WO2004002979A2 - Chirale 3,4-dihydro-2h-pyranverbindungen - Google Patents

Chirale 3,4-dihydro-2h-pyranverbindungen Download PDF

Info

Publication number
WO2004002979A2
WO2004002979A2 PCT/EP2003/006885 EP0306885W WO2004002979A2 WO 2004002979 A2 WO2004002979 A2 WO 2004002979A2 EP 0306885 W EP0306885 W EP 0306885W WO 2004002979 A2 WO2004002979 A2 WO 2004002979A2
Authority
WO
WIPO (PCT)
Prior art keywords
mmol
compositions according
crystalline
compounds
variables
Prior art date
Application number
PCT/EP2003/006885
Other languages
English (en)
French (fr)
Other versions
WO2004002979A3 (de
Inventor
Robert Parker
Frank Prechtl
Sylke Haremza
Frank Meyer
Volkmar Vill
Gunnar Gesekus
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU2003250860A priority Critical patent/AU2003250860A1/en
Priority to US10/518,389 priority patent/US7258902B2/en
Priority to JP2004516745A priority patent/JP2005538969A/ja
Priority to EP03761553A priority patent/EP1519931A2/de
Publication of WO2004002979A2 publication Critical patent/WO2004002979A2/de
Publication of WO2004002979A3 publication Critical patent/WO2004002979A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/16Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D309/28Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D309/30Oxygen atoms, e.g. delta-lactones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/031Polarizer or dye

Definitions

  • the invention relates to chiral 3, 4-dihydro-2ff-pyran compounds and their Diastereo ere and the use of these compounds as chiral dopants for liquid-crystalline systems.
  • the invention further relates to non-polymerizable or polymerizable liquid-crystalline compositions which contain at least one chiral 3, 4-dihydro-2i ⁇ -pyran compound according to the invention, the use of these non-polymerizable or polymerizable liquid-crystalline compositions for the production of optical components, the use of the polymerizable liquid-crystalline compositions for printing or coating substrates, for producing dispersions and emulsions, films or pigments, and also such optical components, printed or coated substrates, dispersions and emulsions, films and pigments.
  • Cholesteric liquid crystal mixtures are usually made using a liquid-crystalline (nematic) base material and one or more optically active dopants.
  • the optical properties of the mixture can be varied by simply changing the ratio of nematic to dopant.
  • dopants are particularly in demand, which cause large changes in the optical properties even in small additions.
  • Chiral dopants for liquid-crystalline phases are known in large numbers from the scientific and patent literature. It is all the more surprising that chiral 3, 4-dihydro-2iT-pyran compounds have obviously not yet been considered as dopants for liquid-crystalline systems.
  • the object of the present invention was to provide further chiral compounds which are suitable for the production of cholesteric-liquid-crystalline compositions, have a relatively high twisting power and accordingly already have a large influence on the optical properties of the liquid-crystalline host system in comparatively small amounts ,
  • This object was achieved according to the invention by the chiral compounds of the general formula I.
  • R 1 and R 2 independently of one another groupings p_yl_ A l_ ⁇ 2_ M _ Y 3_ ( A 2) ⁇ n _ ⁇ 4_
  • Y 1 , Y 2 , Y 3 , Y 4 single chemical bond, -0-, -S-, -C0-, -C0-0-, -O-CO-, -CO-N (R) -, - (R ) N-C0 -, - 0-C0-0-, -O-CO-N (R) -, - (R) N-CO-O- or - (R) N-CO-N (R) -,
  • R is hydrogen or -CC 4 alkyl
  • P is hydrogen, -CC-alkyl, a polymerizable or suitable group for polymerization or a residue which carries a polymerizable or suitable group for polymerization, and
  • variables A 1 , A 2 , Y 1 , Y 2 , ⁇ 3, ⁇ 4, M, P and the index m of the groupings R 1 and R 2 can be the same or different, with the proviso that in the event that the Index m is 0, at least one of the variables Y 3 and Y 4 adjacent to A 2 means a chemical bond.
  • Spacers A 1 and A 2 are all groups known to the person skilled in the art for this purpose.
  • the spacers generally contain one to 30, preferably one to 12, particularly preferably one to six carbon atoms and consist of predominantly linear aliphatic groups. You can in the chain, for example by not Adjacent oxygen or sulfur atoms or I ino or alkyl imino groups such as methylimino groups can be interrupted. Fluorine, chlorine, bromine, cyano, methyl and ethyl can also be used as substituents for the spacer chain.
  • spacers are for example:
  • u is 1 to 30, preferably 1 to 12, v is 1 to 14, preferably 1 to 5, and w is 1 to 9, preferably 1 to 3.
  • Preferred spacers are ethylene, propylene, n-butylene, n-pentylene and n-hexylene.
  • the radicals T can by fluorine, chlorine, bromine, cyano, hydroxyl, foryl, nitro, C 1 -C 20 -alkyl, C 1 -C 20 alkoxy, C 1 -C 20 alkoxycarbonyl, C 1 -C 2 o-monoalkylaminocarbonyl , C ⁇ -Co-alkylcarbonyl, C ⁇ -C 0 alkyl carbonyloxy or C ⁇ -C 0 alkylcarbonylamino substituted ring systems.
  • Preferred radicals T are:
  • the (unsubstituted) mesogenic groups shown above can, of course, in accordance with the examples given above for possible radicals T, also by fluorine, chlorine, bromine, cyano, hydroxyl, formyl, nitro, C 1 -C 20 alkyl, C 1 -C 20 alkoxy , -C-C 20 alkoxycarbonyl, -C-C 20 monoalkylaminocarbonyl, C ⁇ -Co-alkylcarbonyl, C ⁇ -Co-alkylcarbonyloxy or C ⁇ -C 2 o-alkylcarbonylamino substituted.
  • Preferred substituents are, above all, short-chain aliphatic radicals such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tert-butyl and alkoxy, alkoxycarbonyl, alkylcarbonyl, Alkylcarbonyloxy, alkylcarbonylamino and monoalkylaminocarbonyl radicals which contain these alkyl groups.
  • short-chain aliphatic radicals such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tert-butyl and alkoxy, alkoxycarbonyl, alkylcarbonyl, Alkylcarbonyloxy, alkylcarbonylamino and monoalkylaminocarbonyl radicals which contain these alkyl groups.
  • Preferred 3,4-dihydro-2i ⁇ -pyran compounds are those in which, in the mesogenic group of the formula Ia of the groups R 1 and R 2, the index r independently of one another assumes the values 0 or 1.
  • C 1 -C 2 alkyl for P are branched or unbranched C 1 -C 4 alkyl chains, for example methyl, ethyl, n-propyl, 1-methylethyl, n-butyl, 1-methylpropyl, 2-methylpropyl, 1st , 1-dimethylethyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2, 2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 1, 1-dimethylpropyl, 1,2 -Dirnethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, -Methylpentyl, 1,1-Dirnethylbutyl, 1,2-Dirnethylbutyl, 1,3-D
  • Preferred alkyl for P are the branched or unbranched Ci-C o -alkyl chains, such as methyl, ethyl, n-propyl, 1-methylethyl, n-butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dirnethyl - ethyl, n-pentyl, 1-methylb tyl, 2-methylbutyl, 3-methylbutyl, 2, 2-dimethylpropyl, 1-ethylpropyl, n-hexyl.
  • Ci-C o -alkyl chains such as methyl, ethyl, n-propyl, 1-methylethyl, n-butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dirnethyl - ethyl, n-pentyl, 1-methylb tyl, 2-methylbutyl, 3-methylbutyl, 2, 2-dimethylpropyl, 1-e
  • P can be considered as a polymerizable or suitable group for polymerisation or as a group bearing a polymerisable or suitable group for polymerisation (hereinafter such groups or groups are simply referred to as "reactive groups”):
  • radicals R 3 to R 5 can be the same or different and are hydrogen or C 1 -C 4 - Alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl or tert-butyl.
  • the cyanates can trimerize spontaneously to cyanurates.
  • the other groups mentioned require further compounds with complementary reactive groups for the polymerization.
  • isocyanates with alcohols polymerize to urethanes and with a in to urea derivatives.
  • Carboxyl groups can be condensed to polyesters and polyamides.
  • the maleimido group is particularly suitable for radical copolymerization with olefinic compounds, such as styrene or
  • the complementary reactive radicals can be present in one and the same 3, 4-dihydro-2. ⁇ -pyran compound according to the invention (so that this compound can also polymerize with itself) or in a further 3,4-dihydro-2H-pyran compound according to the invention.
  • these complementary reactive radicals can, together with the corresponding reactive radicals, be in one and the same (auxiliary) compounds or in further such (auxiliary) compounds.
  • the acrylate, methacrylate and vinyl radicals are particularly noteworthy.
  • the compounds of the formula I and their preferred embodiments are used as chiral dopants for liquid-crystalline systems.
  • liquid-crystalline systems is not limited to systems in which one or more constituents already have liquid-crystalline properties per se (in the temperature range of interest) and which are also present in the system, but rather systems in which they are to be understood is manifested only by mixing the components or only by adding the chiral compounds (s) according to the invention to liquid-crystalline behavior (eg lyotropic systems). It should also be noted here that the compounds according to the invention need not themselves already have liquid-crystalline behavior.
