WO2004002920A1 - キャスタブル耐火物用粉体組成物及びそれからなるプレミックス材、プレミックス材の施工方法並びにその耐火性硬化体 - Google Patents

キャスタブル耐火物用粉体組成物及びそれからなるプレミックス材、プレミックス材の施工方法並びにその耐火性硬化体 Download PDF

Info

Publication number
WO2004002920A1
WO2004002920A1 PCT/JP2003/008280 JP0308280W WO2004002920A1 WO 2004002920 A1 WO2004002920 A1 WO 2004002920A1 JP 0308280 W JP0308280 W JP 0308280W WO 2004002920 A1 WO2004002920 A1 WO 2004002920A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydration
premix material
alumina cement
refractory
mass
Prior art date
Application number
PCT/JP2003/008280
Other languages
English (en)
French (fr)
Inventor
Jun Oba
Kunio Tanaka
Nobuyuki Takahashi
Takashi Fujisaki
Original Assignee
Taiko Refractories Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiko Refractories Co., Ltd. filed Critical Taiko Refractories Co., Ltd.
Priority to EP03738584A priority Critical patent/EP1535887A1/en
Priority to JP2004517326A priority patent/JP4382662B2/ja
Priority to US10/519,005 priority patent/US20050239630A1/en
Priority to CA002491530A priority patent/CA2491530A1/en
Priority to AU2003246149A priority patent/AU2003246149A1/en
Publication of WO2004002920A1 publication Critical patent/WO2004002920A1/ja
Priority to US12/240,411 priority patent/US8017058B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Definitions

