WO2005005313A1 - 燃料処理装置及びその方法 - Google Patents

燃料処理装置及びその方法 Download PDF

Info

Publication number
WO2005005313A1
WO2005005313A1 PCT/JP2004/010259 JP2004010259W WO2005005313A1 WO 2005005313 A1 WO2005005313 A1 WO 2005005313A1 JP 2004010259 W JP2004010259 W JP 2004010259W WO 2005005313 A1 WO2005005313 A1 WO 2005005313A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fuel
reactor
purge
purge gas
Prior art date
Application number
PCT/JP2004/010259
Other languages
English (en)
French (fr)
Inventor
Hideo Miyahara
Yasuhiro Arai
Masatoshi Tanaka
Tatsuya Kuze
Makoto Harada
Original Assignee
Toshiba Fuel Cell Power Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Fuel Cell Power Systems Corporation filed Critical Toshiba Fuel Cell Power Systems Corporation
Priority to JP2005511608A priority Critical patent/JPWO2005005313A1/ja
Priority to EP04747723A priority patent/EP1659095A1/en
Publication of WO2005005313A1 publication Critical patent/WO2005005313A1/ja
Priority to US11/331,315 priority patent/US20060115412A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention particularly relates to a fuel processing apparatus for a fuel cell, and more particularly to a fuel processing apparatus including a residual gas purging function.
  • a fuel cell (or system) is roughly divided into a fuel cell main body and a fuel processor for supplying fuel to the fuel cell main body.
  • the fuel processor roughly converts a raw fuel such as city gas, naphtha, propane, or the like into a hydrogen-rich reformed gas and supplies it to the fuel cell body.
  • Fuel processors include, for example, desulfurizers, reforming reactors, carbon monoxide
  • Desulfurizers are devices that mainly remove sulfur compounds from raw fuels.
  • the reforming reactor is a main reactor that generates a hydrogen rich gas, that is, a reformed gas mainly composed of hydrogen gas, from raw fuel from which sulfur compounds have been removed by a desulfurizer.
  • the CO conversion reactor and the CO selective oxidation reactor are reactors for removing carbon monoxide (CO) contained in the reformed gas generated in the reforming reactor.
  • the sulfur of this sulfur compound is converted into a reforming reactor, a CO shift reactor, and a CO selective acid. It has been confirmed that the catalyst adsorbs to the catalyst used in the chemical reaction reactor or the fuel cell body, and the catalytic performance decreases. Such a state in which a sulfur compound is adsorbed on a catalyst or the like is sometimes referred to as sulfur poisoning.
  • a desulfurizer is used to remove sulfur compounds contained in the raw fuel.
  • a process for removing carbon monoxide (C O) from the reformed gas is performed by a C O shift reactor and a C O selective oxidation reactor.
  • the fuel processing device stops the supply of the reformed gas to the fuel cell main body along with the stop of the supply of the raw fuel.
  • the fuel processing apparatus When the operation is stopped, the fuel processing apparatus contains flammable residual gas such as raw fuel already supplied and generated reformed gas.
  • the fuel processing apparatus is provided with a function of discharging the residual gas from the inside of the apparatus when the supply of the raw fuel is stopped (this is called purge).
  • a method has been proposed in which nitrogen gas is flown through a gas flow path (including each reactor) in the apparatus to purge residual gas (for example, Japanese Patent Publication No. 200 0-2 7 7 1 3 7).
  • An object of the present invention is to provide a fuel processing apparatus capable of reliably purging a residual gas and preventing the diffusion of sulfur poisoning in the apparatus.
  • a fuel processing apparatus includes a reactor for introducing a raw fuel, converting the raw fuel into a hydrogen-rich reformed gas, and supplying the reformed gas.
  • a purge gas supply means for supplying a purge gas for purging the residual gas; and a gas flow path including the reactor, wherein the gas is supplied from the purge gas supply means in a direction opposite to a flow direction of the reformed gas.
  • a flow control means for flowing the purge gas.
  • FIG. 1 is a block diagram illustrating a configuration of a fuel processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a specific configuration of the fuel processing apparatus according to the present embodiment.
  • FIG. 3 is a view for explaining a purge process according to the present embodiment.
  • 4A to 4C are diagrams showing experimental data on sulfur poisoning in the fuel processor according to the present embodiment.
  • FIG. 5 is a diagram for explaining a purge process according to another embodiment.
  • FIG. 1 is a block diagram illustrating a basic configuration of a fuel processing apparatus according to the present embodiment.
  • the purge gas described later is a combination of steam and air.
  • the purge gas can be applied to any of steam only, a combination of steam and air and an inert gas, a combination of steam and an inert gas, a combination of an inert gas and air, or a combustion exhaust gas.
  • the inert gas includes nitrogen gas, carbon dioxide gas, and a mixed gas thereof.
  • the same direction as the direction in which the reformed gas flows is defined as the forward direction, and the direction opposite to the direction of the reformed gas is defined as the reverse direction in the gas flow path in the fuel processor.
  • the fuel processor 10 of the present embodiment supplies hydrogen gas fuel (reformed gas) to the fuel cell body 20 as a component of the fuel cell power generation system 1.
  • the fuel processor 10 converts the raw fuel 100 supplied from the outside into a hydrogen-rich reformed gas and supplies it to the fuel cell body 20 as described later.
  • Raw fuel 100 means, for example, city gas, Naphtha, propane, digestive gas, kerosene, etc.
  • the fuel processing device 10 of the present embodiment has a gas flow control device for controlling the gas flow passage of the reformed gas and the purge gas 200.
  • the gas flow control device conceptually includes a gas flow path control unit 30A, 30B for controlling the flow of the purge gas 200, and a flow path control of the reformed gas.
  • Part 30 C
  • the gas flow control device When operating the fuel cell power generation system 1, that is, when supplying the raw fuel 100, the gas flow control device controls the flow passage control units 30A and 30B to be in a cutoff state. Then, the gas flow control device controls the flow passage control unit 30C to the open state to supply the reformed gas generated by the fuel processing device 10 to the fuel cell body 20.
  • the gas flow control device controls the flow passage control unit 30C to be in a shut-off state, and the gas flow control unit is changed to the fuel cell body 20. Stop the supply of quality gas.
  • the gas flow control device controls the flow path control units 30 A and 30 B to introduce the purge gas 200 and to control the gas flow path inside the fuel processing device 10 (described later). (Including various types of reactors), and discharged outside the fuel processor 10.
  • the gas flow control device allows the purge gas (air in this embodiment) 200 to flow in a direction opposite to the flow direction (forward direction) of the reformed gas, and the gas remains in the fuel processor 10. Exhaust residual gas.
  • the fuel processor 100 introduces the raw fuel 100 from the raw fuel supplier 2, further introduces steam from the steam generator 3, and introduces air from the air supplier 4. Water vapor and air are used as a purge gas for purging residual gas, as described later.
  • the fuel cell body 20 has a cathode electrode and an anode electrode provided with a catalyst layer containing a noble metal such as platinum.
  • the fuel cell body 20 is constituted by stacking a large number of cells, each of which is a cell composed of an electrolyte membrane such as a solid polymer membrane sandwiched therebetween, and reacting hydrogen and oxygen. To generate electricity.
  • the fuel cell body 20 is supplied with hydrogen gas as a reformed gas from the fuel processor 10. Further, as shown in FIG. 3, in the fuel cell main body 20, air is supplied from the power source air supply device 5 to the power source electrode.
  • the power source air supply device 5 may be configured to supply air at a high pressure by a blower or the like.
  • the raw fuel supplier 2 generally supplies raw fuel 100 extracted from hydrocarbons such as city gas.
  • the raw fuel 100 is naturally or sulfur-added artificially to ensure safety.
  • the steam generator 3 supplies steam as a purge gas to a gas flow path including the reforming reactor 12 and the carbon monoxide conversion reactor 13.
  • the air supply device 4 supplies air to the carbon monoxide (CO) selective oxidation reactor 14 in addition to supplying air as a purge gas.
  • the air supply device 4 may be configured to supply air at a high pressure by a blower or the like.
  • the fuel processor 10 includes a desulfurizer 11, a reforming reactor 12, a carbon monoxide (CO) conversion reactor 13, and a carbon monoxide (CO) selective oxidation reaction. Vessel 14.
  • the fuel processing device 10 has a gas flow control device including a controller 31 and a plurality of flow passage control units 32 to 38.
  • the flow passage control units 32 to 38 specifically include motorized valves V32, V33, V35 to V4 for controlling gas flow. It is 0.
  • the controller 31 controls the operation (opening / closing operation) of each of the flow passage controllers 32 to 38.
  • the desulfurizer 11 removes a sulfur compound contained in the raw fuel 100 by a catalytic action or an adsorptive action.
  • the reforming reactor 12 reacts the raw fuel 100 from which the sulfur compounds have been desulfurized in the desulfurizer 11 with steam to generate a hydrogen-rich gas.
  • the reforming reactor 12 may be any of a steam reforming reactor, a partial oxidation reactor, an automatic thermal reactor, and the like. However, in the present embodiment, a steam reformer is assumed as the reforming reactor 12.
  • the raw fuel and steam are reacted at an outlet temperature of about 300 ° C to 850 ° C to generate hydrogen-rich reformed gas. I have. Since the reaction at this time is an endothermic reaction, the temperature of the reforming catalyst layer is raised by the reforming combustor 15.
  • the carbon monoxide (CO) shift reaction reactor 13 reduces carbon monoxide (CO) contained in the reformed gas from the reforming reactor 12 by reacting with steam under a catalyst.
  • the reformed gas generally contains about 10% CO.
  • the CO reforming reactor 13 reduces the CO to about 1% or less.
  • the reaction temperature at this time is about 200 ° C. to 300 ° C.
  • the carbon monoxide selective oxidation reactor 14 reduces the carbon monoxide remaining in the reformed gas sent from the CO conversion reactor 13 by reacting with oxygen in the air under the catalyst.