  • liquid-crystalline and polymerizable liquid-crystalline compositions which contain at least one chiral compound of the formula I or a preferred embodiment.
  • liquid-crystalline compositions here mean in particular non-polymerizable compositions which are not capable of forming polymerization or condensation products under customary conditions.
  • These compositions can be mixed, for example, by mixing suitable, commercially available, liquid-crystalline materials, such as those used for active LC layers in display technology, with one or more of the compounds according to the invention. produce gene.
  • P in formula I corresponds accordingly to hydrogen or C ⁇ -C ⁇ -alkyl.
  • the present invention further relates to polymerizable liquid-crystalline compositions. These are to be understood in particular as those compositions in which at least one of the constituents is capable of forming polymerization or condensation products under customary conditions.
  • the desired degree of polymerization, crosslinking and / or condensation can be set after the polymerization or condensation has taken place.
  • the compounds of the formula I according to the invention have at least one, preferably two reactive radicals P in the groups R 1 and / or R 2 .
  • These compositions can easily be prepared by mixing suitable polymerizable, liquid-crystalline materials with one or more of the compounds according to the invention.
  • Suitable polymerizable, liquid-crystalline compounds are described, for example, in WO 95/22586, 95/24454, 95/24455, 96/04351, 96/24647, 97/00600, 97/34862 and 98/47979 and in German Offenlegungsschrift 198 35 730 described and correspond essentially to the schematic structure PYAYMYAYP, in which the variables P, Y, A and M have meanings similar to the variables P, Y 1 to Y 4 , A 1 , A 2 and M in formula I.
  • the present invention also relates to those optical components which have been obtained using these polymerizable liquid-crystalline compositions according to the invention.
  • the polymerizable liquid-crystalline compositions claimed are used for printing or coating substrates.
  • these compositions other additives.
  • Additives selected from the group consisting of photoinitiators, reactive diluents and diluents, additives selected from the group consisting of defoamers and deaerators, lubricants and leveling aids, thermosetting or radiation-curing aids, substrate wetting aids, wetting and dispersing aids, hydrophobizing agents are suitable as such , Adhesion promoters and auxiliaries for improving the scratch resistance, additives selected from the group consisting of dyes and pigments and additives selected from the group consisting of light, heat and / or oxidation stabilizers.
  • substrates are also goods of (entertainment) electronics, such as MC, MD, DVD and video recorders, televisions, radios, telephones / cell phones etc. and EDP devices, goods from the leisure, sports , Household and game sectors, such as bicycles, children's vehicles, skis, snowboards and surfboards, inline skaters and roller skates and ice skates, and household appliances.
  • such substrates also include writing utensils and spectacle frames.
  • Other substrates are also found in the construction sector, such as building walls or window panes. In the latter case, a functional effect may also be desired in addition to a decorative one. It is thus possible to create multiple layers on the window material, the individual layers of which have different chemical-physical properties.
  • Wavelengths or wavelength ranges of the light spectrum are reflected.
  • an IR or UV reflecting window coating is possible.
  • thermal insulation coatings reference is also made to the document WO 99/19267.
  • the present invention therefore relates to dispersions and emulsions which have been prepared using the polymerizable liquid-crystalline compositions according to the invention. These dispersions and emulsions can also be used for printing and coating substrates, as have already been described above by way of example.
  • the present invention furthermore relates to the use of the polymerizable liquid-crystalline compositions according to the invention for the production of films.
  • films are to be understood in particular as self-supporting layers as are obtained by polymerizing the compositions.
  • These films can be located on substrates or underlays which are designed in such a way that they can be easily detached and transferred to other substrates or underlays for permanent retention by suitable measures.
  • Such Films can be used, for example, in the field of film coating and in laminating processes.
  • the present invention also relates to films which have been produced using the polymerizable liquid-crystalline compositions according to the invention.
  • the polymerizable liquid-crystalline compositions are converted with the aid of their reactive groups and, depending on their chemical nature, by condensation or radical or ionic polymerization processes which can be started by photochemical reactions, into polymers with a frozen liquid-crystalline order structure.
  • These pigments can be single-layer (homogeneous) or have a multi-layer structure. However, the latter pigments can usually only be produced if coating processes are used, in which several layers are successively produced one above the other and then subjected to mechanical comminution.
  • the present invention thus also relates to pigments produced from such polymerizable liquid-crystalline compositions according to the invention.
  • NMR spectroscopy Bruker-AMX 200, Bruker-AMX 400 or DRX 500 in automation mode; 1st order evaluation. TMS was used as the internal standard or calibrated to the characteristic solvent signals.
  • Phase transformations (uncorrected): Olympus BH polarizing microscope with Mettler FP 82 heating table; liquid crystalline phase assignment due to characteristic textures.
  • HTP measurements (HTP: helical twisting water): lens variant of the Grandjean-Cano method, 0.5-6 mol% in ZLI 1840 (commercially available liquid-crystalline product from Merck); Specification of the HTP: 15 ° C below the clearing point.
  • the HTP sign was determined using contact mixtures with cholesteric mesophas known sign by observing the nematic compensation line.
  • AAV-1 esterification using the DCC method (DCC: N, N'-dicyclohexylcarbodiimide)
  • AAV-2 Basic deacetylation with sodium methoxide
  • AAV-3 esterification using the imidazolid method
  • this solution is added dropwise to the initially prepared solution 1 of the carboxylic acid imidazolide under a nitrogen atmosphere and, if appropriate, heated to 40 ° C. to a maximum of 80 ° C. with stirring, depending on the reaction rate. After the end of the reaction, the solvent is removed in vacuo and the crude product is purified as indicated in each case.
  • AAV-4 Basic deacetylation with sodium carbonate
  • AAV-5 esterification of alcohols and phenols with carboxylic acid chlorides
  • AAV-6 Selective deprotection of phenylacetates with guanidine hydrochloride
  • guanidine hydrochloride (Aldrich, purity 99%) is dissolved in 10 ml of anhydrous methanol and stirred with 0.9 equivalents of sodium methoxide for five minutes at room temperature. The mixture is added to a solution of 1 mmol of the phenylacetate in 50 ml of methanol, and the resulting methyl acetate is removed at 40 ° C. and 270 mbar on a rotary evaporator together with the solvent.
  • the processing can be carried out according to two methods:
  • Method 1 The reaction mixture, which is evaporated to dryness in vacuo, is mixed with 50 ml of hydrochloric acid and dichloromethane and stirred until no undissolved residues are left. The organic phase is separated off, the aqueous phase is extracted several times with dichloromethane, the combined organic phases are dried over magnesium sulfate and the solvent is removed in vacuo.
  • the combined organic phases are washed neutral with saturated sodium bicarbonate solution, washed with 250 ml of water and dried over magnesium sulfate. Then activated carbon is added, after stirring for a quarter of an hour the activated carbon is filtered off and the solvent is removed.
  • the mixture is stirred for a further 1 h at 0 ° C. and then for a further 1.25 h at room temperature.
  • the filter residue is washed with an acetic acid / water mixture (1: 1).
  • the solution is then extracted once with ice water and three times with cold chloroform and the combined organic phases are neutralized with sodium hydrogen carbonate.
  • the solution is dried over magnesium sulfate and the solvent is removed in vacuo.
  • the product is purified by flash chromatography using silica gel filtration (petroleum ether (50/70) / diethyl ether, 3: 1).
  • the mixture is stirred at 0 ° C. for 1 h and then at room temperature for a further 1.25 h.
  • the filter residue is washed with a vinegar acid / water mixture (1: 1) washed.
  • the solution is then extracted once with ice water and three times with cold chloroform and the combined organic phases are neutralized with sodium bicarbonate.
  • the solution is dried over magnesium sulfate and the solvent is removed.
  • the product is purified by flash chromatography using column filtration (petroleum ether (50/70) / diethyl ether, 3: 1).

