WO2003100056A1 - Nouvelle enzyme polyphosphate :amp phosphotransferase - Google Patents

Nouvelle enzyme polyphosphate :amp phosphotransferase Download PDF

Info

Publication number
WO2003100056A1
WO2003100056A1 PCT/JP2003/006646 JP0306646W WO03100056A1 WO 2003100056 A1 WO2003100056 A1 WO 2003100056A1 JP 0306646 W JP0306646 W JP 0306646W WO 03100056 A1 WO03100056 A1 WO 03100056A1
Authority
WO
WIPO (PCT)
Prior art keywords
atp
pap
polyphosphate
enzyme
polyphosphoric acid
Prior art date
Application number
PCT/JP2003/006646
Other languages
English (en)
French (fr)
Inventor
Toshikazu Shiba
Toshitada Noguchi
Original Assignee
Yamasa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamasa Corporation filed Critical Yamasa Corporation
Priority to AU2003241818A priority Critical patent/AU2003241818A1/en
Priority to AT03733106T priority patent/ATE468393T1/de
Priority to JP2004508295A priority patent/JP4256341B2/ja
Priority to EP03733106A priority patent/EP1514927B1/en
Priority to DE60332623T priority patent/DE60332623D1/de
Priority to KR1020047018915A priority patent/KR100864901B1/ko
Priority to US10/514,726 priority patent/US7329522B2/en
Priority to CA2499885A priority patent/CA2499885C/en
Publication of WO2003100056A1 publication Critical patent/WO2003100056A1/ja
Priority to US11/875,268 priority patent/US20080108111A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1229Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/32Nucleotides having a condensed ring system containing a six-membered ring having two N-atoms in the same ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/38Nucleosides
    • C12P19/40Nucleosides having a condensed ring system containing a six-membered ring having two nitrogen atoms in the same ring, e.g. purine nucleosides

