JP2006078178A - エンコーダ装置および測定装置 - Google Patents

エンコーダ装置および測定装置 Download PDF

Info

Publication number
JP2006078178A
JP2006078178A JP2002263047A JP2002263047A JP2006078178A JP 2006078178 A JP2006078178 A JP 2006078178A JP 2002263047 A JP2002263047 A JP 2002263047A JP 2002263047 A JP2002263047 A JP 2002263047A JP 2006078178 A JP2006078178 A JP 2006078178A
Authority
JP
Japan
Prior art keywords
pattern
sub
unit
detectable range
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002263047A
Other languages
English (en)
Inventor
Takeshi Iwashita
雄 岩下
Akio Morozumi
章夫 両角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T & D Kk
T&D Corp
Original Assignee
T & D Kk
T&D Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T & D Kk, T&D Corp filed Critical T & D Kk
Priority to JP2002263047A priority Critical patent/JP2006078178A/ja
Priority to AU2003262009A priority patent/AU2003262009A1/en
Priority to PCT/JP2003/011475 priority patent/WO2004023079A1/ja
Publication of JP2006078178A publication Critical patent/JP2006078178A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34776Absolute encoders with analogue or digital scales
    • G01D5/34784Absolute encoders with analogue or digital scales with only analogue scales or both analogue and incremental scales