Abstract

Die Erfindung betrifft chirale 3,4-Dihydro-2H-pyranverbindungen und deren Diastereomere und die Verwendung dieser Verbindungen als chirale Dotierstoffe für flüssigkristalline Systeme.Weiter betrifft die Erfindung nicht polymerisierbare oder polymerisierbare flüssigkristalline Zusammensetzungen, welche mindestens eine erfindungsgemäße chirale 3,4-Dihydro-2H-pyranverbindung enthalten, die Verwendung dieser nicht polymerisierbaren oder polymerisierbaren flüssigkristallinen Zusammensetzungen für die Herstellung optischer Bauelemente, die Verwendung der polymerisierbaren flüssigkristallinen Zusammensetzungen zum Bedrucken oder Beschichten von Substraten, zur Herstellung von Dispersionen und Emulsionen, Filmen oder Pigmenten sowie solche optischen Bauelemente, bedruckte oder beschichtete Substrate, Dispersionen und Emulsionen, Filme und Pigmente.

Description

Chirale 3 , 4-Dihydro-2H-pyranverbindungen
Beschreibung
Die Erfindung betrifft chirale 3, 4-Dihydro-2ff-pyranverbindungen und deren Diastereo ere und die Verwendung dieser Verbindungen als chirale Dotierstoffe für flüssigkristalline Systeme.
Weiter betrifft die Erfindung nicht polymerisierbare oder polyme- risierbare flüssigkristalline Zusammensetzungen, welche mindestens eine erfindungsgemäße chirale 3, 4-Dihydro-2iϊ-pyranverbin- dung enthalten, die Verwendung dieser nicht polymerisierbaren oder polymerisierbaren flüssigkristallinen Zusammensetzungen für die Herstellung optischer Bauelemente, die Verwendung der polymerisierbaren flüssigkristallinen Zusammensetzungen zum Bedrucken oder Beschichten von Substraten, zur Herstellung von Dispersionen und Emulsionen, Filmen oder Pigmenten sowie solche optischen Bauelemente, bedruckte oder beschichtete Substrate, Dispersionen und Emulsionen, Filme und Pigmente.
Zur Herstellung cholesterischer Flüssigkristallmischungen bedient man sich meist eines flüssigkristallinen (nematischen) Basismaterials und eines oder mehrerer optisch aktiver Dotierstoffe. Hier- durch lassen sich die optischen Eigenschaften der Mischung durch einfache Veränderung des Verhältnisses von Nemat zu Dotierstoff variieren. Um jedoch mögliche negative Einflüsse des Dotierstoffs auf die sonstigen Eigenschaften des nematischen Wirtsystems, wie z.B. Phasenverhalten und -breite, klein zu halten, sind besonders Dotierstoffe gefragt, welche bereits in kleinen Zugaben große Änderungen in den optischen' Eigenschaften, bewirken.
Chirale Dotierstoffe für flüssigkristalline Phasen sind in großer Zahl aus der wissenschaftlichen und Patentliteratur bekannt. Umso erstaunlicher ist es, dass chirale 3 , 4-Dihydro-2iT-pyranverbindun- gen als Dotierstoffe für flüssigkristalline Systeme offensichtlich noch nicht in Betracht gezogen wurden.
Die Aufgabe der vorliegenden Erfindung bestand nun darin, weitere chirale Verbindungen bereitzustellen, welche für die Herstellung von cholesterisch-flüssigkristallinen Zusammensetzungen geeignet sind, ein relativ hohes Verdrillungsvermögen besitzen und dementsprechend bereits in vergleichsweise kleinen Mengen großen Ein- fluss auf die optischen Eigenschaften des flüssigkristallinen Wirtssystems zeigen. Diese Aufgabe wurde erfindungsgemäß durch die chiralen Verbindungen der allgemeinen Formel I
Figure imgf000003_0001
und deren Diastereomere gelöst.
Hierbei bedeuten
R1 und R2 unabhängig voneinander Gruppierungen p_yl_Al_γ2_M_Y3_ (A2)ιn_γ4_
mit
A1, A2 Spacer mit ein bis 30 Kohlenstoffatomen,
M mesogene Gruppe,
Y1, Y2, Y3, Y4 chemische Einfachbindung, -0-, -S-, -C0-, -C0-0-, -O-CO-, -CO-N(R)-, -(R)N-C0-,-0-C0-0-, -O-CO-N(R)-, -(R)N-CO-O- oder - (R)N-CO-N(R) -,
R Wasserstoff oder Cι-C4-Alkyl,
P Wasserstoff, Cι-Cι-Alkyl, eine polymerisierbare oder zur Polymerisation geeignete Gruppe oder ein Rest, welcher eine polymerisierbare oder zur Polymerisation geeignete Gruppe trägt, und
m Werte von 0 oder 1,
wobei die Variablen A1, A2, Y1, Y2, γ3, γ4, M, P und der Index m der Gruppierungen R1 und R2 gleich oder verschieden sein können, mit der Maßgabe, dass für den Fall, dass der Index m gleich 0 ist, mindestens eine der zu A2 benachbarten Variablen Y3 und Y4 eine chemische Bindung bedeutet.
Als Spacer A1 und A2 kommen alle dem Fachmann für diesen Zweck bekannten Gruppen in Betracht. Die Spacer enthalten in der Regel ein bis 30, vorzugsweise ein bis 12, besonders bevorzugt ein bis sechs Kohlenstoffatome und bestehen aus vorwiegend linearen ali- phatischen Gruppen. Sie können in der Kette, z.B. durch nicht be- nachbarte Sauerstoff- oder Schwefelatome oder I ino- oder Alkyl- iminogruppen wie beispielsweise Methyliminogruppen, unterbrochen sein. Als Substituenten für die Spacerkette kommen dabei noch Fluor, Chlor, Brom, Cyan, Methyl und Ethyl in Betracht.
Repräsentative Spacer sind beispielsweise:
-(CH2)U-, -(CH2CH20)vCH2CH2-, -CHCH2SCH2CH2-, -CH2CH2NHCH2CH-,
CH3 CH3 CH3 CH3 cl
-CH2CH2lNf-CH2CH- , - (CH2CHO)wCH2CH- , -(CH2)6CH- oder -CH2CH2CH- ,
wobei u für 1 bis 30, vorzugsweise 1 bis 12, v für 1 bis 14, vor- zugsweise 1 bis 5, und w für 1 bis 9, vorzugsweise 1 bis 3, steht.
Bevorzugte Spacer sind Ethylen, Propylen, n-Butylen, n-Pentylen und n-Hexylen.
Als mesogene Gruppen M können alle dem Fachmann als solche geeignete Gruppen dienen.
Insbesondere kommen mesogene Gruppen der Formel Ia
(-T-Y5)r-T- Ia
in Betracht, worin die Variablen bedeuten
T zweiwertige gesättigte oder ungesättigte carbo- oder hetero- cyclische Reste
Y5 -chemische Einfachbindung, -0-, -S-, -CO-, -C0-0-, -O-CO-,
-CO-N(R)-, -(R)N-CO-,-0-CO-0-, -O-CO-N(R)-, -(R)N-CO-O- oder -(R)N-CO-N(R)- und
r Werte von 0, 1, 2 oder 3, wobei für r > 0 sowohl die Variablen T als auch die Variablen Y5 untereinander gleich oder voneinander verschieden sein können.
Die Reste T können durch Fluor, Chlor, Brom, Cyan, Hydroxy, For- yl, Nitro, Cι-C2o-Alkyl, Cι-C20-Alkoxy, Cι-C20-Alkoxycarbonyl, Cι-C2o-Monoalkylaminocarbonyl , Cχ-Co-Alkylcarbonyl , Cι-C0-Alkyl- carbonyloxy oder Cι-C0-Alkylcarbonylamino substituierte Ringsys- teme sein. Bevorzugte Reste T sind:
Figure imgf000005_0001
und
Als mesogene Gruppen M kommen in Frage beispielsweise:
Figure imgf000005_0002
Figure imgf000005_0003
Figure imgf000005_0004
Figure imgf000005_0005
Figure imgf000005_0006
Weitere mögliche mesogene Gruppen M gehorchen den folgenden Formeln:
Figure imgf000006_0001
Die zuvor gezeigten (unsubstituierten) mesogenen Gruppen können natürlich entsprechend der oben gegebenen Beispiele für mögliche Reste T noch durch Fluor, Chlor, Brom, Cyan, Hydroxy, Formyl, Ni- tro, Cι-C0-Alkyl, Cι-C20-Alkoxy, Cι-C20-Alkoxycarbonyl, Cι-C20-Mo- noalkylaminocarbonyl, Cχ-Co-Alkylcarbonyl, Cι-Co-Alkylcarbonyloxy oder Cχ-C2o-Alkylcarbonylamino substituiert sein. Bevorzugte Sub- stituenten sind vor allem kurzkettige aliphatische Reste wie Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, sek.-Butyl, tert.-Butyl sowie Alkoxy-, Alkoxycarbonyl-, Alkylcarbonyl-, Al- kylcarbonyloxy-, Alkylcarbonylamino- und Monoalkylaminocarbonyl- reste, die diese Alkylgruppen enthalten.
Bevorzugte 3,4-Dihydro-2iϊ-pyranverbindungen sind hierbei solche, in welchen in der mesogenen Gruppe der Formel Ia der Gruppierungen R1 und R2 der Index r unabhängig voneinander die Werte 0 oder 1 annimmt .
Insbesondere sind als mesogene Gruppen der Gruppierungen R1 und R2 zu nennen
Figure imgf000006_0002
Darüber hinaus können diese mesogenen Gruppen, wie zuvor erwähnt, zusätzlich noch substituiert sein. Als Cι-Cι2-Alkyl für P sind verzweigte oder unverzweigte Cι-Cι-Al- kylketten zu nennen, beispielsweise Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1-Methylpropyl-, 2-Methylpropyl, 1,1-Di- methylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl , 3-Methyl- butyl, 2, 2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1, 1-Dimethyl- propyl, 1,2-Dirnethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Me- thylpentyl , -Methylpentyl , 1,1-Dirnethylbutyl , 1,2-Dirnethylbutyl , 1,3-Dirnethylbutyl, 2,2-Dimethylbutyl, 2, 3-Dimethylbutyl, 3,3-Di- methylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1, 1, 2-Trimethylpropyl, 1,2, 2-Trimethylpropyl, 1-Ethyl-l-methylpropyl , l-Ethyl-2-methyl- propyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, n-Un- decyl und n-Dodecyl .
Bevorzugtes Alkyl für P sind die verzweigten oder unverzweigten Ci-Cö-Alkylketten, wie etwa Methyl, Ethyl, n-Propyl, 1-Methyl- ethyl, n-Butyl, 1-Methylpropyl-, 2-Methylpropyl, 1,1-Dirnethyl- ethyl, n-Pentyl, 1-Methylb tyl, 2-Methylbutyl, 3-Methylbutyl, 2 , 2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl .
Als polymerisierbare oder zur Polymerisation geeignete Gruppe oder als Rest, welcher eine polymerisierbare oder zur Polymerisation geeignete Gruppe trägt (nachfolgend werden solche Gruppen oder Reste auch einfach als "reaktive Reste" bezeichnet) , kommen für P in Frage:
Figure imgf000007_0001
Figure imgf000007_0002
-N=C=0, -N=C=S, -O-C≡≡N, -C00H, -OH oder NH2, wobei die Reste R3 bis R5 gleich oder verschieden sein können und Wasserstoff oder Cι-C4-Alkyl, wie Methyl, Ethyl, n-Propyl, iso- Propyl, n-Butyl, iso-Butyl, sec.-Butyl oder tert.-Butyl bedeuten.