  • the reaction temperature is about 100 ° C to 200 ° C.
  • the controller 31 opens the flow passage control sections 32, 33, 36, 38, and sends the reformed gas from the fuel processor 10 to the controller. Is supplied to the fuel cell body 20.
  • the gas flow control will be specifically described with reference to FIG.
  • the controller 31 opens the motor-operated valve V 38 as shown in FIG. 3, and supplies the air from the air supply device 4 to the CO selective oxidation reactor 14 via the pipe P 9. At this time, the controller 31 closes the motor-operated valve V37 to shut off the air flow. Further, the controller 31 opens the electric valve V 39, and supplies the steam from the steam generator 3 to the reforming reactor 12 via the pipe P 2.
  • the controller 31 controls the motor-operated valves V32, V33, and V36 to open.
  • the raw fuel 100 from the raw fuel feeder 2 is supplied to the reforming reactor 12 via the pipe P 1 after the sulfur compound is desulfurized by the desulfurizer 11. You.
  • the reforming reactor 12 reacts the raw fuel 100 from which the sulfur compounds have been desulfurized in the desulfurizer 11 with the steam from the steam generator 3 to generate a hydrogen-rich reformed gas. .
  • the reaction temperature at this time is an endothermic reaction.
  • the used reformed gas discharged from the fuel cell body 2 is used as the fuel in the reforming combustor 15.
  • the reformed gas from the reforming reactor 12 is supplied to the CO conversion reactor 13 via the pipe P5.
  • a shift reaction is performed to convert hydrogen and carbon dioxide (C 02) by carbon monoxide (CO) and steam contained in the reformed gas.
  • CO carbon monoxide
  • the reformed gas is supplied from the CO conversion reactor 13 to the CO selective oxidation reactor 14 via the pipe P6.
  • the carbon monoxide remaining in the reformed gas is oxidized to carbon dioxide by air supplied from the air supply unit 4 via the pipe P9. This allows Further, the reformed gas whose co is further reduced is supplied to the fuel cell body 20 as a fuel gas for the anode electrode.
  • the hydrogen-rich reformed gas is supplied to the anode electrode of the fuel cell body 20 as fuel gas.
  • air is supplied to the power source pole from the power source air supply device 5 as described above.
  • the hydrogen gas is ionized by the action of the catalyst at the anode electrode, and is separated into protons and electrons.
  • the proton is conducted to the force source electrode through the solid polymer electrolyte membrane.
  • the electrons are conducted to the force source pole through an external circuit. At this force source pole, water production reaction occurs by protons, electrons, and oxygen.
  • the flow (current) of electrons through an external circuit makes it possible to extract DC power. That is, power generation by the fuel cell body 20 is realized.
  • the fuel processor 10 executes the purging process for purging (discharging) the residual gas together with stopping the supply of the raw fuel 100 from the raw fuel supplier 2. .
  • the steam as the purge gas flows in the forward direction (the same direction as the reformed gas), and then the empty as the purge gas. Let the qi flow in the opposite direction. By the supply of the air, the moisture by the steam used for purging the residual gas is removed.
  • the fuel processing apparatus 10 of the present embodiment includes an exhaust gas processing apparatus 16 for processing (eg, removing sulfur oxides) residual gas to be purged.
  • an exhaust gas processing apparatus 16 for processing (eg, removing sulfur oxides) residual gas to be purged.
  • the controller 31 opens the motor-operated valve V 39, introduces steam from the steam generator 3, and transfers the water vapor via the pipe P 2 to the reforming reactor 12.
  • the controller 31 opens the motor-operated valve V35 to transfer the steam from the reforming reactor 12 forward via the pipes P5, P6, P7, and P10. Flow (direction indicated by solid line).
  • the residual gas is discharged into the exhaust gas while cooling the reforming reactor 12, the CO shift reactor 13, and the CO selective oxidation reactor 14. Purge to controller 16.
  • the controller 31 opens the motor-operated valves V 37 and V 40 and sends air from the air supply device 4 to the reforming reactor 12 via pipes P 8 and P 5. Flow in the opposite direction. That is, the air passes through the reforming reactor 12 and flows in the opposite direction via the pipe P 3 and the electric valve V 40 (the direction indicated by the dotted line).
  • the air from the air supply device 4 is split in the pipe P5, and also flows in the direction of the CO conversion reactor 13, the CO selective oxidation reactor 14, and the pipe P10.
  • water vapor is purged as a purge gas.
  • the residual gas can be purged while cooling the reforming reactor 12, the CO shift reactor 13, and the C0 selective oxidation reactor 14.
  • the activity of the catalyst can be recovered from the reaction between the sulfur compound and oxygen adsorbed on the catalyst of the reforming reactor 12. Further, since the diffusion of sulfur poisoning inside the fuel processing device 10 can be suppressed, the life of the device can be extended as a result.
  • FIG. 4 (A) relates to the reforming reactor 12
  • FIG. 4 (B) relates to the carbon monoxide conversion reactor 13
  • FIG. 4 (C) shows the catalyst layer for the carbon monoxide selective oxidation reactor 14. It is an experimental result showing the amount of sulfur poisoning.
  • curve 400 indicates the sulfur poisoning amount after power generation
  • curve 4001 indicates the sulfur poisoning amount when steam and air flow in the forward direction
  • Curve 402 is a purge process of the present embodiment. It shows the sulfur poisoning amount when air is flowed in the opposite direction as the purge gas.
  • the horizontal axis and the vertical axis are arbitrary units (arbitrary units).
  • the sulfur concentration distribution in the catalyst layer after power generation is relatively small regardless of whether the direction of flowing steam or air is forward or reverse. I have. Especially near the entrance, the decrease is remarkable. This means that the sulfur adsorbed on the poisoned catalyst was removed and activated (hereinafter, this result is called “catalyst activation phenomenon”).
  • the catalyst in the carbon monoxide selective oxidation reactor 14 after power generation was hardly poisoned.
  • the catalyst to the outlet side is poisoned, and poisoning of the catalyst is hardly detected when flowing in the opposite direction. It has been lost.
  • the reaction temperature of the reforming reactor 12 is about 300 ° C. to 850 ⁇ .
  • the reaction temperature of the carbon monoxide conversion reactor 13 is about 200 to 300 ° C.
  • the reaction temperature of the carbon monoxide selective oxidation reactor 14 is about 100 to 200.
  • the reaction temperature of the fuel cell body 20 is about 50 to 100 ° C. That is, the reaction temperature decreases along the direction of the fuel cell body 20.
  • the steam cools the reforming reactor 12 and flows to the carbon monoxide converter 13. If the temperature of the reforming reactor 12 is 80 Ot, the steam that has cooled the reforming reactor 12 and has become hot flows into the carbon monoxide converter 13 at about 300 ° C. As a result, the carbon monoxide shift reactor 13 cannot be sufficiently cooled, and the carbon monoxide shift reactor 13 may instead be heated, thereby lowering the cooling efficiency. .
  • an electric valve is assumed as the gas flow path control unit, but a manual valve may be used. However, in the case of a manual valve, the controller 31 becomes unnecessary.
  • the introduction of the air is started after the introduction of the water vapor. This is because mixing air with the combustible gas is dangerous. Therefore, the introduction of air can be started when the danger due to the reaction between the residual gas and air is reduced. At this point, by introducing air, the amount of condensed water due to steam can be reduced, and exhaust gas treatment can be completed in a short time.
  • the temperature of the reforming reactor 12 is in the range of 200 ° C. to 900 ° C.
  • the temperature of the carbon monoxide shift reactor 13 is about 100 ° C. ⁇ 550 ° C range
  • carbon monoxide selection The temperature of the oxidation reactor 14 is in the range of about 80 ° (: up to 250 ° C.)
  • the residual gas is removed by the exhaust gas treatment device 16 by the purging process. After being treated, it is released into the atmosphere, in which case the residual gas may be sent to an exhaust gas treatment device 16 via a reforming combustor 15.
  • FIG. 5 is a diagram for explaining a purge process of the fuel processor 10 according to another embodiment.
  • the purging process of the present embodiment is a configuration in which steam flows in the opposite direction together with air as a purge gas.
  • the present embodiment has a configuration in which the motor-operated valve V35 and the pipe P10 in FIG. 3 are omitted, and the motor-operated valves V41, V42 and the pipe P11 are added. .
  • the controller 31 shown in FIG. 2 opens the electric valves V 39, V 41, V 42, and V 40 shown in FIG. 5, and introduces steam from the steam generator 3. That is, the controller 31 allows the steam to flow in the reverse direction to the reforming reactor 12 via the pipe P 11 and the motor-operated valve V 41 (the direction indicated by the solid line).
  • controller 31 allows the steam to flow in the reverse direction to the CO shift reactor 13 via the pipe P11 and the motor-operated valve V42 (the direction indicated by the solid line). Since the operation of the controller 31 is stopped, the motor-operated valves V32 and V36 are controlled to be shut off.
  • the controller 31 opens the electric valves V 37 and V 40 and supplies air from the air supply unit 4 to the reforming reactor 1 via the pipes P 8 and P 5. Flow in the opposite direction to 2. That is, the air passes through the reforming reactor 12 and flows in the opposite direction via the pipe P 3 and the electric valve V 40.
  • the steam as the purge gas can also flow in the opposite direction as the air. Therefore, as described above, it is possible to prevent the poisoning and diffusion and to activate the catalyst, as well as to purge the residual gas. As a result, it is possible to extend the service life of the fuel processor 10, reduce the cost of the desulfurizer 11, improve the cooling efficiency, and save energy by reducing the amount of water vapor required for cooling.
  • a fuel cell or fuel It is possible to realize a fuel processing device that supplies fuel to the battery power generation system and reliably purges residual gas when the operation is stopped.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池本体20に水素リッチガスを供給する燃料処理装置10が開示されている。燃料処理装置10は、原燃料の供給停止時には、パージガスとして水蒸気を順方向に流し、空気を逆方向に流すパージ処理を実行する。このパージ処理により、装置内の残留ガスをパージする。