Definitions

  • the present invention relates to a novel polyphosphate: AMP phosphotransferase (AMP), a gene encoding the enzyme, and use thereof.
  • AMP AMP phosphotransferase
  • adenosine 5'-triphosphoric acid is required as an energy donor or a phosphoric acid donor for enzymatic reactions requiring high energy such as phosphoric acid reaction and amination reaction.
  • ATP adenosine 5'-triphosphoric acid
  • conventional microbial conversion or fermentation production ATP is supplied from the living organism of the microorganism used, but in enzymatic methods, ATP must be added to the reaction system or an efficient ATP regeneration system must be developed. Is essential.
  • an inexpensive method for synthesizing ATP has not been established at present, and commercially available ATP is extremely expensive.
  • a combination of phosphocreatine and phosphocreatine kinase or a combination of acetylphosphoric acid and acetate kinase is generally used as an ATP regeneration system, but the substrate and enzyme are extremely expensive. Its use is limited to laboratory-level use and is not practical.
  • ATP adenosine 5'-monophosphate
  • AMP adenosine 5'-monophosphate
  • ATP is synthesized from AMP or adenine by chemical synthesis or using microorganisms or yeast cells. Therefore, in an enzyme reaction system using ATP, instead of adding expensive ATP, a method of enzymatically generating ATP from inexpensive AMP and efficiently regenerating consumed ATP. The development of has been eagerly needed.
  • the phosphate donor used is also important in constructing a practical ATP production and regeneration system, and polyphosphoric acid is considered to be the first candidate as a cheap and stable phosphate donor.
  • enzymes that are involved in polyphosphate metabolism and also act on adenosine nucleotides include polyphosphate kinase and polyphosphate: AMP phosphotransferase
  • PAP PAP
  • PAP is an enzyme that generates ADP by phosphorylating AMP using polyphosphate as a donor phosphate (J. Bacteriol., 173, 6484-6488 (1991)).
  • Zenhder et al. Reported that by partially purifying the enzyme from Aci netobacter johnsoni i and using it in combination with adenylate kinase, an ATP production and regeneration system using AMP and polyphosphate as substrates could function. (Appl. Environ. Microbiol., 66, 2045-2051 (2000)). Kameda et al.
  • the present inventors constructed a screening system for gene cloning based on the activity of PAP, cloned a gene encoding PAP by using the screening system, and mass-produced the enzyme in Escherichia coli. succeeded in. Analysis of the recombinant PAP produced revealed that the enzyme had a very high specific activity, and that in combination with adenylate kinase, efficient ATP production was achieved. ⁇ We found that it is possible to construct a reproduction system.
  • this recombinant PAP unlike the conventional PAP derived from Acinetobacter j ohnsoni i, transfers phosphate to polyphosphate as a donor even for nucleoside monophosphates other than AMP and GMP. And found that it has an activity of producing nucleoside diphosphate.
  • nucleoside diphosphate is useful as a raw material for enzymatic synthesis of a polynucleotide used as a drug or a chemical, but it is not easy to synthesize it.
  • the phosphorylation reaction cannot be stopped by the diphosphate, and at present, it is necessary to rely on chemical phosphorylation.
  • chemical phosphorylation a side reaction also proceeds at the same time, so that a by-product is also generated, and it is extremely complicated to isolate and purify the target nucleoside diphosphate from the reaction solution.
  • the present invention relates to PAP having the following physicochemical properties (PAP of the present invention).
  • NMP nucleoside monophosphate
  • NDP nucleoside diphosphate
  • d NMP deoxynucleoside monophosphate
  • dNDP deoxynucleoside diphosphate
  • n is the degree of polymerization of polyphosphoric acid, and is an integer of 100 or less. Is.
  • the present invention also relates to a PAP having the amino acid sequence shown in SEQ ID NO: 1 or an amino acid sequence in which one or several amino acids have been deleted, substituted or added.
  • the present invention relates to a PAP gene encoding the amino acid sequence shown in SEQ ID NO: 1 or an amino acid sequence in which one or several amino acids have been deleted, substituted or added.
  • the present invention relates to the nucleotide sequence shown in SEQ ID NO: 2 or a part of the nucleotide sequence. Is related to a PAP gene having a base sequence in which several bases have been deleted, substituted or added.
  • the present invention relates to a DNA fragment that encodes a polypeptide having the PAP activity and being hybridized with the above gene under stringent conditions.
  • the present invention relates to a method for enzymatically producing nucleoside diphosphate from nucleoside monophosphate, wherein the above-mentioned PAP of the present invention is used as an enzyme, and polyphosphate is used as a phosphate donor. It is related to the production method.
  • the present invention relates to a method for enzymatically producing ATP from AMP, wherein the two enzymes of the above-mentioned PAP and adenylate kinase of the present invention are used as enzymes, and polyphosphate is used as a phosphate. It concerns the method of manufacturing the ATP used.
  • the present invention also relates to a system for producing and regenerating ATP comprising the AMP, polyphosphoric acid, PAP and adenylate kinase, wherein the PAP uses the PAP of the present invention as the PAP.
  • the present invention relates to a method for producing a compound utilizing an enzymatic reaction consuming ATP, the method comprising regenerating an AMP produced from polyphosphoric acid, PAP and an ATP comprising adenylate kinase.
  • the present invention relates to a method for producing the compound, wherein the PAP of the present invention is used as a PAP when the compound is regenerated, and the enzymatic reaction is performed while the AMP is regenerated to ATP.
  • FIG. 1 shows a restriction enzyme map of a DNA fragment of about 10 Kb containing the PAP gene of the obtained Acinetobacter Johnsonii 210A strain.
  • the PAP gene is contained in a Sacl H pal DNA fragment.
  • FIG. 2 shows the nucleotide sequence of a 2.5 kb DNA fragment containing the PAP gene and the amino acid sequence of PAP (part 1).
  • FIG. 3 shows the nucleotide sequence of the 2.5 kb DNA fragment containing the PAP gene and the amino acid sequence of PAP (part 2).
  • FIG. 4 shows the results of pH stability of the PAP of the present invention.
  • FIG. 5 shows the results of the optimum pH of the PAP of the present invention.
  • FIG. 6 shows the results of the thermal stability of the PAP of the present invention.
  • FIG. 7 shows the result of the optimum temperature of the PAP of the present invention.
  • FIG. 8 shows the synthesis of ADP and ATP from AMP by PAP using polyphosphate as a phosphate donor and AMP by adenylate kinase.
  • the PAP of the present invention has the following physicochemical properties (see Examples below).
  • NMP nucleoside monophosphate
  • NDP nucleoside diphosphate
  • d NMP deoxynucleoside monophosphate
  • dNDP deoxynucleoside diphosphate
  • n is the degree of polymerization of polyphosphoric acid, and is an integer of 100 or less. Is.
  • one unit means an activity of producing 1 ⁇ mo 1 e of ADP per minute at 37 ° C, and is measured under the following conditions.
  • the PAP of the present invention has an amino acid sequence represented by SEQ ID NO: 1.
  • recombinant PAP prepared by the recombinant DNA method is substantially enzymatically pure and does not possess AMP-degrading activity that is not favorable for AMP phosphorylation.
  • the amino acid sequence may have one or several amino acids deleted, substituted, modified or added as long as the activity of catalyzing the above reaction is maintained.
  • the deletion, substitution, modification or addition of the amino acid sequence described above can be performed by site-directed mutagenesis, which is a well-known technique prior to filing the application (for example, Pro Natl. Acad. Sci. USA, 81, 4662-5666 (1984)). Nucleic Acid Res. 10, 6487-6500 (1982); feature 316, 601-605 (1985)).
  • the PAP of the present invention also includes an enzyme having 90% or more, more preferably 95% or more homology with the amino acid sequence shown in SEQ ID NO: 1 as long as the activity for catalyzing the above reaction is maintained. .
  • the PAP of the present invention is prepared by cloning a gene encoding an enzyme having the amino acid sequence shown in SEQ ID NO: 1 from Acinetobacter jotmsonii, specifically, a PAP gene consisting of the nucleotide sequence shown in SEQ ID NO: 2, and using it. I do.