Von den polymerisierbaren Gruppen können die Cyanate spontan zu Cyanuraten trimerisieren. Die anderen genannten Gruppen benötigen zur Polymerisation weitere Verbindungen mit komplementären reaktiven Gruppen. So können beispielsweise Isocyanate mit Alkoholen zu Urethanen und mit A inen zu Harnstoffderivaten polymerisieren.
Analoges gilt für Thiirane und Aziridine. Carboxylgruppen können zu Polyestern und Polyamiden kondensiert werden. Die Maleinimido- gruppe eignet sich besonders zur radikalischen Copolymerisation mit olefinischen Verbindungen, wie beispielsweise Styrol oder
Verbindungen, welche Styrolstrukturelemente enthalten.
Die komplementären reaktiven Reste können dabei, zusammen mit den ihnen entsprechenden reaktiven Resten, in ein und derselben er- findungsgemäßen 3, 4-Dihydro-2.ϊ-pyranverbindung zugegen sein (so dass diese Verbindung potenziell auch mit sich selbst polymerisieren kann) oder in einer weiteren erfindungsgemäßen 3,4-Dihy- dro-2H-pyranverbindung. Diese komplementären reaktive Reste können sich aber auch, zusammen mit den entsprechenden reaktiven Res ten, in ein und derselben (Hilfs-)Verbindungen oder in weiteren solchen (Hilfs-)Verbindungen befinden.
Als polymerisierbare Gruppe ist insbesondere der Acrylat-, Meth- acrylat- sowie der Vinylrest hervorzuheben.
Erfindungsgemäß finden die Verbindungen der Formel I und deren bevorzugte Ausführungsformen Verwendung als chirale Dotierstoffe für flüssigkristalline Systeme. Der Begriff "flüssigkristalline Systeme" sei hierbei nicht nur auf Systeme beschränkt, in welchen ein oder mehrere Bestandteile bereits per se (im interessierenden Temperaturbereich) flüssigkristalline Eigenschaften besitzen und diese auch im System vorhanden sind, vielmehr sind hierunter auch solche Systeme zu verstehen, in welchen sich erst durch Mischen der Komponenten oder auch erst durch Zumischen der chiralen er- findungsgemäßen Verbindunge(en) flüssigkristallines Verhalten manifestiert (z.B. lyotrope Systeme). Anzumerken sei hier ferner, dass die erfindungsgemäßen Verbindungen nicht bereits selbst flüssigkristallines Verhalten aufweisen müssen.
Beansprucht werden weiter flüssigkristalline und polymerisierbare flüssigkristalline Zusammensetzungen, welche mindestens eine chirale Verbindung der Formel I oder einer bevorzugten Ausführungsform enthalten.
Unter den flüssigkristallinen Zusammensetzungen sind hier insbesondere nicht polymerisierbare Zusammensetzungen gemeint, welche unter üblichen Bedingungen nicht zur Ausbildung von Polymerisations- oder Kondensationsprodukten befähigt sind. Diese Zusammensetzungen lassen sich etwa durch Vermischen geeigneter, kommer- ziell erhälticher flüssigkristalliner Materialien, wie sie zum Beispiel für aktive LC-Schichten in der Displaytechnik Verwendung finden, mit einer oder mehreren der erfindungsgemäßen Verbindun- gen herstellen. In letzteren entspricht P in Formel I dementsprechend Wasserstoff oder Cχ-Cι-Alkyl.
Erfindungsgemäß wird die Verwendung dieser (nicht polymerisierba- ren) flüssigkristallinen Zusammensetzungen für die Herstellung optischer Bauelemente, wie z.B. LCDs, beansprucht. Solchermaßen erhaltene optische Bauelemente werden erfindungsgemäß ebenfalls beansprucht .
Weiterer Gegenstand der vorliegenden Erfindung sind polymerisierbare flüssigkristalline Zusammensetzungen. Hierunter sind insbesondere solche Zusammensetzungen zu verstehen, in welchen mindestens einer der Bestandteile unter üblichen Bedingungen zur Ausbildung von Polymerisations- oder Kondensationsprodukten befähigt ist.
Je nach Anzahl der reaktiven Reste in den Bestandteilen dieser Zusammensetzungen, lässt sich der gewünschte Polymerisations-, Vernetzungs- und/oder Kondensationsgrad nach erfolgter Polymeri- sation oder Kondensation einstellen. Die erfindungsgemäßen Verbindungen der Formel I besitzen in solchen Zusammensetzungen mindestens eine, vorzugsweise zwei reaktive Reste P in den Gruppierungen R1 und/oder R2. Diese Zusammensetzungen lassen sich leicht durch Vermischen geeigneter polymerisierbarer, flüssigkristalli- ner Materialien mit einer oder mehreren der erfindungsgemäßen Verbindungen herstellen. Geeignete polymerisierbare, flüssigkristalline Verbindungen sind beispielsweise in den WO-Schriften 95/22586, 95/24454, 95/24455, 96/04351, 96/24647, 97/00600, 97/34862 und 98/47979 sowie der deutschen Offenlegungsschrift 198 35 730 beschrieben und entsprechen im Wesentlichen dem schematischen Aufbau P-Y-A-Y-M-Y-A-Y-P, worin die Variablen P, Y, A und M analoge Bedeutungen wie die Variablen P, Y1 bis Y4, A1, A2 und M in Formel I besitzen.
Erfindungsgemäß wird die Verwendung dieser polymerisierbaren flüssigkristallinen Zusammensetzungen für die Herstellung optischer Bauelemente, wie z.B. Polarisatoren oder Filtern, beansprucht .
Gegenstand der vorliegenden Erfindung sind zudem solche optischen Bauelemente, welche unter Verwendung dieser erfindungsgemäßen polymerisierbaren flüssigkristallinen Zusammensetzungen erhalten wurden.
Erfindungsgemäß finden die beanspruchten polymerisierbaren flüssigkristallinen Zusammensetzungen Verwendung zum Bedrucken oder Beschichten von Substraten. Hierbei können diese Zusammensetzun- gen noch weitere Zusätze enthalten. Als solche kommen in Frage Zusätze ausgewählt aus der Gruppe bestehend aus Photoinitiatoren, Reaktiwerdünnern und Verdünnungsmitteln, Zusätze ausgewählt aus der Gruppe bestehend aus Entschäumern und Entlüftern, Gleit- und Verlaufshilfsmitteln, thermisch härtenden oder strahlenhärtenden Hilfsmitteln, Substratnetzhilfsmitteln, Netz- und Dispergier- hilfsmitteln, Hydrophobierungsmitteln, HaftVermittlern und Hilfsmitteln zur Verbesserung der Krätzfestigkeit, Zusätze ausgewählt aus der Gruppe bestehend aus Farbstoffen und Pigmenten und Zu- sätze ausgewählt aus der Gruppe der Licht-, Hitze- und/oder Oxidationsstabilisatoren.
Die chemisch-physikalische Natur dieser Zusätze wird ausführlich in der Schrift WO 00/47694 gewürdigt. Weiter sind darin flüssig- kristalline Stoffgemenge beschrieben, als welche auch die erfindungsgemäßen polymerisierbaren flüssigkristallinen Zusammensetzungen, gegebenenfalls in Mischung mit den zuvor erwähnten Zusätzen, anzusprechen sind. Die in vorliegender Anmeldung beanspruchten polymerisierbaren flüssigkristallinen Zusammensetzungen kön- nen, gegebenenfalls in Mischung mit besagten Zusätzen, dementsprechend wie in der Schrift WO 00/47694 ausgeführt, als Bedruk- kungs- und Beschichtungsmittel für Substrate eingesetzt werden.
Im Rahmen der vorliegenden Erfindung werden weiter bedruckte oder beschichtete Substrate beansprucht, welche unter Verwendung der erfindungsgemäßen polymerisierbaren Zusammensetzungen, gegebenenfalls in Mischung mit den zuvor erwähnten Zusätzen, hergestellt worden sind.
Als solche Substrate kommen neben Papier- und Kartonageprodukten, beispielsweise für Tragetaschen, Zeitschriften, Broschüren, Geschenkverpackungen und Verpackungsmaterialien für Gebrauchs-, Ge- nuss- und Luxusgüter, auch Folien, etwa für dekorative und nichtdekorative Verpackungszwecke, sowie Textilien jedweder Art und Leder in Frage.
Weitere Substrate sind aber auch Güter der (Unterhaltungs-) Elektronik, wie etwa MC-, MD-, DVD- und Videorecorder, Fernseher, Radios, Telefone/Handys usw. und EDV-Geräte, Güter aus dem Frei- zeit-, Sport-, Haushalts- und Spielsektor, wie etwa Fahrräder, Kinderfahrzeuge, Skier, Snow- und Surfboards, Inline-Skater und Roll- und Schlittschuhe sowie Haushaltsgeräte. Darüber hinaus sind unter solchen Substraten beispielsweise auch Schreibutensilien und Brillengestelle zu verstehen. Weitere Substrate sind aber auch im Bausektor anzutreffende Oberflächen, wie Gebäudewände oder auch Fensterscheiben. In letzterem Fall kann neben einem dekorativen auch ein funktioneller Effekt gewünscht sein. So ist es möglich, Mehrfachschichten auf dem Fen- stermaterial zu erzeugen, deren einzelne Schichten verschiedene chemisch-physikalische Eigenschaften besitzen. Werden etwa einzelne Schichten der polymerisierbaren flüssigkristallinen Zusammensetzungen entgegengesetzter Verdrillung (durch Verwendung des einen Enantiomeren sowie seines optischen Antipoden als Dotier- stoff gemäß vorliegender Erfindung) oder einzelne Schichten von vernetzten cholesterisch flüssigkristallinen Zusammensetzungen gleicher Gangrichtung aber jeweils unterschiedlicher Ganghöhe und somit unterschiedlicher Reflektionseigenschaften (durch Verwendung unterschiedlicher Konzentrationen an Dotierstoff gemäß vor- liegender Erfindung) aufgebracht, so können gezielt bestimmte
Wellenlängen oder Wellenlängenbereiche des Lichtspektrums reflektiert werden. Hierdurch ist beispielsweise eine IR- oder UV-re- flektierende Fensterbeschichtung möglich. Zu diesem Aspekt der erfindungsgemäßen Zusammensetzungen, speziell Wärmeisolationsbe- Schichtungen, sei auch auf die Schrift WO 99/19267 verwiesen.
Beansprucht wird im Rahmen der vorliegenden Erfindung auch die Verwendung der e findungsgemäßen polymerisierbaren flüssigkristallinen Zusammensetzungen zur Herstellung von Dispersionen und Emulsionen, welche bevorzugt auf Wasser basieren. Zur Herstellung solcher Dispersionen und Emulsionen sei auf die Schriften WO 96/02597 und WO 98/47979 verwiesen, in welchen die Herstellung von Dispersionen und Emulsionen unter Verwendung von flüssigkristallinen Materialien beschrieben ist.