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】分解能が高く、コンパクトで低コストのエンコーダ装置を提供する。
【解決手段】エンコーダ装置10の回転板11に、限定された角度範囲をカバーする複数のサブパターンであって、各々異なる幅に設定された複数のサブパターン21からなる識別パターン20を設ける。これらのサブパターン21がライン状のCCD13を検出可能範囲として持つ受光部17を横切るときの幅Wからサブパターン21を特定し、横切る位置Pから回転板11の角度を判断することができる。したがって、回転板11の面積を、角度を測定するためのパターン21で有効活用でき、また、CCD13も変位を測定するためのパターン21で有効活用できる。したがって、分解能が高く、コンパクトで低コストの測定装置1を提供できる。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は、傾斜度や位置検出などに用いられるエンコーダ装置および測定装置に関するものである。
【0002】
【従来の技術】
位置検出や角度検出などにエンコーダ装置が用いられている。特開昭60−225024号に角度センサが開示されており、この角度センサは、一本のらせん状のスリットが形成された遮光板と、この遮光板を挟んで配置された発光素子および光点位置検出素子とを有している。この角度センサは、遮光板が回動することによってスリットの位置が変化し、光点位置検出素子に入射する光の位置が変化するため、回動角を検出することができる。
【0003】
【特許文献1】
特開昭60−225024号公報
【0004】
【発明が解決しようとする課題】
エンコーダ装置に求められる分解能は、エンコーダ装置が組み込まれるシステムまたは装置に応じて変わるが、コンパクトで分解能の高い装置が常に要望される。しかしながら、上記の角度センサでは、コンパクトで分解能を向上することは困難である。すなわち、分解能を高くするためには、微小な角度の変化による光の検出位置の変化を大きくする必要がある。そのために最も簡単な方法は、スリットを通過した後に検出される光の検出位置の変化を大きくすることであり、スリットが周方向に延びた部分の傾きを大きくする必要がある。スリットの傾きを大きくして角度をカバーしようとすれば、必然的に遮光板のサイズ(半径)が大きくなる。このため、角度の変化を高分解能で測定可能であり、さらに、コンパクトで低コストな測定装置を提供することは難しい。
【0005】
一方、スリットを透過した光を検出する位置精度を高めることにより、測定角度の分解能を向上することも可能である。たとえば、光の位置を検出する素子として、CCDなどの撮像素子を用いることができる。そして、理論的には、撮像素子を半径方向に並べた画素数を多くすることにより測定角度の分解能を向上できるので、遮光板のサイズを大きくせずに分解能を上げられる可能性がある。しかしながら、長手方向に1000画素(面積当たりでは、100万画素に対応)が配列された撮像素子を用いても、180度をカバーしようとすると、180度/1000、すなわち、0.2度程度の分解能しか得られない。したがって、高価な高解像度の画像素子を採用しても、それほど高い分解能が得られるということにはならない。さらに、受光側の解像度を上げて分解能を向上するためにはスリットをできるだけ細くして光が透過する幅を狭くする必要があるが、スリットのエッジで光が回折するのでスリットを狭くするとかえって精度が低下することになる。したがって、受光側の解像度を向上しても、現実には、上述したような精度で角度測定ができるわけではない。逆に、回折光による測定誤差が大きくなる可能性もあり、その判断のために余分なソフトウェアあるいはハードウェアが要求される可能性もある。
【0006】
そこで、本発明においては、角度などの変位を、コンパクトで低コストなエンコーダ装置あるいは測定装置を用いて、高分解能で測定または検出可能な測定方法、および測定装置を提供することを目的としている。また、高価な高解像度のCCDなどからなる受光部を採用しなくても、精度良く、高い分解能で変位を測定することができるエンコーダ装置、およびエンコーダ装置を備えた測定装置を提供することも本発明の目的である。
【0007】
【課題を解決するための手段】
このため、本発明においては、光や磁気などを利用して測定ユニットと被測定ユニットとの相対的な変位を測定する際に、1つのパターンにより測定範囲をカバーするのではなく、複数のサブパターンに分けて測定範囲をカバーすると共に、あるサブパターンにより変位を検出することにより、そのサブパターンも特定し、サブパターンを検出するだけで変位を測定できるようにしている。すなわち、本発明においては、識別パターンが付された被測定ユニットと、識別パターンの一部を検出可能な線状の検出可能範囲を備えた測定ユニットであって、識別パターンが当該検出可能範囲を横切る位置および幅を測定可能な測定ユニットとを有するエンコーダ装置を提供する。識別パターンは、被測定ユニットおよび測定ユニットの相対的な変位に伴って検出可能範囲を横切る位置が移動する複数のサブパターンを備えており、各々のサブパターンは、変位の異なる範囲をカバーする部分を具備し、さらに、各々のサブパターンは、検出可能範囲を横切る幅が異なる。
【0008】
このエンコーダ装置を採用すると、識別パターンの一部が、測定ユニットに設けられた線状の検出可能範囲を横切る位置および幅を検出することにより、被測定ユニットおよび測定ユニットの相対的な変位を測定することができる。すなわち、本発明の測定方法は、測定ユニットの検出可能範囲を横切るサブパターンの幅により、そのサブパターンを特定し、サブパターンが検出可能範囲を横切る位置から変位を導出する工程を有している。また、本発明の測定装置は、エンコーダ装置と、検出可能範囲を横切るサブパターンの幅よりサブパターンを特定し、サブパターンが検出可能範囲を横切る位置から変位を導出する手段を有する。したがって、本発明の測定装置および測定方法においては、変位を測定する範囲を、複数のサブパターンに分けてカバーすることが可能であり、1つのサブパターンにより測定すべき変位の範囲を狭くすることができる。このため、1つのスリットなどから構成された識別パターンで測定すべき変位の範囲をカバーするのに比べて遥かに高い分解能で変位を測定することができる。
【0009】
たとえば、検出可能範囲が100画素の撮像素子で構成されたとし、1つの識別パターンで180度の角度範囲をカバーすると、分解能は180度/100程度、すなわち、1.8度程度である。これに対し、20度程度の角度範囲をカバーするサブパターンを複数用いて180度の角度範囲をカバーする場合、被測定ユニットでサブパターンが利用できる距離、たとえば半径方向の長さが変わらないとすると、分解能は20度/100程度、すなわち、0.2度程度に向上する。したがって、識別パターンを複数のサブパターンで構成することにより被測定ユニットのサイズを変えなくても分解能を向上でき、また、測定ユニット側の解像度を上げなくても分解能を向上できる。
