WO2003094273A1 - Systeme de generation electrique a pile a combustible et procede de fonctionnement de ce systeme - Google Patents

Systeme de generation electrique a pile a combustible et procede de fonctionnement de ce systeme Download PDF

Info

Publication number
WO2003094273A1
WO2003094273A1 PCT/JP2003/005353 JP0305353W WO03094273A1 WO 2003094273 A1 WO2003094273 A1 WO 2003094273A1 JP 0305353 W JP0305353 W JP 0305353W WO 03094273 A1 WO03094273 A1 WO 03094273A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
fuel cell
fuel
gas
cell power
Prior art date
Application number
PCT/JP2003/005353
Other languages
English (en)
French (fr)
Inventor
Setsuo Omoto
Naohiko Ishibashi
Keiji Fujikawa
Hirohisa Yoshida
Masami Kondo
Shigeru Nojima
Toshinobu Yasutake
Satoru Watanabe
Masanao Yonemura
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to JP2004502393A priority Critical patent/JP4444098B2/ja
Priority to CA002479660A priority patent/CA2479660C/en
Priority to EP03719202A priority patent/EP1513207B1/en
Priority to US10/509,741 priority patent/US7387650B2/en
Publication of WO2003094273A1 publication Critical patent/WO2003094273A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • C01B13/0262Physical processing only by adsorption on solids characterised by the adsorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0208Other waste gases from fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell power generation system and an operation method thereof, and more particularly, to a method for reliably removing residual substances such as flammable gas and moisture, oxygen and the like without remaining in a fuel reformer.
  • the present invention relates to a technology that can be performed at low cost and compactly. Background art
  • the fuel cell power generation system is mainly composed of a fuel reformer and a fuel cell main unit, and is attracting attention as a distributed power source for homes and the like.
  • the fuel reformer converts fuel gas, such as city gas, into hydrogen-rich reformed gas and supplies it to the fuel cell body.
  • the fuel cell body is configured to generate power by electrochemically reacting the reformed gas with air.
  • flammable gas such as hydrogen and methane and moisture remain in various places such as the fuel reformer, etc.
  • the flammable gas may leak to the outside, or moisture may condense on the catalyst, causing the catalyst to deteriorate.
  • Japanese Patent Application Laid-Open No. 2001-180908 and the like propose that a noble metal-based catalyst with small oxygen degradation is applied to the fuel reformer, but the noble metal-based catalyst is Because the catalyst efficiency is lower than the above Cu / Zn based catalyst (volume ratio Approximately 1/5/5 to 1Z10), which increases the size of the fuel reformer and makes it difficult to uniformly heat the whole.
  • a fuel gas or a reformed gas is caused to undergo a combustion reaction to produce an inert gas containing nitrogen and carbon dioxide as main components and stored in a tank.
  • a second fuel cell main body separate from the fuel cell main body for power generation is newly provided, and the reformed gas and air or the fuel cell main body for power generation are provided.
  • the discharged air is electrochemically reacted with the second fuel cell main body, and the low oxygen concentration, nitrogen-rich exhaust air discharged from the second fuel cell main body is converted into an inert gas. It has been proposed to remove residual substances such as flammable gas and moisture from the fuel reformer by filling the fuel reformer with inert gas when the operation is stopped.
  • the reformed gas and the air or the air discharged from the fuel cell body for power generation are electrically transferred by the second fuel cell body.
  • the air discharged by the chemical reaction is used as an inert gas
  • the oxygen is not consumed in the second fuel cell body but remains in the inert gas.
  • the present invention provides a low-cost, simple, and compact method for reliably removing residual substances such as combustible gas and moisture and oxygen without remaining in the fuel reformer of the fuel cell power generation system.
  • the aim is to provide technology that can be used.
  • a fuel cell power generation system including a fuel reforming device and a fuel cell body, wherein the fuel reforming device includes: Raw gas for sending at least one type of raw gas from the burner exhaust gas discharged from the fuel burner, the exhaust air discharged from the power source of the fuel cell body, and air from outside the system to the fuel reformer.
  • An inert gas generating means including an oxygen-reducible oxygen adsorbent for absorbing oxygen in the raw gas and removing oxygen from the raw gas to generate an inert gas; It is characterized by having.
  • the fuel cell power generation system according to the second invention is characterized in that the fuel cell power generation system according to the first invention is provided with adsorbent reducing means for reducing the oxygen adsorbent that has adsorbed oxygen.
  • the oxygen adsorbent may be a raw material supply means, a reforming catalyst layer provided in the fuel reformer, and a CO. Between the shift catalyst layer, the upstream side of the reforming catalyst layer in the fuel reformer, and at least one of the reforming catalyst layers provided in the fuel reformer. It is characterized by being.
  • a fuel cell power generation system is the fuel cell power generation system according to any one of the first to third inventions, wherein the oxygen absorbent is chromium (Cr), manganese (Mn), iron (Fe), cobalt (Cr). (Co), nickel (Ni), copper (Cu), and zinc (Zn).
  • the oxygen absorbent is chromium (Cr), manganese (Mn), iron (Fe), cobalt (Cr). (Co), nickel (Ni), copper (Cu), and zinc (Zn).
  • a fuel cell power generation system including a fuel reformer and a fuel cell main body, wherein a fuel Raw gas feeding means for feeding at least one type of raw gas out of the discharged burner exhaust gas, the exhaust air discharged from the power source of the fuel cell body, and the air from outside the system into the fuel reformer. And an inert gas generating means including an oxygen absorbing liquid for absorbing oxygen in the raw gas and removing oxygen from the raw gas to generate an inert gas.
  • Sixth fuel cell power generation system is characterized in that, in the fifth invention, the oxygen intake Osamueki, characterized in that a N a 2 S_ ⁇ 3 solution.
  • a fuel cell power generation system is a fuel cell power generation system including a fuel reformer and a fuel cell main body, wherein the anode gas discharged from the anode of the fuel cell main body is modified by the fuel reformer.
  • Carbon dioxide recovery means comprising an aqueous amine solution which is supplied with at least one kind of raw gas among the purified reformed gas and absorbs carbon dioxide in the raw gas; and the amine of the carbon dioxide recovery means
  • An inert gas generating means comprising: a carbon dioxide supply means for releasing carbon dioxide from the aqueous amine solution by heating the aqueous solution and supplying the carbon dioxide to the fuel reforming apparatus.
  • the fuel cell power generation system is the fuel cell power generation system according to the seventh aspect, wherein the raw gas from which the carbon dioxide is recovered by the carbon dioxide recovery means is supplied to the burner of the fuel reformer. It is characterized by having gas recycling means.
  • a fuel cell power generation system is the fuel cell power generation system according to the seventh or eighth aspect, wherein the water recovery means recovers water from the carbon dioxide fed into the fuel reformer. Water recycling means for returning the recovered water to the amine aqueous solution of the carbon dioxide recovery means.
  • the operation method of the fuel cell power generation system according to the tenth invention is the operation method of the fuel cell power generation system according to any one of the first to fourth inventions, wherein the inert gas is used when the power generation operation is stopped. An inert gas is generated by the generation means, and the inert gas is used to remove residual substances remaining in the fuel reformer, and the inert gas is purged.
  • the operation method of the fuel cell power generation system according to the eleventh aspect of the present invention is the fuel cell power generation system according to the tenth aspect, wherein the reformed gas reformed by the fuel reformer or the anode exhaust gas discharged from the anode of the fuel cell body is used. Thus, the oxygen adsorbent of the inert gas generating means is reduced and regenerated.
  • a method of operating a fuel cell power generation system according to a twelfth invention is characterized in that, in the first invention, the regeneration process is performed during a power generation operation.
  • a method for operating a fuel cell power generation system is the method for operating a fuel cell power generation system according to the fifth or sixth aspect, wherein the inert gas generating means is configured to be inactive when the power generation operation is stopped.
  • the method is characterized in that a gas is generated, a residual substance remaining in the fuel reformer is removed with the inert gas, and the inert gas is purged.
  • a method for operating a fuel cell power generation system is the method for operating a fuel cell power generation system according to any one of the seventh to ninth aspects, wherein the inert gas generating means includes: The carbon dioxide in the raw gas is recovered by carbon dioxide recovery means, and when the power generation operation is stopped, the carbon dioxide supply means of the inert gas generation means is operated to remove inert gas from the aqueous amine solution. It is characterized by removing the residual substances remaining in the fuel reformer and purging with inert gas.
  • the operation method of a fuel cell power generation system according to a fifteenth invention is directed to the fuel cell power generation system according to the fifteenth invention, wherein, during the power generation operation, the raw gas from which the carbon dioxide is recovered by the carbon dioxide recovery means is transferred to the fuel reformer.
  • the operation method of a fuel cell power generation system according to a sixteenth aspect of the present invention is the fuel cell power generation system according to the fourteenth or fifteenth aspect, wherein the power is supplied into the fuel reforming device by the carbon dioxide supply means when the power generation operation is stopped. Water is recovered from the carbon dioxide, and the water is returned to the aqueous amine solution of the carbon dioxide recovery means.
  • the operation method of a fuel cell power generation system according to a seventeenth aspect of the present invention is the fuel cell power generation system according to any one of the tenth to sixteenth aspects, wherein the fuel reforming device is purged with the inert gas. It is characterized by removing residual substances in the apparatus with steam.
  • An operation method of a fuel cell power generation system according to an eighteenth aspect of the present invention is the fuel cell power generation system according to the seventeenth aspect, wherein after removing a residue in the fuel reformer with steam, only air is supplied to the parner of the fuel reformer. And then the fuel reformer is cooled to purge the interior of the fuel reformer with an inert gas.
  • the operation method of the fuel cell power generation system according to the nineteenth aspect of the present invention is the method according to the seventeenth or eighteenth aspect, wherein the steam for removing the residue in the fuel reformer reduces the oxidation in the fuel reformer. It is specially provided that the fuel gas contains a sufficient amount of fuel gas to prevent it.
  • a method of operating a fuel cell power generation system is the method according to any one of the tenth to nineteenth inventions, wherein at the start of the power generation operation, only the burner of the fuel reformer is operated.
  • the temperature of the fuel reformer is increased by heating, and while the temperature of the fuel reformer is being increased, water vapor containing a sufficient amount of fuel gas necessary to prevent oxidation in the fuel reformer is removed.
  • the fuel gas is supplied to the fuel reforming apparatus, and after completion of the temperature rise of the fuel reforming apparatus, the fuel gas is supplied in a required amount according to the operation of the fuel cell main body, and the power generation operation is started.
  • FIG. 1 is a schematic configuration diagram of a first embodiment of a fuel cell power generation system according to the present invention.
  • FIG. 2 is a diagram showing an example of a test device for oxygen adsorption and reduction.
  • FIG. 3 is a diagram showing a change in oxygen concentration in an oxygen adsorbent outlet gas during an oxygen adsorption test.
  • FIG. 4 is a schematic configuration diagram of a second embodiment of the fuel cell power generation system according to the present invention.
  • FIG. 5 is a schematic configuration diagram of a third embodiment of the fuel cell power generation system according to the present invention.
  • FIG. 6 is a schematic configuration of a fuel cell power generation system according to a fourth embodiment of the present invention.
  • FIG. 7 is a schematic configuration diagram of a fifth embodiment of the fuel cell power generation system according to the present invention.
  • FIG. 8 is a schematic configuration diagram of a main part of another example of the fifth embodiment of the fuel cell power generation system according to the present invention.
  • FIG. 9 is a schematic configuration diagram of a main part of still another example of the fifth embodiment of the fuel cell power generation system according to the present invention.
  • FIG. 10 is a schematic configuration diagram of a sixth embodiment of the fuel cell power generation system according to the present invention.
  • FIG. 1 is a schematic configuration diagram of a fuel cell power generation system.
  • the fuel cell power generation system according to the present embodiment is a fuel cell power generation system including a fuel reforming device 60 and a fuel cell main body 4, which heats the fuel reforming device 60.
  • Valves 30a, 32, line 3Ob which are the raw gas supply means for supplying the burner exhaust gas 25 (raw gas) discharged from the burner 10 to the fuel reformer 60, 31; a condenser 34; a pump 35; and the like, which are disposed in the pipes 30b and 31 to adsorb oxygen in the burner exhaust gas 25 and remove oxygen from the burner exhaust gas 25.
  • An inert gas generating device 5A which is an inert gas generating means including an oxidation-reducible oxygen adsorbent 28 for generating an inert gas 40, is provided.
  • the fuel cell power generation system includes a heater 33 as adsorbent reducing means for reducing the oxygen adsorbent 28 that has adsorbed oxygen.
  • the fuel reformer 60 includes a fuel reformer 1, a CO shift catalyst 2, and a PROX catalyst 3.
  • the reforming of the fuel gas 6 is mainly performed by mixing the fuel gas 6 and steam in the fuel reformer 1 and circulating the mixture through the reforming catalyst layer 7, generally at a temperature of 500 to 700 ° C. (CH 4 + H 20 ⁇ CO + 3H 2 ⁇ ).
  • the reforming catalyst we are permitted to use Ru / A 1 2 ⁇ 3 or the like.
  • the fuel gas 6 is supplied to the fuel reformer 1 via the main valve 8 and the sub valve 9. Since the steam reforming reaction is an endothermic reaction, the fuel reformer 1 is provided with a parner 10 as a heat source. Water 11 is supplied to the fuel reformer 1 via a valve 12. The water 12 is turned into steam by an evaporator (not shown) using the heat of the parner 10. A part of the fuel gas 6 is supplied to the parner 10 via a valve 13, and air 14 is supplied via a pump 15.
  • the CO shift catalytic converter 2 generates hydrogen from water vapor and carbon monoxide by a CO shift (also called CO shift) reaction (CO + H 20 ⁇ CO 2 + H 2 ) using a CO shift catalyst layer. It is used to improve the reforming efficiency by utilizing the CO generated by the steam reforming reaction in the fuel reformer 1. '
  • HTS high-temperature shift catalyst
  • LTS low-temperature shift catalyst
  • the HTS catalyst can be used F e 2 0 3 ⁇ C r 2 0 3 or the like.
  • LTS catalyst CuO ⁇ Z ⁇ or the like can be used.
  • PROX catalyst unit 3 by selective oxidation using a PROX catalyst layer (PReferable OXidiza tion) reaction (CO + 1Z20 2 ⁇ C0 2 ), is intended to change the carbon monoxide is poisonous substances carbon dioxide (carbonic acid gas) It is used to minimize the concentration of carbon monoxide in the reformed gas 16.
  • the PROX catalyst may be used Ru // A l 2 ⁇ 3.
  • the PROX reaction is performed at about 100 to 150 ° C.
  • the reformed gas 16 reformed from the fuel gas 6 passing through the fuel reformer 1, the CO shift catalyst 2 and the PROX catalyst 3 in sequence passes through the valve 17 to the anode 18 of the fuel cell body 4 Supplied to Air 20 is supplied to the power source 19 of the fuel cell body 4 through the pump 21.
  • the anode exhaust gas (reformed gas after use) 22 discharged from the fuel cell main body 4 is returned to the fuel reformer 1 via the anode exhaust gas passage 36 and the valve 38, and is, for example, a burner 1 Used as fuel for zero.
  • Unused reformed gas 23 that has been reformed in the fuel reforming unit 60 but becomes surplus due to the power generation load also needs to be connected to the valve 24, the anode exhaust gas passage 36, and the valve 38.
  • the fuel is returned to the fuel reformer 1 via the fuel reformer 1 and is used, for example, as fuel for the burner 10.
  • the burner exhaust gas 25 exhausted from the fuel reformer 1 and the cathode exhaust air 26 exhausted from the fuel cell body 4 are exhausted to a system exhaust gas passage 27.
  • the inert gas generator 5A is mainly composed of an oxygen adsorbent 28 that can repeat oxidation and reduction.
  • the oxygen adsorbent 28 in the present embodiment is provided outside a fuel reforming apparatus 60 including a fuel reformer 1, a CO conversion catalyst 2, and a PROX catalyst 3.
  • the oxygen adsorbent 28 is filled in an appropriate container.
  • a part or all of the burner exhaust gas 25 is supplied to the container inlet of the oxygen adsorbent 28 from the burner exhaust gas passage 29 via a valve 30a and a pipe 30b.
  • the container outlet of the oxygen adsorbent 28 is connected to the fuel reformer 1 via a pipe 31 and a valve 32.
  • the oxygen adsorbent 28 is provided with a heater 33 using electricity or the like.
  • a condenser 34 and a pump 35 are sequentially connected to a pipeline 30b between the valve 30a and the vessel inlet of the oxygen adsorbent 28. Further, on the upstream side of the condenser 34 in the pipe 30 b, the used reformed gas 22 or the unused reformed gas 23 is used from the anode exhaust gas path 36 downstream of the valve 38.
  • the supply enabling valve 37a and line 37b are connected.
