WO2003105217A1 - ウエハプリアライメント装置および方法 - Google Patents

ウエハプリアライメント装置および方法 Download PDF

Info

Publication number
WO2003105217A1
WO2003105217A1 PCT/JP2003/004670 JP0304670W WO03105217A1 WO 2003105217 A1 WO2003105217 A1 WO 2003105217A1 JP 0304670 W JP0304670 W JP 0304670W WO 03105217 A1 WO03105217 A1 WO 03105217A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
rotation
signal
measurement
down counter
Prior art date
Application number
PCT/JP2003/004670
Other languages
English (en)
French (fr)
Inventor
稲永 正道
勝田 信一
有永 雄司
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to KR1020047019841A priority Critical patent/KR100792086B1/ko
Priority to US10/516,693 priority patent/US7436513B2/en
Publication of WO2003105217A1 publication Critical patent/WO2003105217A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7007Alignment other than original with workpiece
    • G03F9/7011Pre-exposure scan; original with original holder alignment; Prealignment, i.e. workpiece with workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54493Peripheral marks on wafers, e.g. orientation flats, notches, lot number
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Wafer preparation device and method Wafer preparation device and method
  • the present invention relates to a bri-alignment apparatus that is used in a semiconductor manufacturing apparatus and detects and positions the position of a substantially circular semiconductor wafer, an orientation flat, a notch, and the like.
  • the table 4 is fixed to the shaft end on the upper side of the motor 2 so as to be rotatable.
  • the light source 7 provided on the lower side of the outer peripheral portion thereof,
  • the space between the CCD linear sensor 5, which is a light receiving unit provided above, can be blocked.
  • Reference numeral 26 denotes a pre-alignment sensor, which includes a light source 7, a lens 8, a CCD linear sensor 5, a CCD linear sensor mounting board 6, and a frame having a U-shaped side surface and fixing these.
  • the light from the light source 7 is collimated by the lens 8 and received by the CCD true sensor 5.
  • Reference numeral 10 denotes a sensor controller, which includes a CCD linear sensor drive unit 11, a wafer edge detection unit 12, a light emission drive unit 13, a memory 14, a CPU 15, and a data transfer unit 16.
  • the system controller 17 includes a memory 18, a CPU 19, a data transfer unit 20, an encoder signal processing unit 21, a motor command unit 22, a wafer presence / absence sensor signal unit 23, and a wafer transfer control unit 24.
  • the light emission drive unit 13 applies a current to the light source 7 to emit light.
  • the CCD linear sensor driving unit 11 sends a read-out gate pulse, which is a timing signal when converting the accumulated charge of the pixel into an electric signal, to the CCD linear sensor 5 composed of a number of pixels arranged in a linear order.
  • ROG read out the stored charges from the first pixel at the scan start end in accordance with the transfer pulse signal, sequentially output the stored charges of all pixels as detection signals, and output the detection signal. And the like are received by the wafer edge detector 12 to detect the position.
  • the detection information is output to the outside via the data transfer unit 16.
  • the motor controller 22 of the system controller 17 outputs a rotation command signal to the motor 2 to rotate the motor 2.
  • the wafer presence sensor 25 is an optical, contact, or capacitance type sensor, and is provided separately from the pre-alignment sensor 26.
  • the non-sensor signal processing section 23 makes the wafer presence / absence sensor 25 function to detect whether or not there is a wafer in front of the sensor.
  • the encoder signal processor 21 obtains the rotation signal of the encoder 3 connected to the motor 2 and detects the rotation amount of the motor 2.
  • the system controller 17 and the sensor controller 10 operate as follows.
  • the system controller 17 determines that there is no wafer in the table 4, and the wafer transport system (not shown) transports the wafer to the table 4, then rotates the table 4, and measures the signal of the encoder 3 by the encoder signal processing unit 21. . Then, when a predetermined rotational position is reached, a measurement command is output to the sensor controller 10 via the data transfer section 20 to start measurement.
  • the wafer edge detection unit 12 receives the wafer edge signal output by the CCD linear sensor 5 and outputs the wafer edge detection value to the system controller 17 via the data transfer unit 16. .
  • the system controller 17 stores the received wafer edge detection value and the measured rotation position in the memory 18 and repeats the same operation until the wafer 1 makes one or more rotations to store the outer circumference data for one round of the wafer. 1 Record in 8.
  • the CPU 19 obtains the center position of the wafer 1 and the orifice or notch position based on the outer circumference data for one round of the wafer recorded in the memory 18.
  • the signal of the encoder 3 is measured by the encoder signal processing unit 21 while the table 4 is rotated, and the system controller 17 measures the signal to determine whether or not a predetermined rotation position has been reached. It is necessary to store the same number of measurement position information as the number of points in the memory 18, and the CPU 19 must always monitor and compare the stored measurement position information with the rotation position information obtained from the encoder 3. No.