【0010】
しかしながら、複数のサブパターンのうちのいずれかであることを特定するための新たにパターンが必要になると、そのパターンを被測定ユニットに配置するためにスペースが必要になり、その新たなパターンを識別するために新たな撮像素子などが必要になる。サブパターンを変えないとすると、被測定ユニットのサイズは増加し、撮像素子の画素数も増やす必要がある。一方、被測定ユニットのサイズを変えずに、サブパターンを認識する新たなパターンを設けると、サブパターンが利用できるスペースあるいは距離が減るので、上記のような高分解能を得ることができない。したがって、高分解能のコンパクトな測定装置を低コストで供給することが難しい。
【0011】
これに対し、本発明においては、各々のサブパターンに、そのサブパターンを特定するための情報も含めており、サブパターンにより変位を検出するときに、サブパターンも特定できるようにしている。したがって、サブパターンを特定するための余分なパターンや、その余分なパターンを検出するための受光素子などのセンサ、たとえば撮像素子が不要なので、被測定ユニットのサイズアップや、測定ユニットのコストアップ、あるいは分解能の低下という事態を避けることが可能となる。このため、高分解能のコンパクトな測定装置を低コストで提供できる。本発明において、各々のサブパターンを特定するための情報は、各々のサブパターンが検出可能範囲を横切る幅である。各々のサブパターンは、検出可能範囲を横切る位置から変位を導出できるようにデザインされているので、各々のサブパターンが検出可能範囲を横切る幅を同時に検出することは容易であり、各々のサブパターンで検出可能範囲を横切る幅を変えておけば、簡単にサブパターンを特定できる。
【0012】
したがって、本発明のサブパターンは、ある程度の幅を備えていることが必要となる。このため、光を用いてサブパターンを検出するときに、幅を検出して、その中央値などによりサブパターンが検出可能範囲を横切る位置を決めるようにすれば、エッジ部分の回折光により検出精度が低下することも防止することができる。このため、本発明のエンコーダ装置は、光により識別パターンを認識するものに適している。光を利用する場合は、測定ユニットに光源および測定可能範囲を持つ受光部を設け、光源から照射された光を受光部に向けて反射する識別パターンを被測定ユニットに設ける反射型のエンコーダ装置を提供することが可能である。反射型は同一方向に光源と受光部が並ぶので、迷光などにより精度が低下しやすいことを考えると、識別パターンは、被測定ユニットを貫通する開口パターンであり、測定ユニットは開口パターンに光を照射する光源と、開口パターンを透過した光を受光する受光部とを備えている透過型のエンコーダ装置が簡易な構造で高精度を得るには適している。
【0013】
さらに、このエンコーダ装置の識別パターンは、サブパターンが特定されて、そのサブパターンが検出可能範囲を横切る位置が決まれば、変位の絶対値が得られる。したがって、複数のパターンをカウントして変位を求める必要はないので、ホームポジションに戻ってカウントをリセットする必要もない。このため、本発明のエンコーダ装置を用いることにより、即座に精度の高い測定値を出力できる測定装置および測定方法を提供できる。
【0014】
本発明のエンコーダ装置、測定方法および測定装置の検出または測定対象となる変位は、被測定ユニットと測定ユニットとの相対的な位置の変動によりサブパターンが検出可能範囲を横切る位置が変動するものであれば良い。そのような変位としては、距離あるいは角度を挙げることができる。
【0015】
角度を検出または測定する場合は、被測定ユニットとしては、偏心した位置に重心があり、旋回中心を中心として旋回可能な回転板を採用できる。そして、サブパターンは、異なる角度の範囲をカバーする。そのようなサブパターンの1つは、旋回中心から周方向に向かってらせん状、またはアルキメデスのスパイラルのように延びているものであり、各々のサブパターンの半径方向の幅は一定で、その半径方向の幅はサブパターン毎に異なるようにすれば、検出可能範囲を半径方向に設定することにより角度を簡単に測定することができる。
【0016】
また、本発明の測定方法は、検出可能範囲を横切るサブパターンの幅により、そのサブパターンを特定し、サブパターンが検出可能範囲を横切る位置から変位を導出する処理を実行可能なプログラムあるいはプログラム製品として適当な記録媒体、たとえばROMなどに記憶して提供することができ、エンコーダ装置を内蔵した測定装置にインストールして測定値を出力したり、パーソナルコンピュータなどにインストールしてエンコーダ装置からのデータを解析して測定値を出力したりすることができる。
【0017】
【発明の実施の形態】
以下に図面を参照して本発明をさらに詳しく説明する。図1(a)に本発明に係る測定装置の外観を示してある。本例の測定装置1は、1軸上での動的および静的な傾斜度を測定し表示することができる傾斜計であり、直方体状のハウジング2の内部にエンコーダ装置(角度センサ)10が内蔵されている。ハウジング2の表面2aには測定した傾斜度が表示されるLCD3と、各種の操作スイッチ4a、4bおよび4cが配置されており、電源の投入を行ったり、傾斜度の表示単位を切り替える操作を簡単にできるようになっている。たとえば、操作スイッチ4aを1秒または数秒押しつづけることにより(長押しすることにより)電源を投入でき、通常モードでは、所定の時間だけ測定されている傾斜を表示した後、自動的に電源をオフする(オートパワーオフモード)。一方、電源が投入された状態で操作スイッチ4aを瞬間的に押す(一瞬押しする)とオートパワーオフモードを解除できる。また、操作スイッチ4bを長押しすることにより、水平時と垂直時にブザーが鳴るモード(ブザーモード)に設定でき、一瞬押しすることにより測定した傾斜度の表示をホールドすることができる。さらに、操作スイッチ4cを長押しすることにより、キャリブレーションを行うことができ、一瞬押しすることにより傾斜度の表示単位を切り替えできる。表示単位は、たとえば、「°」、「%」、「mm/m」および「度分」の4種類から選択できる。
【0018】
図1(b)に傾斜計1のLCD3の表示例を示してある。LCD3は、測定した傾斜度をデジタル表示すると共に、バッテリーの残量、ブザーモードの選択および未選択、オートパワーオフの選択および未選択、選択されている表示単位なども表示する。
【0019】