  • the gene derived from Ac inetobacier johnsonii is described as a specific example.
  • 2 and 3 show the results of analyzing the nucleotide sequence of the DNA fragment cut by SacI and HpaI in the restriction enzyme map shown in FIG. 1.
  • the sequence shown at position 2031 corresponds to the structural gene of PAP and is the same as the nucleotide sequence shown in SEQ ID NO: 2 above.
  • a gene in which one or more bases in the base sequence represented by SEQ ID NO: 2 have been deleted, substituted, inserted or added, or Genes that hybridize with those genes under stringent conditions, and genes having 90% or more, more preferably 95% or more homology with the nucleotide sequence shown in SEQ ID NO: 2 can also be used.
  • a gene in which one or more bases have been deleted, substituted, inserted or added refers to a gene deleted or substituted by a well-known method such as site-directed mutagenesis in the same manner as the amino acid sequence described above. Means that as many bases as can be modified or added are deleted, substituted, modified or added.
  • the stringent end condition is 5XSSC
  • a gene further comprising an SD sequence (Sine-Dalgarno Sequence) upstream of the gene encoding PAP can be used.
  • SD sequence Square-Dalgarno Sequence
  • a part of the amino acid sequence, such as the N-terminus and C-terminus, of PAP purified from a microorganism belonging to the genus Acinet obacter is determined by a known method, and an oligonucleotide corresponding thereto is synthesized.
  • an oligonucleotide corresponding thereto is synthesized.
  • a DNA fragment containing the gene encoding PAP may be cloned from the chromosomal DNA of a cell belonging to the genus Acinetobacter.
  • Cleavage of the chromosomal DNA with an appropriate restriction enzyme use the obtained DNA fragment to create a genomic library by a conventional method, and screen the created genomic library based on PAP activity
  • the desired gene can be cloned.
  • PAP activity used for screening it is preferable to use the activity of generating ATP from AMP in which PAP and polyphosphate kinase (PPK) are combined in order to enable detection with higher sensitivity. Specifically, if PAP and PPK are used to generate polyphosphate labeled with a radioisotope as a phosphate, AMP is used as a substrate to generate ATP, and the generation of radiolabeled ATP is detected. Good.
  • the host used for cloning is not particularly limited, but Escherichia coli is suitable as the host because of operability and simplicity.
  • transcription initiation signal includes lac promoter, trp promoter, tac promoter (Proc. Natl. Acad. Sci. USA., 80, 21 (1983), Gene , 20, 231 (1982)), and trc promo one ichiichi (J. Biol. Chem., 260, 3539 (1985)).
  • various plasmid vectors and phage vectors can be used, but can be replicated in the microbial cell, has an appropriate drug resistance marker and a specific restriction enzyme cleavage site, and has a copy number in the cell. It is preferable to use a plasmid vector with a high level.
  • PBR 322 Gene, 2, 95 (1975)
  • pUC18, pUC19 Gene, 33, 103 (1985)
  • the like can be exemplified.
  • a microorganism is transformed using the produced recombinant vector.
  • the host microorganism is not particularly limited as long as it is safe and easy to handle.
  • microorganisms commonly used for DNA recombination such as E. coli and yeast can be used.
  • Escherichia coli is advantageous, for example, K12 strain, C600 strain, JMl05 strain, JM109 strain (Gene, 33, 103-119 (1985)) used for recombinant DNA experiments can be used. It is.
  • the obtained transformant is grown in a medium in which the microorganism can grow, and further cultured until the enzyme is accumulated in a large amount by inducing the expression of the cloned PAP gene.
  • the culture of the transformant may be performed according to a conventional method using a medium containing a nutrient source such as a carbon source and a nitrogen source necessary for the growth of the microorganism.
  • a medium containing a nutrient source such as a carbon source and a nitrogen source necessary for the growth of the microorganism.
  • large intestine When using bacteria as a host, use a medium commonly used for culturing E.
  • coli such as 2xYT medium (Methods in Enzymology, 100, 20 (1983)), LB medium, and M9CA medium (Molecular Cloning, described above). Culture can be performed at a culture temperature of 20 to 40 ° C. with aeration and stirring as needed. When plasmid is used as the vector, add appropriate antibiotics (ampicillin, kanamycin, etc., depending on the drug resistance marker of the plasmid) to the culture medium to prevent the plasmid from dropping out during culture. And culture.
  • antibiotics ampicillin, kanamycin, etc., depending on the drug resistance marker of the plasmid
  • the expression of the gene is induced by a method commonly used in the promoter used.
  • a method commonly used in the promoter used For example, when 1 ac promoter or tac promoter is used, an appropriate amount of isopropyl-jS-D-thiogalactopyranoside (hereinafter abbreviated as IPTG), an expression inducer, is used in the middle stage of culture. Added.
  • IPTG isopropyl-jS-D-thiogalactopyranoside
  • the cells are recovered from the culture thus prepared by membrane separation or centrifugation.
  • the recovered cells can be used as PAP, but the recovered cells can be suspended in an appropriate buffer and physically treated by sonication or French press. It is more preferable to crush the cells or to enzymatically lyse the cells by lysozyme treatment, to remove cell residues by centrifugation to prepare a cell-free extract, and to use the cell-free extract as PAP.
  • This cell-free extract contains PAP in excess, so it can be used as an enzyme source without any purification treatment.However, heat treatment, ammonium sulfate salting out treatment, dialysis treatment, ethanol, etc. Processes generally used for enzyme purification, such as solvent treatment and various chromatographic treatments, may be used alone, or a crude product or a purified product obtained by combining several types may be used as PAP.
  • the PAP of the present invention thus prepared can be used for the synthesis of nucleoside diphosphate or deoxynucleoside diphosphate, the synthesis or regeneration of ATP, and the like. You.
  • concentration used can be appropriately set, for example, in the range of 1 to 20 OmM, preferably 10 to 10 OmM.
  • polyphosphoric acid can be used.
  • concentration used can be appropriately set in the range of 1 to 100 OmM, preferably 10 to 20 OmM in terms of inorganic phosphoric acid.
  • degree of polymerization (n) of the polyphosphoric acid is preferably 100 or less, more preferably about 10 to 50.
  • NDP or dNDP NMP or dNDP and polyphosphoric acid are added to a suitable buffer solution having a pH range of 4 to 9, and 0.001 unit / m1 or more, preferably 0.001 to 10 units.
  • the reaction can be carried out by adding the PAP of the present invention and reacting the mixture at 20 ° C. or higher, preferably 30 to 40 ° C. for about 1 to 50 hours with stirring as necessary.
  • Isolation and purification of the produced NDP or dNDP can be performed by a known method such as various chromatographic treatments.
  • synthesis of ATP can be carried out by using the PAP of the present invention and adenylate kinase in combination in the presence of polyphosphoric acid and subsequently converting AMP to ATP followed by conversion to ATP.
  • AMP can be used as the AMP to be added to the reaction solution.
  • concentration used can be appropriately set, for example, in the range of 1 to 200 mM, preferably 10 to 100 mM.
  • polyphosphoric acid can be used.
  • concentration used is calculated as organic phosphoric acid:! It can be set as appropriate from the range of 100 to 100 OmM, preferably 10 to 20 OmM.
  • degree of polymerization of polyphosphoric acid (n) is 100
  • those having a polymerization degree of preferably about 10 to 50 are preferable.
  • AMP and polyphosphate are added to a suitable buffer solution having a pH in the range of 4 to 9, and 0.001 units / ml or more, preferably 0.001 to 10 units / ml.
  • a suitable buffer solution having a pH in the range of 4 to 9, and 0.001 units / ml or more, preferably 0.001 to 10 units / ml.
  • the generated ATP can be isolated and purified by known methods such as various chromatographic treatments.
  • the unit of adenylate kinase activity is measured and calculated by the following method. That is, the reaction was carried out by adding an enzyme preparation to 50 mM Tris-HCl buffer (pH 7.8) containing 1 OmM magnesium chloride, 1 OmM AMP, and 1 OmM ATP and incubating at 37 C. C, Stop reaction by heat treatment for 1 minute. Quantify the ADP in the reaction solution using HP LC, and determine the activity to generate 2 mo 1 e ADP per minute at 37 with 1 unit.