Gegenstand der vorliegenden Erfindung sind mithin solche Dispersionen und Emulsionen, welche unter Verwendung der erfindungsgemäßen polymerisierbaren flüssigkristallinen Zusammensetzungen hergestellt wurde. Diese Dispersionen und Emulsionen können eben- falls zum Bedrucken und Beschichten von Substraten, wie sie beispielhaft zuvor bereits beschrieben wurden, verwendet werden.
Die Verwendung der erfindungsgemäßen polymerisierbaren flüssigkristallinen Zusammensetzungen zur Herstellung von Filmen ist weiterer Gegenstand der vorliegenden Erfindung. Unter solchen Filmen sind insbesondere selbsttragende Schichten zu verstehen, wie sie durch Polymerisation der Zusammensetzungen erhalten werden. Diese Filme können sich auf Substraten bzw. Unterlagen befinden, welche so beschaffen sind, dass deren leichte Ablösung und Übertragung auf andere Substrate oder Unterlagen zum permanenten Verbleib durch geeignete Maßnahmen möglich ist. Solche Filme sind beispielsweise im Bereich der Folienbeschichtung und in Kaschierverfahren verwendbar.
Gegenstand der vorliegenden Erfindung sind dementsprechend auch solche Filme, welche unter Verwendung der erfindungsgemäßen polymerisierbaren flüssigkristallinen Zusammensetzungen hergestellt worden sind.
Weiter wird die Verwendung der erfindungsgemäßen polymerisierba- ren flüssigkristallinen Zusammensetzungen zur Herstellung von Pigmenten beanspruch .
Die Herstellung solcher Pigmente ist bekannt und beispielsweise ausführlich in der Schrift WO 99/11733 beschrieben. Darüber hin- aus lassen sich aber auch in Form und Größe voreingestellte Pigmente unter Verwendung von Drucktechniken oder mit Hilfe von Netzen, in deren Zwischenräumen sich die polymerisierbare Zusammensetzung befindet, herstellen. Der nachfolgenden Polymerisation oder Kondensation der flüssigkristallinen Zusammensetzung schließt sich hierbei das Ab- bzw. Herauslösen vom Substrat bzw. aus dem Netz an. Diese Vorgehensweisen sind in den Schriften WO 96/02597, WO 97/27251, WO 97/27252 und EP 0 931 110 ausführlich beschrieben.
Die polymerisierbaren flüssigkristallinen Zusammensetzungen werden mit Hilfe ihrer reaktiven Gruppen und abhängig von deren chemischer Natur durch Kondensation oder radikalische oder ionische Polymerisationsverfahren, welche durch photochemische Reaktionen gestartet werden können, in Polymere mit eingefrorener flüssig- kristalliner Ordnungsstruktur überführt werden.
Diese Pigmente können einschichtig (homogen) sein oder einen Mehrschichtaufbau aufweisen. Letztere Pigmente sind jedoch üblicherweise nur herstellbar, wenn Beschichtungsverfahren zur Anwen- düng kommen, in welchen sukzessive mehrere Schichten übereinander erzeugt und abschließend einer mechanischen Zerkleinerung unterworfen werden.
Gegenstand der vorliegenden Erfindung sind somit auch aus solchen erfindungsgemäßen polymerisierbaren flüssigkristallinen Zusammensetzungen hergestellte Pigmente. Beispiele
A. Allgemeines:
5 A.I. Chromatographische Methoden:
Alle Reaktionen wurden dünnschichtchromatographisch auf Kieselgel-Fertigfolien (Merck, Kieselgel 60, F254) verfolgt. Die Detek- tion erfolgte durch UV-Absorption sowie Ansprühen mit einer 10 10%igen ethanolischen Schwefelsäure und anschließender Wärmebehandlung.
Säulenchromatographische Trennungen erfolgten mittels Flash-Chromatographie an Kieselgel (230-400 mesh, Korngröße 0,040-0,063 mm,
15 Merck) mit den jeweils angegebenen destillierten Laufmitteln. Wasserfreie Lösungsmittel wurden unter der entsprechenden Qualitätsbezeichnung von der Firma Fluka bezogen oder nach gängigen Methoden getrocknet und über frisch aktiviertem Molekularsieb aufbewahrt.
20
A.II. Angaben zur Analytik:
Optische Drehungen: Perkin-Elmer-Polarimeter PE 243 oder 341 bei der Natrium-D-Linie (589 nm) , 10-cm-Küvettenlänge, Konzentrati- 25 onsangabe [c]=[g/100 ml].
NMR-Spektroskopie: Bruker-AMX 200, Bruker-AMX 400 oder DRX 500 im Automationsbetrieb; Auswertung nach 1. Ordnung. Als interner Standard wurde TMS genutzt, oder auf die charakteristischen Lö- 30 sungsmittelsignale geeicht.
Phasenumwandlungen (unkorrigiert) : Olympus BH-Polarisationsmi- kroskop mit Mettler FP 82 Heiztisch; flüssigkristalline Phasenzuordnung aufgrund charakteristischer Texturen.
35
HTP-Messungen (HTP: helical twisting ßower) : Linsen-Variante der Grandjean-Cano-Methode, 0,5-6 Mol-% in ZLI 1840 (kommerziell erhältliches flüssigkristallines Produkt der Fa. Merck) ; Angabe der HTP: 15 °C unter Klärpunkt. Die Bestimmung der HTP-Vorzeichen er- 0 folgte anhand von Kontaktmischungen mit cholesterischen Mesopha- sen bekannten Vorzeichens durch Beobachtung der nematischen Kompensationslinie .
Die Abkürzungen K, Ch, BP, N, SA und I bei der Bestimmung der Pha- 5 senumwandlungen stehen für kristallin, cholesterisch, Blue Phase, nematisch, smektische A-Phase und isotrop respektive. A.III. Allgemeine Arbeitsvorschriften (AAV) :
AAV-1: Veresterung nach der DCC-Methode (DCC: N,N'-Dicyclohexyl- carbodiimid)
Eine Lösung des Alkohols oder Phenols (1,0 eq.), der Carbonsäure (1,1 eq.), des N,N'-Dicyclohexylcarbodiimids (Fa. Aldrich, Reinheit 99 %; ca. 1,1 - 1,7 eq.) und katalytische Mengen 4-Pyrroli- dinopyridins (Fa. Aldrich, Reinheit 98 %; ca. 0,01 eq.) wird in wasserfreiem Dichlor ethan bis zur vollständigen Umsetzung gerührt. Der gebildete N,N'-Dicyclohexylharnstoff wird abfiltriert, das Lösungsmittel im Vakuum entfernt, und der Rückstand wie beschrieben gereinigt .
AAV-2 : Basische Deacetylierung mit Natriummethanolat
Je 1 mmol des Esters wird in 5 ml absolutem Methanol gelöst und mit einer katalytischen Menge Natriummethanolat bis zur basischen Reaktion versetzt. Nach 12 h Rühren bei Raumtemperatur wird mit saurem Ionenaustauscher (Amberlite IR 120 H+-Form) neutralisiert, filtriert und das Lösungsmittel im Vakuum entfernt.
AAV-3 : Veresterung nach der Imidazolidmethode
Pro Äquivalent zu veresternder Hydroxyfunktion werden zunächst ein Äquivalent N,N'-Carbonyldiimidazol (Fa. Aldrich, Reinheit 99 %) und ein Äquivalent der Carbonsäure in 2-5 ml wasserfreiem N,N-Dimethylformamid unter Stickstoffatmosphäre unter C02-Entwick- lung leicht erwärmt. Je nach Carbonsäure ist die Reaktion nach 5-120 Minuten beendet (Lösung 1) . Dann wird bei Raumtemperatur unter Stickstoffatmosphäre eine Lösung 2 von 1 mmol des: Alkohols in 2 ml wasserfreiem N,N-Dimethylformamid mit einer katalytischen Menge Natrium versetzt. Nach vollständiger Auflösung des Natriums wird diese Lösung unter Stickstoffatmosphäre zu der anfänglich hergestellten Lösung 1 des Carbonsäureimidazolids getropft und ggf. je nach Reaktionsgeschwindigkeit auf 40 °C bis maximal 80 °C unter Rühren erwärmt. Nach Reaktionsende wird das Lösungsmittel im Vakuum entfernt und das Rohprodukt wie jeweils angegeben gereinigt .
AAV-4: Basische Deacetylierung mit Natriumcarbonat
Je 1 g des Esters wird je 10 ml absolutem Methanol gelöst und mit 1 g Natriumcarbonat versetzt. Nach 3-12 h Rühren bei Raumtempera- tur wird unter Verwendung von Celite® (Fa. Aldrich) das Natriumcarbonat abfiltriert, die Lösung mit saurem Ionenaustauscher (A - berlite® IR 120 H+-Form; Fa. Aldrich) neutralisiert und das Lösungsmittel im Vakuum entfernt.
AAV-5: Veresterung von Alkoholen und Phenolen mit Carbonsäurech- loriden
Eine katalytiεche Menge 4-Pyrrolidinopyridin (ca. 0,01 eq.) und 1 Äquivalent des Alkohols oder Phenols werden unter Stiσkstoffat- mosphäre in eine wasserfreie Lösung aus Dichlormethan und Pyridin 1:1 (je 2 ml Lösung pro 1 mmol des Alkohols oder Phenols) gegeben. Unter Rühren werden 1,05 Äquivalente des Carbonsäurechlorids pro Hydroxyfunktion (gelöst in möglichst wenig wasserfreiem Dichlormethan) langsam zu dem Ansatz zugetropft . Nach Reaktionsende wird der Reaktionsansatz mit Dichlormethan verdünnt und mit 2 M Salzsäurelösung neutralisiert sowie einmal mit destilliertem Wasser gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet und im Vakuum eingeengt. Das Rohprodukt wird wie jeweils angegeben gereinigt.
AAV-6: Selektive Entschützung von Phenylacetaten mit Guanidin-Hy- drochlorid
1 mmol Guanidin-Hydrochlorid (Fa. Aldrich, Reinheit 99 %) wird in 10 ml wasserfreiem Methanol gelöst und mit 0,9 Äquivalenten Na- triummethanolat fünf Minuten bei Raumtemperatur gerührt. Die Mischung wird zu einer Lösung von 1 mmol des Phenylacetats in 50 ml Methanol gegeben und der entstehende Essigsäuremethylester bei 40 °C und 270 mbar am Rotationsverdampfer zusammen mit dem Lösungsmittel entfernt. Die Aufarbeitung kann nach zwei Methoden erfol- gen:
Methode 1: Der im Vakuum zur Trockne eingeengte Reaktionsansatz wird mit je 50 ml I Salzsäure und Dichlormethan versetzt und so lange gerührt, bis keine ungelösten Rückstände mehr vorhanden sind. Die organische Phase wird abgetrennt, die wäßrige Phase mehrmals mit Dichlormethan extrahiert, die vereinigten organischen Phasen über Magnesiumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt.
