WO2003103898A1 - 残膜モニタ装置、研磨装置、半導体デバイスの製造方法及び半導体デバイス - Google Patents

残膜モニタ装置、研磨装置、半導体デバイスの製造方法及び半導体デバイス Download PDF

Info

Publication number
WO2003103898A1
WO2003103898A1 PCT/JP2003/006913 JP0306913W WO03103898A1 WO 2003103898 A1 WO2003103898 A1 WO 2003103898A1 JP 0306913 W JP0306913 W JP 0306913W WO 03103898 A1 WO03103898 A1 WO 03103898A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polished
monitoring device
film
wafer
Prior art date
Application number
PCT/JP2003/006913
Other languages
English (en)
French (fr)
Inventor
若宮 孝一
上田 武彦
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2003103898A1 publication Critical patent/WO2003103898A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Definitions

  • the present invention relates to a residual film monitoring device for monitoring the state of a film remaining to be polished over the entire surface or a wide region of a surface to be polished of a workpiece such as a semiconductor wafer, a polishing apparatus using the same, a method for manufacturing a semiconductor device, This is related to semiconductor devices.
  • the present invention relates to a method for monitoring the state of a remaining electrode layer or an insulating layer, for example, in a step of removing an electrode layer or an insulating layer on a surface of a semiconductor element or a film forming step in a semiconductor device manufacturing process.
  • the present invention can be applied to a membrane module and a polishing apparatus using the same. Background art
  • CMP Chemical Mechanical Polishing or Planarization
  • Planarization is a process that removes surface irregularities on a wafer using physical polishing in combination with a chemical action (melting with a polishing agent or solution).
  • the polishing is advanced by pressing the wafer surface with a suitable polishing cloth using a polishing agent and moving the wafer relative to each other, thereby enabling uniform polishing within the wafer surface.
  • the polishing status monitoring device that monitors the polishing status during polishing is also called an end point detector or the like.
  • polishing state monitoring device examples include a device that determines an end point of polishing from characteristics of reflected light or transmitted light obtained by irradiating a local region of a wafer with probe light.
  • An example of such a polishing state monitoring device is disclosed in Japanese Patent Application Publication No. 2000-400680.
  • the present invention has been made in view of such circumstances, and provides a residual film monitoring device capable of appropriately monitoring the state of a film remaining after polishing in the entire region or a wide region of the surface to be polished.
  • the purpose is to provide.
  • Another object of the present invention is to provide a polishing apparatus that has a high yield and can prevent excessive cutting (excessive polishing).
  • the present invention provides a semiconductor device manufacturing method capable of manufacturing a semiconductor device with improved yield and a small product variation as compared with a conventional semiconductor device manufacturing method, and a low-cost and small product variation. It is an object to provide a semiconductor device.
  • a residual film monitoring device for monitoring a state of a polishing residual film in an entire area or a wide area of a surface to be polished of an object to be polished.
  • An image information acquisition unit that acquires color image information of a bright field image of the entire surface or the wide area of the surface of the object to be polished illuminated by light, and a state of the remaining polishing film based on the color image information.
  • a processing unit that obtains a monitoring result indicating the following.
  • the object to be polished is a semiconductor wafer
  • the wide area is an area including an area for a plurality of chips.
  • the term “color” is not limited to the case where the three components R (red), G (green), and B (blue) are included. For example, any one of R, G, and B Only minutes may be included. These points are the same for each invention described later.
  • a second invention for achieving the above object is the first invention, wherein the monitoring result includes the presence or absence of the unpolished film.
  • a third invention for achieving the above object is the first invention or the second invention, wherein the monitoring result includes information indicating the position of the unpolished film. It is.
  • a fourth invention for achieving the above object is any one of the first invention to the third invention, wherein the bright field image is a blurred image.
  • a fifth invention for achieving the above object is any one of the first invention to the fourth invention, wherein the image information acquisition unit acquires the color image information substantially collectively. It is characterized by being.
  • a sixth invention for achieving the above object is any one of the first invention to the fourth invention, wherein the image information acquisition unit acquires the color image information gradually by scanning. It is characterized by the following.
  • a seventh invention for achieving the above object is any one of the first invention to the fourth invention, wherein the image information obtaining unit converts the color image information into a rotation of the object to be polished. It is characterized by being acquired gradually by the accompanying scan.
  • An eighth invention for achieving the above object is any one of the first invention to the seventh invention, wherein the processing unit is configured to execute the image indicated by the color image information or a predetermined process on the image.
  • a ninth invention for achieving the above object is the eighth invention, wherein the predetermined process is a smoothing process.
  • the predetermined process is a smoothing process.
  • a tenth invention for achieving the above object is the eighth invention or the ninth invention, wherein the relative values of the intensity values of a plurality of colors at substantially the same position in an image are included.
  • the value indicating the relationship includes a difference or a ratio between intensity values of two colors at substantially the same position in the image.
  • An eleventh invention for achieving the above object is the tenth invention, wherein the determination unit determines whether or not the polishing residue is present based on the presence or absence of an in-image position where the difference or ratio falls within a predetermined range. It is characterized by determining the presence or absence of a film.
  • a twelfth invention for achieving the above object is the tenth invention or the eleventh invention, wherein the determination unit is located at a position in an image where the difference or ratio falls within a predetermined range. Accordingly, information on the position of the unpolished film is obtained.
  • a thirteenth invention for achieving the above object is any one of the first invention to the twelve invention, wherein at least one of an image indicated by the color image information and an image obtained by processing the image is provided.
  • a display unit for displaying one of them is provided.
  • a fourteenth invention for achieving the above object is any one of the first invention to the thirteenth invention, wherein at least one of an image indicated by the color image information and an image obtained by processing the image is provided.
  • a storage unit for storing one of them is provided.
  • a fifteenth invention for achieving the above object is any one of the first invention to the fifteenth invention, wherein the object to be polished is a semiconductor wafer. .
  • a sixteenth aspect of the present invention for achieving the above object is to provide a polishing apparatus, wherein a polishing agent is interposed between a polishing body and an object to be polished, and a load is applied between the polishing body and the object to be polished, And by relatively moving, the object to be polished is polished,
  • a polishing apparatus characterized in that the polishing apparatus further comprises a residual film monitoring device for monitoring the state of the unpolished film in the whole or wide area of the surface to be polished of the object to be polished.
  • a first aspect of the present invention for achieving the above object is the 16th aspect of the present invention, further comprising a polishing state monitoring device for monitoring a polishing state of the object to be polished during the polishing. Things.
  • An eighteenth invention for achieving the above object has a state in which one or more polishing zones are provided, and an abrasive is interposed between the polishing body and the object to be polished in the one or more polishing zones.
  • It is characterized by being provided in at least one of the one or more polishing zones.
  • a nineteenth invention for achieving the above object is the eighteenth invention, wherein the number of the one or more polishing zones is two or more, and the object to be polished is the one or more polishing zones.
  • the polishing is sequentially performed in a polishing zone, and the remaining film monitoring device is installed in at least one polishing zone of the one or more polishing zones in which the object to be polished is polished secondly or later. It is characterized by having.
  • a twenty-first invention for achieving the above object is any one of the seventeenth invention to the nineteenth invention, wherein the residual film monitoring device is configured to perform the polishing according to a monitoring result of the polishing state monitoring device. After the polishing of the object to be polished is stopped, the state of the unpolished film is monitored in-line, and the polishing apparatus performs a different operation according to the monitoring result of the remaining film monitoring device.
  • a twenty-first invention for achieving the above object is the twenty-second invention, wherein the polishing remaining film is present when a monitoring result of the remaining film monitoring device indicates that the remaining polishing film is present.
  • the object to be polished is polished so as to reduce or eliminate the polishing.
  • a twenty-second invention for achieving the above object is any one of the sixteenth invention to the twenty-first invention, wherein the residual film monitoring device is configured such that the object to be polished is held at a polishing position. In this state, the state of the unpolished film is monitored.
  • a twenty-third invention for achieving the above object is any one of the sixteenth invention to the twenty-second invention, wherein the residual film monitoring device is arranged such that the polishing body is located immediately above a workpiece. The state of the unpolished film is monitored in a state in which the film is evacuated.
  • a twenty-fourth invention for achieving the above object is any one of the sixteenth invention to the twenty-third invention, wherein the residual film monitoring device is the first invention to the fifteenth invention.
  • the remaining film monitoring device according to any one of the above.
  • a twenty-fifth invention for achieving the object is the twenty-fourth invention, wherein the illumination light passes through a predetermined region of a ceiling of the polishing apparatus or a predetermined region of a member provided near the ceiling.
  • the laser beam is emitted from a predetermined region of the ceiling or a predetermined region of a member provided near the ceiling to irradiate the entire surface or a wide region of the surface of the object to be polished.
  • a twenty-sixth invention for achieving the object is any one of the sixteenth invention to the twenty-fifth invention, wherein the object to be polished is a semiconductor wafer.
  • a twenty-seventh invention for achieving the above object is a sixteenth invention from the sixteenth invention. 26.
  • a method of manufacturing a semiconductor device comprising the step of flattening the surface of a semiconductor wafer by using the polishing apparatus according to any one of the twenty-sixth inventions (the twenty-eighth invention for achieving the above object). Is a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the 27th aspect of the present invention.
  • FIG. 1 is a schematic top view schematically showing a polishing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic top view showing a state of processing a wafer by the polishing apparatus shown in FIG.
  • FIG. 3 is a schematic cross-sectional view schematically showing a semiconductor wafer polished by the polishing apparatus shown in FIG. 1, and FIG. 3 (a) shows a wafer state before polishing.
  • FIG. 4 is a schematic flowchart showing the operation of the polishing apparatus shown in FIG.
  • FIG. 5 is a schematic top view schematically showing a main part of a polishing apparatus according to another embodiment.
  • the diameter of the index table shown by the solid line may be small in FIG. 5 (a) and large in FIG. 5 (b).
  • FIG. 6 is a schematic configuration diagram showing a residual film monitoring device used in the polishing apparatus shown in FIG.
  • FIG. 7 is a diagram showing an optically developed arrangement of the optical system of the residual film monitoring device shown in FIG.
  • FIG. 8 is an expanded view of a modification of the arrangement of the optical system of the residual film monitoring device.
  • FIG. 9 is a schematic flowchart showing an example of the operation of the residual film monitoring device shown in FIG.
  • FIG. 10 is a diagram showing experimental data when no copper residue exists.
  • FIG. 11 is a diagram illustrating an experiment when copper remains.
  • FIG. 12 is a diagram schematically showing an example of a processed image obtained by the processing section of the residual film monitoring device shown in FIG. 1, and FIG. 12 (a) shows a state in which no copper residue exists. FIG. 12 (b) shows a state where copper remains.
  • FIG. 13 is a flowchart showing a semiconductor device manufacturing process. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic top view schematically showing a polishing apparatus 1 according to one embodiment of the present invention.
  • FIG. 2 is a schematic top view showing a state of processing a wafer by the polishing apparatus 1 shown in FIG.
  • FIG. 1 omits a residual film monitoring device 400 described later
  • FIG. 2 omits a polishing state monitoring device 500a described later.
  • the polishing apparatus 1 is an example of a CMP apparatus that precisely and flatly polishes a semiconductor wafer as an object to be polished in a three-stage polishing process.
  • the polishing apparatus 1 is mainly composed of a cassette index unit 100, a wafer cleaning unit 200, and a polishing unit 300, each of which is individually partitioned.
  • a clean chamber is configured.
  • an automatic opening / closing shut-down may be provided between each room.
  • the cassette index section 100 includes a wafer mounting table 120 on which cassettes (also referred to as carriers) holding a plurality of wafers C1 to C4 and an unprocessed wafer are taken out from the cassette.
  • Cleaning unit 200 Cleaning unit 200
  • the first transfer robot 150 that carries the wafers that have been washed in the wafer cleaning unit 200 after polishing into the temporary placing table 211 and stores them in a cassette. Is configured.
  • the first transfer robot 150 is an articulated arm type robot having two articulated arms 153a and 153b.
  • a swivel table 152 that can be moved up and down, two articulated arms 153a, 153b mounted on the swivel table 152, each arm at the end of each articulated arm 153a, 153b A and B arms 155b and 155b (the B-arm 155b is offset below the A-arm 155a, and ).
  • a holding part for mounting and holding the wafer by suction is formed at the tip of the A-arm 155a and the B-arm 155b.
  • the base 15 1 is provided with a linear moving device that is horizontally movable along a linear guide 160 provided on the floor surface.
  • the first transfer robot 150 moves in front of the target cassette along the linear guide 160, and turns the swivel table 152 horizontally and vertically to operate the A arm 155 a or B Move the arm 155b to the desired slot height, and operate the articulated arm 153a and the A arm 155a, or the articulated arm 153b and the B arm 155b to activate the A arm.
  • the unprocessed wafer in the target slot can be sucked and held and taken out by the holding portion at the distal end of the 55a or B arm 155b, or the processed wafer can be stored in the target slot.
  • these two pairs of arms 1555a and 155b which are arranged offset in the vertical direction, are configured functionally equivalent, either of which is used for taking out or storing, or one of them. It is possible to adopt a configuration in which only the arm is used for both purposes, but in the polishing machine shown in the figure, the unprocessed wafer is taken out of the cassette with the lower B-arm 155 b, and the processed wafer after cleaning Is set to be stored in the cassette by the upper A-arm 1555a.
  • the wafer cleaning section 200 has a four-chamber configuration of a first cleaning chamber 210, a second cleaning chamber 220, a third cleaning chamber 230, and a drying chamber 240, and is a polished wafer.
  • the drying chamber 240 is configured to perform a drying process under a nitrogen atmosphere.
  • the unprocessed wafer before polishing passes through the wafer cleaning section 200 from the cassette index section 100 through the cleaning machine temporary placing table 211 without passing through the above-mentioned cleaning step, and passes through the wafer polishing section 3. 0 Carried in 0 o
  • the polishing section 300 is divided into four parts, and is indexed to the index table 340 which is rotated and fed every 90 degrees by the operation of a stepping motor or the like, and the positioning stop position of the index step 340.
  • An unprocessed wafer is placed on the first polishing stage 310, the second polishing stage 320, the third polishing stage 330, and the index table 34, which are provided so as to surround the index table 340 from the outer periphery. It consists of a transfer stage 350 that carries in and unloads processed wafers.
  • the polishing stage may be called a polishing zone or a polishing chamber.
  • each section of the index table 340 divided into four chucks V1 to V4 for holding the wafer by suction from the back side are exposed and arranged on the upper surface of the table.
  • Each chuck V1 to V4 Is rotatably supported in a horizontal plane (a plane parallel to the paper surface in FIG. 1) on the index table 340, and an electric motor provided inside the index table 340. Evening and air P Orchid 3/06913
  • High-speed rotation and stop holding are freely mounted by drive means such as 12 motors.
  • the diameters of the chucks V1 to V4 are slightly smaller than the diameters of the wafers, and the chucks V1 to V4 are configured to be able to grip the outer peripheral ends of the wafers held by the chucks V1 to V4.
  • the three polishing stages, the first polishing stage 310, the second polishing stage 320, and the third polishing stage 330, are capable of swinging in the horizontal direction with respect to the index table 340, respectively.
  • Polishing arms 3 11, 3 2 1, 3 3 1 that can move up and down in the vertical direction are provided.
  • a polishing head that is suspended from the polishing arms 3 1, 3 2 1, 3 3 1, a polishing pad on its lower end surface as a polishing body for flatly polishing the wafer by relative rotation with respect to the wafer.
