß die Nockenwellendrehzahl 21 auf das Ausgangssignal 20 des Reglers 19 aufaddiert und so als Sollverstelldrehzahl 20 + 21 dem Verstellmotor 8 vorgegeben wird. Auf diese Wei- se dreht sich der Verstellmotor 8 zumindest mit der Nockenwellendrehzahl 21 , wodurch die Regellage der Nockenwelle 5 erhalten bleibt.
Trotz des verbesserten Regelverhaltens durch die Aufschaltung der Nocken- wellendrehzahl 21 auf das Ausgangssignal 20 des PID-Reglers 19 kommt es zu starkem Überschwingen des Verstellwinkels am Ende eines jeden Drehzahlsprungs des Verstellmotors 8. Dies liegt im Wesentlichen daran, dass dieser den Vorgaben der Soll-Verstelldrehzahl nicht schnell genug folgen kann, da sich Beschleunigungs- und Verzögerungsvorgänge wegen dessen beschränk- ter Drehmomentkapazität nicht schnell genug durchführen lassen.
Dieses Verhalten lässt sich mit einem sogenannten Prädiktionsregler 22 verbessern, den Figur 5 in der Regelstruktur einer Lageregelung zeigt. Dieser gibt abhängig von der Sprunggröße des Verstellwinkels eine vom Verstellmotor 8 in der verfügbaren Zeit gerade noch verzögerbare Verstelldrehzahl vor.
Die Größe des Eingangssignals 17 ± 18 des Prädiktionsreglers 22 entspricht der Differenz des Ist-Verstellwinkels 17 und des Soll-Verstellwinkels 18 der Figur 4. Abhängig von diesem Verstellwinkelsprung wird von dem Prädiktions- regier 22 als Ausgangssignal 20' diejenige geregelte Soll-Verstelldrehzahl angegeben, die zur Überwindung der vorgegebenen Winkelabweichung innerhalb der verfügbaren Zeit von dem Verstellmotor 8 verzögert werden kann.
Dem Ausgangssignal 20' des Prädiktionsreglers 22 wird die aktuelle Nocken- wellendrehzahl 21 aufgeschaltet und die Summe 20' + 21 als Soll-Verstelldrehzahl dem Verstellmotor 8 vorgegeben. Durch den Prädiktionsregler 22 wird das Überschwingen, des Ist-Verstellwinkels vermieden und dadurch zugleich der Stromverbrauch des Verstellmotors 8 erheblich gesenkt.
Die zuvor beschriebenen Regler 19, 22 dienen der Lageregelung der Nockenwelle 5. Für optimale Regelergebnisse ist noch ein innerer Regelkreis mit einer Drehzahlregelung oder alternativ einer Strom- oder Momentenregelung des Verstellmotors 8 notwendig. Die diesbezügliche Regelstruktur zeigt Figur 6. Das Eingangssignal des PID-Reglers 19' ist das Differenzsignal 23 + 24 zwischen einer Soll-Verstelldrehzahl 24 und einer Ist-Verstelldrehzahl 23 des Verstellmotors 8. Als Ausgangssignal 20" erhält man eine Spannung, die zur An- steuerung des Verstellmotors 8 dient. Um zu verhindern, dass bei Überein- Stimmung von Soll- und Ist-Verstelldrehzahl 24, 23 eine Spannung 0 vorgegeben ist, wird dem Ausgangssignal 20" über einen Spannungswandler 25 die der Soll-Verstelldrehzahl 24 des Verstellmotors 8 entsprechende Spannung aufaddiert. Dadurch ist sichergestellt, dass dem Verstellmotor 8 im Betrieb immer eine Spannung entsprechend der Soll-Verstelldrehzahl 24 vorgegeben wird. Als Regler kommen neben dem PID-Regler unter anderen auch P- und Pl- sowie Prädiktionsregler in Frage.