  • the anode exhaust gas passage 36 includes a valve 39 a for discharging the used reformed gas 22 and the unused reformed gas 23 from the upstream side of the valve 38 to the system exhaust gas passage 27 and a pipe. Road 39b is connected.
  • Any oxygen-reducing agent can be used as the oxygen adsorbent 28.
  • Cr chromium
  • Mn manganesese
  • Fe iron
  • Co cobalt
  • Ni Ni
  • Cu copper
  • Zn zinc
  • a combination of two or more of these Cr, Mn, Fe, Co, Ni, Cu, and Zn for example, a Cu / Zn mixture
  • a Cu / Zn mixture for example, a Cu / Zn mixture
  • the shape of the oxygen adsorbent 28 is not particularly limited, but is preferably, for example, a pellet shape to a honeycomb shape.
  • oxygen adsorbent 28 oxygen is adsorbed and removed from the burner exhaust gas 25 by an oxidation reaction of Cu + l / 20 2 ⁇ CuO.
  • This oxygen removal treatment is performed at 100 ° C. or more, preferably 150 ° C. to 700 ° C., more preferably 200 ° C. to 400 ° C.
  • oxygen adsorbent 28 By setting the oxygen adsorbent 28 to 100 ° C. or higher, oxygen can be easily removed from the Pana exhaust gas 25.
  • the fuel reformer 1 is heated without heating to raise the temperature. That is, the valve 13 is opened, the pump 15 is operated, and only the parner 10 of the fuel reformer 1 is operated. Main valve 8, sub valve 9, valve 12, valve 30a and valve 32 are closed, and condenser 34 and pump 35 are stopped. At this time, valve 17, valve 24, valve 37a, valve 38, valve 39a The opening / closing and the operation of the pump 21 are not particularly limited, but here, the valves 17, 24, 37 a, 38, and 39 a are closed and the pump 21 is also stopped.
  • valve 12 is opened to flow steam into the fuel reformer 1, thereby promoting the temperature rise of the fuel reformer 1.
  • the sub-valve 9 is opened, and a small amount of fuel gas is necessary and sufficient to prevent the oxidation inside the fuel reformer 1. 6 is mixed with steam.
  • the valve 17 and the valve 39a are opened, and steam is discharged from the anode exhaust gas passage 36 to the system exhaust gas passage 27.
  • the main valve 8 is opened and the steady operation is performed. In other words, the required amount of fuel gas 6 according to the power generation operation of the fuel cell body 4 is supplied to the fuel reformer 1.
  • the pump 21 is operated, the valve 38 is opened, and the valve 39a is closed.
  • the valve 24 is opened as necessary when excess reformed gas 23 is generated.
  • the sub-valve 9 may be left open or closed.
  • the inert gas 40 flows through the fuel reformer 1, the CO shift catalyst 2, the PROX catalyst 3, and the fuel cell body 4, and flows from the anode 18 through the valve 39 a to the system exhaust gas path 27. It is discharged to As a result, residual substances such as water remaining in the fuel reformer 1, the CO conversion catalyst 2, the PROX catalyst 3, and the fuel cell main body 4 are completely removed.
  • the condenser 34 When the inert gas 40 is generated, the condenser 34 is operated, and the burner exhaust gas 25 is cooled by passing through the condenser 34 to remove moisture in the burner exhaust gas 25. As a result, a dry inert gas 40 is obtained. Also, the pump .35 was operated to increase the flow rate of the inert gas 40. When the fuel cell main body 4 is stored in a humidified state, the inert gas 40 may be bypassed without flowing through the fuel cell main body 4.
  • the oxygen adsorbent 28 that has adsorbed oxygen gradually saturates the oxygen adsorbing function. For this reason, the oxygen adsorbent 28 is reduced and regenerated in a hydrogen gas atmosphere before the next purge with the inert gas 40 in the system.
  • the valve 37a is opened, and the used reformed gas 22 or the unused reformed gas 23 is supplied to the valve 37a and the valve 37a.
  • the oxygen adsorbent 28 is reduced by feeding the oxygen adsorbent 28 via the pipe 37b.
  • the heater 33 is operated (100 ° C or higher) to raise the temperature of the oxygen adsorbent 28 (about 200 ° C in the case of Cu) to increase the reduction efficiency.
  • the heater 33 is stopped.
  • the condenser 34 is operated to remove the water in the reformed gases 22 and 23 to increase the reduction efficiency.
  • the pump 35 is operated to increase the air volume of the reformed gases 22 and 23.
  • the reformed gases 22, 23 used after the regeneration of the oxygen adsorbent 28 may be returned to the reforming catalyst layer 7 by opening the valve 32, but may also be supplied to the parner 10 by an appropriate route. .
  • the parner 10 is generally adjusted so that the burner offgas 25 contains about 2% oxygen.
  • the internal volume of the system is several liters, and a case in which the system is purged with an inert gas 40 several times as large, for example, 10 liters.
  • the system is purged with an inert gas 40 several times as large, for example, 10 liters.
  • Oxygen adsorption is required. Therefore, when Cu is used as the oxygen adsorbent 28, about 1.3 g of Cu is required.
  • the oxygen adsorbent 28 is a CuZZn mixture
  • the container is filled with 20 cc of the Cu / Zn mixture, and the gas A during oxygen adsorption and the gas B during reduction are separated. introduced by switching the oxygen adsorbent 28, so that to measure the oxygen concentration is attached to the outlet to 0 2 meter oxygen adsorbent 28 (oxygen concentration sensor).
  • an oxygen adsorption test was performed at an adsorption temperature of 100 ° C, 200 ° C, and 300 ° C using the test device shown in Fig. 2, and gas A was adsorbed at the inlet of oxygen adsorbent 28 during oxygen adsorption.
  • composition simulating the burner exhaust gas 25 ( ⁇ 2: 2%, C0 2: 10%, H 2 0: 3 0/0, The remaining was N 2 ).
  • the effect of the adsorption temperature on the residence time of the gas in the oxygen adsorbent 28 was confirmed mainly under the condition of an SV value of 5,000 (1 / h).
  • FIG. 3 shows the change in the oxygen concentration in the gas at the outlet of the oxygen adsorbent 28 during the oxygen adsorption test.
  • the vertical axis is the oxygen concentration (%)
  • the horizontal axis is the time (min)
  • the gas flow rate is fixed at 600 liters
  • the SV value is fixed at 5000 (1 / h)
  • the adsorption temperature is 100 ° C. , 200 ° C, 300 ° C.
  • the oxygen adsorbent 28 can be regenerated by reducing the oxygen adsorbent 28 that has adsorbed oxygen, it is possible to reduce running costs and facilitate maintenance and inspection.
  • the oxygen adsorbent 28 is heated using the heater 33.
  • the oxygen adsorbent 28 is placed adjacent to the fuel reformer 60 (for example, on the ⁇ side of the heat insulating material). By doing so, it is also possible to use the heat of the fuel reformer 60 to maintain the oxygen adsorbent 28 at an appropriate temperature.
  • FIG. 4 is a schematic configuration diagram of a fuel cell power generation system.
  • the same parts as those in the first embodiment described above are denoted by the same reference numerals as those used in the description of the first embodiment, and the description thereof will not be repeated.
  • the fuel cell power generation system is a fuel cell power generation system including a fuel reforming device 60 and a fuel cell main body 4, which heats the fuel reforming device 60.
  • Valves 30a, 32, line 3Ob which are the raw gas supply means for supplying the burner exhaust gas 25 (raw gas) discharged from the burner 10 to the fuel reformer 60, 31, a condenser 34, a pump 35, etc., and disposed in the pipes 30 b, 31 to absorb oxygen in the burner exhaust gas 25 and remove oxygen from the burner exhaust gas 25.
  • An inert gas generating device 5B which is an inert gas generating means including an oxygen absorbing liquid 41 for generating an inert gas 40, is provided.
  • the inert gas generator 5B is mainly composed of the oxygen absorbing liquid 41.
  • the oxygen absorbing liquid 41 is filled in a tank (vessel) 42.
  • a tank vehicle 42.
  • part or all of the burner exhaust gas 25 is supplied from the burner exhaust gas passage 29 via a valve 30a and a pipe 3-h.
  • the outlet of the tank 42 is connected to the fuel reformer 1 via a pipe 31 and a valve 32.
  • the oxygen-absorbing liquid 4 1 is either possible use as long as the liquid having an oxygen absorbing function, for example, sodium sulfite solution (N a 2 S 0 3) and the like.
  • sodium sulfite solution Na 2 S 0 3
  • oxygen is absorbed and removed from the burner exhaust gas 25 by an oxidation reaction of Na 2 S 3 + l / 2 ⁇ 2 ⁇ Na 2 S 4 .
  • the fuel cell power generation system according to the present embodiment uses the oxygen absorbing liquid 41 instead of the oxygen adsorbent 28 in the fuel cell power generation system according to the first embodiment (FIG. 1).
  • the inert gas generator 5B described above is applied, and the heater 33, the valve 37a, and the pipeline 37b are omitted.
  • the operation is performed in the same manner as in the case of the first embodiment.
  • the inert gas 40 flows through the fuel reformer 1, the CO conversion catalyst 2, the PROX catalyst 3, and the fuel cell body 4, and flows from the anode 18 through the valve 39 a to the system exhaust gas path 27. It is discharged to As a result, residual substances such as water remaining in the fuel reformer 1, the CO conversion catalyst 2, the PROX catalyst 3, and the fuel cell main body 4 are completely removed.
  • the condenser 34 When the inert gas 40 is generated, the condenser 34 is operated, and the burner exhaust gas 25 is passed through the condenser 34 to be cooled to remove water. As a result, a dry inert gas 40 is obtained. Also, the pump 35 is operated to increase the flow rate of the inert gas 40.
  • the oxygen absorbing liquid 41 that has absorbed oxygen gradually saturates its oxygen absorbing ability. Therefore, when the oxygen absorption capacity of the oxygen absorbing solution 41 approaches saturation, the oxygen absorbing solution 41 should be replaced with a new oxygen absorbing solution 41 by the next purge. Replace at regular intervals, for example, about once a year or every few years.
  • the required amount of sulfite Natoriumu a year (1 26 gZ mol) is twice the oxygen, 7.3 mol ( About 920 g). Then, when a 20 wt% aqueous solution is used, about 4.6 liters of the oxygen absorbing liquid 41 is required. Further, the tank 42 of the oxygen absorbing liquid 41 needs a capacity of about 6 to 10 liters.
  • FIG. 5 is a schematic configuration diagram of a fuel cell power generation system.
  • the same parts as those in the first embodiment described above are denoted by the same reference numerals as those used in the description of the first embodiment, and the description thereof will not be repeated.
  • the fuel is discharged from the anode 18 of the fuel cell main body 4.
  • Valves 37a and 37c, pipe 37b, and pumps which are provided with an aqueous ammonia solution 43 that is supplied with the discharged anode exhaust gas 22 and absorbs the carbon dioxide in the anode exhaust gas 22. 35, a tank 42, etc., and a carbon dioxide recovery means for heating the aqueous ammonia solution 43 of the carbon dioxide recovery means to release carbon dioxide from the aqueous ammonia solution 43 and to feed the fuel into the fuel reformer 60.
  • An inert gas generating device 5C which is an inert 14 gas generating means provided with valves 44 and 32, a conduit 31, a heater 33, and the like.
  • the fuel cell power generation system according to the present embodiment is a raw gas recycling means for supplying the anode exhaust gas 22 from which carbon dioxide has been recovered by the carbon dioxide recovery means to the burner 10 of the fuel reformer 60.
  • the fuel cell power generation system includes a condenser 34 which is a water recovery means for recovering water from carbon dioxide fed into the fuel reformer 60; There is provided a pipeline 46 and the like as a water recycling means for returning the recovered water to the aqueous amine solution 43.
  • the inert gas generator 5 C mainly includes an amine aqueous solution 43 and a heater 33.
  • the aqueous amine solution 43 is filled in the tank 42.
  • a part of the anode exhaust gas 22 is supplied from between the valve 38 and the valve 39a of the anode exhaust gas passage 36 via a valve 37a, a pipe 37b, a valve 37c, and a pump 35. Is done.
  • the heater 33 is operated by an AC power supply.
  • the gas phase portion (liquid space) in the tank 42 is connected to the fuel reformer 1 via a pipe 31 and a valve 32.
  • a pressure regulating valve 44 and a condenser 34 are sequentially connected to the line 31.
  • the gas phase portion of the tank 42 is connected to the anode exhaust gas passage 36 downstream of the valve 38 via a valve 45a and a line 45b.
  • the fuel cell power generation system according to the present embodiment is the same as the fuel cell power generation system according to the first embodiment described above (FIG. 1), except that the oxygen adsorbent 28 is replaced by the aqueous ammonia solution 43 instead of the oxygen adsorbent 28.
  • Apply the gas generator 5C install the condenser 34 downstream of the inert gas generator 5C, and add a new valve 37c, pressure regulating valve 44, valve 45a and pipeline 45b. While adding, valve 30a and line 30 Is omitted.
  • the operation is performed in the same manner as in the case of the first embodiment.
  • valve 37a and the valve 37c open the valve 37a and the valve 37c, operate the pump 35, and ventilate part or all of the anode exhaust gas 22 into the aqueous amine solution 43, and perform the carbon dioxide gas absorption reaction to perform the aqueous amine solution.
  • 4 3 Absorb carbon dioxide (carbon dioxide).
  • the valve 45 a is opened, and the anode exhaust gas 22 from which carbon dioxide is recovered, that is, gas not absorbed by the aqueous ammonia solution 43 (nitrogen, hydrogen, CH 4, unabsorbed carbon dioxide, etc.) Is supplied to the anode 10 through the conduit 45 b to the anode exhaust gas passage 36, and is used for combustion of the burner 10.
  • the anode exhaust gas 22 contains about 50% of carbon dioxide, it is suitable as a supply source for absorbing the carbon dioxide into the aqueous amine solution 43, but it is a surplus unused modified gas. Since the reforming gas 23 also contains carbon dioxide, it is possible to absorb the carbon dioxide by passing the reformed gas 23 into the aqueous amine solution 43. On the other hand, when stopping the operation of the fuel cell power generation system according to the present embodiment, the following operation is performed.
  • the heater 33 is operated to heat the amine water solution 43 absorbing carbon dioxide.
  • the temperature of the aqueous amine solution 43 rises to 120 ° C. and the vapor pressure in the tank 42 becomes 0.8 kg / cm 2 , a carbon dioxide gas emission reaction occurs. As a result, Carbon dioxide is generated from the aqueous amine solution 43, and an inert gas 40 is generated.
  • the valve 32 is opened, and the carbon dioxide gas released by heating is passed through the reforming catalyst layer 7 of the fuel reformer 1 to perform purging.
  • the inert gas (carbon dioxide) 40 flows through the fuel reformer 1, the CO shift catalyst 2, the PROX catalyst 3, and the anode 18 of the fuel cell main body 4, and is discharged to the system exhaust gas path 27 via the valve 39a. Is done. As a result, residual substances such as water remaining in the fuel reformer 1, the CO shift catalyst 2, the PROX catalyst 3, and the fuel cell body 4 are completely removed.
  • the condenser 34 is operated to cool the released carbon dioxide gas and separate the water.
  • the separated water is returned to the container 43 via the line 46, and the water is reused. By collecting the water, a dry carbon dioxide gas is obtained.
  • the required amount of amine is described.
  • the amount of carbon dioxide required per purge is 1 mole (22.4 liters).
  • the amount of amine required to absorb one mole of carbon dioxide gas each time is 2 moles (122 g) when the amine species is MEA (molecular weight 61).
  • MEA molecular weight 61
  • a 50 wt% aqueous solution about 250 milliliters of an aqueous amine solution is required.
  • the capacity of the container 42 including the gas phase is 600 milliliters, the container 42 has a diameter of 50 mm, a height of 30 Omm, and a liquid level of about 130 mm.
  • the absorption and emission of carbon dioxide by the aqueous amine solution 43 have semi-permanent durability, so that running costs can be reduced and maintenance and inspection can be facilitated.
  • the same effect as in the present embodiment can be obtained by using, for example, surplus unused reformed gas 23 instead of anode exhaust gas 22.
  • FIG. 6 is a schematic configuration diagram of a fuel cell power generation system.
  • the same parts as those in the first embodiment described above are denoted by the same reference numerals as those used in the description of the first embodiment, and the description thereof will not be repeated.
  • the fuel cell power generation system according to the present embodiment is different from the fuel cell power generation system according to the first embodiment (FIG. 1) in that the installation location of the oxygen adsorbent 28 is changed, and the heater 33 and the valve are changed. 37 a and pipe 37 b are omitted.
  • the oxygen adsorbent 28 capable of repeating acid reduction is a fuel reforming system including the fuel reformer 1, the CO shift catalyst 2, and the PR ⁇ X catalyst 3.
  • the inlet of the container of the oxygen adsorbent 28 is connected to the fuel reformer 1, and the outlet of the container of the oxygen adsorbent 28 is connected to the CO shift catalyst 2.
  • the burner exhaust gas passage 29 is connected to the reforming catalyst layer 7 of the fuel reformer 1 via the valve 30a, the line 30b, the condenser 34, the pump 35, the line 31 and the valve 32. It is connected to the. That is, in the above-described first embodiment (FIG. 1), the oxygen adsorbent 28 is installed outside the fuel reformer 60 (raw gas supply means). The oxygen adsorbent 28 was installed in a part of the reformer 60 (between the reforming catalyst layer 7 and the CO conversion catalyst layer).
  • valve 30a and the valve 32 are closed, and the reformed gas 16 generated in the reforming catalyst layer 7 is added to the oxygen adsorbent 28 from the container inlet. After passing through 28, it is fed to the CO shift catalytic converter 2.
  • the burner exhaust gas 25 containing oxygen flows through the reforming catalyst layer 7.
  • a noble metal catalyst such as Ru, which is an oxidation-resistant catalyst that does not deteriorate due to oxygen, for the reforming catalyst layer 7.
  • the oxygen adsorbent 28 is provided between the reforming catalyst layer 7 that is not deteriorated by oxygen and the CO conversion catalyst layer that is easily deteriorated by oxygen, the CO The inert gas 40 from which oxygen has been removed flows through the medium layer. W does not deteriorate.
  • the oxygen adsorbent 28 is reduced by the flow of the reformed gas 16 from the reforming catalyst layer 7 during the reforming operation.
  • the oxygen adsorption temperature and the oxygen desorption temperature of the oxygen adsorbent 28 are 200 ° C to 300 ° C, CO
  • an electric heater for heating the oxygen adsorbent 28 can be used. It becomes unnecessary.