図2に測定装置1の概略の構成を示してある。測定装置1は、傾きを検出するエンコーダ装置10と、エンコーダ装置10の出力から傾斜度を導出すると共に、操作および表示を始めとする装置全体を制御する制御部30とを有している。エンコーダ装置10は、全体が円盤状で、上半分の半円の部分に識別パターン20が形成された被測定ユニット11を備えており、測定装置1のハウジング2に対して円盤11の中心Oを旋回中心として旋回するようにシャフト14を介して取り付けられている。ディスク状の被測定ユニット(以降では回転板)11の下半分のほぼ中央にはウェイト15が取り付けられている。このため、回転板11の重心は、旋回中心Oから下方にシフトしており、測定装置1のハウジング2を傾斜させると、回転板11は軸14を中心として回転してウェイト15と軸14とが鉛直線に並ぶように動く。したがって、回転板11は、ハウジング2に対して、ハウジング2が傾けられた角度だけ相対的に旋回する。
【0020】
回転板11に設けられた識別パターン20は、回転板11を貫通する開口パターンであり、半円を成すように並んで形成された螺旋状、またはアルキメデスのスパイラル(半直線が中心の周りを一定の角速度で回転するとき、その半直線上を一定の速さで運動する点の描く曲線)の複数のサブパターン21.1〜21.nを備えている。
【0021】
さらに、エンコーダ装置10は、ハウジング2に固定された、あるいはハウジング2とともに動くように取り付けられた光源16と、受光部17とを備えている。この光源16と受光部17とが識別パターン20の動きを検出する測定ユニット12となる。受光部17は、複数の画素により適当な解像度が得られるように列状に配列されたCCD13であり、この列状あるいは線状に延びたCCD13により検出可能範囲が形成されている。また、光源16は、ライン状に配置されたCCD13に対して回転板11を挟んで面するように配置されており、CCD13に対して開口パターン(識別パターン)20を裏面から照明できるようになっている。このため、CCD13には、CCD13と光源16との間を横切る開口パターン20の部分が投影あるいは投写される。すなわち、開口パターン20を構成するサブパターン21.1〜21.nのいずれかを透過した光がCCD13に投影され、CCD13は、サブパターン21.1〜21.nのいずれかと交差している位置と、そのサブパターンの幅Wを検出することができる。
【0022】
図3(a)に、回転板11に形成された識別パターン20を示してある。識別パターン20は、回転板11の周方向に並んで配置されたn個のサブパターン(開口パターンまたはスリット)21.1〜21.nを備えている。これらのスリット21(スリットの全体を示すときはスリット21として示す)は、それぞれが回転板11と測定部12の相対的な角度の変位に伴ってライン状のCCD13を横切る位置が移動するように、回転板11の中心Oから外側に、半径方向に対して斜めに、またはらせん状に延びた形状となるように形成されている。そして、端に位置するスリットを除き、各々のスリット21の中心側および周側は、隣接するスリットの周側および中心側とほぼ平行になるように形成されている。
【0023】
本例の識別パターン20は、10個のサブパターン21.1〜21.10を備えており、個々のサブパターン21は所定の角度範囲θをカバーし、これらのサブパターン21の全体によりほぼ−90度〜+90度の角度範囲をカバーする。このため、本例では、個々のサブパターン21は約20度の角度範囲をカバーすることになる。これらのサブパターン21.1から21.10は、半径方向の幅Wが一定になった形状であり、さらに、各々のサブパターン21で幅Wが異なるように形成されている。本例では、一番左側に位置し、傾斜角が−90度近傍を検出するスリット21.1の幅Wが一番広い。他のスリット21については、右側、すなわち+方向に並んだスリット21の幅Wが徐々に狭くなっており、傾斜角が+90度近傍を検出するスリット21.10の幅が一番狭くなっている。たとえば、最も幅の広いサブパターン21・1の幅が約4.2mmで、最も幅の狭いサブパターン21・10の幅が約2.8mmである。
【0024】
このようなサブパターン21を備えた識別パターン20を用いて、CCD13を横切ったサブパターン21の幅Wと、横切った位置とを検出することができる。横切った位置を代表する値は、サブパターン21の幅Wの上下の端のいずれでも良いが、幅Wの端の部分は、サブパターン21のエッジにより形成されるので、エッジの回折光の影響があり精度が低下しやすい。このため、本例では、幅Wの中心の位置Pを横切った位置を示す値としている。サブパターン21がCCD13を横切った部分の幅は、光を検出したCCDの画素数で示すことが可能であり、それら光を検出した画素列の中心の画素の位置を横切った位置として使うことができる。
【0025】
各々のサブパターン21は幅Wが異なるので、CCD13を横切った幅Wが検出されることにより、その幅WからCCD13を横切っているサブパターン21が一義的に決まる。サブパターン21が特定されると、そのサブパターン21により測定可能な角度範囲は決まっているので、その角度範囲にあることが分かる。たとえば、最も幅の広いサブパターン21.1であることがわかれば、測定装置1は、水平な位置から−90度〜−70度の範囲に傾いていることが分かる。
【0026】
さらに、個々のサブパターン21は、傾斜角度によりCCD13を横切る位置Pが変わるようにデザインされているから、位置Pが特定されれば、回転板11とハウジング2との相対的な傾斜φは一義的に決まる。したがって、図3(b)に示すようにハウジング2が傾いたとすると、その傾きφは、ハウジング2に固定された測定ユニット12の受光部、すなわちCCD13と、回転板11との相対的な角度変化φとして反映される。本例の測定装置1においては、CCD13により、CCD13を横切るスリット21の幅Wと位置Pを検出し、図3(b)の状態のときにCCD13に面する回転板11の位置(角度)を知ることができるので、図3(a)の状態のときにCCD13に面した回転板11の位置(角度)との差から、回転板11が旋回した角度φを求めることができ、その角度φが測定装置1で測定した傾斜となる。
【0027】