  • the present invention relates to a castable refractory powder composition for lining a molten metal container such as a blast furnace gutter, a ladle and a tundish, a premix material thereof, and a premix material, which is applied at room temperature without heating and curing.
  • the present invention relates to a curing method and a fire-resistant cured product obtained by the method.
  • premix materials which mix with other kneading liquids and deliver them to construction sites, have become widespread.
  • Premix materials have new problems such as hardening over time, separation of aggregates during transportation, and floating of water, but (a) compared to conventional cast refractories, (a) the amount of kneading water is more stable and sufficient kneading is possible. (B) Since no kneading process is required, labor at the site can be saved, and there is no generation of dust, and the working environment can be improved. (C) Since the material does not cure at room temperature, there is an advantage that there is no worry about curing problems even if the construction is temporarily suspended. These advantages are behind the spread of premix materials.
  • JP-A-4-83764 and JP-A-6-48845 disclose a method of heat-curing a premix material containing a thermosetting curing agent while heating and curing at a temperature of 80 ° C or more. A method is disclosed. While these heat curing methods are used, energy loss and mold Regular by maintenance or the like high construction cost to heat deformation, also due to the rapid de-ice by heating the weakened construction body tissue, strength problems force S when was the decrease.
  • JP-A-5-60469 uses alumina cement in a slurry state as a cold-setting binder.
  • alumina cement slurry hardens with the passage of time, it cannot be placed and needs to be prepared each time it is applied.
  • Japanese Patent Application Laid-Open No. 2000-16843 proposes an alumina cement composition having a remarkably long pot life, a method of spraying the same, and an irregular refractory by such a method. Because the pot life is very long, even after the spraying operation is completed, the amorphous refractories remaining in the equipment can be stored without discarding, and can be used after the next day. Therefore, according to the spraying construction method using the alumina cement composition, cost reduction and labor reduction can be achieved.
  • Patent alumina cement composition No. 2000-16843 is 60 to 95 wt% of CaO'2Al 2 O 3, 2CaO'Al 2 O 3 ⁇ Si0 2 of from 5 to 30 weight 0/0, ⁇ Pi 10 weight 0 / It contains alumina cement made of clinker having a crystalline mineral composition of CaO * AI2O3 of 0 or less, and a setting retarder for alumina cement.
  • This document uses at least one selected from the group consisting of phosphoric acids, boric acids, ky fluorides, oxycarboxylic acids, polycarboxylic acids, polyoxycarboxylic acids, polyoxyalkylenes and sugars as retarders. Is preferred.
  • alumina cement clinker minerals described in this document since a main component CaO'2Al 2 0 3 ⁇ Pi 2CaO'Al2O 3 'Si0 2, is very low hydration activity. Therefore, the hardening retardant composed of an alkaline salt such as sodium tripolyphosphate, sodium citrate, sodium polyacrylate, etc. described in the examples of this reference is used for alumina cement mainly composed of clinker mineral having low hydration activity. although exerts an effective delay effect for the delay effect against the universal alumina cement mainly high CaO'Al 2 0 3 of hydrous activity does not reach 24 hours, it was not sufficient. Purpose of the invention
  • an object of the present invention is to provide a powder composition for a castable refractory, which can obtain an alumina cement-containing premix material which retains fluidity for a long time when kneaded with water.
  • Another object of the present invention is to provide an alumina cement-containing premix material which retains flowability for a long time.
  • Still another object of the present invention is to provide a method of applying such a premix material by changing it to room temperature curability at the time of application.
  • Still another object of the present invention is to provide a fire-resistant cured product obtained by subjecting such a premix material to ordinary temperature hardening. Disclosure of the invention
  • hydrolysis stopping agent a substance that stops the hydration reaction of alumina cement
  • a powder composition for castable refractories containing alumina cement a powder composition for castable refractories containing alumina cement.
  • the powder composition for castable refractories of the present invention contains a refractory aggregate, a refractory fine powder, alumina cement, a dispersant, and a powdery hydration terminator of alumina cement.
  • a refractory aggregate composed of a substance that exhibits acidity in the form of an aqueous solution, and the amount of the hydration terminator added is such that the pH of the premix material obtained by kneading the powder composition for castable refractories with water is 2 to 7 It is characterized by being adjusted so that
  • the premix material of the present invention is obtained by previously kneading a powder composition for castable refractories containing refractory aggregate, refractory fine powder, alumina cement, a dispersant, and a hydration stopper for alumina cement.
  • the hydration terminator is acidic in the form of an aqueous solution. Wherein the amount of the hydration terminator is adjusted so that the pH of the premix material is 2 to 7.
  • the method for applying the premix material of the present invention is as follows: a powder composition for a castable refractory containing a refractory aggregate, a refractory fine powder, an alumina cement, a dispersant, and a hydration stopping agent for an alumina cement is preliminarily mixed with water. It is characterized in that a premix material is prepared by kneading at a time, a hydration initiator of alumina cement is added and kneaded at the time of applying the premix material, and then the mixture is poured into a mold.
  • the hydration terminator It is preferable to use a substance that exhibits acidity in the form of an aqueous solution as the hydration terminator, and it is preferable to adjust the amount of the hydration terminator so that the pH of the premix material is 2 to 7.
  • the addition amount of the hydration initiator is 0.02 to 0.5% by mass, with the total of the refractory aggregate, the refractory fine powder and the alumina cement being 100% by mass. / 0 is preferable.
  • the refractory hardened body of the present invention is characterized by being obtained by adding and kneading a hydration initiator of alumina cement to the premix material and then kneading the mixture.
  • the hydration terminating agent used in the powder composition for castable refractories is oxycarbonic acid and its salts, polyacrylic acid and its derivatives, salts of atalilic acid, chelating agents, condensed phosphates, aluminum phosphate and the like.
  • at least one member selected from the group consisting of boric acid is used.
  • phosphoric acid may be used as a hydration terminator in addition to the above compounds.
  • the alumina cement hydration initiator to be added to the premix material includes alkali metal aluminates, hydroxides, carbonates, nitrites, silicates and borates, and alkali earth metal oxides. It is preferably at least one selected from the group consisting of hydroxides.
  • the premix material is passed through a pipe by a pressure pump, a hydration initiator of the alumina cement is added to the premix material in the pipe, and the mixture is kneaded. Preferably, it is poured into a mold.
  • the kneading of the premix material and the hydration initiator is preferably performed through a line mixer.
  • the number of storage days after production (the number of days the premix material has a flowable flowability) is 5 days or more, and preferably 7 days or more. Therefore, it is preferable that the production of the premix material and the addition of the hydration initiator be more than 5 days Or more than 7 days.
  • FIG. 1 (a) is a partial cross-sectional view showing an example of an apparatus (one end of a line mixer is a discharge port) for implementing the premix material applying method of the present invention
  • FIG. FIG. 9 is a partial cross-sectional view showing another example of an apparatus (a flexible mixer / hose connected to the end of a line mixer) for implementing the method for applying a premix material of the present invention.
  • the powder composition for castable refractories of the present invention contains a refractory aggregate, refractory fine powder, alumina cement, a dispersant, and a small amount of a powdery hydration terminator of alumina cement.
  • the powder composition for castable refractories may contain a thickener, a reinforcing material, an anti-explosion-proof material, an acid-proof agent, etc., if necessary.
  • the premix material of the present invention is prepared by kneading the powder composition for castable refractories with water in advance and adjusting the workability to allow pouring.
  • the alumina cement used in the present invention is preferably one of JIS Class 1, Class 2 and Class 3 in terms of fire resistance, corrosion resistance, high-temperature strength and the like of the obtained construction.
  • the content of alumina cement depends on the type of hydration inhibitor.
  • the content of alumina cement, refractory aggregate, the total of the refractory fines and Aruminase instrument 100 mass 0/0, 0.1; 12% by mass.
  • the content of alumina cement is less than 0.1% by mass, the obtained construction body does not have sufficient de-frame strength, and when the content exceeds 12% by mass, the premix material has poor storage stability and corrosion resistance is deteriorated. I do.
  • the more preferable content of the alumina cement is 0.3 to 8% by mass.
  • the hydration terminator must be a substance whose aqueous solution exhibits acidity.
  • the hydration stopper When the castable refractory powder composition itself is used as a product, the hydration stopper must be in powder form. is there.
  • a hydration terminator oxycarboxylic acid and its salt, polyacrylic acid and its derivative, salt of acrylic acid, chelating agent, condensed phosphate, aluminum phosphate and boric acid are preferable, and these are used alone. Or two or more of them can be used in combination.
  • the hydration terminating agent does not need to be in the form of powder, but may be phosphoric acid which is usually distributed in a water-containing state.
  • examples of oxycarboxylic acid or a salt thereof include dalicholic acid, lactic acid, citric acid, sodium dihydrogen citrate, tartaric acid, malic acid, malonic acid, gluconic acid, base 1 and raw aluminum lactate [commercially available product] as, for example, "Takiseramu GMJ (32 wt% of A1 2 0 3, 45.5 wt% of containing P 2 O 5 lactate ⁇ Pi 4.8 wt%, trade name of Taki Chemical Co., Ltd.)], and the like.
  • lactic acid and dalconic acid are liquids and should be added to the premix material.
  • the polyacrylic acid derivative is a copolymer of an acrylic acid monomer and another monomer, and the other monomer is selected so as not to adversely affect the water solubility of the polymer.
  • the salt of acrylic acid include aluminum acrylate.
  • the chelating agent include EDTA.
  • the condensed phosphate include sodium acid pyrophosphate, sodium hexametaphosphate, sodium acid hexametaphosphate, sodium pentanopolyphosphate, and the like.
  • condensed phosphate and polyacrylic acid are also used as dispersants.
  • the added amount is usually about 0.05 to 0.15% by mass, and the pH of the premix material does not become 2 to 7 with such a small amount.
  • a preferable addition amount is 0.4% by mass as shown in Example 8 described later.
  • the present inventors have found that, even with a condensed phosphate and polyacrylinoleic acid used as a dispersant with a small amount of addition, when the amount of addition is increased so that the pH of the premix material becomes 2 to 7, It has been discovered that the hydration reaction of alumina cement is stopped, and an unexpected effect is obtained in that storage can be continued for as long as 5 days or more.
  • the amount of addition of these acidic hydration terminators mainly depends on the acidity of the hydration terminator and the amount of alumina cement in the powder composition for castable refractories. It is necessary to adjust so that Premitsu If the pH of the wood mix exceeds 7, the hydration stopping effect is insufficient and the premix stock has poor storage stability. On the other hand, if the pH of the premix material is less than 2, the premix material tends to be in a pseudo-coagulated state, and its storage stability is also low. This pseudo-coagulation phenomenon is considered to be caused by the direct chemical reaction between the alumina cement and the acid, due to the considerable heat generation. The more preferred pH of the premix material is 3-6.
  • the mechanism of action of the acidic hydration terminating agent is considered as follows.
  • Alumina cement reacts immediately upon contact with water and elutes Ca 2+ and AF + ions.
  • the pH of the water rises, and hydrates of alumina cement precipitate from a certain pH stage.
  • Ca 2+ is captured, and the weakly added water suppresses the progress of the hydration reaction of alumina cement.
  • it causes gelation of aluminum hydroxide, one of the hydration products of alumina cement.
  • the aluminum gel is deposited and coated on the surface of the alumina cement. It is presumed that a small amount of aluminum hydroxide gel is generated.
  • the hydration reaction is stopped for at least 5 days after production, and preferably the hydration reaction is stopped for 7 days or more.
  • the storage period of the premix material (the number of days having pourable fluidity) is 5 days or more, and preferably 7 days or more. For this reason, there is enough time between production at the factory, storage, transportation to the construction site, and construction at the site.
  • Refractory 'I ⁇ raw aggregates include fused alumina, sintered alumina, bauxite, wyanite, andalusite, mullite, chamotte, rhoite, quartzite, aluminum-magnesia spinel, magnesia, zircon, zircon-a, At least one selected from the group consisting of silicon carbide, graphite, pitch and the like can be used, and if necessary, two or more can be used in combination.
  • the refractory fine powder at least one selected from the group consisting of fine powders of alumina, amorphous silica, silica, titania, mullite, zirconia, chromia, silicon carbide, carbon, clay and the like can be used. .
  • the average particle size of the refractory fine powder is preferably 70 m or less.