Description

明 細 書
燃料処理装置及びその方法
技術分野
本発明は、 特に燃料電池の燃料処理装置に関し、 残留ガス のパージ処理機能を含む燃料処理装置に関する。
背景技術
近年、 燃料電池又は燃料電池による発電システムの開発が 推進されている。 燃料電池 (又はシステム) は大別して、 燃 料電池本体と、 当該燃料電池本体に燃料を供給する燃料処理 装置とからなる。
燃料処理装置は、 概略的には都市ガス、 ナフサ、 プロパン 等の原燃料を、 水素リ ッチな改質ガスに変換して燃料電池本 体に供給する。
燃料処理装置は、 例えば脱硫器、 改質反応器、 一酸化炭素
( C O ) 変成反応器、 一酸化炭素 ( C O ) 選択酸化反応器等 によ り構成されている。
脱硫器は、 主として原燃料から硫黄化合物を除去するため の機器である。 改質反応器は、 脱硫器によ り硫黄化合物を除 去された原燃料から、 水素リ ッチガス、 即ち水素ガスを主成 分とする改質ガスを生成するメイ ン反応器である。
—方、 C O変成反応器及び C O選択酸化反応器は、 改質反 応器で生成された改質ガスに含まれる一酸化炭素 ( C O ) を 除去するための反応器である。 、
ところで、 原燃料に硫黄化合物が含まれている と、 この硫 黄化合物の硫黄が改質反応器、 C O変成反応器、 C O選択酸 化反応器あるいは燃料電池本体等に用い られている触媒に吸 着し、 触媒能力が低下する こ とが確認されている。 このよう な硫黄化合物が触媒等に吸着する状態を、 硫黄被毒と呼ぶこ とがある。
また、 改質ガスに一酸化炭素 ( C O ) が含まれている と、 燃料電池本体における電極の触媒が C O被毒の状態となり、 その触媒能力が低下する ことが確認されている。
そこで、 燃料処理装置では、 脱硫器によ り原燃料に含まれ る硫黄化合物が除去する脱硫処理が行なわれている。 また、 C O変成反応器及び C O選択酸化反応器によ り 、 改質ガスか ら一酸化炭素 ( C O ) を除去する処理が行なわれている。 次に、 燃料電池 (又は発電システム) の運転を停止させる ときは、 燃料処理装置は、 原燃料の供給停止に伴なつて、 燃 料電池本体に対する改質ガスの供給を停止する。
この運転停止時において、 燃料処理装置には、 既に供給さ れた原燃料や、 生成された改質ガス等の可燃性の残留ガスが 存在する。
このため、 燃料処理装置には、 原燃料の供給停止時に、 当 該残留ガス を装置内か ら排出 ( これをパージ : purge と呼 ぶ) する機能が設けられている。 具体的には、 装置内のガス 流通路 (各反応器を含む) に、 窒素ガスを流して、 残留ガス をパージするような方法が提案されている (例えば、 日本国 特許公開公報 2 0 0 0 - 2 7 7 1 3 7号を参照) 。
また、 別の方法として、 燃料電池本体の運転停止時に、 水 蒸気を流して残留ガスをパージし、 その後に空気を導入して 水蒸気の凝縮水を除去する方法が提案されている (例えば、 日本国特許公開公報 2 0 0 2 — 1 5 1 1 2 4号を参照) 。
しかしながら、 先行技術の方法のよう に、 窒素ガス、 水蒸 気、 または空気のようなパージガスを単に流すだけでは、 前 記の硫黄被毒が装置内のガス流通路に拡散してしまう可能性 が高い。 このため、 改質反応器などに使用されている触媒の 能力の低下を招く 問題がある。
発明の開示
本発明の目的は、 残留ガスを確実にパージする と共に、 装 置内に硫黄被毒の拡散を防止できる燃料処理装置を提供する ことにある。
本発明の観点に従った燃料処理装置は、 原燃料を導入して、 水素リ ツチな改質ガスに変換して供給するための反応器と、 前記原燃料の供給停止時に、 前記反応器の残留ガスをパージ するためのパージガスを供給するパージガス供給手段と、 前 記反応器を含むガス流通路において'、 前記改質ガスの流通方 向とは逆方向に、 前記パージガス供給手段から供給される前 記パージガスを流通させる流通制御手段とを備えた構成であ る。
図面の簡単な説明
図 1 は、 本発明の実施形態に関する燃料処理装置の構成を 示すブロック図である。
図 2 は、 本実施形態に関する燃料処理装置の具体的構成を 示すブロック図である。
図 3 は、 本実施形態に関するパージ処理を説明するための 図である。
図 4 A〜図 4 Cは、 本実施形態に関する燃料処理装置での 硫黄被毒の実験データを示す図である。
図 5 は、 他の実施形態に関するパージ処理を説明するため の図である。
発明を実施するための最良の形態
以下、 図面を参照して本発明の実施形態を説明する。
図 1 は、 本実施形態に関する燃料処理装置の基本的構成を 示すブロック図である。
本実施形態では、 後述するパージガス としては、 水蒸気と 空気の組み合わせの場合について説明する。 但し、 パージガ スとしては、 水蒸気のみ、 水蒸気と空気と不活性ガスの組み 合わせ、 水蒸気と不活性ガスの組み合わせ、 不活性ガスと空 気の組み合わせ、 あるいは燃焼排気ガスのいずれの場合でも 適用可能である。 なお、 不活性ガスは、 窒素ガス、 二酸化炭 素ガス、 及びこれらの混合ガスなどである。
また、 本実施形態においては、 燃料処理装置内のガス流通 路において、 改質ガスの流れる方向と同一方向を順方向と し、 当該改質ガスの方向と逆の方向を逆方向とする。
本実施形態の燃料処理装置 1 0 は、 燃料電池発電システム 1 の構成要素として、 燃料電池本体 2 0 に水素ガス燃料 (改 質ガス) を供給する。
燃料処理装置 1 0 は、 後述するよう に、 外部から供給され る原燃料 1 0 0 を、 水素リ ッチな改質ガスに変換して燃料電 池本体 2 0 に供給する。 原燃料 1 0 0 とは、 例えば都市ガス、 ナフサ、 プロパン、 消化ガス、 灯油等である。
さ らに、 本実施形態の燃料処理装置 1 0 は、 改質ガス及び パージガス 2 0 0 のガス流通路を制御するためのガス流通制 御装置を有する。 ガス流通制御装置は、 概念的には、 図 1 に 示すよう に、 パージガス 2 0 0 の流通を制御するためのガス 流通路制御部 3 0 A, 3 0 B、 及び改質ガスの流通路制御部 3 0 Cカゝらなる。
ガス流通制御装置は、 燃料電池発電システム 1 の運転時、 即ち原燃料 1 0 0 の供給時には、 流通路制御部 3 0 A , 3 0 Bを遮断状態に制御する。 そして、 ガス流通制御装置は、 流 通路制御部 3 0 Cを開状態に制御して、 燃料処理装置 1 0 に よ り生成された改質ガスを燃料電池本体 2 0 に供給させる。
一方、 システム 1 の運転停止時、 即ち原燃料 1 0 0 の供給 停止時には、 ガス流通制御装置は、 流通路制御部 3 0 Cを遮 断状態に制御して、 燃料電池本体 2 0への改質ガスの供給を 停止させる。
さ らに、 ガス流通制御装置は、 流通路制御部 3 0 A, 3 0 B を制御して、 パージガス 2 0 0 を導入し、 燃料処理装置 1 0 の内部のガス流通路 (後述する よ う な各種の反応器を含 む) を流通させて、 燃料処理装置 1 0 の外部に排出させる。
要するに、 ガス流通制御装置は、 改質ガスの流通方向 (順 方向) とは逆方向にパージガス (本実施形態では空気) 2 0 0 を流通させて、 燃料処理装置 1 0 の内部に残留している残 留ガスを排出させる。