  • the oxygen adsorbent 28 adsorbs and removes oxygen in the burner exhaust gas 25 that has passed through the reforming catalyst layer 7. That is, the oxygen is removed from the burner exhaust gas 25 by the oxygen adsorbent 28 in front of the CO conversion catalyst layer which is easily degraded by oxygen.
  • the inert gas 40 from which oxygen has been removed flows through the CO shift catalytic converter 2, the PR ⁇ X catalytic converter 3, and the anode 18 of the fuel cell body 4, and passes through the valve 39a. It is discharged to the system exhaust gas channel 27. For this reason, residual substances such as moisture remaining in the C ⁇ conversion catalyst 2, the PROX catalyst 3, and the fuel cell body 4 can be removed cleanly.
  • the oxygen adsorbent 28 which has adsorbed oxygen, In other words, at the next reforming operation, the reformed gas 16 from the fuel reformer 1 is automatically reduced by being added to the oxygen adsorbent 28.
  • heat generated by the oxidation-reduction reaction of the oxygen adsorbent 28 may adversely affect the catalyst in the fuel reformer 60, particularly the LTS catalyst.
  • a heat insulation layer such as vacuum insulation or a heat exchange section between the oxygen adsorbent 28 and the CO conversion catalyst 2! ,.
  • FIG. 7 is a schematic configuration diagram of a fuel cell power generation system.
  • the same parts as those in the first embodiment described above are denoted by the same reference numerals as those used in the description of the first embodiment, and the description thereof will not be repeated.
  • the fuel cell power generation system according to the present embodiment differs from the fuel cell power generation system according to the first embodiment (FIG. 1) in that the installation location of the oxygen adsorbent 28 is changed and the heater 33 is omitted. It was done.
  • the oxygen adsorbent 28 that can be repeatedly oxidized and reduced flows upstream (upstream) of the reforming catalyst layer 7 in the fuel reformer 1 in the fuel reformer 60.
  • Side in other words, installed between the inlet of the fuel gas 6 and the water 11 of the fuel reformer 1 and the reforming catalyst layer 7, and filled in another layer communicating with the reforming catalyst layer 7. I have.
  • This inert gas 40 flows through the reforming catalyst layer 7 in the fuel reformer 1, the CO shift catalyst 2, the PROX catalyst 3, and the anode 18 of the fuel cell body 4, and passes through a valve 39a. It is discharged to the system exhaust gas path 27. Thereby, residual substances such as moisture remaining in the reforming catalyst layer 7, the CO conversion catalyst 2, the PROX catalyst 3, and the fuel cell main body 4 in the fuel reformer 1 are removed cleanly.
  • the condenser 34 When the inert gas 40 is generated, the condenser 34 is operated, and the burner exhaust gas 25 is cooled by passing through the condenser 34 to remove moisture in the burner exhaust gas 25. As a result, a dry inert gas 40 is obtained. When the fuel cell body 4 is stored in a humidified state, the inert gas 40 may be bypassed without flowing through the fuel cell body 4.
  • the oxygen adsorbent 28 that has adsorbed oxygen gradually saturates the oxygen adsorbing function. For this reason, the oxygen adsorbent 28 is reduced and regenerated with a hydrogen gas vent before the next purge with the inert gas 40 in the system.
  • the reformed gas 22 and 23 used for the regeneration of the oxygen adsorbent 28 may be returned to the reforming catalyst layer 7 by opening the valve 32. It is also possible to supply 0.
  • the fuel cell power generation system and the operation method thereof according to the present embodiment it is possible to obtain the same effects as in the case of the above-described first embodiment. Since the oxygen adsorbent 28 can be heated to the reduction temperature by the zero wrench 10, there is no need for an electric heater for reduction and regeneration (see reference numeral 33 in Fig. 1), etc., thus reducing running costs. Further efforts can be made.
  • the water adsorbent 52 for example, silica gel, zeolite, molecular sieve, or the like can be used.
  • the reforming catalyst layer 7 and the oxygen adsorbent 28 are separately provided in the fuel reformer 1.
  • an oxygen adsorbent 28 is provided in the reforming catalyst layer 7, that is, as shown in FIG.
  • FIG. 10 is a schematic configuration diagram of a fuel cell power generation system.
  • the fuel cell power generation system according to the present embodiment is the same as the fuel cell power generation system according to the first embodiment (FIG. 1) except that the connection position of the valve 30a and the pipe 30b is changed. It is.
  • valve 30a and the pipe 30b communicate with the outside without being connected to the burner exhaust gas path 29.
  • the burner exhaust gas 25 is used as the raw material (raw gas) of the inert gas 40.
  • the inert gas 40 is used.
  • the air outside the system was used as the raw material (raw gas) for 40.
  • inert gas 40 After purging with water vapor is completed by operating in the same manner as in the first embodiment described above, residual substances such as moisture remaining in the system due to purging with water vapor are removed by inert gas 40. I do.
  • the operation of the wrench 10 is stopped to start the natural cooling of the system, and the valves 30a and 32 are opened, and the condenser 34 and the pump 35 are operated. Air outside the system is taken into the oxygen adsorbent 28, and the oxygen contained therein is adsorbed and removed by the oxygen adsorbent 28 to generate inert gas 40, which is passed through the pipe 31 and the valve 32. Then, the inert gas 40 flows into the fuel reformer 1. As a result, the fuel reformer 1 is purged with the inert gas 40, and residual substances such as moisture remaining in the fuel reformer 1 are removed cleanly.
  • the fuel cell power generation system according to the present embodiment and the operation method thereof According to this, it is possible to obtain the same effect as that of the first embodiment described above, and further, the following effect can be obtained.
  • the inert gas 40 is generated by using external air.However, for example, the exhaust air 26 discharged from the power source 19 of the fuel cell body 4 is used. It is also possible to generate an inert gas 40 by using the above method.
  • the residual substances are first removed from the system using steam.
  • the inert gas 40 may be purged into the system from the beginning without using steam. There is no problem.
  • connection point between the anode exhaust gas passage 36 and the pipe line 37b in the first and third embodiments described above may be either upstream or downstream of the valve 38.
  • valve 13 is closed and the air is supplied to the parner 10. It is also possible to perform a process of “cooling” the fuel reformer 1 to 500 ° C. or lower by passing the fuel through it.
  • an inert gas 40 is generated using external air outside the system as a raw gas. It is also possible to generate the inert gas 40 using the exhaust air 26 discharged from the power source 19 of the fuel cell body 4.
  • an inert gas by appropriately combining a plurality of the respective inert gas generation methods or means in each of the above-described first to sixth embodiments, and to use the generated inert gas for purging.
  • a desulfurization catalyst provided with a desulfurization catalyst can be provided upstream (upstream) of the reforming catalyst 1.
  • This desulfurization catalyst For example, zeolite or the like can be applied.
  • Such desulfurization catalyzers generally operate at room temperature.
  • a fuel cell power generation system is a fuel cell power generation system including a fuel reformer and a fuel cell main body, wherein the burner exhaust gas discharged from a heating panner of the fuel reformer, Raw gas supply means for supplying at least one type of raw gas from the exhaust air discharged from the power source and air from outside the system into the fuel reformer, and adsorbing oxygen in the raw gas And an inert gas generating means equipped with a redoxable oxygen adsorbent that removes oxygen from the raw gas to generate an inert gas. Since inert gas can be generated, purging with inert gas does not degrade the LTS catalyst for CO conversion.
  • the oxygen adsorbent can be reused many times by reducing it after oxygen adsorption. Furthermore, purging can be performed while generating an inert gas. As a result, it is possible to easily and compactly remove the residual substances such as combustible gas and moisture and oxygen without remaining in the fuel reformer at low cost.
  • the fuel cell power generation system according to the second invention is provided with adsorbent reducing means for reducing the oxygen adsorbent that has adsorbed oxygen in the first invention, so that the oxygen adsorbent can be reused many times. it can.
  • the oxygen adsorbent may be a raw material supply means, a reforming catalyst layer provided in the fuel reformer, and a CO. Between the shift catalyst layer, the upstream side of the reforming catalyst layer in the fuel reformer, and at least one of the reforming catalyst layers provided in the fuel reformer.
  • the installation place of the inert gas generation means becomes free, and if it is installed between the reforming catalyst layer and the CO shift catalyst layer in the fuel reformer,
  • no special means for heating the oxygen adsorbent is required, and if it is installed upstream of the reforming catalyst layer in the fuel reformer, even a catalyst that is deteriorated by oxygen can be used as a reforming catalyst.
  • No special means for heating the oxygen adsorbent is required, If it is mixed in the reforming catalyst layer in the reformer, a special means for heating the oxygen adsorbent becomes unnecessary.
  • a fuel cell power generation system is the fuel cell power generation system according to any one of the first to third inventions, wherein the oxygen absorbent is chromium (Cr), manganese (Mn), iron (Fe), cobalt (Cr). (C o), nickel (N i), copper (Cu;), and zinc (Z n), it is possible to reliably adsorb oxygen.
  • the oxygen absorbent is chromium (Cr), manganese (Mn), iron (Fe), cobalt (Cr). (C o), nickel (N i), copper (Cu;), and zinc (Z n), it is possible to reliably adsorb oxygen.
  • a fuel cell power generation system is the fuel cell power generation system including a fuel reformer and a fuel cell main body, wherein the burner exhaust gas discharged from a heating panner of the fuel reformer, the fuel cell main body Raw gas supply means for supplying at least one type of raw gas of exhaust air discharged from the cathode of the fuel reformer and air from outside the system to the inside of the fuel reformer, and absorbing oxygen in the raw gas And an inert gas generating means provided with an oxygen absorbing liquid for generating an inert gas by removing oxygen from the raw gas, thereby reducing the amount of oxygen (substantially zero) as compared with the prior art.
  • Sixth fuel cell power generation system according to the invention is characterized in that, in the fifth invention, the oxygen intake Osamueki is, since it is N a 2 S 0 3 solution, it is possible to reliably absorb oxygen.
  • a fuel cell power generation system is a fuel cell power generation system including a fuel reformer and a fuel cell main body, wherein an anode exhaust gas discharged from an anode of the fuel cell main body is reformed by the fuel reformer. At least one kind of raw gas of the reformed gas supplied, and an aqueous solution of amine which absorbs carbon dioxide in the raw gas; and an aqueous amine solution of the carbon dioxide collecting means. Heating means for removing carbon dioxide from the aqueous amine solution and supplying the inert gas to the fuel reforming apparatus. Oxygen produces inert gas (carbon dioxide) Wear. The absorption and emission of carbon dioxide by the amine aqueous solution has a semi-permanent durability. Furthermore, purging can be performed while generating an inert gas. As a result, low-cost, simple and compact removal of flammable gas, moisture and other residual substances and oxygen without remaining in the fuel reformer can be performed reliably.
  • the fuel cell power generation system according to an eighth invention is the fuel cell power generation system according to the seventh invention, wherein the raw gas from which carbon dioxide has been recovered by the carbon dioxide recovery means is supplied to the burner of the fuel reformer. Because of the provision of the means, the raw gas can be reused as fuel for the wrench.
  • a fuel cell power generation system is the fuel cell power generation system according to the seventh or eighth aspect, wherein the water recovery means recovers water from the carbon dioxide fed into the fuel reformer. Since there is provided a water recycling means for returning the recovered water to the aqueous amine solution of the carbon dioxide recovery means, there is no need to supply water to the aqueous amine solution from outside.
  • the operation method of the fuel cell power generation system according to the tenth invention is the operation method of the fuel cell power generation system according to any one of the first to fourth inventions, wherein the inert gas generation is performed when the power generation operation is stopped.
  • the oxygen adsorbent can be reused many times by reducing it after adsorbing oxygen. As a result, it is possible to easily and compactly remove the residual substances such as combustible gas and water and oxygen without remaining in the fuel reformer at low cost.
  • the operation method of a fuel cell power system according to an eleventh aspect of the present invention is the method according to the tenth aspect, wherein the reformed gas reformed by the fuel reformer or discharged from an anode of the fuel cell main body. Since the oxygen adsorbent of the inert gas generation means is reduced and regenerated by the anode exhaust gas, no special reducing agent is required.
  • the regeneration processing is performed during the power generation operation in the first aspect, so that the regeneration processing can be performed efficiently.
  • a method for operating a fuel cell power generation system is the method for operating a fuel cell power generation system according to the fifth or sixth aspect, wherein the inert gas generating means is configured to be inactive when the power generation operation is stopped. Since the gas is generated and the inert gas is used to remove residual substances remaining in the fuel reformer and purge the inert gas, the inert gas containing less (substantially zero) oxygen than the conventional gas is obtained. Since it is possible to generate CO2, the LTS catalyst for CO conversion is not degraded by inert gas purging. In addition, purging can be performed while generating an inert gas. As a result, low-cost, simple and compact removal of oxygen and residual substances such as combustible gas and moisture without remaining in the fuel reformer can be achieved.
  • a method for operating a fuel cell power generation system is the method for operating a fuel cell power generation system according to any one of the seventh to ninth aspects, wherein the inert gas generating means includes: The carbon dioxide in the raw gas is recovered by carbon dioxide recovery means, and when the power generation operation is stopped, the carbon dioxide supply means of the inert gas generation means is operated to remove inert gas from the aqueous amine solution. By generating the gas, the residual substances remaining in the fuel reformer are removed and the inert gas is purged, so that an inert gas (carbon dioxide) with zero oxygen can be generated as compared with the conventional case.
  • the absorption and emission of carbon dioxide by the amine aqueous solution has a semi-permanent durability. As a result, low-cost, simple and compact removal of oxygen and residual substances such as combustible gas and moisture without remaining in the fuel reformer can be achieved.
  • the operation method of a fuel cell power generation system according to a fifteenth invention is directed to the fuel cell power generation system according to the fifteenth invention, wherein, during the power generation operation, the raw gas from which the carbon dioxide is recovered by the carbon dioxide recovery means is transferred to the fuel reformer. Since the raw gas is supplied to the above-mentioned parna, the raw gas can be reused as fuel for the parna.
  • the operation method of the fuel cell power generation system according to the sixteenth invention is the same as that of the fifteenth or fifteenth invention.
  • water is recovered from the carbon dioxide fed into the fuel reforming device by the carbon dioxide feeding means, and the water is recovered by the carbon dioxide recovery means. Since it is returned to the aqueous solution of amine, it is not necessary to supply external water to the aqueous solution of amine.
  • the operation method of a fuel cell power generation system is the fuel cell power generation system according to any one of the tenth to sixteenth aspects, wherein the fuel reforming device is purged with the inert gas. Since residual substances in the equipment are removed with water vapor, the amount of inert gas is small, and the amount of oxygen adsorbent, oxygen absorbing solution, and aqueous amine solution is also small.
  • An operation method of a fuel cell power generation system is the fuel cell power generation system according to the seventeenth aspect, wherein after removing a residue in the fuel reformer with steam, only air is supplied to the parner of the fuel reformer.
  • the operation method of the fuel cell power generation system according to the nineteenth aspect of the present invention is the method according to the seventeenth or eighteenth aspect, wherein the steam for removing the residue in the fuel reformer reduces the oxidation in the fuel reformer. Since the fuel gas is mixed with a necessary and sufficient amount of fuel gas to prevent the oxidation, the oxidation in the fuel reformer can be easily prevented at low cost.
  • a method of operating a fuel cell power generation system according to a twenty-second invention is the method according to any one of the tenth to nineteenth inventions, wherein at the start of the power generation operation, only the burner of the fuel reformer is operated.
  • the fuel reformer is heated and heated, and during the heating of the fuel reformer, steam containing a sufficient and sufficient amount of fuel gas to prevent oxidation in the fuel reformer is removed.
  • the fuel gas is supplied to the fuel reformer, and after the temperature of the fuel reformer is completed, the fuel gas is supplied in a required amount according to the operation of the fuel cell main body, and the power generation operation is started.
  • the temperature of the reformer can be raised quickly, and oxidation by steam in the fuel reformer can be easily prevented at low cost.
  • ADVANTAGE OF THE INVENTION it is possible to perform a low-cost and compact fuel cell power generation that can reliably remove residual substances such as combustible gas and moisture, oxygen and the like without remaining inside the fuel reformer. It is possible to provide a system and a method of operating the same, and to achieve extremely useful results in industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Description