図4に、本例の回転板11に設けられたサブパターン21.1〜21.10がCCD13で検出される位置PをY軸に示し、位置Pにより決まる回転板11の角度をX軸に示してある。本図4に示した角度は傾斜φで示してあり、ハウジング2が水平に置かれたときの回転板11の位置あるいは角度φを0としている。本例の回転板11においては、180度の角度範囲を10本のスリット21.1〜21.10に分割して(一部は重複しているが)カバーする。このため、角度φの変化に対して、サブパターン21がCCD13を横切る位置Pの変化は非常に大きく、直線Bで示すようになる。したがって、CCD13の解像度を増やさなくても測定される傾斜φの分解能を高めることができる。これに対し、180度の範囲を1本のスリットでカバーしようとすれば、図中に示した直線Aのように、角度φの変化に対して、サブパターン21がCCD13を横切る位置Pの変化は小さい。したがって、測定される傾斜φの分解能は低い。CCD13の画素数が1000画素とすると、180度の範囲を1つのスリットで検出しようとすると、180/1000(0.18)度の分解能しか得られない。これに対し、本例のエンコーダ装置10では、20/1000(0.02)度と一桁高い分解能が得られる。
【0028】
そして、本例の測定装置1においては、位置Pを決めるときにスリット21がCCD13を横切る幅Wを検出し、それによりスリット21を特定することができる。したがって、スリット21.1〜21.10のいずれかであることを判別するために、新たなスリットは不要であり、また、その新たなスリットを検出するためのCCDも不要である。このため、回転板11の面積を、直に角度を検出するためのスリット(サブパターン)21を配置するために利用することができる。たとえば、識別パターン20を複数のサブパターン21で構成したとしても、そのサブパターン21を特定するために新たなパターンが必要になると、その新たなパターンによりY方向の距離が消費される。このため、サブパターン21が占める面積が小さくなってしまい分解能が低下することになる。しかしながら、本発明においては、サブパターン21の形状に、サブパターン21を特定するための情報が組み込まれているので、新たなパターンは不要であり、回転板11の面積を最大限に利用してコンパクトで分解能の高い測定装置1を提供できる。
【0029】
また、サブパターン21を特定するために新たなパターンが要求されると、そのパターンを検出するためにCCD13の上半分などが使われることになる。したがって、サブパターン21を検出するためのCCD13が減るので、この点でも、傾斜計の分解能が低下する。しかしながら、本発明においては、新たなパターンは不要であり、CCD13のすべてを、サブパターン21により角度を検出するために利用できる。したがって、この点でも、コンパクトで、分解能の高い、高精度の測定装置1を低コストで提供できる。
【0030】
図2に示した測定装置1の制御ユニット30はマイクロコンピュータなどにより構成することが可能であり、制御ユニット30は、光源16を駆動する光源制御部31と、受光部17のCCD13の出力から傾斜度を導出する導出部32と、LCD3を制御する表示制御部33と、操作スイッチ4a、4bおよび4cの操作により傾斜計1の動作モードや表示モードを設定する設定部34とを備えている。導出部32は、CCD13の出力からCCD13を横切っているサブパターン21の幅Wを求めて、そのサブパターン21を特定する特定部35と、同時に求められるCCD13を横切っているサブパターン21の位置Pにより回転板11の角度φを求める変換部36とを有している。特定部35においては、スリット21の幅Wにより決まるスリット21は予め分かっているので、ルックアップテーブルや簡易な関数を用いるなどの簡易な仕様で構成できる。また、変換部36においても、スリット21が決まれば、サブパターン21が横切る位置Pと角度φとの関係は予め分かるので、ルックアップテーブルや適当な関数を用いて位置Pから角度φに変換することができる。したがって、傾斜φを求めるために必要なハードウェアも少なくて済み、この点でも、コンパクトで、分解能の高い傾斜計を低コストで提供できる。
【0031】
図5に、測定装置1におけて傾斜を求める処理を、フローチャートを用いて示してある。まず、ステップ41において、CCD13をスキャンし、ステップ42において、導出部32にデータが送られ、CCD13の光が照射されている位置と光が照射されていない影の位置が求められる。そして、ステップ43において、CCD13を横切っているサブパターン(またはスリット)21が2つある場合は、ステップ44において、一方のスリット21を選択する。たとえば、いずれか一方のスリット21の位置Pから、2つのスリット21のいずれでも測定できる角度範囲の中心よりどちらのスリットに近いかを判断し、近い方のスリットをステップ44において選択する。隣接する2つのスリット21のいずれでもカバーできる範囲を設けておくことにより、CCD13は、必ず1つ以上のスリット21を検出するので、CCD13でスリットが測定できなくなるような不安定な条件を排除することができ、信頼性の高い傾斜計を提供できる。
【0032】
次に、ステップ45において、特定部35により、CCD13から得られた光の幅Wに基づいてスリット21を特定し、変換部36により、光幅Wの中心の位置(スリットの位置)Pから、選定されたスリット21がカバーしている角度範囲内の詳細な角度φを導出する。
【0033】
これらのステップ41〜ステップ45の処理を予め設定されたm回繰り返して行い、ステップ46で得られた角度φの平均を算出することにより表示する角度を求める。これにより、測定装置1を傾けて設置したときに、回転板11の旋回が収束するまえに、測定装置1の角度φを求めることが可能となり、短時間に精度のよい測定結果を表示することが可能となる。そして、ステップ47において、上記の工程により得られた角度φを選択されている単位でLCD3に表示する。
【0034】
測定装置1に内蔵されたエンコーダ装置10を用いて傾斜φを求める処理は、測定装置1の制御ユニット30を構成するマイクロコンピュータなどに図5に示した処理を実行させる命令を備えたプログラム(ファームウェア、プログラム製品)として提供することが可能である。また、エンコーダ装置10だけをロボットの関節などに取り付けて旋回角度を集中して管理するようなシステムも可能であり、そのときは、管理側のホストコンピュータに、図5に示した処理を実行可能なプログラムをインストールすることにより、旋回角度を簡単に、そして迅速に求めることができる。
【0035】
このように本例のエンコーダ装置10では、複数のサブパターン21を設けることによりカバーする角度範囲を分割して分解能を向上すると共に、各々のサブパターン21の幅Wを変えることでサブパターン21を検出するだけでサブパターン21を特定できるようにしている。したがって、サブパターンを特定するための余分なパターンや、その余分なあるいは追加のパターンを認識するためのCCDは不要であり、シンプルな構成で分解能の高い測定結果が得られるコンパクトなエンコーダ装置を提供することができる。
【0036】