  • the ATP production / regeneration system consisting of AMP, polyphosphate, PAP and adenylate kinase of the present invention detects the presence of trace ATP and detects microorganisms that are invisible at food factories and the like. It can be applied to a method for testing adenine nucleotides by bioluminescence, which can be used to check cleanliness and to measure the freshness of foods such as meat, fresh fish, and vegetables (see WOO 1/53513).
  • the produced AMP is converted to a polyphosphate, by utilizing a system for regenerating ATP comprising PAP of the present invention and adenylate kinase, Since AMP is not regenerated to ATP, the enzyme synthesis reaction of the target compound can be efficiently performed.
  • Examples of enzyme reaction systems that can be combined with such an ATP regeneration system include galactose-1-monophosphate synthesis using galactokinase and UMP kinase. Examples include the UDP synthesizing system used and the phosphocholine synthesizing system using choline kinase.
  • the present invention is not limited thereto, and is applicable to any enzymatic reaction that consumes ATP.
  • reaction conditions for such an ATP synthesis system and the enzymatic reaction may be appropriately determined by a small-scale test, and the target compound can be isolated and purified by a known method.
  • E. coli polyphosphate kinase was prepared by the method described in the literature (J. Biosci. Bioeng., 91, 557-563 (2001)). Using the thus prepared E. coli polyphosphate kinase, radiolabeled polyphosphoric acid was prepared according to the method of Akiyama et al., Biol. Chem., 268, 633-639 (1993). . (1-2) Construction and Screening of Acinetobacter Johnsonii Genomic Library G
  • Acinetobacter johnsonii 210A strain was inoculated into LB medium and cultured at 30 ° C with shaking. The cells were recovered by centrifugation, and the chromosomal DNA was purified. Acinetobacter johnsonii chromosome DM was partially digested with the restriction enzyme Sau3AI, and fractionated by sucrose density gradient centrifugation to collect a fraction of about 7 to 10 Kb. The DNA fragment and the plasmid vector pBlueScript SK (+) (purchased from Toyobo) cut with BamHI were ligated by T4 DNA ligase, and Escherichia coli JM109 strain (purchased from Takara Shuzo) was transformed using the DNA solution. The resulting 6000 ampicillin-resistant transformants were isolated and grouped in groups of 50.
  • Radioactive labeled polyphosphate previously prepared active test exudates containing (0.24 mM as phosphoric acid) 50 mM Tris-HCl (pHS.O), 40raM (NH 4 ) 2 S0 4, 4mM MgCl 2, lmM AMP) 2 0 1 xl of the cell extract was added to 1 and reacted at 37 ° C for 1 hour.
  • reaction solution by thin layer chroma preparative chromatography subjected to (eluent 0.75M K3 ⁇ 4P0 4 (pH 3.5)) , by detecting the generation of AD P phosphodiester image analyst la it The one BASS2000 (manufactured by Fujix), resulting transformed The transformants were screened, and PAP activity was detected in one clone out of 6,000 strains.
  • Plasmid pPAP2 has been introduced into the chromosomal DNA of Acinetobacter johnsonii 210A strain of about 10 kb, and is represented by the plasmid DNA (pPAP2) as an independent administration on May 21, 2002 (2002).
  • Escherichia coli JM109 carrying the plasmid pPAP2 was cultured overnight at 28 ° C. in a 2 ⁇ YT medium containing 100 g / ml of ampicillin.
  • the cells were recovered by centrifugation, suspended in a buffer solution containing 50 mM Tris-HCl (pH 7.8) and ImMEDTA, and after sonication, the cell extract was recovered by centrifugation.
  • PAP was produced at 18.1 units per ml of the culture solution, which was about 9,000 times that of the control (Escherichia coli JM109 without plasmid). Was active.
  • PAP was partially purified by fractionating the extract by ion exchange chromatography with DEAE Toyopearl 650M (1: 1) (eluent: 50 mM Tris-HCl (pH 7.8), concentration gradient of 0 to 0.5 M NaCl). The collected fraction was used as an enzyme sample. The specific activity of PAP in this fraction was 80.5 units Zmg protein.
  • the remaining activity was measured at 37 ° C. for 10 minutes in the presence of 10 OmM magnesium chloride in 50 mM maleate or 5 OmM Tris-HCl buffer set at each pH.
  • the residual activity was determined by performing a reaction at 37 ° C for 10 minutes in the presence of 5 OmM Tris buffer (pH 8.0), 10 OmM magnesium chloride, 5 mM AMP, and polyphosphoric acid (1 OmM as inorganic phosphoric acid). It was measured by quantification with HPLC.
  • the enzyme was found to be stable up to 50 ° C in the presence of polyphosphate.
  • Escherichia coli adenylate kinase was prepared by the method described in the literature (Proc. Natl. Acad. Sci. USA, 97, 14 168-14171 (2000)). However, the bacterial extract prepared by sonication was used as an enzyme solution, and the specific activity of adenylate kinase in the enzyme solution was 12.5 units / mg protein.
  • Escherichia coli JM109 carrying plasmid PDR 540 (Gene, 20, 231 (1982), obtained from Pharmacia) containing the Escherichia coli galactokinase gene was inoculated into a 2 x YT medium containing 100 g / ml ampicillin. And cultured at 37 ° C with shaking. When 4 ⁇ 10 8 bacteria reached Zm 1, IPTG was added to the culture solution to a final concentration of ImM, and shaking culture was further continued at 30 ° C. for 5 hours. After completion of the culture, the cells were collected by centrifugation and suspended in 30 ml of a buffer solution (50 mM Tris-HCl (pH 7.8), ImM EDTA).
  • a buffer solution 50 mM Tris-HCl (pH 7.8), ImM EDTA
  • the cell suspension was subjected to ultrasonic treatment to disrupt the cells, and centrifugation was performed to remove cell residues.
  • Galactokinase was partially purified by fractionating the recovered solution by ion exchange chromatography using DEAE Toyopearl 650M (Toso-1) (eluent: 50 mM Tris-HCl (H7.8), 0-0.5M NaCl gradient). The resulting supernatant was used as a galactokinase enzyme solution.
  • the specific activity of galactokinase in the enzyme solution was 6.5 units of Zmg protein.
  • the unit of galactokinase activity was measured and calculated by the following method. Add the enzyme preparation to lO OmM Tris-HCl buffer ( ⁇ 7.8) containing 5 mM MgCl 2 , 1 OmM ATP, and 1 OmM galactose. The reaction is performed by keeping the temperature at 7 ° C, and the reaction is stopped by heat treatment at 100 ° C for 1 minute. Using a sugar analyzer (Dionex), determine the amount of galactose-monophosphate in the reaction solution and generate 1 mol of galactose-monophosphate at 37 ° C for 1 minute. Is defined as one unit.
  • a novel PAP and a gene thereof are provided, and it has become possible to easily prepare a large amount of PAP which has been impossible to prepare in large quantities.
  • This makes it possible to efficiently and inexpensively synthesize or regenerate ATP from AMP, and in combination with an enzyme reaction system that consumes ATP, regenerate the ATP that has been consumed and efficiently achieve the objective. Can be synthesized.
  • the PAP of the present invention also has a phosphorylation activity for synthesizing other nucleoside 5′-inophosphoric acid or deoxynucleoside 5′-monophosphate other than AMP.
  • Nucleoside 5'-diphosphate or deoxynucleoside 5'-diphosphate can be easily prepared enzymatically.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明 細 書 新規なポリリン酸: AM Pリン酸転移酵素 技術分野
本発明は、 新規なポリリン酸: AM Pリン酸転移酵素 (Po lyphosphat e : AMP Phosphot rans ferase) 、 当該酵素をコードする遺伝子及びそれらの利用に関する ものである。 背景技術
近年の遺伝子操作技術の進展により、 さまざまな酵素の安価な大量調製が可能 となり、 従来、 微生物菌体を用いた微生物変換あるいは発酵生産もしくはィ匕学合 成法により合成されてきた有用な生理活性物質が、 酵素反応により安価に製造す ることが可能となってきている。
ところで、 リン酸ィ匕反応、 アミノ化反応などの高エネルギーを必要とする酵素 反応には、 アデノシン 5 ' —トリリン酸 (ATP) がエネルギー供与体あるいはリ ン酸供与体として必要である。 従来の微生物変換あるいは発酵生産においては、 AT Pは用いた微生物の生体内より供給されるが、 酵素法においては A T Pを反 応系に添加したり、 効率的な A T Pの再生系を開発することが不可欠である。 しかしながら、 AT Pの安価な合成法は現時点で確立されておらず、 市販され ている AT Pは極めて高価である。 また、 AT Pの再生系としてはホスホクレア チンとホスホクレアチンキナーゼとの組み合わせ、 あるいはァセチルリン酸とァ セテートキナーゼとの組み合わせなどが一般的に利用されるが、 基質、 酵素とも 極めて高価であるため、 その利用は実験室レベルでの利用に限定され、 実用的な ものではない。
また、 A T Pが高価であるのに対し、 アデノシン 5 ' —モノリン酸 (AMP) は 比較的安価に製造されうる。 現在、 ATPは、 化学合成法あるいは微生物もしく は酵母菌体を用いて AMPもしくはアデニンから合成されている。 そのため、 A TPを使用する酵素反応系において、 高価な AT Pを添加するのではなく、 安価 な AMPから AT Pを酵素的に生成し、 且つ消費された AT Pを効率的に再生す る方法の開発が切望されていた。
実用的な AT Pの生成 ·再生系を構築する上で、 使用するリン酸供与体も重要 であり、 安価かつ安定なリン酸供与体としてポリリン酸がその第 1候補と考えら れている。 一方、 ポリリン酸代謝に関連し、 アデノシン系ヌクレオチドにも作用 する酵素としては、 ポリリン酸キナーゼとポリリン酸: AMPリン酸転移酵素
(以後 「PAP」 と略記する) が知られている。