(燃料処理装置の構成) 次に、 図 2 及び図 3 を参照して、 本実施形態の燃料処理装 置 1 0 の具体的構成を説明する。
燃料処理装置 1 0 は、 原燃料供給器 2 から原燃料 1 0 0 を 導入し、 さ らに水蒸気発生器 3 から水蒸気、 及び空気供給器 4から空気を導入する。 水蒸気及び空気は、 後述するよう に、 残留ガスをパージするためのパージガスとして使用される。
こ こで、 燃料電池本体 2 0 は、 白金等の貴金属を含む触媒 層を備えたカソー ド極及びァノ一 ド極を有する。 燃料電池本 体 2 0 は、 これらの間に挟まれた固体高分子膜等の電解質膜 からなるセルを単位として、 当該セルが多数スタ ックされて 構成されており、 水素と酸素とを反応させて発電を行う。
燃料電池本体 2 0 は、 燃料処理装置 1 0 か ら改質ガス とし て水素ガスが供給される。 また、 図 3 に示すよう に、 燃料電 池本体 2 0 は、 力ソー ド空気供給器 5 から力ソー ド極に空気 が供給される。 なお、 力ソー ド空気供給器 5 は、 ブロア等に よ り高圧で空気を供給する構成でもよい。
原燃料供給器 2 は、 一般的に、 都市ガス等の炭化水素から 抽出された原燃料 1 0 0 を供給する。 この原燃料 1 0 0 は、 本来的または安全性の確保のために人為的に硫黄化合物が添 加されている。
水蒸気発生器 3 は、 改質反応器 1 2 や一酸化炭素変成反応 器 1 3 を含むガス流通路に対して、 パージガス として水蒸気 を供給する。
空気供給器 4 は、 パージガス としての空気の供給以外に、 一酸化炭素 ( C O ) 選択酸化反応器 1 4 にも空気を供給する , なお、 空気供給器 4 は、 ブロア等によ り高圧で空気を供給す る構成でもよい。
燃料処理装置 1 0 は、 図 2 に示すよう に、 脱硫器 1 1 と、 改質反応器 1 2 と、 一酸化炭素 ( C O ) 変成反応器 1 3 と、 一酸化炭素 ( C O ) 選択酸化反応器 1 4 とを有する。
さ らに、 燃料処理装置 1 0 は、 コン トローラ 3 1 及び複数 の流通路制御部 3 2 〜 3 8 から構成されるガス流通制御装置 を有する。 流通路制御部 3 2 〜 3 8 は、 図 3 を参照して後述 するよう に、 具体的にはガスの流通を制御するための電動弁 V 3 2 , V 3 3 , V 3 5 〜 V 4 0 である。 コ ン ト ローラ 3 1 は、 当該各流通路制御部 3 2 〜 3 8 の動作 (開閉動作) を制 御する。
脱硫器 1 1 は、 原燃料 1 0 0 に含まれる硫黄化合物を触媒 作用または吸着作用によ り除去する。
改質反応器 1 2 は、 脱硫器 1 1 で硫黄化合物が脱硫された 原燃料 1 0 0 と水蒸気とを反応させて、 水素リ ッチなガスを 生成する。
なお、 改質反応器 1 2 としては、 水蒸気改質反応器、 部分 酸化反応器、 オー トサ一マル反応器等のいずれでもよい。 但 し、 本実施形態では、 改質反応器 1 2 として水蒸気型改質器 を想定する。
こ こで、 改質反応器 1 2 では、 原燃料と水蒸気とを出口温 度約 3 0 0 °C〜 8 5 0 °Cで反応させて、 水素リ ツチな改質ガ スを生成している。 このときの反応は、 吸熱反応であるため 改質用燃焼器 1 5 によ り、 改質触媒層の温度を高めている。 一酸化炭素 ( C O ) 変成反応器 1 3 は、 改質反応器 1 2 か らの改質ガスに含まれる一酸化炭素 ( C O ) を、 触媒の下で 水蒸気と反応させて低減させる。
なお、 改質ガスには、 一般的には約 1 0 %前後の C Oが含 まれている。 C O変成反応器 1 3 は、 その C Oを約 1 %以下 まで低減させる。 このときの反応温度は、 約 2 0 0 °C〜 3 0 0 °Cである。
一酸化炭素選択酸化反応器 1 4 は、 C O変成反応器 1 3 か ら送られる改質ガスに残存する一酸化炭素を、 触媒の下で空 気中の酸素と反応させて低減させる。
即ち、 C O変成反応器 1 3 では除去できない C Oを、 1 0 p p m以下まで低減させる。 この とき反応温度は、 約 1 0 0 °C〜 2 0 0 °Cである。
(発電運転動作)
先ず、 図 2 及び図 3 を参照して、 発電システム 1 の運転時 での燃料処理装置 1 0 の動作を説明する。
図 2 に示すよう に、 運転時には、 コ ン ト ローラ 3 1 は、 流 通路制御部 3 2, 3 3 , 3 6, 3 8 を開状態にして、 燃料処 理装置 1 0 か ら改質ガスが燃料電池本体 2 0 に供給されるよ う に制御する。 以下、 図 3 を参照して、 ガス流通制御を中心 として具体的に説明する。
コン ト ローラ 3 1 は、 図 3 に示すよう に、 電動弁 V 3 8 を 開き、 空気供給器 4からの空気を配管 P 9 を介して C O選択 酸化反応器 1 4 に供給する。 このとき、 コ ン ト ローラ 3 1 は, 電動弁 V 3 7 を閉じて、 空気の流通を遮断している。 また、 コ ン ト ローラ 3 1 は、 電動弁 V 3 9 を開き、 水蒸気 発生器 3 からの水蒸気を配管 P 2 を介して改質反応器 1 2 に 供給する。
さ らに、 コ ン トローラ 3 1 は、 電動弁 V 3 2 , V 3 3 , 及 び V 3 6 を開く よう に制御する。 これによ り 、 原燃料供給器 2からの原燃料 1 0 0 は、 脱硫器 1 1 によ り 硫黄化合物が脱 硫された後に、 配管 P 1 を介して改質反応器 1 2 に供給され る。
改質反応器 1 2 は、 脱硫器 1 1 で硫黄化合物が脱硫された 原燃料 1 0 0 と、 水蒸気発生器 3 からの水蒸気とを反応させ て、 水素リ ッチな改質ガスを生成する。 この ときの反応温度 は吸熱反応である。
こ こで、 図 2 に示すよう に、 改質用燃焼器 1 5 における燃 料として、 燃料電池本体 2 から排出された使用済の改質ガス が利用される。
改質反応器 1 2 からの改質ガスは、 図 3 に示すよう に、 配 管 P 5 を介して C O変成反応器 1 3 に供給される。 C O変成 反応器 1 3 では、 改質ガスに含まれる一酸化炭素 ( C O ) と 水蒸気によ り水素と二酸化炭素 ( C 0 2 ) を変成するシフ ト 反応が行われる。 この後に、 改質ガスは、 配管 P 6 を介して C O変成反応器 1 3 から C O選択酸化反応器 1 4 に供給され る。
C O選択酸化反応器 1 4では、 空気供給器 4から配管 P 9 を介して供給された空気によ り、 改質ガス中に残存している 一酸化炭素が酸化されて二酸化炭素になる。 これによ り、 さ らに c oがよ り低減された改質ガスが、 アノー ド極の燃料ガ スとして燃料電池本体 2 0 に供給される。
このよう にして、 燃料電池本体 2 0 のアノー ド極には水素 リ ッチな改質ガスが、 燃料ガス として供給されル。 一方、 力 ソー ド極には、 前述したよう に、 力ソー ド空気供給器 5 から 空気が供給される。