  • a refractory ultrafine powder of 10 ⁇ m or less, more preferably 1 m or less is used as a part of the refractory fine powder, a premix material having low flow rate and good fluidity can be obtained in combination with a dispersant.
  • dispersant examples include condensed phosphates such as sodium hexametaphosphate, sodium acid hexametaphosphate, and sodium ultrapolyphosphate, ⁇ -naphthalene sulfonate formalin condensate, melamine sulfonate formalin condensate, aminosulfonic acid and the like.
  • Condensed phosphates such as sodium hexametaphosphate, sodium acid hexametaphosphate, and sodium ultrapolyphosphate
  • ⁇ -naphthalene sulfonate formalin condensate melamine sulfonate formalin condensate
  • aminosulfonic acid and the like examples include condensed phosphates such as sodium hexametaphosphate, sodium acid hexametaphosphate, and sodium ultrapolyphosphate, ⁇ -naphthalene sulfonate formalin condensate, melamine sulfonate formalin condensate,
  • the amount of dispersant added is 100 mass of refractory aggregate, refractory fine powder and alumina cement. / 0 is preferably 0.01 to 1% by mass (outside ratio). If the amount of the dispersant is less than 0.01% by mass or more than 1% by mass, it is difficult to obtain a good dispersion state of the refractory fine powder. Note that the above addition amount does not apply to all dispersants, and the amount of addition force is appropriately changed depending on the type of the dispersant. For example, in the case of condensed phosphate, polyacrylic acid and salts thereof, the amount of addition is usually about 0.05 to 0.15 mass. /. It is.
  • the powder composition for castable refractories of the present invention may contain, in addition to the components described above, other components that can be blended in a range that does not impair the preservability of the premix material and the action of the hydration initiator.
  • other components that can be blended in a range that does not impair the preservability of the premix material and the action of the hydration initiator.
  • an inorganic or metal fiber for improving the strength of the construction body an organic fiber or a foaming agent for preventing steam explosion during drying, an antioxidant such as boron carbide, and the like may be contained.
  • the premix material of the present invention may further contain a thickening agent such as a cellulose derivative, gum, or alginate for preventing the separation of the aggregate or the floating of water during transportation.
  • the premix material of the present invention is obtained by previously kneading the powder composition for castable refractories with water and adjusting the workability so that the workability can be poured. Become an important factor. Reduce the amount of kneading water within a range that does not impair the fluidity and improve the denseness of the construction body structure by uniformly kneading T JP2003 / 008280
  • the amount of kneading water is greatly affected by the specific gravity and porosity of the refractory aggregate and refractory fine powder used, the particle size composition of the refractory composition, and other components. It is preferably about 4.5 to 9% by mass (outer part), more preferably 5 to 8.5% by mass (outer part) based on the mass%. If the mixing water amount is less than 4.5% by mass, the fluidity of the obtained premix material is low, and if it exceeds 9% by mass, there is a tendency for water to float in the premix material and separation of aggregates during transportation.
  • the hydration initiator is a substance that restores the hydratability of the stopped alumina cement.
  • the hydration initiator is selected from the group consisting of alkali metal aluminates, hydroxides, carbonates, nitrites, silicates and borates, and alkaline earth metal oxides and hydroxides. At least one can be used. It is necessary to determine the type and amount of hydration initiator in accordance with the type and amount of hydration terminator in the premix material.
  • the addition amount of the hydration initiator is preferably 0.02 to 0.5% by mass (outside ratio), with the total amount of the refractory aggregate, refractory fine powder and alumina cement being 100% by mass. However, when two or more hydration initiators are used in combination, the total amount shall be 0.02 to 0.5% by mass (outside). If the content is less than 0.02% by mass, the strength is not sufficiently developed, and if the content is more than 0.5% by mass, pseudo-congealing of the material occurs, and it is difficult to perform construction. The more preferable addition amount of the hydration initiator is 0.04 to 0.3 mass. / 0 (outside).
  • the hydration initiator can be added in the form of an aqueous solution or slurry.
  • the mechanism of action of the hydration initiator is assumed to be as follows. Since the above hydration initiator exhibits an alkaline property, when mixed into the premix material, it changes the water content of the premix material to alkaline. The alkaline water dissolves the hydroxylated aluminum gel coating that coats the alumina cement surface. As a result, a new unreacted alumina cement surface appears, and the alumina cement starts hydration reaction again.
  • the method for applying a premix material according to the present invention is characterized in that a hydration initiator of an alumina cement is added to the premix material at the time of application, the mixture is kneaded, and then the premix material is poured into a mold to perform the application. . Hydration of alumina cement to premix material
  • the means for adding and kneading the initiator is not particularly limited, and ordinary kneading machines and other means can be used. However, it is preferable to use a line mixer as a kneading means in order to take advantage of the fact that one of the features of the premix material is that kneading on site is unnecessary and that the process can be labor-saving.
  • a line mixer is a device that does not have a drive unit, but has a mechanism that disrupts the flow of fluid by the energy of the flowing fluid. For this reason, the line mixer installed in the piping system mixes fluids (for example, different types of liquids, powders, or mixtures thereof) uniformly.
  • a static mixer a static mixer, a twisted pipe, a pipe in which different diameter pipes are connected, or the like can be used, but a static mixer is preferable because of its excellent stirring ability.
  • a static mixer is a tubular device with a helical mixing element mounted inside, and can mix two or more fluids uniformly by passing through a tube, and is also called a static mixer.
  • a preferred example of the static mixer is disclosed in JP-A-2000-356475. Among them, a static mixer having a mixing element having an inner diameter of 40 to 150 mm, an axial length Z of 1.5 to 3 and a number of elements of 6 or more is more preferable.
  • the illustrated construction apparatus includes a pipe 5, a pump 3 provided upstream of the pipe 5, a hopper 4 provided on the pump 3, and a hydration initiator injection device 8 provided at a downstream end of the pipe 5.
  • a line mixer 9 (having a discharge port 10) provided therein, a metering pump 6 provided upstream of a pipe 18 connected to a hydration initiator injection device 8, and a hydration initiator provided upstream thereof
  • a container 7 for storing an aqueous solution or slurry 17.
  • a powder composition for castable refractories containing a small amount of alumina cement hydration stop agent is kneaded in advance with water at a place other than the site of use, such as a manufacturing plant, so as to adjust the workability so that it can be poured. .
  • the obtained premix material 1 is packed in, for example, a container pack 2 made of Vininole so as not to evaporate moisture, and is stocked. If necessary, the premix material 1 is transported to a construction site for construction. At the time of construction, the premix material 1 is put into the hopper 4, and the inside of the pipe 5 is pressure-fed to the discharge port 10 by the pressure pump 3.
  • an aqueous solution or slurry 17 of the hydration initiator is injected into the pipe 5 from the hydration initiator injection device 8 and the metering pump 6 Inject using. While passing through the line mixer 9, the aqueous solution or slurry 17 of the hydration initiator is uniformly kneaded with the premix material 1, and the cold-curable premix material 11 is obtained. The room temperature curable premix material 11 is poured into the mold 13 (the space between the molten metal perm lining 12 and the mold 13 in the illustrated example) from the discharge port 10.
  • the pump 3 used in the present invention is not particularly limited, but it is preferable to use a biston type or a squeeze type.
  • the hydration initiator injection device 8 is not particularly limited as long as it can inject the aqueous solution or slurry 17 of the hydration initiator into the premix material 1 fed through the pipe 5.
  • a so-called nozzle pod that has a built-in ring for dry spraying and has approximately 8 to 16 holes (or slits) that are evenly opened and that is connected to the nozzle and used for water injection.
  • the metering pump 6 used to inject the aqueous solution or slurry 17 of the hydration initiator into the pipe 5 is preferably a multiple-type non-pulsating plunger pump or a monopump, and a multiple-type non-pulsating plunger in that high-pressure injection is possible. Pumps are more preferred.
  • the injection pressure of the metering pump 6 is preferably 5 kgcm 2 or more.
  • the line mixer 9 is installed adjacent to the hydration initiator injection device 8, but the installation position of the line mixer 9 may be changed as appropriate.
  • a part of the pipe 5 may extend between the line mixer 9 and the hydration initiator injector 8.
  • Fig. 1 (a) shows an example in which one end of the line mixer 9 also serves as the discharge port 10.When the force construction site is narrow and complicated, or when the pouring place is at a high place and there is a restriction on piping management.
  • a flexible hose 14 made of rubber or the like may be connected to the line mixer 9 as shown in FIG.
  • Table 1 shows the results of measuring the pH of aqueous solutions of various hydration stop agents for alumina cement.
  • concentration of the hydration terminator whose pH was measured was as follows.
  • the pH of trisodium citrate is also shown for comparison.
  • the various hydration stop agents shown in Table 1 were added to the powder composition for castable refractories having the composition shown in Table 2, and 6.5% by mass of water was added to the obtained composition on an outer basis.
  • the mixture was kneaded to prepare a premix material.
  • the premix obtained is at 25 ⁇ 1 ° C 280 Saved.
  • Table 3 shows the relationship between the pH and preservability of the premix material.
  • Comparative Example 1 the same hydration terminator (sodium hexametaphosphate + boric acid) was used as in Example 9, but the pH of the premix material was as high as 8 because the amount of the hydration terminator was insufficient.
  • the storage days of the premix material were as short as less than 1 day.
  • Comparative Example 3 since the phosphoric acid was used as the hydration terminator, the pH of the premix material was lower than 2. Therefore, it is highly probable that a direct acid-base reaction occurred between phosphoric acid and alumina cement, and pseudo-coagulation occurred in a short time with heat generation.
  • Various hydration initiators were added to the premix materials of Examples 1 to 9, and the room-temperature curing speed of the premix material with each hydration initiator was examined.
  • the premix material was prepared by adding 6.5% by mass of water to a powder composition for castable refractories containing various hydration terminating agents and kneading with a universal mixer. 25 pre-mixed materials obtained 1 After storing at C for 2 days, various hydration initiators were added, kneaded, poured into a mold, allowed to cure, and the curing time was measured. The curing time was the time during which no deformation occurred even when finger pressure was applied to each cured product. Table 4 shows the measurement results. Table 4
  • Example 14 Example 15
  • Example 16 Premix material
  • Example 6 Example ⁇
  • Example 8 Example 9 Hydration initiator
  • Table 3 Example was added 6.5 mass 0/0 of water castable refractory powder composition for the formulation shown in 1, to produce a pre-mix material 20 tons kneaded by a large vortex mixer.
  • the obtained premix material was stocked at room temperature (about 15 to 23 ° C) for 9 days, transported to the construction site of the steel mill, and installed on the blast furnace gutter.
  • the premix material 1 is put into the hopper 4, and the inside of the pipe 5 is pressure-fed by the pressure pump 3 and the aqueous solution of sodium aluminate (concentration: 19% by mass) is passed through the hydration initiator injection device 8 provided near the line mixer 9. Of 0.19% by mass (in terms of solid content) was injected. After kneading through a line mixer 9, the obtained cold-curable premix material 11 was poured from a nozzle 10 into a space between a perm lining 12 and a mold 13. The same room temperature-curable premix material 11 was separately applied to a small test formwork, and cured for about 11 hours to obtain a construction. After drying this construction at 110 ° C, Were measured for physical properties. Table 6 shows the measurement results. Table 6
  • the premix material manufactured at the factory remote from the construction site was transported to the construction site, where the hydration initiator was added to the premix material, kneaded, and then poured and constructed.
  • the method is not limited.
  • the premix material may be conveyed to a construction site in the form of a castable refractory powder composition, kneaded with a predetermined amount of water to form a premix material, and the premix material may be applied.
  • the premix material of the present invention When the premix material of the present invention is used, it is only necessary to add and knead the hydration initiator on site at the time of construction, so that there is an advantage that the construction time can be spared, and as a result, the work becomes easier.
  • the premix material obtained by adding the alumina cement hydration stop agent to the castable refractory powder composition containing alumina cement does not cure for a long time and has a remarkably long pot life. Therefore, it may be left in a kneader or tank for a long time.
  • the performance of the refractory made of the premix material of the present invention it is possible to prevent the tissue from becoming brittle due to the rapid dehydration caused by heating.
  • Premix If a line mixer is used as a facility for adding and kneading a hydration initiator to the material, it is possible to save labor by one j.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