  • Each of the polishing stages includes a pad dresser 3 17, 3 2 7, 3 3 7 for dressing up the surface of the polishing pad, and a pad changing device 3 1 8, 3 for automatically changing the polishing pad. 2 8 and 3 3 8 are attached.
  • the relative positions of the polishing arm, the chuck, the pad dresser, and the node exchanging device in each polishing stage are defined so as to be positioned on the swing radius of the polishing head at the tip of the polishing arm. For this reason, for example, when polishing is performed in the first polishing stage 310, the polishing arm 311 is swung to move the polishing head onto the chuck V4, and the polishing head and the chamfer are removed. The polishing pad 3 is pressed against the wafer by relatively rotating the tool V4 and lowering the polishing arm 311 to perform polishing. It goes without saying that the polishing agent (slurry) is interposed between the polishing pad and the wafer during polishing. In the final stage of the polishing process, after the abrasive on the object to be polished is washed away by a water supply device (not shown), drainage is performed by, for example, rotating a chuck. T JP03 / 06913
  • the index tape 3340 can be rotated.
  • the polishing arm 311 is swung at a predetermined number of times of polishing, and the pad dresser 317 performs dressing (dress-up) to correct clogging of the polishing pad and irregularity of eyes.
  • the polishing arm 311 is further swung to move the polishing pad upward to the pad exchange device 318, and the polishing pad is automatically exchanged by this device.
  • the pad dresser may be installed adjacent to the side of each check in the index table 340. According to such an arrangement, dress-up of the polishing pad protruding from the outer periphery of the wafer during the polishing process can be performed during the polishing process, whereby the time required for polishing can be further reduced.
  • An arm position detector (not shown) that detects the rotational angle position of the arm is attached to the polishing arm 311.
  • the arm position detector (not shown) detects the polishing processing position and dress-up position of the polishing arm 311. I have.
  • each polishing stage is equipped with a polishing status monitoring device 50a for optically monitoring the polishing status of the wafer being polished, and real-time monitoring of film thickness reduction during polishing and the like. Can be detected.
  • the polishing state monitoring device 500a for example, the device disclosed in Japanese Patent Application Publication No. 2000-400680 can be used.
  • the polishing state monitoring device 50a has an arm 61 extending substantially parallel to the polishing arm of each polishing stage and capable of swinging in the horizontal direction. An optical fiber, etc., is built in.
  • the probe light is locally radiated onto the wafer being polished while being held by the chuck, and the reflected light from the wafer is received and guided to a predetermined location. It is supposed to be done.
  • Arm 6 1 prevents mechanical interference with the polishing arm. During the polishing process, it is driven in synchronization with the polishing arm.
  • the polishing state monitoring device 50a monitors the polishing state based on the reflected light from the wafer obtained when the tip of the arm 61 is positioned on the wafer.
  • each of the second polishing stage 320 and the third polishing stage 330 has an entire area of the surface to be polished (the upper surface in the present embodiment).
  • the remaining film monitoring device 400 (strictly, the optical system) for monitoring the state of the remaining film after polishing is provided.
  • the residual film monitoring device monitors the state of the unpolished film over a wide area of the polished surface, not necessarily the state of the unpolished film over the entire polished surface of the wafer. Is also good. Since the remaining film monitoring device 400 will be described later in detail with reference to FIG. 5 and the like, a brief description will be given here.
  • Each of the remaining film monitoring devices 400 includes a wafer chucked on a chuck (wafer holding unit) located at each stage 320, 330, that is, each stage 320, 330
  • the entire area of the wafer held at the polishing position is irradiated with illumination light, and image information of an image of the entire area of the wafer illuminated by the illumination light is obtained. Based on this image information, the unpolished film on the wafer is obtained.
  • the polishing head and the polishing arm are retracted from immediately above the chuck by swinging of the polishing arm, and the remaining film monitoring device 400 Evacuation from the optical path of Further, the arm 61 of the polishing state monitoring device 50a may also interrupt the optical path. P leak 3/06913
  • step 15 it is retracted from the optical path.
  • the remaining film monitoring device 400 can obtain information on the presence or absence of the unpolished film on the wafer and the position of the unpolished film on the wafer as a monitoring result.
  • a second transfer robot 360 and a third transfer robot 370 are provided on the transfer stage 350.
  • the second transfer robot 360 is a multi-joint arm type robot similar to the first transfer robot 150 described above, and can be swung on a swivel base 362 capable of horizontal turning and up / down operation.
  • A-arm 365a is composed of an A-arm 365a and a boom 365b, which are attached to the tip of 63b so as to be stretchable.
  • the A arm 365a and the B arm 365b are offset vertically, and the wafers are placed on the tips of both arms 365a and 365b and held by suction.
  • the holding part is formed.
  • the third transfer robot 370 is composed of a swing arm 371, which can swing horizontally and vertically up and down with respect to the index table 340, and a swing arm 371, A pivot arm 372, which is attached to the tip so as to be able to rotate horizontally with respect to the swing arm 371, A-clamp suspended at both ends of the pivot arm 372 to grip the outer peripheral edge of the wafer It consists of 375a and B clamp 375b.
  • the A-clamps 375a and B-clamps 375b are arranged at the end of the pivot arm at the same distance from the pivot center of the pivot arm 372.
  • the state shown in FIG. 1 shows the standby posture of the third transfer robot 370, and the A clamp 375a and the B clamp 3
  • a temporary placing table 3 8 1 for placing unprocessed wafers and a B temporary placing table 3 8 2 for placing polished wafers are provided below 75 b. .
  • the A clamp 3 75 a or the B clamp 3 75 b can be moved onto the chuck V 1 of the index table 34 0, and the position Lower the swing arm 371 with and clamp the wafer on the chuck with the A clamp 375a or B clamp 375b to receive it, or place and hold a new wafer on the chuck be able to.
  • the polishing solution containing slurry is attached to the polished wafer, an arm and a clamp that carry in the wafer before polishing and an arm and a clamp that carry out the wafer after polishing are used.
  • the upper A arm 365 a is the arm for loading unprocessed wafers
  • the lower B arm is 3655b is specified as the unloading arm
  • a clamp 375a is defined as the loading clamp
  • B clamp 375b is defined as the unloading clamp.
  • a barrier layer 52 such as TiN or TaN is formed on this groove, and From the state where the copper conductive layer 53 is formed (hereinafter referred to as an unprocessed wafer), the conductive layer 53 and the barrier layer 52 are subjected to the first polishing P 1 and the second polishing by the CMP method: P2, 3rd polishing P3 is polished flat by three stages of polishing to form conductor wiring grooves 53a on silicon substrate 51 as shown in Fig. 3 (b). Cu-CMP This will be explained using the process as an example.
  • the first polishing process Pl, the second polishing process P2, and the third polishing process P3 are a first polishing stage 310, a second polishing stage 320, a third polishing stage. At 330, it's getting done.
  • the polishing process is completed. Since the point control is required, the polishing process is temporarily terminated by detecting the polishing end point by the polishing state monitoring device 50a.
  • the first polishing process P1 is a preceding polishing process of the second polishing process P2, and it is not necessary to detect the end point. Therefore, in the first polishing process P1, the polishing process is terminated by time management, and the polishing process is terminated in a predetermined polishing process time tp1.
  • FIG. 2 shows that the unprocessed wafer W set in the cassette C1 of the cassette index section 100 is sequentially polished by the polishing section 300, and the processed wafer Wp shown in FIG.
  • the flow of the wafer after being cleaned by the wafer cleaning section 200 and stored in the cassette C4 of the cassette index section 100 is indicated by dotted lines and arrows.
  • Personal computer not shown for operation of 150, 360, 370, index table 340, chucks V1 to V4, polishing arms 311, 321, 331, polishing head, etc.
  • the control unit controls these operations based on a preset control program.
  • the first transfer robot 150 moves to the position of the force set C1, and the swivel table 152 is turned horizontally and raised and lowered. Then, the B arm 155b is moved to the target slot height of the wafer, and the multi-joint arm 155b and the B arm 155b are extended to operate to extend the tip of the B arm 155b. The unprocessed wafer Wd in the slot is sucked and held by the holding unit, and both arms are contracted and pulled out. Then, the swivel table 152 is turned by 180 degrees to the wafer cleaning section 200, and the cleaning section
  • the unprocessed wafer Wd is placed on the temporary washing machine stand 211 provided at 200.
  • the second transfer robot 360 of the loading stage 350 facing the wafer cleaning chamber 200 when the unprocessed wafer Wd is placed on the temporary mounting table 211, Activate the swivel 3 6 2 to turn the tip of the A arm 3 6 5 a toward the washer temporary storage table 2 1 1 and extend the multi-joint arm 3 6 3 a and the A arm 3 6 5 a. Activate and hold the unprocessed wafer W d on the temporary washing machine stand 2 1 1 by the holding section at the tip of the A arm.
  • the multi-joint arm 363 a and the A-arm 365 a are operated to reduce the length, and the swivel base 36 62 is swiveled to reverse.
  • the unprocessed wafer Wd is placed on the A temporary placing table 381, by extending the joint arm 363a and the A arm 365a.
  • the third transfer port boat 3700 moves down to remove the unprocessed wafer W d with the A clamp 3 75 a.
  • the user grips and stands by at the standby position where the grip table is raised to a predetermined height after gripping until the positioning of the index table 340 is completed (standby posture).
  • the index table 340 stops positioning, the unmoving wafer is placed on the chuck V1 and held by suction by swinging and rotating the moving arm 371 and the rotating arm 372.
  • the third transfer robot 370 is lifted after the clamp is released, and the swing arm 371 and the rotation arm 372 are operated and rotated to perform the next unprocessed wafer Wd by the A clamp 3. 7 Hold by 5a and wait until the next index operation at the standby position at the specified height.
  • FIG. 4 shows that the unprocessed wafer Wd thus carried into the carry-in stage 350 flows from the first polishing stage 310 to the second polishing stage 320 and the third polishing stage 330.
  • the flow from the transfer stage 350 to the unloading is shown as a front chart.
  • the polishing process in each polishing stage will be described with reference to FIG.
  • a new wafer is sequentially loaded into each stage at every rotation of the index table 340, and a new processed wafer is unloaded at each rotation of the index table 340. Operations on different wafers are performed simultaneously in parallel.
  • step S1 When the unprocessed wafer Wd is held by suction on the chuck V1 and the third transfer robot 370 is evacuated from above the index table 340 (step S1), the index is set in step S2.
  • the table 340 is rotated 90 degrees clockwise (clockwise) in FIGS. 1 and 2 to move the unprocessed wafer W d to the first polishing stage 310 (V 4 position in FIGS. 1 and 2). ).
  • the polishing arm 311 is swung to move the polishing head onto the unprocessed wafer Wd.
  • step S3 the polishing head and the chuck V1 are rotated at a high speed, for example, in opposite directions, and the polishing arm 311 is moved down to lower the lower end of the polishing head.
  • the polishing pad is pressed onto the wafer, and the first polishing process P1 is performed.
  • the polishing arm 311 in a minute range so that the polishing pad reciprocates between the center of rotation of the wafer and the outer peripheral end while supplying slurry from the axis of the polishing head.
  • the wafer is oscillated to evenly polish the wafer.
  • a new unprocessed wafer is loaded onto the chuck V2 by the third transfer robot 370 during the first polishing.
  • the primary polishing P 1 in the first polishing stage 310 is time control as described above, and after a predetermined polishing time tp 1 has elapsed (step S 4), the polishing arm 3 1 1 is raised. Then, the polishing in the first polishing stage 310 is stopped (step S5), and the process proceeds to step S6.
  • step S6 it is determined whether or not the operation of the index table 34 ° is possible (ie, whether or not the operation at a stage other than the first polishing stage 310) is completed, and If it is not possible, wait until it becomes possible, and if possible, proceed to step S7.
  • step S7 the index table 340 is rotated 90 degrees clockwise again, and the wafer after the first polishing process P1 is finished in the second polishing stage 320 (see FIG. Position 1 and V 3 in Fig. 2).
  • the polishing arm 3221 is swung to move the polishing head onto the wafer.
  • the polishing arm 3 21 is lowered, and by the same operation as the above-mentioned first polishing process P1, the polishing process at the second polishing stage 3 20 (secondary polishing process) is performed. Polishing process P 2) is performed.
  • the second polishing process P2 in the second polishing stage 320 is a so-called final inspection process.
  • the polishing arm 3 2 1 is raised to stop polishing at the second polishing stage 320, and washing and draining are performed to wash off the abrasive (slurry) on the workpiece (step S10).
  • the control unit retracts the polishing head and the polishing arm 321 from directly above the chuck, and sends the remaining film monitoring device 400 of the second polishing stage 320 to the remaining polishing film (not shown) on the wafer.
  • step S11 the status of the remaining copper film (the portion other than the conductive wiring groove 53a of the conductive layer 53 in FIG. 3) is monitored. Then, when a monitoring result indicating that there is no unpolished film is obtained from the remaining film monitoring device 400 (N 0 in step S 12), the process proceeds to step S 14.
  • step S12 if the monitoring result indicating that the unpolished film is present is obtained from the remaining film monitoring device 400 (YES in step S12), the polishing arm 321 is again swung to perform polishing. The head is moved onto the wafer, and the polishing arm 32 1 is further lowered. By the same operation as the polishing in step S 8, additional polishing is performed on the second polishing stage 3 20 ( Step S13). S The polishing in step S13 is performed by time control, and after a predetermined period of time is stopped, the process returns to step S10. Therefore, in step S13, the operation of the polishing state monitoring device 50a of the polishing stage 32 is unnecessary.
  • the polishing in step S13 is performed under the same polishing conditions as the polishing in step S8, except for the time control and the end point detection, and the entire wafer is polished. You may. However, for example, if information on the position of the unpolished film is obtained as a monitoring result from the residual film monitoring device 400 in step S11, the polishing in step S10 is performed according to the information. Polishing conditions (such as setting the rotation center position of the polishing head, setting the presence or absence of polishing oscillation, and rotating the chuck) such that the polishing is only partially performed near the position or the region near the position is mainly polished. Conditions, etc.).
  • step S14 when the process proceeds to step S14, even if a residual film remains on the wafer after step S8, the residual film is removed by the additional polishing in step S13. It will be in the removed state. In other words, when the second polishing process P2 in the second polishing stage 320 is completed, the process proceeds to step S14.
  • step S14 it is determined whether or not the operation of the index table 340 is possible (that is, whether or not the operation of the stage other than the second polishing stage 324 is completed). If not, wait until it is possible, and if so, go to step S15.
  • step S15 the index table 340 is rotated 90 degrees clockwise again, and the wafer after the second polishing P2 is moved to the third polishing stage 330 (V2 position in the figure). ) Position to. Then, the polishing arm 331 is lowered, and polishing is performed on the third polishing stage 330 (third polishing process P3) by the same operation as described above (step S16). P03 06913
  • the third polishing process P3 in the third polishing stage 330 is also a so-called end point detection process, like the second polishing process P2 in step S8.
  • the polishing head and the polishing arm 331 are retracted from just above the chuck, and the remaining film monitoring device 400 of the third polishing stage 330 is used to remove the remaining polishing film on the wafer (here, the barrier film).
  • the state of the remaining film of the layer 52 (the part of the barrier layer 52 in FIG.
  • step S19 If a monitoring result indicating that there is no remaining film to be polished is obtained from the remaining film monitoring device 400 (NO in step S20), the process proceeds to step S22. On the other hand, if the monitoring result indicating that the unpolished film is present is obtained from the remaining film monitoring device 400 (YES in step S20), the polishing arm 331 is operated again by the ⁇ operation to polish again. The head is moved onto the wafer, and the polishing arm 331 is further lowered. By the same operation as the polishing in step S16, the additional polishing in the third polishing stage 330 is performed. Perform (Step S21).
  • the polishing in step S21 is performed by time control, and is stopped after a predetermined time has elapsed, and the process returns to step S18. Therefore, in step S21, the operation of the polishing state monitoring device 50a of the polishing stage 330 is unnecessary.
  • the polishing in step S21 is performed under the same polishing conditions as the polishing in step S16, except for time control or end point detection processing. Good. However, for example, if information on the position of the unpolished film is obtained as a monitoring result from the remaining film monitoring device 400 in step S19, the polishing in step S21 is performed according to the information.
  • the polishing may be performed under polishing conditions (setting of the rotation center position of the polishing head, setting of presence / absence of polishing swing, setting of the rotation condition of the chuck, etc.) such that the polishing is mainly performed in the vicinity.
  • step S22 when proceeding to step S22, even if there is an unpolished film on the wafer after step S17, the unpolished film is formed by the additional polishing in step S21. Is removed. In other words, when the third polishing P3 in the third polishing stage 330 is completed, the process proceeds to step S22.