Bei einer Drehzahlregelung gibt es keine bleibenden Regelabweichungen. Außerdem sind die Verstellgeschwindigkeiten höher als bei der Lageregelung.
Figur 7 zeigt die Regelstruktur eines Komplettregelsystems für den Verstellmotor 8 mit Hintereinanderschaltung einer Lageregelung entsprechend Figur 4 und einer Drehzahlregelung entsprechend Figur 6. Die Lageregelung weist einen Prädiktionsregler 22 auf, dessen Eingangssignal als Differenzsignal 17 ± 18 zwischen dem Ist-Verstellwinkel 17 und dem Soll-Verstellwinkel 18 gebildet und zu dem Ausgangssignal 20' einer geregelten Soll-Verstelldrehzahl verarbeitet wird. Diesem wird die Nockenwellendrehzahl 21 aufaddiert, die zusammen die Soll-Verstelldrehzahl 20' + 21 des Verstellmotors 8 bilden.
Das Differenzsignal 20' + 21 + 23 aus Soll-Verstelldrehzahl 20' + 21 und Ist- Verstelldrehzahl 23 bildet das Eingangssignal des PID-Reglers 19' der Drehzahlregelung, dessen Ausgangssignal 20" mit der aufaddierten, in einem Spannungswandler 25 spannungsgewandelten Soll-Verstelldrehzahl 20' + 21 zu der den Verstellmotor 8 ansteuernden Spannung 20" + 20' + 21 verarbeitet wird. Neben dem dargestellten Prädiktions- und PID-Reglern 22, 19' sind unter anderem auch andere Regler wie P- und Pl-Regler verwendbar. Weiterhin ist es denkbar, zumindest in den PID-Regler 19' der Drehzahlregelung zum Schutz von Verstellmotor 8 und Regelelektronik eine Strombegrenzungsfunktion, zum Beispiel einen Zweipunkt-Stromregler zu integrieren, der beim Überschreiten des vorgegebenen Stromgrenzwerts die Spannung bzw. das Tastverhältnis zurücknimmt.
In Figur 8 ist ein Ablaufdiagramm dargestellt, in dem gezeigt wird, wie die Regelung des Verstellmotors 8 beim Start des Verbrennungsmotors 1 und bei dessen Betrieb erfolgt. In Position 26 wird das Zündschloß betätigt, in Position 27 läuft der Anlasser hoch und beendet damit den Startvorgang. In Position 28 wird die Drehwinkellage der Nockenwelle 5 erkannt, in Position 29 ist der Verstellwinkelvergleich getätigt, dessen Ergebnis zum Ansteuern des Verstellmotors 8 in Position 30 führt. Ansteuern kann Halten gemäß Position 31 , Frühverstellen gemäß Position 32 oder Spätverstellen gemäß Position 33 bedeuten. Das jeweilige Ergebnis wird über die Rückleitung 34 zur Position 28 zurückgemeldet, womit ein neuer Durchlauf beginnt.
Bezugszeichenliste
Verbrennungsmotor
Kurbelwelle
Kurbelwellenantriebsrad
Nockenwellenantriebsrad
Nockenwelle
Nockenwellenversteller
Verstellgetriebe
Verstellmotor
Kurbelwellensensor
Nockenwellensensor
Steuergerät
Steuergerät
Hallsensor
Verstellwelle
Rotor
Stator
Ist-Verste II winkel
Soll-Verstellwinkel , 19' PID-Regler , 20', 20" geregeltes Ausgangssignal
Nockenwellendrehzahl
Prädiktionsregler
Ist-Verstelldrehzahl
Soll-Verstelldrehzahl
Spannungswandler
Position „Zündschloß drehen"
Position „Anlasser dreht hoch"
Position „Drehwinkellage der Nockenwelle"
Position „Soll-Ist-Verstellwinkel-Vergleich"
Position „Ansteuern des Verstellmotors" 31 Position „Halten"
32 Position „Frühverstellen"
33 Position „Spätverstellen"
34 Rückleitung