  • the value obtained by measuring the signal of the encoder 3 at a predetermined measurement position changes due to rotation unevenness of the table 4 or the like, and it is easy to fall into a situation where measurement is performed many times at the same measurement position. For this reason, it has not been possible to reduce the size, reduce the cost, increase the efficiency of the system, and increase the speed of the measurement. This has been a major problem in increasing the wafer diameter and improving the throughput.
  • the present invention provides an encoder signal processing unit 21 by adding a function to ⁇ . It is an object of the present invention to provide a device and a method that can easily determine that 1 has reached a predetermined measurement position, output a measurement command to the sensor controller 10 and start measurement.
  • the present invention provides a wafer rotating means capable of holding and rotating a substantially circular wafer on a table having a vertical rotation axis, and detecting a rotational position of the wafer rotating means.
  • a rotation detecting means for converting the electric signal into an electric signal, a light projecting means for projecting light to a peripheral portion of the wafer held by the wafer rotating means, and a large number of pixels arranged in a straight line and in a predetermined order.
  • a CCD linear sensor that sequentially reads out the accumulated charges from the first pixel in accordance with the signal and sequentially outputs the accumulated charges of all the pixels as electric signals, and receives a signal of the CCD linear sensor and a signal of the rotation detecting means, The edge position of the wafer is repeatedly detected at a plurality of arbitrary points along the outer circumference and stored in a memory, and the orientation flat position and the notch position of the wafer are determined based on the detected values.
  • a signal processing means for obtaining at least one of the center positions; an up-down force counter for receiving a signal from the rotation detecting means and converting the signal into rotation position information;
  • a measurement angle setting register that stores angle value information obtained by dividing the number of counts per rotation by the number of measurement points measured during one rotation, the set value set in the measurement angle setting register, and the count value of the up / down counter And a comparator for comparing.
  • FIG. 1 is a block diagram showing the configuration of the first exemplary embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a second exemplary embodiment of the present invention.
  • FIG. 3 is a time chart illustrating the encoder processing unit of the present invention.
  • FIG. 4 is a block diagram showing a configuration of a conventional wafer pre-alignment apparatus.
  • FIG. 1 is a block diagram showing the configuration of a wafer preparation device according to a first embodiment of the present invention
  • FIG. 3 is a time chart illustrating an encoder processing section of the present invention.
  • reference numeral 29 denotes a wafer and a positioning mechanism, which is a motor 2, a table 4 which is rotated by the motor 2 and holds a wafer 1 to be measured, and which is connected to the motor 2 to detect a rotation position of the motor 2.
  • Reference numeral 26 denotes a bri-alignment sensor, which has a U-shaped frame as viewed from the side, a light source 7 provided at the bottom of the frame, a lens 8 for collimating the light from the light source 7, and a light receiving collimated light. And a CCD linear sensor 5.
  • the CCD linear sensor 5 is composed of a large number of pixels arranged in a straight line and arranged in an order. Are sequentially output as electric signals.
  • Reference numeral 10 denotes a sensor controller, which drives a CCD linear sensor 5 to drive the CCD linear sensor 5 and a wafer edge detection unit that scans from one pixel to the last pixel of the CCD linear sensor 5 and detects a wafer edge signal at a point where a signal changes. It comprises a unit 12, a light emission drive unit 13 for controlling ON / OFF of light emission of the light source 7, a memory 14, a CPU 15, and a data exchange unit 16 for exchanging signals with the outside.
  • Reference numeral 17 denotes a system controller, a motor command unit 22 for rotating the motor 4, an encoder signal processing unit 21, and a memory for storing a measurement angle setting value and a wafer edge detection value.
  • It comprises a CPU 19, a sensor controller 10, and a data transfer unit 20 for transferring signals.
  • Encoder signal processing unit 2 1 is measured angle setting register 21 b for setting the division angular value information counts per one rotation measurement Bointo number of measured during one rotation of the rotation detecting means, the encoder 3 '
  • the up / down counter 21a that receives the rotational position signal and counts up during forward rotation and counts down during reverse rotation, the angle value information of the measurement angle setting register 21b and the count value obtained by the up / down counter 21a are used. If it is determined that they are equal, a comparator 21c outputs a measurement command and simultaneously clears the count value to zero.
  • the CPU 19 calculates at least one of the orientation flat, the notch position, and the center position of the wafer from the measurement angle setting value and the wafer edge detection value stored in the memory 18, the CPU 19 sends a command to a wafer transfer system (not shown) to From Table 4 to the destination.
  • the wafer positioning mechanism 29, the pre-alignment sensor 26, the sensor controller 10, and the system controller 17 constitute a wafer pre-alignment device. You.
  • the wafer pre-alignment apparatus of the present invention operates as follows. .