耐火性骨材、耐火性微粉、アルミナセメント、分散剤、及びアルミナセメントの水和停止剤を含有するキャスタブル耐火物用粉体組成物を水で混練するとプレミックス材が得られる。水和停止剤は水溶液の状態で酸性を呈する。水和停止剤の添加量は、プレミックス材のpHが2~7となるように調整する。プレミックス材の施工時にアルミナセメントの水和開始剤を添加して混練した後、型枠に流し込む。プレミックス材の製造から水和開始剤の添加まで5日以上空けられる。

Description

明 細 書 キャスタブル耐火物用粉体組成物及ぴそれからなるプレミックス材、
プレミックス材の施工方法並びにその耐火性硬化体 技術分野 .
本発明は高炉樋、取鍋、 タンディッシュ等の溶融金属用容器の内張り用 のキャスタブル耐火物用粉体組成物及びそのプレミックス材、 及びプレミックス 材を施工して加熱養生することなく常温で硬化させる方法、 並びにその施工で得 られた耐火性硬化体に関する。 背景技術
近年、 高炉樋、 取鍋、 タンディッシュ等の溶融金属用容器の内張りに使 用される流し込み耐火物として、 予め工場等の施工現場以外の場所でキャスタブ ル耐火物用粉体組成物を水又はその他の混練液で混練し、 これを施工現場に納入 するプレミックスタイプのキャスタブル耐火物 (以下「プレミックス材」 という) が普及してきている。
プレミックス材は、経時硬化、輸送中の骨材の分離や水浮き等の新たな 問題を有するものの、 従来の流し込み耐火物と比べて、 (a) 混練水量が安定し、 かつ十分な混練がなされているため施工体の性能のばらつきが少なく、 (b)混練 工程を必要としないので現場での作業の省力化が可能な上に、 粉塵の発生がなく 作業環境の改善を図ることができ、 (c)材料が常温で硬化しないので施工を一時 中断しても硬化トラブルの心配がない等の利点を有する。 これらの利点がプレミ ックス材の普及の背景になっている。
しかし、最近改めて材料硬化に関する問題がクローズアップされつつあ る。 すなわち、 プレミックス材は常温で硬化しないため、 型枠に流し込んだ後、 脱枠するには何らかの手段により材料を硬化させる必要がある。 通常はプレミッ クス材を枠越しに加熱し、硬化させる場合が多い。このような加熱硬化法として、 特開平 4-83764号及び特開平 6-48845号は、熱硬化性硬化剤を含有するプレミツ クス材を、 80°C以上の温度で加熱養生しながら熱硬化させる方法を開示している。 し力、しながら、 これらの加熱硬化法は、 加熱養生のためのエネルギーロスや型枠 の熱変形に対する定期的なメンテナンス等により施工コストが高く、 また加熱に よる急激な脱氷に起因して施工体組織が脆弱化し、 強度が低下するといつた問題 力 Sある。
この加熱硬ィヒ法の問題点を解決するために、施工直前にプレミックス材 に常温硬化性の結合剤を添加し、材料を常温硬化させる方法が新たに提案された。 例えば、特開平 5-60469号は、 常温硬化性結合剤としてアルミナセメントをスラ リー状態で使用している。 しかしながら、 アルミナセメントスラリーは時間経過 とともに硬化するため、 造り置きができず、 施工の度に調製しなければならない といった煩雑さがある。
一方、特開 2000-16843号は可使時間が著しく長いアルミナセメント組 成物及びその吹付け施工方法並びにかかる施工方法による不定形耐火物を提案 している。 可使時間が非常に長いために、 吹付け施工終了後も装置内に残った不 定形耐火物を廃棄することなく保管しておき、 翌日以降も使用可能である。 その ため、 かかるアルミナセメント組成物を用いた吹付け施工方法によれば、 コスト 低減及び作業の低労力化が図れる。
特開 2000-16843 号のアルミナセメント組成物は、 60〜95重量%の CaO'2Al2O3、 5〜30重量0 /0の 2CaO'Al2O3 · Si02、 及ぴ 10重量0 /0以下の CaO* AI2O3からなる結晶質の鉱物組成を有するクリンカーからなるアルミナセメント と、 アルミナセメントの硬化遅延剤とを含有する。 この文献は、 遅延剤としてリ ン酸類、 ホウ酸類、 ケィフッ化物類、 ォキシカルボン酸類、 ポリカルボン酸類、 ポリオキシカルボン酸類、 ポリオキシアルキレン類及ぴ糖類からなる群から選ば れた少なくとも 1種を使用するのが好ましいと記載している。 しかし、 この文献 に記載のアルミナセメントクリンカー鉱物は、 CaO'2Al203及ぴ 2CaO'Al2O3' Si02を主成分としているため、水和活性度が非常に低い。従ってこの文献の実施 例に記載されたトリポリリン酸ナトリウム、 クェン酸ナトリウム、 ポリアクリル 酸ナトリゥム等のアルカリ性塩からなる硬化遅延剤は、 水和活性度の低いクリン カー鉱物を主成分とするアルミナセメントに対して有効な遅延効果を発揮する ものの、 水和活性度の高い CaO'Al203を主成分とする汎用アルミナセメントに 対する遅延効果は 24時間に達せず、 十分ではなかった。 発明の目的
従って本発明の目的は、水で混練すると長時間流動性を保持するアルミ ナセメント含有プレミックス材が得られるキャスタブル耐火物用粉体組成物を 提供することである。
本発明のもう一つの目的は、長時間流動性を保持するアルミナセメント 含有プレミックス材を提供することである。
本発明のさらにもう一つの目的は、かかるプレミックス材を施工時に常 温硬化性に変えて施工する方法を提供することである。
本発明のさらにもう一つの目的は、かかるプレミックス材を常温硬ィ匕さ せることにより得られる耐火性硬化体を提供することである。 発明の開示
上記目的に鑑み鋭意研究の結果、 本発明者等は、 (a) アルミナセメント を含有するキャスタブル耐火物用粉体組成物にアルミナセメントの水和反応を 停止する物質 (以下 「水和停止剤」 という) を混合することにより、 水で混練し ても必要期間常温で硬ィヒしないプレミックス材が得られること、 さらに (b) 上記 プレミックス材にアルミナセメントの水和停止機構を破壊して水和性を回復さ せる物質 (以下 「水和開始剤」 という) を添加し混合することにより、 プレミツ クス材を常温硬化性に変えられることを発見し、 本発明を完成した。
すなわち、 本発明のキャスタプル耐火物用粉体組成物は、 耐火性骨材、 耐火性微粉、 アルミナセメント、 分散剤、 及びアルミナセメントの粉末状水和停 止剤を含有し、 前記水和停止剤は水溶液の状態で酸性を呈する物質からなり、 か つ前記水和停止剤の添加量は、 前記キャスタブル耐火物用粉体組成物を水で混練 して得られるプレミックス材の pHが 2〜7となるように調整されていることを 特徴とする。
本発明のプレミックス材は、 耐火性骨材、 耐火性微粉、 アルミナセメン ト、 分散剤、 及ぴアルミナセメントの水和停止剤を含有するキャスタブル耐火物 用粉体組成物を予め水で混練して得られ、 前記水和停止剤は水溶液の状態で酸性 を呈する物質からなり、 かつ前記水和停止剤の添加量は前記プレミックス材の pHが 2〜7となるように調整されていることを特徴とする。
本発明のプレミックス材の施工方法は、 耐火性骨材、 耐火性微粉、 アル ミナセメント、 分散剤、 及びアルミナセメントの水和停止剤を含有するキャスタ ブル耐火物用粉体組成物を予め水で混練してプレミックス材を作製しておき、 前 記プレミックス材の施工時にアルミナセメントの水和開始剤を添加して混練し た後、 型枠に流し込むことを特徴とする。 前記水和停止剤として水溶液の状態で 酸性を呈する物質を使用するのが好ましく、 前記水和停止剤の添加量を前記プレ ミックス材の pHが 2〜7 となるように調整するのが好ましく、 前記水和開始剤 の添加量を、 前記耐火性骨材、 前記耐火性微粉及び前記アルミナセメントの合計 を 100質量%として、 外割で 0.02〜0.5質量。 /0とするのが好ましい。
本発明の耐火性硬化体は、上記プレミックス材に、 アルミナセメントの 水和開始剤を添カ卩 ·混練した後施工して得られることを特徴とする。
キャスタブル耐火物用粉体組成物に使用する水和停止剤は、ォキシカル ボン酸及ぴその塩、 ポリアクリル酸及ぴその誘導体、 アタリル酸の塩、 キレート 剤、 縮合リン酸塩、 リン酸アルミニウム及ぴ硼酸からなる群から選ばれた少なく とも 1種であるのが好ましい。 またプレミックス材に使用する場合、 水和停止剤 として上記化合物以外にリン酸を使用することもできる。
前記プレミックス材に添加するアルミナセメントの水和開始剤は、アル カリ金属のアルミン酸塩、 水酸化物、 炭酸塩、 亜硝酸塩、 珪酸塩及び硼酸塩、 及 ぴァルカリ土類金属の酸化物及び水酸化物からなる群から選ばれた少なくとも 1 種であるのが好ましい。
本発明の施工方法において、前記プレミックス材を圧送ポンプにより配 管内を通し、 前記配管内の前記プレミックス材に前記アルミナセメントの水和開 始剤を添加し混練した後、 前記吐出口より前記型枠に流し込むのが好ましい。 プ レミックス材と水和開始剤との混練はラインミキサを通して行うのが好ましレ、。
本発明のプレミックス材では、製造後の保存日数(プレミックス材が流 し込み可能な流動性を有する日数) が 5日以上であり、好ましくは 7日以上であ る。 従って、 プレミックス材の製造から水和開始剤の添加まで 5日以上、 好まし くは 7日以上空けられる。 図面の簡単な説明
図 1(a) は本発明のプレミックス材の施工方法を実施するための装置の 一例 (ラインミキサの一端が吐出口となっている) を示す部分断面図であり、 図 1(b) は本発明のプレミックス材の施工方法を実施するための装置の 他の例 (ラインミキサの先にフレキシブ^/ホースが接続されている) を示す部分 断面図である。 発明を実施するための最良の形態
[1] キャスタブル耐火物用粉体組成物及びプレミックス材
本発明のキャスタブル耐火物用粉体組成物は、耐火性骨材、耐火性微粉、 アルミナセメント、 分散剤及び少量のアルミナセメントの粉末状水和停止剤を含 有する。 キャスタブル耐火物用粉体組成物は、 上記成分以外の成分として必要で あれば、 増粘剤、 増強材、 爆裂防止材、 酸ィヒ防止剤等を適宜含有してもよい。 ま た本発明のプレミックス材は上記キヤスタブル耐火物用粉体組成物を予め水で 混練して流し込み可能な作業性に調整したものである。
(A) アルミナセメント
本発明に使用するアルミナセメントは、得られる施工体の耐火性、耐食 性及び高温強度等の面から JIS 1種、 2種及ぴ 3種クラスのものが好ましい。 ァ ルミナセメントの含有量は、 水和停止剤の種類によって異なる。
アルミナセメントの含有量は、耐火性骨材、耐火性微粉及びアルミナセ メントの合計を 100質量0 /0として、 0.1〜; 12質量%が好ましい。 アルミナセメン トの含有量が 0.1質量%未満では得られる施工体が十分な脱枠強度を有さず、 ま た 12質量%超ではプレミックス材の保存性が悪ィ匕し、 耐蝕性が低下する。 アル ミナセメントのより好ましい含有量は 0.3〜8質量%である。