明 細 書 燃料電池発電システム及びその運転方法 技術分野
本発明は、 燃料電池発電システム及びその運転方法に関し、 より詳しくは、 可 燃性ガスや水分等の残留物質や酸素等を燃料改質装置の内部に残留させることな く確実に除去することが低コストでコンパクトに行うことができる技術に関する。 背景技術
燃料電池発電システムは、 燃料改質装置及び燃料電池本体から主に構成され、 家庭等の分散電源として注目されている。 燃料改質装置は、 都市ガス等の燃料ガ スを水素リッチな改質ガスに変えて、 燃料電池本体に供給している。 燃料電池本 体は、 上記改質ガスと空気とを電気化学的に反応させて発電するようになってい る。
このような燃料電池発電システムにおいては、 作動を即時に停止してしまうと、 燃料改質装置等の各所に水素ゃメタン等の可燃性ガスや水分等が残留してしまい、 保守点検等の際に可燃性ガスが外部に漏出したり、 水分が触媒に結露して、 触媒 が劣化するおそれがある。
よって、 例えば、 特開 2001— 2771 37号公報等では、 発電停止の際に 燃料改質装置内に空気を送給して充填することにより、 燃料改質装置内から可燃 性ガスや水分等の残留物質を除去することを提案しているが、 空気中の酸素が燃 料改質装置の触媒 (特に、 CO変成反応に用いられる Cu/Zn系の LTS触媒 ) 等を劣化させてしまう可能性がある。
このため、 例えば、 特開 2001— 180908号公報等では、 酸素劣化が小 さい貴金属系の触媒を上記燃料改質装置に適用することを提案しているが、 貴金 属系の上記触媒は、 Cu/Zn系の上記触媒よりも触媒効率が悪いため (体積比 で約 1//5〜1Z10程度) 、 燃料改質装置の大型化を招くと共に、 全体を均一 に加熱することが難しくなってしまう。
そこで、 例えば、 特開 2000— 2771 37号公報等では、 燃料ガス又は改 質ガスと空気とを燃焼反応させて、 窒素及び二酸化炭素が主成分の不活性ガスを 製造してタンクに一且貯蔵しておき、 運転停止時にタンクから不活性ガスを取り 出して燃料改質装置内に充填することにより、 燃料改質装置内から可燃性ガスや 水分等の残留物質を除去することを提案している。
また、 例えば、 特開 2000 _ 2771 38号公報等では、 発電用の燃料電池 本体とは別の第 2の燃料電池本体を新たに備え、 改質ガスと空気又は発電用の燃 料電池本体から排出される空気とを上記第 2の燃料電池本体で電気化学的に反応 させて、 当該第 2の燃料電池本体から排出される低酸素濃度で窒素リツチな排空 気を不活性ガスとし、 当該不活性ガスを運転停止時に燃料改質装置内に充填する ことにより、 燃料改質装置内から可燃性ガスや水分等の残留物質を除去すること を提案している。
しかしながら、 上記特開 2000— 277137号公報等で提案されている上 述したような手段では、 燃料ガス又は改質ガスと空気とを化学量論的に等しく燃 焼反応させなければ、 不活性ガス中に酸素又は可燃性ガスが残存してしまうため、 当該不活性ガスの製造が現実的に困難であると共に、 不活性ガスの貯蔵用のタン クを用意しなければならないため、 システムの大型化及びコストアップを生じて しまい、 家庭等の分散電源として利用する場合に非常に不利となってしまう。 また、 上記特開 2000-277138号公報等で提案されている上述したよ うな手段では、 改質ガスと空気又は発電用の燃料電池本体から排出される空気と を第 2の燃料電池本体で電気化学的に反応させて排出される空気を不活性ガスと して利用すること力ゝら、 上記第 2の燃料電池本体で酸素がすべて消費されずに当 該不活性ガス中に残存してしまい、 完全な不活性ガスを製造することが現実的に 困難であると共に、 不活性ガスの製造用の燃料電池本体を用意しなければならな いため、 システムの大型化及びコストアップを生じてしまい、 家庭等の分散電源 として利用する場合に非常に不利となってしまう。
このようなことから、 本発明は、 可燃性ガスや水分等の残留物質や酸素を燃料 電池発電システムの燃料改質装置内に残留させることなく確実に除去することが 低コストで簡単かつコンパクトに行うことができる技術を提供することを目的と する。 ' 発明の開示
前述した課題を解決するための、 第 1の発明による燃料電池発電システムは、 燃料改質装置と燃料電池本体とを備えた燃料電池発電システムにおいて、 前記燃 料改質装置の; ¾口熱用のパーナから排出されたバーナ排ガス、 前記燃料電池本体の 力ソードから排出される排空気、 系外からの空気のうちの少なくとも一種の原ガ スを前記燃料改質装置内へ送給する原ガス送給手段と、 前記原ガス中の酸素を吸 着して当該原ガスから酸素を除去して不活性ガスを生成させる酸ィヒ還元可能な酸 素吸着剤を具備する不活性ガス生成手段とを備えていることを特徴とする。 第 2の発明による燃料電池発電システムは、 第 1の発明において酸素を吸着し た前記酸素吸着剤を還元する吸着剤還元手段を備えていることを特徵とする。 第 3の発明による燃料電池発電システムは、 第 1又は第 2の発明において、 前 記酸素吸着剤が、 前記原ガス送給手段、 前記燃料改質装置に設けられている改質 触媒層と C O変成触媒層との間、 前記燃料改質装置内の改質触媒層の上流側、 前 記燃料改質装置に設けられている改質触媒層中、 のうちの少なくとも一箇所に配 設されていることを特徴とする。
第 4の発明による燃料電池発電システムは、 第 1から第 3の発明のいずれかに おいて、 前記酸素吸収剤が、 クロム (C r ) 、 マンガン (M n ) 、 鉄 (F e ) 、 コバルト (C o ) 、 ニッケル (N i ) 、 銅 (C u ) 、 亜鉛 (Z n ) のうちの少な くとも一種からなることを特徴とする。
第 5の発明による燃料電池発電システムは、 燃料改質装置と燃料電池本体とを 備えた燃料電池発電システムにおいて、 前記燃料改質装置の加熱用のパーナから 排出されたバーナ排ガス、 前記燃料電池本体の力ソードから排出される排空気、 系外からの空気のうちの少なくとも一種の原ガスを前記燃料改質装置内へ送給す る原ガス送給手段と、 前記原ガス中の酸素を吸収して当該原ガスから酸素を除去 して不活性ガスを生成させる酸素吸収液を具備する不活性ガス生成手段とを備え ていることを特徴とする。
第 6の発明による燃料電池発電システムは、 第 5の発明において、 前記酸素吸 収液が、 N a 2 S〇3溶液であることを特徴とする。
第 7の発明による燃料電池発電システムは、 燃料改質装置と燃料電池本体とを 備えた燃料電池発電システムにおいて、 前記燃料電池本体のアノードから排出さ れるァノード^ガス、 前記燃料改質装置で改質された改質ガスのうちの少なくと も一種の原ガスを送給されて当該原ガス中の二酸化炭素を吸収するァミン水溶液 を具備する二酸化炭素回収手段と、 前記二酸化炭素回収手段の前記アミン水溶液 を加熱することにより当該ァミン水溶液から二酸化炭素を離脱させて前記燃料改 質装置内へ送給する二酸化炭素送給手段とを具備する不活性ガス生成手段を備え ていることを特徴とする。
第 8の発明による燃料電池発電システムは、 第 7の発明において、 前記二酸ィ匕 炭素回収手段で二酸化炭素を回収された前記原ガスを前記燃料改質装置の前記バ ーナに供給する原ガス再利用手段を備えていることを特徴とする。
第 9の発明による燃料電池発電システムは、 第 7又は第 8の発明において、 前 記燃料改質装置内へ送給される前記二酸化炭素から水分を回収する水分回収手段 と、 前記水分回収手段で回収された前記水分を前記二酸化炭素回収手段の前記ァ ミン水溶液に戻す水分再利用手段とを備えていることを特徴とする。
また、 第 1 0の発明による燃料電池発電システムの運転方法は、 第 1から第 4 の発明のいずれかの燃料電池発電システムの運転方法であつて、 発電運転停止の 際に、 前記不活性ガス生成手段で不活性ガスを生成して、 当該不活性ガスで前記 燃料改質装置内に残留する残留物質を除去して不活性ガスパージすることを特徴 とする。 第 1 1の発明による燃料電池発電システムの運転方法は、 第 1 0の発明におい て、 前記燃料改質装置で改質された改質ガス又は前記燃料電池本体のアノードか ら排出されたアノード排ガスにより、 前記不活性ガス生成手段の前記酸素吸着剤 を還元して再生処理することを特徴とする。
第 1 2の発明による燃料電池発電システムの運転方法は、 第 1 1の発明におい て、 発電運転の際に前記再生処理を行うことを特徴とする。
第 1 3の発明による燃料電池発電システムの運転方法は、 第 5又は第 6の発明 の燃料電池発電システムの運転方法であって、 発電運転停止の際に、 前記不活性 ガス生成手段で不活性ガスを生成して、 当該不活性ガスで前記燃料改質装置内に 残留する残留物質を除去して不活性ガスパージすることを特徴とする。
第 1 4の発明による燃料電池発電システムの運転方法は、 第 7から第 9の発明 のいずれかの燃料電池発電システムの運転方法であって、 発電運転中に、 前記不 活性ガス生成手段の前記二酸化炭素回収手段により前記原ガス中の二酸化炭素を 回収し、 発電運転停止の際に、 前記不活性ガス生成手段の前記二酸化炭素送給手 段を作動させて、 前記アミン水溶液から不活性ガスを発生させることにより、 前 記燃料改質装置内に残留する残留物質を除去して不活性ガスパージすることを特 徴とする。
第 1 5の発明による燃料電池発電システムの運転方法は、 第 1 4の発明におい て、 発電運転中に、 前記二酸化炭素回収手段で二酸化炭素を回収された前記原ガ スを前記燃料改質装置の前記パーナに供給することを特徴とする。
第 1 6の発明による燃料電池発電システムの運転方法は、 第 1 4又は第 1 5の 発明において、 発電運転停止の際に、 前記二酸化炭素送給手段により前記燃料改 質装置内へ送給される前記二酸化炭素から水分を回収して、 当該水分を前記二酸 化炭素回収手段の前記ァミン水溶液に戻すことを特徴とする。
第 1 7の発明による燃料電池発電システムの運転方法は、 第 1 0から第 1 6の 発明のいずれかにおいて、 前記不活性ガスで前記燃料改質装置内をパージする前 に、 当該燃料改質装置内の残留物質を水蒸気で除去することを特徴とする。 第 1 8の発明による燃料電池発電システムの運転方法は、 第 1 7の発明におい て、 前記燃料改質装置内の残留物を水蒸気で除去した後に、 当該燃料改質装置の 前記パーナに空気のみを流して当該燃料改質装置を冷却してから、 当該燃料改質 装置内を不活性ガスでパージすることを特徴とする。
第 1 9の発明による燃料電池発電システムの運転方法は、 第 1 7又は第 1 8の 発明において、 前記燃料改質装置内の残留物を除去する水蒸気が、 当該燃料改質 装置内の酸化を防止するのに必要十分な量の燃料ガスを混入されたものであるこ とを特 ί敷とする。
第 2 0の発明による燃料電池発電システムの運転方法は、 第 1 0から第 1 9の 発明のいずれかにおいて、 発電運転の開始に際して、 前記燃料改質装置の前記バ ーナのみを作動させて当該燃料改質装置を加熱昇温させ、 当該燃料改質装置の昇 温途中で、 当該記燃料改質装置内の酸化を防止するのに必要 +分な量の燃料ガス を混入させた水蒸気を当該燃料改質装置に送給し、 当該燃料改質装置の昇温完了 後、 前記燃料電池本体の作動に応じた必要量で当該燃料ガスを供給して、 発電運 転を開始することを特徴とする。 図面の簡単な説明
第 1図は、 本発明による燃料電池発電システムの第 1の実施の形態の概略構成 図である。
第 2図は、 酸素吸着及還元の試験装置の例を示す図である。
第 3図は、 酸素吸着試験時の酸素吸着剤出口ガス中の酸素濃度変化を示す図で ある。
第 4図は、 本発明による燃料電池発電システムの第 2の実施の形態の概略構成 図である。
第 5図は、 本発明による燃料電池発電システムの第 3の実施の形態の概略構成 図である。
第 6図は、 本発明による燃料電池発電システムの第 4の実施の形態の概略構成 図である。
第 7図は、 本発明による燃料電池発電システムの第 5の実施の形態の概略構成 図である。
第 8図は、 本発明による燃料電池発電システムの第 5の実施の形態の他の例の 要部の概略構成図である。
第 9図は、 本発明による燃料電池発電システムの第 5の実施の形態のさらに他 の例の要部の概略構成図である。
第 1 0図は、 本発明による燃料電池発電システムの第 6の実施の形態の概略構 成図である。 発明を実施するための最良の形態
本発明による燃料電池発電システム及びその運転方法の実施の形態を図面を用 いて以下に説明するが、 本発明は、 これらの実施の形態に限定されるものではな レ、。
〈第 1の実施の形態:酸素吸着剤使用〉
本宪明にかかる燃料電池発電システム及びその運転方法の第 1の実施の形態を 第 1図を用いて説明する。 第 1図は、 燃料電池発電システムの概略構成図である。 本実施の形態にかかる燃料電池発電システムは、 第 1図に示すように、 燃料改 質装置 6 0と燃料電池本体 4とを備えた燃料電池発電システムにおいて、 燃料改 質装置 6 0の加熱用のパーナ 1 0から排出されたバーナ排ガス 2 5 (原ガス) を 燃料改質装置 6 0内へ送給する原ガス送給手段である、 弁 3 0 a, 3 2、 管路 3 O b , 3 1、 凝縮器 3 4、 ポンプ 3 5等と、 前記管路 3 0 b, 3 1に配設されて バーナ排ガス 2 5中の酸素を吸着して当該バーナ排ガス 2 5から酸素を除去して 不活性ガス 4 0を生成させる酸化還元可能な酸素吸着剤 2 8を具備する不活性ガ ス生成手段である不活性ガス生成装置 5 Aとを備えている。
また、 本実施の形態にかかる燃料電池発電システムは、 酸素を吸着した酸素吸 着剤 2 8を還元する吸着剤還元手段であるヒータ 3 3を備えている。 前記燃料改質装置 60は、 燃料改質器 1と、 C O変成触媒器 2と、 P R O X触 媒器 3とを備えている。 燃料ガス 6の改質は、 主として、 燃料改質器 1において、 燃料ガス 6と水蒸気とを混合して改質触媒層 7に流通させ、 一般に 500〜 70 0°Cの温度で水蒸気改質反応 (CH4 + H20→CO+ 3H2〇) を起こさせるこ とにより行われる。 改質触媒としては、 Ru/A 123等を使用することがで きる。 燃料ガス 6としては、 都市ガスや LPG (液化プロパンガス) 、 DME ( ジメチルエタノール) 、 灯油などが使用される。
燃料ガス 6は、 メイン弁 8及びサブ弁 9を介して燃料改質器 1に供給される。 水蒸気改質反応は吸熱反応であるため、 燃料改質器 1には、 熱源としてパーナ 1 0が設けられている。 燃料改質器 1には、 水 11が弁 12を介して供給される。 水 1 2は、 パーナ 10の熱を利用した蒸発器 (図示省略) により水蒸気となる。 パーナ 10には、 燃料ガス 6の一部が弁 13を介して供給されると共に、 空気 1 4がポンプ 15を介して供給される。
CO変成触媒器 2は、 CO変成触媒層を用いて CO変成 (COシフトともいう ) 反応 (CO + H20→C02 + H2) により水蒸気と一酸化炭素から水素を生成 するものであり、 燃料改質器 1で水蒸気改質反応により生成した C Oを活用して 改質効率を上げるために用いられる。 '
CO変成触媒には、 比較的高温側 (約 400°C) で作動する HTS (高温シフ ト触媒) と比較的低温側 (約 200°C) で作動する LTS (低温シフト触媒) と があるが、 LTSのみが使用される場合と、 HTSと LTSとの両方が使用され る場合と力 Sある。 HTS触媒としては、 F e 203■ C r 203等を使用すること ができる。 LTS触媒としては、 C uO · Z ηθ等を使用することができる。
PROX触媒器 3は、 PROX触媒層を用いて選択酸化 (PReferable OXidiza tion) 反応 (CO+ 1Z202→C02) により、 毒物質である一酸化炭素を二 酸化炭素 (炭酸ガス) に変えるものであり、 改質ガス 16中の一酸化炭素濃度を 極力下げるために用いられる。 PROX触媒としては、 Ru//A l 23を使用 することができる。 また、 PROX反応は、 約 100〜150°Cで行われる。 燃料改質器 1、 C O変成触媒器 2及び P R O X触媒器 3を順に通って燃料ガス 6から改質された改質ガス 1 6は、 弁 1 7を介して、 燃料電池本体 4のアノード 1 8に供給される。 燃料電池本体 4の力ソード 1 9には、 空気 2 0がポンプ 2 1 を介して供給される。
燃料電池本体 4から排出されるアノード排ガス (使用後の改質ガス) 2 2は、 アノード排ガス路 3 6及び弁 3 8を介して燃料改質器 1に戻されて、 例えば、 バ ーナ 1 0用の燃料として利用される。 また、 発電負荷の都合により、 燃料改質装 置 6 0で改質されたものの余剰となってしまう未使用の改質ガス 2 3も、 弁 2 4、 アノード排ガス路 3 6及び弁 3 8を介して燃料改質器 1に戻されて、 例えば、 バ ーナ 1 0用の燃料として利用される。
燃料改質器 1から排気されるバーナ排ガス 2 5及び燃料電池本体 4から排出さ れるカソード排空気 2 6は、 システム排ガス路 2 7に排出される。
不活性ガス生成装置 5 Aは、 主として、 酸化還元が繰り返し可能な酸素吸着剤 2 8で構成される。 本実施の形態における酸素吸着剤 2 8は、 燃料改質器 1と C O変成触媒器 2と P R O X触媒器 3とを含む燃料改質装置 6 0の外部に設置され ている。 酸素吸着剤 2 8は、 適宜な容器に充填されている。 酸素吸着剤 2 8の容 器入口には、 バーナ排ガス路 2 9から弁 3 0 a及び管路 3 0 bを介してバーナ排 ガス 2 5の一部または全量が供給される。 酸素吸着剤 2 8の容器出口は、 管路 3 1及び弁 3 2を介して燃料改質器 1に接続されている。
酸素吸着剤 2 8には、 電気等によるヒータ 3 3が付設されている。 弁 3 0 aと 酸素吸着剤 2 8の容器入口との間の管路 3 0 bには、 凝縮器 3 4とポンプ 3 5と が順に接続されている。 また、 管路 3 0 bの凝縮器 3 4の上流側には、 アノード 排ガス路 3 6の前記弁 3 8の下流側から使用後の改質ガス 2 2又は未使用の改質 ガス 2 3を供給可能にする弁 3 7 a及ぴ管路 3 7 bが接続している。