  • the system controller 17 sends the angle value information obtained by dividing the count number per rotation of the rotation detecting means by the number of measurement points measured during one rotation to the measurement angle setting register 21b.
  • the wafer transport system (not shown) transports the wafer to the table 4, and then rotates the table 4.
  • the up / down counter 21a receives the rotation position signal, counts up when the tape rotates forward, and counts down when the tape rotates reversely, and the counter value is increased. Increase or decrease to obtain rotation position information.
  • the comparator 21c outputs a measurement command after judging that the set value of the measurement angle setting register 21b is equal to the count value of the up / down counter 21a, and simultaneously clears the count value to zero.
  • the wafer edge signal output from the CCD linear sensor 5 is received by the wafer edge detection unit 12 and the wafer edge detection value is output to the system controller 17 via the data transfer unit 16. .
  • the system controller 17 sequentially stores the received wafer edge detection values in the memory 18 and repeats the same operation until the wafer 1 makes one or more rotations, and records the outer circumference data of one wafer round in the memory 18. I do.
  • the CPU 19 performs a known operation based on the outer circumference data of one round of the wafer recorded in the memory 18 to obtain the center position, the orifice or the notch position of the wafer 1. ,
  • an up-down counter 21a of the encoder signal processing unit 21 is a counter that can count up and down from 0 to 255, and a time chart when the set value 5 is set in the measurement angle setting register 21b.
  • FIG. 2 is a block diagram showing a configuration of a wafer pre-alignment apparatus according to a second embodiment of the present invention.
  • the configuration difference from the first embodiment is that the encoder signal processing unit 21 composed of the up / down counter 21a, the measurement angle setting register 21b, and the comparator 21c is the system controller 17 It is not mounted on the sensor but on the sensor controller 10.
  • the wafer pre-alignment apparatus of the present invention operates as follows. First, the system controller 17 obtains angle value information obtained by dividing the number of counts per rotation of the rotation detecting means by the number of measurement points to be measured during one rotation via the data transfer unit 20 to the measurement angle setting register 21b. Set to. When there is no wafer on the table 4, the wafer transport system (not shown) transports the wafer to the table 4, and then rotates the table 4.
  • the encoder signal processing unit 21 mounted on the sensor controller 10 operates as follows.
  • the table 4 counts up when the table 4 rotates forward and counts down when the table 4 rotates reversely, and the count value increases and decreases, thereby obtaining rotational position information.
  • the comparator 21c determines that the set value of the measurement angle setting register 21b and the count value of the up / down counter 21a are equal, the measurement command is output and the up / down counter 21a is continuously output.
  • the counter value is cleared to zero to correspond to the input encoder 3 signal.
  • the wafer edge detection unit 12 receives a wafer edge signal output from the CCD linear sensor 5 and outputs a wafer edge detection value to the system controller 17 via the data transfer unit 16.
  • the system controller 17 sequentially stores the received wafer edge detection values in the memory 18 and repeats the same operation until the wafer 1 makes one or more rotations, and records the outer circumference data for one wafer round in the memory 18. .
  • the CPU 19 determines the center position of the wafer 1, the orientation flat or the notch position based on the outer circumference data of one round of the wafer recorded in the memory 18.
  • the signal of the encoder 3 is measured by the encoder
  • the specified measurement positions are stored in the memory 18 by the number of measurement points, and the measurement positions stored by the CPU 19 and the rotation position obtained from the encoder 3 are stored.
  • the encoder signal processing unit 21 processes the encoder angle processing register 2 lb, which can set the rotational position information corresponding to the interval angle between the measurement points, and the encoder 3 , Counts up for forward rotation and counts down for reverse rotation.Up-down counter 21a, setting value of measurement angle setting register 21b and rotation position information obtained by up-down counter 21a.
  • the measurement command is output, and at the same time, the count value can be cleared to zero because the up / down counter responds to the continuously input signal of the rotation detection means. Since a structure consisting of a comparator over motor 2 1 c, can be configured with a simple hardware, and can reduce the load of processing of the CPU, there is an effect that the memory can be small in capacity. Since the count value is cleared to zero at the same time as the measurement command is output, the value obtained by measuring the signal of encoder 3 at a predetermined measurement position changes due to uneven rotation of table 4, etc., and measurement can be performed at the same measurement position many times. No, the system can be made more efficient,
  • the encoder signal processing unit 21 can be mounted on either the system controller 17 or the sensor controller 10, so that the effect that the system configuration can be freely configured can be obtained.