  • step S22 it is determined whether or not the operation of the index table 340 is possible (that is, whether or not the operation of the stage other than the third polishing stage 340 is completed). If not, wait until it becomes possible, and if so, go to step S23.
  • step S23 the index table 340 is rotated 90 degrees clockwise again to transfer the wafer after the third polishing P3 to the transfer stage 350 (V1 position in FIGS. 1 and 2). Position.
  • the third transfer robot 370 operates the swing arm 371 and the rotation arm 372 in the ⁇ operation and the rotation so that the polished wafer is finished.
  • step S24 the next unprocessed wafer Wd is loaded onto the chuck V1, sucked and held by the chuck V1, and the process returns to step S1 again.
  • the second transfer robot 360 is turned on the swivel table 362 and the articulated arm.
  • 3 6 3 b and B arm 3 6 5 b are operated to hold the processed wafer W p on the B temporary placing table 3 8 2 with the holding section at the tip of the B arm, and the swivel table 3 62 is swiveled.
  • the articulated arm 3 6 3 b and the B arm 3 6 5 b are extended and operated to finish the washing machine entrance 2 16 of the washing section 200. Place the wafer W p.
  • the residual film monitoring device 400 is provided on the second polishing stage 320, and if there is a residual film on the second polishing stage 320, the process proceeds to step S13. Additional polishing is performed. Therefore, according to the present embodiment, the second polishing process P 2 in the second polishing stage 320 is performed while the remaining film of the copper conductive layer 53 in FIG. 3 is precisely controlled. , It can be carried out. For this reason, it is possible to prevent an electrical short circuit by reliably removing the residual film of the copper conductive layer 53, thereby improving the yield, and furthermore, excessively shaving the conductor wiring groove 53a (excessive polishing). Therefore, deterioration of chip performance due to an increase in electric resistance and variations in products can be reduced.
  • the remaining film monitoring device 400 is provided on the third polishing stage 330, and if there is a remaining film on the third polishing stage 330, the step S2 1 additional polishing is performed. Therefore, according to the present embodiment, the third polishing P 3 in the third polishing stage 330 can be performed while precisely managing the remaining film of the barrier layer 52 in FIG. it can. For this reason, from this point as well, the yield can be further improved, and the deterioration of the chip performance and the product variation due to the increase in the electric resistance can be further reduced.
  • the remaining film monitoring device 400 is provided on both the second polishing stage 320 and the third polishing stage 330, and the remaining polishing film is formed on the second polishing stage 320.
  • step S13 is performed in some cases, and the additional polishing in step S21 is performed in the third polishing stage 330 when there is a remaining film.
  • the residual film monitoring device 400 of the third polishing stage 330 is removed, and steps S18 to 21 are removed. Proceed to step S22.
  • the remaining film monitoring device 400 of the second polishing stage 320 and the third polishing stage 330 is not operated for all the wafers, and is driven by extracting each lot as needed.
  • the repolishing amount may be specified for each lot. In this case, after the end point is detected by the polishing state monitoring device 50a, polishing is continued under the specified conditions for removing the remaining film, and the target process (the second polishing process P2 or the third polishing process) is continued. It is possible to finish the next polishing process P 3).
  • the present invention is not limited to such a use, and the processing process of the interlayer insulating film is performed.
  • the wafer processing such as the STI process and the STI process, the same can be applied to the processing process of a quartz substrate, a glass substrate, a ceramic substrate, and the like.
  • the polishing apparatus 1 uses a 4-part index table 340, and performs polishing using three stages of polishing stages 310, 320, and 330. It was an example. On the other hand, it is also known to perform polishing at a two-stage polishing stage. In that case, if a residual film monitoring device 400 is provided in the second polishing stage, as shown in FIG. 5 (a). The indexable 3 4 6 can be reduced in size, thereby saving space. And a polishing apparatus for polishing the same. Also, as shown in FIG. 5 (b), if the index table 347 is divided into five and four stages of polishing stages are provided, an appropriate polishing stage can be selected, and one stage or a plurality of stages can be selected.
  • a residual film monitoring device 400 May be provided with a residual film monitoring device 400.
  • the size of the equipment is somewhat increased as the table diameter is increased, it is possible to provide a polishing apparatus capable of obtaining about twice as high throughput as the conventional one.
  • the remaining film monitoring device 400 is provided on the second polishing stage and the fourth polishing stage.
  • FIG. 2 also shows some of the constituent elements 401, 402, and 403 of the residual film monitoring device 400, so refer to FIG.
  • FIG. 6 is a schematic configuration diagram showing the residual film monitoring device 400 in which the optical system is installed on the polishing stage 330.
  • the optical system in FIG. 6 is shown as viewed from the direction of arrow A in FIG.
  • FIG. 7 is an optically expanded view showing the arrangement of the optical system of the residual film monitoring device 400.
  • the residual film monitoring device 400 includes a two-dimensional RGB color CCD 401, a photographing lens 402, a white diffuse reflector 400, and a white light source 404.
  • a processing unit 405 configured using an image processing circuit or a micro-computer, a display unit 406 such as a CRT or a liquid crystal panel, and a storage unit 407 are provided.
  • the white light source 404 for example, a strobe that emits strobe light having a uniform spectral spectrum is used.
  • This strobe light is, for example, 5 06913
  • the white light source 404 may emit continuous light.
  • the light emitted from the white light source 404 is reflected and scattered by the white diffuse reflector 403 as shown in FIGS. 6 and 7, and the chuck (not shown in FIG. 6.
  • the index table 340 is shown in FIG. 2).
  • the exposure area area for observing the presence or absence of a residual film
  • the white diffuse reflection plate 403 has a sufficient area to cover the exposure area of the wafer Wm.
  • the minimum dimensions of the white diffuse reflector 403 are as follows: h1 is the distance between the taking lens 402 and the wafer Wm, and h2 is the distance between the wafer Wm and the white diffuse reflector 403. It is desirable that the white diffuse reflector 403 has a similar shape and has a size of ⁇ (h 1 + h 2) / h 1 ⁇ times or more of the exposure area of the wafer Wm, and the white diffuse reflector 403 has a uniform intensity. In that case, the captured image can also obtain relatively uniform illuminance. This calculation can be applied when there is an entrance pupil near the taking lens 402.
  • An image of the exposure area of the wafer Wm by the light irradiated to the wafer Wm and reflected by the wafer Wm is formed on the imaging surface of the color CCD 401 by the imaging lens 402.
  • the photographing lens 402 forms an image of the wafer Wm on the imaging surface of the color CCD 401 substantially without blurring.
  • the positional relationship of the white diffuse reflector 403, the imaging lens 402, and the color CCD 401 with respect to the wafer Wm is set as shown in FIGS. 6 and 7, and the image of the exposure area of the wafer Wm by the light specularly reflected by the wafer Wm.
  • an image is formed on the imaging surface of the CCD 401. That is, A bright-field image of the exposure area on the surface to be polished of the wafer Wm is captured by the color CCD 401.
  • the white diffuse reflection plate 403 forms the background of this bright-field image and the background for uniformly illuminating the wafer Wm.
  • the white diffuse reflector 400, the taking lens 402 and the power CCD 401 are all installed near the ceiling 33 33a of the polishing stage 320. Space is being used effectively.
  • a condenser mirror may be used instead of the white diffuse reflection plate 403.
  • a transparent member such as a white transmission diffuser plate and a white light source for illumination are integrated to form a surface light emitter, and the ceiling 333 It may be arranged as a background in the vicinity of a, or may be arranged in the vicinity of the ceiling 333 a with no transmissive member, for example, a surface luminous body such as an organic EL port or luminescence.
  • the white diffuse reflection plate 403 may be removed so that the ceiling 33 3 a itself has white diffusion characteristics.
  • FIG. 8 is an expanded view of a modified example of the arrangement of the optical system of the residual film monitoring device 400.
  • image distortion and peripheral blurring may occur due to observing the wafer Wm obliquely as compared with the case of FIG. 7; however, it is within the focal depth of the taking lens 402. It can be used without any problem for this purpose.
  • the white light sources 404 and The white diffuse reflection plate 403 constitutes an illumination unit that illuminates the wafer Wm with illumination light including a plurality of wavelength components. Further, the photographing lens 402 and the color CCD 401 constitute an image information acquisition unit that acquires color image information of a bright field image of almost the entire surface of the polished surface of the wafer Wm illuminated by the illumination light. are doing.
  • the two-dimensional color CCD 401 since the two-dimensional color CCD 401 is used, color image information of a bright field image of almost the entire surface of the surface to be polished of the wafer Wm is obtained substantially collectively. Is done.
  • a one-dimensional color CCD is used in place of the two-dimensional color CCD 401, and the linear field of view is set so as to extend from the vicinity of the center of the wafer Wm to the vicinity of the outer periphery thereof.
  • the linear field of view scans the entire wafer Wm, and the color image information is associated with the rotational position of the wafer Wm (which can be detected by, for example, a rotary encoder). May be acquired gradually.
  • the processing unit 405 loads the color image information acquired by the color CCD 401 as data into an internal memory (not shown), and processes the color image information, thereby processing the wafer Wm. Obtain a monitoring result indicating the state of the unpolished film on the surface to be polished.
  • FIG. 10 is a graph showing the data of a wafer having no copper residue.
  • the horizontal axis represents the position of a pixel in the one pixel row, the vertical axis represents the intensity value, and the G intensity value of each pixel.
  • R intensity values and the difference (R ⁇ G) are plotted.
  • FIG. 11 is a graph showing the data of a wafer having a copper residue.
  • the horizontal axis indicates the position of a pixel in the one pixel row, and the vertical axis indicates an intensity value.
  • Values, intensity values of R, and differences (R-G) are plotted.
  • the region without copper residue, the region with thin copper residue, and the region with thick copper residue are also shown along the horizontal axis.
  • the difference (R ⁇ G) is a type of value indicating the relative relationship between the G intensity value and the R intensity value.
  • the intensity value of R becomes larger than the intensity value of G
  • the intensity of G becomes larger than the intensity of R.
  • the difference (R-G) is positive (including zero here) in the region without copper residue and in the region with thick copper residue, while the difference (R-G) is in the region with thin copper residue.
  • — G) is negative. Therefore, there is a thin copper residue at the place where the difference (R-G) is negative, and it is possible to know whether there is a thin copper residue at the place.
  • the difference (R-G) when the difference (R-G) is positive, it cannot be determined whether the region has no copper residue or a region with thick copper residue.
  • the problem is that copper residues are partially generated by polishing, the copper film thickness changes like a Gaussian distribution, and it can be said that thin copper residues always exist around thick copper residues. Therefore, in knowing whether or not there is copper residue in the entire wafer or in a wide area, it is difficult to determine whether the region has no copper residue or a region with thick copper residue. Don't come. Since the difference (R-G) can be used to determine the presence or absence of a thin copper residue, it is needless to say that the ratio (R / G) can be used to determine the presence or absence of a thin copper residue.
  • FIG. 9 is a schematic flowchart showing an example of the operation of the processing unit 405 of the residual film monitoring device 400 in which the optical system is provided on the polishing stage 320.
  • the processing unit 405 When the processing unit 405 starts the operation, the processing unit 405 counts the total number of pixels in the vertical and horizontal directions of the wafer image of the color image information obtained from the CCD 401, and sets the maximum coordinate value of the horizontal pixels to maxX and vertical. The maximum coordinate value of the pixel in the direction is obtained as maxY (step S31).
  • the processing unit 405 performs a well-known smoothing process (smoothing process) on the wafer image in order to reduce the influence of the quantization error (step S32).
  • smoothing process smoothing process
  • the imaging lens 402 forms an image of the wafer Wm on the imaging surface of the color CCD 401 without substantially blurring.
  • the processing in step S32 can be omitted. The effect of the quantization error can be reduced.
  • the processing unit 405 generates an R component (: intensity value) I r (x, y) and a G component (G intensity value) I g (X of the wafer image subjected to the smoothing process in step S32. , y) (step S33).
  • R component intensity value
  • G intensity value G intensity value
  • FIG. 12 shows an example of the binarized image obtained in step S35.
  • Figure 12 (a) shows the case where the wafer has no remaining polishing film (here, copper film), and Figure 12 (b) shows the wafer with a thin remaining polishing film (here, copper film) partially.
  • the white area is the difference I (X, y) is a region of a positive pixel
  • dark regions 501 to 504 are regions of a pixel where the difference I (X, y) calculated in step S34 is a negative pixel and a region of a thin unpolished film.
  • the processing unit 405 determines whether or not the wafer has an unpolished film based on whether or not there is a pixel region having a negative difference in the image obtained in step S35 (step S36). It goes without saying that the same determination can be made from the difference I (X, y) of each pixel obtained in step S34 without using the binarized image obtained in step S35.
  • the processing unit 405 extracts the position of the thin copper residue, that is, the position (X, y) of the negative I (X, y) (step S37).
  • the processing unit 405 outputs, displays, and stores the monitoring result (Step S38), and ends a series of processing. Specifically, in step S38, the processing unit 405 determines whether or not the unpolished film obtained in step S36 is present, and the position of the thin copper residue obtained in step S37 (relating to the position of the copper residue). (Corresponding to information) is output to the above-described control unit as a monitoring result. Further, the processing unit 405 includes a color image obtained from the color CCD 401 and a step S.
  • the binarized image obtained in 35 is displayed on the display unit 406, and the storage unit
  • the data stored in the storage unit 407 can be appropriately read out to a personal computer or the like.
  • the unpolished film monitored by the residual film monitoring device 400 is a barrier such as TIN or TAN. Since the layer 52 is used, it is possible to appropriately determine which of two or more colors the monitor result is obtained from a single color image obtained from the color CCD 401 in accordance with this material. . P leak 3/06913
  • FIG. 13 is a flowchart showing a semiconductor device manufacturing process.
  • the semiconductor device manufacturing process is started.
  • step S200 an appropriate processing step is selected from the following steps S201 to S204. According to the selection, go to any of steps S201 to S204.
  • Step S201 is an oxidation step of oxidizing the surface of the silicon wafer.
  • Step S202 is a CVD process for forming an insulating film on the silicon wafer surface by CVD or the like.
  • Step S203 is an electrode forming step of forming an electrode film on a silicon wafer by a process such as vapor deposition.
  • Step S204 is an ion implantation step of implanting ions into the silicon wafer.
  • Step S209 is a CMP step, in which a polishing apparatus according to the present invention is used to planarize an interlayer insulating film and form a damascene by polishing a metal film on the surface of a semiconductor device. Etc. are performed.
  • Step S206 is a photolithography step. In this step, a resist is applied to the silicon wafer, a circuit pattern is printed on the silicon wafer by exposure using an exposure apparatus, and the exposed silicon wafer is developed. Further, the next step S207 is an etching step of removing portions other than the developed resist image by etching, and then removing the resist to remove unnecessary resist after etching.
  • step S208 it is determined whether all necessary processes have been completed. 03 06913
  • step S208 If it is determined in step S208 that all steps have been completed, the process ends.
  • the polishing apparatus according to the present invention since the polishing apparatus according to the present invention is used in the CMP step, the processing accuracy in the CMP step is improved. This makes it possible to manufacture a semiconductor device with less manufacturing variation than the conventional semiconductor device manufacturing method.
  • a semiconductor device manufactured by the method for manufacturing a semiconductor device according to the embodiment of the present invention has a high yield and is a stable semiconductor device in which the performance is not significantly reduced due to excessive cutting.
  • the polishing apparatus according to the embodiment of the present invention may be used in the CMP step of a semiconductor device manufacturing process other than the semiconductor device manufacturing process described above, and similarly, processing with little variation and little performance deterioration is achieved.
  • the remaining film monitoring device used in the polishing apparatus according to the embodiment of the present invention is not limited to the above-described remaining film monitoring device.
  • the above-described embodiment is an example in which the remaining film monitoring device according to the embodiment of the present invention is incorporated in the polishing device according to the embodiment of the present invention so as to perform monitoring in-line.
  • the remaining film monitoring device according to the embodiment may be monitored off-line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