Claims

Patentansprüche
1. Regelstruktur zum Erreichen der Soll-Verstelldrehzahl eines Verstellmotors (8) eines elektrischen Nockenwellenverstellers (6) der Nockenwelle (5) eines Verbrennungsmotors (1 ), wobei der Nockenwellenversteller (6) zumindest einen Regler (19, 22, 19') aufweist, der aus Messsignalen des Ver- brennungsmotors (1 ) Steuersignale für den Verstellmotors (8) generiert, dadurch gekennzeichnet, dass der Regler (19, 22, 19') als Eingangssignal ein Differenzsignal aus Soll- und Istwerten und als Ausgangssignal ein für den Verstellmotor (8) bestimmtes, geregeltes Soll-Verstelldrehzahlsignal aufweist, dem ein ungeregeltes Drehzahlsignal aufaddiert ist.
Regelstruktur nach Anspruch 1 , dadurch gekennzeichnet, dass eine Lageregelung, die sich auf die Nockenwellenverstellwinkel bezieht, und zusätzlich eine Drehzahlregelung, die sich auf die Verstellmotordrehzahl bezieht, vorgesehen sind.
Regelstruktur nach Anspruch 2, dadurch gekennzeichnet, dass als Regler für die Lage- und Drehzahlregelung unter anderem P-, Pl-, PID-, Prädiktions- oder Beobachterregler einsetzbar sind.
4. Regelstruktur nach Anspruch 3, dadurch gekennzeichnet, dass ein Prädiktionsregler (22) abhängig von dem jeweiligen Verstellwinkelsprung der Nockenwelle (5) eine von dem Verstellmotor (8) in dem dafür verfügbaren Zeitraum gerade noch verzögerbare Verstelldrehzahl vorgibt.
5. Regelstruktur nach Anspruch 4, dadurch gekennzeichnet, dass für die Lageregelung vorzugsweise der Prädiktionsregler (22) und für die Drehzahlregelung vorzugsweise der PID-Regler (19') vorgesehen sind, die einzeln oder in Reihe geschaltet einsetzbar sind.
6. Regelstruktur nach Anspruch 5, dadurch gekennzeichnet, dass bei Lageregelung der Prädiktionsregler (22) als Eingangssignal das Differenzsignal (17 + 18) zwischen einem Ist-Verstellwinkel (17) und einem Soll-Verstell- winkel (18) der Nockenwelle (5) und als Ausgangssignal (20') eine geregelte Soll-Verstelldrehzahl für den Verstellmotor (8) aufweist und dass die aufaddierte Drehzahl die Nockenwellendrehzahl (21 ) ist.
7. Regelstruktur nach Anspruch 5, dadurch gekennzeichnet, dass bei Dreh- zahlregelung der PID-Regler (19') als Eingangssignal das Differenzsignal
(23 + 24) zwischen einer Ist-Verstelldrehzahl (23) und einer Soll-Verstelldrehzahl (24) des Verstellmotors (8) und als Ausgangssignal (20") eine geregelte Soll-Verstelldrehzahl für den Verstellmotor (8) in Form eines Spannungswertes oder einer tastverhältnismodulierten Spannung aufweist und dass die aufaddierte Drehzahl die ungeregelte und spannungsgewandelte
Soll-Verstelldrehzahl (24) des Verstellmotors (8) ist.
8. Regelstruktur nach Anspruch 5, dadurch gekennzeichnet, dass bei Reihenschaltung des Prädiktionsreglers (22) und des PID-Reglers (19') das Ausgangssignal (20') des Prädiktionsreglers (22) mit aufaddierter Nockenwellendrehzahl (21 ) in spannungsgewandelter Form zugleich als Aufschaltsignal (20' + 21 ) für das Ausgangssignal (20") des PID-Reglers (19') dient.
9. Regelstruktur nach Anspruch 8, dadurch gekennzeichnet, dass vorzugs- weise der PID-Regler (19') der Drehzahlregelung eine Strombegrenzungsfunktion, vorzugsweise einen Zweipunkt-Stromregler aufweist.
10. Regelstruktur nach Anspruch 1 , dadurch gekennzeichnet, dass die Drehwinkellage der Nockenwelle (5) durch einen Nockenwellensensor (10) oder durch einen Hallsensor (13) des Verstellmotors (8) messbar ist.
PCT/EP2003/006956 2002-07-11 2003-07-01 Regelstruktur für den verstellmotor eines elektrischen nockenwellenverstellers WO2004007919A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004520443A JP4662765B2 (ja) 2002-07-11 2003-07-01 電気的なカムシャフト調整装置の調整モータに対する制御構造
AU2003280981A AU2003280981A1 (en) 2002-07-11 2003-07-01 Control structure for the adjusting motor of an electric camshaft adjuster
EP03740391.2A EP1521901B1 (de) 2002-07-11 2003-07-01 Regelstruktur für den verstellmotor eines elektrischen nockenwellenverstellers
US11/015,520 US7059285B2 (en) 2002-07-11 2004-12-17 Control structure for the adjusting motor of an electric camshaft adjuster
US11/350,165 US7152561B2 (en) 2002-07-11 2006-02-08 Control structure for the adjusting motor of an electric camshaft adjuster