燃料電池本体 2 0 では、 アノー ド極での触媒の作用によ り 、 水素ガスがイオン化して、 プロ ト ンと電子に乖離する。 プロ ト ンは、 固体高分子電解質膜を介して力ソー ド極に伝導され る。 また、 電子は外部回路を介して力ソー ド極に伝導される。 この力ソー ド極において、 プロ ト ン、 電子、 酸素によ り水生 成反応が起きる。
一方、 外部回路を介した電子の流れ (電流) によ り、 直流 電力を取出すこ とが可能となる。 即ち、 燃料電池本体 2 0 で の発電が実現される。
(パージ処理)
次に、 発電システム 1 の運転停止時には、 燃料処理装置 1 0 は、 原燃料供給器 2 からの原燃料 1 0 0 の供給停止と共に、 残留ガスをパージ (排出) するためのパージ処理を実行する。
本実施形態の燃料処理装置 1 0 は、 コ ン ト ローラ 3 1 のガ ス流通制御によ り、 パージガス としての水蒸気を順方向 (改 質ガス と同一方向) に流し、 その後にパージガスとしての空 気を逆方向に流す。 この空気の供給によ り 、 残留ガスのパー ジに使用された水蒸気による水分が除去される。
以下、 図 3 を参照して、 パージ処理時のガス流通制御を説 明する。
こ こで、 本実施形態の燃料処理装置 1 0 は、 図 3 に示すよ う に、.パージされる残留ガスを処理 (例えば硫黄酸化物の除 去) する排ガス処理装置 1 6 を有する。
パージ処理では、 先ず、 コ ン ト ローラ 3 1 は、 電動弁 V 3 9 を開いて、 水蒸気発生器 3 から水蒸気を導入して、 当該水 蒸気を配管 P 2 を介して改質反応器 1 2 に流す。 同時に、 コ ン ト ロ一ラ 3 1 は電動弁 V 3 5 を開いて、 当該水蒸気を改質 反応器 1 2 から配管 P 5 , P 6 , P 7 , P 1 0 を介して順方 向に流す (実線で示す方向) 。
なお、 コン ト ローラ 3 1 は、 運転停止時であるため、 電動 弁 V 3 2 , V 3 6 を遮断状態に制御している。
以上のよう にして、 パージガスとして水蒸気を流すことに よ り 、 改質反応器 1 2 、 C O変成反応器 1 3 、 及び C O選択 酸化反応器 1 4 の冷却を実行しながら、 残留ガスを排ガス処 理装置 1 6 までパージする。
次に、 コン ト ローラ 3 1 は、 電動弁 V 3 7 , V 4 0 を開い て、 空気供給器 4か らの空気を配管 P 8 , P 5 を介して改質 反応器 1 2 に対して逆方向に流す。 即ち、 空気は、 改質反応 器 1 2 を通過して、 配管 P 3 , 電動弁 V 4 0 を介して逆方向 に流れる (点線で示す方向) 。
なお、 空気供給器 4からの空気は、 配管 P 5 で分流して、 C O変成反応器 1 3 、 C O選択酸化反応器 1 4 、 配管 P 1 0 の方向にも流れる。
以上のよう にして、 先ず、 パージガス と して水蒸気を順方 向に流すこ とによ り 、 改質反応器 1 2 、 C O変成反応器 1 3 、 及び C 0選択酸化反応器 1 4 の冷却を実行しながら、 残留ガ スをパージする こ とができる。
さ らに、 パージガスとして空気を逆方向に流すこ とによ り 、 特に改質反応器 1 2 において、 水蒸気による水分を除去する と共に、 さ らに残留ガスをパージする こ とができる。 こ こで、 空気を逆方向に流すことによ り、 改質反応器 1 2 の触媒に吸 着されている硫黄化合物を、 C O変成反応器 1 3 や C O選択 酸化反応器 1 4 などに拡散させるような硫黄被毒の拡散を抑 制する ことができる。
即ち、 パージガス として空気を逆方向に流すこ とによ り、 改質反応器 1 2 の触媒に吸着と した硫黄化合物と酸素との反 応から、 触媒の活性回復を図る ことができる。 さ らに、 燃料 処理装置 1 0 の内部での硫黄被毒の拡散を抑制できるため、 結果として装置の長寿命化が可能になる。
(本実施形態の効果)
以下図 4 ( A ) から ( C ) を参照して、 本実施形態のパー ジ処理の効果を具体的に説明する。
図 4 ( A ) は改質反応器 1 2 に関し、 図 4 ( B ) は一酸化 炭素変成反応器 1 3 に関し、 図 4 ( C ) は一酸化炭素選択酸 化反応器 1 4 に関する触媒層に渡る硫黄被毒量を示す実験結 果である。
図中、 曲線 4 0 0 は、 発電後の硫黄被毒量を示し、 曲線 4 0 1 は水蒸気及び空気を順方向に流した際の硫黄被毒量を示 す。 また、 曲線 4 0 2 は、 本実施形態のパージ処理として、 パージガス として空気を逆方向に流した場合の硫黄被毒量を 示している。 なお、 横軸及び縦軸は、 任意単位 (アービタ リ ュニッ 卜) である。
これらの図から分るよう に、 発電後の触媒層の硫黄濃度分 布は、 水蒸気や空気を流す方向が順方向であるか逆方向であ るかに関わ らず相対的に小さ く なつている。 特に、 入口側近 傍では、 その減少が著しい。 このことは被毒した触媒に吸着 している硫黄が除去されて活性化した こ とを意味している (以下、 この結果を 「触媒活性化現象」 という) 。
なお、 この活性化した触媒と被毒した触媒との活性を調べ た結果、 改質反応器 1 2 の触媒、 一酸化炭素変成反応器 1 3 の触媒とも、 硫黄が除去される こ とによ り触媒活性が回復す る ことが認められた。
また、 水蒸気と空気との触媒活性化現象への寄与について は、 水蒸気よ り空気の方が大きい。
水蒸気や空気を順方向に流した場合には、 図 4 ( A ) 及び 図 4 ( B ) の A領域において明 らかなよう に、 途中で発電後 の硫黄濃度分布よ り大きく なる領域が発生している。 このこ とは、 発電後の状態では被毒していない触媒が、 順方向のパ —ジによ り被毒したこ とを意味している (以下、 この結果を 「被毒拡散現象」 という) 。
特に、 図 4 ( C ) に見られるよう に、 発電後の一酸化炭素 選択酸化反応器 1 4 の触媒は殆ど被毒していないが、 順方向 にパージする と殆ど全ての触媒 (入口側から出口側までの触 媒) が被毒し、 逆方向に流すと当該触媒の被毒は殆ど検出さ れなく なつている。
そして、 図 4 ( A ) 〜図 4 ( C ) の全般について、 水蒸気 や空気を逆方向に流した場合の方が、 順方向に流した場合よ り、 硫黄濃度分布が小さ く なつている こ とがわかる (以下、 この結果を 「被毒拡散抑制現象」 という) 。
こ こで、 水蒸気や空気であるパージガスを順方向に流す場 合について説明する。
水蒸気や空気を流すと、 改質反応器 1 2 、 一酸化炭素変成 反応器 1 3 、 一酸化炭素選択酸化反応器 1 4 の触媒に吸着し た硫黄は、 当該水蒸気や空気に含まれる酸素によ り二酸化硫 黄 ( S O 2 ) となり 、 これによ り金属活性点が露呈する (触 媒活性化現象) 。
このとき二酸化硫黄が、 水蒸気や空気と共に順方向に流れ る と、 その一部が下流側の硫黄が除去された触媒や初めから 被毒していない触媒に吸着されて被毒拡散が生じる。
このよ う に順方向に水蒸気や空気を流した場合でも、 触媒 活性化現象は起きるが、 順方向の場合は硫黄濃度の高い方か ら低い方に水蒸気や空気が流れるため、 活性化した触媒が再 被毒を起す確率が高く なつて、 改質反応器 1 2 、 一酸化炭素 変成反応器 1 3 、 一酸化炭素選択酸化反応器 1 4等の反応器 全体では、 活性化した触媒量よ り被毒した触媒量が多く なつ てしまう。 従って、 被毒拡散が起り、 触媒活性化現象の効果 が薄れてしまっていると考えられる。