PAPは、 ポリリン酸をリン酸ドナ一として AMPをリン酸ィ匕して ADPを生 成する酵素である (J.Bacteriol., 173, 6484-6488(1991)) 。 Zenhderらは、 Aci netobacter johnsoni iから該酵素を部分精製し、 アデ二レートキナーゼと併用す ることで、 AMPとポリリン酸を基質とする AT P生成 ·再生系が機能しうるこ とを報告している (Appl. Environ. Microbiol., 66, 2045-2051 (2000)) 。 ま た、 亀田らは、 AT Pを消費して AMPを生成する酵素反応系において、 Myxoco ecus xanthus由来の PAPと大腸菌ポリリン酸キナーゼを組み合わせにより、 ポ リリン酸をリン酸ドナーとした AMPからの AT Pの再生系が効率的に機能する ことを報告している (J. Biosci. Bioeng. 91, 557-563 (2001)) 。
しかしながら、 Acinetobacter johnsoniiの菌体内における PAPの存在量は 極めて少なく、 また反応に菌体抽出液などの粗精製酵素を使用すると、 反応に関 与する物質 (AMP、 ADP, ATP, 反応基質及び Z又は反応生成物) を分解する酵素 の混入も多くなり、 結果として反応効率が低下するという問題が指摘されてい た。 この問題の解決策として、 粗精製酵素ではなく、 高度に精製された PAPを 使用すればよいが、 当該酵素は不安定であるとともに、 その精製手順は極めて煩 雑であり、 到底実用化に耐えられるものではなかった。 JP03/06646 本発明者らは、 上記問題を解決すべく Ac inetobac ier j ohnsoni iの P A Pを組 換え D N A手法で大量に生産させるで上記問題を解決できるのではと考えた。 し かしながら、 該酵素のアミノ酸配列及び当該酵素の遺伝子に関しては、 まったく 報告されていない。 発明の開示
本発明者らは、 P A Pの活性による遺伝子クローニングのためのスクリーニン グ系を構築し、 そのスクリーニング系を用いることで、 P A Pをコードする遺伝 子をクローニングし、 大腸菌において該酵素を大量生産することに成功した。 そ して、 生産された組換え P A Pに関して解析を進めたところ、 該酵素は非常に高 い比活性を有しており、 また、 アデ二レートキナーゼと組み合わせることで、 効 率的な AT P生成 ·再生系の構築が可能であることを見出した。
さらに驚くべき事に、 この組換え P A Pは、 従来の Acinetobacter j ohnsoni i 由来の P A Pと異なり、 AM Pや GM P以外のヌクレオシドモノリン酸であつて もポリリン酸をリン酸ドナ一としてリン酸を転移させヌクレオシドジリン酸を生 成する活性を有することを見出した。
一般に、 ヌクレオシドジリン酸は、 医薬あるいは化成品として使用されている ポリヌクレオチドの酵素合成のための原料として有用であるものの、 これを合成 することは決して容易なことではない。 すなわち、 微生物変換法ではジリン酸体 でリン酸化反応を停止させることはできないため、 現状では化学的リン酸化に頼 らざるを得ない。 しかしながら、 化学的リン酸化では、 副反応も同時に進行する ため、 副産物も生成し、 目的のヌクレオシドジリン酸を反応液から単離精製する ことが極めて煩雑であるという問題があった。 そのため、 ヌクレオシドモノリン 酸の酵素的なリン酸化によるヌクレオシドジリン酸の効率的な合成法の開発が望 まれており、 酵素合成法に使用する酵素としては P A Pも候補として考えられて いた。 しかしながら、 Zehnderらにより、 Acinetobacter johnsonii由来の P APは、 AMPに特異的で、 GMPへは若干のリン酸転移が認められ、 他のヌクレオチド (CMP、 UMP、 IMP) へのリン酸転移は全く認められなかった.と報告され ていることから (Appl. Environ. Microbiol., 66, 2045-2051 (2000)) 、 ヌク レオシドモノリン酸の酵素的なリン酸化によるヌクレオシドジリン酸の合成に P A Pは利用できないと思われていた。
本発明者らは、 上記新知見を基にさらに研究を重ね、 本発明を完成させた。 し たがって、 本発明は、 下記の理化学的性質を有する PAP (本発明の PAP) に関 するものである。
(A) 作用:下記の 2つの反応を触媒する。
NMP+ P o 1 y P(n) → NDP + Po l yP(n_n
dNMP+ P o 1 y P(n) → dNDP + Po I yP(n
(式中、 NMPはヌクレオシドモノリン酸、 NDPはヌクレオシドジリン酸、 d NMPはデォキシヌクレオシドモノリン酸、 dNDPはデォキシヌクレオシドジ リン酸、 nはポリリン酸の重合度を示し、 100以下の整数である。 )
(B) 基質特異性: AMP、 GMP、 I MP, dAMP、 dGMPに特異的で、 CMP、 UMP、 d CMP, TMPにも作用する。
(C) 分子量:約 55〜56Kd (キロダルトン) である。
(D) 比活性:酵素蛋白 Img当たり、 70単位 (ユニット) 以上である。 また、 本発明は、 配列番号 1に示すアミノ酸配列又は該アミノ酸配列の一若し くは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列を有する P A Pに関するものである。
さらに、 本発明は、 配列番号 1に示すアミノ酸配列又は該アミノ酸配列の一若 しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列をコードす る P AP遺伝子に関するものである。
さらにまた、 本発明は、 配列番号 2に示す塩基配列又は該塩基配列の一若しく は数個の塩基が欠失、 置換若しくは付加された塩基配列を有する PAP遺伝子に 関するものである。
また、 本発明は、 上記遺伝子とストリンジ工ン卜な条件下で八イブリダィズ し、 かつ P A P活性を有するポリペプチドをコードする D N A断片に関するもの である。
さらに、 本発明は、 ヌクレオシドモノリン酸からヌクレオシドジリン酸を酵素 的に製造する方法であって、 酵素として上記本発明の P A Pを使用し、 リン酸ド ナ一としてポリリン酸を使用する、 ヌクレオシドジリン酸の製造法に関するもの である。
さらにまた、 本発明は、 AMPから ATPを酵素的に製造する方法であって、 酵素として上記本発明の P A Pとアデ二レートキナーゼの二種の酵素を使用し、 リン酸ドナ一としてポリリン酸を使用する、 ATPの製造法に関するものであ る。
また、 本発明は、 AMP、 ポリリン酸、 PAP及びアデ二レートキナ一ゼから 成る ATPの生成 ·再生系において、 PAPとして上記本発明の PAPを使用す る ATPの生成 ·再生系に関するものである。
最後に、 本発明は、 AT Pを消費する酵素反応を利用した化合物の製造法にお いて、 生成した AMPを、 ポリリン酸、 PAP及びアデ二レートキナーゼカゝら成 る AT Pの再生する系を利用して再生する際、 P APとして本発明の P A Pを使 用する、 AMPから ATPに再生しなから当該酵素反応を行うことを特徴とする 当該化合物の製造法に関するものである。 図面の簡単な説明
図 1は、 取得された Acinetobacter Johnsonii 210 A株の PAP遺伝子を含 有する約 10Kbの DNA断片の制限酵素地図を示す。 PAP遺伝子は、 Sacl H pal DNA断片中に含まれる。 図 2は、 PAP遺伝子を含む 2. 5 k b D N A断片の塩基配列及び P A Pの アミノ酸配列を示す (その 1) 。
図 3は、 PAP遺伝子を含む 2. 5 kb DN A断片の塩基配列及び P APの アミノ酸配列を示す (その 2) 。
図 4は、 本発明 PAPの pH安定性の結果を示す。
図 5は、 本発明 PAPの至適 pHの結果を示す。
図 6は、 本発明 PAPの熱安定性の結果を示す。
図 7は、 本発明 P A Pの至適温度の結果を示す。
図 8は、 ポリリン酸をリン酸ドナーとした PAPとアデ二レートキナーゼによ る AMPからの ADP及び AT Pの合成を示す。 発明を実施するための最良の形態
(1) 本発明の PAP
本発明の PAPは、 下記の理化学的性質を有するものである (後述の実施例参 照) 。
(A) 作用:下記の 2つの反応を触媒する。
NMP+ P o 1 y P(n) → NDP + Po l yP(n
dNMP+ P o 1 y P(n) → dNDP + P o 1 yP -D
(式中、 NMPはヌクレオシドモノリン酸、 NDPはヌクレオシドジリン酸、 d N M Pはデォキシヌクレオシドモノリン酸、 dNDPはデォキシヌクレオシドジ リン酸、 nはポリリン酸の重合度を示し、 100以下の整数である。 )
(B) 基質特異性: AMP、 GMP、 I MP, dAMP、 dGMPに特異的で、 CMP、 UMP、 dCMP、 TMPにも作用する。
(C) 分子量:約 55〜56Kd (キロダルトン) である。
(D) 比活性:酵素蛋白 Img当たり、 70単位 (ユニット) 以上である。
(E) 至適 pH: 8. 5付近
6 3/06646
(F) 至適温度: 50 付近
(E) pH安定性: 7〜9付近
(F) 熱安定性: 5 O :付近まで安定
ただし、 ここで言う 1単位 (ユニット) とは、 37°Cで 1分間に 1 ^mo 1 e の AD Pを生成する活性を意味し、 以下の条件で測定したものである。
<測定条件 >
2 OmM塩化マグネシウム、 1 OmM AMP, 及びポリリン酸 (無機リン酸 として 30mM) を含有する 5 OmMトリス塩酸緩衝液 (pH7.8) に酵素標品を添加 して、 37 °Cで保温することで反応を行い、 100°C、 1分間の熱処理により反 応を停止させ、 高速液体クロマトグラフィー (HPLC) を用いて反応液中の ADP を定量する。
本発明の PAPは、 配列番号 1で示されるアミノ酸配列を有する。 特に、 組換 え DNA法で調製された組換え PAPは、 酵素活性的に実質的に純粋で、 AMP のリン酸化に不利な AMP分解活性を保有していない。
また、 該アミノ酸配列は、 上記反応を触媒する活性を維持する限りにおいて、 1個もしくは数個のアミノ酸が欠失、 置換、 修飾又は付加されていてもよい。 上 記のアミノ酸配列の欠失、 置換、 修飾又は付加は、 出願前周知技術である部位特 異的突然変異誘発法 (例えば、 Pro Natl. Acad. Sci. USA, 81, 4662-5666 (1984) 、 Nucleic Acid Res. 10, 6487-6500(1982); ature 316, 601-605(198 5)など) などにより実施することができる。 また、 本発明の PAPには、 上記反 応を触媒する活性を維持する限りにおいて、 配列番号 1に示すアミノ酸配列と 9 0%以上、 より好ましくは 95%以上の相同性を有する酵素も含まれる。
本発明の PAPは、 Acinetobacter jotmsoniiから配列番号 1に示すアミノ酸 配列を有する酵素をコードする遺伝子、 具体的には配列番号 2に示す塩基配列か らなる PAP遺伝子をクローニングし、 これを使用して調製する。 たとえば、 Ac inetobacier johnsonii由来の遺伝子を具体例として挙げて説明すれば、 図 2及 び 3は図 1に示す制限酵素地図中の S a c I及び Hp a Iで切断される DN A断 片の塩基配列を解析した結果を示したものであり、 図 2及び 3の塩基番号 604 〜 2031番目に示す配列が P A Pの構造遺伝子に相当し、 上記配列番号 2に示 す塩基配列と同一のものである。
本発明においては、 本発明の P A Pを生産することができる限りにおいて、 配 列番号 2で示される塩基配列中の 1個もしくは複数個の塩基が欠失、 置換、 挿入 又は付加された遺伝子、 又はそれらの遺伝子とストリンジェントな条件下でハイ ブリダィズする遺伝子、 さらに配列番号 2で示される塩基配列と 90%以上、 よ り好ましくは 95 %以上の相同性を有する遺伝子も利用することができる。 なお、 1個もしくは複数個の塩基が欠失、 置換、 挿入又は付加された遺伝子と は、 上述のアミノ酸配列と同様に、 部位特異的突然変異誘発法等の周知の方法に より欠失、 置換、 修飾又は付加できる程度の数の塩基が欠失、 置換、 修飾又は付 加されることを意味する。 また、 ストリンジエンドな条件下とは、 5XSSC
(1 XSSCは塩化ナトリウム 8.76g、 クェン酸ナトリウム 4.41gを 1リツトルの水 に溶かしたもの) 、 0. 1 %w/v N—ラウロイルザルコシン 'ナトリウム 塩、 0. 02% wZv SDS、 0. 5% wZvブロッキング試薬を含む溶液 を用い、 60°Cで 20時間程度反応温度条件下でハイブリダィゼーシヨン反応を 行なうことを意味する。
さらに、 本発明では、 PAPをコードする遺伝子の上流にさらに SD配列(Shi ne-Dalgarno Sequence)を含んでなる遺伝子も利用することができ、 このような 遺伝子を利用することで、 酵素の生産量を著しく増加させることができる点で好 適である。
このような遺伝子のクロ一エング、 クローン化した DNA断片を用いた発現べ クタ一の調製、 発現ベクターを用いた PAPの調製などは、 分子生物学の分野に 属する技術者にとっては周知の技術であり、 具体的には、 例えば 「Molecular C1 oningj (Maniatisら編、 Cold Spring Harbor Laboratories, Cold Spring Harb PC翻襄 646 or、 New York(1982)) に記載の方法に従って行うことができる。
たとえば、 Ac i ne t obac t er属に属する微生物から精製した P A Pの N—末端、 C一末端などのアミノ酸配列の一部を既知の方法で決定し、 それに相当するオリ ゴヌクレオチドを合成する。 合成したオリゴヌクレオチドをプローブとして Acin etobacter属に属する菌体の染色体 DNAより P APをコードする遺伝子を含有 する DNA断片をクローニングすればよい。 また、 適当な制限酵素で染色体 DN Aを切断し、 得られた D N A断片を用いて常法によりゲノムライブラリ一を作成 し、 作成したゲノムライブラリーの中から、 PAP活性を基にスクリーニングす ることで、 目的とする遺伝子をクローニングすることができる。
なお、 PAPは高度に精製すると失活する可能性が高いので、 PAP活性を利 用したスクリーニング系を使用することが望ましい。 そして、 スクリーニングに 利用する P A P活性としては、 より高感度に検出可能とするため、 PAPとポリ リン酸キナーゼ (P P K) を組み合わせた AMPから AT Pの生成活性を利用す るのが好ましい。 具体的には、 PAPと PPKを用い、 放射性同位元素で標識し たポリリン酸をリン酸ドナ一として、 AMPを基質として AT Pを生成させ、 放 射標識された AT Pの生成を検出すればよい。
クローン化に用いる宿主は特に限定されないが、 操作性及び簡便性から大腸菌 を宿主とするのが適当である。
クローン化した遺伝子の高発現系を構築するためには、 たとえばマキザムーギ ルバ一トの方法 (Methods in Enzymology, 65, 499 (1980) ) もしくはダイデォ キシチェ一ンターミネ一夕一法 (Methods in Enzymology, 101, 20(1983)) など を応用してクローン化した DNA断片の塩基配列を解析して該遺伝子のコーディ ング領域を特定し、 宿主微生物に応じて該遺伝子が微生物菌体中で自発現可能と なるように発現制御シグナル (転写開始及び翻訳開始シグナル) をその上流に連 結した組換え発現ベクターを作製する。
PAPを異種微生物内で大量に産生させるために使用する発現制御シグナルと しては、 人為的制御が可能で、 PAPの生産量を飛躍的に上昇させるような強力 な転写開始並びに翻訳開始シグナルを用いることが望ましい。 このような転写開 始シグナルとしては、 宿主として大腸菌を用いる場合には、 l a cプロモー夕 ―、 t r pプロモーター、 t a cプロモータ一 (Proc. Natl. Acad. Sci. USA. , 80, 21 (1983) 、 Gene, 20, 231 (1982)) 、 t r cプロモ一夕一(J. Biol. Che m., 260, 3539 (1985)) などを例示することができる。
ベクタ一としては、 種々のプラスミドベクター、 ファージベクターなどが使用 可能であるが、 微生物菌体内で複製可能であり、 適当な薬剤耐性マーカーと特定 の制限酵素切断部位を有し、 菌体内のコピー数の高いプラスミドベクタ一を使用 するのが望ましい。 具体的に大腸菌を宿主とする場合には、 PBR 322 (Gen e, 2, 95(1975))、 pUC18, pUC19(Gene、 33, 103 (1985)) などを例示することが できる。
作製した組換えべクタ一を用いて微生物を形質転換する。 宿主となる微生物と しては安全性が高く取扱いやすいものであれば特に限定されない。 例えば、 大腸 菌、 酵母など DN A組換え操作に常用されている微生物を使用することができ る。 その中でも、 大腸菌が有利であり、 例えば組換え DNA実験に使用される K 12株、 C 600菌、 J Ml 05菌、 JM 109菌(Gene, 33, 103-119 (1985)) などが使用可能である。
微生物を形質転換する方法はすでに多くの方法が報告されており、 宿主として 使用する微生物に応じて適宜選択すればよい。 例えば大腸菌を宿主として使用す る場合、 低温下、 塩化カルシウム処理して菌体内にプラスミドを導入する方法
(J. Mol. Biol., 53, 159 (1970)) により大腸菌を形質転換することができる。 得られた形質転換体は、 当該微生物が増殖可能な培地中で増殖させ、 さらにク ローン化した PAP遺伝子の発現を誘導して菌体内に当該酵素が大量に蓄積する まで培養を行う。 形質転換体の培養は、 炭素源、 窒素源などの当該微生物の増殖 に必要な栄養源を含有する培地を用いて常法に従って行えばよい。 例えば、 大腸 菌を宿主として使用する場合、 培地として 2xYT培地 (Methods in Enzymolog y, 100, 20 (1983)) 、 LB培地、 M9CA培地 (Molecular Cloning, 前述) な どの大腸菌の培養に常用されている培地を用い、 20〜40°Cの培養温度で必要 により通気攪拌しながら培養することができる。 また、 ベクターとしてプラスミ ドを用いた場合には、 培養中におけるプラスミドの脱落を防ぐために適当な抗生 物質 (プラスミドの薬剤耐性マーカーに応じ、 アンピシリン、 カナマイシンな ど) の薬剤を適当量培養液に加えて培養する。
培養中に PAP遺伝子の発現を誘導する必要がある場合には、 用いたプロモー ターで常用されている方法で該遺伝子の発現を誘導する。 例えば、 1 acプロモ 一ターや t a cプロモ一夕一を使用した場合には、 培養中期に発現誘導剤である イソプロピル— jS— D—チォガラクトピラノシド (以下、 IPTGと略称する) を適 当量添加する。
このようにして調製した培養物から膜分離あるいは遠心分離処理などにより菌 体を回収する。 回収した菌体は、 菌体それ自体を PAPとして利用することも可 能であるが、 回収した菌体を適当な緩衝液に懸濁し、 超音波処理、 フレンチプレ ス処理などにより物理的に菌体を破砕するか、 あるいはリゾチーム処理など酵素 的に溶菌させ、 菌体残さを遠心分離により除去して無細胞抽出液を調製し、 この 無細胞抽出液を P A Pとして利用する方が好適である。 この無細胞抽出液内には PAPが過剰に存在しているため、 特に精製処理を施さなくとも酵素源として利 用可能であるが、 さらに、 熱処理、 硫安塩析処理、 透析処理、 エタノールなどの 溶媒処理、 各種クロマトグラフィー処理などの酵素精製に通常使用されている処 理を単独で、 又は数種組み合わせて得られる粗精製物又は精製物を PAPとして 利用してもかまわない。