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10231225 2002-07-11
DE10231225.7 2002-07-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/015,520 Continuation US7059285B2 (en) 2002-07-11 2004-12-17 Control structure for the adjusting motor of an electric camshaft adjuster

Publications (1)

Publication Number Publication Date
WO2004007919A1 true WO2004007919A1 (de) 2004-01-22

Family

ID=30009886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/006956 WO2004007919A1 (de) 2002-07-11 2003-07-01 Regelstruktur für den verstellmotor eines elektrischen nockenwellenverstellers

Country Status (6)

Country Link
US (2) US7059285B2 (de)
EP (1) EP1521901B1 (de)
JP (1) JP4662765B2 (de)
AU (1) AU2003280981A1 (de)
DE (1) DE10251347A1 (de)
WO (1) WO2004007919A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630363A1 (de) * 2004-08-28 2006-03-01 LuK Lamellen und Kupplungsbau Beteiligungs KG Verfahren zum Bestimmen der Phasenlage einer Nockenwelle einer Brennkraftmaschine
WO2006072358A1 (de) * 2004-12-24 2006-07-13 Daimlerchrysler Ag Verfahren und einrichtung zum einstellen einer elektrodynamischen bremse eines elektrischen nockenwellenverstellers für eine nockenwelle einer brennkraftmaschine
JP2007100681A (ja) * 2005-10-07 2007-04-19 Toyota Motor Corp 電動式バルブタイミング可変機構
EP1813783A1 (de) * 2006-01-26 2007-08-01 Delphi Technologies, Inc. Vorrichtung für Nockenwellenversteller
EP1898058A1 (de) * 2006-08-30 2008-03-12 Toyota Jidosha Kabushiki Kaisha Steuerung zum variablen Timing von Ventilen für einen Verbrennungsmotor
US7353788B2 (en) * 2005-09-02 2008-04-08 Gm Global Technology Operations, Inc. Fuzzy logic based cam phaser control
EP2017436A1 (de) * 2007-06-16 2009-01-21 Delphi Technologies, Inc. Variable Nockenverstellvorrichtung
EP1605140A3 (de) * 2004-06-09 2009-04-22 Schaeffler KG Verstellvorrichtung für eine Nockenwelle