また、 従来のよう に水蒸気や空気を順方向に流す場合には 冷却効率が悪いが、 この理由は以下のよう考えられる。 即ち、 改質反応器 1 2 の反応温度は、 約 3 0 0 °C〜 8 5 0 ^である。 一酸化炭素変成反応器 1 3 の反応温度は、 約 2 0 0 〜 3 0 0 °Cである。 また、 一酸化炭素選択酸化反応器 1 4の反応温度は、 約 1 0 0 〜 2 0 0でである。 さ らに、 燃料 電池本体 2 0 の反応温度は、 約 5 0 〜 1 0 0 °Cである。 即ち - 燃料電池本体 2 0 の方向に従って、 反応温度は低く なつてい る。
従って、 水蒸気や空気を順方向に流す塲合には、 高温側か ら低温側に流れる ことになり、 冷却効率が低下する。
例えば、 水蒸気は、 改質反応器 1 2 を冷却して一酸化炭素 変成器 1 3 に流れる場合を想定する。 改質反応器 1 2 の温度 が 8 0 O t である と、 改質反応器 1 2 を冷却して高温になつ た水蒸気が、 約 3 0 0 °Cの一酸化炭素変成器 1 3 に流れ込む, このため、 当該一酸化炭素変成反応器 1 3 の冷却が十分に行 えず、 かえって一酸化炭素変成反応器 1 3 を加熱してしまう ような事態も生じて、 冷却効率を低下させている。
以上のような結果から、 本実施形態は、 水蒸気を順方向に 流した後に、 パージガス としての空気を逆方向に流すこ とに よ り 、 残留ガスのパージと共に、 被毒拡散の防止、 触媒能力 の回復、 冷却効率の向上を図る こ とが可能となる。
特に、 D S S運転 ( D a i l y S t a r t S t o p運 転) と呼ばれる一日 に起動停止を繰返す運転を行う燃料電池 発電システム 1 では、 システムの長寿命化の効果が大きい。
また、 このよう に触媒の活性化が可能なことよ り、 これま で硫黄被毒に極端に弱い触媒とされてきた貴金属触媒の弱点 をカバ一する こ とができ、 触媒の選定自由度が広がるよう に なる。
また、 これまでは硫黄被毒を防止するために高価な脱硫性 能の高い脱硫器 1 1 を用いる必要があつたが、 触媒の活性化 作用によ り 、 安価な脱硫器 1 1 を用いる ことが可能にな り燃 料電池発電システム 1 のコス トダウンが可能になる。
また、 冷却効率の向上によ り 、 冷却に必要な水蒸気等の量 が少なく なりエネルギーの節約が図れる。
なお、 本実施形態では、 ガス流通路制御部として、 電動弁 を想定したが、 手動弁.であっても良い。 但し、 手動弁の場合 には、 コ ン ト ローラ 3 1 は不要になる。
さ らに、 本実施形態では、 空気の導入開始については、 水 蒸気の導入後であるが、 これは、 可燃性ガスに空気が混じる と危険なためである。 従って、 空気の導入開始は、 残留ガス と空気との反応による危険が小さ く なつた時点とする こ とが 可能である。 このような時点で、 空気を導入する ことによ り 水蒸気による凝縮水の水量を少なくする こ とができ、 短時間 で排ガス処理が完了できるよう になる。
また、 酸素による触媒活性化も温度が高い方が起きやすい と考えられ、 空気を流しても危険が無く 、 かつ、 触媒の温度 が十分に低く ならないときに空気を導入するならば、 効果的 に触媒活性化が行える。
このような温度範囲の一例として、 例えば改質反応器 1 2 の温度が 2 0 0 °C〜 9 0 0 °Cの範囲、 一酸化炭素変成反応器 1 3 の温度が約 1 0 0 °C〜 5 5 0 °Cの範囲、 一酸化炭素選択 酸化反応器 1 4 の温度が約 8 0 ° (:〜 2 5 0 °Cの範囲である。 また、 本実施形態では、 パージ処理によ り 、 残留ガスは、 排ガス処理装置 1 6 によ り処理された後に、 大気中に放出さ れる。 この場合、 残留ガスを、 改質用燃焼器 1 5 を介して、 排ガス処理装置 1 6 に送る構成でもよい。
(他の実施形態)
図 5 は、 他の実施形態に関する燃料処理装置 1 0 のパージ 処理を説明するための図である。 本実施形態のパージ処理は パージガスとして空気と共に、 水蒸気も逆方向に流す場合の 構成である。
なお、 図 3 との同一構成に関しては、 同一符号を用いて説 明を適宜省略する。
本実施形態は、 図 5 に示すよう に、 図 3 における電動弁 V 3 5及び配管 P 1 0 を省略し、 電動弁 V 4 1 , V 4 2及び配 管 P 1 1 を追加した構成である。
このよ う な構成によ り 、 水蒸気及び空気を流して残留ガス をパージするパージ処理を説明する。
先ず、 図 2 に示すコン ト ローラ 3 1 は、 図 5 に示す電動弁 V 3 9 , V 4 1 , V 4 2 , V 4 0 を開いて、 水蒸気発生器 3 から水蒸気を導入する。 即ち、 コン ト ローラ 3 1 は、 配管 P 1 1 及び電動弁 V 4 1 を介して、 当該水蒸気を逆方向に改質 反応器 1 2 に流す (実線で示す方向) 。
また、 コ ン ト ローラ 3 1 は、 配管 P 1 1 及び電動弁 V 4 2 を介して、 当該水蒸気を逆方向に C O変成反応器 1 3 に流す (実線で示す方向) 。 なお、 コ ン ト ローラ 3 1 は、 運転停止時であるため、 電動 弁 V 3 2 , V 3 6 を遮断状態に制御している。
以上のよう にして、 パージガス として水蒸気を流すこ とに よ り、 改質反応器 1 2及び C O変成反応器 1 3 の冷却を実行 しながら、 残留ガスを排ガス処理装置 1 6 までパージする。 次に、 コン ト ローラ 3 1 は、 前述と同様に、 電動弁 V 3 7 , V 4 0 を開いて、 空気供給器 4からの空気を配管 P 8 , P 5 を介して改質反応器 1 2 に対して逆方向に流す。 即ち、 空気 は、 改質反応器 1 2 を通過して、 配管 P 3 , 電動弁 V 4 0 を 介して逆方向に流れる。
以上のよう にして、 本実施形態の構成であれば、 パージガ ス としての水蒸気も、 空気と同様に逆方向に流すことができ る。 従って、 前述したよう に、 残留ガスのパージと共に、 被 毒拡散の防止、 及び触媒の活性化を実現する こ とができる。 これによ り、 結果として燃料処理装置 1 0 の長寿命化、 脱硫 器 1 1 のコス トダウン、 冷却効率の向上、 冷却に必要な水蒸 気等の減少によるエネルギーの節約を図る ことができる。
なお、 本実施形態及び他の実施形態において、 パージガス と して水蒸気及び空気の組み合わせを使用する場合について 説明したが、 前述したよう に、 パージガスとしては、 水蒸気 と空気と不活性ガス (窒素ガスなど) の組み合わせ、 水蒸気 と不活性ガスの組み合わせ、 不活性ガスと空気の組み合わせ, あるいは燃焼排気ガスのいずれの場合でも適用可能である。 産業上の利用可能性
本発明の燃料処理装置であれば、 特に燃料電池または燃料 電池発電システムに燃料を供給し、 運転停止時に残留ガスを 確実にパージできる燃料処理装置を実現する こ とができる。