(2) 本発明の PAPの利用
このようにして調製した本発明の P A Pは、 ヌクレオシドジリン酸又はデォキ シヌクレオシドジリン酸の合成、 AT Pの合成もしくは再生等に利用可能であ る。
まず、 ヌクレオシド 5 ' ージリン酸 (■) 又はデォキシヌクレオシド 5 ' 一 ジリン酸 (dNDP) の合成に使用するヌクレオシド 5' —モノリン酸 (丽 P) 又は デォキシヌクレオシド 5' —モノリン酸 (d丽 P) は、 市販のものが使用できる。 使用濃度としては、 例えば 1〜20 OmM、 好ましくは 10〜10 OmMの範囲 から適宜設定することができる。
また、 使用するポリリン酸も市販のものが使用できる。 使用濃度としては、 無 機リン酸に換算して 1〜100 OmM、 好ましくは 10〜20 OmMの範囲から 適宜設定することができる。 また、 ポリリン酸の重合度 (n) としては、 100 以下、 好ましくは 10〜50程度の重合度のものが好ましい。
NDP又はdNDPの合成反応は、 pH4〜9の範囲の適当な緩衝液中に NM P又は dNDPとポリリン酸を添加し、 さらに 0. 001ユニット /m 1以上、 好ましくは 0. 001〜10ユニット Zmlの本発明の PAPを添加し、 20°C 以上、 好ましくは 30〜40°Cで 1〜50時間程、 必要により撹拌しながら反応 させることにより実施できる。
生成した NDP又は dNDPの単離精製は、 各種クロマトグラフィ一処理など 公知の方法により行うことができる。
次に、 AT Pの合成は、 ポリリン酸の存在下、 本発明の P A Pとアデ二レート キナ一ゼを併用し、 AMPを AD P続けて AT Pに変換することで実施すること ができる。
反応液に添加する AMPは、 市販のものが使用できる。 使用濃度としては、 例 えば 1〜 200 mM、 好ましくは 10〜 100 mMの範囲から適宜設定すること ができる。
また、 添加するポリリン酸も市販のものが使用できる。 使用濃度としては、 無 機リン酸に換算して:!〜 100 OmM、 好ましくは 10〜20 OmMの範囲から 適宜設定することができる。 また、 ポリリン酸の重合度 (n) としては、 100 以下、 好ましくは 10〜50程度の重合度のものが好ましい。
ATPの合成反応は、 pH4〜 9の範囲の適当な緩衝液中に、 AMP及びポリ リン酸を添加し、 さらに 0. 001ユニット/ ml以上、 好ましくは 0. 001 〜10ユニット/ m 1の本発明の PAP、 及び 0. 01ユニット Zml以上、 好 ましくは 0. 01〜100ュニット Zml以上のアデ二レートキナーゼを添加 し、 20 °C以上、 好ましくは 30〜 40 °Cで 1〜 50時間程、 必要により撹拌し ながら反応させることにより実施できる。
生成した A T Pの単離精製は、 各種クロマトグラフィ一処理など公知の方法に より行うことができる。
なお、 アデ二レートキナーゼ活性の単位 (ユニット) は次の方法で測定、 算出 する。 すなわち、 1 OmM塩化マグネシウム、 1 OmM AMP、 及び 1 OmM ATPを含有する 50 mM トリス塩酸緩衝液 (pH7.8) に酵素標品を添加して 37 Cで保温することで反応を行い、 100°C、 1分間の熱処理により反応を停 止させる。 HP LCを用いて反応液中の ADPを定量し、 37でで1分間に2 mo 1 eの ADPを生成する活性を 1単位 (ユニット) とする。
また、 AMP、 ポリリン酸、 本発明の PAP及びアデニレ一トキナ一ゼから成 る ATPの生成 ·再生系は、 微量 ATPの存在を検出し、 食品工場などで目に見 えない微生物を検出して清浄度を検査したり、 食肉、 鮮魚、 野菜など食物の鮮度 を測定することに応用できる生物発光によるアデニンヌクレオチドの検査方法に 応用可能である (WOO 1/53513等参照) 。
さらに、 AT Pを消費する酵素反応を利用した化合物の製造法において、 生成 した AMPを、 ポリリン酸、 本発明の PAP及びアデ二レー卜キナーゼから成る AT Pの再生する系を利用することで、 AMPから AT Pに再生しなから目的と する化合物の酵素合成反応を効率的に行うことができる。
このような ATP再生系と組み合わせ可能な酵素反応系としては、 たとえば、 ガラクトキナーゼを用いたガラクトースー 1一リン酸合成系、 UMPキナーゼを 用いた UD P合成系、 コリンキナーゼを用いたホスホコリン合成系などを例示す ることができるが、 これに限定されず、 AT Pを消費する酵素反応であれば適用 可能である。
このような ATP合成系と酵素反応との反応条件は、 小規模試験にて適宜決定 すればよく、 また目的化合物の単離精製も公知の方法により行うことができる。 実施例
以下、 実施例を示し、 本発明を具体的に説明するが、 本発明がこれに限定され ないことは明らかである。 また、 実施例における DNAの調製、 制限酵素による 切断、 T 4 D N Aリガーゼによる D N A連結、 並びに大腸菌の形質転換法は全て 「Molecular cloning II」 (Sambrookら編、 Cold spring Harbor Laboratory, C old Spring Harbor, New York(1989)) に従って行った。 また、 制限酵素、 及び Amp 1 i Ta qDNAポリメラ一ゼ、 T 4 DNAリガーゼなどの DNA関連酵 素はすべて宝酒造 (株) より入手した。 さらに、 反応液中のヌクレオチド類の定 量には HP LC法により行った。 具体的には、 分離には YMC社製の ODS—A Q312カラムを用い、 溶出液として 0. 5M リン酸一カリウム溶液を用い た。 実施例 1 ;本発明 PAPの調製
(1) Acinetobacter johnsonii 210株の PAP遺伝子のクローニング
(1 -1) 大腸菌ポリリン酸キナーゼ及び放射性標識ポリリン酸の調製
文献 (J. Biosci. Bioeng., 91, 557-563 (2001)) に記載された方法で大腸菌 ポリリン酸キナーゼを調製した。 さらに調製した大腸菌ポリリン酸キナーゼを用 いて秋山らの方法 . Biol. Chem. , 268, 633-639 (1993)) に従い放射性標識ポ リリン酸を調製した。 . (1-2) Acinetobacter Johnsoniiゲノムライブラリ—の作製とスクリーニン グ
Acinetobacter johnsonii 210 A株を LB培地に植菌し、 30°Cでー晚振とう 培養した。 遠心分離により菌体を回収し、 染色体 DNAを精製した。 Acinetobacter johnsonii染色体 DMを制限酵素 Sau3AIで部分分解した後、 蔗糖密度勾配遠心に より分画し、 約 7— 10Kbの画分を回収した。 該 DNA断片と BamHIで切断したプ ラスミドベクター pBlueScript SK(+) (東洋紡より購入) を T4 DNA ligas eにより連結し、 該 DNA液を用いて大腸菌 JM109株 (宝酒造より購入) を形質 転換した。 得られたアンピシリン耐性形質転換体 6000株を単離し、 50ずつ グループ化した。
各グループを LB培地で 37°Cで一晩培養し、 遠心分離により菌体を回収後 2 OmM Tris- HCl(pH8.0)で菌体を洗浄し、 同緩衝液で菌体を再縣濁した。 菌体縣 濁液に等量の BugBuster (宝酒造より購入) を加え、 室温で 30分放置し溶菌さ せたのち、 3倍容の 2 OmM Tris- HCKpHS.O)を加えて、 菌体抽出液とした。 先に調製した放射性標識ポリリン酸 (リン酸として 0.24mM) を含有する活性検 出液 (50mM トリス塩酸 (pHS.O), 40raM (NH4)2S04, 4mM MgCl2, lmM AMP) 2 0 1に菌体抽出液 1 xlを加え、 37°Cで 1時間反応させた。 該反応液を薄層クロマ トグラフィー (展開液: 0.75M K¾P04 (pH 3.5)) にかけ、 ホスホイメージアナラ ィザ一 BASS2000 (Fujix製) で AD Pの生成を検出することで、 得られた形質転 換体のスクリーニングを行い、 6000株中 1クローンに PAP活性が検出され た。
得られたクローンより、 Acinetobacter johnsonii 21 OA株の PAP遺伝子 が揷入されたプラスミド P PAP 2を得た (図 1) 。 なお、 プラスミド pPAP 2は、 約 10 k bの Acinetobacter johnsonii 210 A株の染色体 DNA力揷入 されており、 プラスミド DNA (pPAP2) の表記で、 平成 14年 (2002) 5月 2 1日付けで独立行政法人産業技術総合研究所 特許微生物寄託センター (日本国 茨城県つくば市東 1丁目 1番地 1中央 6 (郵便番号 305-8566)) にブタぺスト条約 に基づく国際寄託がなされ、 受託番号として FERM BP— 8047を与えら れている。
(1-3) Acinetobacter johnsonii 210株の PAP遺伝子の解析
p PAP 2の含有する 10 Kbの Acinetobacter johnsonii 210 A株の DN Aを種々のプラスミドにサブクロ一ニングし、 それら形質転換体の PAP化活性 を前述の方法で測定した結果、 約 2. 5 kbの Sacl- Hpal DNA断片に PAP遺 伝子が存在することが、 確認された (図 1) 。 この DNA断片の塩基配列をダイ デォキシチェイン夕一ミーネーター法 (Science, 214, 1295 (1981)) で決定し た。 その結果、 PAP遺伝子は、 475アミノ酸から成るポリペプチド (分子 量; 55.8kd) をコードしていることが判明した (図 2及び 3) 。
(2) Acinetobacter johnsonii PAPの調製
プラスミド pPAP 2を保持する大腸菌 JM109菌をアンピシリンを 100 g/ml含有する 2 X YT培地で 28°Cで一晩培養した。 遠心分離により菌体を回 収し、 50mM トリス塩酸 (pH 7.8) , ImM ED T Aからなる緩衝液に縣濁 し、 超音波処理後、 遠心分離により菌体抽出液を回収した。 得られた抽出液中の PAPの活性を測定したところ、 PAPは、 培養液 lml当たり 18. 1ュニッ トの生産量であり、 対照 (プラスミドを保持していない大腸菌 JM109) の約 90 00倍の活性であった。
なお、 この生産性は、 Acinetobacter Johnsoniiによる PAPの生産性の約 1 50倍に相当する。 該抽出液を DEAEトヨパール 650M (1 ソ一) による イオン交換クロマトグラフィー (溶出液: 50mM トリス塩酸 (pH 7.8), 0〜0.5M NaClの濃度勾配) で分画することで、 PAPを部分精製し、 回収された画分を酵 素標品とした。 なお、 該画分における PAPの比活性は、 80. 5ユニット Zmg 蛋白質であった。
(3) PAPの諸性質の解析
(3- 1) 各種 NDPの合成 (基質特異性の解析) 100mM MgCl2、 ポリリン酸 (無機リン酸として lOmM) 、 5mM各種 NMP また d NM Pを含有する 50 mMトリス塩酸緩衝液 (pH 8.0) に種々の濃度で P APを添加し、 37°Cで 10分間保温した。 100°Cで 1分間の熱処理により反 応を停止させ、 反応終了液を HP L Cにて生成した ND Pもしくは d NMPを定 量した。 AMPのリン酸化における PAPの比活性を 100%として、 各種 NM Pもしくは dNMPにおける比活性の相対値を表 1に示す。 基 質 比活性 (相対値)
AMP 100 %
GMP 10
CMP 0.09
UMP 0.13
IMP 2.2
d層 18
dGMP 2.6
dCMP 0.008
TMP. 0.012
(3-2) pH安定性
各 pHに設定した 50 mMマレイン酸塩あるいは 5 OmMトリス塩酸緩衝液 中、 10 OmM 塩化マグネシウム存在下で 37°Cで 10分間保温し、 残存活性 を測定した。 残存活性は、 5 OmM トリス緩衝液 (pH 8.0) 、 10 OmM塩化 マグネシウム、 5mM AMP、 ポリリン酸 (無機リン酸として 1 OmM) 存在下で 37°Cで 10分間の反応を行い、 生成した ADPを H PLCで定量することで測 定した。
その結果、 図 4に示すように、 p H 8の酵素活性を 100とした場合、 本酵素 は pH7〜9で 80 %以上の酵素活性を示すことが判明した。
(3— 3) 至適 pH
各 pHに設定した 5 OmM マレイン酸塩あるいは 5 OmMトリス緩衝液中、 10 OmM塩化マグネシウム、 ポリリン酸 (無機リン酸として 1 OmM) 、 5mM AMP存在下で 37°Cで 10分間反応を行い、 生成した ADPを HPLCで定量 することで測定した。
その結果、 図 5に示すように、 本酵素の至適 pHは 8. 5であった。
(3-4) 熱安定性
10 OmM塩化マグネシウムを含む 5 OmM トリス塩酸緩衝液 (pH8.0) 中 でポリリン酸 (無機リン酸として 10mM) 存在、 もしくは非存在下で各温度に設定 した湯浴中にて 10分間保温して、 上述の方法で残存活性を測定した。
その結果、 図 6に示すように、 ポリリン酸存在下で、 本酵素は 50°Cまで安定 であることが判明した。
(3-5) 至適温度
10 OmM塩化マグネシウムを含む 5 OmM トリス塩酸緩衝液 (pH8.0) 中 でポリリン酸 (無機リン酸として 1 OmM) 及び 5mM AMP存在下で各温度に設 定した湯浴中にて 10分間保温し、 生成した ADPを HPLCで定量することで 酵素活性を測定した。
その結果、 図 7に示すように、 本酵素の至適反応温度は 50°Cであることが判 明した。 実施例 2 : PAPとアデ二レートキナ一ゼによる AT Pの合成
(1) 大腸菌アデ二レートキナーゼの調製
大腸菌アデ二レートキナーゼは、 文献 (Proc. Natl. Acad. Sci. USA, 97, 14 168-14171 (2000)) 記載の方法で調製した。 ただし、 超音波処理により調製され た菌体抽出液を酵素液とし、 該酵素液におけるアデ二レートキナーゼの比活性 は、 12. 5ユニット/ mg蛋白質であった。
(2) AT Pの合成
2 OmM MgCl2、 ポリリン酸 (無機リン酸として 30 ) 、 1 OmM AMPを 含有する 50 mM トリス塩酸緩衝液 (pH7.8) に、 P A Pを 1. 5ユニット Zm 1、 アデ二レートキナーゼを 0. 4ユニット/ m 1となるように添加し、 37°C で 60分保温した。 反応終了後反応液中のヌクレオチドを HPLCを用いて定量 した。
その結果、 図 8に示すように、 AMPは PAPにより速やかにリン酸化され A D Pが生成し、 さらに共存するアデ二レートキナーゼの触媒により生成した AD Pは速やかに AT Pと AMPに変換され、 このサイクルを繰り返すことで、 AT Pが蓄積することが確認された。 実施例 3 : PAPとアデ二レートキナ一ゼの組み合わせからなる AT P再生系に よるガラクトース— 1ーリン酸の合成
(1) 大腸菌ガラク卜キナーゼの調製
大腸菌ガラクトキナーゼ遺伝子を含有するプラスミド PDR 540 (Gene, 2 0, 231 (1982)、 フアルマシア社より入手) を保持する大腸菌 JM109菌を、 1 00 g/mlのアンピシリンを含有する 2 xYT培地に植菌し、 37 °Cで振とう培 養した。 4x 108菌 Zm 1に達した時点で、 培養液に終濃度 ImMになるよう に I PTGを添加し、 さらに 30°Cで 5時間振とう培養を続けた。 培養終了後、 遠心分離により菌体を回収し、 30mlの緩衝液 (50mM トリス塩酸 (pH7.8) 、 ImM EDTA) に懸濁した。 菌体縣濁液を超音波処理を行い、 菌体を破砕し、 さらに 遠心分離により菌体残さを除去した。 回収液を DEAEトヨパール 650M (ト ーソ一) によるイオン交換クロマトグラフィー (溶出液: 50mM トリス塩酸 ( H 7.8), 0〜0.5M NaClの濃度勾配) で分画することで、 ガラクトキナーゼを部分精 製し、 回収された上清をガラクトキナーゼ酵素液とした。 酵素液におけるガラク トキナ一ゼの比活性は、 6. 5ユニット Zmg蛋白質であった。
なお、 ガラクトキナーゼ活性の単位 (ユニット) は、 以下に示す方法で測定、 算出したものである。 5mM MgCl2、 1 OmM ATP、 1 OmM ガラク卜ース を含有する l O OmM トリス塩酸緩衝液 (ρΗ7·8) に酵素標品を添加して、 3 7 °Cで保温することで反応を行い、 100°C、 1分間の熱処理により反応を停止 させる。 糖分析装置 (ダイォネックス社) を用いて反応液中のガラク卜一スー 1 一リン酸を定量し、 37°Cで 1分間に 1 m o 1 eのガラク ] ス— 1一リン酸 を生成する活性を 1単位 (ユニット) とする。
(2) ガラクトースー 1一リン酸の合成
20mM MgCl2、 ポリリン酸 (無機リン酸として 30 ) 、 5mM AMP及び 5 OmM (d)ガラクト一スを含有する 5 OmM トリス塩酸緩衝液 (pH7.8) に 0. 2ユニット Zml PAP及び 0. 2ユニット/ ml アデ二レートキナーゼ を添加し、 さらに 0. 5ユニット Zm 1となるようにガラクトキナーゼを添加 し、 37 °Cで 8時間保温した。 なお、 反応中 2時間後及び 4時間後にポリリン酸を 無機リン酸として 2 OmMとなるように添加した。 反応終了液を糖分析装置 (ダ ィォネックス社) を用いて分析したところ、 37. 8mMのガラクトースー 1一 リン酸の生成が確認された。
実施例 4:ヌクレオチドジリン酸の合成
(1) 各種 NDPの合成
10 OmM MgCl2、 ポリリン酸 (無機リン酸として 30mM) 、 1 OmM各種 NM P (AMP, GMP, CMP, UMP, IMP) を含有する 50 mM トリス塩酸緩衝液に、 16ュニ ット Zm 1となるように PAPを添加し、 37 °Cで 30分間保温した。 反応液を HPLCにて分析した結果を表 2に示す。 なお、 対照に大腸菌 JM109の菌体 抽出液を用いた場合、 ND Pの生成は認められなかった。
表 2
基 質 生成した NDP
AMP 6.76mM ADP
GMP 7.16mM GDP
CMP 0.98mM CDP
UMP 0.85mM UDP
IMP 6.75mM I DP (2) I DPの酵素合成
l OOmM MgCl2、 ポリリン酸 (無機リン酸として 65mM) 、 4 OmM IMP を含有する 50mM トリス塩酸緩衝液に、 16ユニット Zmlとなるように PA Pを添加し、 37 °Cで 19時間保温した。 反応液を HP LCにて分析した結果、 2 1. 2 mMの I D Pの生成が確認された。 産業上の利用可能性
本発明により、 新規な PAP及びその遺伝子が提供され、 従来大量調製が不可 能であった P A Pを容易に大量に調製することが可能となった。 このことから、 AM Pからの効率的かつ安価に AT Pを合成又は再生することが可能となり、 A T Pを消費する酵素反応系と組み合わせることにより、 消費された AT Pを再生 し、 効率的に目的とする化合物を合成することも可能となった。
また、 本発明の PAPは従来の PAPと異なり、 AMP以外の他のヌクレオシ ド 5' — ΐノリン酸又はデォキシヌクレオシド 5' —モノリン酸の合成のリン酸 化活性も有しており、 各種ヌクレオシド 5' —ジリン酸又はデォキシヌクレオシ ド 5' —ジリン酸を酵素的に容易に調製可能である。