図6(a)および(b)に、上記と異なる識別パターンを備えたエンコーダ装置10と、それを内蔵した測定装置1を示してある。本例の識別パターン50は、回転板11の旋回中心Oから半径方向に直線状に延びる4本のサブパターン51.1〜51.4を備えており、これらのサブパターン51がほぼ90度間隔で配置されている。すなわち、個々のサブパターン51.1〜51.4によりほぼ90度の角度範囲がカバーされ、全体として360度の範囲を測定することができる。一方、受光部17は、ライン状のCCD13がハウジング2を水平にしたときに水平方向に延びるように配置されている。各々のサブパターン51.1〜51.4は、回転板11の角度φが変わったときにCCD13を横切る幅Wも変わる形状であるが、各々のサブパターン51.1〜51.4がCCD13を横切る幅Wは一致することがないような形状になっている。たとえば、サブパターン51.1〜51.4は、2の平方根(√2)倍以上の幅Wの差があるように設計されている。このような識別パターン50を回転板11に付すことによっても、サブパターン51がCCD13を横切る幅Wを検出することにより、その幅Wが所定の範囲に入ることからサブパターン51を特定することが可能である。このため、上記と同様の手順、すなわち、検出可能範囲であるCCD13を横切るサブパターン51を光の幅Wから特定すると共に、特定したサブパターン51の位置Pから詳細な角度φを導出することができる。
【0037】
このように、本例の測定装置1では、回転板11の面積を、角度を測定するためのパターン21または51で有効活用でき、また、CCD13の全長を、変位を測定するためのパターン21また51で有効活用できる。したがって、分解能が高く、コンパクトで低コストの測定装置1を提供できる。
【0038】
本発明の測定方法は、サブパターン21または51を特定し、そのサブパターン21または51がCCD13を横切る位置から被測定ユニット(上記では回転板)と測定ユニットとの相対的な変位の絶対値を求めることができる。したがって、測定を開始する前に被測定ユニットと測定ユニットとの条件をリセットしたり、ホームポジションを設けたりする必要がない。このため、いったん校正した測定装置であれば、基準となる条件をその都度設定しなくても測定を開始することが可能であり、角度や距離などの変位を迅速に、そして精度良く測定できる。
【0039】
また、360度の範囲を測定する方法としては、図3に詳細に示した回転板11のウェイト15を回転板11の外側あるいはそれ以外の部分に取り付け、残りの半分の領域にもサブパターンを追加することによっても実現できる。たとえば、回転板11の中心軸に繋がったシャフトにウェイトを取り付けることにより回転板11に対し直にウェイトを取り付けずに済む。さらに、360度の範囲を測定しようとすると、幅の異なるサブパターンの数を増やす必要が生じ、幅が細すぎたり、太すぎると測定誤差の要因となる可能性がある。したがって、上下のいずれの領域(180度単位)であるかを識別するためのパターンを追加することにより、上下の領域で同じ上記にて開示したようなサブパターンを使用することが可能になる。上下の領域を特定するパターンはいずれの領域であるかを識別できる程度の簡易なパターンで良いので、回転板に占める面積としては少なくて済む。したがって、回転板をほとんどサイズアップすることなく、その程度のパターンを追加することは可能である。
【0040】
さらに、光源16と受光部17とからなる測定ユニット12に拡大光学系を採用することも有効である。拡大光学系とすることにより、CCD13を長くでき、分解能を向上できる。あるいは逆に、回転板11をさらにコンパクトにすることも可能である。そのような拡大光学系の一例は、光源であるLEDの前方にピンホールを配置し、回転板を挟んである程度の距離を開けて逆側のCCDを配置したものであり、CCDの上にサブパターンの像が拡大して投影されるので、検出可能な範囲を延長することができる。もちろん、レンズなどの光学素子を用いて拡大光学系を構成することも可能である。
【0041】
なお、上記では、回転板とハウジングとの相対的な角度を変位として検出するエンコーダ装置に基づき本発明を説明したが、本発明は、被測定ユニットと測定ユニットとの間の移動距離や、角度や長さで表される相対的な位置を検出するエンコーダ装置にも適用可能である。たとえば、幅Wの異なるサブパターン21を図4に示したように配置することによりリニアエンコーダを構成することができる。
【0042】
また、上記では、回転板11を貫通する識別パターンを備えた例を示しているが、識別パターンを反射型とし、光源16と同じ側に受光部17を設けることも可能である。さらに、上記の例では受光部の線状の検出可能範囲をCCDにより構成しているが、フォトトランジスタやその他の受光素子をライン状に並べることにより構成することも可能である。また、識別パターンを認識する手段は、光に限らず、磁気を用いてサブパターンが横切る部分の幅を検出したり、圧力センサなどの機械的なセンサでサブパターンが前面を横切る幅を検出するような構成のエンコーダ装置も本発明により提供可能である。
【0043】
【発明の効果】
以上に説明したように、本発明においては、被測定ユニットに複数のサブパターンからなる識別パターンを設けることにより、識別パターン全体がカバーする変位の範囲を分割して、測定精度と分解能の向上を図ると共に、各々のサブパターンが検出可能範囲を横切る幅が異なるようにしてサブパターン自身によりサブパターンが特定できるようにしている。したがって、検出または測定可能な範囲を横切っているサブパターンを検出するだけで、サブパターンを特定し、横切っている位置から被測定ユニットと測定ユニットとの変位を測定できる。このため、被測定ユニットの面積を、変位を測定するためのパターンで占有し、有効活用することができ、また、CCDなどのパターンを検出する手段も変位を測定するためのパターンで占有し、有効活用できる。したがって、本発明により、分解能が高く、コンパクトで低コストの測定装置を提供できる。
【図面の簡単な説明】
【図1】図1(a)は本発明に係るエンコーダ装置が搭載された測定装置の外観を示す図であり、図1(b)は測定装置の表示部を拡大して示す平面図である。
【図2】図1に示す測定装置の概略構成を示す図である。
【図3】エンコーダ装置の動作を示す図であり、図3(a)は水平状態を示し、図3(b)は傾斜した状態を示す。
【図4】本発明の測定方法を示す図である。
【図5】測定装置の制御を示すフローチャートである。
【図6】異なる識別パターンが付されたエンコーダ装置の動作を示す図であり、図6(a)は水平状態を示し、図6(b)は傾斜した状態を示す。
【符号の説明】
1 測定装置
10 エンコーダ装置
11 回転板(被測定ユニット)
12 測定ユニット
13 CCD(検出可能範囲)
20、50 識別パターン
21.n、51.n サブパターン
30 制御部
32 導出部