Abstract

ウエハが所定の計測位置になったのを簡単に判断してセンサコントローラに計測指令を出力し、計測を開始させることができるようにする。ウエハ回転手段(2)と、回転検出手段(3)と、ウエハの周縁部に投光する投光手段(9)と、直線状に配置されたCCDリニアセンサ(26)と、ウエハのエッジ位置を検出してオリフラ位置とノッチ位置、中心位置の少なくとも一つを求める信号処理手段(10)、(17)と、を備え、回転検出手段の信号を受信して回転位置情報に変換するアップダウンカウンタ(21a)と、間隔角度回転したときの回転位置情報を格納する計測角度設定レジスタ(21b)と、計測角度設定レジスタの設定値とアップダウンカウンタのカウント値とを比較するコンパレータ(21C)とを備える。

Description

明細書
ウェハプリァライメント装置および方法
[技術分野]
本発明は、 半導体製造装置で使われ、 略円形の半導体ウェハの位置やオリエンテー シヨンフラット、 ノッチなどの位置を検出したり、 位置決めをするブリアライメント 装置に関する。
[背景技術]
従来のプリアライメントセンサ装置の構成を図 4を用いて説明する。 図において、 テーブル 4はモータ 2の上側の軸先端に固定されて回転出来るようになつており、 テ 一ブル 4上にウェハ 1を載せると、 その外周部の下側に設けた光源 7と、 上方に設け た受光部である CCDリニアセンサ 5の間を遮ることができるようになつている。 2 6はプリアライメントセンサであり、 光源 7とレンズ 8、 CCDリニアセンサ 5、 C CDリニァセンサ実装基板 6、 側面の形状がコの字形をしてこれらを固定したフレー ムとで構成されている。 光源 7の光はレンズ 8で平行にされて C C Dリユアセンサ 5 で受光される。 10はセンサコントローラであり、 CCDリニアセンサ駆動部 11、 ウェハェ.ッジ検出部 12、 発光駆動部 13、 メモリ 14、 CPU15、 データ授受部 16から構成されている。システムコントローラ 17は、メモリ 18と、 CPU19、 データ授受部 20、 エンコーダ信号処理部 21、 モータ指令器 22、 ウェハ有無セン サ信号部 23、 ゥェハ搬送制御部 24から構成されている。 発光駆動部 13は光源 7 に電流を与えて発光させる。 CCDリニアセンサ駆動部 11は、 直線状に配置され順 番の決まった多数の画素からなる CCDリニァセンサ 5に、 前記画素の蓄積電荷を電 気信号に変換する際のタイミング信号であるリードァゥトゲートパルス (ROG) 信 号と転送パルス信号を送り、 前記転送パルス信号に従ってスキャン開始端にある 1番 目の画素から順に蓄積電荷を読み出し、 全画素の蓄積電荷を検出信号として順次出力 し、 その検出信号等をウェハエッジ検出部 12が受けて位置を検出する。 その検出情 報はデータ授受部 16を介して外部に出力される。
システムコントローラ 1 7のモータ指令器 22はモータ 2に回転指令信号を出力 してモータ 2を回転させる。 ウェハ有無センサ 25は光学式又は接触式又は静電容量 式のセンサであってプリアライメントセンサ 26とは別に設けられており、 ウェハ有 無センサ信号処理部 2 3がウェハ有無センサ 2 5を機能させてその前面にウェハが有 るか無いかを検出する。 エンコーダ信号処理部 2 1はモータ 2に連結されたェンコ一 ダ 3の回転信号を得てモータ 2の回転量を検出する。
このような構成のもとで、 システムコントローラ 1 7とセンサコントローラ 1 0は 次のように動作する。 システムコントローラ 1 7はテーブル 4にウェハが存在しない とさ、 図示しないゥェハ搬送システムがテーブル 4にゥェハを搬送した後、 テーブル 4を回転させ、 エンコーダ 3の信号をェンコーダ信号処理部 2 1で計測する。 そして 所定の回転位置になったとき、 データ授受部 2 0を介してセンサコントローラ 1 0に 計測指令を出力し、 計測を開始させる。
センサコントローラ 1 0はその計測指令出力を受けると、 C C Dリニアセンサ 5が 出力するウェハエッジ信号をウェハエッジ検出部 1 2が受け取り、 データ授受部 1 6 を介してウェハエッジ検出値をシステムコントローラ 1 7に出力する。
システムコントローラ 1 7は受け取ったそのウェハエッジ検出値と計測回転位置とを メモり 1 8に格納し、 ウェハ 1が 1回転以上するまで、 同じような動作を繰り返して ウェハ 1周分の外周データをメモリ 1 8に記録する。 このメモリ 1 8に記録されたゥ ェハ 1周分の外周データをもとに C P U 1 9によってウェハ 1の中心位置や、 オリフ ラまたはノツチ位置が求められる。
ところが従来技術によると、 テーブル 4を回転させてエンコーダ 3の信号をェンコ ーダ信号処理部 2 1で計測し、所定の回転位置になったかどうかを判断するためには、 システムコントローラ 1 7が計測ポイントと同じ数の計測位置情報をメモリ 1 8に格 納する必要があり、 C P U 1 9が格納された計測位置情報とエンコーダ 3から得られ る回転位置情報とを常に監視して比較しなければならない。
また、 テーブル 4の回転ムラ等の原因により、 所定の計測位置でエンコーダ 3の信号 を計測した値が変化してしまい、 何度も同じ計測位置で計測してしまうという事態に 陥りやすい。 このため、 小型化やローコスト化、 システムの効率化、 測定の高速化な どをすることができず、 ウェハの大口径ィ匕とスループットの向上を図る上で大きな問 題点となっていた。
[発明の開示]