 白色光源404から発した光は、白色拡散反射板403で反射され散乱されて、チャックにチャッキングされているウエハWmの被研磨面のほぼ全域を、ほぼ均一に照明する。ウエハWmに照射されウエハWmで反射された光によるウエハWmの全域の明視野像が、撮影レンズ402によってカラーCCD401の撮像面に結像され、CCD401により撮像される。処理部405は、CCD401から得られるカラー画像情報に基づいて、ウエハWmの被研磨面の全域における研磨残り膜の有無を、モニタ結果として出力する。これにより、被研磨物の被研磨面の全域あるいは広範な領域における研磨残り膜の状況を適切にモニタすることができる残膜モニタ装置とすることができる。

Description

明 細 書 残膜モニタ装置、 研磨装置、 半導体デバイスの製造方法及び半導体デバ イス 技術分野
本発明は、 半導体ウェハ等の被研磨物の被研磨面の全域あるいは広範な 領域における研磨残り膜の状況をモニタする残膜モニタ装置、 これを用 いた研磨装置、 半導体デバイスの製造方法、 及び、 半導体デバイスに関 するものである。 本発明は、 例えば、 半導体装置製造工程における、 半 導体素子の表面の電極層あるいは絶縁層の除去工程や成膜工程などにお いて、 電極層あるいは絶縁層の除去残りなどの状況をモニタする残膜モ 二夕装置、 及びこれを用いた研磨装置に、 適用することができる。 背景技術
半導体デバイスの高密度化に伴い、 多層配線と、 それに伴う層間絶縁 膜形成や、 プラグ、 ダマシンなどの電極形成の技術の重要度は大きく高 まっている。 このプラグ、 ダマシンなどを行うために金属膜の積層後に 余分な金属層の除去及び平坦化が要求される。 更に、 リソグラフィの短 波長化に付随した、 露光時の焦点深度短縮を考慮すると、 少なく とも露 光ェリァ程度の範囲での電極層あるいは層間絶縁膜の平坦化と厚さ管理 の要求は大きい。
このような平坦化のため、 一般に C M Pと呼ばれる研磨工程が行われ る。 C M P ( Chemical Mechanical Polishing又は Planarization)は、 物理的研磨に、 化学的な作用 (研磨剤、 溶液による溶かしだし) を併用 して、 ウェハの表面凹凸を除去していく工程で、 スラリーと呼ばれる研 磨剤を用い、 適当な研磨布で、 ウェハ表面を加圧し、 相対運動させるこ とにより研磨を進行させ、 ウェハ面内での一様な研磨が可能になる。 半導体デバイスの高密度化に伴い、 最近特に、 平坦化プロセスにおけ る研磨中に研磨状況をモニタし、 このモニタ結果に従って研磨の終点を 決定するのが一般的である。 この研磨中に研磨状況をモニタする研磨状 況モニタ装置は、 終点検出器などとも呼ばれている。 研磨状況モニタ装 置としては、 ウェハの局所的な領域にプローブ光を照射して得られる反 射光又は透過光の特性から研磨の終点を決定するものを、 挙げることが できる。 このような研磨状況モニタ装置の一例が、 特閧 2 0 0 0— 4 0 6 8 0号公報に開示されている。
研磨状況モニタ装置の併用によって、 ウェハパターンの局所的又は平 均的な膜厚の制御精度は向上した。 然るに、 半導体デバイスの高密度化 は限界を見せず進展を続けており、 絶縁層などの除去を最小限に留める 必要性が増加している。 残る大きな課題の 1つは、 グロ一バルな (比較 的大きなエリアでの) デバイス面の膜厚管理と平坦化である。
研磨ウェハの表面に微小な凹凸が存在することに加え、 特に近年要求 の高まっている銅配線のダマシン技術では均一な研磨が難しく、 C M P 工程を行う場合にはエロ一ジョンゃディシングと呼ばれるウェハ面内に 不均一な 「削れ過ぎ」 が生じやすい。 一方では残留メタルがあると電気 的にショートした状態となってしまい製品として全く使えずに不良品と なってしまい、 逆に削りすぎると電気抵抗の増加により性能の劣化や製 品ばらつきが大きくなる可能性がある。 したがって、 従来に比べて一層 精密に工程中の残膜を管理する必要性が生じてきた。 従来は、 電気的な ショートを回避するため、 終点検出後の研磨時間を余分に見積もり、 削 り過ぎた状態で研磨を終了させていた。 このことが、 電気抵抗の増加に よるチップ性能の劣化や製品ばらつきの発生に直結していた。 発明の開示
本発明は、 このような事情に鑑みてなされたもので、 被研磨物の被研 磨面の全域あるいは広範な領域における研磨残り膜の状況を適切にモニ 夕することができる残膜モニタ装置を提供することを目的とする。 また、 本発明は、 歩留りが高くかつ削り過ぎ (過剰研磨) を防止する ことができる研磨装置を提供することを目的とする。
さらに、 本発明は、 従来の半導体デバイスの製造方法に比べて、 歩留 りが向上するとともに製品ばらつきの小さい半導体デバイスを製造する ことができる半導体デバイスの製造方法、 及び低コストで製品ばらつき の小さい半導体デバイスを提供することを目的とする。
前記目的を達成するための第 1の発明は、 被研磨物の被研磨面の全域 あるいは広範な領域における研磨残り膜の状況をモニタする残膜モニタ 装置であって、 複数の波長成分を含む照明光により照明された前記被研 磨物の表面の全域あるいは広範な領域の明視野像のカラー画像情報を、 取得する画像情報取得部と、 前記カラー画像情報に基づいて、 前記研磨 残り膜の状況を示すモニタ結果を得る処理部と、 を備えたことを特徴と する残膜モニタ装置である。 なお、 前記広範な領域は、 例えば、 被研磨 物が半導体ウェハの場合には、 複数チップ分の領域を含む領域である。 また、 「カラー」 とは、 R (赤), G (緑), B (青) の 3成分を含む場合 に限定されるものではなく、 例えば、 R, G , Bのうちのいずれか 2成 分のみを含んでいてもよい。 これらの点は、 後述する各発明についても 同様である。
前記目的を達成するための第 2の発明は、 前記第 1の発明であって、 前記モニタ結果は、 前記研磨残り膜の有無を含むことを特徴とするもの でめる。 前記目的を達成するための第 3の発明は、 前記第 1の発明又は第 2の 発明であって、 前記モニタ結果が、 前記研磨残り膜の位置に Wする情報 を含むことを特徴とするものである。
前記目的を達成するための第 4の発明は、 前記第 1の発明から第 3の 発明のいずれかであって、 前記明視野像がぼけた像であることを特徴と するものである。
前記目的を達成するための第 5の発明は、 前記第 1の発明から第 4の 発明のいずれかであって、 前記画像情報取得部が、 前記カラー画像情報 を実質的に一括して取得するものであることを特徴とするものである。 前記目的を達成するための第 6の発明は、 前記第 1の発明から第 4の 発明のいずれかであって、 前記画像情報取得部が、 前記カラ一画像情報 をスキャンにより漸次に取得するものであることを特徴とするものであ る。
前記目的を達成するための第 7の発明は、 前記第 1の発明から第 4の 発明のいずれかであって、 前記画像情報取得部が、 前記カラー画像情報 を、 前記被研磨物の回転に伴うスキャンにより漸次に取得するものであ ることを特徴とするものである。
前記目的を達成するための第 8の発明は、 前記第 1の発明から第 7の 発明のいずれかであって、 前記処理部は、 前記カラー画像倩報が示す画 像又はこれに所定の処理を施した画像に関して、 実質的に同一の画像内 位置での複数の色の強度値の相対的な関係を示す値を、 各画像位置ごと に演算する演算部と、 各画像位置での前記相対的な関係を示す値に基づ いて、 前記研磨残り膜の状況を判定する判定部とを有することを特徴と するものである。
前記目的を達成するための第 9の発明は、 前記第 8の発明であって、 前記所定の処理がスムージング処理であることを特徴とするものである < T JP03/06913
5 前記目的を達成するための第 1 0の発明は、 前記第 8の発明又は第 9 の発明であって、 実質的に同一の画像内位置での複数の色の強度値の前 記相対な関係を示す値が、 実質的に同一の画像内位置での 2つの色の強 度値の差又は比を含むことを特徴とするものである。
前記目的を達成するための第 1 1の発明は、 前記第 1 0の発明であつ て、 前記判定部が、 前記差又は比が所定範囲内に属する画像内位置の有 無によって、 前記研磨残り膜の有無を判定するものであることを特徴と するものである。
前記目的を達成するための第 1 2の発明は、 前記第 1 0の発明又は第 1 1の発明であって、 前記判定部が、 前記差又は比が所定範囲内に属す る画像内位置に応じて、 前記研磨残り膜の位置に関する情報を得るもの であることを特徴とするものである。
前記目的を達成するための第 1 3の発明は、 前記第 1の発明から第 1 2の発明のいずれかであって、 前記カラー画像情報が示す画像及びこれ を処理した画像のうちの少なく とも一方を表示する表示部を備えたこと を特徴とするものである。
前記目的を達成するための第 1 4の発明は、 前記第 1の発明から第 1 3の発明のいずれかであって、 前記カラー画像情報が示す画像及びこれ を処理した画像のうちの少なく とも一方を記憶する記憶部を備えたこと を特徴とするものである。
前記目的を達成するための第 1 5の発明は、 前記第 1の発明から第 1 4の発明のいずれかであって、 前記被研磨物が、 半導体ウェハであるこ とを特徴とするものである。
前記目的を達成するための第 1 6の発明は、 研磨体と被研磨物との間 に研磨剤を介在させた状態で、 前記研磨体と前記研磨対象物との間に荷 重を加え、 かつ相対移動させることにより、 前記被研磨物を研磨する、 研磨装置であって、 前記被研磨物の被研磨面の全域あるいは広範な領域 における研磨残り膜の状況をモニタする残膜モニタ装置を備えたことを 特徴とするものである。
前記目的を達成するための第 1 Ίの発明は、 前記第 1 6の発明であつ て、 前記被研磨物の研磨状況をその研磨中にモニタする研磨状況モニタ 装置を備えたことを特徴とするものである。
前記目的を達成するための第 1 8の発明は、 1つ以上の研磨ゾーンを 備え、 前記 1つ以上の研磨ゾーンにおいて、 研磨体と前記被研磨物との 間に研磨剤を介在させた状態で、 前記研磨体と前記被研磨物との間に荷 重を加え、 かつ相対移動させることにより、 前記被研磨物を研磨する研 磨装置であって、 前記被研磨物の研磨状況をその研磨中にモニタする研 磨状況モニタ装置、 及び、 前記被研磨物の被研磨面の全域あるいは広範 な領域における研磨残り膜の状況をモニタする残膜モニタ装置が、 前記
1つ以上の研磨ゾーンのうちの少なくとも 1つの研磨ゾーンに併設され たことを特徴とするものである。
前記目的を達成するための第 1 9の発明は、 前記第 1 8の発明であつ て、 前記 1つ以上の研磨ゾーンの数が 2以上であり、 前記被研磨物が前 記 1つ以上の研磨ゾーンで順次研磨され、 前記残膜モニタ装置が、 前記 1つ以上の研磨ゾーンのうち前記被研磨物が 2番目以降に研磨される研 磨ゾーンのうちの少なくとも 1つの研磨ゾーンに設置されていることを 特徴とするものである。
前記目的を達成するための第 2 0の発明は、 前記第 1 7の発明から第 1 9の発明のいずれかであって、 前記残膜モニタ装置が、 前記研磨状況 モニタ装置のモニタ結果に従って前記被研磨物の研磨が停止された後に、 前記研磨残り膜の状況をインラインでモニタし、 当該研磨装置は、 前記 残膜モニタ装置のモニタ結果に応じて異なる動作を行うものであること 3
7 を特徴とするものである。
前記目的を達成するための第 2 1の発明は、 前記第 2 0の発明であつ て、 前記残膜モニタ装置のモニタ結果が前記研磨残り膜が存在すること を示す場合に、 前記研磨残り膜が減るかあるいはなくなるように前記被 研磨物を研磨するものであることを特徴とするものである。
前記目的を達成するための第 2 2の発明は、 前記第 1 6の発明から第 2 1の発明のいずれかであって、 前記残膜モニタ装置が、 前記被研磨物 が研磨位置に保持された状態で、 前記研磨残り膜の状況をモニタするも のであることを特徴とするものである。
前記目的を達成するための第 2 3の発明は、 前記第 1 6の発明から第 2 2の発明のいずれかであって、 前記残膜モニタ装置が、 前記研磨体が 被研磨物の直上付近から退避した状態で、 前記研磨残り膜の状況をモニ 夕するものであることを特徴とするものである。
前記目的を達成するための第 2 4の発明は、 前記第 1 6の発明から第 2 3の発明のいずれかであって、 前記残膜モニタ装置が前記第 1の発明 から第 1 5の発明のいずれかの残膜モニタ装置であることを特徴とする ものである。
前記目的を達成するための第 2 5の発明は、 前記第 2 4の発明であつ て、 前記照明光が、 当該研磨装置の天井の所定領域又は天井付近に設け られた部材の所定領域を経由して、 あるいは、 前記天井の所定領域又は 天井付近に設けられた部材の所定領域から発せられて、 前記被研磨物の 表面の全域あるいは広範な領域を照射することを特徴とするものである 前記目的を達成するための第 2 6の発明は、 前記第 1 6の発明から第 2 5の発明のいずれかであって、 前記被研磨物が半導体ウェハであるこ とを特徴とするものである。
前記目的を達成するための第 2 7の発明は、 前記第 1 6の発明から第 2 6の発明のいずれかの研磨装置を用いて、 半導体ウェハの表面を平坦 化する工程を有することを特徴とする半導体デバイスの製造方法である ( 前記目的を達成するための第 2 8の発明は、 前記第 2 7の発明である 半導体デバイスの製造方法により製造される半導体デバイスである。 図面の簡単な説明
図 1は、 本発明の一実施の形態である研磨装置を模式的に示す概略上 面図である。
図 2は、 図 1に示す研磨装置のウェハの処理の様子を示す概略上面図 である。
図 3は、 図 1に示す研磨装置により研磨される半導体ウェハを模式的 に示す概略断面図であり、 図 3 ( a ) は研磨加工前のウェハ状態を、 図
3 ( b ) は研磨加工後のウェハ状態を示す。
図 4は、図 1に示す研磨装置の動作を示す概略フローチヤ一トである。 図 5は、 他の実施の形態である研磨装置の要部をそれそれ模式的に示 す概略上面図である。 実線で示すインデックステーブルの直径は、 図 5 ( a ) においては小さくて済み、 図 5 ( b ) においては大きくなる。 図 6は、 図 1に示す研磨装置において用いられている残膜モニタ装置 を示す概略構成図である。
図 7は、 図 1に示す残膜モニタ装置の光学系の配置を光学的に展開し て示す図である。
図 8は、 残膜モニタ装置の光学系の配置の変形例を展開して示す図で ¾ o
図 9は、 図 1に示す残膜モニタ装置の動作の一例を示す概略フローチ ヤートである。
図 1 0は、 銅残りが存在しない場合の実験データを示す図である。 図 1 1は、 銅残りが存在する場合の実験デ一夕を示す図である。
図 1 2は、 図 1に示す残膜モニタ装置の処理部により得られる処理画 像の例を模式的に示す図であり、 図 1 2 ( a ) は銅残りが存在しない場 合の状態を、 図 1 2 ( b ) は銅残りが存在する場合の状態を示す。
図 1 3は、半導体デバイス製造プロセスを示すフローチヤ一トである。 発明を実施するための最良の形態
以下、 本発明の実施の形態の例である残膜モニタ装置、 研磨装置、 半 導体デバイスの製造方法及び半導体デバイスについて、 図面を参照して 説明する。
図 1は、 本発明の一実施の形態である研磨装置 1を模式的に示す概略 上面図である。 図 2は、 図 1に示す研磨装置 1のウェハの処理の様子を 示す概略上面図である。 図面表記の便宜上、 図 1では、 後述する残膜モ 二夕装置 4 0 0を省略し、 図 2では、 後述する研磨状況モニタ装置 5 0 aを省略している。
本実施の形態である研磨装置 1は、 被研磨物としての半導体ウェハを 3ステージの研磨工程で精密に平坦研磨する C M P装置の例である。 この研磨装置 1は、 図 1及び図 2に示すように、 大きくカセッ トイン デヅクス部 1 0 0、 ウェハ洗浄部 2 0 0、 研磨部 3 0 0から構成されて おり、各部はそれそれ仕切られてクリーンチャンバが構成される。なお、 各室間には自動開閉式のシャッ夕を設けても良い。
カセッ トインデックス部 1 0 0は、 複数枚のウェハを保持したカセヅ ト (キャリアとも称する) C 1〜C 4を載置するウェハ載置テーブル 1 2 0と、 未加工ウェハをカセッ 卜から取り出して洗浄部 2 0 0の洗浄機 仮置き台 2 1 1に搬入し、 また研磨加工後にウェハ洗浄部 2 0 0で洗浄 された加工済みウェハをカセッ 卜に収納する第 1搬送ロボッ ト 1 5 0と を有して構成されている。
第 1搬送ロボヅ ト 1 5 0は 2本の多関節アーム 1 53 a, 1 53 bを 有する多関節アーム型のロボッ トであり、 基台 1 5 1とこの基台 15 1 上に水平旋回及び昇降作動自在な旋回台 1 52、 旋回台 1 52上に取り 付けられた 2本の多関節アーム 153 a, 1 5 3 b、 それぞれの多関節 アーム 153 a, 1 53 bの先端部に各アームに対して伸縮自在に取り 付けられた Aアーム 1 5 5 a及び Bアーム 1 5 5 b (Bアーム 155 b は Aアーム 1 5 5 aの下方にオフセヅ ト配置されており、 図 1及び図 2 において上下に重なって位置している) 等から構成されている。 Aァ一 ム 155 a及び Bアーム 1 55 bの先端部にはウェハを載置して吸着保 持する保持部が形成されている。 また、 基台 1 5 1には床面に配設され たリニアガイ ド 1 60に沿って水平移動自在な直線移動装置が設けられ ている。