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004014865A1 (de) * 2004-03-26 2005-10-13 Ina-Schaeffler Kg Elektrischer Nockenwellerversteller mit Scheibenläufermotor
DE112005000299B4 (de) * 2004-03-26 2020-02-20 Schaeffler Technologies AG & Co. KG Elektrischer Nockenwellenversteller mit Scheibenläufermotor
JP4269341B2 (ja) * 2004-04-23 2009-05-27 株式会社デンソー バルブタイミング調整装置
JP4196294B2 (ja) * 2004-08-31 2008-12-17 株式会社デンソー 内燃機関の可変バルブタイミング制御装置
JP4874617B2 (ja) 2005-10-04 2012-02-15 トヨタ自動車株式会社 車両の制御装置
JP4609278B2 (ja) * 2005-10-24 2011-01-12 トヨタ自動車株式会社 内燃機関の可変バルブタイミング制御装置及びその可変バルブタイミング制御装置を備えた内燃機関
DE102006017232A1 (de) * 2006-04-12 2007-10-25 Schaeffler Kg Synchronisationsvorrichtung für einen Motor
JP4923757B2 (ja) * 2006-06-06 2012-04-25 トヨタ自動車株式会社 可変バルブタイミング装置
JP4600935B2 (ja) * 2006-08-30 2010-12-22 株式会社デンソー 内燃機関の可変バルブタイミング制御装置
JP4641986B2 (ja) * 2006-08-30 2011-03-02 株式会社デンソー 内燃機関の可変バルブタイミング制御装置
US20110011359A1 (en) * 2006-12-05 2011-01-20 The Timken Company Control structure for electro-mechanical camshaft phase shifting device
US7918130B2 (en) * 2007-05-11 2011-04-05 GM Global Technology Operations LLC Methods and systems to identify cam phaser hardware degradation
DE102008010638B4 (de) 2008-02-22 2022-01-27 Schaeffler Technologies AG & Co. KG Elektromechanisches Nockenwellenverstellsystem und Verfahren zur Verstellung einer Nockenwelle mittels eines solchen Nockenwellenverstellsystems
US8523803B1 (en) 2012-03-20 2013-09-03 Medtronic Minimed, Inc. Motor health monitoring and medical device incorporating same
US8603026B2 (en) * 2012-03-20 2013-12-10 Medtronic Minimed, Inc. Dynamic pulse-width modulation motor control and medical device incorporating same
DE102014213253B4 (de) * 2014-07-08 2017-12-28 Schaeffler Technologies AG & Co. KG Verfahren zum Betrieb eines Nockenwellenverstellers und Regelvorrichtung für einen Nockenwellenversteller
DE102015215813A1 (de) * 2015-08-19 2017-02-23 Volkswagen Aktiengesellschaft Prädiktion der Phasenlage einer Nockenwelle
KR101634546B1 (ko) 2015-10-05 2016-06-29 주식회사 현대케피코 전자식 연속 가변 밸브 타이밍 조정 장치 및 방법
DE102021214543A1 (de) 2021-12-16 2023-06-22 Volkswagen Aktiengesellschaft Diagnoseverfahren, Steuergerät und Kraftfahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5787848A (en) 1997-12-05 1998-08-04 Ford Global Technologies, Inc. Method of system for operating an internal combustion engine having variable valve timing
DE19804942A1 (de) * 1998-02-07 1999-08-12 Bosch Gmbh Robert Brennkraftmaschine
DE10036275A1 (de) * 2000-07-26 2002-02-07 Daimler Chrysler Ag Vorrichtung zur relativen Winkelverstellung zwischen zwei drehzahlgleich rotierenden, antriebsverbundenen Elementen
DE10038354A1 (de) 2000-08-05 2002-02-28 Atlas Fahrzeugtechnik Gmbh Steuereinrichtung zum Verstellen des Drehwinkels einer Nockenwelle