そこで本発明は、 エンコーダ信号処理部 2 1に機能を追加することにより、 ゥ. 1が簡単に所定の計測位置になったのを判断してセンサコントローラ 1 0に計測指令 を出力し、 計測を開始させることができる装置と方法を提供することを目的とする。 上記問題を解決するため、 本願発明は、 垂直方向の回転軸を持つテーブル上に略円 形のウェハを保持して回転させることができるウェハ回転手段と、 そのウェハ回転手 段の回転位置を検出して電気信号に変換する回転検出手段と、 前記ウェハ回転手段に 保持されたウェハの周縁部に投光する投光手段と、 直線状に配置され順番の決まった 多数の画素からなり、 転送パルス信号に従って 1番目の画素から順に蓄積電荷を読み 出し、 全画素の蓄積電荷を電気信号として順次出力する C C Dリニアセンサと、 その C C Dリニァセンサの信号と前記回転検出手段の信号を受けると、 前記ウェハの外周 に亘る複数の任意の点で繰り返し前記ウェハのェッジ位置を検出してメモリに格納し、 その検出値を元に前記ウェハのオリフラ位置とノツチ位置、 中心位置の少なくとも一 つを求める信号処理手段と、 を備えたウェハブリアライメント装置において、 前記回 転検出手段の信号を受信して回転位置情報に変換するアップダウン力ゥンタと、 前記 検出検出手段の 1回転あたりのカウント数を 1回転中に計測する計測ボイント数で除 算した角度値情報を格納する計測角度設定レジスタと、 前記計測角度設定レジスタに 設定した設定値と前記アップダウンカウンタのカウント値とを比較するコンパレータ とを備えたことを特徴とするものである。
このようになっているため、 ウェハが所定の計測位置になったのを簡単に判断す ることができて、 センサコントローラに計測指令を出力し、 計測を開始させることが できるのである。
[図面の簡単な説明]
図 1は、 本発明の第 1実施例の構成を示すブロック図である。 図 2本発明の第 2実 施例の構成を示すブロック図である。 図 3本発明のェンコ一ダ処理部を説明するタイ ムチヤートである。 図 4従来のウェハプリアライメント装置の構成を示すブロック図 である。
[発明を実施するための最良の形態]
以下、 本発明の実施の形態を図に基づいて説明する。 図 1は本発明の第 1実施例で あるウェハプリァライメント装置の構成を示すプロック図、 図 3は本発明のェンコ一 ダ処理部を説明するタイムチヤ一トである。 図 1において、 29はウエノ、位置決め機構であり、 モータ 2と、 モータ 2で回転さ れて被測定物のウェハ 1を保持するテーブル 4と、 モータ 2に連結されてモータ 2の 回転位置を検出するエンコーダ 3から構成されている。 26はブリアライメントセン サであり、 側面からみた形状がコの字状のフレームと、 フレームの下部に設けられた 光源 7、 光源 7の光を平行にするレンズ 8、 平行にされた光を受光する CCDリニア センサ 5とから構成されている。 CCDリニアセンサ 5は直線状に配置され順番の決 まつた多数の画素からなり、 1番目の画素から順にスキャンして光源 7からの入射光 に略比例した蓄積電荷を読み出し、全画素の蓄積電荷を電気信号として順次出力する。
10はセンサコントローラであり、 CCDリニアセンサ 5を駆動する CCDリニア センサ駆動部 1 1と、 CCDリニアセンサ 5の 1画素から最終画素までスキャンして 信号が変化する点のウェハェッジ信号を検出するウェハェッジ検出部 12、 光源 7の 投光を ON/OFF制御する発光駆動部 13、 メモリ 14、 CPU15、 外部と信号 の授受を行うデータ授受部 16から構成されている。
17はシステムコントローラであり、 モータ 4を回転させるモータ指令器 22と、 エンコーダ信号処理部 21、 計測角度設定値とウェハエッジ検出値を記憶するメモリ
18、 CPU 19、 センサコントローラ 10と信号の授受を行うデータ授受部 20と から構成されている。
エンコーダ信号処理部 21は、 前記回転検出手段の 1回転あたりのカウント数を 1 回転中に計測する計測ボイント数で除算した角度値情報を設定する計測角度設定レジ スタ 21 b、 エンコーダ' 3の回転位置信号を受信して正回転時にはァップカウントし 逆回転時にはダウンカウントするアップダウンカウンタ 21 a、 計測角度設定レジス タ 21 bの角度値情報とアップダウンカウンダ 21 aで得られたカウント値とが等し いと判断すれば、 計測指令を出力し、 同時にカウント値をゼロクリアするコンパレー タ 21 cとから構成される。
CPU19はメモリ 18に記憶してある計測角度設定値とウェハエッジ検出値から ウェハのオリフラとノッチ位置、' 中心位置の少なくとも一つを算出すると、 図示しな レヽゥェハ搬送システムに指令を送つてウェハ 1をテーブル 4上から搬送先へ搬送させ る。 これらのウェハ位置決め機構 29とプリアライメントセンサ 26、 センサコント ローラ 10、 システムコントローラ 1 7とでウェハプリァライメント装置をなしてい る。
このような構成のもとで、 本発明のゥェハプリアライメント装置は次のように動作 する。 .
まず、 システムコントローラ 1 7は回転検出手段の 1回転あたりのカウント数を 1 回転中に計測する計測ポイント数で除算した角度値情報を計測角度設定レジスタ 2 1 bに乂疋 3 る。
テーブル 4にウェハが存在しないときは、 図示しないゥェ'ハ搬送システムがテープ ル 4にウェハを搬送した後、 テーブル 4を回転させる。