Methode 2 : Der im Vakuum zur Trockne eingeengte Reaktionsansatz wird in 10 ml 1 , 2-Dimethoxyethan gelöst, mit 1 M Salzsäure angesäuert und unter Rühren langsam in 100 ml destilliertes Wasser gegeben. Der entstehende Niederschlag wird abfiltriert, in Dichlormethan gelöst, über Magnesiumsulfat getrocknet und das Lö- sungsmittel im Vakuum entfernt. B. Synthese von Glycalen der Pentosereihe
Schema 1 :
Figure imgf000016_0001
Ac2O/Na0Ac
93% ΔT 52%
Figure imgf000016_0002
l)HBr/HOAc
66% 2)Zn/HOAc
Figure imgf000016_0003
95% Na2C03 /CH3OH 94%
Figure imgf000016_0004
D-Xylal (3) D-Arabinal (.
B . I . Synthese von D-Xylal ( 3 )
B.I.l. Synthese von 1,2, 3,4-Tetra-O-acetyl-ß-D-xylopyranose (1)
Zu einer gerührten Suspension aus 43 g Natriumacetat in 236 ml Essigsäureanhydrid werden 50,0 g (0,33 mol) D-Xylose (Fa. Aldrich, Reinheit 99 %) portionsweise bei 115 °C nach dem Entfernen der Wärmezufuhr so zugegeben, daß die Temperatur nicht über 118 °C steigt. Danach wird zwei Stunden bei 115 °C gerührt. Nach dem Ab- kühlen auf Raumtemperatur wird der Reaktionsansatz auf 1 Liter Eiswasser gegossen, mit 500 ml Dichlormethan versetzt und 12 Stunden gerührt. Die wäßrige Phase wird abgetrennt und dreimal mit je 250 ml Dichlormethan extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumhydrogencarbonatlösung neutral gewaschen, mit 250 ml Wasser nachgewaschen und über Magnesiumsulfat getrocknet. Danach wird mit Aktivkohle versetzt, nach viertelstündigem Rühren die Aktivkohle abfiltriert und das Lösungsmittel entfernt.
Summenformel: Cι3H1809 (MG = 318,28 g/mol) , Ausbeute: 98 g (0,31 mol, 93 %) ;
Charakterisierung: farblose Kristalle; [α]D 20 = -20,5 (c = 0,5, CHC13) ; Schmp.: 127 °C; Struktur wurde durch iH-NMR (400 MHz, CDCI3) und 13C-NMR (125 MHz, CDCI3) bestätigt.
B.I.2. Synthese von 3 , -Di-O-acetyl-D-xylal (2)
56,00 g (0,176 mol) der Verbindung 1 werden in 15 ml Essigsäureanhydrid und 15 ml Eisessig gelöst. Nach dem Abkühlen auf 0 °C gibt man tropfenweise 100 ml Bromwasserstoff/Eisessig (33 %ig) hinzu und läßt bei Raumtemperatur 2 h rühren. Die rohe Acetobrom- xylose-Lösung wird bei 0 °C zu einer Reduktionsmischung aus 47,48 g Natriumacetat-Trihydrat, 300 ml Aceton, 80 ml destilliertem Wasser, 80 ml Essigsäure und 250 g aktiviertem Zinkpulver im Laufe von 1,5 h zugetropft. Dabei darf die Temperatur 10 °C nicht übersteigen. Nach beendeter Zugabe wird noch 1 h bei 0 °C und dann noch weitere 1,25 h bei Raumtemperatur gerührt. Nachdem man vom Zink abfiltriert hat, wird der Filterrückstand mit einem Essigsäure/Wasser-Gemisch (1:1) gewaschen. Danach wird die Lösung einmal mit Eiswasser und dreimal mit kaltem Chloroform extrahiert und die vereinigten organischen Phasen mit Natriumhydrogencarbo- nat neutralisiert. Die Lösung wird über Magnesiumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Die Reinigung des Produktes erfolgt flashchromatographisch über eine Kieselgelfiltration (Petrolether (50/70) /Diethylether, 3:1).
Summenformel: CsH1205 (MG = 200,19 g/mol), Ausbeute: 23,47 g (0,117 mol, 66 %) ;
Charakterisierung: farbloser Feststoff; [α]D 20 = -316,7 (c = 1,0, CHCI3); Schmp.: 37-39 °C; Struktur wurde durch 1H-NMR (400 MHz, CDCI3) und 13C-NMR (100 MHz, CDCI3) bestätigt.
B .1.3. Synthese von D-Xylal (3)
Darstellung nach AAV-4: 4,00 g der Verbindung 2 (20 mmol) und 4,00 g wasserfreies Natriumcarbonat in 50 ml Methanol. Summenformel: C5H803 (MG = 116,12 g/mol), Ausbeute: 2,23 g (19 mmol, 95 %) ;
Charakterisierung: gelblicher Feststoff; [α]D 20 = -249,8 (c = 0,5, CHC13); Schmp.: 46,0-49,1 °C; Struktur wurde durch iH-NMR (400 MHz, CD3OD) und 13C-NMR (100 MHz, CD3OD) bestätigt.
B.II. Synthese von D-Arabinal (9)
B.II.l. Synthese von 1,2, 3,4-Tetra-O-acetyl-α-D-arabinopyranose (7)
Zu einer gerührten Suspension aus 43 g Natriumacetat in 236 ml Essigsäureanhydrid werden 50,00 g (0,33 mol) D-Arabinose (Fa. Al- drich, Reinheit 99 %) portionsweise bei 115 °C nach dem Entfernen der Wärmezufuhr so zugegeben, daß die Temperatur nicht über 118 °C steigt. Danach wird zwei Stunden bei 115 °C gerührt. Nach dem Ab- . kühlen auf Raumtemperatur wird der Reaktionsansatz auf einen Liter Eiswasser gegossen, mit 500 ml Dichlormethan versetzt und 12 Stunden gerührt. Die wäßrige Phase wird abgetrennt und dreimal mit je 250 ml Dichlormethan extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumhydrogencarbonatlösung neutral gewaschen, mit 250 ml Wasser nachgewaschen und über Magnesiumsulfat getrocknet. Anschließend wird das Lösungsmittel im Vakuum entfernt. Reinigung: mehrfache Umkristallisation aus Etha- nol .
Summenformel: C13H18O9 (MG = 318,28 g/mol), Ausbeute: 55,03 g (0,17 mol, 52 %) ;
Charakterisierung: farblose Kristalle; [α]D 20 = -43,1 (c = 0,5, CHCI3); Schmp.: 94,7 °C; Struktur wurde durch iH-NMR (400 MHz, CDCI3) und l3C-NMR (100 MHz, CDCI3) bestätigt.
B.II.2. Synthese von 3 , 4-Di-O-acetyl-D-arabinal (8)
55,00 g (0,173 mol) der Verbindung 7 werden in 15 ml Essigsäureanhydrid und 15 ml Eisessig gelöst. Nach dem Abkühlen auf 0 °C gibt man tropfenweise 100 ml Bromwasserεtoff/Eisessig (33 %-ig) hinzu und läßt bei Raumtemperatur 2 h rühren. Die rohe Acetobro- marabinose-Lösung wird bei 0 °C zu einer Reduktionsmischung aus 47,48 g Natriumacetat-Trihydrat, 300 ml Aceton, 80 ml destilliertem Wasser, 80 ml Essigsäure und 250 g aktiviertem Zinkpulver im Laufe von 1,5 h zugetropft. Dabei darf die Temperatur 10 °C nicht übersteigen. Nach beendeter Zugabe wird noch 1 h bei 0 °C und dann noch weitere 1,25 h bei Raumtemperatur gerührt. Nachdem man vom Zink abfiltriert hat, wird der Filterrückstand mit einem Essig- säure/Wasser-Gemisch (1:1) gewaschen. Danach wird die Lösung einmal mit Eiswasser und dreimal mit kaltem Chloroform extrahiert und die vereinten organischen Phasen mit Natriumhydrogencarbonat neutralisiert. Die Lösung wird über Magnesiumsulfat getrocknet und das Lösungsmittel entfernt. Die Reinigung des Produktes erfolgt flashσhromatographisch über eine Säulenfiltration (Petrole- ther (50/70) /Diethylether, 3:1).
Summenformel: C9205 (MG = 200,19 g/mol), Ausbeute: 11,58 g (58 mmol, 34 %) ;
Charakterisierung: viskoser Sirup; [cc]D 20 = +265,2 (c = 1,2, CHC13); Struktur wurde durch ^-H-NMR (400 MHz, CDCI3) und 13C-NMR (125 MHz, CDCI3) bestätigt.
B.II.3. Synthese von D-Arabinal (9)
Darstellung nach AAV-2 : 5,70 g (28,5 mmol) der Verbindung 8 in 55 ml wasserfreiem Methanol .
Summenformel: CsH803 (MG = 116,12 g/mol), Ausbeute: 3 , 10 g (26,7 mmol, 94 %) ;
Charakterisierung: farblose Kristalle; [α]n20 = +238,7 (c = 0,5, CH3OH) ? Schmp.: 80,7 °C; Struktur wurde durch iH-NMR (400 MHz, CD3OD) und 13C-NMR (100 MHz, CD3OD) bestätigt.
Synthese von erfindungsgemäßen Dotierstoffen auf Basis von D-Xylal (3) und D-Arabinal (9)
Figure imgf000019_0001
Figure imgf000019_0002
(4a) R = Hι5C70-Ph-Ph-CO (10a) : R = H3CO-Ph-CO (4b) R = Hι5C70-Ch-Ph-CO (10b) : R = H17C80-Ph-COO-Ph-CO (4c) R = H3CO-Ph-CO
(4d) : R = H17C80-Ph-COO-Ph-CO
(Ph: 1,4-Phenylen; Ch: trans-1, 4-Cyclohexylen) C.I. Synthese von erfindungsgemäßen Dotierstoffen auf Basis von D-Xylal (3)
C.1.1. Synthese von 3 , -Di-O- (4 ' ' -heptyloxybiphenyl-4 '-carbo- 5 nyl)-D-xylal (4a)
Darstellung nach AAV-3. Zu Lösung 1 mit 686 mg (2,10 mmol)
4' ' -Heptyloxybiphenyl-4 ' -carbonsäure (Synthesevorschrift: S.-L.
Wu et al., Mol. Cryst. Liq. Cryst. Sei. Technol. Sect. A 1995,
10 264, 29-50) und 341 mg (2,10 mmol) N,N'-Carbonyldiimidazol in 4 ml wasserfreiem N,N-Dimethylformamid (Reaktionstemperatur: 40 °C) wird Lösung 2 mit 122 mg (1,05 mmol) der Verbindung 3 in 2 ml N,N-Dimethylformamid zugetropft, Reaktionstemperatur 70 °C. Reinigung: Das eingeengte Rohprodukt wird mit destilliertem Wasser
15 versetzt, filtriert, der Rückstand einmal mit Wasser gewaschen, im Vakuum getrocknet und aus Ethanol umkristallisiert.
Summenformel: C45H5207 (MG = 704,91 g/mol), Ausbeute: 240 mg (0,34 mmol, 32 %) ;
20
Charakterisierung: farbloser Feststoff; [CC]D 20 = -286,0 (c = 0,5,
CHC13); K 155,7-156,6 (Ch 147,0 BP) I; Ber. : C 76,68 H 7,44, Gef . :
C 76,49 H 7,41; Struktur wurde durch i-H-NMR (400 MHz, CDCI3) und 13C-NMR (100 MHz, CDCI3) bestätigt.
25
C.I.2. Synthese von 3,4-Di-O- (4'- ( rans-4' ' -heptylcyclohe- xy1) -benzoy1) -D-xy1al ( b)
Darstellung nach AAV-3. Zu Lösung 1 mit 630 mg (2,08 mmol) 30 4'-(trans-4' '-Heptylcyclohexyl) -benzoesäure (Synthesevorschrift: J.C. Liang, L. Chen, Mol. Cryst. Liq. Cryst. 1989, 167, 253-258) und 340 mg (2,10 mmol) N,N'-Carbonyldiimidazol in 4 ml wasserfreiem N,N-Dimethylformamid (Reaktionstemperatur: 40 °C) wird Lösung 2 mit 123 mg (1,06 mmol) der Verbindung 3 in 2 ml N,N-Dime- 35 thylformamid zugetropft, Reaktionstemperatur 65 °C. Reinigung: Das eingeengte Rohprodukt wird mit destilliertem Wasser versetzt, filtriert, der Rückstand einmal mit Wasser gewaschen, im Vakuum getrocknet und aus Ethanol umkristallisiert.
0 Summenformel: C45H64θ5 (MG = 685,00 g/mol), Ausbeute: 210 mg (0,31 mmol, 29 %) ;
Charakterisierung: farbloser Feststoff; [ ]n20 = -218,9 (c = 0,5, CHCI3); K 125,4 (Ch <100) I; Ber.: C 78,90 H 9,42, Gef.: C 78,95 H 5 9,51; Struktur wurde durch ^-H-NMR (400 MHz, CDCI3) und 13C-NMR (100 MHz, CDCI3) bestätigt. C.I.3. Synthese von 3, 4-Di-O- (4 ' -methoxybenzoyl) -D-xylal (4c)
Darstellung nach AAV-5 mit 118 mg (1,02 mmol) der Verbindung 3 in 2 ml Lösung aus Dichlormethan und Pyridin 1:1 und 182 mg (1,07 mmol) 4-Methoxybenzoesäurechlorid (Fa. Aldrich, Reinheit 99 %) . Das Rohprodukt wird säulenchromatographisch an Kieselgel gereinigt (Laufmittel: Petrolether (50/70) /Ethylacetat, 3:1).
Summenformel: C2ιH2o07 (MG = 384,39 g/mol), Ausbeute: 260 mg (0,68 mmol, 67 %) ;
Charakterisierung: farbloser Feststoff; [α]D 20 = -372,0 (c = 0,5, CHC13); Schmp.: 140,9 °C; Ber.: C 65,62 H 5,24, Gef.: C 65,65 H 5,27; Struktur wurde durch iH- MR (400 MHz, CDCI3) und 13C-NMR (100 MHz, CDCI3) bestätigt.
C.I.4. Synthese von 3,4-Di-O- (4'- (4' '-octyloxybenzoyloxy) -ben- zoyl) -D-xylal (4d)
C.I.4.1. Synthese von 4- (Benzoyloxy) -benzoesäure
17,3 ml (20,90 g, 149 mmol) Benzoylchlorid (Fa. Aldrich, Reinheit 99 %) werden unter starkem Rühren zu einer eisgekühlten Lösung von 20,00 g (145 mmol) 4-Hydroxybenzoesäure (Fa. Aldrich, Rein- heit 99 %) und 12,00 g (300 mmol) Natriumhydroxid in 300 ml destilliertem Wasser und 30 ml Aceton über einen Zeitraum von 30 Minuten zugetropft . Nach weiteren 30 Minuten wird mit konzentrierter Salzsäure angesäuert und mit 750 ml destilliertem Wasser verdünnt. Der entstehende weiße Niederschlag wird abfiltriert und aus Methanol/Ethanol/Ethylacetat (450 ml + 225 ml + 300 ml) umkristallisiert.
Summenformel: C14H10O4 (MG = 242,23 g/mol), Ausbeute: 27,01 g (112 mmol, 77 %) ;
Charakterisierung: farblose Kristalle; Schmp.: 222,6 °C; Struktur wurde durch iH-NMR (400 MHz, CDCI3) bestätigt.
C.I.4.2. Synthese von 4- (Benzoyloxy) -benzoesäurechlorid
10,00 g (41,3 mmol) 4- (Benzoyloxy) -benzoesäure und ein Tropfen N,N-Dimethylformamid werden in 40 ml Thionylchlorid unter Rühren zum Rückfluß erhitzt, bis keine Gasentwicklung mehr stattfindet. Das überschüssige Thionylchlorid wird unter vermindertem Druck destillativ weitestgehend entfernt und vom verbliebenen Rückstand zur vollständigen Entfernung zweimal mit Petrolether (50/70) im Vakuum codestilliert. Die Reinigung erfolgt durch Umkristallisa- tion aus 150 ml Petrolether (50/70) /Ethylacetat 2:1, das Kristal- lisat wird mit 4 ml Petrolether (50/70) gewaschen.
Summenformel: C14H9O3CI (MG = 260,68 g/mol), Ausbeute: 7,23 g (27,7 mmol, 67 %) ;
Charakterisierung: farblose Kristalle; Schmp.: 134,0 °C; Struktur wurde durch ^-H-NMR (400 MHz, Benzol-d6) bestätigt.
C.I.4.3. Synthese von 3, 4-Di-O- (4'-benzoyloxy-benzoyl) -D-xylal
Darstellung nach AAV-5 mit 594 mg (5,12 mmol) der Verbindung 3 in 5 ml wasserfreiem Pyridin und 2,998 g (11,50 mmol) 4- (Benzoyloxy) -benzoesäurechlorid in 10 ml wasserfreiem Dichlormethan. Das Rohprodukt wird säulenchromatographisch an Kieselgel gereinigt (Laufmittel: Chloroform) .
Summenformel: C33H24O9 (MG = 564,55 g/mol), Ausbeute: 333 mg (0,59 mmol, 12 %) ;
Charakterisierung: farblose Kristalle; [α]D 20 = -285,0 (c = 0,2,
CHC13 ) ; K 139 , 2 (Ch 127 , 9 ) I ; Ber . : C 70 , 21 H 4 , 28 , Gef . : C 70 , 26
H 4,28; Struktur wurde durch l-H-NMR (400 MHz, CDCI3) und 13C-NMR
(100 MHz, CDCI3) bestätigt.
C.I.4.4. Synthese von 3 ,4-Di-O- (4-acetyloxy-benzoyl) -D-xylal
Darstellung nach AAV-5 mit 3,00 g (25,8 mmol) der Verbindung 3 in 130 ml Dichlormethan und 40 ml wasserfreiem Pyridin sowie 11,10 g (55,9 mmol) 4-Acetyloxybenzoesäurechlorid (Synthesevorschrift: E. Nomura et al., J. Org. Chem. 2001, 66, 8030-8036) in 10 ml wasserfreiem Dichlormethan. Das Rohprodukt wird aus 320 πil Ethanol/ Toluol (7 : 1) umkristallisiert.
Summenformel: C23H2o09 (MG = 440,41 g/mol), Ausbeute: 9,34 g (21,2 mmol, 82 %) ;
Charakterisierung: farblose Kristalle; [α]D 20 = -310,1 (c = 0,6, CHCI3) ; Schmp.: 145,6 °C; Ber.: C 62,73 H 4,58, Gef.: C 62,48 H 4,50; Struktur wurde durch iH-NMR (400 MHz, CDCI3) und 13C-NMR (100 MHz, CDC13) bestätigt.
C.I.4.5. Synthese von 3,4-Di-O- (4 '-hydroxybenzoyl) -D-xylal
Darstellung nach AAV-6 mit 5,00 g (11,3 mmol) 3, 4-Di-O- (4-acetyl- oxy-benzoyl) -D-xylal in 250 ml wasserfreiem Methanol sowie 2,10 g (22,0 mmol) Guanidin-Hydrochlorid und 1,07 g (19,8 mmol) Natrium- methanolat in 100 ml wasserfreiem Methanol. Aufarbeitung: Methode 1.
Summenformel: CιgHi6θ7 (MG = 356,33 g/mol), Ausbeute: 3,75 g (10,5 5 mmol, 93 %) ;
Charakterisierung: farblose Kristalle; [α]D 20 = -363,8 (c = 0,5, CH3OH) ; Schmp.: 161,2 °C; Ber.: C 64,04 H 4,53, Gef.: C 63,67 H 4,54; Struktur wurde durch iH-NMR (400 MHz, Aceton-d6) und 13C-NMR 10 (100 MHz, Aceton-d6) bestätigt.
C.I.4.6. Synthese von 3 , -Di-O- (4'- (4' '-octyloxybenzoyloxy) -ben- zoyl) -D-xylal ( d)
15 Darstellung nach AAV-1 mit 400 mg (1,12 mmol) 3, 4-Di-O- (4 '-hydro- xybenzoyl) -D-xylal , 609 mg (2,95 mmol) DCC und 626 mg (2,50 mmol) 4-Octyloxybenzoesäure in 40 ml wasserfreiem Dichlormethan. Das Rohprodukt wird aus 70 ml Isopropanol umkristallisiert.
20 Summenformel: C4SH550n (MG = 820,98 g/mol), Ausbeute: 625 mg (0,76 mmol, 68 %) ;
Charakterisierung: farblose Kristalle; [α]n20 = -223,8 (c = 0,6, CHCI3) ; K 120,9 Ch Zers.; Ber.: C 71,69 H 6,88, Gef.: C 71,37 H 25 6,96; Struktur wurde durch iH- R (400 MHz, CDCI3) und 13C-NMR (125 MHz, CDCI3) bestätigt.
C.II. Synthese von erfindungsgemäßen Dotierstoffen auf Basis von D-Arabinal (9) 30
C . II .1. Synthese von 3 , -Di-O- (4 ' -methoxybenzoyl) -D-arabinal (10a)
Darstellung nach AAV-5 mit 3,00 g (25,8 mmol) der Verbindung 9 in 35 30 ml wasserfreiem Pyridin und 10,30 g (60,4 mmol) 4-Methoxyben- zoesäurechlorid in 5 ml wasserfreiem Dichlormethan. Das Rohprodukt wird säulenchromatographisch an Kieselgel gereinigt (Lauf- mittel: Petrolether (50/70) /Ethylacetat, 7:1).
40 Summenformel: C2ιH2o0 (MG = 384,39 g/mol), Ausbeute: 5,33 g (13,9 mmol, 54 %) ;
Charakterisierung: farbloser Sirup; [α]D 20 = +281,1 (c = 0,5, CHC13); Ber.: C 65,62 H 5,24, Gef.: C 65,71 H 5,30; Struktur wurde 5 durch -H-NMR (400 MHz, CDCI3) und 13C-NMR (100 MHz, CDCI3) bestätigt. C . II .2. Synthese von 3 , 4-Di-O- (4 ' - (4 ' ' -octyloxybenzoyloxy) -ben- zoyl) -D-arabinal (10b)
C. II.2.1. Synthese von 3 ,4-Di-O- (4 '-acetoxybenzoyl) -D-arabinal
Darstellung nach AAV-5 mit 400 mg (3,44 mmol) der Verbindung 9 in 20 ml Dichlormethan und 7 ml wasserfreiem Pyridin sowie 1,50 g (7,55 mmol) 4-Acetyloxybenzoesäurechlorid in 1,5 ml wasserfreiem Dichlormethan.
Summenformel: C23H20O9 (MG = 440,41 g/mol), Ausbeute: 1,436 g (3,26 mmol, 95 %) ;
Charakterisierung: farbloser Sirup; [CC]D 20 = +146,7 (c = 0,5, CHC13) ; Ber.: C 62,73 H 4,58, Gef.: C 62,72 H 4,53; Struktur wurde durch iH-NMR (400 MHz, CDCI3) und 13C-NMR (125 MHz, CDCI3) bestätigt.
C . II .2.2. Synthese von 3 , 4-Di-O- ( ' -hydroxybenzoyl) -D-arabinal
Darstellung nach AAV-6 mit 1,200 g (2,72 mmol) 3, 4-Di-O- (4 '-acetoxybenzoyl) -D-arabinal in 160 ml wasserfreiem Methanol sowie 0,242 g (2,53 mmol) Guanidin-Hydrochlorid und 0,131 g (2,42 mmol) Natriummethanolat in 20 ml wasserfreiem Methanol. Aufarbeitung: Methode 1.
Summenformel: Cι9607 (MG = 356,33 g/mol), Ausbeute: 950 mg (2,67 mmol, 98 %) ;
Charakterisierung: farbloser Sirup; [α]D 20 = +108,6 (c = 0,7,
CHCI3); Ber.: C 64,04 H 4,53, Gef.: C 63,51 H 4,52; Struktur wurde durch -H-NMR (400 MHz, Aceton-d6) und 13C-NMR (100 MHz, Aceton-d6) bestätigt.
C.II.2.3. Synthese von 4-Octyloxybenzoesäure
17,64 g (128 mmol) 4-Hydroxybenzoesäure (Fa. Aldrich, Reinheit 99 %) und 14,32 g (255 mmol) Kaliumhydroxid werden in 30 ml destilliertem Wasser gelöst und in 260 ml Ethanol gegeben. Nach der Zu- gäbe von 33,0 g(29,7 ml, 0,17 mol) 1-Bromoctan (Fa. Aldrich, Reinheit 99 %) wird die Lösung unter Rühren 24 h zum Sieden erhitzt. Danachwerden nochmals 14,32 g (255 mmol) Kaliumhydroxid hinzugegeben und weitere zwei Stunden unterRühren zum Rückfluß erhitzt. Nach dem Erkalten des Reaktionsansatzes wird das Lö- sungsmittel im Vakuum weitgehend entfernt, der Rückstand in dest. Wasser aufgenommen und mit 2 M Salzsäurelösung stark angesäuert. Der Rückstand wird mit Chloroform extrahiert, über Magnesiumsulfat getrocknet, eingeengt und aus Aceton umkristallisiert.
Su menfor el : Cι5H2203 (MG = 250,34 g/mol), Ausbeute: 26,1 g (104 mmol, 81 %) ;
Charakterisierung: farblose Kristallnadeln; K 101 SA 107 N 146 I; Struktur wurde durch ^-H-NMR (400 MHz, CDC13) bestätigt.
C.II.2.4. Synthese von 3 , 4-Di-O- (4 '- (4' '-octyloxybenzoyloxy) -ben- zoyl ) -D-arabinal (10b)
Darstellung nach AAV-1 mit 0,788 g (2,21 mmol) 3, -Di-O- (4'-hy- droxybenzoyl) -D-arabinal, 1,240 g (6,01 mmol) DCC und 1,127 g (4,50 mmol) 4-0ctyloxybenzoesäure in 80 ml wasserfreiem Dichlormethan. Das Rohprodukt wird aus 40 ml Isopropanol umkristallisiert .
Summenformel: C 9H56O11 (MG = 820,98 g/mol), Ausbeute: 1,227 g (1,49 mmol, 67 %) ;
Charakterisierung: farblose Kristalle; [α]D 20 = +138,5 (c = 0,6, CHCI3); Schmp. : 75,5-75,9 °C; Ber.: C 71,69 H 6,88, Gef.: C 71,42 H 6,97; Struktur wurde durch ^-H-NMR (400 MHz, CDCI3) und 13C-NMR (125 MHz, CDCI3) bestätigt.
D. Messung der HTP an ausgewählten erfindungsgemäßen Dotierstoffen
Es wurden HTP-Werte gemäß der in A.II. beschriebenen Verfahrensweise in ZLI 1840 bestimmt. Die erhaltenen Werte sind in der nachfolgenden Tabelle aufgeführt.
Figure imgf000025_0001