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2011446A1 (de) 1970-03-11 1971-09-23 Späth, Walter, 7760 Radolfzell Ausschwenkbares Hubfahrwerk für Container
JPS50155822A (de) * 1974-06-10 1975-12-16
JPS5218516A (en) * 1975-08-04 1977-02-12 Nissan Motor Co Ltd Cam angle chaner of cam shaft
DE3830382C1 (de) * 1988-09-07 1990-01-18 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
JPH02267308A (ja) * 1989-04-05 1990-11-01 Honda Motor Co Ltd 内燃エンジンの動弁制御装置
JPH0754620A (ja) * 1993-06-16 1995-02-28 Robert Bosch Gmbh カム軸の角度位置を調節する方法と装置
JP3498455B2 (ja) * 1995-12-08 2004-02-16 日産自動車株式会社 スロットルバルブの位置決め制御装置
US5680834A (en) * 1996-01-22 1997-10-28 Ford Global Technologies, Inc. Just-in-time scheduling for variable camshaft timing
JP3248568B2 (ja) * 1997-09-12 2002-01-21 トヨタ自動車株式会社 ステアリング装置
DE19746529A1 (de) * 1997-10-22 1999-04-29 Ruediger Ufermann Vorrichtung zur stufenlos variablen Steuerzeitenverstellung für Ein- und Auslaßventile von Brennkraftmaschinen
JP2001138929A (ja) * 1999-11-15 2001-05-22 Toyota Motor Corp 車両の電動パワーステアリング装置
JP3907370B2 (ja) * 2000-03-17 2007-04-18 株式会社日立製作所 内燃機関の可変動弁装置の制御装置
JP2002089301A (ja) * 2000-09-14 2002-03-27 Honda Motor Co Ltd 内燃機関のバルブタイミング制御装置
JP2002106373A (ja) * 2000-10-02 2002-04-10 Mikuni Corp 電磁アクチュエータによるエンジン吸気バルブ開閉制御装置
DE10116707B4 (de) * 2001-04-04 2017-01-19 Schaeffler Technologies AG & Co. KG Vorrichtung zur Relativverdrehung einer Nockenwelle gegenüber einer Kurbelwelle einer Brennkraftmaschine
DE20114466U1 (de) * 2001-09-01 2002-01-03 Eto Magnetic Kg Elektromagnetische Stellvorrichtung
JP2004156461A (ja) * 2002-11-05 2004-06-03 Denso Corp 内燃機関の可変バルブタイミング制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5787848A (en) 1997-12-05 1998-08-04 Ford Global Technologies, Inc. Method of system for operating an internal combustion engine having variable valve timing
DE19804942A1 (de) * 1998-02-07 1999-08-12 Bosch Gmbh Robert Brennkraftmaschine
DE10036275A1 (de) * 2000-07-26 2002-02-07 Daimler Chrysler Ag Vorrichtung zur relativen Winkelverstellung zwischen zwei drehzahlgleich rotierenden, antriebsverbundenen Elementen
DE10038354A1 (de) 2000-08-05 2002-02-28 Atlas Fahrzeugtechnik Gmbh Steuereinrichtung zum Verstellen des Drehwinkels einer Nockenwelle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1605140A3 (de) * 2004-06-09 2009-04-22 Schaeffler KG Verstellvorrichtung für eine Nockenwelle
EP1630363A1 (de) * 2004-08-28 2006-03-01 LuK Lamellen und Kupplungsbau Beteiligungs KG Verfahren zum Bestimmen der Phasenlage einer Nockenwelle einer Brennkraftmaschine
US7254991B2 (en) 2004-08-28 2007-08-14 Schaeffler Kg Method for determining the rotation angle position of the camshaft of a reciprocating-piston engine in relation to the crankshaft
WO2006072358A1 (de) * 2004-12-24 2006-07-13 Daimlerchrysler Ag Verfahren und einrichtung zum einstellen einer elektrodynamischen bremse eines elektrischen nockenwellenverstellers für eine nockenwelle einer brennkraftmaschine
US7568455B2 (en) 2004-12-24 2009-08-04 Daimler Ag Method and device for controlling an electrodynamic brake of an electric camshaft adjuster for an internal combustion engine
US7353788B2 (en) * 2005-09-02 2008-04-08 Gm Global Technology Operations, Inc. Fuzzy logic based cam phaser control
JP2007100681A (ja) * 2005-10-07 2007-04-19 Toyota Motor Corp 電動式バルブタイミング可変機構
EP1813783A1 (de) * 2006-01-26 2007-08-01 Delphi Technologies, Inc. Vorrichtung für Nockenwellenversteller
EP1898058A1 (de) * 2006-08-30 2008-03-12 Toyota Jidosha Kabushiki Kaisha Steuerung zum variablen Timing von Ventilen für einen Verbrennungsmotor
EP2017436A1 (de) * 2007-06-16 2009-01-21 Delphi Technologies, Inc. Variable Nockenverstellvorrichtung