また、 アノード排ガス路 3 6には、 前記弁 3 8の上流側から使用後の改質ガス 2 2や未使用の改質ガス 2 3をシステム排ガス路 2 7に排出する弁 3 9 a及び管 路 3 9 bが接続している。 酸素吸着剤 28としては、 酸化還元が可能なものであれば何れでも使用可能で あり、 例えば、 C r (クロム) 、 Mn (マンガン) 、 F e (鉄) 、 Co (コバノレ ト) 、 N i (ニッケル) 、 Cu (銅) 、 Zn (亜鉛) のうちのいずれか一種 (好 ましくは金属銅 (Cu) ) を使用することができる。 または、 これら C r、 Mn, F e、 Co、 N i、 Cu、 Z nの二種以上を組み合わせたもの (例えば Cu/Z n混合物) を使用することができる。
また、 〇11ゃ〇117211の他、 LTS触媒と類似の物質も使用することができ る。 C u / Z n混合物などの L T S触媒は、 酸化還元を繰り返すと C O変成機能 が劣化するものの、 酸化還元機能自体は劣化しない。 酸素吸着剤 28は、 その形 状を特に限定されることがないが、 例えば、 ペレット形状ゃハニカム形状である と好ましい。
酸素吸着剤 28として Cuを用いた場合、 Cu + l/202→CuOなる酸化 反応により、 バーナ排ガス 25から酸素が吸着されて除去される。 この酸素除去 処理は、 100 °C以上、 好ましくは 150 °C〜 700 °C、 より好ましぐは 200 °C〜400°Cで行う。 酸素吸着剤 28を 100°C以上にすることにより、 パーナ 排ガス 25中から酸素を容易に除去することができる。
なお、 酸素吸着剤 28として Cuを用いた場合、 〇 0 + ^12雰囲気→〇1 な る還元反応により、 10が。11に還元される。 この還元再生処理は、 100°C 以上、 好ましくは 1 50 °C〜 700 °C、 より好ましくは 200 °C〜 400 °Cで行 う。 酸素を吸着した酸素吸着剤 28を 100 °C以上にすることにより、 酸素吸着 剤 28を容易に再生することができる。
このような本実施の形態にかかる燃料電池発電システムを作動 (発電運転の開 始) する場合には、 以下のように操作する。
(1) まず、 燃料改質器 1を空焚きして加熱昇温させる。 つまり、 弁 13を開き、 ポンプ 15を作動させて、 燃料改質器 1のパーナ 10のみを動作させる。 メイン 弁 8、 サブ弁 9、 弁 12、 弁 30 a及び弁 32は閉じ、 凝縮器 34及びポンプ 3 5は停止しておく。 このときの弁 17、 弁 24、 弁 37 a、 弁 38、 弁 39 aの 開閉及びポンプ 2 1の作動の有無は特に問わないが、 ここでは弁 1 7、 2 4、 3 7 a、 3 8、 3 9 aも閉じ、 ポンプ 2 1も停止しておくものとする。
( 2 ) 燃料改質器 1の昇温途中は、 弁 1 2を開いて水蒸気を燃料改質器 1内に流 し、 燃料改質器 1の昇温を促進する。 その際、 水蒸気で燃料改質器 1内が酸化さ れるのを防止するため、 サブ弁 9を開き、 燃料改質器 1内の酸化を防止するのに 必要十分に足りるだけの微量の燃料ガス 6を水蒸気に混入させる。 また、 弁 1 7 と弁 3 9 aを開き、 水蒸気をアノード排ガス路 3 6からシステム排ガス路 2 7に 排出する。
( 3 ) 燃料改質器 1の昇温が完了したら、 メイン弁 8を開き、 定常運転を行う。 言い換えれば、 燃料電池本体 4の発電作動に応じた必要量の燃料ガス 6を燃料改 質器 1に供給する。 その際、 ポンプ 2 1を作動させ、 弁 3 8を開き、 弁 3 9 aを 閉じる。 弁 2 4は、 余剰の改質ガス 2 3が生じる場合に必要に応じて開かれる。 サブ弁 9は、 開いたままでもよいし、 閉じてもよい。
( 4 ) なお、 発電運転の開始当初、 燃料改質装置 6 0が所定の温度にまで到達せ ずに、 改質ガス 1 6中の C O濃度が 1 0 p p m以下になっていないときは、 ァノ ード排ガス路 3 6をバイパスさせて、 パーナ 1 0の燃焼に利用する。
他方、 本実施の形態にかかる燃料電池発電システムの作動を停止する場合には、 以下のように操作する。
( 1 ) まず、 水蒸気によるシステム内のパージを数分間行う。 そのために、 バー ナ 1 0を作動させたまま、 つまり、 弁 1 3を開き、 ポンプ 1 5を作動させたまま、 メイン弁 8を閉じ、 ポンプ 2 1を停止して、 燃料改質器 1に水蒸気のみ流す。 その際、 弁 3 8を閉じ、 弁 3 9 aを開いて、 水蒸気を燃料電池本体 4のァノー ド 1 8からシステム排ガス路 2 7に排出する。 これにより、 燃料改質器 1、 C O 変成触媒器 2、 P R O X触媒器 3及び燃料電池本体 4内の残留物質は、 水蒸気に より綺麗に洗い流されて除去される。 また、 燃料改質装置 6 0内の酸化を防止す るのに必要十分に足りるだけの微量の燃料ガス 6を水蒸気にサブ弁 9を開いて混 入させる。 弁 2 4は、 好ましくは閉じておく。 ( 2 ) 水蒸気によるシステム内のパージ中に燃料改質器 1を降温 (例えば 5 0 0 でまで) させる。
( 3 ) 燃料改質器 1が降温したら、 本蒸気によるパージを終了する。 つまり、 サ プ弁 9及び弁 1 2を閉じる。
( 4 ) 次に、 水蒸気によるパージのためにシステム内に残留した水分等の残留物 質を不活性ガス 4 0により除去する。 このため、 弁 3 0 aを開いてバーナ排ガス 2 5の一部を酸素吸着剤 2 8に送給して、 バーナ排ガス 2 5中の酸素を酸素吸着 剤 2 8で吸着して取り除く。 これにより、 酸素を取り除かれた不活性ガス 4 0が 生成される。
不活性ガス 4 0でシステム内のパージを行うため、 弁 3 2を開く。 不活性ガス 4 0は、 燃料改質器 1力、ら、 C O変成触媒器 2 , P R O X触媒器 3及び燃料電池 本体 4を流れ、 アノード 1 8から弁 3 9 aを介してシステム排ガス路 2 7に排出 される。 これにより、 燃料改質器 1、 C O変成触媒器 2、 P R O X触媒器 3及び 燃料電池本体 4に残留した水分等の残留物質は、 綺麗に除去される。
不活性ガス 4 0の生成に際し、 凝縮器 3 4を作動させ、 バーナ排ガス 2 5を凝 縮器 3 4に通して冷却することで当該バーナ排ガス 2 5中の水分を除去している。 これにより、 乾燥した不活性ガス 4 0が得られる。 また、 ポンプ.3 5を作動させ、 不活性ガス 4 0の風量を上げている。 なお、 燃料電池本体 4を加湿保管する場合 には、 不活性ガス 4 0を燃料電池本体 4内に流通させることなくバイパスさせて もよい。
( 5 ) 不活性ガス 4 0によるシステム内のパージが終了したら、 パーナ 1 0を停 止し、 システムを自然冷却する。 また、 弁 3 0 a及び弁 3 2を閉じ、 凝縮器 3 4 及びポンプ 3 5を停止する。
酸素を吸着した酸素吸着剤 2 8は、 酸素吸着機能が次第に飽和してしまう。 こ のため、 システム内の不活性ガス 4 0による次回のパージ時までに酸素吸着剤 2 8を水素ガス雰囲気で還元して再生しておく。
本実施の形態では、 システムの次回の運転中、 言い換えれば、 次回の発電運転 の際に (改質ガス 23を発生させている発電運転開始前の状態も含む) 、 弁 37 aを開いて、 使用後の改質ガス 22又は未使用の改質ガス 23を弁 37 a及び管 路 37 bを介して酸素吸着剤 28に送給することにより、 当該酸素吸着剤 28を 還元させる。 その際、 ヒータ 33を作動させて (100°C以上) 酸素吸着剤 28 を昇温させることにより (Cuの場合約 200°C) 還元効率を上げている。
還元終了後、 ヒータ 33を停止する。 また、 凝縮器 34を作動させて、 上記改 質ガス 22, 23中の水分を除去し、 還元効率を上げている。 また、 ポンプ 35 を作動させて、 上記改質ガス 22, 23の風量を上げている。 酸素吸着剤 28の 再生に使用した後の上記改質ガス 22, 23は、 弁 32を開いて改質触媒層 7に 戻すとよいが、 適宜な経路によりパーナ 10に供給することも可能である。
パーナ 10は、 バーナ排ガス 25が約 2 %の酸素を含むように一般に調整され る。 ここで、 例えば、 システムの内容積が数リットルと仮定し、 その数倍、 例え ば 10リツトルの不活性ガス 40でシステム内のパージを行う場合を考える。 今、 約 2 %の酸素をバーナ排ガス 25から除去し、 得られた不活性ガス 40を約 10 リット/レ Z分の流量で 1分間流す場合を考えると、 約 0. 01モル (= 10リツ トル X O. 02/22. 4) の酸素吸着が必要である。 従って、 酸素吸着剤 28 として Cuを用いる場合、 約 1. 3 gの Cuが必要となる。
《試験例》
第 2図に示すような試験装置を用いて、 以下の表 1に示す試験条件により酸素 吸着試験を行つた。 第 2図に示した試験装置においては、 酸素吸着剤 28を C u ZZn混合物とし、 Cu/Z n混合物を容器に 20 c c充填し、 酸素吸着時のガ ス Aと還元時のガス Bとを酸素吸着剤 28に切り換えて導入し、 酸素吸着剤 28 の出口に 02計 (酸素濃度センサ) を取り付けて酸素濃度を計測するようにして いる。
本試験は、 第 2図に示した試験装置により、 吸着温度 100 °C、 200 °C、 3 00°Cで酸素吸着試験を行い、 酸素吸着剤 28の入口での酸素吸着時のガス Aを バーナ排ガス 25に模擬した組成 (〇2: 2%、 C02: 10%、 H20: 30/0、 残り N2) とした。 酸素吸着剤 28でのガスの滞留時間は、 SV値 5, 000 ( 1/h) の条件を主体に行い、 吸着温度による影響を確認した。
その結果を下記の表 2に示す。 また、 酸素吸着試験時の酸素吸着剤 28の出口 のガス中の酸素濃度変化を第 3図に示す。 第 3図中、 縦軸は酸素濃度 (%) 、 横 軸は時間 (分) であり、 ガス流量は 600リ ットル、 SV値は 5000 (1/h ) に固定し、 吸着温度を 100°C、 200°C、 300°Cの 3種類に選定している。
(表 1}
Figure imgf000016_0001
{表 2}
Figure imgf000016_0002
表 2及び第 3図からわかるように、 吸着温度 100°Cでは、 酸素吸着剤 28の 出口でのガス中の酸素濃度がゼ口である時間が 14分間、 吸着温度 200 °Cでは、 酸素吸着剤 28の出口でのガス中の酸素濃度がゼロである時間が 24分間、 吸着 温度 300 °Cでは、 酸素吸着剤 28の出口でのガス中の酸素濃度がゼ口である時 間が 32分間継続した。 よって、 酸素吸着剤 2 8にバーナ排ガス 2 5を加えてパーナ排ガス 2 5から酸 素を取り除いて不活性ガス 4 0を生成し、 この不活性ガス 4 0をシステムのパー ジに用いることに何ら問題がないことが確認できた。
以上説明したような本実施の形態にかかる燃料電池発電システム及びその運転 方法によれば、 以下のような効果を得ることができる。
( 1 ) バーナ排ガス 2 5中の酸素を酸素吸着剤 2 8で取り除くので、 従来に比べ て酸素が少ない (実質的にゼロ) 不活性ガス 4 0を生成できる。
( 2 ) 不活性ガス 4 0を生成させながらシステム内にパージを行うので、 従来の ような不活 1"生ガス 4 0の貯蔵用のタンクが不要となり、 従来に比べて省スペース 化及び低コスト化が可能である。
( 3 ) 水蒸気でパージを行つた後に不活性ガス 4 0でパージすることにより、 パ ージが短時間で済み、 また、 不活性ガス 4 0の使用量が少なくて済み、 酸素吸着 剤 2 8も少ない量で済ますことができるので、 ランニングコストの低減を図るこ とができる。
( 4 ) 酸素を吸着した酸素吸着剤 2 8を還元することにより、 酸素吸着剤 2 8を 再生することができるので、 ランニングコストの低減及び保守点検等の容易化を 図ることができる。
( 5 ) 使用後の改質ガス 2 2や未使用の改質ガス 2 3により酸素吸着剤 2 8を還 元して再生することができるので、 還元剤を新たに用意する必要がなく、 ラン二 ングコストの低減を図ることができる。
( 6 ) 運転開始時や水蒸気によるパージの際に、 改質対象の燃料ガス 6を水蒸気 に微量混入させるようにしたので、 水蒸気によるシステム内の酸化を防止するこ とができる。
なお、 本実施の形態では、 ヒータ 3 3を用いて酸素吸着剤 2 8を加熱するよう にしたが、 例えば、 酸素吸着剤 2 8を燃料改質装置 6 0に隣接 (例えば断熱材の 內側等) させることにより、 燃料改質装置 6 0の熱を利用して酸素吸着剤 2 8を 適正な温度に保持するようにすることも可能である。 〈第 2の実施の形態:酸素吸収液使用〉
本発明にかかる燃料電池発電システム及びその運転方法の第 2の実施の形態を 第 4図を用いて説明する。 第 4図は、 燃料電池発電システムの概略構成図である。 ただし、 前述した第 1の実施の形態の場合と同様な部分については、 前述した第 1の実施の形態の説明で用いた符号と同一の符号を用いることにより、 重複する 説明を省略する。
本実施の形態にかかる燃料電池発電システムは、 第 4図に示すように、 燃料改 質装置 6 0と燃料電池本体 4とを備えた燃料電池発電システムにおいて、 燃料改 質装置 6 0の加熱用のパーナ 1 0から排出されたバーナ排ガス 2 5 (原ガス) を 燃料改質装置 6 0内へ送給する原ガス送給手段である、 弁 3 0 a , 3 2、 管路 3 O b , 3 1、 凝縮器 3 4、 ポンプ 3 5等と、 前記管路 3 0 b, 3 1に配設されて バーナ排ガス 2 5中の酸素を吸収して当該バーナ排ガス 2 5から酸素を除去して 不活性ガス 4 0を生成させる酸素吸収液 4 1を具備する不活性ガス生成手段であ る不活性ガス生成装置 5 Bとを備えている。
上記不活性ガス生成装置 5 Bは、 主として、 酸素吸収液 4 1で構成される。 酸 素吸収液 4 1は、 タンク (容器) 4 2内に充填されている。 タンク 4 2の入口に は、 バーナ排ガス路 2 9から弁 3 0 a及び管路 3-ひ bを介してバーナ排ガス 2 5 の一部または全量が供給される。 タンク 4 2の出口は、 管路 3 1及び弁 3 2を介 して燃料改質器 1に接続されている。
前記酸素吸収液 4 1としては、 酸素吸収機能を有する液体であれば何れでも使 用可能であり、 例えば、 亜硫酸ナトリウム溶液 (N a 2 S 0 3 ) 等が挙げられる。 この亜硫酸ナトリゥムを使用した場合、 N a 2 S〇3 + l / 2〇2→N a 2 S〇4な る酸化反応により、 バーナ排ガス 2 5から酸素が吸収されて除去される。
つまり、 本実施の形態にかかる燃料電池発電システムは、 前述した第 1の実施 の形態にかかる燃料電池発電システム (第 1図) において、 酸素吸着剤 2 8に代 えて酸素吸収液 4 1を利用した不活性ガス生成装置 5 Bを適用すると共に、 ヒー タ 3 3、 弁 3 7 a及び管路 3 7 bを省略したものなのである。 このような本実施の形態にかかる燃料電池発電システムを作動する場合には、 前述した第 1の実施の形態の場合と同様にして操作する。
他方、 本実施の形態にかかる燃料電池発電システムの作動を停止する場合には、 以下のように操作する。
( 1 ) 前述した第 1の実施の形態の場合と同様に操作して水蒸気によるパージを 終えたら、 水蒸気によるパージのためにシステム内に残留した水分等の残留物質 を不活性ガス 4 0により除去する。 このため、 弁 3 0 aを開いてパーナおガス 2 5の一部を酸素吸収液 4 1内に通気して、 バーナ排ガス 2 5中の酸素を酸素吸収 液 4 1で吸収して取り除く。 これにより、 酸素を取り除かれた不活性ガス 4 0が 容器 4 2の気相部 (液上空間) に生成される。
不活性ガス 4 0でシステム内のパージを行うため、 弁 3 2を開く。 不活性ガス 4 0は、 燃料改質器 1力、ら、 C O変成触媒器 2、 P R O X触媒器 3及び燃料電池 本体 4を流れ、 アノード 1 8から弁 3 9 aを介してシステム排ガス路 2 7に排出 される。 これにより、 燃料改質器 1、 C O変成触媒器 2、 P R O X触媒器 3及び 燃料電池本体 4に残留した水分等の残留物質は、 綺麗に除去される。
不活性ガス 4 0の生成に際し、 凝縮器 3 4を作動させ、 バーナ排ガス 2 5を凝 縮器 3 4に通して冷却することで水分を除去している。 これにより、 乾燥した不 活性ガス 4 0が得られる。 また、 ポンプ 3 5を作動させ、 不活性ガス 4 0の風量 を上げている。
( 2 ) 不活性ガス 4 0によるシステム内のパージが終了したら、 前述した第 1の 実施の形態の場合と同様に、 パーナ 1 0を停止し、 システムを自然冷却する。 ま た、 弁 3 0 a及び弁 3 2を閉じ、 凝縮器 3 4及びポンプ 3 5を停止する。
酸素を吸収した酸素吸収液 4 1は、 酸素吸収能が次第に飽和してしまう。 この ため、 酸素吸収液 4 1の酸素吸収能が飽和に近づいた時点を見計らって、 次回の パージ時までに新しい酸素吸収液 4 1と交換しておく。 例えば、 約 1年または数 年毎といった定期的な間隔ごとに交換する。
一例として、 第 1の実施の形態の場合と同様に、 バーナ排ガス 2 5力ゝら約 2 % の酸素を除去し、 得られた不活性ガス 40を約 10リツトル Z分の流量で 1分間 流す場合を考えると、 1回のパージ当たり約 0. 01モル (=10リットル X O. 02/22. 4) の酸素吸収が必要である。 例えば、 システムを 1日当たり 1回 停止すると、 365回/年となり、 1年間の必要酸素吸収量は 3. 65モル (= 0. 01モル X 365) となる。
よって、 酸素吸収液 41として亜硫酸ナトリウム (Na 2S〇3) を使用する 場合、 1年間で必要な亜硫酸ナトリゥム (1 26 gZモル) の量は、 酸素の2倍 であり、 7. 3モル (約 920 g) となる。 そして、 20w t%の水溶液とする と、 約 4. 6リ ッ トルの酸素吸収液 41が必要となる。 また、 酸素吸収液 41の タンク 42は、 約 6〜10リツトルの容量が必要になる。
したがって、 本実施の形態にかかる燃料電池発電システム及びその運転方法に よれば、 前述した第 1の実施の形態の場合と同様な効果を得ることができる。 〈第 3の実施の形態:了ミン液使用〉