Claims

請 求 の 範 囲
1 . 原燃料を導入して、 水素リ ッチな改質ガスに変換して 供給するための反応器と、
前記反応器の残留ガスをパージするためのパージガスを供 給するパージガス供給手段と、
前記反応器を含むガス流通路において、 前記改質ガスの流 通方向とは逆方向に、 前記パージガス供給手段から供給され る前記パージガスを流通させる流通制御手段と
を具備する燃料処理装置。
2 . 前記パージガスは、 水蒸気、 空気、 不活性ガス、 前記 改質ガスあるいは前記原燃料を燃焼して得られる燃焼排気ガ スの少なく とも 1 種類のガスを含む請求項 1 に記載の燃料処 理装置。
3 . 前記パージガス供給手段は、 水蒸気を含む第 1 のパー ジガス及び空気を含む第 2 のパージガスを供給し、
前記流通制御手段は、 前記第 1 のパージガスを前記改質ガ スの流通方向と同一方向に流通させて、 前記第 2 のパージガ スを前記逆方向に流通させるよう に制御する請求項 1 に記載 の燃料処理装置。
4 . 前記反応器は、 前記原燃料を前記改質ガスに変換する 改質反応器を含む複数種の反応器が連接して構成されてお り 前記流通制御手段は、 前記パージガスを当該各反応器の連 接部から当該各反応器に供給するよう に制御する請求項 1 ま たは請求項 2 のいずれか 1項に記載の燃料処理装置。
5 . 前記流通制御手段によ り前記ガス流通路から排出され る前記残留ガスを含む排出対象ガスを外部に排出する装置で あって、 当該排出ガスを浄化処理して排出する排ガス処理装 置を有する請求項 1 から請求項 4のいずれか 1 項に記載の燃 料処理装置。
6 . 前記改質ガスを燃料として発電する燃料電池に適用す る請求項 1 から請求項 5 のいずれか 1項に記載の燃料処理装 置。
7 . 前記流通制御手段は、 前記ガス流通路での複数箇所に 設けられて、 ガスの遮断または通過を制御する各バルブを含 む請求項 1 から請求項 6 のいずれか 1 項に記載の燃料処理装 置。
8 . 原燃料を導入して、 水素リ ッチな改質ガスに変換して 供給するための反応器と、 前記反応器の残留ガスをパージす るためのパージガスを供給するパージガス供給手段とを有す る燃料処理装置の運転方法であって、
前記原燃料の供給停止時に、 前記反応器を含むガス流通路 に前記パージガスを導入し、
前記改質ガスの流通方向とは逆方向に、 前記パージガスを 流通させる流通制御を実行する燃料処理装置の運転方法。
9 . 前記パージガスは、 水蒸気を含む第 1 のパージガス及 び空気を含む第 2 のパージガスを含み、
前記原燃料の供給停止時に、 前記ガス流通路に前記第 1 及 び第 2 のパージガスを導入し、
前記第 1 のパージガスを前記改質ガスの流通方向と同一方 向に流通させて、 前記第 2 のパージガスを前記逆方向に流通させる流通制御 を実行する請求項 8 に記載の燃料処理装置の運転方法。
1 0 . 前記燃料処理装置は、 前記ガス流通路から排出され る前記残留ガスを含む排出対象ガスを処理して外部に排出す る排ガス処理装置を含み、
前記排出対象ガスを外部に排出する ときに、 前記排ガス処 理装置で浄化処理された後に排出する請求項 8 または請求項 9 のいずれか 1 項に記載の燃料処理装置の運転方法。
PCT/JP2004/010259 2003-07-14 2004-07-13 燃料処理装置及びその方法 WO2005005313A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005511608A JPWO2005005313A1 (ja) 2003-07-14 2004-07-13 燃料処理装置及びその方法
EP04747723A EP1659095A1 (en) 2003-07-14 2004-07-13 Fuel treatment device and fuel treatment method
US11/331,315 US20060115412A1 (en) 2003-07-14 2006-01-13 Fuel processing system and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003196259 2003-07-14
JP2003-196259 2003-07-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/331,315 Continuation US20060115412A1 (en) 2003-07-14 2006-01-13 Fuel processing system and method thereof