Claims (9)

  1. 識別パターンが付された被測定ユニットと、
    前記識別パターンの一部を検出可能な線状の検出可能範囲を備えた測定ユニットであって、前記識別パターンが当該検出可能範囲を横切る位置および幅を測定可能な測定ユニットとを有し、
    前記識別パターンは、前記被測定ユニットおよび測定ユニットの相対的な変位に伴って前記検出可能範囲を横切る位置が移動する複数のサブパターンを備えており、
    各々の前記サブパターンは、前記変位の異なる範囲をカバーする部分を具備し、前記検出可能範囲を横切る幅が異なるエンコーダ装置。
  2. 請求項1において、前記識別パターンは、前記被測定ユニットを貫通する開口パターンであり、前記測定ユニットは前記開口パターンに光を照射する光源と、前記開口パターンを透過した光を受光する受光部とを備えているエンコーダ装置。
  3. 請求項1において、前記被測定ユニットは、偏心した位置に重心があり、旋回中心を中心として旋回可能な回転板であり、前記変位は角度であり、前記サブパターンは、異なる角度の範囲をカバーするエンコーダ装置。
  4. 請求項3において、前記サブパターンは、前記旋回中心から周方向に向かってらせん状に延びているエンコーダ装置。
  5. 請求項4において、各々のサブパターンの半径方向の幅は一定で、その半径方向の幅がサブパターン毎に異なるエンコーダ装置。
  6. 請求項1ないし5のいずれかに記載のエンコーダ装置と、
    前記検出可能範囲を横切るサブパターンの幅よりサブパターンを特定し、サブパターンが前記検出可能範囲を横切る位置から前記変位を導出する手段を有する測定装置。
  7. 請求項6において、当該測定装置は、前記導出する手段により前記変位として角度を導出する傾斜計である測定装置。
  8. 被測定ユニットに付された識別パターンの一部を測定ユニットにより検出し、前記被測定ユニットおよび測定ユニットの相対的な変位を導出する測定方法であって、
    前記測定ユニットは、前記識別パターンの一部を検出可能な線状の検出可能範囲を備えており、前記識別パターンは、前記相対的な変位に伴って前記検出可能範囲を横切る位置が移動する複数のサブパターンを備えており、各々の前記サブパターンは前記変位の異なる範囲をカバーする部分を具備し、前記検出可能範囲を横切る幅が異なり、さらに、
    前記検出可能範囲を横切る前記サブパターンの幅により、そのサブパターンを特定し、前記サブパターンが前記検出可能範囲を横切る位置から前記変位を導出する工程を有する測定方法。
  9. 被測定ユニットに付された識別パターンの一部を測定ユニットにより検出し、前記被測定ユニットおよび測定ユニットの相対的な変位を導出する測定装置の制御プログラムであって、
    前記測定ユニットは、前記識別パターンの一部を検出可能な線状の検出可能範囲を備えており、前記識別パターンは、前記相対的な変位に伴って前記検出可能範囲を横切る位置が移動する複数のサブパターンを備えており、各々の前記サブパターンは前記変位の異なる範囲をカバーする部分を具備し、各々の前記サブパターンが前記検出可能範囲を横切る幅は異なり、さらに、
    前記検出可能範囲を横切るサブパターンの幅により、そのサブパターンを特定し、前記サブパターンが前記検出可能範囲を横切る位置から前記変位を導出する処理を実行可能な制御プログラム。
JP2002263047A 2002-09-09 2002-09-09 エンコーダ装置および測定装置 Pending JP2006078178A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002263047A JP2006078178A (ja) 2002-09-09 2002-09-09 エンコーダ装置および測定装置
AU2003262009A AU2003262009A1 (en) 2002-09-09 2003-09-09 Encoder device and measuring instrument
PCT/JP2003/011475 WO2004023079A1 (ja) 2002-09-09 2003-09-09 エンコーダ装置および測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263047A JP2006078178A (ja) 2002-09-09 2002-09-09 エンコーダ装置および測定装置