本発明にかかる燃料電池発電システム及びその運転方法の第 3の実施の形態を 第 5図を用いて説明する。 第 5図は、 燃料電池発電システムの概略構成図である。 ただし、 前述した第 1の実施の形態の場合と同様な部分については、 前述した第 1の実施の形態の説明で用いた符号と同一の符号を用いることにより、 重複する 説明を省略する。
本実施の形態にかかる燃料電池発電システムは、 第 5図に示すように、 燃料改 質装置 60と燃料電池本体 4とを備えた燃料電池発電システムにおいて、 燃料電 池本体 4のアノード 18から排出されるァノード排ガス 22を送給されて当該ァ ノ一ド排ガス 22中の二酸化炭素を吸収するァミン水溶液 43を具備する二酸化 炭素回収手段である、 弁 37 a, 37 c、 管路 37 b、 ポンプ 35、 タンク 42 等と、 上記二酸化炭素回収手段のァミン水溶液 43を加熱することにより当該ァ ミン水溶液 43から二酸化炭素を離脱させて燃料改質装置 60内へ送給する二酸 化炭素送給手段である、 弁 44, 32、 管路 31、 ヒータ 33等とを具備する不 活 14ガス生成手段である不活性ガス生成装置 5 Cを備えている。 また、 本実施の形態にかかる燃料電池発電システムは、 上記二酸化炭素回収手 段で二酸化炭素を回収された上記ァノード排ガス 22を燃料改質装置 60のバー ナ 10に供給する原ガス再利用手段である、 弁 45 a、 管路 45 b等を備えてい る。
さらに、 本実施の形態にかかる燃料電池発電システムは、 燃料改質装置 60内 へ送給される二酸ィヒ炭素から水分を回収する水分回収手段である凝縮器 34と、 前記凝縮器 34で回収された水分を上記ァミン水溶液 43に戻す水分再利用手段 である管路 46等とを備えている。
不活性ガス生成装置 5 Cは、 主として、 ァミン水溶液 43及びヒータ 33で構 成される。 ァミン水溶液 43は、 タンク 42内に充填されている。 タンク 42の 入口には、 アノード排ガス路 36の前記弁 38及び前記弁 39 aの間から弁 37 a、 管路 37 b、 弁 37 c及びポンプ 35を介して上記アノード排ガス 22の一 部が供給される。 ヒータ 33は、 交流電源 (AC) で作動するものが適用される。 タンク 42内の気相部 (液上空間) は、 管路 31及び弁 32を介して燃料改質 器 1に接続されている。 管路 31には、 圧力調整弁 44と凝縮器 34が順に接続 されている。 さらに、 タンク 42の気相部は、 弁 45 a及び管路 45 bを介して アノード排ガス路 36の前記弁 38の下流側に接続されている。
上記ァミンとしては、 一級ァミンなど、 各種のァミンなどが使用される。 一級 アミンを用いる場合、 2 RNH2 + C02→ (RNH3) + + (RNHCOO) - という炭酸ガス吸収反応が、 大気圧下、 常温〜 50°Cの条件で起こる。 他方、 0. 8 k g/cm2の気圧下、 120°C前後の温度条件となると、 (RNH3) + + ( RNHCOO) ― →2 RNH2 + C〇2という炭酸ガス放散反応が起こる。
つまり、 本実施の形態にかかる燃料電池発電システムは、 前述した第 1の実施 の形態にかかる燃料電池発電システム (第 1図) において、 酸素吸着剤 28に代 えてァミン水溶液 43を利用した不活性ガス生成装置 5 Cを適用し、 当該不活性 ガス生成装置 5 Cの下流側に凝縮器 34を設置すると共に、 弁 37 c、 圧力調整 弁 44、 弁 45 a及ぴ管路 45 bを新たに追加する一方、 弁 30 a及ぴ管路 30 を省略したものなのである。
このような本実施の形態にかかる燃料電池発電システムを作動する場合には、 前述した第 1の実施の形態の場合と同様にして操作する。
そして、 本実施の形態にかかる燃料電池発電システムの運転中は、 以下のよう な操作を行う。
( 1 ) 弁 3 7 a及び弁 3 7 cを開き、 ポンプ 3 5を作動させて、 アノード排ガス 2 2の一部または全部をァミン水溶液 4 3内に通気し、 炭酸ガス吸収反応により、 ァミン水溶液 4 3に二酸ィヒ炭素 (炭酸ガス) を吸収させる。 このとき、 弁 4 5 a を開いておき、 二酸化炭素を回収されたアノード排ガス 2 2、 すなわち、 ァミン 水溶液 4 3に吸収されなかったガス (窒素や水素、 C H 4、 未吸収の二酸化炭素 等) をァノード排ガス路 3 6に前記管路 4 5 bを介してパーナ 1 0に供給し、 バ ーナ 1 0の燃焼に使用する。
( 2 ) ァミン水溶液 4 3に必要量の二酸化炭素を吸収させたら、 弁 3 7 a、 弁 3 7 c及び弁 4 5 aを閉じておく。
( 3 ) なお、 ァノード排ガス 2 2は、 約 5 0 %の二酸化炭素を含んでいるので、 ァミン水溶液 4 3に二酸化炭素を吸収させる供給源として好適であるが、 余剰と なった未使用の改質ガス 2 3も二酸化炭素を含んでいるので、 当該改質ガス 2 3 をアミン水溶液 4 3内に通気して二酸化炭素を吸収させることも可能である。 他方、 本実施の形態にかかる燃料電池発電システムの作動を停止する場合には、 以下のように操作する。
( 1 ) 前述した第 1の実施の形態の場合と同様に操作して水蒸気によるパージを 終えたら、 不活性ガス 4 0によるパージに先立って、 まず、 弁 1 3を閉じてバー ナ 1 0に空気のみ流して、 燃料改質器 1を 5 0 0 °C以下まで冷却し、 その後、 ポ ンプ 1 5を停止する。
( 2 ) 次に、 ヒータ 3 3を作動させて、 二酸化炭素を吸収しているアミン水寧液 4 3を加熱する。 ァミン水溶液 4 3が 1 2 0 °Cまで昇温し、 タンク 4 2内の蒸気 圧が 0 . 8 k gノ c m 2となると、 炭酸ガス放散反応が起こる。 これにより、 ァ ミン水溶液 43から二酸化炭素が発生し、 不活性ガス 40が生成する。
(3) 弁 32を開き、 加熱によって放出された二酸化炭素ガスを燃料改質器 1の 改質触媒層 7に通気してパージを行う。 不活性ガス (二酸化炭素) 40は、 燃料 改質器 1、 C O変成触媒器 2、 PROX触媒器 3及び燃料電池本体 4のアノード 18を流れて、 弁 39 aを介してシステム排ガス路 27に排出される。 これによ り、 燃料改質器 1、 CO変成触媒器 2、 PROX触媒器 3及び燃料電池本体 4に 残留した水分等の残留物質は、 綺麗に除去される。
(4) このとき、 0. 8 k g/ cm 2で二酸化炭素ガスを放出させるように圧力 調整弁 44で圧力を調整しておく。
(5) また、 システム内をパージする不活性ガス (二酸化炭素) 40中の水分を 回収するため、 凝縮器 34を作動させ、 放出された二酸化炭素ガスを冷却して水 分を分離すると共に、 分離した水分を容器 43に管路 46を介して戻し、 当該水 分を再利用する。 この水分の回収により、 乾燥した二酸化炭素ガスが得られる。
(6) 不活性ガス (二酸化炭素) 40によるシステム内のパージを終えたら、 シ ステム全体を停止する。 すなわち、 ヒータ 33及び凝縮器 34を停止し、 弁 32 を閉じる。
ここで、 ァミンの必要量について述べる。 一例として、 1回のパージ当たりに 必要な二酸化炭素ガスの放出量を 1モル (22. 4リットル) と仮定する。 この 場合、 1回当たり 1モルの二酸化炭素ガスを吸収するのに必要なアミン量は、 ァ ミン種を ME A (分子量 61) とすると、 2モル (122 g) となる。 50w t %の水溶液とすると、 約 250ミリ リッ トルのアミン水溶液が必要となる。 ここ で、 気相部を含んで容器 42の容量を 600ミリリツトノレとすると、 容器 42は、 直径 50mm、 高さ 30 Ommのサイズとなり、 液面の高さが約 130 mmとな る。
したがって、 本実施の形態にかかる燃料電池発電システム及びその運転方法に よれば、 前述した第 1の実施の形態の場合と同様な効果を得ることができるのは もちろんのこと、 さらに以下のような効果を得ることができる。 ( 1 ) アミン水溶液 4 3による二酸化炭素の吸収や放散は、 半永久的な耐久性を 有するので、 ランニングコストの低減及び保守点検等の容易化を図ることができ る。
( 2 ) アミン水溶液 4 3に通したガスをァミン水溶液 4 3に通さなかつた残りの アノード排ガス 2 2に戻すことにより、 パーナ 1 0の燃焼に再利用することがで きるので、 ランニングコストの低減を図ることができる。
( 3 ) ァミン水溶液 4 3から取り出した二酸化炭素中の水分を回収して、 ァミン 水溶液 4 3に戻すようにしたので、 ァミン水溶液 4 3に外部から水分を補給する 必要がなく、 ランニングコストの低減及び保守点検等の容易化を図ることができ る。
( 4 ) 水蒸気によるパージの終了後から不活性ガス (二酸化炭素) 4 0によるパ ージの開始までの間にパーナ 1 0に空気のみ流して、 燃料改質器 1の温度を水蒸 気によるパージ終了時の温度よりも下げるようにしたので、 不活性ガス (二酸化 炭素) 4 0によるパージを好適に行うことができる。
なお、 アノード排ガス 2 2に代えて、 例えば、 余剰となった未使用の改質ガス 2 3を使用しても本実施の形態の場合と同様な効果を得ることができる。
〈第 4の実施の形態:酸素吸着剤の燃料改質装置内設置〉
本発明にかかる燃料電池発電システム及びその運転方法の第 4の実施の形態を 第 6図を用いて説明する。 第 6図は、 燃料電池発電システムの概略構成図である。 ただし、 前述した第 1の実施の形態の場合と同様な部分については、 前述した第 1の実施の形態の説明で用いた符号と同一の符号を用いることにより、 重複する 説明を省略する。
本実施の形態にかかる燃料電池発電システムは、 第 1の実施の形態にかかる燃 料電池発電システム (第 1図) において、 酸素吸着剤 2 8の設置場所を変更する と共に、 ヒータ 3 3、 弁 3 7 a及び管路 3 7 bを省略したものである。
具体的には、 酸ィヒ還元が繰り返し可能な酸素吸着剤 2 8は、 本実施の形態では、 燃料改質器 1と C O変成触媒器 2と P R〇 X触媒器 3とを含む燃料改質装置 6 0 内において、 燃料改質器 1と C〇変成触媒器 2との間、 言い換えれば、 改質触媒 層 7と C O変成触媒層との間に設置され、 適宜な容器に充填されている。 当該酸 素吸着剤 2 8の容器の入口は、 燃料改質器 1に接続され、 当該酸素吸着剤 2 8の 容器の出口は、 C O変成触媒器 2に接続されている。
バーナ排ガス路 2 9は、 弁 3 0 a、 管路 3 0 b、 凝縮器 3 4、 ポンプ 3 5、 管 路 3 1及び弁 3 2を介して、 燃料改質器 1の改質触媒層 7に接続されている。 つまり、 前述した第 1の実施の形態 (第 1図) では、 燃料改質装置 6 0の外部 (原ガス送給手段) に酸素吸着剤 2 8を設置したが、 本実施の形態では、 燃料改 質装置 6 0の內部 (改質触媒層 7と C O変成触媒層との間) に酸素吸着剤 2 8を 設置したのである。
よって、 パージ時には、 弁 3 0 a及び弁 3 2を開くことにより、 バーナ排ガス 2 5の一部または全量がバーナ排ガス路 2 9力、ら、 弁 3 0 a、 管路 3 0 b、 凝縮 器 3 4、 ポンプ 3 5、 管路 3 1及び弁 3 2を介して燃料改質器 1の改質触媒層 7 に取り込まれ、 この改質触媒層 7を経て、 容器入口から酸素吸着剤 2 8に加えら れる。 バーナ排ガス 2 5は、 その中の酸素を酸素吸着剤 2 8で吸着除去されるこ とによって不活性ガス 4 0となり、 C O変成触媒器 2、 P R O X触媒器 4及び燃 料電池本体 4に順に送られる。 ·
なお、 改質運転時には、 弁 3 0 a及び弁 3 2は閉じられ、 改質触媒層 7で生成 した改質ガス 1 6は、 容器入口から酸素吸着剤 2 8に加えられ、 この酸素吸着剤 2 8を経て、 C O変成触媒器 2に与えられる。
ところで、 パージ時には、 酸素を含有するバーナ排ガス 2 5が改質触媒層 7に 流通する。 このため、 C O変成反応に用いられる L T S触媒等の C O変成触媒と は異なり、 酸素によつて劣化することのない耐酸化性触媒である R u等の貴金属 触媒を改質触媒層 7に用いる必要がある。
また、 酸素によつて劣化することがな 、改質触媒層 7と、 酸素によつて劣化し やすい C O変成触媒層との間に酸素吸着剤 2 8を配設しているので、 C O変成触 媒層には酸素が除去された不活性ガス 4 0が流通することとなり、 C O変成触媒 W を劣化させることがない。
さらに、 酸素吸着剤 2 8は、 改質運転時に、 改質触媒層 7からの改質ガス 1 6 が流通することにより還元される。 その際、 前述した第 1の実施の形態で述べた 試験結果から、 酸素吸着剤 2 8の酸素吸着温度及び酸素離脱温度が 2 0 0 °C〜 3 0 0 °Cであることから、 C O変成触媒層の前流 (上流) 側のガス温度を約 2 5 0 °C前後に操作することにより、 酸素吸着剤 2 8を加熱するための電気ヒータ (第 1図の符号 3 3参照) 等が不要となる。
このような本実施の形態にかかる燃料電池発電システムの作動を停止する場合 には、 以下のように操作する。
( 1 ) 前述した第 1の実施の形態の場合と同様に操作して水蒸気によるパージを 終えたら、 水蒸気によるパージのためにシステム内に残留した水分等の残留物質 をバーナ排ガス 2 5及び不活性ガス 4 0により除去する。 そのために、 弁 3 0 a 及び弁 3 2を開いてバーナ排ガス 2 5の一部または全部を燃料改質器 1に流す。 これにより、 燃料改質器 1がバーナ排ガス 2 5でパージされ、 燃料改質器 1に残 留した水分等の残留物質が綺麗に除去される。
前述したように、 改質触媒層 7は、 バーナ排ガス 2 5でパージしても問題ない。 酸素吸着剤 2 8は、 改質触媒層 7を通ったバーナ排ガス 2 5中の酸素を吸着して 取り除く。 つまり、 酸素によって劣化しやすい C O変成触媒層の前で、 酸素吸着 剤 2 8によりバーナ排ガス 2 5から酸素を除去している。 これによつて酸素が取 り除かれた不活性ガス 4 0が、 C O変成触媒器 2、 P R〇 X触媒器 3及び燃料電 池本体 4のアノード 1 8を流れ、 弁 3 9 aを介してシステム排ガス路 2 7に排出 される。 このため、 C〇変成触媒器 2、 P R O X触媒器 3及び燃料電池本体 4に 残留した水分等の残留物質を綺麗に除去することができる。
( 2 ) バーナ排ガス 2 5及びそれから生成した不活性ガス 4 0によるパージが終 了したら、 パーナ 1 0を停止し、 システムを自然冷却する。 また、 弁 3 0 a及び 弁 3 2を閉じ、 凝縮器 3 4及びポンプ 3 5を停止する。
酸素を吸着した酸素吸着剤 2 8は、 本例では、 システムの次回の運転中、 言い 換えれば次回の改質運転時に、 燃料改質器 1からの改質ガス 1 6が酸素吸着剤 2 8に加わることにより自動的に還元される。
したがって、 本実施の形態にかかる燃料電池発電システム及びその運転方法に よれば、 前述した第 1の実施の形態の場合と同様な効果を得ることができるのは もちろんのこと、 さらに以下のような効果を得ることができる。
( 1 ) 電気ヒータ 3 3等が不要となるので、 イニシャルコス トの低減を図ること ができる。
( 2 ) 酸素吸着剤 2 8を燃料改質器 1からの改質ガス 1 6で還元するので、 特別 な還元剤が不要である。
なお、 酸素吸着剤 2 8の酸化還元反応によって発生する熱が、 燃料改質装置 6 0内の触媒、 特に、 L T S触媒に悪影響を与えることがある。 これを防止するた めに、 酸素吸着剤 2 8と C O変成触媒器 2の間に、 真空断熱等の断熱層または熱 交換部を設けることが好まし!、。
〈第 5の実施の形態:酸素吸着剤の燃料改質装置内設置〉
本発明にかかる燃料電池発電システム及びその運転方法の第 5の実施の形態を 第 7図を用いて説明する。 第 7図は、 燃料電池発電システムの概略構成図である。 ただし、 前述した第 1の実施の形態の場合と同様な部分については、 前述した第 1の実施の形態の説明で用いた符号と同一の符号を用いることにより、 重複する 説明を省略する。
本実施の形態にかかる燃料電池発電システムは、 第 1の実施の形態にかかる燃 料電池発電システム (第 1図) において、 酸素吸着剤 2 8の設置場所を変更して、 ヒータ 3 3を省略したものである。
具体的には、 酸化還元が繰り返し可能な酸素吸着剤 2 8は、 本実施の形態では、 燃料改質装置 6 0内において、 燃料改質器 1内の改質触媒層 7の前流 (上流) 側、 言い換えれば、 燃料改質器 1の燃料ガス 6及び水 1 1の導入口と改質触媒層 7と の間に設置され、 改質触媒層 7と連通する別の層に充填されている。
このような本実施の形態にかかる燃料電池発電システムの作動を停止する場合 には、 以下のように操作する。
( 1 ) 前述した第 1の実施の形態の場合と同様に操作して水蒸気によるパージを 終えたら、 水蒸気によるパージのためにシステム内に残留した水分等の残留物質 を不活性ガス 4 0により除去する。 そのために、 弁 3 0 a及び弁 3 2を開くと共 にポンプ 3 5を作動して、 バーナ排ガス 2 5の一部を燃料改質器 1に流す。 燃料 改質器 1内では、 前段の酸素吸着剤 2 8の層において、 バーナ排ガス 2 5中の酸 素が吸着除去されて、 不活性ガス 4 0が生成する。
この不活性ガス 4 0は、 燃料改質器 1内の改質触媒層 7 , C O変成触媒器 2、 P R O X触媒器 3及び燃料電池本体 4のアノード 1 8を流れ、 弁 3 9 aを介して システム排ガス路 2 7に排出される。 これにより、 燃料改質器 1内の改質触媒層 7、 C O変成触媒器 2、 P R O X触媒器 3及び燃料電池本体 4に残留した水分等 の残留物質が綺麗に除去される。
不活性ガス 4 0の生成に際し、 凝縮器 3 4を作動させ、 バーナ排ガス 2 5を凝 縮器 3 4に通して冷却することで当該バーナ排ガス 2 5中の水分を除去している。 これにより、 乾燥した不活性ガス 4 0が得られる。 なお、 燃料電池本体 4を加湿 保管する場合には、 不活性ガス 4 0を燃料電池本体 4内に流通させることなくバ ィパスさせてもよレ、。
( 2 ) 不活性ガス 4 0によるシステム内のパージが終了したら、 パーナ 1 0を停 止し、 システムを自然冷却する。 また、 弁 3 0 a及び弁 3 2を閉じ、 凝縮器 3 4 及びポンプ 3 5を停止する。