Publications (1)

Publication Number Publication Date
WO2005005313A1 true WO2005005313A1 (ja) 2005-01-20

Family

ID=34055783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010259 WO2005005313A1 (ja) 2003-07-14 2004-07-13 燃料処理装置及びその方法

Country Status (6)

Country Link
US (1) US20060115412A1 (ja)
EP (1) EP1659095A1 (ja)
JP (1) JPWO2005005313A1 (ja)
KR (1) KR100820664B1 (ja)
CN (1) CN100519407C (ja)
WO (1) WO2005005313A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220553A (ja) * 2006-02-17 2007-08-30 Toyota Central Res & Dev Lab Inc 燃料電池システム
JP2008105875A (ja) * 2006-10-24 2008-05-08 Nippon Oil Corp 一酸化炭素濃度を低減する方法および燃料電池システム
JP2009087673A (ja) * 2007-09-28 2009-04-23 Casio Comput Co Ltd 燃料電池システム並びに燃料電池システムの動作方法及び制御方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100968580B1 (ko) * 2007-11-06 2010-07-08 (주)퓨얼셀 파워 다중 탈황 구조를 갖는 연료처리장치 및 이를 구비한연료전지 시스템
KR101263551B1 (ko) 2010-10-04 2013-05-13 현대하이스코 주식회사 보조 열교환기를 이용한 연료전지용 개질 시스템 종료 방법
FI20106398A (fi) * 2010-12-31 2012-07-01 Waertsilae Finland Oy Ohjausjärjestely ja menetelmä happipitoisuuden ohjaamiseksi

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008701A (ja) * 2000-06-21 2002-01-11 Tokyo Gas Co Ltd 固体高分子型燃料電池の起動及び停止方法
JP2002179401A (ja) * 2000-12-11 2002-06-26 Toyota Motor Corp 水素ガス生成システムの運転停止方法
JP2003092126A (ja) * 2001-09-18 2003-03-28 Hitachi Ltd 燃料電池発電システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030046867A1 (en) * 2001-05-02 2003-03-13 Woods Richard R Hydrogen generation
US7067088B2 (en) * 2002-01-12 2006-06-27 Saudi Basic Industries Corporation Stratified flow chemical reactor
AU2003286872A1 (en) * 2002-11-01 2004-06-07 Nuvera Fuel Cells, Inc. Distribution of air for carbon monoxide removal in a reformate
US7105148B2 (en) * 2002-11-26 2006-09-12 General Motors Corporation Methods for producing hydrogen from a fuel
US7063732B2 (en) * 2003-07-28 2006-06-20 Fuelcell Energy, Inc. High-capacity sulfur adsorbent bed and gas desulfurization method
US20050229491A1 (en) * 2004-02-03 2005-10-20 Nu Element, Inc. Systems and methods for generating hydrogen from hycrocarbon fuels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008701A (ja) * 2000-06-21 2002-01-11 Tokyo Gas Co Ltd 固体高分子型燃料電池の起動及び停止方法
JP2002179401A (ja) * 2000-12-11 2002-06-26 Toyota Motor Corp 水素ガス生成システムの運転停止方法
JP2003092126A (ja) * 2001-09-18 2003-03-28 Hitachi Ltd 燃料電池発電システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220553A (ja) * 2006-02-17 2007-08-30 Toyota Central Res & Dev Lab Inc 燃料電池システム
JP2008105875A (ja) * 2006-10-24 2008-05-08 Nippon Oil Corp 一酸化炭素濃度を低減する方法および燃料電池システム
JP2009087673A (ja) * 2007-09-28 2009-04-23 Casio Comput Co Ltd 燃料電池システム並びに燃料電池システムの動作方法及び制御方法

Also Published As

Publication number Publication date
US20060115412A1 (en) 2006-06-01
EP1659095A1 (en) 2006-05-24
KR20060029185A (ko) 2006-04-04
CN1823005A (zh) 2006-08-23
CN100519407C (zh) 2009-07-29
JPWO2005005313A1 (ja) 2006-08-24
KR100820664B1 (ko) 2008-04-11

Similar Documents

Publication Publication Date Title
JP2005509261A (ja) 燃料電池燃料処理システムのための停止方法
JP2007230837A (ja) 水素製造装置および燃料電池システム並びにその運転方法
JP2003306309A (ja) 水素含有ガス生成装置の運転方法
US6309768B1 (en) Process for regenerating a carbon monoxide oxidation reactor
JP2003282114A (ja) 燃料電池発電装置の停止方法
US20060115412A1 (en) Fuel processing system and method thereof
JP2001189165A (ja) 燃料電池システム、該燃料電池システムの停止方法及び立ち上げ方法
JP3865479B2 (ja) 一酸化炭素除去システム及び一酸化炭素の除去方法
US6852302B1 (en) Carbon monoxide removing apparatus and process for operating the same
JP2006076839A (ja) 水素精製装置およびそれを用いた燃料電池システム
JP2005179083A (ja) 水素製造装置および燃料電池システム並びにその運転方法
JP4936645B2 (ja) 水素製造装置及び燃料電池システム
JP2002020103A (ja) 水素製造装置の起動方法およびその停止方法
JP4307766B2 (ja) 燃料電池発電システム
JP2009026510A (ja) 燃料電池発電システムおよび燃料電池発電システムの燃料改質方法
JP2006104003A (ja) 燃料改質システム
JP4506429B2 (ja) 一酸化炭素除去触媒の活性回復方法、燃料電池発電装置の運転方法、及び水素発生装置の運転方法
JP2004217435A (ja) 水素含有ガス生成装置の停止方法及び水素含有ガス生成装置
JP2001325981A (ja) 被処理ガス改質機構と固体高分子型燃料電池システム並びに被処理ガス改質方法
JP2004199977A (ja) 燃料電池発電装置とその運転方法
JP2005050629A (ja) 改質ガスの処理方法、改質ガスの処理装置および燃料電池発電システム
JP2000327305A (ja) Co除去器及び燃料電池発電システム
KR101362209B1 (ko) 연료전지 시스템 연료변환기의 황 피독 개질촉매 재생방법 및 장치
JP4383972B2 (ja) 脱硫システム及びその停止方法
JPH08188783A (ja) 改質ガス中のco除去法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480020295.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511608

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067000623

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11331315

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004747723

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067000623

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004747723

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11331315

Country of ref document: US