ェンコーダ信号処理部 2 1におレ、て、 アップダウンカウンタ 2 1 aは回転位置信号 を受信し、 テープ ^が正回転する時はァップカゥントし、 逆回転する時はダウン力 ゥントしてカウンタ値が増減し、 回転位置情報が得られる。 コンパレータ 2 1 cは計 測角度設定レジスタ 2 1 bの設定値とアップダウンカウンタ 2 1 aのカウント値とが 等しいと判断したのち計測指令を出力し、 同時にカウント値をゼロクリアする。 センサコントローラ 1 0がその計測指令出力を受けると、 C C Dリニアセンサ 5が 出力するウェハェッジ信号をウェハェッジ検出部 1 2が受け取り、 データ授受部 1 6 を介してウェハエッジ検出値をシステムコントローラ 1 7に出力する。
システムコントローラ 1 7は受け取ったそのウェハエッジ検出値を順次メモり 1 8 に格納し、 ウェハ 1が 1回転以上するまで、 同じような動作を繰り返してウェハ 1周 分の外周データをメモリ 1 8に記録する。 このメモリ 1 8に記録されたウェハ 1周分 の外周データをもとに C P U 1 9が公知の演算をして、 ウェハ 1の中心位置やオリフ ラまたはノッチ位置が求められる。 ,
ここで例えばェンコーダ信号処理部 2 1のアツプダゥンカウンタ 2 1 aが 0から 2 5 5までアップダウンカウントできるカウンタであって、 計測角度設定レジスタ 2 1 bに設定値 5を設定したときのタイムチャートを図 3 a、 図 3 bに示す。
計測角度設定レジスタ 2 1 bの設定値とアップダウンカウンタ 2 1 aのカウンタ値 とが等しいと判断したのち、 計測指令を出力すると同時に力ゥンタ値をゼロクリァす れぱ、 図 3 bに示したように、 テーブル 4の回転ムラ等の原因によってテーブル 4が 正回転から一瞬だけ逆回転しても同じ計測ボイントで計測指令が出力されるというよ うな問題は解消される。 次に第 2の実施例について図に基づいて説明する。 図 2は本発明の第 2実施例であ るウェハプリアライメント装置の構成を示すプロック図である。
図において、 第 1の実施例との構成上の違いは、 アップダウンカウンタ 2 1 a、 計測 角度設定レジスタ 2 1 b、 コンパレータ 2 1 cから構成されるエンコーダ信号処理部 2 1がシステムコントローラ 1 7に搭載されるのではなくセンサコントローラ 1 0に 搭載されている点にある。
このような構成のもとで、 本発明のウェハプリアライメント装置は次のように動作 する。 まず、 システムコントローラ 1 7は、 回転検出手段の 1回転あたりのカウント 数を 1回転中に計測する計測ポイント数で除算した角度値情報をデータ授受部 2 0を 介して計測角度設定レジスタ 2 1 bに設定する。 テーブル 4にウェハが存在しないと きは、 図示しないウェハ搬送システムがテーブル 4にウェハを搬送した後、 テーブル 4を回転させる。
センサコントローラ 1 0に搭載されているエンコーダ信号処理部 2 1は次のよう に動作する。 アップダウンカウンタ 2 1 aが回転位置信号を受信すると、 テーブル 4 が正回転時にはァップカウントし、 逆回転時にはダウンカウントしてカウント値が増 減し、 回転位置情報が得られる。 コンパレータ 2 1 cが計測角度設定レジスタ 2 1 b の設定値とアップダウンカウンタ 2 1 aのカウント値とが等しいと判断したのち、 計 測指令を出力すると同時にアップダウンカウンタ 2 1 aが連続して入力するェンコ一 ダ 3の信号に対応するためカウンタ値をゼロクリアする。
ウェハエッジ検出部 1 2はその計測指令出力を入力すると、 C C Dリニアセンサ 5が 出力するウェハエッジ信号を受け取り、 データ授受部 1 6を介してウェハエッジ検出 値をシステムコントローラ 1 7に出力する。
システムコントローラ 1 7は受け取ったそのウェハエッジ検出値を順次メモリ 1 8 に格納し、 ウェハ 1が 1回転以上するまで、 同じような動作を繰り返してウェハ 1周 分の外周データをメモリ 1 8に記録する。 このメモリ 1 8に記録されたウェハ 1周分 の外周データをもとに C P U 1 9によってウェハ 1の中心位置や、 オリフラまたはノ ツチ位置が求められる。
[産業上の利用可能性]
本発明によれば、 エンコーダ 3の信号をエンコーダ信号処理部 2 1で計測し、 所定 の回転位置になったのを判断するために、 所定の計測位置を計測ボイントの数だけメ モリ 1 8に格納し、 C P U 1 9で格納されたその計測位置とエンコーダ 3から得られ る回転位置とを常に監視し比較するのではなく、 エンコーダ信号処理部 2 1を、 計測 ボイント間の間隔角度に対応した回転位置情報を設定できる計測角度設定レジスタ 2 l b、 エンコーダ 3の回転位置信号を処理し、 正回転の時はアップカウントし、 逆回 転の時はダウンカウントするアップダウンカウンタ 2 1 a、 計測角度設定レジスタ 2 1 bの設定値とアップダウンカウンタ 2 1 aで得られた回転位置情報とが等しいこと 判断したのち計測指令を出力し、 同時に前記アップダウンカウンタが連続して入力さ れる回転検出手段の信号に対応するため前記カウント値をゼロクリアできるコンパレ ータ 2 1 cとからなる構成としたので、 簡単なハードウエアで構成でき、 C P Uの処 理の負荷を軽減できて、 メモリを少容量化することができるという効果がある。 計測指令を出力すると同時にカウント値をゼロクリアするので、 テーブル 4の回転 ムラ等の原因により、 所定の計測位置でェンコーダ 3の信号を計測した値が変化し何 度も同じ計測位置で計測することもなく、'システムの効率化ができ、
エンコーダ信号処理部 2 1をシステムコントローラ 1 7やセンサコントローラ 1 0の どちらでも搭載出来るようになって、 システム構成を自由に構成できるという効果が める。