このため、 第 1搬送ロボッ ト 1 50は、 リニアガイ ド 1 60に沿って 目的とするカセッ トの前方に移動し、 旋回台 1 52を水平旋回及び昇降 作動させて Aアーム 1 5 5 a又は Bアーム 1 5 5 bを目的とするスロ ヅ ト高さに移動させ、 多関節アーム 1 53 a及び Aアーム 1 55 a、 又は 多関節アーム 1 53 b及び Bアーム 15 5 bを作動させて Aアーム 1 5 5 a又は Bアーム 1 55 bの先端部の保持部で目的スロッ ト中の未加工 ウェハを吸着保持して取り出し、 あるいは目的スロッ トに加工済みゥェ ハを収納することができる。
なお、 上下方向にオフセッ トして配置されるこれら 2対のアーム 1 5 5 a, 1 5 5 bは機能上等価に構成されており、 いずれを取り出し用又 は収納用として用い、 あるいは一方のアームのみを両方の用途に用いる 構成とすることもできるが、 図示する研磨装置では未加工ウェハを下側 の Bアーム 1 5 5 bでカセッ トから取り出し、 洗浄後の加工済みウェハ を上側の Aアーム 1 5 5 aでカセヅ トに収納するように設定している。 ウェハ洗浄部 2 0 0は、 第 1洗浄室 2 1 0、 第 2洗浄室 2 2 0、 第 3 洗浄室 2 3 0及び乾燥室 2 4 0の 4室構成からなり、 研磨加工済みのゥ ェハが第 1洗浄室 2 1 0→第 2洗浄室 2 2 0→第 3洗浄室 2 3 0→乾燥 室 2 4 0のように順次送られて研磨加工部 3 0 0で付着したスラリーや 研磨加工液、 研磨摩耗粉等の除去洗浄が行われる。 例えば、 第 1洗浄室 2 1 0では回転ブラシによる両面洗浄、 第 2洗浄室 2 2 0では超音波加 振下での表面ペンシル洗浄、 第 3洗浄室 2 3 0では純水によるスピナ一 洗浄、 乾燥室 2 4 0では窒素雰囲気下における乾燥処理が行われるよう に構成されている。 なお、 研磨加工前の未加工ウェハは上記洗浄工程を 経ることなく、 カセッ トインデックス部 1 0 0から洗浄機仮置き台 2 1 1を介してウェハ洗浄部 2 0 0を通過しウェハ研磨部 3 0 0に搬入され る o
研磨部 3 0 0は、 4分割されてステツピングモ一夕等の作動により 9 0度ごとに回動送りされるインデックステーブル 3 4 0と、 インデヅク ステ一プル 3 4 0の位置決め停止位置に対応してィンデックステーブル 3 4 0を外周から取り囲むように設けられた第 1研磨ステージ 3 1 0、 第 2研磨ステージ 3 2 0、 第 3研磨ステージ 3 3 0、 及びインデックス テーブル 3 4 0に未加工ウェハを搬入し加工済みウェハを搬出する搬送 ステージ 3 5 0などから構成されている。 なお、 研磨ステージは、 研磨 ゾーンあるいは研磨室と呼ぶ場合もある。
4分割されたィンデックステーブル 3 4 0の各々の区画には、 ウェハ を裏面から吸着保持するチャック V 1〜V 4がテーブル上面に露出して 配設されており、 各チヤヅク V 1〜V 4はィンデヅクステーブル 3 4 0 に水平面 (図 1中の紙面と平行な面) 内で回転自在に支持されるととも に、 ィンデヅクステ一ブル 3 4 0の内部に設けられた電動モ一夕やエア P 蘭 3/06913
12 モー夕等の駆動手段により高速回転及び停止保持が自在に取り付けられ ている。 なお、 チャック V 1〜V 4の直径はウェハ直径よりもわずかに 小径に形成されており、 チャック V 1〜V 4に保持されたウェハの外周 端部を把持可能に構成されている。
第 1研磨ステージ 3 1 0、 第 2研磨ステージ 3 2 0、 第 3研磨ステー ジ 3 3 0の 3つの研磨ステージには、 それそれ、 インデックステーブル 3 4 0に対して水平方向に揺動自在かつ鉛直方向に上下動自在な研磨ァ —ム 3 1 1, 3 2 1 , 3 3 1が設けられている。 各研磨アーム 3 1 1 , 3 2 1 , 3 3 1の先端部には研磨アーム 3 1 1, 3 2 1 , 3 3 1から垂 下して水平面内に高速回転自在な研磨ヘッ ド (図示せず) が取り付けら れており、 その下端面にウェハとの相対回転によりウェハを平坦研磨す る研磨体としての研磨パツ ドを有している。また、各研磨ステージには、 研磨パヅ ドの表面をドレスアップするパッ ド ドレッサ 3 1 7 , 3 2 7 , 3 3 7と、 研磨パッ ドを自動交換するパッ ド交換装置 3 1 8 , 3 2 8 , 3 3 8が取り付けられている。
各研磨ステージにおける研磨アームとチャック、 パッ ドドレッサ、 ノ ッ ド交換装置とは、 研磨アーム先端の研磨へッ ドの揺動半径上に位置す るように相対位置が規定されている。 このため、 例えば、 第 1研磨ステ ージ 3 1 0において研磨加工を行うときには、 研磨アーム 3 1 1を揺動 させて研磨へヅ ドをチャック V 4上に移動させ、 研磨へヅ ド及びチヤヅ ク V 4を相対回転させるとともに研磨アーム 3 1 1を降下させることに より研磨パッ ドをウェハ上に押圧させて研磨加工を行う。 なお、 研磨加 ェの際に、 研磨剤 (スラリー) が研磨パッ ドとウェハとの間に介在され ることは、 言うまでもない。 そして、 研磨加工の最終段階には、 不図示 の水供給装置によって被研磨物上の研磨剤を洗い流した後、 例えばチヤ ックを回転することで水切りを行う。 T JP03/06913
13 研磨加工をすベて終了して研磨アーム 3 1 1をわずかに上昇させると インデックステ一プル 3 4 0を回動させることができる。 このとき所定 の研磨回数ごとに研磨アーム 3 1 1を揺動させてパッ ド ドレッサ 3 1 7 で研磨パヅ ドの目詰まりや目の不揃いを修正する目立て(ドレスアップ) を行い、 また所定研磨時間が経過したときには研磨アーム 3 1 1をさら に揺動させて研磨パッ ドをパッ ド交換装置 3 1 8上方に移動させ、 この 装置により研磨パッ ドの自動交換を行う。
なお、 ッ ド ドレヅサはィンデックステーブル 3 4 0における各チヤ ックのすく、脇に隣接して設置しても良い。 このような配置によれば、 研 磨加工中にウェハ外周からはみ出した研磨パッ ドのドレスアップを研磨 加工中に行うことができ、 これにより、 研磨に要する時間をさらに短縮 させることができる。
研磨アーム 3 1 1にはアームの摇動角度位置を検出するアーム位置検 出器 (図示せず) が取り付けられており、 研磨アーム 3 1 1の研磨加工 位置やドレスアップ位置等を検出している。
また、 各研磨ステージには、 図 1に示すように、 研磨加工中のウェハ の研磨状況を光学的にモニタする研磨状況モニタ装置 5 0 aが取り付け られ、 研磨加工中の膜厚減少などがリアルタイムで検出可能となってい る。 この研磨状況モニタ装置 5 0 aとしては、 例えば、 特閧 2 0 0 0— 4 0 6 8 0号公報に開示されている装置を用いることができる。 本実施 の形態では、 研磨状況モニタ装置 5 0 aは、 各研磨ステージの研磨ァー ムとおおよそ平行に延び水平方向に揺動自在のアーム 6 1を有している < このアーム 6 1には光ファイバ等が内蔵され、アーム 6 1の先端部から、 チャックに保持されて研磨加工中のウェハ上にプローブ光を局所的に照 射するとともにウェハからの反射光を受光して所定箇所に導かれるよう になっている。 アーム 6 1は、 研磨アームとの機械的な干渉を避けるた めに研磨加工中に研磨アームと同期して摇動されるようになっている。 本実施の形態では、 研磨状況モニタ装置 5 0 aは、 アーム 6 1の先端部 がウェハ上に位置しているときに得られるウェハからの反射光に基づい て、 研磨状況がモニタされる。
以上の構成及び作動は、 第 2研磨ステージ 3 2 0、 第 3研磨ステージ 3 3 0においても同様である。
そして、 本実施の形態では、 図 2に示すように、 第 2研磨ステージ 3 2 0及び第 3研磨ステージ 3 3 0にはそれそれ、 ウェハの被研磨面 (本 実施の形態では上面) の全域における研磨残り膜の状況をモニタする残 膜モニタ装置 4 0 0 (厳密には、その光学系)が設けられている。なお、 本発明では、 残膜モニタ装置は、 必ずしもウェハの被研磨面の全域にお ける研磨残り膜の状¾ではなく、 被研磨面の広範な領域における研磨残 り膜の状況をモニタしてもよい。 残膜モニタ装置 4 0 0については、 後 に図 5等を参照して詳述するので、 ここでは、 簡単な説明に留める。 各 残膜モニタ装置 4 0 0は、 各ステージ 3 2 0, 3 3 0に位置しているチ ャヅク (ウェハ保持部)上にチヤヅキングされているウェハ、すなわち、 各ステージ 3 2 0 , 3 3 0の研磨位置に保持されているウェハの全域に 照明光を照射し、 その照明光により照明されたウェハ全域の像の画像情 報を取得し、 この画像情報に基づいて、 ウェハ上の研磨残り膜の状況を 示すモニタ結果を得る。 本実施の形態では、 このように研磨位置に保持 されているウェハに照明光を照射してウェハの画像情報を取得するので、 残膜モニタ装置 4 0 0がウェハ上の研磨残り膜の状況をモニタする際に は、 当該研磨ステージにおける研磨加工が一旦停止された後に、 研磨ァ ームの揺動によって研磨へヅ ド及び研磨アームを、 チヤヅクの直上から 退避させて残膜モニタ装置 4 0 0の光路から退避させる。 また、 研磨状 況モニタ装置 5 0 aのアーム 6 1も、 前記光路を遮る可能性がある場合 P 漏 3/06913
15 には、 前記光路から退避させる。 本実施の形態では、 残膜モニタ装置 4 0 0は、 モニタ結果として、 ウェハ上の研磨残り膜の有無、 及び、 研磨 残り膜の位置に関する情報が、 得られるようになつている。
搬送ステージ 3 5 0には、 第 2搬送ロボヅ ト 3 6 0と第 3搬送ロボヅ ト 3 7 0とが配設されている。 第 2搬送ロボヅ ト 3 6 0は、 前述した第 1搬送ロボッ ト 1 5 0と同様の多関節アーム型のロボッ トであり、 水平 旋回及び昇降作動自在な旋回台 3 6 2上に揺動自在に取り付けられた 2 本の多関節アーム 3 6 3 a , 3 6 3 b及び各多関節アーム 3 6 3 a , 3
6 3 bの先端部に伸縮自在に取り付けられた Aアーム 3 6 5 a及び Bァ —ム 3 6 5 bから構成されている。 Aアーム 3 6 5 aと Bアーム 3 6 5 bとは上下にオフセッ トして配置されるとともに、 両アーム 3 6 5 a , 3 6 5 bの先端部にはウェハを載置して吸着保持する保持部が形成され ている。
第 3搬送ロボッ ト 3 7 0は、 インデックステーブル 3 4 0に対して水 平方向に揺動自在かつ鉛直方向に上下動自在な揺動アーム 3 7 1 と、 こ の摇動アーム 3 7 1の先端部に揺動アーム 3 7 1に対して水平旋回自在 に取り付けられた回動アーム 3 7 2、 回動アーム 3 7 2の両端部に縣吊 されてウェハの外周端部を把持する Aクランプ 3 7 5 a及び Bクランプ 3 7 5 bなどから構成されている。 Aクランプ 3 7 5 aと Bクランプ 3 7 5 bとは回動アーム 3 7 2の回動中心から同一距離の回動アーム端部 に配設されている。 また、 図 1に示す状態は第 3搬送ロボッ ト 3 7 0の 待機姿勢を示しており、 図における Aクランプ 3 7 5 aと Bクランプ 3
7 5 bとの下方には、 それぞれ未加工のウェハを載置する A仮置き台 3 8 1と、 研磨加工済みのウェハを載置する B仮置き台 3 8 2とが設けら れている。
このため、 第 3搬送ロボッ ト 3 7 0の摇動アーム 3 7 1を揺動作動さ 03 06913
16 せ、 さらに回動アーム 3 7 2を旋回作動させることにより Aクランプ 3 7 5 a又は Bクランプ 3 7 5 bをインデックステーブル 3 4 0のチヤヅ ク V 1上に移動させることができ、 当該位置で揺動アーム 3 7 1を下降 させて Aクランプ 3 7 5 a又は Bクランプ 3 7 5 bでチャック上のゥェ ハを外周クランプして受け取り、 あるいはチャック上に新たなウェハを 載置保持させることができる。
なお、 研磨加工後のウェハにはスラリーを含んだ研磨加工液が付着し ていることから、研磨加工前のウェハを搬入するアーム及びクランプと、 研磨加工後のウェハを搬出するアーム及びクランプとを区別し、 上下に オフセッ トされた A , Bアーム 3 6 5 a, 3 6 5 bのうち上方に位置す る Aアーム 3 6 5 aを未加工ウェハの搬入用アーム、 下方に位置する B アーム 3 6 5 bを搬出用アームに、 また、 Aクランプ 3 7 5 aを搬入用 クランプ、 Bクランプ 3 7 5 bを搬出用クランプとして規定している。 次に、以上のように構成される研磨装置 1の動作について、説明する。 ' 以下の説明では、 図 3 ( a ) に示すようにシリコン基板 5 1に配線溝を 形成し、 この溝上に T i Nや T a N等のバリア層 5 2を形成し、 さらに その上から銅の導電層 5 3を形成させた状態 (本明細書において未加工 ウェハという) から、 導電層 5 3及びバリア層 5 2を C M P法により第 1次研磨加工 P 1、 第 2次研磨加工: P 2、 第 3次研磨加工 P 3の 3段階 の研磨加工で平坦に研磨し、 シリコン基板 5 1上に図 3 ( b ) に示すよ うな導体配線溝 5 3 aを形成する C u— C M Pプロセスを行う場合を例 にして、 説明する。
以下の例では、 第 1次研磨加工 P l、 第 2次研磨加工 P 2及び第 3次 研磨加工 P 3は、 第 1研磨ステージ 3 1 0、 第 2研磨ステージ 3 2 0、 第 3研磨ステージ 3 3 0でそれそれ行われるようになつている。
なお、 第 2次研磨加工 P 2及び第 3次研磨加工 P 3では、 研磨加工終 点の制御が必要であるため、 研磨状況モニタ装置 5 0 aによる研磨終点 の検出で、 一旦研磨加工を終了させる。 一方、 第 1次研磨加工 P 1は第 2次研磨加工 P 2の前段的研磨加工であり、終点検出を行うまでもない。 そこで、 第 1次研磨加工 P 1は、 時間管理で研磨加工を終了させること とし、 所定の研磨加工時間 t p 1で終了させる。
図 2には、 カセヅ トインデックス部 1 0 0のカセヅ ト C 1にセッ トさ れた未加工ウェハ W が、研磨部 3 00で順次研磨処理されて図 3 (b) に示す加工済みウェハ Wpとなり、 ウェハ洗浄部 2 00で洗浄処理され てカセッ トインデックス部 1 0 0のカセッ ト C 4に収納されるまでのゥ ェハの流れを、 点線と矢印を付して示している。 なお、 各搬送ロボッ ト
1 5 0 , 3 6 0 , 3 7 0やインデックステーブル 340、 チャック V 1 〜V 4、 研磨アーム 3 1 1 , 3 2 1, 3 3 1、 研磨へヅ ド等の作動は図 示しないパーソナルコンピュータ等からなる制御部によって制御され、 この制御部は予め設定された制御プログラムに基づいてこれらの作動制 御を行う。
まず、 研磨装置 1が起動され研磨加工が開始されると、 第 1搬送ロボ ッ ト 1 5 0が力セヅ ト C 1の位置に移動し、 旋回台 1 5 2を水平旋回及 び昇降作動させて Bアーム 1 5 5 bを目的とするウェハのスロッ ト高さ に移動させ、 多関節アーム 1 5 3 b及び Bアーム 1 5 5 bを伸長作動さ せて Bアーム 1 5 5 b先端の保持部でスロヅ ト内の未加工ウェハ Wdを 吸着保持し、 両アームを縮長作動させて引き出す。 そして、 旋回台 1 5 2を 1 8 0度旋回作動させてウェハ洗浄部 2 0 0に向かい、 この洗浄部
2 0 0に設けられた洗浄機仮置き台 2 1 1上に未加工ウェハ Wdを載置 する。
ウェハ洗浄室 2 0 0を挟んで対峙する搬入ステージ 3 5 0の第 2搬送 ロボッ ト 3 6 0は、未加工ウェハ Wdが仮置き台 2 1 1に載置されると、 旋回台 3 6 2を作動させて Aアーム 3 6 5 a先端部が洗浄機仮置き台 2 1 1に向かうように旋回し、 多関節アーム' 3 6 3 a及び Aアーム 3 6 5 aを伸長作動させて Aアーム先端の保持部で洗浄機仮置き台 2 1 1上の 未加工ウェハ W dを吸着保持する。 そして、 未加工ウェハ W dを保持す ると多関節アーム 3 6 3 a及び Aアーム 3 6 5 aを縮長作動させるとと もに旋回台 3 6 2を旋回作動させて反転し、 再び多関節アーム 3 6 3 a 及び Aアーム 3 6 5 aを伸長作動させて未加工ウェハ W dを A仮置き台 3 8 1上に載置する。 - 未加工ウェハ W dが A仮置き台 3 8 1上に載置されると、 第 3搬送口 ボヅ ト 3 7 0が下降作動して Aクランプ 3 7 5 aで未加工ウェハ W dを 把持し、 把持後所定高さまで上昇作動した待機位置でィンデックステ一 ブル 3 4 0の位置決め完了するまで待機する (待機姿勢)。インデックス テーブル 3 4 0が位置決め停止すると摇動アーム 3 7 1及び回動アーム 3 7 2を揺動作動及び回動作動させて未加工ウェハをチャック V 1上に 載置し吸着保持させる。 そして第 3搬送ロボッ ト 3 7 0はクランプ解除 後上昇し、 揺動アーム 3 7 1及び回動アーム 3 7 2を摇動作動及び回動 作動させて次の未加工ウェハ W dを Aクランプ 3 7 5 aで把持し、 所定 高さの待機位置で次のインデックス作動まで待機する。
以降、 研磨部 3 0 0における研磨加工が開始される。 図 4はこのよう にして搬入ステージ 3 5 0に搬入された未加工ウェハ W dが第 1研磨ス テ一ジ 3 1 0から第 2研磨ステージ 3 2 0、 第 3研磨ステージ 3 3 0を 経て搬送ステージ 3 5 0から搬出されるまでの流れをフ口一チャートと して示している。 以下、 図 4を交えて各研磨ステージにおける研磨加工 について説明する。