Claims

請求の範囲
1. 下記の理化学的性質を有するポリリン酸: AMPリン酸転移酵素。
(A) 作用:下記の 2つの反応を触媒する。
NMP+ P o 1 y P(n) → NDP + Po l y P ^
dNMP+ Po l yP(n) → dNDP + Po l y P (n.0
(式中、 NMPはヌクレオシドモノリン酸、 NDPはヌクレオシドジリン酸、 d NMPはデォキシヌクレオシドモノリン酸、 dNDPはデォキシヌクレオシドジ リン酸、 nはポリリン酸の重合度を示し、 100以下の整数である。 )
(B) 基質特異性: AMP、 GMP、 IMP, dAMP、 dGMPに特異的で、 CMP、 UMP、 dCMP、 TMPにも作用する。
(C) 分子量:約 55〜56Kd (キロダルトン) である。
(D) 比活性:酵素蛋白 lmg当たり、 70単位 (ユニット) 以上である。 ただし、 1単位 (ユニット) とは、 37°Cで 1分間に 1 mo 1 eの ADPを 生成する活性を示し、 以下の条件で測定する。
<測定条件 >
2 OmM塩化マグネシウム、 10mM AMP、 及びポリリン酸 (無機リン酸 として 30mM) を含有する 50 mMトリス塩酸緩衝液 (pH7.8) に酵素標品を添加 して、 37 °Cで保温することで反応を行い、 100 ° (、 1分間の熱処理により反 応を停止させ、 高速液体クロマトグラフィー (HPLC) を用いて反応液中の ADP を定量する。
2. 配列番号 1に示すアミノ酸配列又は該アミノ酸配列の一若しくは数個のァ ミノ酸が欠失、 置換若しくは付加されたアミノ酸配列を有するポリリン酸: AM Pリン酸転移酵素。
3. 配列番号 1に示すアミノ酸配列又は該アミノ酸配列の一若しくは数個のァ ミノ酸が欠失、 置換若しくは付加されたアミノ酸配列をコ一ドするポリリン酸: AM Pリン酸転移酵素遺伝子。
4. ポリリン酸: AM Pリン酸転移酵素遺伝子が、 配列番号 2に示す塩基配列 又は該塩基配列の一若しくは数個の塩基が欠失、 置換若しくは付加された塩基配 列を有するものである、 請求項 3記載の遺伝子。
5 . 請求項 3又は 4記載の遺伝子とストリンジェントな条件下でハイプリダイ ズし、 かつポリリン酸: AM Pリン酸転移酵素活性を有するポリペプチドをコー ドする D N A断片。
6. ヌクレオシドモノリン酸からヌクレオシドジリン酸を酵素的に製造する方 法であって、 酵素として請求項 1又は 2記載のポリリン酸: AM P リン酸転移 酵素を使用し、 リン酸ドナ一としてポリリン酸を使用する、 ヌクレオシドジリン 酸の製造法。
7 . AM Pから AT Pを酵素的に製造する方法であって、 酵素として請求項 1 又は 2記載のポリリン酸: AM P リン酸転移酵素とアデ二レートキナーゼのニ 種の酵素を使用し、 リン酸ドナ一としてポリリン酸を使用する、 AT Pの製造 法。
8 . AM P、 ポリリン酸、 ポリリン酸: AM P リン酸転移酵素及びアデニレ ートキナーゼから成る AT Pの生成 ·再生系において、 ポリリン酸: AM P リ ン酸転移酵素として、 請求項 1又は 2記載の酵素を使用する A T Pの生成 ·再生 系。
9 . AT Pを消費する酵素反応を利用した化合物の製造法において、 生成した AM Pを、 ポリリン酸、 ポリリン酸: AM P リン酸転移酵素及びアデ二レート キナーゼから成る AT Pの再生系を利用して再生する際、 ポリリン酸: AM P リン酸転移酵素として請求項 1又は 2記載の酵素を使用する、 AM Pから AT P に再生しなから当該酵素反応を行うことを特徴とする当該化合物の製造法。
PCT/JP2003/006646 2002-05-29 2003-05-28 Nouvelle enzyme polyphosphate :amp phosphotransferase WO2003100056A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2003241818A AU2003241818A1 (en) 2002-05-29 2003-05-28 Novel polyphosphate:amp phosphotransferase
AT03733106T ATE468393T1 (de) 2002-05-29 2003-05-28 Verfahren zur produktion von nucleosid-diphosphat unter verwendung von polyphosphat: amp- phosphotransferase
JP2004508295A JP4256341B2 (ja) 2002-05-29 2003-05-28 新規なポリリン酸:ampリン酸転移酵素
EP03733106A EP1514927B1 (en) 2002-05-29 2003-05-28 Method for producing nucleoside diphosphate using polyphosphate: amp phosphotransferase
DE60332623T DE60332623D1 (de) 2002-05-29 2003-05-28 Verfahren zur produktion von nucleosid-diphosphat unter verwendung von polyphosphat: amp-phosphotransferase
KR1020047018915A KR100864901B1 (ko) 2002-05-29 2003-05-28 신규 폴리포스페이트:에이엠피 포스포트랜스퍼라제
US10/514,726 US7329522B2 (en) 2002-05-29 2003-05-28 Polyphosphate:AMP phosphotransferase
CA2499885A CA2499885C (en) 2002-05-29 2003-05-28 Novel polyphosphate:amp phosphotransferase
US11/875,268 US20080108111A1 (en) 2002-05-29 2007-10-19 Novel polyphosphate: amp phosphotransferase