Publications (1)

Publication Number Publication Date
JP2006078178A true JP2006078178A (ja) 2006-03-23

Family

ID=31973176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263047A Pending JP2006078178A (ja) 2002-09-09 2002-09-09 エンコーダ装置および測定装置

Country Status (3)

Country Link
JP (1) JP2006078178A (ja)
AU (1) AU2003262009A1 (ja)
WO (1) WO2004023079A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064612A (ja) * 2009-09-18 2011-03-31 Yaskawa Electric Corp ロータリエンコーダ、ロータリモータ、ロータリモータシステム、ディスク及びロータリエンコーダの製造方法
WO2011090177A1 (ja) * 2010-01-22 2011-07-28 株式会社 トプコン 傾斜検出装置及びレーザ測量機
JP2011257166A (ja) * 2010-06-07 2011-12-22 Yaskawa Electric Corp エンコーダ、サーボモータ、サーボユニット及びエンコーダの製造方法
EP2434261A3 (en) * 2010-09-24 2014-05-21 Canon Kabushiki Kaisha Optical rotation encoder
US9024567B2 (en) 2011-06-06 2015-05-05 Canon Kabushiki Kaisha Driving apparatus, camera platform apparatus and lens apparatus including the driving apparatus, and driving method of controlling the driving apparatus
JP2016205855A (ja) * 2015-04-16 2016-12-08 株式会社小野測器 ロータリエンコーダ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000720A1 (en) * 1988-07-12 1990-01-25 Furuno Electric Company, Limited Rotary encoder
JPH0372314U (ja) * 1989-11-16 1991-07-22
JPH10111148A (ja) * 1996-10-04 1998-04-28 Seiko Precision Kk 回転角度検出装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064612A (ja) * 2009-09-18 2011-03-31 Yaskawa Electric Corp ロータリエンコーダ、ロータリモータ、ロータリモータシステム、ディスク及びロータリエンコーダの製造方法
US8546744B2 (en) 2009-09-18 2013-10-01 Kabushiki Kaisha Yaskawa Denki Rotary encoder, rotary motor, rotary motor system, disk, and method of manufacturing rotary encoder
WO2011090177A1 (ja) * 2010-01-22 2011-07-28 株式会社 トプコン 傾斜検出装置及びレーザ測量機
JP2011149854A (ja) * 2010-01-22 2011-08-04 Topcon Corp 傾斜検出装置及びレーザ測量機
US8857069B2 (en) 2010-01-22 2014-10-14 Kabushiki Kaisha Topcon Tilt detecting device and laser surveying instrument
JP2011257166A (ja) * 2010-06-07 2011-12-22 Yaskawa Electric Corp エンコーダ、サーボモータ、サーボユニット及びエンコーダの製造方法
US8445835B2 (en) 2010-06-07 2013-05-21 Kabushiki Kaisha Yaskawa Denki Encoder, servo unit and encoder manufacturing method
EP2434261A3 (en) * 2010-09-24 2014-05-21 Canon Kabushiki Kaisha Optical rotation encoder
US9024567B2 (en) 2011-06-06 2015-05-05 Canon Kabushiki Kaisha Driving apparatus, camera platform apparatus and lens apparatus including the driving apparatus, and driving method of controlling the driving apparatus
JP2016205855A (ja) * 2015-04-16 2016-12-08 株式会社小野測器 ロータリエンコーダ

Also Published As

Publication number Publication date
AU2003262009A1 (en) 2004-03-29
WO2004023079A1 (ja) 2004-03-18

Similar Documents

Publication Publication Date Title
US7135673B2 (en) Imaging rotation angle absolute encoder
JP4327735B2 (ja) 光回転角度トランスミッタ及び回転角度トランスミッタのコード円板を走査する方法
US9541382B2 (en) Rotation angle detecting apparatus and surveying instrument
EP2136178A1 (en) Geometry measurement instrument and method for measuring geometry
WO2009103342A1 (en) Angle measurement device and method
CN101715542B (zh) 找平设备和方法
US9228858B2 (en) Rotation angle detecting apparatus
TWI360643B (ja)
EP1688711B1 (en) Optical encoder
JP5168106B2 (ja) 回転円板の偏心測定方法
JPS61128111A (ja) 測定チヤートを備えた対象物の角度変位の測定方法
JP7502887B2 (ja) 光学式位置測定装置
JP2006078178A (ja) エンコーダ装置および測定装置
JP2005517896A5 (ja)
JP5085440B2 (ja) ロータリエンコーダ及びロータリエンコーダの角度補正方法
JP3683375B2 (ja) ロータリエンコーダ
JP6571733B2 (ja) 回転角を特定するための角度測定装置
JP2007064949A (ja) ロータリエンコーダ
JP2004208299A (ja) センサアセンブリにおけるアセンブリおよび位置合わせエラーを測定するための標的、方法および装置
KR100654205B1 (ko) 감도 분포를 측정하는 측정 방법 및 장치
WO2020026978A1 (ja) 角度検出システムおよび角度検出方法
JP2005292037A (ja) 角度測定装置
CN103185569B (zh) 旋转臂倾角仪以及显示旋转臂转角的方法
US20220146678A1 (en) Range image sensor and angle information acquisition method
JP4428827B2 (ja) 測量機の測角装置