Claims

請求の範囲
1 . 垂直方向の回転軸を持つテーブル上に略円形のウェハを保持して回転させるこ とができるウェハ回転手段と、
そのウェハ回転手段の回転位置を検出して電気信号に変換する回転検出手段と、 前記ウェハ回転手段に保持されたウェハの周縁部に投光する投光手段と、 直線状に配置され順番の決まつた多数の画素からなり、 転送パルス信号に従つて 1 番目の画素から順に蓄積電荷を読み出し、 全画素の蓄積電荷を電気信号として順次出 力する C C Dリ -ァセンサと、
その C C Dリニァセンサの信号と前記回転検出手段の信号を受けると、 前記ゥェハ の外周に亘る複数の任意の点で繰り返し前記ウェハのェッジ位置を検出してメモリに 格納し、 その検出値を元に前記ウェハのオリフラ位置とノッチ位置、 中心位置の少な くとも一つを求める信号処理手段と、'
を備えたウェハブリアライメント装置において、
前記回転検出手段の信号を受信してカウントするアップダウンカウンタと、 前記回転検出手段の 1回転あたりのカウント数を 1回転中に計測する計測ボイン ト数で除算した角度値情報を格納する計測角度設定レジスタと、
前記計測角度設定レジスタに設定した前記角度値情報と前記ァップダゥンカウン タのカウント値とを比較するコンパレータと
を備えたことを特徴とするウェハプリァライメント装置。.
2 . 垂直方向の回転軸を持つテーブル上に略円形のウェハを保持して回転させるこ とができるゥェハ回転手段と、
そのウェハ回転手段の回転位置を検出して電気信号に変換する回転検出手段と、 前記ウェハ回転手段に保持されたウェハの周縁部に投光する投光手段と、 直線状に配置され順番の決まった多数の画素からなり、 転送パルス信号に従って 1 番目の画素から順に蓄積電荷を読み出し、 全画素の蓄積電荷を電気信号として順次出 力する C C Dリ -ァセンサと、
その C C Dリニァセンサの信号と前記回転検出手段の信号を受けると、 前記ウェハ の外周に亘る複数の任意の点で繰り返し前記ウェハのエッジ位置を検出してメモリに 格納し、 その検出値を元に前記ウェハのオリフラ位置とノッチ位置、 中心位置の少な くとも一つを求める信号処理手段と、
を備えたウェハプリアライメント装置において、
前記回転検出手段の 1回転あたりのカウント数を 1回転中に計測する計測ボイン ト数で除算した角度値情報を計測角度設定レジスタに設定し、
前記ウェハ回転手段が正回転する時はアップカウントし、 前記ウェハ回転手段が逆 回転する時はダゥンカウントするアップダウンカウンタに前記回転検出手段の信号を 入力し、
前記ウェハ回転手段が回転しカウント値が増減して回転位置情報が得られて、 コン パレータが計測角度設定レジスタの設定値と前記アップダウンカウンタで得られた回 転位置情報と力 S等しレ、と判断すれば、
計測指令を出力すると同時に前記カウント値をゼロクリアし、
前記ウェハの外周に!:る前記計測ボイントで繰り返して前記ウェハのエッジ位置を 検出し、
その検出値をメモリに格納し、
その検出値を元に前記ウェハのオリフラ位置とノツチ位置、 中心位置の少なくとも 一つを求める
ことを特徴とするウェハブリアライメント方法。
PCT/JP2003/004670 2002-06-06 2003-04-11 ウエハプリアライメント装置および方法 WO2003105217A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020047019841A KR100792086B1 (ko) 2002-06-06 2003-04-11 웨이퍼 프리얼라인먼트 장치 및 방법
US10/516,693 US7436513B2 (en) 2002-06-06 2003-04-11 Wafer pre-alignment apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-165250 2002-06-06
JP2002165250A JP4258828B2 (ja) 2002-06-06 2002-06-06 ウエハプリアライメント装置および方法

Publications (1)

Publication Number Publication Date
WO2003105217A1 true WO2003105217A1 (ja) 2003-12-18

Family

ID=29727586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004670 WO2003105217A1 (ja) 2002-06-06 2003-04-11 ウエハプリアライメント装置および方法

Country Status (6)