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002156049 2002-05-29
JP2002-156049 2002-05-29
JP2003008931 2003-01-17
JP2003-8931 2003-01-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/875,268 Division US20080108111A1 (en) 2002-05-29 2007-10-19 Novel polyphosphate: amp phosphotransferase

Publications (1)

Publication Number Publication Date
WO2003100056A1 true WO2003100056A1 (fr) 2003-12-04

Family

ID=29586008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006646 WO2003100056A1 (fr) 2002-05-29 2003-05-28 Nouvelle enzyme polyphosphate :amp phosphotransferase

Country Status (11)

Country Link
US (2) US7329522B2 (ja)
EP (1) EP1514927B1 (ja)
JP (2) JP4256341B2 (ja)
KR (1) KR100864901B1 (ja)
CN (1) CN100562573C (ja)
AT (1) ATE468393T1 (ja)
AU (1) AU2003241818A1 (ja)
CA (1) CA2499885C (ja)
DE (1) DE60332623D1 (ja)
ES (1) ES2344552T3 (ja)
WO (1) WO2003100056A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080313A1 (ja) * 2005-01-25 2006-08-03 Yamasa Corporation 3’-ホスホアデノシン-5’-ホスホ硫酸の酵素合成法
JP2009050264A (ja) * 2002-05-29 2009-03-12 Yamasa Shoyu Co Ltd 新規なポリリン酸:ampリン酸転移酵素
WO2013129427A1 (ja) 2012-02-29 2013-09-06 ヤマサ醤油株式会社 cyclic di-GMPの実践的酵素合成法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101669029B (zh) * 2007-04-26 2013-07-10 住友电气工业株式会社 有机材料中无机磷的分析方法及其分析设备
EP3219796B1 (en) 2010-08-31 2020-10-07 GreenLight Biosciences, Inc. Methods for control of flux in metabolic pathways through protease manipulation
US9688977B2 (en) 2013-08-05 2017-06-27 Greenlight Biosciences, Inc. Engineered phosphoglucose isomerase proteins with a protease cleavage site
MY193444A (en) 2015-03-30 2022-10-13 Greenlight Biosciences Inc Cell-free production of ribonucleic acid
CR20180525A (es) * 2016-04-06 2019-02-14 Greenlight Biosciences Inc Producción de ácido ribonucleico libre de células
CN106191170B (zh) * 2016-08-09 2019-04-16 深圳市古特新生生物科技有限公司 一种酶法制备三磷酸腺苷的方法
KR102571743B1 (ko) 2017-10-11 2023-08-29 그린라이트 바이오사이언시스, 아이엔씨. 뉴클레오시드 트리포스페이트 및 리보핵산 생산을 위한 방법 및 조성물
CN110452951B (zh) * 2019-08-16 2021-04-13 珠海丽凡达生物技术有限公司 监测mRNA Poly(A)尾长度的方法及应用
CN113265382B (zh) * 2021-06-24 2023-11-10 洛阳华荣生物技术有限公司 多聚磷酸激酶突变体
CN114875011B (zh) * 2022-05-10 2024-02-27 美邦美和生物科技有限公司 Amp磷酸转移酶突变体、其编码基因及在atp合成中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053513A1 (fr) * 2000-01-17 2001-07-26 Satake Corporation Systemes et procede de reaction de regeneration atp permettant d'examiner le nucleotide d'adenine, procede de detection d'arn et procede d'amplification d'atp

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116964A (en) 1989-02-23 1992-05-26 Genentech, Inc. Hybrid immunoglobulins
US5856160A (en) 1997-03-31 1999-01-05 Incyte Pharmaceuticals, Inc. Mitochondrial adenylate kinase
WO1998048031A1 (fr) * 1997-04-18 1998-10-29 Yamasa Corporation Procede de production d'adenosine 5'-triphosphate et utilisation de ladite substance
EP1586646B1 (en) 2000-12-20 2011-03-09 Intervet International BV Lawsonia intracellularis vaccine
JP2002325587A (ja) 2001-03-02 2002-11-12 Daicel Chem Ind Ltd ニトリルヒドラターゼ、およびアミドの製造方法
JP2004533236A (ja) 2001-04-13 2004-11-04 ワイエス 化膿性連鎖球菌(Streptococcuspyogenes)の表面タンパク質
ATE386937T1 (de) 2001-06-19 2008-03-15 Suntory Ltd Verfahren zur analyse eines in der zelle auftretenden proteins oder einer mit dem protein wechselwirkenden substanz
KR100864901B1 (ko) * 2002-05-29 2008-10-22 야마사 쇼유 가부시키가이샤 신규 폴리포스페이트:에이엠피 포스포트랜스퍼라제

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053513A1 (fr) * 2000-01-17 2001-07-26 Satake Corporation Systemes et procede de reaction de regeneration atp permettant d'examiner le nucleotide d'adenine, procede de detection d'arn et procede d'amplification d'atp

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Molecular cloning II", 1989, COLD SPRING HARBOR LABORATORY
BONTING, C.F.C.: "Properties of Polyphosphate : AMP Phosphotransferase of Acinetobacter Strain 210A", JOURNAL OF BACTERIOLOGY, vol. 173, no. 20, October 1991 (1991-10-01), pages 6484 - 6488, XP002970259 *
J. BIOSCI. BIOENG., vol. 91, 2001, pages 557 - 563
KAMEDA, A ET AL.: "A Novel ATP Regeneration System using Polyphosphate -AMP Phosphotransferase and Polyphosphate Kinase.", J. BIOSCI. BIOENG., vol. 91, no. 6, 2001, pages 557 - 563, XP002970260 *
RESNICK, S.M. ET AL: "In vitro ATP regenration from polyphosphate and AMP by polyphosphate AMP phosphotransferase and adenylate kinase from acinetobacter", APPL. ENVIRON. MICROBIOL., vol. 66, no. 5, 2000, pages 2045 - 2051, XP002937344 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050264A (ja) * 2002-05-29 2009-03-12 Yamasa Shoyu Co Ltd 新規なポリリン酸:ampリン酸転移酵素
WO2006080313A1 (ja) * 2005-01-25 2006-08-03 Yamasa Corporation 3’-ホスホアデノシン-5’-ホスホ硫酸の酵素合成法
JPWO2006080313A1 (ja) * 2005-01-25 2008-06-19 ヤマサ醤油株式会社 3’−ホスホアデノシン−5’−ホスホ硫酸の酵素合成法
EP2100956A1 (en) 2005-01-25 2009-09-16 Yamasa Corporation Method of enzymatically synthesizing 3'-phosphoadenosine-5'-phophosulfate
JP4505011B2 (ja) * 2005-01-25 2010-07-14 ヤマサ醤油株式会社 3’−ホスホアデノシン−5’−ホスホ硫酸の酵素合成法
US8728789B2 (en) 2005-01-25 2014-05-20 Yamasa Corporation DNA fragment encoding a polyphosphate-driven nucleoside 5′-diphosphate kinase polypeptide
US9193958B2 (en) 2005-01-25 2015-11-24 Yamasa Corporation Method of enzymatically synthesizing 3′-phosphoadenosine-5′-phosphosulfate
WO2013129427A1 (ja) 2012-02-29 2013-09-06 ヤマサ醤油株式会社 cyclic di-GMPの実践的酵素合成法

Also Published As

Publication number Publication date
ATE468393T1 (de) 2010-06-15
CA2499885C (en) 2010-04-20
EP1514927A1 (en) 2005-03-16
DE60332623D1 (de) 2010-07-01
KR20050004855A (ko) 2005-01-12
US7329522B2 (en) 2008-02-12
JPWO2003100056A1 (ja) 2005-09-22
ES2344552T3 (es) 2010-08-31
CA2499885A1 (en) 2003-12-04
AU2003241818A1 (en) 2003-12-12
US20080108111A1 (en) 2008-05-08
JP4256341B2 (ja) 2009-04-22
CN100562573C (zh) 2009-11-25
EP1514927B1 (en) 2010-05-19
KR100864901B1 (ko) 2008-10-22
EP1514927A4 (en) 2006-06-07
CN1656219A (zh) 2005-08-17
JP2009050264A (ja) 2009-03-12
US20060088918A1 (en) 2006-04-27

Similar Documents

Publication Publication Date Title
JP2009050264A (ja) 新規なポリリン酸:ampリン酸転移酵素
CN100491524C (zh) 生产葡糖胺的方法和原料
JP3180349B2 (ja) ヌクレオシド−5’−燐酸エステルの製造法
CA2595873C (en) Dna fragment encoding an enzyme having polyphosphate-driven adp phosphorylation activity
KR101123062B1 (ko) 우리딘 5&#39;-디인산-n-아세틸갈락토사민의 제조법
WO2008088156A1 (en) Microorganism producing inosine and method of producing inosine using the same
JP6439220B2 (ja) 補酵素の製造方法及び補酵素製造用形質転換体セット
CN106062188A (zh) 具有提高的转化活性的l‑阿拉伯糖异构酶变异体及利用该变异体生产d‑塔格糖的方法
EP0458971B1 (en) Inosine guanosine kinase
JP2001245676A (ja) 変異型酸性フォスファターゼ
US5874272A (en) Inosine-guanosine kinase
JP3833584B2 (ja) Cmp−n−アセチルノイラミン酸の製造法
CA2392463C (en) Novel use of uridine diphosphate glucose 4-epimerase
WO1998048031A1 (fr) Procede de production d&#39;adenosine 5&#39;-triphosphate et utilisation de ladite substance
JPH05219978A (ja) 核酸関連物質の酵素的製造法及びそれに使用する酵素調製物
JP2001169797A (ja) S―アデノシル−l−メチオニンの酵素的製造法
JP2002085087A (ja) シチジン5’−トリリン酸の製造法及びその応用
JP2003250567A (ja) Atp依存性酵素をポリリン酸依存性酵素に変換する変換方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004508295

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047018915

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006088918

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10514726

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2499885

Country of ref document: CA

Ref document number: 2003733106

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038123606

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047018915

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003733106

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10514726

Country of ref document: US