なお、 以下の説明では 1つの未加工ウェハ W dが各ステージで加工さ れて加工済みウェハとして収納されるまでの進行を時系列で説明するが、 P 漏藝 13
19 各ステージにはィンデックステーブル 3 4 0の回動作動ごとに順次新た なウェハが搬入され、 ィンデックステーブル 3 4 0の回動作動ごとに新 たな加工済みウェハが搬出され、 各ステージでは異なるウェハに関する 動作が同時に並行して行われる。
未加工ウェハ W dがチャック V 1上に吸着保持され、 第 3搬送ロボヅ ト 3 7 0がィンデヅクステーブル 3 4 0の上方から待避すると (ステツ プ S 1 )、ステップ S 2でインデックステーブル 3 4 0を図 1及び図 2中 の右回り (時計回り) に 9 0度回動作動させ、 未加工ウェハ W dを第 1 研磨ステージ 3 1 0 (図 1及び図 2における V 4位置)に位置決めする。 このとき、 同時に、 研磨アーム 3 1 1を揺動作動させて研磨へッ ドを未 加工ウェハ W d上に移動させる。
ィンデックステ一ブル 3 4 0が位置決め停止すると、 ステヅプ S 3に 進み、 研磨へッ ドとチャック V 1とを例えば反対方向に高速回転させる とともに研磨アーム 3 1 1を下降させて研磨へッ ド下端の研磨パッ ドを ウェハ上に押圧させ、 第 1次研磨加工 P 1を行う。 研磨加工中には研磨 へヅ ドの軸心からスラリ ーを供給しながら研磨パヅ ドがウェハの回転中 心と外周端部との間を往復動するように微小範囲で研磨アーム 3 1 1を 揺動作動させてウェハを均一に平坦研磨する。搬送ステージ 3 5 0では、 第 1次研磨加工中に、 新たな未加工ウェハが第 3搬送ロボッ ト 3 7 0に よりチャック V 2上に搬入される。
第 1研磨ステージ 3 1 0での第 1次研磨加工 P 1は前述したように時 間制御であり、所定の研磨加工時間 t p 1が経過すると(ステップ S 4 )、 研磨アーム 3 1 1を上昇させて第 1研磨ステージ 3 1 0での研磨加工を 停止し (ステップ S 5 )、 ステップ S 6に進む。 ステップ S 6では、 ィン デヅクステーブル 3 4 ◦の作動が可能であるか否か (すなわち、 第 1研 磨ステージ 3 1 0以外のステージでの動作が完了したか否か)を判定し、 可能でなければ可能となるのを待ち、可能であればステツプ S 7に進む。 ステヅプ S 7では、 ィンデヅクステーブル 3 4 0を再び右回りに 9 0 度回動作動させ、 第 1次研磨加工 P 1が終了したウェハを第 2研磨ステ —ジ 3 2 0 (図 1及び図 2における V 3位置) に位置決めする。 このと き、 同時に、 研磨アーム 3 2 1を揺動作動させて研磨へッ ドをウェハ上 に移動させる。 そして、 ステップ S 8に進んで、 研磨アーム 3 2 1を下 降させ、 上記第 1次研磨加工 P 1と同様の作動により、 第 2研磨ステ一 ジ 3 2 0での研磨加工 (第 2次研磨加工 P 2 ) を行う。
第 2研磨ステージ 3 2 0での第 2次研磨加工 P 2は、 いわゆる終点検 出加工である。 第 2研磨ステージ 3 2 0の研磨状況モニタ装置 5 0 aで 検出される加工膜厚が予め設定された所定の膜厚まで減少したと判断さ れるとき (ステップ S 9 ) に、 研磨アーム 3 2 1を上昇させ第 2研磨ス テージ 3 2 0での研磨加工を停止すると共に、 被研磨物上の研磨剤 (ス ラリー) を洗い流すための洗浄、 水切りを行う (ステップ S 1 0 )。 次に、 制御部は、 研磨ヘッ ド及び研磨アーム 3 2 1をチャックの直上 から退避させ、 第 2研磨ステージ 3 2 0の残膜モニタ装置 4 0 0に、 ゥ ェハ上の研磨残り膜 (ここでは、 銅の残り膜 (図 3中の導電層 5 3のう ちの導体配線溝 5 3 a以外の部分))の状況をモニタさせる (ステップ S 1 1 )。そして、残膜モニタ装置 4 0 0から研磨残り膜が存在しない旨の モニタ結果が得られた場合 (ステップ S 1 2で N 0 ) は、 ステップ S 1 4に進む。
一方、 残膜モニタ装置 4 0 0から研磨残り膜が存在する旨のモニタ結 果が得られた場合 (ステップ S 1 2で Y E S ) は、 再び、 研磨アーム 3 2 1を揺動作動させて研磨へッ ドをウェハ上に移動させ、 更に研磨ァ一 ム 3 2 1を下降させ、 ステップ S 8の研磨加工と同様の作動により、 第 2研磨ステージ 3 2 0での追加の研磨加工を行う (ステップ S 1 3 )。ス テツプ S 1 3の研磨加工は、 時間制御で行い、 所定時間を継続した後に 停止し、 ステップ S 1 0へ戻る。 したがって、 ステップ S 1 3では、 研 磨ステージ 3 2 0の研磨状況モニタ装置 5 0 aの作動は不要である。 ス テツプ S 1 3の研磨加工は、 時間制御であるか終点検出加工であるかの 点を除き、 ステップ S 8の研磨加工と同一の研磨加工条件で行い、 ゥェ ハを全体的に研磨してもよい。 もっとも、 例えば、 ステップ S 1 1で残 膜モニタ装置 4 0 0から、 モニタ結果として研磨残り膜の位置に関する 情報が得られる場合は、 ステップ S 1 0の研磨加工は、 その情報に応じ て、 その位置の付近だけ部分的に研磨するかあるいはその位置の付近を 重点的に研磨するような、 研磨加工条件 (研磨へッ ドの回転中心位置の 設定、 研磨揺動の有無の設定、 チャックの回転条件の設定など) で、 行 つてもよい。
以上の説明からわかるように、 ステップ S 1 4に進む際には、 ステヅ プ S 8の後にウェハ上に研磨残り膜が存在していても、 ステップ S 1 3 の追加研磨加工により研磨残り膜が除去された状態となる。換言すれば、 第 2研磨ステージ 3 2 0での第 2次研磨加工 P 2が完了したときに、 ス テツプ S 1 4に進むことになる。
ステップ S 1 4では、 インデックステ一ブル 3 4 0の作動が可能であ るか否か (すなわち、 第 2研磨ステージ 3 2 0以外のステージでの動作 が完了したか否か) を判定し、 可能でなければ可能となるのを待ち、 可 能であればステツプ S 1 5に進む。
ステップ S 1 5では、 インデックステーブル 3 4 0を再び右回りに 9 0度回動作動させ、 第 2次研磨加工 P 2が終了したウェハを第 3研磨ス テージ 3 3 0 (図における V 2位置) に位置決めする。 そして、 研磨ァ —ム 3 3 1を下降させて上述したと同様の作動により第 3研磨ステージ 3 3 0での研磨加工 (第 3次研磨加工 P 3 ) を行う (ステップ S 1 6 )。 P03 06913
22 第 3研磨ステージ 3 3 0での第 3次研磨加工 P 3も、 ステップ S 8の 第 2次研磨加工 P 2と同様に、 いわゆる終点検出加工である。 第 3研磨 ステージ 3 3 0の研磨状況モニタ装置 5 0 aで検出される加工膜厚が予 め設定された所定の膜厚まで減少したと判断されるとき (スデヅプ S 1 7 ) に、 研磨アーム 3 3 1を上昇させて第 3研磨ステージ 3 3 0での研 磨加工を停止する (ステップ S 1 8 )。 そして、 研磨へッ ド及び研磨ァー ム 3 3 1をチヤヅクの直上から退避させ、 第 3研磨ステージ 3 3 0の残 膜モニタ装置 4 0 0に、 ウェハ上の研磨残り膜 (ここでは、 バリア層 5 2の残り膜 (図 3 ( a ) 中のバリア層 5 2のうち図 3 ( b ) のように残 るべき部分以外の部分)) の状況をモニタさせる (ステップ S 1 9 )。 そ して、 残膜モニタ装置 4 0 0から研磨残り膜が存在しない旨のモニタ結 果が得られた場合(ステップ S 2 0で N O )は、ステップ S 2 2に進む。 一方、 残膜モニタ装置 4 0 0から研磨残り膜が存在する旨のモニタ結 果が得られた場合 (ステップ S 2 0で Y E S ) は、 再び、 研磨アーム 3 3 1を摇動作動させて研磨ヘッ ドをウェハ上に移動させ、 更に研磨ァ一 ム 3 3 1を下降させ、 ステップ S 1 6の研磨加工と同様の作動により、 第 3研磨ステ一ジ 3 3 0での追加の研磨加工を行う (ステップ S 2 1 )。 ステップ S 2 1の研磨加工は、 時間制御で行い、 所定時間を継続した後 に停止し、 ステップ S 1 8へ戻る。 したがって、 ステップ S 2 1では、 研磨ステージ 3 3 0の研磨状況モニタ装置 5 0 aの作動は不要である。 ステップ S 2 1の研磨加工は、 時間制御であるか終点検出加工であるか の点を除き、 ステップ S 1 6の研磨加工と同一の研磨加工条件で行い、 ウェハを全体的に研磨してもよい。 もっとも、 例えば、 ステップ S 1 9 で残膜モニタ装置 4 0 0から、 モニタ結果として研磨残り膜の位置に関 する情報が得られる場合は、 ステップ S 2 1の研磨加工は、 その情報に 応じて、 その位置の付近だけ部分的に研磨するかあるいはその位置の付 近を重点的に研磨するような、 研磨加工条件 (研磨へッ ドの回転中心位 置の設定、研磨揺動の有無の設定、チヤックの回転条件の設定など)で、 行ってもよい。
以上の説明からわかるように、 ステップ S 2 2に進む際には、 ステツ プ S 1 7の後にウェハ上に研磨残り膜が存在していても、 ステップ S 2 1の追加研磨加工により研磨残り膜が除去された状態となる。 換言すれ ば、第 3研磨ステージ 3 3 0での第 3次研磨加工 P 3が完了したときに、 ステップ S 2 2に進むことになる。
ステップ S 2 2では、 インデックステ一プル 3 4 0の作動が可能であ るか否か (すなわち、 第 3研磨ステージ 3 3 0以外のステージでの動作 が完了したか否か) を判定し、 可能でなければ可能となるのを待ち、 可 能であればステップ S 2 3に進む。
ステヅプ S 2 3ではインデックステーブル 3 4 0を再び右回りに 9 0 度回動作動させ第 3次研磨加工 P 3が終了したウェハを搬送ステージ 3 5 0 (図 1及び図 2における V 1位置) に位置決めする。 インデックス テーブル 3 4 0が位置決め停止すると、 第 3搬送ロボッ ト 3 7 0が揺動 アーム 3 7 1及び回動アーム 3 7 2を摇動作動及び回動作動させて研磨 加工が終了した加工済みウェハ W pを搬出するともに(ステヅプ S 2 4 )、 次の未加工ウェハ W dをチヤヅク V 1上に搬入してチヤヅク V 1に吸着 保持させ、 再びステップ S 1に戻る。
加工済みウェハ W pが B仮置き台 3 8 2に載置され第 3搬送ロボッ ト 3 7 0が待機位置で停止すると、 第 2搬送ロボッ ト 3 6 0は旋回台 3 6 2、 多関節アーム 3 6 3 b及び Bアーム 3 6 5 bを作動させて Bアーム 先端の保持部で B仮置き台 3 8 2上の加工済みウェハ W pを吸着保持し、 旋回台 3 6 2を旋回作動、 多関節アーム 3 6 3 b及び Bアーム 3 6 5 b を伸長作動させてさせて洗浄部 2 0 0の洗浄機入口 2 1 6に加工済みゥ ェハ W pを載置する。
洗浄部 2 0 0では、 第 1洗浄室 2 1 0で回転ブラシによる両面洗浄、 第 2洗浄室 2 2 0で超音波加振下での表面ペンシル洗浄、 第 3洗浄室 2 3 0で純水によるスピナ一洗浄、 乾燥室 2 4 0で窒素雰囲気下における 乾燥処理が行われる。 そして、 このようにして洗浄された完成品ウェハ は、 カセッ トインデックス部 1 0 0における第 1搬送ロボヅ ト 1 5 0の Aアーム 1 5 5 aにより洗浄部 2 0 0から取り出され、 カセッ ト C 4の 指定スロッ トに収納される。
本実施の形態では、 前述したように、 第 2研磨ステージ 3 2 0に残膜 モニタ装置 4 0 0を設け、 第 2研磨ステージ 3 2 0において研磨残り膜 がある場合にはステップ S 1 3の追加研磨加工を行っている。 したがつ て、 本実施の形態によれば、 第 2研磨ステージ 3 2 0における第 2次研 磨加工 P 2を、 図 3中の銅の導電層 5 3の残膜を精密に管理しつつ、 行 うことができる。 このため、 銅の導電層 5 3の残膜を確実になくすこと により電気的なショートを防止して、 歩留りを向上させることができ、 しかも、 導体配線溝 5 3 aの削れ過ぎ (過剰研磨) を防止することがで きることから、 電気抵抗の増加によるチップ性能の劣化や製品ばらつき 等も低減することができる。
また、 本実施の形態では、 前述したように、 第 3研磨ステージ 3 3 0 に残膜モニタ装置 4 0 0を設け、 第 3研磨ステージ 3 3 0において研磨 残り膜がある場合にはステツプ S 2 1の追加研磨加工を行っている。 し たがって、 本実施の形態によれば、 第 3研磨ステージ 3 3 0における第 3次研磨加工 P 3を、図 3中のバリア層 5 2の残膜を精密に管理しつつ、 行うことができる。 このため、 この点からも、 より歩留りを向上させる とともに、 電気抵抗の増加によるチップ性能の劣化や製品ばらつき等も より低減することができる。 なお、 以上説明した実施の形態では、 第 2研磨ステージ 3 2 0及び第 3研磨ステージ 3 3 0の両方に残膜モニタ装置 4 0 0を設け、 第 2研磨 ステージ 3 2 0において研磨残り膜がある場合にはステップ S 1 3の追 加研磨加工を行うとともに、 第 3研磨ステージ 3 3 0において研磨残り 膜がある場合にはステップ S 2 1の追加研磨加工を行う例である。 しか しながら、 例えば、 前記実施の形態において、 第 3研磨ステージ 3 3 0 の残膜モニタ装置 4 0 0を取り除き、 ステップ S 1 8〜2 1を取り除い てステップ S 1 7で Y E Sの場合に直ちにステップ S 2 2へ進んでもよ い。
また、 第 2研磨ステージ 3 2 0及び第 3研磨ステージ 3 3 0の残膜モ 二夕装置 4 0 0を全ウェハに対しては作動させず、 必要に応じてロッ ト 毎に抜き取りで駆動させ、 ロッ ト毎に再研磨量を規定しても良い。 この 場合には、 研磨状況モニタ装置 5 0 aで終点を検出した後に、 引き続い て残膜除去のための規定条件で研磨を継続させて目的の工程 (第 2次研 磨加工 P 2や第 3次研磨加工 P 3 ) を終えることが可能である。
さらに、 本実施の形態の説明では、 C u— C M Pプロセスにおける精 密な研磨コン トロールを行う場合を例示したが、 本発明は、 かかる用途 に限定されるものではなく、 層間絶縁膜の加工プロセスや S T Iプロセ ス等のようなウェハ加工の他、 石英基板やガラス基板、 セラミック基板 等の加工プロセスについても同様に適用可能である。
さらにまた、 本実施の形態である研磨装置 1は、 4分割されたインデ ヅクステーブル 3 4 0を用い、 3段階の研磨ステージ 3 1 0, 3 2 0 , 3 3 0で研磨加工を行う研磨装置の例であった。 一方、 2段階の研磨ス テージで研磨加工を行う場合も公知であるが、 その場合は第 2研磨ステ —ジに残膜モニタ装置 4 0 0を設ければ、 図 5 ( a ) に示すようにイン デヅクステ一ブル 3 4 6を小型化することができ、 これにより省スぺ一 スの研磨装置を提供することができる。 また、 図 5 ( b ) に示すように インデックステーブル 3 4 7を 5分割して 4段階の研磨ステージを設け る構成とすれば、 適当な研磨ステージを選択し、 1つのステージ又は複 数のステージに残膜モニタ装置 4 0 0を設ければ良い。 テーブル直径増 大に伴い装置が幾分大型化するが、 従来比で約 2倍の高スループッ トを 得ることができる研磨装置を提供することができる。 図 5 ( b ) の例で は、 第 2研磨ステージと第 4研磨ステージに残膜モニタ装置 4 0 0を設 iiしてある。
次に、 図 1及び図 2に示す研磨装置 1において用いられている残膜モ 二夕装置 4 0 0について、図 6及び図 7を参照して詳しく述べる。また、 残膜モニタ装置 4 0 0の一部の構成要素 4 0 1, 4 0 2 , 4 0 3につい ては、 図 2にも示しているので、 図 2も参照されたい。
図 6は、 光学系が研磨ステージ 3 3 0に設置された残膜モニタ装置 4 0 0を示す概略構成図である。 図 6中の光学系は、 図 2において矢印 A の方向から見たものとして示している。 図 7は、 残膜モニタ装置 4 0 0 の光学系の配置を光学的に展開して示す図である。
ここでは、 光学系が第 3研磨ステージ 3 3 0に設置された残膜モニタ 装置 4 0 0について説明するが、 光学系が第 2研磨ステージ 3 2 0に設 置された残膜モニタ装置 4 0 0についても同様である。
残膜モニタ装置 4 0 0は、 図 6に示すように、 2次元の R G Bカラ一 C C D 4 0 1 と、 撮影レンズ 4 0 2と、 白色拡散反射板 4 0 3と、 白色 光源 4 0 4と、 例えば画像処理回路又はマイクロコンビュ^"夕等を用い て構成される処理部 4 0 5と、 C R Tや液晶パネル等の表示部 4 0 6と、 記憶部 4 0 7と、 を備えている。
白色光源 4 0 4としては、 例えば、 均一な分光スぺク トルを持つス ト ロボ光を発するス トロボが用いられる。 このス トロボ光は、 例えば、 5 06913
27
40 nm付近を含むグリーンを含み、 400 nmから 700 nmの波長 域に十分な分光スペク トルを持つ。 なお、 白色光源 404が連続光を発 するものでもよいことは、 言うまでもない。