Country Link
US (1) US7436513B2 (ja)
JP (1) JP4258828B2 (ja)
KR (1) KR100792086B1 (ja)
CN (1) CN1319143C (ja)
TW (1) TWI264795B (ja)
WO (1) WO2003105217A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006025386A1 (ja) * 2004-08-31 2008-05-08 株式会社ニコン 位置合わせ方法、処理システム、基板の投入再現性計測方法、位置計測方法、露光方法、基板処理装置、計測方法及び計測装置
JP4596144B2 (ja) * 2005-04-21 2010-12-08 株式会社東京精密 ウェーハ搬送方法及びウェーハ搬送装置
TWI259933B (en) * 2005-05-19 2006-08-11 Benq Corp Apparatus and method thereof for actuating object
CN100355055C (zh) * 2005-10-28 2007-12-12 清华大学 硅晶圆预对准控制方法
KR101006915B1 (ko) * 2005-12-12 2011-01-13 주식회사 만도 조향각 센서의 에러검출장치
JP2009519770A (ja) * 2005-12-16 2009-05-21 インターフェイス・アソシエイツ・インコーポレーテッド 医療用の多層バルーン及びその製造方法
EP3279739A1 (en) * 2006-02-21 2018-02-07 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
CN100411132C (zh) * 2006-10-13 2008-08-13 大连理工大学 一种硅片预对准装置
CN101383311B (zh) * 2007-09-04 2010-12-08 北京北方微电子基地设备工艺研究中心有限责任公司 晶片传输系统
CN102157421B (zh) * 2010-02-11 2013-01-16 上海微电子装备有限公司 一种硅片预对准装置及预对准方法
CN102402127B (zh) * 2010-09-17 2014-01-22 上海微电子装备有限公司 一种硅片预对准装置及方法
WO2012074280A2 (ko) * 2010-11-29 2012-06-07 (주)루트로닉 광학 어셈블리
CN102809903B (zh) * 2011-05-31 2014-12-17 上海微电子装备有限公司 二次预对准装置及对准方法
CN103681426B (zh) * 2012-09-10 2016-09-28 上海微电子装备有限公司 大翘曲硅片预对准装置及方法
CN103811387B (zh) * 2012-11-08 2016-12-21 沈阳新松机器人自动化股份有限公司 晶圆预对准方法及装置
CN103869630B (zh) * 2012-12-14 2015-09-23 北大方正集团有限公司 一种预对位调试方法
CN103964233A (zh) * 2013-02-05 2014-08-06 北大方正集团有限公司 一种晶片传送控制方法及装置
SG11201606867QA (en) * 2014-03-12 2016-09-29 Asml Netherlands Bv Sensor system, substrate handling system and lithographic apparatus
CN105988305B (zh) 2015-02-28 2018-03-02 上海微电子装备(集团)股份有限公司 硅片预对准方法
CN104900574A (zh) * 2015-06-10 2015-09-09 苏州均华精密机械有限公司 一种晶圆加工的定位装置及其定位方法
CN106597812B (zh) * 2016-11-29 2018-03-30 苏州晋宇达实业股份有限公司 一种光刻机的硅片进料校准装置及其进料校准方法
US10867822B1 (en) 2019-07-26 2020-12-15 Yaskawa America, Inc. Wafer pre-alignment apparatus and method
CN113467202B (zh) * 2020-03-30 2023-02-07 上海微电子装备(集团)股份有限公司 光刻设备及硅片预对准方法
CN113721428B (zh) * 2021-07-12 2024-02-06 长鑫存储技术有限公司 半导体处理装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160245A (ja) * 1991-12-06 1993-06-25 Nikon Corp 円形基板の位置決め装置
US5289263A (en) * 1989-04-28 1994-02-22 Dainippon Screen Mfg. Co., Ltd. Apparatus for exposing periphery of an object

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2798112B2 (ja) * 1994-03-25 1998-09-17 信越半導体株式会社 ウェーハノッチ寸法測定装置及び方法
TW316322B (ja) * 1995-10-02 1997-09-21 Ushio Electric Inc
JP3237522B2 (ja) * 1996-02-05 2001-12-10 ウシオ電機株式会社 ウエハ周辺露光方法および装置
KR100257279B1 (ko) * 1996-06-06 2000-06-01 이시다 아키라 주변노광장치 및 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289263A (en) * 1989-04-28 1994-02-22 Dainippon Screen Mfg. Co., Ltd. Apparatus for exposing periphery of an object
JPH05160245A (ja) * 1991-12-06 1993-06-25 Nikon Corp 円形基板の位置決め装置

Also Published As

Publication number Publication date
TW200404348A (en) 2004-03-16
JP4258828B2 (ja) 2009-04-30
US7436513B2 (en) 2008-10-14
US20050231721A1 (en) 2005-10-20
CN1319143C (zh) 2007-05-30
KR20050006288A (ko) 2005-01-15
JP2004014736A (ja) 2004-01-15
CN1659695A (zh) 2005-08-24
KR100792086B1 (ko) 2008-01-04
TWI264795B (en) 2006-10-21

Similar Documents

Publication Publication Date Title
WO2003105217A1 (ja) ウエハプリアライメント装置および方法
JPH0736417B2 (ja) ウエハーの位置決め装置
JP4372744B2 (ja) テープリール自動計数装置とその方法
US11460328B2 (en) Distance measuring device and method thereof for seeking distance measuring starting point
US5982492A (en) Method of and apparatus for determining the center of a generally circular workpiece relative to a rotation axis of the workpiece
JP3794012B2 (ja) 回転反応器の測定方式
JP4010891B2 (ja) 半導体ウェハ搬送方法
JP4400341B2 (ja) ウエハのプリアライメント装置およびプリアライメント方法
JP7462466B2 (ja) 保持装置、検査システム、移動方法、及び検査方法
US6333499B1 (en) Method of detecting a scanning start point, scanner, method of reading out image information, and image information reader
JP3528785B2 (ja) ウエハプリアライメント装置およびウエハエッジ位置検出方法
KR20010001027A (ko) 타이어의 문자인식 시스템
JP2006078178A (ja) エンコーダ装置および測定装置
JPH06141424A (ja) ケーブル巻取装置
JP3399753B2 (ja) 板幅方向プロフィール計測方法
CN107478338B (zh) 一种提高红外线阵列传感器采样分辨率的方法及装置
JPH06213620A (ja) 光学式物体形状測定装置
JP2004056588A (ja) スキャナシェーディング補正装置
JP2988594B2 (ja) ウェ−ハ中心検出装置
JPS62206847A (ja) 半導体ウエハ−の位置決め方法及び装置
JPH0451110A (ja) 走査回転鏡位置検出方式
KR100359095B1 (ko) 광주사유니트의주사속도데이터산출장치및인쇄기의광주사시스템
JPH04268487A (ja) 部品選別方法
JPH0642921A (ja) ワーク高さ測定器
JPH0756611A (ja) ボートセンタ位置検知方法及び装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

WWE Wipo information: entry into national phase

Ref document number: 20038128640

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047019841

Country of ref document: KR

Ref document number: 10516693

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020047019841

Country of ref document: KR