(B) 水和停止剤
水和停止剤は水溶液が酸性を呈する物質である必要がある。キャスタブ ル耐火物用粉体組成物自体を製品とする場合、 水和停止剤は粉末状である必要が ある。 このような水和停止剤として、 ォキシカルボン酸及ぴその塩、 ポリアクリ ル酸及ぴその誘導体、 アクリル酸の塩、 キレート剤、 縮合リン酸塩、 リン酸アル ミニゥム及ぴ硼酸が好ましく、 これらを単独で、 又は 2種以上併用して使用する ことができる。 ただしプレミックス材を製品とする場合、 水和停止剤は粉末状で ある必要がなく、 通常含水状態で流通するリン酸でも良い。
具体的には、ォキシカルボン酸又はその塩の例としては、ダリコール酸、 乳酸、 クェン酸、 クェン酸 2水素ナトリウム、 酒石酸、 リンゴ酸、 マロン酸、 グ ルコン酸、塩基 1~生乳酸アルミニウム [市販品としては、例えば「タキセラム GMJ (32質量%の A1203、 45.5質量%の乳酸及ぴ 4.8質量%の P2O5を含有、多木化学 株式会社の商品名)] 等が挙げられる。 ただし、 乳酸及びダルコン酸は液体のた め、 プレミックス材に添加する。
ポリアクリル酸の誘導体はァクリル酸モノマーと他のモノマーとの共 重合体であって、 他のモノマーとしてはポリマーの水溶性に悪影響を与えないも のを選択する。 アクリル酸の塩としてはアクリル酸アルミニウム等が挙げられる。 キレート剤の例としては、 EDTA等が挙げられる。 縮合リン酸塩の例としては、 酸性ピロリン酸ナトリゥム、 へキサメタリン酸ナトリゥム、 酸性へキサメタリン 酸ナトリウム、 ゥノレトラポリリン酸ナトリゥム等が挙げられる。
本発明に使用する水和停止剤のうち、縮合リン酸塩及びポリアクリル酸 は分散剤としても使用されるものである。 しかしながら、 これらを分散剤として 使用する場合、添加量は通常約 0.05〜0.15質量%であり、このような少量ではプ レミックス材の pHは 2〜7 とならない。 例えばウルトラポリリン酸ナトリゥム の場合、 後述する実施例 8に示すように、 好ましい添加量は 0.4質量%である。 本発明者等は、 少量の添加量で分散剤として使用されている縮合リン酸塩及ぴポ リアクリノレ酸でも、 プレミックス材の pHが 2〜7になるように添加量を多くす ると、 アルミナセメントの水和反応が停止して、 5 日以上と長期間の保存が可能 になるという予期せぬ効果が得られることを発見した。
従って、 これらの酸性の水和停止剤の添加量は、水和停止剤の酸性度と キャスタブル耐火物用粉体組成物中のアルミナセメント量に主として依存する 力 プレミックス材の pHが 2〜7となるように調整する必要がある。 プレミツ クス材の pHが 7超では水和停止効果が不十分でプレミックス材の保存性が低い。 —方、 プレミックス材の pHが 2未満ではプレミックス材が擬凝結状態となりや すく、やはりその保存性が低 ヽ。この擬凝結現象はかなりの発熱が伴うこと力ゝら、 アルミナセメントと酸の直接的な化学反応が原因と思われる。 プレミックス材の より好ましい pHは 3〜6である。
酸性の水和停止剤の作用機構については、次のように考えられる。 アル ミナセメントは水と接すると直ちに反応して Ca2+及び AF+イオンを溶出する。 その結果水の pHは上昇し、 ある pH段階からアルミナセメントの水和物が析出 する。 しかし酸性の水和停止剤が存在すると Ca2+は補足されるとともに、 弱酸 性に維持された添加水がアルミナセメントの水和反応の進行を抑制する。 それに 加えてアルミナセメントの水和生成物のひとつである水酸化アルミニウムのゲ ルイ匕を引き起こす。 そしてこの水酸ィ匕アルミニウムゲルはアルミナセメント表面 に沈積 ·被覆する。 生成する水酸化アルミニゥムゲルは少量であると推測される ヽ 添加水が酸性に維持された状態ではアルミナセメント表面に安定的に存在す る結果、アルミナセメントの水和反応は一旦停止状態になると推測される。勿論、 水和停止機構に関するこの推測は本発明を限定するものではない。
水和停止剤を含有する本発明のプレミックス材は、製造から少なくとも 5 日間は水和反応が停止しており、 好ましくは 7日以上水和反応が停止する。 その 結果、 プレミックス材の保存日数 (流し込み可能な流動性を有する日数) は 5日 以上であり、 好ましくは 7 日以上である。 そのため、 工場で製造してから貯蔵、 施工現場への搬送及び現場での施工までの間に十分な日数の余裕がある。
(C) 耐火性骨材及び耐火性微粉
耐火' I·生骨材としては、 電融アルミナ、 焼結アルミナ、 ボーキサイト、 力 ィァナイト、 アンダリュサイト、 ムライト、 シャモット、 ロー石、 珪石、 アルミ ナ一マグネシアスピネル、マグネシア、 ジルコン、 ジルコ -ァ、炭化珪素、黒鉛、 ピッチ等からなる群から選ばれた少なくとも 1種を使用でき、必要に応じて 2種 以上を併用することができる。 耐火性微粉としては、 アルミナ、 非晶質シリカ、 シリカ、 チタニア、 ムライト、 ジルコニァ、 クロミア、 炭化珪素、 カーボン、 粘 土等の微粉からなる群から選ばれた少なくとも 1種以上を使用することができる。 耐火性微粉の平均粒径は 70 m以下が好ましい。 耐火性微粉の一部に 10 μ m以 下、 より好ましくは 1 m以下の耐火性超微粉を使用すると、 分散剤との併用に おいて低水量で良好な流動性を有するプレミックス材が得られる。
(D) 分散剤
分散剤としては、へキサメタリン酸ナトリウム、酸性へキサメタリン酸 ナトリウム、 ウルトラポリリン酸ナトリウム等の縮合リン酸塩、 β—ナフタレン スルホン酸塩ホルマリン縮合物、 メラミンスルホン酸塩ホルマリン縮合物、 アル ミノスルホン酸及びその塩、 リグ-ンスルホン酸及ぴその塩、 ポリアクリル酸及 びその塩、 及ぴポリカルボン酸及びその塩等が好ましく、 これらを単独で又は 2 種以上を配合して使用することができる。
分散剤の添加量は、耐火性骨材、耐火性微粉及びアルミナセメントの合 計量を 100質量。 /0として、 0.01〜1質量% (外割) であるのが好ましい。 分散剤 の添加量が 0.01質量%未満又は 1質量%超では、 耐火性微粉の良好な分散状態 が得られにくい。 なお上記添加量は全ての分散剤に当てはまる訳ではなく、 分散 剤の種類によって添力卩量を適宜変える。 例えば縮合リン酸塩、 及びポリアクリル 酸及ぴその塩の場合、 添加量は通常約 0.05〜0.15質量。/。である。
(Ε) その他の成分
本発明のキャスタブル耐火物用粉体組成物は、上記以外にプレミックス 材の保存性及び水和開始剤の作用を阻害しなレ、範囲で外割り配合できるその他 の成分を含有してもよい。 例えば、 施工体の強度向上のための無機又は金属の繊 維、 乾燥時の水蒸気爆裂防止のための有機繊維又は発泡剤、 炭化ホウ素等の酸ィ匕 防止剤等を含有しても良い。 また本発明のプレミックス材は、 その他に輸送時の 骨材の分離又は水浮きを防止するためのセルロース誘導体、 ガム、 アルギン酸塩 等の増粘剤等を含有しても良い。
(F) 混練水量
本発明のプレミックス材は、上記キヤスタブル耐火物用粉体組成物を前 もつて水で混練して流し込み可能な作業性に調整したものであり、 その際の混練 水量が緻密な施工体を得るために重要な因子となる。 流動性を損なわない範囲で 混練水量を少なくし、 均一に混練することにより施工体組織の緻密性を向上させ T JP2003/008280
ることができる。 混練水量は、 使用する耐火性骨材及ぴ耐火性微粉の比重及び気 孔率、 耐火組成物の粒度構成、 その他の成分等により大きな影響を受けるが、 キ ヤスタプル耐火物用粉体組成物 100質量%に対して、好ましくは約 4.5〜9質量% (外割) であり、 より好ましくは 5〜8.5質量% (外割) である。 混練水量が 4.5 質量%未満では得られるプレミックス材の流動性が低く、また 9質量%を超える と輸送時にプレミックス材中で水浮きや骨材の分離が生じる傾向がある。
[2] 水和開始剤
水和開始剤は、停止していたアルミナセメントの水和性を回復させる物 質である。 水和開始剤としては、 アルカリ金属のアルミン酸塩、 水酸化物、 炭酸 塩、 亜硝酸塩、 珪酸塩及び硼酸塩、 及ぴアルカリ土類金属の酸化物及ぴ水酸化物 からなる群から選ばれた少なくとも 1種が使用できる。 プレミックス材中の水和 停止剤の種類及び添加量に対応して、 水和開始剤の種類及ぴ添加量を決める必要 がある。
水和開始剤の添加量は、耐火性骨材、耐火性微粉及びアルミナセメント の合計量を 100質量%として、 0.02〜0.5質量% (外割) とするのが好ましい。 ただし二種以上の水和開始剤を併用する場合、 それらの合計量を 0.02〜0.5質 量% (外割) とする。 0.02質量%未満では強度発現が十分でなく、 0.5質量%超 では材料の擬凝結が起って施工がし難い。 水和開始剤のより好ましい添加量は 0.04〜0.3質量。 /0 (外割) である。 水和開始剤は水溶液又はスラリーの状態で添 加することができる。
水和開始剤の作用機構は以下の通りであると推測される。上記水和開始 剤はアル力リ性を示すので、 プレミックス材中に混入するとプレミックス材の水 分をアルカリ性に変える。 アルカリ性水分はアルミナセメント表面を被覆する水 酸ィ匕アルミニウムゲル皮膜を溶解する。 その結果未反応の新たなアルミナセメン ト表面が出現し、 アルミナセメントは再び水和反応を開始する。
[3] 施工方法
本発明のプレミックス材の施工方法は、施工時にプレミックス材にアル ミナセメントの水和開始剤を添加して混練した後、 プレミックス材を型枠に流し 込んで施工することを特徴とする。 プレミックス材にアルミナセメントの水和開 始剤を添加 ·混練する手段は特に限定的ではなく、 通常の混練機その他の手段を 使用することができる。 しかしプレミックス材の特長の一つである現場混練が不 要で、 工程の省力化が可能であるという点を生かす上では、 混練手段としてライ ンミキサを使用するのが好ましい。
ラインミキサは駆動部を有さないが、流入する流体のエネルギーにより 流体の流れを撹乱する機構を有する装置である。 そのため、 配管系に設置された ラインミキサは流体 (例えば異種の液体、 粉粒体又はこれらの混合物) を均一に 混合する。 ラインミキサとしては、 スタティックミキサ、 捩れ管、 異径管を繋ぎ あわせたもの等が使用可能であるが、 攪拌能力が優れている点でスタティックミ キサが好ましい。
スタティックミキサは内部に螺旋状のミキシングエレメントが取り付 けられた管状の装置で、管内を通過させることで 2種以上の流体を均一に混合で き、 静止型混合機とも呼ばれている。 スタティックミキサの好ましい例は、 特開 2000-356475号に開示されている。なかでもミキシングエレメントのサイズが内 径 40〜150mm、 軸方向の長さ Z内径の比が 1.5〜3及びエレメント数が 6以上 のスタティックミキサがより好ましい。