Also Published As

Publication number Publication date
AU2003280981A1 (en) 2004-02-02
US7152561B2 (en) 2006-12-26
US20060124095A1 (en) 2006-06-15
EP1521901B1 (de) 2015-04-15
JP2005532502A (ja) 2005-10-27
US20050103298A1 (en) 2005-05-19
EP1521901A1 (de) 2005-04-13
JP4662765B2 (ja) 2011-03-30
DE10251347A1 (de) 2004-03-11
US7059285B2 (en) 2006-06-13

Similar Documents

Publication Publication Date Title
EP1521901A1 (de) Regelstruktur für den verstellmotor eines elektrischen nockenwellenverstellers
EP0606316B1 (de) Antriebsanordnung für ein kraftfahrzeug
DE10051417B4 (de) Steuerungsverfahren für Motoren mit mehrfachen Steuerungsvorrichtungen
EP2547876B1 (de) Verfahren und vorrichtung zum betreiben eines verbrennungsmotors bei einer störung eines kurbelwellensensors
DE10051416B4 (de) Verfahren zur Drehzahlsteuerung
EP2150697B1 (de) Verfahren zum positionieren einer kurbelwelle einer abgeschalteten brennkraftmaschine eines kraftfahrzeugs
DE102005060682A1 (de) Variable inkrementelle Zuschaltung und Abschaltung von Zylindern in einem Verbrennungsmotor mit bedarfsabhängigem Hubraum
DE102006045661A1 (de) Verfahren zum Starten einer Brennkraftmaschine
DE602005002575T2 (de) Nockenwellenverstellungseinrichtung für eine Brennkraftmaschine
DE102007000016B4 (de) Steuervorrichtung und -verfahren für einen variablen Ventilmechanismus
DE102008060435A1 (de) Adaptives Phasensteller-Steuerhaltetastverhältnissystem für einen Motor
DE102007000471A1 (de) Variable Ventilsteuerung
DE10139472B4 (de) Vorrichtung zur Ventilsynchronisierung bei einer Brennkraftmaschine
EP2326805B1 (de) Verfahren zur verstellung einer kurbelwelle eines verbrennungsmotors, nockenwellenverstellsystem und verbrennungsmotor mit verstellbarer kurbelwelle
WO2010020508A1 (de) Verfahren zur verstellung einer nockenwelle eines verbrennungsmotors, nockenwellenverstellsystem und verbrennungsmotor mit verstellbarer nockenwelle
DE69524704T2 (de) Integrierte Kleinbrennkraftmaschinensteuerung
DE10051418B4 (de) Steuerverfahren für ein Fahrzeug mit einem Motor
DE10222680B4 (de) Verfahren und Einrichtung zum Einstellen der Ansteuerzeit eines Motorventils
EP1625293B1 (de) Verfahren zum abstellen einer brennkraftmaschine
DE102006040366B4 (de) Auf Fuzzy-Logic basierende Nockenwellenverstellersteuerung
DE60128997T2 (de) Ein drehmomentabhängiges Ventilsteuerverfahren und -system
DE10138048A1 (de) Ventilzeitgabe-Steuersystem für einen Verbrennungsmotor
DE10062195B4 (de) Ventilzeitsteuerungssystem für eine Brennkraftmaschine
DE102004054321A1 (de) Regelvorrichtung für variables Ventilbetätigungssystem
DE10200511A1 (de) Verfahren und Einrichtung zum Steuern eines Elektromagnetventils für Brennkraftmaschinen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003740391

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11015520

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004520443

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003740391

Country of ref document: EP