白色光源 404から発した光は、 図 6及び 7に示すように、 白色拡散 反射板 403で反射され散乱されて、 チャック (図 6では図示せず。 ィ ンデヅクステーブル 340が図 2に示す回動位置にある場合には、 チヤ ヅク V2) にチヤッキングされているウェハ Wmの上面 (被研磨面) の 露光ェリァ(残膜の有無を観察すべきエリァ)を、ほぼ均一に照明する。 白色拡散反射板 403は、 ウェハ Wmの露光ェリアをカバーするのに十 分な面積を保有している。
ここで、 白色拡散反射板 403の最小限の寸法は、 撮影レンズ 402 とウェハ Wmとの間隔を h 1、 ウェハ Wmと白色拡散反射板 403との 間隔を h 2として、 ウェハ Wmの露光エリアと相似の形を有し、 ウェハ Wmの露光ェリアに対して {(h 1 + h 2 ) / h 1 }倍以上の寸法を有す ることが望ましく、白色拡散反射板 403が均一な強度を有する場合は、 捉えた画像も比較的均一な照度を得ることができる。 この計算は、 撮影 レンズ 402付近に入射瞳がある場合に適用できる。
ウェハ Wmに照射されウェハ Wmで反射された光によるウェハ Wmの 露光エリアの像が、 撮影レンズ 402によってカラー C CD 40 1の撮 像面に結像される。 本実施の形態では、 撮影レンズ 402は、 ウェハ W mの像を実質的にボケが生ずることなくカラ一 CCD40 1の撮像面に 結像するようになつている。
白色拡散反射板 403、 撮影レンズ 402及びカラー C C D 40 1の ウェハ Wmに対する位置関係が、 図 6及び図 7に示すように設定され、 ウェハ Wmで正反射された光によるウェハ Wmの露光エリアの像が、 力 ラー C C D 40 1の撮像面に結像されるようになつている。 すなわち、 ウェハ Wmの被研磨面の表面の露光ェリァの明視野像が、 カラ一 C C D 4 0 1により撮像される。本実施の形態では、白色拡散反射板 4 0 3は、 この明視野像の背景をなし、 ウェハ Wmを均一照明するための背景をな している。
本実施の形態では、 白色拡散反射板 4 0 3、 撮影レンズ 4 0 2及び力 ラ一 C CD 4 0 1はいずれも、 研磨ステージ 3 2 0の天井 3 3 3 a付近 に設置されており、 スペースが有効に活用されている。
なお、 図 6及び図 7から理解できるように、 白色拡散反射板 4 0 3に 代えて、 例えば、 集光鏡を用いてもよい。 また、 白色光源 4 0 4及び白 色拡散反射板 4 0 3に代えて、 白色透過拡散板等の透過部材と照明用白 色光源とを一体となして面発光体を形成し天井 3 3 3 a付近に背景とし て配置してもよいし、 透過部材のない、 例えば有機ェレク ト口 ·ルミネ ッセンスなどの面発光体を背景として天井 3 3 3 a付近に配置してもよ い。 さらに、 白色拡散反射板 4 0 3を取り除き、 天井 3 3 3 a自体に白 色拡散特性を持たせるようにしてもよい。
ところで、 本実施の形態では、 図 6及び図 7に示すように、 カラ一 C CD 4 0 1及びレンズ 4 0 2をウェハ Wmに対して傾斜させている。 こ れに対し、 図 8に示すように、 カラー C CD 4 0 1及びレンズ 4 0 2を ウェハ Wmに対して平行に配置してもよい。 なお、 図 8は、 残膜モニタ 装置 4 0 0の光学系の配置の変形例を展開して示す図である。 本実施の 形態では、 図 7の場合に比べて、 ウェハ Wmを斜めに見ることによる画 像の歪みや周辺のボケを生ずる可能性があるが、 撮影レンズ 4 0 2の焦 点深度内に収めれば、 本目的には問題なく使うことができる。 本実施の 形態の場合には、 カラ一 C CD 4 0 1及びレンズ 4 0 2として、 安価な 既存の C CDカメラを使うことができる利点がある。
以上の説明からわかるように、 本実施の形態では、 白色光源 4 0 4及 び白色拡散反射板 4 0 3が、 複数の波長成分を含む照明光でウェハ Wm を照明する照明部を構成している。 また、 撮影レンズ 4 0 2及びカラ一 C C D 4 0 1が、 前記照明光により照明されたウェハ W mの被研磨面の ほぼ全域の明視野像のカラー画像情報を取得する画像情報取得部を構成 している。
なお、 本実施の形態では、 2次元カラ一 C C D 4 0 1が用いられてい るので、 ウェハ Wmの被研磨面のほぼ全域の明視野像のカラ一画像情報 が、 実質的に一括して取得される。 これに対し、 例えば、 2次元カラー C C D 4 0 1に代えて 1次元カラ一 C C Dを用い、 その直線状の視野を ウェハ W mの中央付近から外周付近に至るように設定し、 チャックと共 にウェハ W mを回転させることにより、 前記直線状の視野がウェハ W m の全体をスキャンするようにし、 ウェハ Wmの回転位置 (これは例えば 回転エンコーダ等により検出し得る) と関連づけて、 カラー画像情報を 漸次に取得するようにしてもよい。
処理部 4 0 5は、 カラ一 C C D 4 0 1により取得されたカラー画像情 報をデータとして内部のメモリ (図示せず) に取り込み、 このカラー画 像情報を処理することにより、 ウェハ W mの被研磨面の研磨残り膜の状 況を示すモニタ結果を得る。
本発明者の研究の結果、 ウェハ W mの被研磨面の研磨残り膜の状況に 応じて、 前記カラ一画像情報の複数の色成分の強度の相対的な関係が変 化することを見出し、 その相対的な関係の変化から、 ウェハ W mの被研 磨面の研磨残り膜の状況を知ることができることを見出した。 これは、 膜材料の反射光波長や膜が薄くなることによる干渉作用等に起因してい るものと考えられる。 そして、 以下に説明するように、 これらの事項を 実験により確認した。
本発明者は、 前述した図 3に示すような C u — C M Pプロセスに関連 して、 図 1 0及び図 1 1に示す実験デ一夕を得た。 所定の半導体製造ェ 程を途中まで経て、 更に C xi— C M Pプロセスを、 図 3 ( a ) に示すよ うな第 1次研磨加工 P 1及び第 2次研磨加工 P 2まで終了させた複数の ウェハを用意した。 あるウェハについては、 図 4中のステップ S 1 0ま でで終了させた後、 引き続き所定時間余分に第 2次研磨加工を行い、 銅 残りが存在しない状態にした。 一方、 他のウェハについては、 図 4中の ステップ S 1 0までで終了させ、銅残りが部分的に存在する状態にした。 両者のウェハについてそれそれ、 図 6に示すのと同様の手法により、 力 ラー画像デ一夕を得た。 各ウェハのカラ一画像についてそれそれ、 量子 化誤差の影響を低減するため、 周知のスムージング処理 (平滑化処理) を行った。
そして、 各ウェハのスム一ジング処理後のカラー画像の、 両者のゥェ 八の互いにほぼ対応する線分上の位置に相当する一列の画素列に関し、 当該画素列の各画素の Gの強度値と Rの強度値を抽出するとともに各画 素毎に G (緑) の強度値と R (赤) の強度値との差 (R— G ) を算出し た。図 1 0は、銅残りが存在しないウェハのデ一夕を示すグラフであり、 横軸を前記一列の画素列中の画素の位置とし、 縦軸を強度値として、 各 画素の Gの強度値、 Rの強度値、 及び差 (R— G ) をプロッ トしたもの である。 図 1 1は、 銅残りが存在するウェハのデ一夕を示すグラフであ り、横軸を前記一列の画素列中の画素の位置とし、縦軸を強度値として、 各画素の Gの強度値、 Rの強度値、 及び差 (R— G ) をプロッ トしたも のである。 図 1 0及び図 1 1において、 横軸に対応して、 実際に識別さ れた銅残りのない領域、 薄い銅残りのある領域、 及び厚い銅残りのある 領域を、 併せて示している。 なお、 差 (R— G ) が、 Gの強度値と Rの 強度値との相対的な関係を示す値の一種であることは、言うまでもない。 図 1 0及び図 1 1からわかるように、 銅残りのない領域及び厚い銅残 りのある領域では、 Rの強度値が Gの強度値より大きくなる一方、 薄い 銅残りのある領域では、逆に Gの強度が Rの強度より大きくなつている。 したがって、 銅残りのない領域及び厚い銅残りのある領域では、 差 (R - G ) が正 (ここでは、 ゼロも含むものとする。) となる一方、 薄い銅残 りのある領域では、 差 (R— G ) が負となっている。 よって、 差 (R— G ) が負である箇所には薄い銅残りが存在することになり、 その箇所の 薄い銅残りの有無を知ることができる。
一方、 差 (R— G ) が正である場合には、 銅残りのない領域であるか それとも厚い銅残りのある領域であるかは判別できない。 しかし、 研磨 加工により銅残りが部分的に生ずることを問題としているので、 銅の膜 厚はガウス分布のように変化し、 厚い銅残りの周囲には必ず薄い銅残り が存在すると言える。 したがって、 ウェハの全域又は広範な領域内に銅 残りがあるか否かを知る上で、 銅残りのない領域であるかそれとも厚い 銅残りのある領域であるかを判別できないことは、何ら支障を来さない。 なお、 差 (R— G ) によって薄い銅残りの有無を知ることができるの で、比(R / G )によって薄い銅残りの有無を知ることができることは、 言うまでもない。
次に、 光学系が研磨ステージ 3 2 0に設けられた残膜モニタ装置 4 0 0の処理部 4 0 5の動作の一例について、 図 9を参照して説明する。 図 9は、 光学系が研磨ステージ 3 2 0に設けられた残膜モニタ装置 4 0 0 の処理部 4 0 5の動作の一例を示す概略フローチャートである。
ここで、 光学系が研磨ステージ 3 3 0に設けられた残膜モニタ装置 4 0 0についてでなく、 光学系が研磨ステージ 3 2 0に設けられた残膜モ 二夕装置 4 0 0について説明するのは、 光学系が研磨ステージ 3 2 0に 設けられた残膜モニタ装置 4 0 0がモニタする研磨残り膜が前述した実 験例の場合と同じく銅残り膜であるため、理解が容易であるためである。 処理部 40 5は、 動作を開始すると、 CCD 40 1から得られたカラ 一画像情報のウェハ画像の縦横方向の画素の総数をカウントし、 横方向 の画素の最大座標値を maxX、 及び、 縦方向の画素の最大座標値を m axYを得る (ステップ S 3 1 )。
次に、 処理部 40 5は、 量子化誤差の影響を低減するため、 前記ゥェ ハ画像に対して周知のスムージング処理 (平滑化処理) を行う (ステツ プ S 32)。 この処理を行うことが好ましいが、 必ずしも必要ではない。 また、 本実施の形態では、 前述したように、 撮影レンズ 402は、 ゥェ ハ Wmの像を実質的にボケが生ずることなくカラー CCD 40 1の撮像 面に結像するようになっているが、 ウェハ Wmの像の M T Fにおいて、 高い空間周波数をカヅ トするために、 ボケが生ずるようにカラー CCD 401の撮像面に結像するようにしておけば、 ステップ S 32の処理を 行わなくても、 量子化誤差の影響を低減することができる。
次いで、 処理部 405は、 ステップ S 32のスム一ジング処理が施さ れたウェハ画像の R成分 (: の強度値) I r (x, y ) 及び G成分 (G の強度値) I g (X , y) を抽出する (ステップ S 33)。 ただし、 0≤ X≤ m a X 0≤y≤maxYである。
その後、処理部 405は、差 I (X , y) = I r (x, y ) - I g (x, y ) を各画素毎に算出する (ステップ S 34)。
次に、 処理部 405は、 ステップ S 34で算出した差が正 (ここでは ゼロを含む) であるか負であるかによって、 各画素を 2値化し、 2値化 画像を得る (ステツプ S 3 5 )。ステヅプ S 35により得た 2値化画像の 例を図 12に示す。 図 1 2 (a) はウェハに研磨残り膜 (ここでは、 銅 の残り膜) がない場合を示し、 図 12 (b) はウェハに薄い研磨残り膜 (ここでは、 銅の残り膜) が部分的に存在する場合を示している。 図 1 2 ( a) (b)において、白い領域はステップ S 34で算出した差 I (X , y) が正の画素の領域であり、 濃い領域 50 1〜 504は、 ステップ S 34で算出した差 I ( X , y) が負の画素の領域であって薄い研磨残り 膜の領域である。
次いで、 処理部 405は、 ステップ S 35で得た画像中に差が負の画 素の領域があるか否かによって、 ウェハに研磨残り膜があるか否かを判 定する (ステップ S 36 )。ステップ S 3 5により得た 2値化画像を用い なくても、 ステップ S 34で得た各画素ごとの差 I (X , y ) から、 同 様の判定を行うことができることは、 言うまでもない。
その後、処理部 40 5は、 薄い銅残りの位置、 すなわち、 負の I ( X , y) の位置 (X , y ) を抽出する (ステップ S 37)。
最後に、 処理部 405は、 モニタ結果の出力 ·表示 ·記憶を行い (ス テツプ S 38)、 一連の処理を終了する。具体的には、 ステップ S 38に おいて、 処理部 405は、 ステップ S 3 6で得た研磨残り膜の有無、 及 び、 ステップ S 37で得た薄い銅残りの位置 (銅残りの位置に関する情 報に相当) を、 モニタ結果として前述した制御部へ出力する。 また、 処 理部 405は、 カラ一 C CD 40 1から得たカラ一画像及びステップ S
35で得た 2値化画像を、 表示部 406に表示させるとともに、 記憶部
407に記憶させる。 なお、 図面には示していないが、 記憶部 407に 記憶されたデータは、 適宜パーソナルコンピュー夕等に読み出せるよう になっている。
ここで、 光学系が研磨ステージ 320に設けられた残膜モニタ装置 4 00の処理部 405の場合、 この残膜モニタ装置 400がモニタする研 磨残り膜が T i Nや T a N等のバリア層 52であるため、 この材料に合 わせて、 カラー CCD 401から得たカラ一画像からいずれの 2つ以上 の色に関する相対的な関係に基づいてモニタ結果を得るかを、 適宜定め ればよい。 P 漏 3/06913
34 次に、 本発明に係る半導体デバイスの製造方法の実施の形態について 説明する。 図 1 3は、 半導体デバイス製造プロセスを示すフローチヤ一 トである。 半導体デバイス製造プロセスをスタートして、 まずステヅプ S 2 0 0で、 次に挙げるステツプ S 2 0 1〜S 2 04の中から適切な処 理工程を選択する。 選択に従って、 ステップ S 2 0 1〜S 2 04のいず れかに進む。
ステップ S 2 0 1はシリコンウェハの表面を酸化させる酸化工程であ る。 ステップ S 2 0 2は CVD等によりシリコンウェハ表面に絶縁膜を 形成する C VD工程である。 ステヅプ S 2 0 3はシリコンウェハ上に電 極膜を蒸着等の工程で形成する電極形成工程である。 ステップ S 2 04 はシリコンウェハにイオンを打ち込むイオン打ち込み工程である。
C VD工程 ( S 2 02 ) もしくは電極形成工程 ( S 2 0 3 ) の後で、 ステップ S 2 0 9に進み、 C MP工程を行うかどうかを判断する。 行わ ない場合はステツプ S 2 0 6に進むが、 行う場合はステヅプ S 2 0 5に 進む。 ステップ S 2 0 5は CM P工程であり、 この工程では、 本発明に 係る研磨装置を用いて、 層間絶縁膜の平坦化や、 半導体デバイスの表面 の金属膜の研磨によるダマシン (damascene) の形成等が行われる。
CMP工程 ( S 2 0 5 ) または酸化工程 ( S 2 0 1 ) の後でステップ S 2 0 6に進む。 ステップ S 2 0 6はフォト リソグラフィ工程である。 この工程では、 シリコンウェハへのレジス トの塗布、 露光装置を用いた 露光によるシリコンウェハへの回路パターンの焼き付け、 露光したシリ コンウェハの現像が行われる。 さらに次のステップ S 2 0 7は、 現像し たレジス ト像以外の部分をエッチングにより削り、 その後レジス ト剥離 を行い、 エッチングが済んで不要となったレジス トを取り除くエツチン グ工程である。
次にステップ S 2 08で必要な全工程が完了したかを判断し、 完了し 03 06913
35 ていなければステップ S 2 0 0に戻り、 先のステップを繰り返して、 シ リコンウェハ上に回路パターンが形成される。 ステップ S 2 0 8で全ェ 程が完了したと判断されればエンドとなる。
本発明に係る半導体デバイスの製造方法では、 C M P工程において本 発明に係る研磨装置を用いているため、 C M P工程の加工精度が向上す る。 これにより、 従来の半導体デバイスの製造方法に比べて製造ばらつ きの少ない半導体デバイスを製造することができる。 また、 本発明の実 施の形態である半導体デバイスの製造方法により製造された半導体デバ イスでは、 歩留りが高く、 かつ、 削り過ぎによる性能低下の少ない安定 した半導体デバイスとなる。 なお、 上記半導体デバイス製造プロセス以 外の半導体デバイス製造プロセスの C M P工程に本発明の実施の形態で ある研磨装置を用いても良く、 同じくばらつきが少なく性能低下の少な い加工が達成される。
以上、 本発明の各実施の形態及びその変形例について説明したが、 本 発明はこれらに限定されるものではない。
例えば、 本発明の実施の形態である研磨装置で用いる残膜モニタ装置 は、 前述した残膜モニタ装置に限定されるものではない。
また、 前述した実施の形態は、 本発明の実施の形態である残膜モニタ 装置がィンラインでモニタを行うように本発明の実施の形態である研磨 装置に組み込まれた例であるが、 本発明の実施の形態である残膜モニタ 装置は、 オフラインでモニタを行うようにしてもよい。