酸素を吸着した酸素吸着剤 2 8は、 酸素吸着機能が次第に飽和してしまう。 こ のため、 システム内の不活性ガス 4 0による次回のパージ時までに酸素吸着剤 2 8を水素ガス通気気で還元して再生しておく。
本実施の形態では、 前述した第 1の実施の形態の場合と同様に、 システムの次 回の運転中、 言い換えれば、 次回の発電運転の際に (改質ガス 2 3を発生させて いる発電運転開始前の状態も含む) 、 弁 3 7 aを開いて、 使用後の改質ガス 2 2 又は未使用の改質ガス 2 3を弁 3 7 a及び管路 3 7 bを介して酸素吸着剤 2 8に 送給することにより、 当該酸素吸着剤 2 8を還元させる。
なお、 酸素吸着剤 2 8の再生に使用した後の上記改質ガス 2 2, 2 3は、 弁 3 2を開いて改質触媒層 7に戻すとよレ、が、 適宜な経路によりパーナ 1 0に供給す ることも可能である。
したがって、 本実施の形態にかかる燃料電池発電システム及びその運転方法に よれば、 前述した第 1の実施の形態の場合と同様な効果を得ることができるのは もちろんのこと、 燃料改質装置 6 0のパーナ 1 0により酸素吸着剤 2 8を還元温 度にまで加熱することができるので、 還元再生用の電気ヒータ (第 1図の符号 3 3参照) 等が不要となり、 ランニングコストの低減をさらに図ることができる。 なお、 不活性ガス 4 0中の水分を低下させるに際しては、 凝縮器 3 4やポンプ 3 5等を用いる以外に、 例えば、 第 8図に示すように、 燃料改質器 1と C O変成 触媒器 2との間に水吸着剤 5 2を設けて行うことも可能である。 この水吸着剤 5 2としては、 例えば、 シリカゲル、 ゼォライト、 モレキュラーシーブなどを適用 することができる。
また、 本実施の形態では、 第 7図に示したように、 燃料改質器 1内に改質触媒 層 7と酸素吸着剤 2 8の層とを各々別に設けるようにしたが、 例えば、 酸素によ り劣化しない触媒を改質触媒層 7に使用した場合には、 改質触媒層 7中に酸素吸 着剤 2 8を設ける、 すなわち、 第 9図に示すように、 燃料改質器 1内に改質触媒 と酸素吸着剤との混合層 5 4を設けることも可能である。 これにより、 第 7図に 示したような燃料改質器 1内の複層化を避けることができ、 燃料改質器 1の構造 を簡略化することができる。
〈第 6の実施の形態:空気原料の不活性ガス〉
本発明にかかる燃料電池発電システム及びその運転方法の第 6の実施の形態を 第 1 0図を用いて説明する。 第 1 0図は、 燃料電池発電システムの概略構成図で ある。 ただし、 前述した第 1の実施の形態の場合と同様な部分については、 前述 した第 1の実施の形態の説明で用いた符号と同一の符号を用いることにより、 重 複する説明を省略する。 本実施の形態にかかる燃料電池発電システムは、 第 1の実施の形態にかかる燃 料電池発電システム (第 1図) において、 弁 3 0 a、 管路 3 0 bの接続位置を変 更したものである。
具体的には、 本実施の形態では、 弁 3 0 a及び管路 3 0 bは、 バーナ排ガス路 2 9に接続せずに外部と連絡するようになつている。
つまり、 前述した第 1の実施の形態 (第 1図) では、 不活性ガス 4 0の原料 ( 原ガス) としてバーナ排ガス 2 5を使用するようにしたが、 本実施の形態では、 不活性ガス 4 0の原料 (原ガス) として外部の系外の空気を使用するようにした のである。
よって、 パージ時には、 弁 3 0 a及び弁 3 2を開き、 凝縮器 3 4及びポンプ 3 5を作動することにより、 外部からの空気が酸素吸着剤 2 8内に取り込まれ、 そ の中の酸素を酸素吸着剤 2 8で吸着除去されることによつて不活性ガス 4 0とな り、 C〇変成触媒器 2、 P R O X触媒器 4及び燃料電池本体 4に順に送られる。 このような本実施の形態にかかる燃料電池発電システムの作動を停止する場合 には、 以下のように操作する。
( 1 ) 前述した第 1の実施の形態の場合と同様に操作して水蒸気によるパージを 終えたら、 水蒸気によるパージのためにシステム内に残留した水分等の残留物質 を不活性ガス 4 0により除去する。 そのために、 パーナ 1 0の作動を停止してシ ステムの自然冷却を開始すると共に、 弁 3 0 a及び弁 3 2を開き、 凝縮器 3 4及 びポンプ 3 5を作動することにより、 外部から系外の空気を酸素吸着剤 2 8内に 取り込んで、 その中の酸素を酸素吸着剤 2 8で吸着除去することによって不活性 ガス 4 0を生成し、 管路 3 1及び弁 3 2を介して当該不活性ガス 4 0を燃料改質 器 1に流す。 これにより、 燃料改質器 1が不活性ガス 4 0でパージされ、 燃料改 質器 1に残留した水分等の残留物質が綺麗に除去される。
( 2 ) 上記不活性ガス 4 0によるパージが終了したら、 弁 3 0 a及び弁 3 2を閉 じ、 凝縮器 3 4及びポンプ 3 5を停止する。
したがって、 本実施の形態にかかる燃料電池発電システム及ぴその運転方法に よれば、 前述した第 1の実施の形態の場合と同様な効果を得ることができるのは もちろんのこと、 さらに以下のような効果を得ることができる。
( 1 ) パーナ排ガス 2 5を使用せずに不活性ガス 4 0を得ることができるように したので、 燃料ガス 6の消費量を減らすことができ、 ランニングコストの低減を 図ることができる。
なお、 本実施の形態では、 外部の空気を使用して不活性ガス 4 0を生成するよ うにしたが、 例えば、 燃料電池本体 4の力ソード 1 9から排出された排空気 2 6 を使用して不活性ガス 4 0を生成することも可能である。
〈他の実施の形態〉
前述した各実施の形態では、 最初に水蒸気を用いて残留物質をシステム内から 除去するようにしたが、 水蒸気を用いずに、 始めから不活性ガス 4 0をシステム 内にパージするようにしても、 何ら差し支えない。
また、 前述した第 1, 3の実施の形態におけるアノード排ガス路 3 6と管路 3 7 bとの接続点は、 弁 3 8の上流側又は下流側のいずれであってもよい。
また、 前述した第 1 , 2 , 4〜 6の各実施の形態において、 前述した第 3の実 施の形態のように、 水蒸気によるパージ終了後、 弁 1 3を閉じてパーナ 1 0に空 気のみ通し、 燃料改質器 1を 5 0 0 °C以下まで冷却する 'と'いう処理を行うこと も可能である。
また、 前述した第 2, 4 , 5の各実施の形態において、 前述した第 6の実施の 形態のように、 原ガスとして、 外部の系外の空気を使用して不活性ガス 4 0を生 成したり、 燃料電池本体 4の力ソード 1 9から排出された排空気 2 6を使用して 不活性ガス 4 0を生成したりすることも可能である。
また、 前述した第 1〜 6の各実施の形態における各不活性ガス生成方法又は手 段を適宜複数組み合わせて不活性ガスを生成させて、 パージに用いることも可能 である。
また、 前述した第 1〜6の各実施の形態において、 脱硫触媒を備えた脱硫触媒 器を改質触媒器 1の前流 (上流) に設けることも可能である。 この脱硫触媒とし ては、 ゼォライト等を適用することができる。 このような脱硫触媒器は、 一般的 に常温で作動する。
第 1の発明による燃料電池発電システムは、 燃料改質装置と燃料電池本体とを 備えた燃料電池発電システムにおいて、 前記燃料改質装置の加熱用のパーナから 排出されたバーナ排ガス、 前記燃料電池本体の力ソードから排出される排空気、 系外からの空気のうちの少なくとも一種の原ガスを前記燃料改質装置内へ送給す る原ガス送給手段と、 前記原ガス中の酸素を吸着して当該原ガスから酸素を除去 して不活性ガスを生成させる酸化還元可能な酸素吸着剤を具備する不活性ガス生 成手段とを備えていることから、 従来に比べて酸素が少ない (実質的にゼロの) 不活性ガスを生成できるので、 不活性ガスによるパージで C O変成用の L T S触 媒を劣化させることがない。 また、 酸素吸着剤は酸素吸着後、 還元することによ り何回も再使用可能である。 更に、 不活性ガスを生成しながらパージを行うこと ができる。 その結果、 可燃性ガスや水分等の残留物質や酸素を燃料改質装置内に 残留させることなく確実に除去することが低コストで簡単かつコンパクトに行う ことができる。
第 2の発明による燃料電池発電システムは、 第 1の発明において酸素を吸着し た前記酸素吸着剤を還元する吸着剤還元手段を備えているので、 酸素吸着剤を何 回も再使用することができる。
第 3の発明による燃料電池発電システムは、 第 1又は第 2の発明において、 前 記酸素吸着剤が、 前記原ガス送給手段、 前記燃料改質装置に設けられている改質 触媒層と C O変成触媒層との間、 前記燃料改質装置内の改質触媒層の上流側、 前 記燃料改質装置に設けられている改質触媒層中、 のうちの少なくとも一箇所に配 設されていることから、 原ガス送給手段に設置すれば、 不活性ガス生成手段の設 置場所が自由となり、 燃料改質装置内の改質触媒層と C O変成触媒層との間に設 置すれば、 酸素吸着剤を加熱する格別の手段が不要となり、 燃料改質装置内の改 質触媒層の上流に設置すれば、 酸素により劣化する触媒であっても、 改質触媒と して使用できると共に、 酸素吸着剤を加熱する格別の手段が不要となり、 燃料改 質装置内の改質触媒層中に混合すれば、 酸素吸着剤を加熱する格別の手段が不要 となる。
第 4の発明による燃料電池発電システムは、 第 1から第 3の発明のいずれかに おいて、 前記酸素吸収剤が、 クロム (C r ) 、 マンガン (M n ) 、 鉄 (F e ) 、 コバルト (C o ) 、 ニッケル (N i ) 、 銅 (C u;) 、 亜鉛 (Z n ) のうちの少な くとも一種からなるので、 酸素を確実に吸着することができる。
第 5の発明による燃料電池発電システムは、 燃料改質装置と燃料電池本体とを 備えた燃料電池発電システムにおいて、 前記燃料改質装置の加熱用のパーナから 排出されたバーナ排ガス、 前記燃料電池本体のカソードから排出される排空気、 系外からの空気のうちの少なくとも一種の原ガスを前記燃料改質装置内へ送給す る原ガス送給手段と、 前記原ガス中の酸素を吸収して当該原ガスから酸素を除去 して不活性ガスを生成させる酸素吸収液を具備する不活性ガス生成手段とを備え ていることから、 従来に比べて酸素が少ない (実質的にゼロの) 不活性ガスを生 成できるので、 不活性ガスによるパージで C O変成用の L T S触媒を劣化させる ことがない。 また、 不活性ガスを生成しながらパージを行うことができる。 その 結果、 可燃性ガスや水分等の残留物質や酸素を燃料改質装置内に残留させること なく確実に除去することが低コストで簡単かつコンパクトに行うことができる。 第 6の発明による燃料電池発電システムは、 第 5の発明において、 前記酸素吸 収液が、 N a 2 S 0 3溶液であるので、 酸素を確実に吸収することができる。 第 7の発明による燃料電池発電システムは、 燃料改質装置と燃料電池本体とを 備えた燃料電池発電システムにおいて、 前記燃料電池本体のアノードから排出さ れるアノード排ガス、 前記燃料改質装置で改質された改質ガスのうちの少なくと も一種の原ガスを送給されて当該原ガス中の二酸化炭素を吸収するァミン水溶液 を具備する二酸化炭素回収手段と、 前記二酸化炭素回収手段の前記アミン水溶液 を加熱することにより当該ァミン水溶液から二酸化炭素を離脱させて前記燃料改 質装置内へ送給する二酸化炭素送給手段とを具備する不活性ガス生成手段を備え ていることから、 従来に比べて酸素がゼ口の不活性ガス (二酸化炭素) を生成で きる。 アミン水溶液による二酸化炭素の吸収及び放散は半永久的な耐久性を持つ。 更に、 不活性ガスを生成しながらパージを行うことができる。 その結果、 可燃性 ガスや水分等の残留物質や酸素を燃料改質装置内に残留させることなく確実に除 去することが低コストで簡単かつコンパクトに行うことができる。
第 8の発明による燃料電池発電システムは、 第 7の発明において、 前記二酸化 炭素回収手段で二酸化炭素を回収された前記原ガスを前記燃料改質装置の前記バ ーナに供給する原ガス再利用手段を備えているので、 上記原ガスをパーナ用の燃 料に再利用することができる。
第 9の発明による燃料電池発電システムは、 第 7又は第 8の発明において、 前 記燃料改質装置内へ送給される前記二酸化炭素から水分を回収する水分回収手段 と、 前記水分回収手段で回収された前記水分を前記二酸化炭素回収手段の前記ァ ミン水溶液に戻す水分再利用手段とを備えていることから、 アミン水溶液に外部 から水分を補給する必要がなくなる。
第 1 0の発明による燃料電池発電システムの運転方法は、 第 1から第 4の発明 の 、ずれかの燃料電池発電システムの運転方法であって、 発電運転停止の際に、 前記不活性ガス生成手段で不活性ガスを生成して、 当該不活性ガスで前記燃料改 質装置内に残留する残留物質を除去して不活性ガスパージすることから、 従来に 比べて酸素が少ない (実質的にゼロの) 不活性ガスを生成できるので、 不活性ガ スによるパージで C O変成用の L T S触媒を劣化させることがない。 また、 不活 性ガスを生成しながらパージを行うことができる。 さらに、 酸素吸着剤は酸素吸 着後、 還元することにより何回も再使用可能である。 その結果、 可燃性ガスや水 分等の残留物質や酸素を燃料改質装置内に残留させることなく確実に除去するこ とが低コストで簡単かつコンパクトに行うことができる。
第 1 1の発明による燃料電池 電システムの運転方法は、 第 1 0の発明におい て、 前記燃料改質装置で改質された改質ガス又は前記燃料電池本体のァノ一ドか ら排出されたアノード排ガスにより、 前記不活性ガス生成手段の前記酸素吸着剤 を還元して再生処理するので、 特別な還元剤が不要である。 第 1 2の発明による燃料電池発電システムの運転方法は、 第 1 1の発明におい て、 発電運転の際に前記再生処理を行うので、 効率よく再生処理を行うことがで きる。
第 1 3の発明による燃料電池発電システムの運転方法は、 第 5又は第 6の発明 の燃料電池発電システムの運転方法であって、 発電運転停止の際に、 前記不活性 ガス生成手段で不活性ガスを生成して、 当該不活性ガスで前記燃料改質装置内に 残留する残留物質を除去して不活性ガスパージすることから、 従来に比べて酸素 が少ない (実質的にゼロ) の不活性ガスを生成できるので、 不活性ガスによるパ ージで C O変成用の L T S触媒を劣化させることがない。 また、 不活性ガスを生 成しながらパージを行うことができる。 その結果、 可燃性ガスや水分等の残留物 質や酸素を燃料改質装置内に残留させることなく確実に除去することが低コスト で簡単かつコンパクトに行うことができる。
第 1 4の発明による燃料電池発電システムの運転方法は、 第 7から第 9の発明 のいずれかの燃料電池発電システムの運転方法であって、 発電運転中に、 前記不 活性ガス生成手段の前記二酸化炭素回収手段により前記原ガス中の二酸化炭素を 回収し、 発電運転停止の際に、 前記不活性ガス生成手段の前記二酸化炭素送給手 段を作動させて、 前記ァミン水溶液から不活性ガスを発生させることにより、 前 記燃料改質装置内に残留する残留物質を除去して不活性ガスパージすることから、 従来に比べて酸素がゼロの不活性ガス (二酸化炭素) を生成できる。 アミン水溶 液による二酸化炭素の吸収及び放散は半永久的な耐久性を持つ。 その結果、 可燃 性ガスや水分等の残留物質や酸素を燃料改質装置内に残留させることなく確実に 除去することが低コストで簡単かつコンパクトに行うことができる。
第 1 5の発明による燃料電池発電システムの運転方法は、 第 1 4の発明におい て、 発電運転中に、 前記二酸化炭素回収手段で二酸化炭素を回収された前記原ガ スを前記燃料改質装置の前記パーナに供給するので、 上記原ガスをパーナ用の燃 料に再利用することができる。
第 1 6の発明による燃料電池発電システムの運転方法は、 第 1 4又は第 1 5の 発明において、 発電運転停止の際に、 前記二酸化炭素送給手段により前記燃料改 質装置内へ送給される前記二酸化炭素から水分を回収して、 当該水分を前記二酸 化炭素回収手段の前記ァミン水溶液に戻すので、 ァミン水溶液に外部から水分を 補給する必要がなくなる。
第 1 7の発明による燃料電池発電システムの運転方法は、 第 1 0から第 1 6の 発明のいずれかにおいて、 前記不活性ガスで前記燃料改質装置内をパージする前 に、 当該燃料改質装置内の残留物質を水蒸気で除去するので、 不活性ガスが少量 で済むと共に、 酸素吸着剤、 酸素吸収液、 ァミン水溶液も僅かで済ますことがで きる。
第 1 8の発明による燃料電池発電システムの運転方法は、 第 1 7の発明におい て、 前記燃料改質装置内の残留物を水蒸気で除去した後に、 当該燃料改質装置の 前記パーナに空気のみを流して当該燃料改質装置を冷却してから、 当該燃料改質 装置内を不活性ガスでパージするので、 不活性ガスがさらに少量で済むと共に、 酸素吸着剤、 酸素吸収液、 ァミン水溶液もさらに僅かで済ますことができる。 第 1 9の発明による燃料電池発電システムの運転方法は、 第 1 7又は第 1 8の 発明において、 前記燃料改質装置内の残留物を除去する水蒸気が、 当該燃料改質 装置内の酸化を防止するのに必要十分な量の燃料ガスを混入されたものであるの で、 当該燃料改質装置内の酸化防止を低コストで簡単に行うことができる。 第 2 0の発明による燃料電池発電システムの運転方法は、 第 1 0から第 1 9の 発明のいずれかにおいて、 発電運転の開始に際して、 前記燃料改質装置の前記バ ーナのみを作動させて当該燃料改質装置を加熱昇温させ、 当該燃料改質装置の昇 温途中で、 当該記燃料改質装置内の酸化を防止するのに必要十分な量の燃料ガス を混入させた水蒸気を当該燃料改質装置に送給し、 当該燃料改質装置の昇温完了 後、 前記燃料電池本体の作動に応じた必要量で当該燃料ガスを供給して、 発電運 転を開始するので、 燃料改質装置の昇温が早く、 また、 燃料改質装置内の水蒸気 による酸ィ匕を低コストで簡単に防止することができる。 産業上の利用の可能性
本発明によれば、 可燃性ガスや水分等の残留物質や酸素等を燃料改質装置の内 部に残留させることなく確実に除去することが低コストでコンパクトに行うこと が可能な燃料電池発電システム及びその運転方法を提供することができ、 産業上、 極めて有益な結果をもたらすことができる。