ラインミキサを使用した施工方法の例を図 1(a) を参照して説明する。 図示の施工装置は、 配管 5と、 配管 5の上流に設けられた圧送ポンプ 3と、 圧送 ポンプ 3に設けられたホッパー 4と、 配管 5の下流端に水和開始剤注入装置 8を 介して設けられたラインミキサ 9 (吐出口 10を有する) と、 水和開始剤注入装 置 8に接続した配管 18の上流に設けられた定量ポンプ 6と、 その上流に設けら れた水和開始剤の水溶液又はスラリ一 17を貯蔵する容器 7とを具備する。
まず、少量のアルミナセメントの水和停止剤を含有するキャスタブル耐 火物用粉体組成物を予め製造工場等の使用現場以外の場所で水と混練し、 流し込 み可能な作業性に調整する。得られたプレミックス材 1を水分が蒸発しないよう に例えばビニーノレ製のコンテナパック 2等に詰めて在庫し、必要に応じて施工現 場に輸送して施工に供する。 施工時にプレミックス材 1をホッパー 4に投入し、 圧送ポンプ 3により配管 5内を吐出口 10まで圧送する。 その際、 水和開始剤注 入装置 8から配管 5内に水和開始剤の水溶液又はスラリ一 17を、 定量ポンプ 6 を用いて注入する。 ラインミキサ 9を通過する間に水和開始剤の水溶液又はスラ リ一 17はプレミックス材 1と均一に混練され、 常温硬化性プレミックス材 11が 得られる。 常温硬化性プレミックス材 11は吐出口 10より、 型枠 13内 (図示の 例では、 溶融金属用パーマライニング 12と型枠 13との間の空間) に流し込む。
本発明で使用する圧送ポンプ 3は特に限定されないが、ビストン式又は スクイーズ式を使用するのが好ましい。 水和開始剤注入装置 8は、配管 5内を圧 送されるプレミックス材 1に水和開始剤の水溶液又はスラリー 17を注入できる ものであれば特に限定されなレ、。 例えば、 乾式吹付け用で 8〜16個程度の孔 (又 はスリット) が均等に開いたリングを内蔵し、 ノズルに連結して注水に用いるい わゆるノズルポディであってもよレ、。水和開始剤の水溶液又はスラリ一 17を配管 5に注入するのに用いる定量ポンプ 6は多連式無脈動プランジャポンプ又はモー ノポンプが好ましく、 高圧注入が可能な点で多連式無脈動ブランジャポンプがよ り好ましい。 また定量ポンプ 6の注入圧力は 5 kg cm2以上が好ましい。
図 1に示す例では、ラインミキサ 9は水和開始剤注入装置 8に隣接して 設置されているが、 ラインミキサ 9の設置位置を適宜変えても良い。 例えばライ ンミキサ 9と水和開始剤注入装置 8の間に配管 5の一部が延在してもよい。また 図 1(a) はラインミキサ 9の一端が吐出口 10を兼ねた例である力 施工現場が狭 く煩雑であったり、 流し込む場所が高所にあって配管の取り回しに制限がある場 合、 取扱いを便利にするために図 b) に示すようにラインミキサ 9にゴム製等 のフレキシブルホース 14を接続してもよい。
本発明を以下の実施例によりさらに具体的に説明するが、本発明はこれ らに限定されるものではない。 参考例 1
アルミナセメントの各種の水和停止剤について、その水溶液の pHの測 定結果を表 1に示す。 pHを測定した水和停止剤の濃度は以下の通りであった。 なお比較としてクェン酸 3ナトリウムの pHも示す。 水和停止剤 pH クェン酸 ω 1.8 クェン酸 2水素ナトリゥム ω 3.6
:1^ 小牟 1,酸ァル ユウム(1)
4.6
(タキセラム GM)
酒石酸 (1) 1.6 ポリアクリル酸 ) 2.1 キレート剤 EDTAd) 4.3 へキサメタリン酸ナトリゥム (1) 6.0 酸性へキサメタリン酸ナトリゥム (1) 1.3 ゥノレトラポリリン酸ナト リゥム (1) 1.4 リン酸 (2) 0.9 リン酸ァノレミニゥム (3) 1.4 硼酸ひ) 4.3 クェン酸 3ナトリゥム (1) 8.2 注:(1) 各粉末 5 g /水 100 cm3での pH測定結果。
(2) 固形分濃度が 85質量%のリン酸水溶液 5 cm3Z水 95 cm3での pH測定 結果。
(3) 固形分濃度が 73質量%のリン酸アルミニゥム水溶液 5 cm3Z水 95 cm3 での pH測定結果。 実施例 1〜9、 比較例 1〜3
表 1に示す各種の水和停止剤を表 2に示す配合のキャスタブル耐火物用 粉体組成物に添加し、 得られた組成物に外割で水を 6.5質量%添加し、 万能ミキ サで混練してプレミックス材を作製した。 得られたプレミックス材は 25± 1°Cで 280 保存した。 プレミックス材の pHと保存性の関係を表 3に示す。
表 2
Figure imgf000015_0001
注:※ キャスタプル耐火物用粉体組成物 100質量%に対する割合。 表 3
Figure imgf000016_0001
表 3 (続き)
Figure imgf000016_0002
表 3 (続き)
Figure imgf000016_0003
実施例 1〜9はそれぞれ水和停止剤として、塩基性乳酸アルミニゥム(タ キセラム GM) 十へキサメタリン酸ナトリウム、 クェン酸、 酒石酸、 キレート剤 EDTA、 リン酸、 リン酸アルミニウム、 ポリアクリル酸、 ウルトラポリリン酸ナ トリウム、へキサメタリン酸ナトリゥム +硼酸をキャスタブル耐火物用粉体組成 物に添カ卩した例であるが、 いずれもプレミックス材の製造当日の pHを 2〜7の 範囲に調整することが可能であった。 これらのプレミックス材はいずれも 1週間 以上の保存日数を有した。
これに対し、比較例 1では実施例 9と同じ水和停止剤(へキサメタリン 酸ナトリウム +硼酸) を使用したが、 水和停止剤の添加量が不足したため、 プレ ミックス材の pHは 8と高かつた。 比較例 2では水和停止剤として不適なアル力 リ性(pH=8.2) のクェン酸 3ナトリゥムを使用したので、プレミックス材の pH は 12と非常に高かった。 その結果、 比較例 1及び 2のいずれもプレミックス材 の保存日数が 1日未満と短かった。比較例 3では水和停止剤にリン酸を使用した ので、 プレミックス材の pHは 2を下回った。 そのためリン酸とアルミナセメン トの間に直接的な酸塩基反応が起った可能性が高く、発熱を伴い短時間で擬凝結 した。
実施例 10〜23、 比較例 4、 5
実施例 1〜9のプレミックス材に各種の水和開始剤を添加し、 各水和開 始剤によるプレミックス材の常温硬化の速度を調べた。 プレミックス材は各種の 水和停止剤を含有したキャスタブル耐火物用粉体組成物に外割で水を 6.5質量% 添加し、 万能ミキサで混練して作製した。 得られたプレミックス材を 25土 1。Cで 2 日間保存した後、 各種の水和開始剤を添加 '混練して型枠に流し込み、 硬化さ せて硬化時間を測定した。 なお硬化時間は各硬化体に指圧を加えても変形を生じ なくなった時間とした。 測定結果を表 4に示す。 表 4
Figure imgf000018_0001
表 4 (続き) 例 No. 実施例 14 実施例 15 実施例 16 実施例 17 プレミックス材 実施例 6 実施例 Ί 実施例 8 実施例 9 水和開始剤
水酸化カルシ 珪酸ナトリ 水酸化カルシ ゥムスラリー ゥム水溶液 ゥム水溶液 ゥムスラリー 濃度 (質量%) 10 25 25 10 添加量 (質量%) 0.5 0.5 0.5 0.5 固形分濃度換算
0.05 0.125 0.125 0.05 硬化時間 (時間)
8 6 7 3 at 25°C 表 4 (続き)
Figure imgf000019_0001
実施例 10〜23のプレミックス材はいずれも通常の実炉操業で要求され る 1日以内の硬化時間を示した。 一方、 比較例 4のプレミックス材は水和開始剤 の炭酸リチウム量が不足して 2日経っても未硬化であり、また比較例 5のプレミ ックス材は水酸化カルシウムが過剰なため、 直ちに擬凝結を起こした。 実施例 24
表 3の実施例 1に示す配合のキャスタブル耐火物用粉体組成物に 6.5質 量0 /0の水を添加し、 大型ボルテックスミキサで混練してプレミックス材 20 トン を製造した。 得られたプレミックス材は常温 (約 15〜23°C) で 9 日間在庫した 後、 製鉄所の施工現場まで搬送し、 高炉大樋に施工した。
図 1(a) に示す施工装置を使用して、 プレミックス材の施工を行った。 施工装置の概要を表 5に示す。 表 5
Figure imgf000020_0001
まずプレミックス材 1をホッパー 4に投入し、圧送ポンプ 3により配管 5内を圧送し、 ラインミキサ 9近傍に設けられた水和開始剤注入装置 8を通じて アルミン酸ナトリゥムの水溶液(濃度 19質量%)を固形分換算で 0.19質量% (外 割) 注入した。 ラインミキサ 9を通して混練した後、 得られた常温硬化性プレミ ックス材 11をノズル 10よりパーマライニング 12と型枠 13との間の空間に流し 込んだ。 また同じ常温硬化性プレミックス材 11 を別途小型の試験用型枠に施工 し、 約 11時間硬化させて施工体を得た。 この施工体を 110°Cで乾燥した後、 そ の物性を測定した。 測定結果を表 6に示す。 表 6
Figure imgf000021_0001
上記実施例では、施工現場から離れた工場で製造したプレミックス材を 施工現場に搬送し、 そこでプレミックス材に水和開始剤を添加し、 混練した後、 流し込み施工したが、 本発明はかかる方法に限定されない。 例えば、 キャスタブ ル耐火物用粉体組成物の状態で施工現場に搬送し、 そこで所定量の水で混練して プレミックス材とし、 そのプレミックス材を施工しても良い。
本発明のプレミックス材を使用すると、施工時に現場で水和開始剤を添 加混練すれば良いので、 施工時間に余裕ができ、 その結果作業が容易になるとい う利点がある。
以上詳述したように、アルミナセメントを含有するキャスタブル耐火物 用粉体組成物にアルミナセメントの水和停止剤を添加してなるプレミックス材 は長時間硬化せず、 著しく長い可使時間を有するので、 混練機又はタンク内等に 長時間放置しても良い。 施工時には必要量のプレミックス材にアルミナセメント の水和開始剤を添加'混練し、 型枠に流し込めば良いので、 作り置きしたプレミ ックス材が無駄になることはなく、 また施工作業に余裕がとれるという利点もあ る。
その結果、従来のプレミックス材を使用する時に行っていた施工体の脱 枠作業のために加熱養生及びそれに伴う型枠の加熱変形に対する定期的なメン テナンス等が必要なくなり、 エネルギー及ぴ施工管理コストの大幅な削減が可能 になった。
本発明のプレミックス材からなる耐火物の性能についても、加熱による 急激な脱水作用に起因する組織の脆弱化を防止することができる。 プレミックス 材に水和開始剤を添カ卩 ·混練する設備としてラインミキサーを使用すると、一 j の省力化が可能となる。