Claims

Patentansprüche
1. Chirale Verbindungen der allgemeinen Formel I
Figure imgf000026_0001
und deren Diastereomere, in welchen bedeuten
R1 und R2 unabhängig voneinander Gruppierungen P-Y1-A1-Y2-M-Y3- (A2)m-Y4-
mit
A1, A2 Spacer mit ein bis 30 Kohlenstoffatomen,
M mesogene Gruppe,
Y1, Y2, Y3, Y4 chemische Einfachbindung, -0-, -S-, -C0-, -CO-O-, -0-C0-, -CO-N(R)-, - (R)N-CO-, -O-CO-O-,
-O-CO-N(R)-, -(R)N-CO-O- oder - (R)N-CO-N(R) -,
R Wasserstoff oder Cι-C4-Alkyl,
P Wasserstoff, C-Cι-Alkyl, eine polymerisierbare oder zur Polymerisation geeignete Gruppe oder ein Rest, welcher eine polymerisierbare oder zur Polymerisation geeignete Gruppe trägt, und
m Werte von 0 oder 1,
wobei die Variablen A1, A2, Y1, Y2, Y3, Y4, M, P und der Index m der Gruppierungen R1 und R2 gleich oder verschieden sein können, mit der Maßgabe, dass für den Fall, dass der Index m gleich 0 ist, mindestens eine der zu A2 benachbarten Variablen Y3 und Y4 eine chemische Bindung bedeutet.
2. Verbindungen nach Anspruch 1, in welchen die mesogene Gruppe M der Formel Ia
(-T-γΞ)r-T- (Ia) entspricht, worin die Variablen bedeuten
T zweiwertige gesättigte oder ungesättigte carbo- oder he- terocyclische Reste
Y5 -chemische Einfachbindung, -0-, -S-, -C0-, -CO-0-, -O-CO-, -CO-N(R)-, -(R)N-CO-,-0-CO-0-, -O-CO-N(R)-, -(R)N-CO-O- oder - (R)N-CO-N(R) - und
R Wasserstoff oder Cι-C4-Alkyl,
r Werte von 0, 1, 2 oder 3, wobei für r > 0 sowohl die Variablen T als auch die Variablen Y5 untereinander gleich oder voneinander verschieden sein können.
Verbindungen nach Anspruch 2 , in welchen in der mesogenen Gruppe der Formel Ia der Gruppierungen R1 und R2 der Index r unabhängig voneinander die Werte 0 oder 1 annimmt.
4. Verbindungen nach Anspruch 2 oder 3, in welchen T ausgewählt ist aus der Gruppe bestehend aus
Figure imgf000027_0001
5. Verbindungen nach einem oder mehreren der Ansprüche 1 bis 4, in welchen in den Gruppierungen R1 und R2 m jeweils gleich 0 ist, Y3 einer chemische Einfachbindung und Y4 -O-, -CO-O-, -0- CO-0-, oder -(R)N-CO-O- entspricht, wobei die Variablen Y4 untereinander gleich oder voneinander verschieden sein können.
6. Verwendung von Verbindungen nach einem oder mehreren der Ansprüche 1 bis 5 als chirale Dotierstoffe für flüssigkristalline Systeme.
5 7. Flüssigkristalline Zusammensetzungen, enthaltend mindestens eine chirale Verbindung der allgemeinen Formel I gemäß einem oder mehreren der Ansprüche 1 bis 5.
8. Polymerisierbare flüssigkristalline Zusammensetzungen, ent- 10 haltend mindestens eine chirale Verbindung der allgemeinen
Formel I gemäß einem oder mehreren der Ansprüche 1 bis 5.
9. Verwendung von Zusammensetzungen gemäß Anspruch 7 oder 8 für die Herstellung optischer Bauelemente.
15
10.. Optische Bauelemente, welche unter Verwendung von Zusammensetzungen gemäß Anspruch 7 oder 8 hergestellt worden sind.
11. Verwendung von Zusammensetzungen gemäß Anspruch 8 zum Bedruk- 20 ken oder Beschichten von Substraten.
12. Bedruckte oder beschichtete Substrate, welche unter Verwendung von Zusammensetzungen gemäß Anspruch 8 hergestellt worden sind.
25
13. Verwendung von Zusammensetzungen gemäß Anspruch 8 zur Herstellung von Dispersionen und Emulsionen.
14. Dispersionen und Emulsionen, welche unter Verwendung von Zu- 30 sammensetzungen gemäß Anspruch 8 hergestellt worden sind.
15. Verwendung von Zusammensetzungen gemäß Anspruch 8 zur Herstellung von Filmen.
35 16. Filme, welche unter Verwendung von Zusammensetzungen gemäß Anspruch 8 hergestellt worden sind.
17. Verwendung von Zusammensetzungen gemäß Anspruch 8 zur Herstellung von Pigmenten.
40
18. Pigmente, welche unter Verwendung von Zusammensetzungen gemäß Anspruch 8 hergestellt worden sind.
45
PCT/EP2003/006885 2002-07-01 2003-06-30 Chirale 3,4-dihydro-2h-pyranverbindungen WO2004002979A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003250860A AU2003250860A1 (en) 2002-07-01 2003-06-30 Chiral 3,4-dihydro-2h-pyran compounds
US10/518,389 US7258902B2 (en) 2002-07-01 2003-06-30 Chiral 3,4-dihydro-2H-pyran compounds
JP2004516745A JP2005538969A (ja) 2002-07-01 2003-06-30 キラル3,4−ジヒドロ−2h−ピラン化合物
EP03761553A EP1519931A2 (de) 2002-07-01 2003-06-30 Chirale 3,4-dihydro-2h-pyranverbindungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10229530.1 2002-07-01
DE10229530A DE10229530A1 (de) 2002-07-01 2002-07-01 Chirale 3,4-Dihydro-2H-pyranverbindungen

Publications (2)

Publication Number Publication Date
WO2004002979A2 true WO2004002979A2 (de) 2004-01-08
WO2004002979A3 WO2004002979A3 (de) 2004-04-22

Family

ID=29723602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/006885 WO2004002979A2 (de) 2002-07-01 2003-06-30 Chirale 3,4-dihydro-2h-pyranverbindungen

Country Status (7)

Country Link
US (1) US7258902B2 (de)
EP (1) EP1519931A2 (de)
JP (1) JP2005538969A (de)
CN (1) CN100400532C (de)
AU (1) AU2003250860A1 (de)
DE (1) DE10229530A1 (de)
WO (1) WO2004002979A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847953A2 (de) 2006-04-19 2007-10-24 Ricoh Company, Ltd. Auftragshilfssystem, Auftragshilfsvorrichtung, Geräteüberwachungsvorrichtung, Auftragshilfsverfahren, Geräteüberwachungsverfahren und computerlesbares Medium
WO2012019742A1 (de) * 2010-08-13 2012-02-16 Clariant International Ltd Verfahren zur herstellung von acyloxybenzoesäuren
WO2012019743A1 (de) * 2010-08-13 2012-02-16 Clariant International Ltd Verfahren zur herstellung von acyloxybenzoesäuren
US10347475B2 (en) 2005-10-31 2019-07-09 Applied Materials, Inc. Holding assembly for substrate processing chamber

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289439B (zh) * 2007-04-16 2011-04-06 中国科学院成都生物研究所 一种制备阿拉伯烯糖的方法
US8968536B2 (en) 2007-06-18 2015-03-03 Applied Materials, Inc. Sputtering target having increased life and sputtering uniformity
US8168084B2 (en) * 2009-12-18 2012-05-01 Vanderbilt University Polar nematic compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0630892A1 (de) * 1993-05-19 1994-12-28 BASF Aktiengesellschaft Chirale Verbindungen
DE19628700A1 (de) * 1996-07-17 1998-01-22 Basf Ag Flüssigkristalline Zuckerderivate
DE19640618A1 (de) * 1996-10-01 1998-04-02 Basf Ag Chirale Verbindungen

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4405316A1 (de) 1994-02-19 1995-08-24 Basf Ag Neue polymerisierbare flüssigkristalline Verbindungen
DE4408171A1 (de) 1994-03-11 1995-09-14 Basf Ag Neue polymerisierbare flüssigkristalline Verbindungen
DE4408170A1 (de) 1994-03-11 1995-09-14 Basf Ag Neue polymerisierbare flüssigkristalline Verbindungen
DE4427766A1 (de) 1994-08-05 1996-02-08 Basf Ag Verfahren zur Herstellung flüssigkristalliner Mischungen
DE4441651A1 (de) 1994-11-23 1996-04-25 Basf Ag Verfahren zur oberflächlichen Beschichtung von Substraten
DE69613962T2 (de) 1995-02-06 2002-04-04 Merck Patent Gmbh Direaktive mesogene verbindungen und zwischenprodukte
DE19532408A1 (de) 1995-09-01 1997-03-06 Basf Ag Polymerisierbare flüssigkristalline Verbindungen
DE19602795A1 (de) 1996-01-26 1997-07-31 Basf Ag Verfahren zur Herstellung von Pigmentpartikeln
DE19602848A1 (de) 1996-01-26 1997-07-31 Basf Ag Verfahren zur Herstellung von Pigmenten
JP4496439B2 (ja) 1996-03-19 2010-07-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 反応性液晶化合物
DE19638797A1 (de) 1996-09-20 1998-03-26 Basf Ag Verfahren zur Herstellung von Pigmentteilchen definierter Form und Größe
DE19716822A1 (de) 1997-04-22 1998-10-29 Basf Ag Verfahren zur Herstellung polymerisierbarer flüssigkristalliner Verbindungen
DE19835730A1 (de) 1997-08-18 1999-02-25 Basf Ag Flüssigkristalline Verbindungen
JP2001515094A (ja) 1997-09-02 2001-09-18 ビーエーエスエフ アクチェンゲゼルシャフト コレステリック効果層およびその製造方法
DE19745647A1 (de) 1997-10-15 1999-04-22 Basf Ag Wärmeisolationsbeschichtung
DE19905394A1 (de) 1999-02-10 2000-08-17 Basf Ag Flüssigkristalline Stoffgemenge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0630892A1 (de) * 1993-05-19 1994-12-28 BASF Aktiengesellschaft Chirale Verbindungen
DE19628700A1 (de) * 1996-07-17 1998-01-22 Basf Ag Flüssigkristalline Zuckerderivate
DE19640618A1 (de) * 1996-10-01 1998-04-02 Basf Ag Chirale Verbindungen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10347475B2 (en) 2005-10-31 2019-07-09 Applied Materials, Inc. Holding assembly for substrate processing chamber
US11658016B2 (en) 2005-10-31 2023-05-23 Applied Materials, Inc. Shield for a substrate processing chamber
EP1847953A2 (de) 2006-04-19 2007-10-24 Ricoh Company, Ltd. Auftragshilfssystem, Auftragshilfsvorrichtung, Geräteüberwachungsvorrichtung, Auftragshilfsverfahren, Geräteüberwachungsverfahren und computerlesbares Medium
WO2012019742A1 (de) * 2010-08-13 2012-02-16 Clariant International Ltd Verfahren zur herstellung von acyloxybenzoesäuren
WO2012019743A1 (de) * 2010-08-13 2012-02-16 Clariant International Ltd Verfahren zur herstellung von acyloxybenzoesäuren

Also Published As

Publication number Publication date
DE10229530A1 (de) 2004-01-15
US7258902B2 (en) 2007-08-21
AU2003250860A8 (en) 2004-01-19
JP2005538969A (ja) 2005-12-22
CN1735606A (zh) 2006-02-15
CN100400532C (zh) 2008-07-09
EP1519931A2 (de) 2005-04-06
WO2004002979A3 (de) 2004-04-22
AU2003250860A1 (en) 2004-01-19
US20050230660A1 (en) 2005-10-20

Similar Documents

Publication Publication Date Title
EP1142863B1 (de) Polymerisierbare Flüssigkristalle
DE3306960A1 (de) Tetrahydropyrane
WO1995022586A1 (de) Neue polymerisierbare flüssigkristalline verbindungen
EP1882025A1 (de) 2,6-naphthylreste enthaltende verbindungen
WO1986007055A1 (fr) Esters heterocycliques azotes
WO1987005013A2 (fr) Phases smectiques de cristaux liquides
DE3140868A1 (de) Disubstituierte pyrimidine
DE3743965C2 (de) Optisch aktive Flüssigkristall-Verbindung und sie enthaltende Flüssigkristall-Zusammensetzung
DE2306738C3 (de) Schiffsche Basen, Verfahren zu deren Herstellung, sowie diese enthaltende nematische Gemische für elektrooptische Zwecke
EP0321504B1 (de) Chirale aryloxypropionsäureester und ihre verwendung als dotierstoff in flüssigkristall-phasen
WO2004002979A2 (de) Chirale 3,4-dihydro-2h-pyranverbindungen
WO1995008604A1 (de) Flüssigkristalline verbindungen
DD254589A5 (de) Chirale getiltete smektische fluessigkristalline phase
EP1136478B1 (de) Chirale 1,3-Dioxanverbindungen
EP0630892B1 (de) Chirale Verbindungen
EP0504660A2 (de) Flüssigkristalline Verbindungen
DE3731639A1 (de) Fluessigkristalline phenylpyrimidin-cyclohexancarbonsaeureester, verfahren zu ihrer herstellung und ihre verwendung in fluessigkristallmischungen
EP0428665B1 (de) Fluorphenylpyrimidine
DE60200184T2 (de) Optisch aktive Verbindung und Flüssigkristallzusammensetzung enthaltend die Verbindung
DE10061625A1 (de) Verwendung von chiralen, ungeladenen Metallverbindungen als Dotierstoffe für flüssigkristalline Materialien
DE60200271T2 (de) Optisch aktive Verbindung und Flüssigkristallzusammensetzung enthaltend die Verbindung
WO1995025150A1 (de) Chirale verbindungen
DE10219202A1 (de) Alkinverbindungen
EP0755915A2 (de) Photovernetzbare Chirale Dotierstoffe
KR20050024433A (ko) 키랄 3,4-디히드로-2h-피란 화합물

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003761553

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004516745

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047021522

Country of ref document: KR

Ref document number: 20038154072

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10518389

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020047021522

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003761553

Country of ref document: EP