Claims

請求の範 IS
1. 燃料改質装置と燃料電池本体とを備えた燃料電池発電システムにおいて、 前記燃料改質装置の加熱用のパーナから排出されたバーナ排ガス、 前記燃料電 池本体のカソードから排出される排空気、 系外からの空気のうちの少なくとも一 種の原ガスを前記燃料改質装置内へ送給する原ガス送給手段と、
前記原ガス中の酸素を吸着して当該原ガスから酸素を除去して不活性ガスを生 成させる酸化還元可能な酸素吸着剤を具備する不活性ガス生成手段と
を備えていることを特徴とする燃料電池発電 i
2. 請求の範囲 1において、
酸素を吸着した前記酸素吸着剤を還元する吸着剤還元手段を備えている ことを特徴とする燃料電池発電
3. 請求の範囲 1又は請求の範囲 2において、
前記酸素吸着剤が、 前記原ガス送給手段、 前記燃料改質装置に設けられている 改質触媒層と c o変成触媒層との間、 前記燃料改質装置内の改質触媒層の上流側、 前記燃料改質装置に設けられている改質触媒層中、 のうちの少なくとも一箇所に 配設されている
ことを特徴とする燃料電池発電:
4. 請求の範囲 1から請求の範囲 3のいずれかにおいて、
前記酸素吸収剤が、 クロム (C r) 、 マンガン (Mn) 、 鉄 (F e) 、 コバル ト (Co) 、 ニッケル (N i) 、 銅 (Cu) 、 亜鉛 (Zn) のうちの少なくとも 一種からなる
ことを特徴とする燃料電池発電システム。
5 . 燃料改質装置と燃料電池本体とを備えた燃料電池発電システムにおいて、 前記燃料改質装置の加熱用のパーナから排出されたバーナ排ガス、 前記燃料電 池本体の力ソードから排出される排空気、 系外からの空気のうちの少なくとも一 種の原ガスを前記燃料改質装置内へ送給する原ガス送給手段と、
前記原ガス中の酸素を吸収して当該原ガスから酸素を除去して不活性ガスを生 成させる酸素吸収液を具備する不活性ガス生成手段と
を備えていることを特徴とする燃料電池発電:
6 . 請求の範囲 5において、
前記酸素吸収液が、 N a 2 S〇 3溶液である
ことを特徴とする燃料電池発電 V
7 . 燃料改質装置と燃料電池本体とを備えた燃料電池発電システムにおいて、 前記燃料電池本体のアノードから排出されるアノード排ガス、 前記燃料改質装 置で改質された改質ガスのうちの少なくとも一種の原ガスを送給されて当該原ガ ス中の二酸化炭素を吸収するァミン水溶液を具備する二酸化炭素回収手段と、 前記二酸化炭素'回収手段の前記ァミン水溶液を加熱すること'により当該ァミン 水溶液から二酸化炭素を離脱させて前記燃料改質装置内へ送給する二酸化炭素送 給手段と
を具備する不活性ガス生成手段を備えている
ことを特徴とする燃料電池発電 V
8 . 請求の範囲 7において、
前記二酸化炭素回収手段で二酸化炭素を回収された前記原ガスを前記燃料改質 装置の前記パーナに供給する原ガス再利用手段を備えている
ことを特徴とする燃料電池発電システム。
9 . 請求の範囲 7又は請求の範囲 8において、
前記燃料改質装置内へ送給される前記二酸化炭素から水分を回収する水分回収 手段と、
前記水分回収手段で回収された前記水分を前記二酸化炭素回収手段の前記アミ ン水溶液に戻す水分再利用手段と
を備えていることを特徴とする燃料電池発電システム。
1 0 . 請求の範囲 1から請求の範囲 4のいずれかの燃料電池発電システムの運 転方法であって、
発電運転停止の際に、 前記不活性ガス生成手段で不活性ガスを生成して、 当該 不活性ガスで前記燃料改質装置内に残留する残留物質を除去して不活性ガスパー ジする
ことを特徴とする燃料電池発電システムの運転方法。
1 1 . 請求の範囲 1 0において、
前記燃料改質装置で改質された改質ガス又は前記燃料電池本体のァノードから 排出されたアノード排ガスにより、 前記不活性ガス生成手段の前記酸素吸着剤を 還元して再生処理する
ことを特徴とする燃料電池発電システムの運転方法。
1 2 . 請求の範囲 1 1において、
発電運転の際に前記再生処理を行う
ことを特徴とする燃料電池発電システムの運転方法。
1 3 . 請求の範囲 5又は請求の範囲 6の燃料電池発電システムの運転方法であ つて、
発電運転停止の際に、 前記不活性ガス生成手段で不活性ガスを生成して、 当該 不活性ガスで前記燃料改質装置内に残留する残留物質を除去して不活性ガスパー ジする
ことを特徴とする燃料電池発電システムの運転方法。
1 4 . 請求の範囲 7から請求の範囲 9のいずれかの燃料電池発電システムの運 転方法であって、
発電運転中に、 前記不活性ガス生成手段の前記二酸化炭素回収手段により前記 原ガス中の二酸化炭素を回収し、
発電運転停止の際に、 前記不活性ガス生成手段の前記二酸化炭素送給手段を作 動させて、 前記ァミン水溶液から不活性ガスを発生させることにより、 前記燃料 改質装置内に残留する残留物質を除去して不活性ガスパージする
ことを特徴とする燃料電池発電システムの運転方法。
1 5 . 請求の範囲 1 4において、
発電運転中に、 前記二酸化炭素回収手段で二酸化炭素を回収された前記原ガス を前記燃料改質装置の前記パーナに供給する
ことを特徴とする燃料電池発電システムの運転方法。 '
1 6 . 請求の範囲 1 4又は請求の範囲 1 5において、
発電運転停止の際に、 前記二酸化炭素送給手段により前記燃料改質装置内へ送 給される前記二酸化炭素から水分を回収して、 当該水分を前記二酸化炭素回収手 段の前記ァミン水溶液に戻す
ことを特徴とする燃料電池発電システムの運転方法。
1 7 . 請求の範囲 1 0から請求の範囲 1 6のいずれかにおいて、
前記不活性ガスで前記燃料改質装置内をパージする前に、 当該燃料改質装置内 の残留物質を水蒸気で除去する ことを特徴とする燃料電池発電システムの運転方法。
1 8 . 請求の範囲 1 7において、
前記燃料改質装置内の残留物を水蒸気で除去した後に、 当該燃料改質装置の前 記パーナに空気のみを流して当該燃料改質装置を冷却して力 ら、 当該燃料改質装 置内を不活性ガスでパージする
ことを特徴とする燃料電池発電システムの運転方法。
1 9 . 請求の範囲 1 7又は請求の範囲 1 8において、
前記燃料改質装置内の残留物を除去する水蒸気が、 当該燃料改質装置内の酸化 を防止するのに必要十分な量の燃料ガスを混入されたものである
ことを特徴とする燃料電池発電システムの運転方法。
2 0 . 請求の範囲 1 0から請求の範囲 1 9のいずれかにおいて、
発電運転の開始に際して、 前記燃料改質装置の前記パーナのみを作動させて当 該燃料改質装置を加熱昇温させ、 当該燃料改質装置の昇温途中で、 当該記燃料改 質装置内の酸化を防止するのに必要十分な量の燃料ガスを混入させた水蒸気を当 該燃料改質装置に送給し、 当該燃料改質装置の昇温完了後、 前記燃料電池本体の 作動に応じた必要量で当該燃料ガスを供給して、 発電運転を開始する
ことを特徴とする燃料電池発電システムの運転方法。
PCT/JP2003/005353 2002-05-02 2003-04-25 Systeme de generation electrique a pile a combustible et procede de fonctionnement de ce systeme WO2003094273A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004502393A JP4444098B2 (ja) 2002-05-02 2003-04-25 燃料電池発電システム及びその運転方法
CA002479660A CA2479660C (en) 2002-05-02 2003-04-25 Fuel cell power generation system and method for operating same
EP03719202A EP1513207B1 (en) 2002-05-02 2003-04-25 Fuel cell power generation system and method for operating the same
US10/509,741 US7387650B2 (en) 2002-05-02 2003-04-25 Fuel cell power generation system and method for operating the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-130315 2002-05-02
JP2002130315 2002-05-02
JP2002-198615 2002-07-08
JP2002198615 2002-07-08

Publications (1)

Publication Number Publication Date
WO2003094273A1 true WO2003094273A1 (fr) 2003-11-13

Family

ID=29405310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005353 WO2003094273A1 (fr) 2002-05-02 2003-04-25 Systeme de generation electrique a pile a combustible et procede de fonctionnement de ce systeme

Country Status (6)

Country Link
US (1) US7387650B2 (ja)
EP (1) EP1513207B1 (ja)
JP (1) JP4444098B2 (ja)
CN (1) CN100336259C (ja)
CA (1) CA2479660C (ja)
WO (1) WO2003094273A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006061245A1 (de) * 2004-12-10 2006-06-15 European Fuel Cell Gmbh Brennstoffzellenheizgerät sowie verfahren zum betreiben eines brennstoffzellenheizgeräts
JP2006286472A (ja) * 2005-04-01 2006-10-19 Toshiba Fuel Cell Power Systems Corp 燃料処理装置、燃料電池発電装置及びその起動方法
JP2006294466A (ja) * 2005-04-12 2006-10-26 Mitsubishi Electric Corp 燃料電池発電システム
JP2007031179A (ja) * 2005-07-25 2007-02-08 Uchiya Thermostat Kk 窒素ガス発生装置及びそれを用いた燃料電池発電システム
JP2007169113A (ja) * 2005-12-22 2007-07-05 Uchiya Thermostat Kk 窒素ガス発生装置
JP2008071729A (ja) * 2006-09-12 2008-03-27 Samsung Sdi Co Ltd 燃料電池システムおよび燃料電池システムの稼動停止方法
JP2010003491A (ja) * 2008-06-19 2010-01-07 Casio Comput Co Ltd 燃料電池装置及び電子機器
JP2012022968A (ja) * 2010-07-16 2012-02-02 Mitsubishi Heavy Ind Ltd 燃料電池発電システム
JP2013181699A (ja) * 2012-03-01 2013-09-12 Bridgestone Corp 不活性ガスの製造方法
JP2015026624A (ja) * 2009-08-24 2015-02-05 セルエラ, インコーポレイテッド アルカリ燃料電池における空気co2に対する耐性を確保するシステムおよび方法
WO2022092052A1 (ja) * 2020-10-30 2022-05-05 三菱重工業株式会社 燃料電池発電システム、及び、燃料電池発電システムの制御方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4421178B2 (ja) * 2002-09-18 2010-02-24 本田技研工業株式会社 燃料電池スタック
JP4486353B2 (ja) * 2003-12-05 2010-06-23 パナソニック株式会社 水素生成装置および水素生成装置の作動停止方法並びに燃料電池発電装置
US20060110634A1 (en) * 2004-11-24 2006-05-25 Volker Formanski Method and apparatus for preventing condensation in cathode exhaust conduit of fuel cell
US7615304B2 (en) * 2005-10-28 2009-11-10 General Electric Company SOFC systems to power a liquid or gas fuel pumping station
US20070154745A1 (en) * 2005-12-29 2007-07-05 Michael Penev Purging a fuel cell system
JP5065605B2 (ja) * 2006-03-02 2012-11-07 Jx日鉱日石エネルギー株式会社 水素製造装置および燃料電池システム並びにその運転方法
JP4724029B2 (ja) * 2006-03-27 2011-07-13 アイシン精機株式会社 改質装置の運転停止方法
DE102006046676A1 (de) * 2006-09-29 2008-04-17 J. Eberspächer GmbH & Co. KG Brennstoffzellensystem und zugehöriges Betriebsverfahren
DE102007023417A1 (de) * 2007-05-18 2008-11-20 Daimler Ag Heizvorrichtung für Kondensatableiter
DE102008013150B4 (de) * 2008-03-07 2012-01-26 Airbus Operations Gmbh Mischsystem und Verfahren zur Inertisierung eines Gasvolumens sowie deren Verwendung
EP2336083A1 (en) * 2009-12-17 2011-06-22 Topsøe Fuel Cell A/S Gas generator and processes for the conversion of a fuel into an oxygen-depleted gas and/or hydrogen-enriched gas
US8945368B2 (en) 2012-01-23 2015-02-03 Battelle Memorial Institute Separation and/or sequestration apparatus and methods
AT518956B1 (de) * 2016-08-02 2019-04-15 Avl List Gmbh Verfahren zum herunterfahren einer generatoreinheit mit einer brennstoffzellenvorrichtung
CN117154153B (zh) * 2023-09-20 2024-04-30 江苏核电有限公司 一种氢能燃料电池备用系统及其使用方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112263A (ja) * 1983-11-24 1985-06-18 Mitsubishi Electric Corp 燃料電池発電装置
JPS6124155A (ja) * 1984-07-13 1986-02-01 Mitsubishi Electric Corp 燃料電池発電システム
EP0550892A1 (en) * 1991-12-24 1993-07-14 Kabushiki Kaisha Toshiba Power generation plant including fuel cell
JPH05217593A (ja) * 1992-01-31 1993-08-27 Toshiba Corp 燃料電池発電プラント
JPH06203865A (ja) 1993-01-06 1994-07-22 Sanyo Electric Co Ltd 燃料電池システム
JPH08243386A (ja) * 1995-03-10 1996-09-24 Hidefumi Hirai 新規な複合体およびその製造方法、ならびに該複合体よりなる酸素吸着剤
JPH1126004A (ja) * 1997-07-02 1999-01-29 Toshiba Corp 発電システム
JPH11191426A (ja) 1997-12-26 1999-07-13 Sanyo Electric Co Ltd 燃料電池発電システム
JP2000277138A (ja) 1999-03-24 2000-10-06 Matsushita Electric Works Ltd 燃料電池発電システム
JP2002020102A (ja) * 2000-06-30 2002-01-23 Mitsubishi Kakoki Kaisha Ltd 水素製造装置の起動方法およびその停止方法
JP2002034102A (ja) 2000-07-14 2002-01-31 Fuji Electric Co Ltd 燃料電池車両と同車両用改質器の停止方法
JP2002110207A (ja) * 2000-10-03 2002-04-12 Nippon Mitsubishi Oil Corp 燃料電池システムおよびその運転方法
JP2002280038A (ja) * 2001-03-21 2002-09-27 Matsushita Electric Ind Co Ltd 燃料電池発電システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312902B2 (ja) * 1972-03-27 1978-05-06
US4287170A (en) * 1980-03-06 1981-09-01 Erickson Donald C Nitrogen and oxygen via chemical air separation
JPH03112263A (ja) * 1989-09-26 1991-05-13 Nec Corp ファクシミリ装置の診断方式
JP3515789B2 (ja) 1992-01-27 2004-04-05 株式会社東芝 燃料電池発電プラント
JPH07169493A (ja) 1993-12-17 1995-07-04 Toshiba Corp 燃料電池発電プラントの可燃性ガスパージ装置
JPH09330731A (ja) 1996-04-11 1997-12-22 Mitsui Petrochem Ind Ltd 燃料電池発電における炭酸ガス、窒素ガス及びアルゴンガスの回収、固定方法
US7138046B2 (en) * 1996-06-06 2006-11-21 World Hydrogen Energy Llc Process for production of hydrogen from anaerobically decomposed organic materials
US6153163A (en) 1998-06-03 2000-11-28 Praxair Technology, Inc. Ceramic membrane reformer
US6200696B1 (en) * 1999-02-16 2001-03-13 Energy Research Corporation Internal reforming fuel cell assembly with simplified fuel feed
JP2000277137A (ja) 1999-03-24 2000-10-06 Matsushita Electric Works Ltd 燃料電池発電システムの残留ガスのパージ方法
JP2001180908A (ja) 1999-12-27 2001-07-03 Matsushita Electric Ind Co Ltd 水素発生装置およびその起動方法、停止方法
JP4533515B2 (ja) * 2000-08-16 2010-09-01 三菱重工業株式会社 合成ガスの製造方法
US6620537B2 (en) * 2001-02-15 2003-09-16 Ralph C. Struthers Hydrocarbon fueled hydrogen fuel generator system and apparatus in combination with hydrogen fuel cells

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112263A (ja) * 1983-11-24 1985-06-18 Mitsubishi Electric Corp 燃料電池発電装置
JPS6124155A (ja) * 1984-07-13 1986-02-01 Mitsubishi Electric Corp 燃料電池発電システム
EP0550892A1 (en) * 1991-12-24 1993-07-14 Kabushiki Kaisha Toshiba Power generation plant including fuel cell
JPH05217593A (ja) * 1992-01-31 1993-08-27 Toshiba Corp 燃料電池発電プラント
JPH06203865A (ja) 1993-01-06 1994-07-22 Sanyo Electric Co Ltd 燃料電池システム
JPH08243386A (ja) * 1995-03-10 1996-09-24 Hidefumi Hirai 新規な複合体およびその製造方法、ならびに該複合体よりなる酸素吸着剤
JPH1126004A (ja) * 1997-07-02 1999-01-29 Toshiba Corp 発電システム
JPH11191426A (ja) 1997-12-26 1999-07-13 Sanyo Electric Co Ltd 燃料電池発電システム
JP2000277138A (ja) 1999-03-24 2000-10-06 Matsushita Electric Works Ltd 燃料電池発電システム
JP2002020102A (ja) * 2000-06-30 2002-01-23 Mitsubishi Kakoki Kaisha Ltd 水素製造装置の起動方法およびその停止方法
JP2002034102A (ja) 2000-07-14 2002-01-31 Fuji Electric Co Ltd 燃料電池車両と同車両用改質器の停止方法
JP2002110207A (ja) * 2000-10-03 2002-04-12 Nippon Mitsubishi Oil Corp 燃料電池システムおよびその運転方法
JP2002280038A (ja) * 2001-03-21 2002-09-27 Matsushita Electric Ind Co Ltd 燃料電池発電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1513207A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182748B1 (ko) * 2004-12-10 2012-09-13 박시 이노테크 게엠베하 연료 전지 가열장치 및 연료 전지 가열장치의 작동방법
JP2008535148A (ja) * 2004-12-10 2008-08-28 ヨーロピアン・フュエル・セル・ゲゼルシャフト・ミット・ベシュレンタク・ハフツング 燃料電池加熱装置および燃料電池加熱装置の運転方法
WO2006061245A1 (de) * 2004-12-10 2006-06-15 European Fuel Cell Gmbh Brennstoffzellenheizgerät sowie verfahren zum betreiben eines brennstoffzellenheizgeräts
JP2006286472A (ja) * 2005-04-01 2006-10-19 Toshiba Fuel Cell Power Systems Corp 燃料処理装置、燃料電池発電装置及びその起動方法
JP2006294466A (ja) * 2005-04-12 2006-10-26 Mitsubishi Electric Corp 燃料電池発電システム
JP2007031179A (ja) * 2005-07-25 2007-02-08 Uchiya Thermostat Kk 窒素ガス発生装置及びそれを用いた燃料電池発電システム
JP2007169113A (ja) * 2005-12-22 2007-07-05 Uchiya Thermostat Kk 窒素ガス発生装置
JP2008071729A (ja) * 2006-09-12 2008-03-27 Samsung Sdi Co Ltd 燃料電池システムおよび燃料電池システムの稼動停止方法
JP2010003491A (ja) * 2008-06-19 2010-01-07 Casio Comput Co Ltd 燃料電池装置及び電子機器
JP2015026624A (ja) * 2009-08-24 2015-02-05 セルエラ, インコーポレイテッド アルカリ燃料電池における空気co2に対する耐性を確保するシステムおよび方法
JP2012022968A (ja) * 2010-07-16 2012-02-02 Mitsubishi Heavy Ind Ltd 燃料電池発電システム
JP2013181699A (ja) * 2012-03-01 2013-09-12 Bridgestone Corp 不活性ガスの製造方法
WO2022092052A1 (ja) * 2020-10-30 2022-05-05 三菱重工業株式会社 燃料電池発電システム、及び、燃料電池発電システムの制御方法

Also Published As

Publication number Publication date
CA2479660C (en) 2009-11-24
EP1513207A4 (en) 2009-12-02
CA2479660A1 (en) 2003-11-13
CN1650459A (zh) 2005-08-03
EP1513207B1 (en) 2012-05-23
US7387650B2 (en) 2008-06-17
US20050112423A1 (en) 2005-05-26
EP1513207A1 (en) 2005-03-09
JP4444098B2 (ja) 2010-03-31
CN100336259C (zh) 2007-09-05
JPWO2003094273A1 (ja) 2005-09-08

Similar Documents

Publication Publication Date Title
WO2003094273A1 (fr) Systeme de generation electrique a pile a combustible et procede de fonctionnement de ce systeme
US7361199B2 (en) Combined water gas shift reactor/carbon dioxide adsorber for use in a fuel cell system
US7524344B2 (en) Carbon monoxide adsorption for carbon monoxide clean-up in a fuel cell system
US9112201B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
CN110937574A (zh) 一种甲醇重整制氢设备、包含其的制氢系统
Hao et al. Elevated temperature pressure swing adsorption using LaNi4. 3Al0. 7 for efficient hydrogen separation
CN100463261C (zh) 燃料电池系统及其运行方法
JP2004284875A (ja) 水素製造システムおよび燃料電池システム
JP5148176B2 (ja) 燃料改質装置の前処理方法および気密試験方法、並びに燃料電池発電システムの運転前処理方法
WO2001004046A1 (fr) Procede de production d'energie electrique a l'aide d'une pile a combustible et systeme de production d'energie electrique utilisant une pile a combustible
JP4357756B2 (ja) メンブレンリフォーマによる高純度水素製造システム
CN103224225B (zh) 氩气的纯化方法及纯化装置
JP2005179083A (ja) 水素製造装置および燃料電池システム並びにその運転方法
JP2005179081A (ja) 水素製造装置および燃料電池システム並びにその運転方法
JP4041085B2 (ja) 燃料ガス製造システム及びその停止方法
JP2022076978A (ja) 燃料電池から排出されるオフガスを処理するためのシステムおよび方法。
JP4523313B2 (ja) 水素ガス製造発電システム及びその運転方法
JP2005285626A (ja) 燃料ガス製造発電システム
JP2004299994A (ja) 水素製造装置
WO2005005313A1 (ja) 燃料処理装置及びその方法
JP2005179082A (ja) 水素製造装置および燃料電池システム並びにその運転方法
JP2004075440A (ja) 水素製造装置
JP2010244909A (ja) 燃料電池の燃料水素製造用原料の前処理システム
JP2005256708A (ja) 燃料供給システム
JP2005093214A (ja) 燃料電池用水素製造システムへの液化石油ガス供給方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2479660

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004502393

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10509741

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003719202

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038094924

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003719202

Country of ref document: EP