Claims

請求の範囲
1. 耐火性骨材、 耐火性微粉、 アルミナセメント、 分散剤、 及びアルミナセ メントの粉末状水和停止剤を含有するキャスタブル耐火物用粉体組成物であつ て、 前記水和停止剤は水溶液の状態で酸性を呈する物質からなり、 かつ前記水和 停止剤の添加量は、 前記キヤスタブル耐火物用粉体組成物を水で混練して得られ るプレミックス材の pHが 2〜7となるように調整されていることを特徴とする キャスタブル耐火物用粉体組成物。
2. 請求項 1に記載のキャスタブル耐火物用粉体組成物において、前記水和 停止剤はォキシカルボン酸及びその塩、 ポリアクリル酸及ぴその誘導体、 ァクリ ル酸の塩、 キレート剤、 縮合リン酸塩、 リン酸アルミニウム及び硼酸からなる群 から選ばれた少なくとも 1種であることを特徴とするキャスタブル耐火物用粉体 組成物。 .
3. 請求項 1又は 2に記載のキャスタブル耐火物用粉体組成物において、前 記耐火性骨材、前記耐火性微粉及び前記アルミナセメントの合計量を 100質量% として、前記アルミナセメントを 0.1〜: 12質量%、及ぴ前記分散剤を外割で 0.01 〜1質量%含有することを特徴とするキャスタブル耐火物用粉体組成物。
4. 耐火性骨材、 耐火性微粉、 アルミナセメント、 分散剤、 及びアルミナセ メントの水和停止剤を含有するキャスタブル耐火物用粉体組成物を予め水で混 練して得られるプレミックス材であって、 前記水和停止剤は水溶液の状態で酸性 を呈する物質からなり、 かつ前記水和停止剤の添加量は前記プレミックス材の pHが 2〜7となるように調整されていることを特徴とするプレミックス材。
5. 請求項 4に記載のプレミックス材において、前記水和停止剤はォキシ力 ルボン酸及ぴその塩、 ポリアクリル酸及ぴその誘導体、 アクリル酸の塩、 キレー ト剤、 縮合リン酸塩、 リン酸、 リン酸アルミニウム及ぴ硼酸からなる群から選ば れた少なくとも 1種であることを特徴とするプレミックス材。
6. 請求項 4又は 5に記載のプレミックス材において、前記キャスタブル耐 火物用粉体組成物が、 前記耐火性骨材、 前記耐火性微粉及び前記アルミナセメン トの合計量を 100質量%として、前記アルミナセメントを 0.1〜: 12質量%、及ぴ 前記分散剤を外割で 0.01〜1質量%含有することを特徴とするプレミックス材。
7. 請求項 4〜6のいずれかに記載のプレミックス材において、 製造後の保 存日数が 5日以上であることを特徴とするプレミックス材。
8. 耐火性骨材、 耐火性微粉、 アルミナセメント、 分散剤、 及ぴアルミナセ メントの水和停止剤を含有するキャスタブル耐火物用粉体組成物を予め水で混 練してプレミックス材を作製しておき、前記プレミックス材の施工時にアルミナ セメントの水和開女合剤を添加して混練した後、 型枠に流し込むことを特徴とする プレミックス材の施工方法。
9. 請求項 8に記載のプレミックス材の施工方法において、前記水和停止剤 として水溶液の状態で酸性を呈する物質を使用し、 前記水和停止剤の添加量を前 記プレミックス材の pHが 2〜7となるように調整し、 かつ前記水和開始剤の添 加量を、前記耐火性骨材、前記耐火性微粉及び前記アルミナセメントの合計を 100 質量%として、 外割で 0.02〜0.5質量%とすることを特徴とする方法。
10. 請求項 8又は 9に記載のプレミックス材の施工方法において、前記水和 停止剤は、 ォキシカルボン酸及びその塩、 ポリアクリル酸及びその誘導体、 ァク リル酸の塩、 キレート剤、 縮合リン酸塩、 リン酸、 リン酸アルミニウム及び硼酸 からなる群から選ばれた少なくとも 1種であり、前記アルミナセメントの水和開 始剤は、 アルカリ金属のアルミン酸塩、 水酸化物、 炭酸塩、 亜硝酸塩、 珪酸塩及 ぴ硼酸塩、 及ぴアル力リ土類金属の酸化物及ぴ水酸ィ匕物からなる群から選ばれた 少なくとも 1種であることを特徴とする方法。
11. 請求項 8〜: 10のいずれかに記載のプレミックス材の施工方法において、 前記キャスタブル耐火物用粉体組成物が、 前記耐火性骨材、 前記耐火性微粉及び 前記アルミナセメントの合計量を 100質量%として、 前記アルミナセメントを 0.1-12質量%、 及び前記分散剤を外割で 0.01〜1質量%含有することを特徴と する方法。'
12. 請求項 8〜: 11のいずれかに記載のプレミックス材の施工方法において、 前記プレミックス材を圧送ポンプにより配管内を通し、前記配管内の前記プレミ ックス材に前記アルミナセメントの水和開始剤を添加し、 前記配管に連結したラ インミキサにより混練した後、 前記吐出口より前記型枠に流し込むことを特徴と する方法。
13. 請求項 8〜: 12のいずれかに記載のプレミックス材の施工方法において、 前記プレミックス材の製造から前記水和開始剤の添加まで 5日以上空けられるこ とを特徴とする方法。
14. 請求項 4〜7のいずれかに記載のプレミックス材に、 アルミナセメント の水和開始剤を添カ卩し混練した後、施工して得られることを特徴とする耐火性硬 化体。
15. 請求項 14の耐火性硬化体において、 前記アルミナセメントの水和開始 剤として、 アルカリ金属のアルミン酸塩、 水酸化物、 炭酸塩、 亜硝酸塩、 珪酸塩 及ぴ硼酸塩、 及ぴアルカリ土類金属の酸化物及び水酸化物からなる群から選ばれ た少なくとも 1種を、 前記プレミックス材に添力卩し混練した後、 施工して得られ ることを特徴とする耐火性硬化体。
16. 請求項 14又は 15の耐火性硬化体において、前記アルミナセメントの水 和開始剤の添加量が、 前記耐火性骨材、 前記耐火性微粉及び前記アルミナセメン トの合計を 100質量%として、外割で 0.02〜0.5質量%であることを特徴とする 耐火性硬化体。
PCT/JP2003/008280 2002-06-28 2003-06-30 キャスタブル耐火物用粉体組成物及びそれからなるプレミックス材、プレミックス材の施工方法並びにその耐火性硬化体 WO2004002920A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP03738584A EP1535887A1 (en) 2002-06-28 2003-06-30 Powder composition for castable refractory and premixed material comprising the same, method for applying premixed material and refractory hardened product therefrom
JP2004517326A JP4382662B2 (ja) 2002-06-28 2003-06-30 プレミックス材の施工方法
US10/519,005 US20050239630A1 (en) 2002-06-28 2003-06-30 Powder composition for castable refractory and premixed material comprising the same, method for applying premixed material and refractory hardene product therefrom
CA002491530A CA2491530A1 (en) 2002-06-28 2003-06-30 Castable refractory powder composition, premixed material prepared therefrom, method for casting premixed material, and hardened refractory body obtained therefrom
AU2003246149A AU2003246149A1 (en) 2002-06-28 2003-06-30 Powder composition for castable refractory and premixed material comprising the same, method for applying premixed material and refractory hardened product therefrom
US12/240,411 US8017058B2 (en) 2002-06-28 2008-09-29 Castable refractory powder composition, premixed material prepared therefrom, method for casting premixed material, and hardened refractory body obtained therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-190229 2002-06-28
JP2002190229 2002-06-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10519005 A-371-Of-International 2003-06-30
US12/240,411 Division US8017058B2 (en) 2002-06-28 2008-09-29 Castable refractory powder composition, premixed material prepared therefrom, method for casting premixed material, and hardened refractory body obtained therefrom

Publications (1)

Publication Number Publication Date
WO2004002920A1 true WO2004002920A1 (ja) 2004-01-08

Family

ID=29996877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008280 WO2004002920A1 (ja) 2002-06-28 2003-06-30 キャスタブル耐火物用粉体組成物及びそれからなるプレミックス材、プレミックス材の施工方法並びにその耐火性硬化体

Country Status (8)

Country Link
US (2) US20050239630A1 (ja)
EP (1) EP1535887A1 (ja)
JP (1) JP4382662B2 (ja)
KR (1) KR20050034652A (ja)
CN (1) CN1308260C (ja)
AU (1) AU2003246149A1 (ja)
CA (1) CA2491530A1 (ja)
WO (1) WO2004002920A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039256A (ja) * 2005-07-29 2007-02-15 Kurosaki Harima Corp 不定形耐火物の施工方法およびそれに使用するスラリー
JP2007145618A (ja) * 2005-11-25 2007-06-14 Taiheiyo Material Kk 余りモルタル又はコンクリート用固結抑制剤及び余りモルタル又はコンクリートの処理方法
JP2008007369A (ja) * 2006-06-29 2008-01-17 Jfe Refractories Corp 流し込み材の硬化促進方法およびその流し込み材
JP6054488B1 (ja) * 2015-08-19 2016-12-27 株式会社山崎工業 セルフレベリング材スラリー供給装置及び平坦面の形成方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9802866B2 (en) * 2005-06-09 2017-10-31 United States Gypsum Company Light weight gypsum board
FR2892717B1 (fr) * 2005-10-28 2008-09-05 Ecole Nationale Superieure Artes Metiers Produits cimentaires a surface gelifiee
JP5132494B2 (ja) * 2008-09-12 2013-01-30 Jx日鉱日石エネルギー株式会社 硫黄固化体製品の型枠装置
CN101397204B (zh) * 2008-10-24 2011-06-08 浙江锦诚耐火材料有限公司 一种耐酸耐碱浇注料
JP5290125B2 (ja) * 2008-10-24 2013-09-18 新日鐵住金株式会社 不定形耐火物用結合剤及び不定形耐火物
FR2961807B1 (fr) * 2010-06-24 2013-11-01 Lafarge Sa Procede de transport d'une composition hydraulique
US9090507B2 (en) 2013-04-18 2015-07-28 Missouri Refractories Low cement spinel stabilized silicon carbide composite material
CN103319188A (zh) * 2013-06-19 2013-09-25 宜兴兴贝耐火材料制品有限公司 抗腐蚀碳化硅耐磨可塑料
FR3035399B1 (fr) * 2015-04-24 2019-08-09 Kerneos Adjuvant pour composition de ciment ou de beton refractaire, ses utilisations, et compositions de ciment et de beton refractaire
CA3000914C (en) 2015-10-20 2023-08-08 Hilti Aktiengesellschaft Two-component mortar system based on aluminous cement and use thereof
EP3365305B1 (en) 2015-10-20 2019-12-04 Hilti Aktiengesellschaft Use of a calcium sulfate in a 2-k mortar system based on aluminous cement in anchoring applications to increase load values and reduce shrinkage
CN106123602B (zh) * 2016-08-19 2018-02-27 郑州东方安彩耐火材料有限公司 耐火材料安全浇注生产系统
EP3573941A4 (en) * 2017-01-25 2020-10-28 Stellar Materials, LLC SINGLE ADDITIVE REFRACTORY MATERIALS SUITABLE FOR MULTIPLE APPLICATION PROCESSES
ES2881891T3 (es) 2017-04-07 2021-11-30 Hilti Ag Uso de carbonato de calcio amorfo en un sistema de mortero inorgánico ignífugo basado en cemento aluminoso para aumentar los valores de carga a temperaturas elevadas
JP6509416B1 (ja) * 2017-11-20 2019-05-08 花王株式会社 鋳物製造用構造体
CN109970458B (zh) * 2017-12-28 2022-03-01 埃肯硅材料(兰州)有限公司 一种改性碳质溜槽及其制备方法
KR20210027460A (ko) 2018-07-06 2021-03-10 바스프 에스이 유동성 내화성 물질용 조성물
CN110746195B (zh) * 2019-08-30 2022-04-12 山东耀华特耐科技有限公司 免醒可塑料生产工艺
WO2022215727A1 (ja) * 2021-04-07 2022-10-13 Jfeスチール株式会社 キャスタブル耐火物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293569A (ja) * 1993-04-05 1994-10-21 Nippon Steel Corp 混練耐火物
JP2001056184A (ja) * 1999-08-13 2001-02-27 Shinagawa Refract Co Ltd 不定形耐火物の流し込み施工方法およびその装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653617B2 (ja) 1990-07-24 1994-07-20 品川白煉瓦株式会社 熱硬化性樋用流し込み材
JPH0560469A (ja) 1991-08-28 1993-03-09 Kawasaki Refract Co Ltd 不定形耐火物の施工方法
JP2556418B2 (ja) 1992-07-14 1996-11-20 大光炉材株式会社 不定形耐火材
US6409819B1 (en) * 1998-06-30 2002-06-25 International Mineral Technology Ag Alkali activated supersulphated binder
JP4023916B2 (ja) 1998-07-02 2007-12-19 電気化学工業株式会社 アルミナセメント、アルミナセメント組成物、その不定形耐火物、及びそれを用いた吹付施工方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293569A (ja) * 1993-04-05 1994-10-21 Nippon Steel Corp 混練耐火物
JP2001056184A (ja) * 1999-08-13 2001-02-27 Shinagawa Refract Co Ltd 不定形耐火物の流し込み施工方法およびその装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039256A (ja) * 2005-07-29 2007-02-15 Kurosaki Harima Corp 不定形耐火物の施工方法およびそれに使用するスラリー
JP4528224B2 (ja) * 2005-07-29 2010-08-18 黒崎播磨株式会社 不定形耐火物の施工方法およびそれに使用するスラリー
JP2007145618A (ja) * 2005-11-25 2007-06-14 Taiheiyo Material Kk 余りモルタル又はコンクリート用固結抑制剤及び余りモルタル又はコンクリートの処理方法
JP2008007369A (ja) * 2006-06-29 2008-01-17 Jfe Refractories Corp 流し込み材の硬化促進方法およびその流し込み材
JP6054488B1 (ja) * 2015-08-19 2016-12-27 株式会社山崎工業 セルフレベリング材スラリー供給装置及び平坦面の形成方法

Also Published As

Publication number Publication date
EP1535887A1 (en) 2005-06-01
AU2003246149A1 (en) 2004-01-19
US8017058B2 (en) 2011-09-13
JP4382662B2 (ja) 2009-12-16
CN1308260C (zh) 2007-04-04
US20050239630A1 (en) 2005-10-27
KR20050034652A (ko) 2005-04-14
CN1662472A (zh) 2005-08-31
US20090032999A1 (en) 2009-02-05
CA2491530A1 (en) 2004-01-08
JPWO2004002920A1 (ja) 2005-10-27

Similar Documents

Publication Publication Date Title
JP4382662B2 (ja) プレミックス材の施工方法
CN113149675A (zh) 一种用于泵送施工的低水泥耐火浇注料
JP3226260B2 (ja) 緻密質不定形耐火物用耐火組成物の湿式吹付け施工法
JP4464303B2 (ja) ポンプ圧送用断熱キャスタブル耐火物及びそれを用いた湿式吹付け施工方法
JP3765522B2 (ja) 緻密質不定形耐火組成物の乾式吹付け施工方法
JP3046251B2 (ja) 緻密質流し込み耐火組成物の湿式吹付け施工方法
JP4338193B2 (ja) プレミックス材の湿式吹付け施工方法
JP6302435B2 (ja) 湿式吹付材用急結剤、その製造方法、それを含む湿式吹付材及び湿式吹付材の施工方法
JP2972179B1 (ja) 湿式吹付用不定形耐火組成物
JPWO2006106879A1 (ja) 不定形耐火物の吹付け施工法
JP3659574B2 (ja) 不定形耐火物のポンプ圧送用先送り材およびポンプ圧送方法
JP2965957B1 (ja) 湿式吹付用不定形耐火組成物
CN105461330B (zh) 一种水泥窑喂料室用抗结皮耐磨预制砖
JP2000026169A (ja) キャスタブル耐火物の施工装置及び施工方法
JP2831976B2 (ja) 湿式吹付け施工法
TW201245429A (en) Setting agent accelerator for refractory material
CA2201992C (en) Set modifying admixtures for refractory shotcreting
JP2001002477A (ja) 湿式吹付け施工方法およびこの方法に使用する吹付材
JP3790622B2 (ja) 耐火物吹付け施工方法およびこの方法に使用する吹付材
JP2002048481A (ja) 不定形耐火物の湿式吹付け施工方法
JP2003073174A (ja) 湿式吹付け施工用不定形耐火物およびそれを使用した湿式吹付け施工方法
JP2003254672A (ja) 耐食性に優れた不定形耐火物の吹付け施工方法
JP2017141139A (ja) ポルトランドセメント質急結剤スラリー及び湿式吹き付け施工方法
JP3885133B2 (ja) 吹付け用耐火物及び耐火物の吹付け方法
JP2003192458A (ja) 湿式吹付け用キャスタブル、材料及びそれを使用した湿式吹付け方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038147092

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004517326

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10519005

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047021394

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2491530

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003738584

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047021394

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003738584

Country of ref document: EP