Claims

請 求 の 範 囲
1 . 被研磨物の被研磨面の全域あるいは広範な領域における研磨残り 膜の状況をモニタする残膜モニタ装置であって、
複数の波長成分を含む照明光により照明された前記被研磨物の表面の 全域あるいは広範な領域の明視野像のカラー画像情報を、 取得する画像 情報取得部と、
前記カラー画像情報に基づいて、 前記研磨残り膜の状況を示すモニタ 結果を得る処理部と、
を備えたことを特徴とする残膜モニタ装置。
2 . 前記モニタ結果は、 前記研磨残り膜の有無を含むことを特徴とす る請求の範囲第 1項に記載の残膜モニタ装置。
3 . 前記モニタ結果は、 前記研磨残り膜の位置に関する情報を含むこ とを特徴とする請求の範囲第 1項に記載の残膜モニタ装置。
4 . 前記明視野像がぼけた像であることを特徴とする請求の範囲第 1 項に記載の残膜モニタ装置。
5 . 前記画像情報取得部は、 前記カラー画像情報を実質的に一括して 取得することを特徴とする請求の範囲第 1項に記載の残膜モニタ装置。
6 . 前記画像情報取得部は、 前記カラ一画像情報をスキャンにより漸 次に取得することを特徴とする請求の範囲第 1項に記載の残膜モニタ装
7 . 前記画像情報取得部は、 前記カラー画像情報を、 前記被研磨物の 回転に伴うスキャンにより漸次に取得することを特徴とする請求の範囲 第 1項に記載の残膜モニタ装置。
8 . 前記処理部は、 前記カラ一画像情報が示す画像又はこれに所定の 処理を施した画像に関して、 実質的に同一の画像内位置での複数の色の 強度値の相対的な関係を示す値を、各画像位置ごとに演算する演算部と、 各画像位置での前記相対的な関係を示す値に基づいて、 前記研磨残り膜 の状況を判定する判定部と、 を有することを特徴とする請求の範囲第 1 項に記載の残膜モニタ装置。
9 . 前記所定の処理がスムージング処理であることを特徴とする請求 の範囲第 8項に記載残膜モニタ装置。
1 0 . 実質的に同一の画像内位置での複数の色の強度値の前記相対な 関係を示す値は、 実質的に同一の画像内位置での 2つの色の強度値の差 又は比を含むことを特徴とする請求の範囲第 8項に記載の残膜モニタ装 置。
1 1 . 前記判定部は、 前記差又は比が所定範囲内に属する画像内位置 の有無によって、 前記研磨残り膜の有無を判定することを特徴とする請 求の範囲第 1 0項に記載の残膜モニタ装置。
1 2 . 前記判定部は、 前記差又は比が所定範囲内に属する画像内位置 に応じて、 前記研磨残り膜の位置に関する情報を得ることを特徴とする 請求の範囲第 1 0項に記載の残膜モニタ装置。
1 3 . 前記カラ一画像情報が示す画像及びこれを処理した画像のうち の少なくとも一方を表示する表示部を備えたことを特徴とする請求の範 囲第 1項に記載の残膜モニタ装置。
1 4 . 前記カラ一画像情報が示す画像及びこれを処理した画像のうち の少なくとも一方を記憶する記憶部を備えたことを特徴とする請求の範 囲第 1項に記載の残膜モニタ装置。
1 5 . 前記被研磨物が半導体ウェハであることを特徴とする請求の範 囲第 1項に記載の残膜モニタ装置。
1 6 . 研磨体と被研磨物との間に研磨剤を介在させた状態で、 前記研 磨体と前記研磨対象物との間に荷重を加え、 かつ相対移動させることに より、 前記被研磨物を研磨する、 研磨装置において、
前記被研磨物の被研磨面の全域あるいは広範な領域における研磨残り 膜の状況をモニタする残膜モニタ装置を備えたことを特徴とする研磨装
1 7 . 前記被研磨物の研磨状況をその研磨中にモニタする研磨状況モ 二夕装置を備えたことを特徴とする請求の範囲第 1 6項に記載の研磨装
1 8 . 1つ以上の研磨ゾーンを備え、 前記 1つ以上の研磨ゾーンにお いて、 研磨体と前記被研磨物との間に研磨剤を介在させた状態で、 前記 研磨体と前記被研磨物との間に荷重を加え、 かつ相対移動させることに より、 前記被研磨物を研磨する、 研磨装置において、
前記被研磨物の研磨状況をその研磨中にモニタする研磨状況モニタ装 置、 及び、 前記被研磨物の被研磨面の全域あるいは広範な領域における 研磨残り膜の状況をモニタする残膜モニタ装置が、 前記 1つ以上の研磨 ゾーンのうちの少なくとも 1つの研磨ゾーンに併設されたことを特徴と する研磨装置。
1 9 . 前記 1つ以上の研磨ゾーンの数が 2以上であり、 前記被研磨物 は前記 1つ以上の研磨ゾーンで順次研磨され、 前記残膜モニタ装置は、 前記 1つ以上の研磨ゾーンのうち前記被研磨物が 2番目以降に研磨され る研磨ゾーンのうちの少なくとも 1つの研磨ゾーンに、 設置されたこと を特徴とする請求の範囲第 1 8項に記載の研磨装置。
2 0 . 前記残膜モニタ装置は、 前記研磨状況モニタ装置のモニタ結果 に従って前記被研磨物の研磨が停止された後に、 前記研磨残り膜の状況 をインラインでモニタし、
当該研磨装置は、 前記残膜モニタ装置のモニタ結果に応じて異なる動 作を行うことを特徴とする請求の範囲請求の範囲第 1 7項又は第 1 8項 に記載の研磨装置。
2 1 . 前記残膜モニタ装置のモニタ結果が前記研磨残り膜が存在する ことを示す場合に、 前記研磨残り膜が減るかあるいはなくなるように前 記被研磨物を研磨することを特徴とする請求の範囲第 2 0項に記載の研
2 2 . 前記残膜モニタ装置は、 前記被研磨物が研磨位置に保持された 状態で、 前記研磨残り膜の状況をモニタすることを特徴とする請求の範 囲第 1 6項又は第 1 8項に記載の研磨装置。
2 3 . 前記残膜モニタ装置は、 前記研磨体が被研磨物の直上付近から 退避した状態で、 前記研磨残り膜の状況をモニタすることを特徴とする 請求の範囲第 1 6項又は第 1 8項に記載の研磨装置。
2 4 . 前記残膜モニタ装置が請求の範囲第 1項に記載の残膜モニタ装 置であることを特徴とする請求の範囲第 1 6項又は第 1 8項に記載の研
2 5 . 前記照明光は、 当該研磨装置の天井の所定領域又は天井付近に 設けられた部材の所定領域を経由して、 あるいは、 前記天井の所定領域 又は天井付近に設けられた部材の所定領域から発せられて、 前記被研磨 物の表面の全域あるいは広範な領域を照射することを特徴とする請求の 範囲第 2 4項に記載の研磨装置。
2 6 . 前記被研磨物が半導体ウェハであることを特徴とする請求の範 囲第 1 6項又は第 1 8項に記載の研磨装置。
2 7 . 請求の範囲第 1 6項又は第 1 8項に記載の研磨装置を用いて、 半導体ウェハの表面を平坦化する工程を有することを特徴とする半導体 デバイスの製造方法。
2 8 · 請求の範囲第 2 7項に記載の半導体デバイスの製造方法により 製造されることを特徴とする半導体デバイス。
PCT/JP2003/006913 2002-06-10 2003-06-02 残膜モニタ装置、研磨装置、半導体デバイスの製造方法及び半導体デバイス WO2003103898A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002169345A JP2004009259A (ja) 2002-06-10 2002-06-10 残膜モニタ装置、研磨装置、半導体デバイス製造方法及び半導体デバイス
JP2002-169345 2002-06-10

Publications (1)

Publication Number Publication Date
WO2003103898A1 true WO2003103898A1 (ja) 2003-12-18

Family

ID=29727727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006913 WO2003103898A1 (ja) 2002-06-10 2003-06-02 残膜モニタ装置、研磨装置、半導体デバイスの製造方法及び半導体デバイス

Country Status (3)

Country Link
JP (1) JP2004009259A (ja)
TW (1) TW200404643A (ja)
WO (1) WO2003103898A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121001A (ja) * 2004-10-25 2006-05-11 Matsushita Electric Ind Co Ltd 半導体装置の製造方法および研磨剤
TWI450792B (zh) * 2008-08-05 2014-09-01 Ebara Corp 研磨方法及裝置
JP5513795B2 (ja) * 2009-07-16 2014-06-04 株式会社荏原製作所 研磨方法および装置
JP5348530B2 (ja) * 2009-01-21 2013-11-20 株式会社ニコン 研磨装置および研磨方法
US8657644B2 (en) 2009-07-16 2014-02-25 Ebara Corporation Eddy current sensor and polishing method and apparatus
US11557048B2 (en) 2015-11-16 2023-01-17 Applied Materials, Inc. Thickness measurement of substrate using color metrology
US10565701B2 (en) 2015-11-16 2020-02-18 Applied Materials, Inc. Color imaging for CMP monitoring
TWI743176B (zh) * 2016-08-26 2021-10-21 美商應用材料股份有限公司 獲得代表在基板上的層的厚度的測量的方法,及量測系統和電腦程式產品
JP6713015B2 (ja) * 2018-04-13 2020-06-24 株式会社大気社 自動研磨システム
US11100628B2 (en) 2019-02-07 2021-08-24 Applied Materials, Inc. Thickness measurement of substrate using color metrology
JP2020136498A (ja) * 2019-02-20 2020-08-31 株式会社東京精密 ウェハ加工異常検出装置と方法及び平面加工システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764632A (ja) * 1993-08-31 1995-03-10 Meidensha Corp 無人搬送車
JPH10197216A (ja) * 1997-01-10 1998-07-31 Tokyo Seimitsu Co Ltd 膜厚むら測定装置
JPH1190816A (ja) * 1997-09-22 1999-04-06 Toshiba Corp 研磨装置及び研磨方法
JP2000183002A (ja) * 1998-12-10 2000-06-30 Okamoto Machine Tool Works Ltd ウエハの研磨終点検出方法および研磨終点検出装置
JP2001353659A (ja) * 2000-06-16 2001-12-25 Okamoto Machine Tool Works Ltd 研磨ウエハの研磨合否判定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764632A (ja) * 1993-08-31 1995-03-10 Meidensha Corp 無人搬送車
JPH10197216A (ja) * 1997-01-10 1998-07-31 Tokyo Seimitsu Co Ltd 膜厚むら測定装置
JPH1190816A (ja) * 1997-09-22 1999-04-06 Toshiba Corp 研磨装置及び研磨方法
JP2000183002A (ja) * 1998-12-10 2000-06-30 Okamoto Machine Tool Works Ltd ウエハの研磨終点検出方法および研磨終点検出装置
JP2001353659A (ja) * 2000-06-16 2001-12-25 Okamoto Machine Tool Works Ltd 研磨ウエハの研磨合否判定方法

Also Published As

Publication number Publication date
JP2004009259A (ja) 2004-01-15
TW200404643A (en) 2004-04-01

Similar Documents

Publication Publication Date Title
US8128458B2 (en) Polishing apparatus and substrate processing method
JP4916890B2 (ja) 基板処理装置及び基板処理方法
US6379230B1 (en) Automatic polishing apparatus capable of polishing a substrate with a high planarization
KR102036403B1 (ko) 기판 처리 장치
JP2002219645A (ja) 研磨装置、この研磨装置を用いた半導体デバイス製造方法並びにこの製造方法によって製造された半導体デバイス
US6387807B1 (en) Method for selective removal of copper
JP2003251559A (ja) 研磨装置及び研磨面の異物検出方法
KR20040007107A (ko) 언로딩구조가 개선된 반도체 웨이퍼의 표면평탄화설비
WO2003103898A1 (ja) 残膜モニタ装置、研磨装置、半導体デバイスの製造方法及び半導体デバイス
JP2015035595A (ja) 研磨方法および研磨装置
JP2019169608A (ja) 研削装置
CN211992435U (zh) 一种研磨设备
JP5037974B2 (ja) 研磨加工ステージにおける半導体基板の監視機器および監視方法
CN115632008B (zh) 晶圆边缘缺陷处理方法和晶圆减薄设备
JP2007301661A (ja) 研磨装置
JP2007301697A (ja) 研磨方法
JP2001353659A (ja) 研磨ウエハの研磨合否判定方法
JP2010005717A (ja) 加工装置
JP2019121677A (ja) 板状物の加工方法
JP2023083014A (ja) ウェーハの製造方法および研削装置
JP2007305884A (ja) 研磨方法
JP2015076555A (ja) 加工装置
JP2022022495A (ja) 加工装置
JP2023074282A (ja) 基板処理装置
JP2024010843A (ja) 保持テーブルの検査方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase