WO2003085684A1 - Aimant anisotrope lie composite de terres rares, compose pour aimant anisotrope lie composite de terres rares, et procede de production de l'aimant - Google Patents

Aimant anisotrope lie composite de terres rares, compose pour aimant anisotrope lie composite de terres rares, et procede de production de l'aimant Download PDF

Info

Publication number
WO2003085684A1
WO2003085684A1 PCT/JP2003/004532 JP0304532W WO03085684A1 WO 2003085684 A1 WO2003085684 A1 WO 2003085684A1 JP 0304532 W JP0304532 W JP 0304532W WO 03085684 A1 WO03085684 A1 WO 03085684A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
magnet
anisotropic
resin
rare earth
Prior art date
Application number
PCT/JP2003/004532
Other languages
English (en)
French (fr)
Inventor
Yoshinobu Honkura
Hironari Mitarai
Norihiko Hamada
Kenji Noguchi
Original Assignee
Aichi Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corporation filed Critical Aichi Steel Corporation
Priority to AU2003236030A priority Critical patent/AU2003236030A1/en
Priority to JP2003582779A priority patent/JPWO2003085684A1/ja
Priority to EP03745989A priority patent/EP1494251A4/en
Priority to US10/509,687 priority patent/US20050145301A1/en
Publication of WO2003085684A1 publication Critical patent/WO2003085684A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • C22C1/0441Alloys based on intermetallic compounds of the type rare earth - Co, Ni
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/049Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by pulverising at particular temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a composite rare earth anisotropic bonded magnet having excellent magnetic properties and having very little change over time, a compound used for the same, and a method for producing the same.
  • Hard magnets are used in various devices such as motors. In particular, there is a strong demand for small and high-output vehicle motors. Such hard magnets are required not only to have high-performance magnetic properties but also to have little change over time from the viewpoint of ensuring the reliability of motors and the like.
  • RFeB-based rare earth magnets which are composed of rare earth elements (R), boron (B), and iron (Fe), are being actively developed.
  • Such RF eB-based rare earth magnets include, for example, U.S. Pat. No. 4,851,058 (hereinafter referred to as "prior art 1") and U.S. Pat. , "Prior art 2" discloses an RF eB-based magnet alloy (composition) having magnetic isotropy.
  • these rare earth magnets are liable to be deteriorated due to oxidation of the rare earth element or Fe, which is the main component thereof, and it is difficult to stably ensure their high magnetic properties.
  • a rare-earth magnet when used at room temperature or higher, its magnetic properties tend to sharply decrease.
  • the change over time of such a magnet is usually quantitatively indexed by the permanent demagnetization rate (%).
  • the permanent demagnetization rate exceeds 10%. there were.
  • This permanent demagnetization rate is the rate of decrease in magnetic flux that does not recover even after re-magnetization after a long time (100 hours) at high temperatures (100 ° C or 120 ° C). is there. .
  • rare-earth bonded magnets (hereinafter simply referred to as “pounds”) formed by mixing two types of rare-earth magnet powders having large and small particle sizes (hereinafter simply referred to as “magnetic powder”) and a resin as a binder and press-forming. Magnet ”) is proposed as appropriate.
  • the small-sized magnetic powder enters the gap formed by the large-sized magnetic powder, and the filling rate (relative density) is improved as a whole.
  • the magnetic properties are improved by increasing the density of the magnet, but also the penetration of oxygen and moisture there is suppressed, and the weather resistance and heat resistance of the magnet are improved.
  • the following publications disclose such bonded magnets.
  • Publication 1 Japanese Unexamined Patent Publication No. Hei.5-15-1216
  • N d 2 F e 14 consisting B alloy diameter 5 0 0 / im following magnetic powder (hereinafter, referred to as "N d F e B alloy powder”.)
  • S m 2 F e, 7 Epoxy resin as a binder is added to a mixed powder obtained by mixing magnetic powder of N alloy having a particle diameter of 5 ⁇ or less (hereinafter referred to as “SmFeN-based alloy powder” as appropriate) at various ratios.
  • SmFeN-based alloy powder A pressure-bonded, molded and heat-cured bonded magnet is disclosed.
  • Publication 2 Japanese Unexamined Patent Publication No. Hei 6-132107
  • This publication also discloses a bond magnet formed by mixing NdFeB-based alloy powder, SmFeN-based alloy powder, and binder resin and press-forming the same as in Publication 1 described above. Not more than one level.
  • This publication discloses an anisotropic magnet powder composed of Nd 2 Fe 4 B having an average particle size of 150 ⁇ , an average particle size of 0.5—10.7 ⁇ m, and a mixing ratio of 0 to 5 ⁇ m.
  • 0% 3 Te '6? a ferrite magnet powder consisting of e 2 0 3, 3 and wt% of the epoxy resin is a binder were mixed, vacuum drying, the anisotropic bonded magnet obtained by pressing and thermally cured shown open .
  • the bonded magnets exhibit their 1 3 2 ⁇ 1 50. 14 k J and high magnetic characteristics Roh m s, the permanent demagnetization one 3. 5 5.6% of excellent heat resistance and weather resistance However, the magnetic properties were still insufficient.
  • the permanent demagnetization rate referred to in this publication is that after 100 hours at 100 ° C. and 1000 hours.
  • the Nd F e B alloy powder in order to prevent the deterioration of magnetic properties due to mechanical powder ⁇ is obtained by Kona ⁇ the ingot using HDDR method (hydrotreating), N d 2 F e 14 B It consists of a texture of recrystallized grains consisting of tetragonal phase.
  • This publication describes the following as an advantage of producing a bonded magnet by mixing two types of magnetic powders having different particle sizes. That is, in forming the bonded magnet, the ferrite magnet powder is preferentially filled in the particle gap of the anisotropic NdFeB-based alloy powder (or the particle gap of the powder thinly coated with the binder resin). As a result, the porosity of the bonded magnet decreases.
  • the penetration of 1 2 2 and H 20 is suppressed, and the heat resistance and the weather resistance are improved.
  • the magnetic properties are improved by replacing the former holes with ferrite magnet powder.
  • the frit magnet powder alleviates the stress concentration on the NdFeB-based alloy powder generated during the molding of the pound magnet, so that cracking of the NdFeB-based alloy powder is suppressed. Therefore, exposure of a very active metal fracture surface in the bonded magnet is suppressed, and the heat resistance and weather resistance of the bonded magnet are further improved.
  • (1) the relaxation of stress concentration by the ferrite magnet powder also suppresses the introduction of strain into the NdFeB-based alloy powder, thereby further improving magnetic properties.
  • a soft magnetic phase containing body-centered cubic iron boride iron boride with an average crystal grain size of 50 rim or less and Nd 2 Fe 14 B type A bonded magnet using an isotropic nanocomposite magnet powder having an average particle size of 3.8 ⁇ composed of a hard magnetic phase having crystals is disclosed.
  • the bonded magnet 1 36. 8- 1 5 0. 4 k J Roh: the high magnetic JP ten raw m 3, excellent heat resistance and weather resistance of the permanent demagnetization rate over 4.9 to 1 6.2 0% Despite the fact that the magnetic properties are still insufficient Was.
  • the method of measuring the permanent demagnetization rate and the method of producing the anisotropic NdFeB-based magnet powder are the same as in the case of Japanese Patent Application Laid-Open Publication No. H08-209,073.
  • This Publication 4 also discloses, as a comparative example, a bonded magnet manufactured by mixing NdFeB-based magnet powder and SmFeN-based magnet powder having a smaller particle size.
  • the bonded magnet has excellent initial magnetic properties ((BH) max: 146.4 to 152.8 kJ / m 3 )
  • the deterioration of SmF eN-based magnet powder (weak oxidation resistance) This indicates that the weather resistance is poor (permanent demagnetization rate: 1 13.7 to 1 13.1%).
  • the average crystal grain size of the magnet powder obtained by HDDR treatment is about 0.3 / m and the grain size of the magnet powder is about 200 / im due to the structural transformation. For this reason, the bonded magnet using the magnet powder obtained by the HDDR treatment is naturally different from the bonded magnet as described above.
  • the present inventor has conducted intensive research to solve the above-mentioned problems, and as a result of repeating various systematic experiments, the present inventors have overturned the conventional wisdom and found that coarse NdFeB magnet powder and fine SmFeN magnet powder are used. It has been newly found that even when the alloy is used, a bond magnet excellent in not only initial magnetic properties but also weather resistance can be obtained. Then, based on this, the R 1 Fe B coarse powder consisting of the Nd Fe B magnet powder and the R 2 Fe (N, B) fine powder consisting of the SmFe N magnet powder etc. As a result, the present inventors have come up with the idea that similar effects can be obtained widely, and have completed the present invention.
  • Composite rare earth anisotropic bonded magnet
  • the composite rare earth anisotropic pound magnet of the present invention comprises a rare earth element containing yttrium (Y) (hereinafter referred to as “R 1”), iron (Fe) and boron (B) as main components.
  • R 1 yttrium
  • Fe iron
  • B boron
  • the R1FeB-based coarse powder composed of the first surfactant covering the surface of the constituent particles of the isotropic magnet powder contains 50 to 84% by mass (mass%) and a rare earth element containing Y (hereinafter referred to as " R 2 F e (N, B) based anisotropic magnet having an average particle diameter of 1 to 1 O / im and containing F e and nitrogen (N) or B as main components.
  • the R 2 Fe (N, B) -based fine powder comprising the powder and the second surfactant covering the surface of the constituent particles of the R 2 Fe (N, B) -based anisotropic magnet powder is 15 ⁇ 40 mass% and the binder resin is 1 ⁇ 10 mass%,
  • Maximum energy product (BH) ma x is the 1 6 7 ⁇ 223 kj Zin 3, 100 ° C at 1 000 hours. Permanent demagnetization rate showing the percentage reduction of the magnetic flux obtained by re-magnetized after the lapse of 6% or less It is characterized by being.
  • bonded magnet Composite rare earth anisotropic bonded magnet
  • the bonded magnet has a permanent demagnetization rate of 6% or less, 5% or less, and further 4.5% or less, which indicates the reduction rate of the magnetic flux obtained by re-magnetization after 1000 hours at 100. It shows excellent heat resistance and weather resistance.
  • the maximum energy product (BH) ma x for example, 1 6 7 k J Zm 3 or more, 1 80 k jZin 3 or more, 1 90 k J / m 3 or more, ZOO k jZm 3 or more, more 2 It shows magnetic properties as high as 10 kJ Zm 3 or more.
  • R l F e B based coarse powder (BH) ma x is 2 7 9. 3 k jZm 3 or more, R 2 F e (N, B) based fine powder (BH) max is 30 3. 2 k J / m 3 or more at which this and is favored Shi les.
  • the bonded magnet of the present invention has both high magnetic properties and high weather resistance than ever before.
  • weather resistance may take precedence over magnetic properties.
  • the magnetic susceptibility be as excellent as 14% or less (for example, 1.3%).
  • a material containing more B than the conventional RFeB-based anisotropic magnet powder In order to reduce the cost by omitting the homogenizing heat treatment, a material containing more B than the conventional RFeB-based anisotropic magnet powder. Some of them are included. In such a bonded magnet, even while reducing the 1 40-1 about 60 k J / m 3 the magnetic properties (BH) ma x, than one 4% weatherability permanent demagnetization (e.g., one 3. 4%). Moreover, a 1 30 ⁇ 140 k J / m 3 approximately at R 1 F e B based coarse powder, etc.
  • the R 2 Fe (N, B) anisotropic magnet powder referred to in this specification includes R 2 Fe N anisotropic magnet powder such as SmF e N magnet powder and N d Fe B R 2 FeB type anisotropic magnet powder such as a system magnet powder. Therefore, it is sufficient that the R 2 Fe (N, B) -based anisotropic magnet powder is composed of at least one of them.
  • R 2 Fe N anisotropic magnet powder (particularly, SmF e N magnet powder) is used as an example of R 2 Fe (N, B) anisotropic magnet powder It should be noted that it is not intended to exclude R2FeB-based anisotropic magnet powder such as NdFeB-based magnet powder. The same is true for the R 2 Fe (N, B) -based fine powder.
  • a composite rare-earth anisotropic bonded magnet composed of R 1 Fe B magnet powder such as NdF e B magnet powder and R 2 Fe (N, B) magnet powder such as S m Fe N magnet powder
  • R 1 Fe B magnet powder such as NdF e B magnet powder
  • R 2 Fe (N, B) magnet powder such as S m Fe N magnet powder
  • the main cause of the aging deterioration is that the R2Fe (N, B) -based magnet powder composed of SmFeN-based magnet powder and the like is easily oxidized, as described in the aforementioned Publication 4. It was thought until.
  • R 1 Fe B anisotropic magnet powder (particularly, NdFe B magnet powder) obtained by hydrogenation treatment and R 2 Fe (N, B)
  • bond magnets composed of anisotropic magnet powders especially SmF eN-based magnet powders
  • R 1 Fe B anisotropic magnet powders generated during molding of the bonded magnets. It seems that the particles are cracked by microcracks. 'If this crack at the mouth of the micropore occurs, the active metal fracture surface is exposed, and the oxidation of the RFeB-based anisotropic magnet powder proceeds, which is thought to cause the deterioration of the bonded magnet over time. is there.
  • the R 1 Fe B based anisotropic magnet powder obtained by the hydrogenation treatment has high susceptibility to cracking due to microcracks, and thus the above-mentioned deterioration over time is likely to occur.
  • the present inventor when molding a bonded magnet from the composite magnet powder, heat molding
  • a fluid layer (hereinafter, referred to as “ferromagnetic fluid layer” in the present invention).
  • the idea was to increase the fluidity between the constituent particles and to reduce the stress generated between the constituent particles by causing a floating state in the constituent particles. It was also conceived that such a ferrofluid layer was composed of a binder resin and fine R 2 Fe (N, B) -based anisotropic magnet powder dispersed in the resin. And we succeeded in obtaining a bonded magnet with excellent magnetic properties and weather resistance.
  • the bonded magnet of the present invention is not simply a mixture of a magnet powder having a different particle size and a resin serving as a binder, as in the related art. If simply hot molding is used in comparison with the conventional cold forming technology, the R 1 FeB anisotropic magnet powder does not necessarily float in the fluid layer. The present inventors have confirmed that sufficient fluidity cannot be obtained between particles. As in the present invention, in order for the coarse R 1 FeB anisotropic magnet powder to be in a state of being suspended in the fluid layer and to enhance the fluidity between the constituent particles, the R1 FeB anisotropic magnet powder is used. Magnetic powder and R 2 Fe (N, B) -based anisotropic magnet powder must both be strongly compatible with the binder resin.
  • R 1 Fe B type anisotropic magnet powder and R 2 Fe (N, B) type anisotropic magnet powder are used as surfactants for reducing the free energy of the interface with the resin.
  • the above problem was solved by coating each. Due to the presence of the surfactant, the R 1 Fe B anisotropic magnet powder and the R 2 Fe (N, B) anisotropic magnet powder in the resin have a high fluidity different from the conventional one. Demonstrate the nature. That is, at the time of heat molding of the bonded magnet, whether the R 1 Fe B anisotropic magnet powder or the R 2 Fe (N, B) anisotropic magnet powder is floating in the aforementioned fluid layer It will be like the following.
  • the R 2 Fe (N, B) anisotropic magnet powder having a small particle size is contained in the resin in a ferromagnetic fluid layer having high fluidity. It is as if floating inside.
  • the excellent fluidity described above works effectively when the bonded magnet is molded in a magnetic field. That is, since the fluidity of each anisotropic magnetic powder is high, excellent orientation and filling properties can be obtained. The magnetic properties can be further enhanced by this excellent combination of orientation and filling.
  • R 1 Fe B coarse powder a material in which the surface of a coarse R 1 Fe B anisotropic magnet powder is coated with a first surfactant
  • R 2 F An e (N, B) -based anisotropic magnet powder whose surface is coated with a second surfactant is referred to as R2Fe (N, B) -based fine powder.
  • the ferromagnetic fluid layer is composed of a resin as a binder and R 2 Fe (N, B) -based fine powder uniformly dispersed in the resin. This is done by heating a mixture of R1FeB-based coarse powder, R2Fe (N, B) -based fine powder, and resin (which may be in powdered or molded form) to form a bonded magnet. It is formed when you do it. Specifically, it is a liquid layer formed at a temperature higher than the softening point of the resin. Therefore, this ferrofluid layer is formed at the melting or softening temperature range of the resin.
  • This resin may be a thermoplastic resin or a thermosetting resin.
  • 03 04532 When the resin is a thermosetting resin, it may be heated to a temperature higher than its curing point for a short time. This is because the thermosetting resin does not immediately start to harden due to crosslinking or the like even if it is heated to a temperature higher than the curing point. Rather, by heating above the hardening point from the beginning of thermoforming, a ferrofluid layer with excellent fluidity can be quickly formed.
  • a ferrofluid layer having high fluidity is formed, and a bonded magnet having high density, excellent magnetic properties and excellent weather resistance can be obtained.
  • the thermosetting resin starts curing after a predetermined time, and the ferrofluid layer becomes a cured layer. If the resin is a thermoplastic resin, the ferrofluid layer becomes a solidified layer by subsequent cooling.
  • the temperature during the heating and kneading is preferably equal to or higher than the softening point of the resin and lower than the curing point. If a compound manufactured by heating and kneading at a temperature equal to or higher than the hardening point is used, the resulting pound magnet may be cracked or its magnetic properties may be degraded.
  • the ferrofluid layer has a high fluidity, and the R 1 Fe B anisotropic magnet powder having a coarse particle diameter passes through a surfactant via the surfactant. Good lubrication by ferrofluid layer.
  • a very high stress relaxation effect is obtained during the formation of the bonded magnet, the occurrence of the above-mentioned microcracks and the accompanying cracks can be prevented, and the aging of the magnetic properties due to the oxidation of the newly fractured surface is significantly reduced.
  • Bond magnets having the following characteristics can now be obtained.
  • Pond magnets having such excellent weather resistance are used not only in equipment used at room temperature but also in equipment used in hot environments where oxidative deterioration is likely to occur (for example, in hybrid vehicles). And drive motors of electric vehicles).
  • the right magnetic pole with high magnetic properties of maximum energy product (BH) max 167 kJ / ni 3 or more and excellent weatherability with a permanent demagnetization rate of 6% or less is required.
  • the bonded magnet of the present invention satisfies these requirements for the first time. (Compound for rare earth anisotropic bonded magnet)
  • the present invention can be understood as a compound suitable for manufacturing the above-mentioned bonded magnet. That is, the present invention provides an R 1 Fe B-based alloy containing R 1, F e, and B as main components, which has an average particle size of 50 to 400 / m obtained by performing a hydrogenation treatment.
  • the R 1 Fe B-based coarse powder consisting of the 1 Fe B-based anisotropic magnet powder and the first surfactant covering the surface of the constituent particles of the R 1 Fe B-based anisotropic magnet powder is 50%.
  • R 2 Fe (N, B) -based fine powder consisting of a magnetic magnet powder and a second surfactant covering the surface of the constituent particles of the R 2 Fe (N, B) -based anisotropic magnet powder 15 to 40 mass%, and the resin as a binder is composed of 1 to 10 mass%, and the surface of the constituent particles of the R 1 FeB-based coarse powder has the R 2 F e A core for a composite rare earth anisotropic pound magnet, characterized by being coated with a coating layer in which (N, B) -based fine powder is uniformly dispersed. It may be used as the pound.
  • R 2 Fe (N, B) fine powder and resin are uniformly dispersed around R 1 Fe B coarse powder, forming bonded magnet Even at relatively low molding pressures, bonded magnets with a sufficiently high density and very high magnetic properties can be obtained. This reduction in molding pressure contributes to a reduction in manufacturing costs by reducing equipment costs and manufacturing time.
  • the R2Fe (N, B) -based fine powder is not unevenly distributed during the heating magnetic field molding, and the R1FeB-based coarse powder
  • the R 2 Fe (N, B) -based fine powder can be supplied uniformly and quickly into the gaps between the constituent particles of. It seems that a higher filling factor and an effect of suppressing the cracking of the R 1 FeB-based coarse powder could be easily achieved under low pressure. These effects are remarkable when the R 1 Fe B coarse powder, the R 2 Fe (N, B) fine powder and the resin are heated and kneaded in advance to form a compound.
  • the compound for the composite rare earth anisotropic bonded magnet has, for example, a molding temperature of 150 ° C, magnetic field 2. OMA / m. It is preferable that the relative density of the bonded magnet obtained by heating magnetic field molding under the condition of molding pressure 392 MPa is 92 to 99%.
  • the present invention can be understood as a method for manufacturing the above-described bonded magnet / compound.
  • the average particle size obtained by subjecting an R 1 Fe B-based alloy mainly composed of R 1, Fe and B to hydrogenation treatment is 50 to 400 m.
  • R1FeB-based anisotropic magnet powder The surface of the constituent particles of the anisotropic magnet powder is coated with a first surfactant.
  • the R1FeB-based coarse powder is 50 to 84mass%, R2 and F
  • the surface of the constituent particles of the R 2 Fe (N, B) anisotropic magnet powder having e and N or B as main components and having an average particle diameter of 1 to 10 im is coated with a second surfactant.
  • a mixture of 15 to 4 O mass% of the R 2 Fe (N, B) -based fine powder and 1 to 1 O mass% of the resin as a binder is prepared by mixing the resin having a softening point higher than the softening point of the resin. While heating to a temperature, the resin is softened or melted, and an orientation magnetic field is applied to align the R 1 Fe B coarse powder and the R 2 Fe (N, B) fine powder. An orientation step, and a molding step of heating and pressing the mixture after the heating orientation step. Consisting of
  • a composite rare earth anisotropic bonded magnet is obtained in which the R 2 Fe (N, B) fine powder and the resin are uniformly filled between the constituent particles of the R 1 Fe B coarse powder.
  • the method for manufacturing a composite rare earth anisotropic bonded magnet described above may be used.
  • the surface of the constituent particles of the R 1 Fe B coarse powder is coated with a coating layer in which the R 2 Fe (N, B) fine powder is uniformly dispersed in the resin. It is preferable to use a compound made of such a compound.
  • the molding pressure when molding the bonded magnet is reduced. Even at relatively low rates, bonded magnets with sufficiently high density and very high magnetic properties can be obtained. This reduction in molding pressure contributes to a reduction in manufacturing costs by reducing equipment costs and manufacturing time. Furthermore, the R 2 Fe (N, B) -based fine powder is not unevenly distributed during the heating magnetic field molding, and the R 2 Fe (N, B) B) Fine powders can be supplied uniformly and quickly. And then P Lanhe 32
  • a high filling rate and a high deterrent effect on cracking of the R 1 FeB coarse powder are easily achieved under low pressure, and it is easy to obtain a bonded magnet with stable magnetic properties and weather resistance.
  • Such a compound includes, for example, heating and kneading the R1FeB-based coarse powder, the R2Fe (N, B) -based fine powder, and the resin at a temperature equal to or higher than the softening point of the resin. Obtained through a kneading step.
  • the average particle size obtained by subjecting an R 1 Fe B-based alloy mainly composed of R 1, Fe and B to hydrogenation treatment is 50 to 400 / im. 50 to 84 mass% of R 1 Fe B coarse powder obtained by coating the surface of the constituent particles of B type anisotropic magnet powder with a first surfactant, R 2, Fe and N or B
  • a compound in which the surface of the constituent particles of the R 1 Fe B coarse powder is coated with a coating layer in which the R 2 Fe (N, B) fine powder is uniformly dispersed in the resin is obtained.
  • each step required for forming the bonded magnet may be continuously performed in one step, or may be performed in multiple steps in consideration of productivity, dimensional accuracy, quality stability, and the like.
  • the heating orientation step and the subsequent molding step may be performed continuously in one molding die (single-stage molding) or may be performed in different molding dies (two-stage molding).
  • pressure may be accompanied during the heating orientation step.
  • the raw material when a good even if the step of weighing yet another mold in the (mixed powder or co Npaundo of the present invention) (three-step molding) D
  • the three-stage molding, the mixture before heating orientation process, The compound or the like may be filled in a mold cavity to form a preform formed by pressure molding.
  • the heating orientation step may be performed on the preformed body. In this way, by increasing the number of steps required for forming the pound magnet, it is easy to improve productivity, PC Garan 32
  • the degree of freedom increases.
  • the reason why the heating orienting step is provided in the above manufacturing method is that a bonded magnet having high magnetic properties can be obtained by orienting each anisotropic magnetic powder. Also, in the case of bonded magnets that require high magnetic properties, the direction of the required magnetic field is determined according to the application. The greater the fluidity of each magnetic powder in the heating orientation process, the more bonded magnets with excellent magnetic properties can be obtained. Thus, for example, when a thermosetting resin is used, it is more preferable that the thermosetting resin be heated to a temperature equal to or higher than the hardening point and the above-mentioned heating orientation step be performed in a state where the fluidity of the resin is increased.
  • the present invention may be a composite rare earth anisotropic bonded magnet obtained by the method for producing a composite rare earth anisotropic pound magnet.
  • the present invention may be a compound for a composite rare earth anisotropic bonded magnet, which is obtained by the method for producing a compound for a composite rare earth anisotropic bonded magnet.
  • FIG. 1A is a diagram schematically showing a compound for a composite rare earth anisotropic bonded magnet according to the present invention.
  • FIG. 1B is a diagram schematically showing a conventional compound for a bonded magnet.
  • FIG. 2A is a diagram schematically showing the composite rare earth anisotropic bonded magnet according to the present invention.
  • FIG. 2B is a diagram schematically showing a conventional bonded magnet.
  • FIG. 3 is a graph showing the relationship between the molding pressure and the relative density.
  • FIG. 4 is a SEM secondary electron image photograph of the composite rare earth anisotropic bonded magnet according to the present invention, focusing on the metal powder of the bonded magnet.
  • FIG. 5 is an EPMA image photograph of Nd observing the composite rare earth anisotropic bonded magnet according to the present invention, focusing on the Nd element of the NdFeB-based magnet powder. 0304532
  • FIG. 6 is a SPM EPMA image photograph of the composite rare earth anisotropic bonded magnet according to the present invention, focusing on the Sm element of the R 2 Fe (N, B) -based anisotropic magnet powder. is there. BEST MODE FOR CARRYING OUT THE INVENTION
  • R 1 Fe B anisotropic magnet powder is a powder obtained by subjecting an R 1 Fe B alloy containing R 1, Fe and B as main components to a hydrogenation treatment.
  • the hydrogenation treatment referred to in the present invention includes an HDDR treatment method (hydrogeenatioiii-decompo ositioon—disproppotlontat-on-reecombinnatation) and a d-HDDR treatment method.
  • the HDDR processing method mainly consists of two steps. That is, the first step (hydrogenation step) in which the temperature is maintained at 500 to 1000 ° C in a hydrogen gas atmosphere of about 100 kPa (latm) to cause a three-phase decomposition disproportionation reaction,
  • the dehydrogenation step (second step) is performed.
  • the dehydrogenation step is, for example, a step of setting the hydrogen pressure to an atmosphere of 10-a or less.
  • the temperature is, for example, 500 to 100
  • the temperature may be set to 0 ° C.
  • the hydrogen pressure referred to in this specification means a partial pressure of hydrogen unless otherwise specified. Therefore, as long as the hydrogen partial pressure in each step is within a predetermined value, a vacuum atmosphere or a mixed atmosphere of an inert gas or the like may be used.
  • the HDDR processing itself is disclosed in detail in Japanese Patent Publication No. Hei 7-68561, Japanese Patent No. 2576671, etc., and can be appropriately referred to.
  • this is achieved by controlling the reaction rate of R1FeB-based alloy with hydrogen from room temperature to high temperature.
  • the low-temperature hydrogenation step in which the alloy absorbs hydrogen sufficiently at room temperature JP03 / 04532
  • the difference from the HDD R treatment is that by providing multiple processes with different temperatures and hydrogen pressures, the reaction rate between the R 1 FeB alloy and hydrogen is kept relatively slow, and homogeneous anisotropic magnetic powder is obtained. It is a point that is devised so that it can be done.
  • the low-temperature hydrogenation step is, for example, a step of maintaining the hydrogen pressure in a hydrogen gas atmosphere at a pressure of 30 to 200 kPa and a temperature of 600 ° C. or less.
  • the high-temperature hydrogenation step is a step of maintaining the hydrogen pressure in a hydrogen gas atmosphere at a pressure of 20 to 100 kPa and a pressure of 75 to 900 kPa.
  • the first evacuation process is performed at a hydrogen pressure of 0.1 to 20 kPa,
  • the atmosphere is kept at an atmosphere of 11 to 11 Pa or less.
  • the average particle size is between 74 and 150.
  • the reason why the rooster ratio is set to 50 to 84 ma ss% is that the maximum energy product (BH) max decreases when the ratio is less than 5 O mass%, and when the ratio exceeds 84 ma ss ° / 0 , This is because the fluid layer becomes relatively small, and the effect of suppressing permanent demagnetization decreases.
  • the mixing ratio is more preferably 70 to 80 mass ° / 0 .
  • the mass% referred to in the present specification is 100 mass 0 / for the entire bonded magnet or the entire compound. This is the ratio when
  • the composition of the R 1 Fe B anisotropic magnet powder is not particularly limited.
  • R 1 is 11 to 16 atom% (at%)
  • B is 5.5 to 15 atom 0 /. (At%) and Fe as main components, and may contain unavoidable impurities as appropriate.
  • Typical are those main phase R 1 2 F e 14 B.
  • R 1 is less than 11 at%
  • 1 6 exceeds at% when R l 2 F e "B phase decreases and the magnetic properties deteriorate.
  • the B is 5.
  • R 1 is composed of scandium (S c), yttrium (Y), and lanthanide.
  • elements with excellent magnetic properties include 11CaY, lanthanum (La), cerium (Ce), praseodymium (Pr :), neodymium (Nd), samarium (Sm), and gadolinium (Gd ), Terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium ( ⁇ ), and lutetium (Lu).
  • R 1 is preferably mainly composed of one or more of Nd, Pr and Dy from the viewpoint of cost and magnetic properties.
  • the R 1 Fe B-based anisotropic magnet powder according to the present invention contains, apart from R 1, at least one or more rare earth elements (R 3) of Dy, Tb, Nd or Pr. Is preferable. Specifically, it is preferable that R 3 be contained in an amount of 0.05 to 5.0 at% when the entire powder is 100 at%. These elements increase the initial coercive force of the R 1 Fe B anisotropic magnet powder, and are also effective in suppressing the aging of bonded magnets. The same applies to the R 2 Fe (N, B) -based anisotropic magnet powder described later. For example, R 1 and R 2 may be the same.
  • R 3 is 0.05 at. /. If it is less than 5, the initial coercive force increases little, and if it exceeds 5 at%, (BH) max decreases. R 3 is more preferably 0.1 to 3 at%.
  • the R 1 FeB-based anisotropic magnet powder of the present invention contains La separately from R 1. Specifically, when the whole of each powder is 100 at%, La is 0.001 to 1.0 at. /. It is preferred to contain. This is because aging of the magnet powder and the bonded magnet is suppressed. The same applies to the R 2 Fe (N, B) -based anisotropic magnet powder described later.
  • La is effective in suppressing aging because La is a rare earth element (RE) It is the element with the highest oxidation potential among them. For this reason, La acts as a so-called oxygen getter, and La is selectively (preferentially) oxidized over Rl (Nd, Dy, etc.), and as a result, the magnet powder containing La This is because oxidation of the bonded magnet and the bonded magnet is suppressed.
  • RE rare earth element
  • La has an effect of improving weather resistance and the like only when contained in a trace amount exceeding the level of unavoidable impurities. Since the unavoidable impurity level of La is less than 0.001 at%, in the present invention, the 1 & amount is set to 0.00 lat% or more. On the other hand, if L a exceeds 1. O at%, i H c is undesirably reduced. Here, it is more preferable that the lower limit of the amount of La is 0.01 at%, 0.05 at%, and 0.1 at% because a sufficient effect of improving weather resistance and the like is exhibited. And from the viewpoint of improving the weather resistance and suppressing the decrease in iHc, the & amount is more preferably 0.01 to 0.7 at%.
  • B in the 1 FeB type anisotropic magnet powder is 10.8 to 15 at. /.
  • the composition of the magnet powder containing L a rather than the alloy composition capable of providing R l 2 F e 14 B phase as a single phase or substantially single phase, and R 1 2 F 6 14 8 1 Phase In 8—, the alloy composition has a multiphase structure such as the ich phase.
  • the R 1 Fe B anisotropic magnet powder may contain, in addition to R l, B and F e, various elements for improving its magnetic properties and the like.
  • the coercive force of the R 1 Fe B anisotropic magnet powder is improved.
  • the content of Ga is 0. O lat. /. If it is less than 1.0, the effect of improving the coercive force cannot be obtained, and is 1.0 at. If it exceeds / 0 , the coercive force will decrease.
  • Nb the reaction rates of the forward structure transformation and the reverse structure transformation in the hydrogenation treatment can be easily controlled.
  • the coercive force decreases.
  • the coercive force and the anisotropic property can be improved as compared with the case where Ga and Nb are contained alone.
  • (BH) max is increased.
  • a 1 silicon (S i), titanium (T i), vanadium (V), chromium (Cr), manganese (Mn), nickel (N i), copper (Cu), P Collinsi 32
  • At least one of lead (Pb) is preferably 0.001 to 5.0 at% in total.
  • the coercive force and the squareness of the obtained magnet can be improved.
  • the content is less than 0.001 at%, the effect of improving the magnetic properties is not exhibited. If the content exceeds 5.0 a 1:%, a precipitated phase is precipitated and the coercive force decreases.
  • cobalt (Co) at 0.001 to 20 at%.
  • Co cobalt
  • the Curie temperature of the bonded magnet can be increased, and the temperature characteristics are improved.
  • the content of Co is less than 0.001 at%, the effect of the C 0 content is not seen, and if it exceeds 20 at%, the residual magnetic flux density is reduced and the magnetic properties are reduced.
  • the method of preparing the raw material alloy of the R 1 Fe B type anisotropic magnet powder is not particularly limited, but each may be a general method, using a high-purity alloy material and each having a predetermined composition. Prepare After mixing these, they are melted by each melting method such as a high-frequency melting method, and manufactured to form an alloy ingot.
  • This ingot may be used as a raw material alloy, which may be pulverized and coarsely powdered to obtain a raw material alloy.
  • an alloy obtained by subjecting a raw material ingot to a homogenization treatment to reduce the bias in the composition distribution can be used as the raw material alloy.
  • the homogenized ingot can be pulverized into a coarse powder to be used as a raw material alloy.
  • the pulverization of the ingot and the pulverization performed after the above-mentioned hydrogenation treatment can be performed using a dry or wet mechanical pulverization (jaw crusher, disk mill, ball mill, vibration mill, jet mill, etc.) or the like.
  • the above-mentioned alloying elements such as Dy, Tb, Nd or Pr (R3), La, Ga, Nb, and Co are also efficient if they are included in the raw material during the above preparation. is there.
  • R3 and La are elements that improve the weather resistance of R1FeB anisotropic magnet powder and the like, so La is the surface of the constituent particles of the magnet powder and the like. It is more preferable that they exist in the vicinity of. Therefore, rather than having R 3 or La included in the raw material alloy from the beginning, R 3 powder or La powder can be used during or after the production of magnet powder.
  • Mixing with 1 FeB-based powder and diffusing La to the surface or inside of the magnet powder can provide a magnet powder with better weather resistance.
  • the R 3 -based powder only needs to contain at least the above R 3, and is composed of, for example, at least one of R 3 alone, an R 3 alloy, an R 3 compound, and a hydride thereof.
  • the La-based powder only needs to contain at least La.
  • the La-based powder is composed of one or more of La alone, an La alloy, an La compound, and a hydride thereof.
  • the R 3 alloy and La alloy are preferably made of an alloy of transition metal element (TM) and La, a compound (including an intermetallic compound), or a hydride in consideration of the influence on magnetic properties.
  • Examples of these are, for example, La Co (Hx) .LaNdCo (Hx), LaDyCo (Hx), R3Co (Hx), R3Nd C o (H x), R 3 D y C o (Hx) and the like.
  • R 3 and La contained in the alloy and the like be at least 20 at%, and more preferably at least 6 O at%. is there.
  • R 3 or La is diffused to the surface or inside of the magnet powder, for example, a mixed powder obtained by mixing R 3 Fe powder or La powder to R 1 Fe B magnet powder is used. It can be performed by a diffusion heat treatment step of heating to 673-1123K. This diffusion heat treatment step may be performed after mixing the R 3 -based powder or the La-based powder, or may be performed simultaneously with the mixing.
  • the treatment temperature is less than 673 K, it is difficult for the R 3 -based powder or La-based powder to become a liquid phase, and it is difficult to perform a sufficient diffusion treatment.
  • the temperature exceeds 1123 K, crystal grains of the R 1 FeB-based magnet powder and the like are grown, i He is reduced, and the weather resistance (permanent demagnetization rate) cannot be sufficiently improved.
  • Its processing time is preferably 0.5-5 hours. If the time is less than 0.5 hours, the diffusion of R 3 and La becomes insufficient, and the weather resistance and the like of the magnet powder are not significantly improved. On the other hand, if it exceeds 5 hours, i Hc will decrease.
  • this diffusion heat treatment step is preferably performed in an antioxidant atmosphere (for example, a vacuum atmosphere).
  • an antioxidant atmosphere for example, a vacuum atmosphere.
  • the form (particle size, etc.) of the R 1 Fe B-based magnet powder, R 3 -based powder, or La-based powder at the time of performing these treatments is not limited. It is preferable that the average particle diameter of the FeB-based magnet powder is 1 mm or less, and the average particle diameter of the R3 or La-based powder is about 25 m or less.
  • the R 1 FeB-based magnet powder may be a hydride or a magnet powder, or may have a three-phase decomposed structure, or may be a regenerated material. They may be concluded.
  • R 1 Fe B-based magnet powder when R 3 or La is added during the production of R 1 Fe B-based magnet powder, the R 1 Fe B-based magnet powder as a counterpart material is more or less in a hydride state (hereinafter, referred to as hydride).
  • This hydride powder is referred to as “RlFeBHx powder”.
  • R3 and La are added after the hydrogenation step, before the end of the dehydrogenation step or after the high-temperature hydrogenation step, and before the end of the second exhaustion step.
  • This R 1 Fe B powder or the like is in a state where R 1 and Fe are very hard to be oxidized as compared with the case where hydrogen is not contained.
  • R 3 and La diffusion and coating of R 3 and La can be performed in a state where oxidation is suppressed, and a magnet powder having excellent weather resistance can be manufactured with stable quality.
  • the R3 powder and the La powder are also in a hydride state.
  • R 3 CoHx or La CoHx may be used.
  • R l F e B based anisotropic magnetic powder 27 9. 3 kj / m 3 or more, more 344 k J / m 3 or more Is preferred.
  • R 2 Fe (N, B) anisotropic magnet powder is filled with coarse R 1 Fe B anisotropic magnet powder to improve the magnetic properties of the bonded magnet, especially the maximum energy product. It is effective above.
  • this R 2 Fe (N, B) anisotropic magnet powder includes R 2 Fe N anisotropic magnet powder and R 2 Fe N anisotropic magnet powder. And at least one of them.
  • R 2 Fe (N, B) anisotropic magnet The powder has a considerably smaller particle size than the R 1 FeB anisotropic magnet powder.
  • the composition is not particularly limited, and may appropriately contain unavoidable impurities.
  • a typical one is Sm 2 Fe 17 N as a main phase.
  • R 2 Fe (N, B) -based anisotropic magnet powder in addition to the main component, various elements for improving the magnetic properties and the like may be contained.
  • SmFeN-based magnet powder which is one of the R2Fe (N, B) -based anisotropic magnet powders, can be obtained, for example, by the following method.
  • a Sm-Fe alloy having a desired composition is subjected to a solution treatment and pulverized in nitrogen gas. After the pulverization, nitriding is performed in a mixed gas of NH 3 and H 2 , followed by cooling. Then, finely pulverized with a jet mill or the like, fine SmF eN-based magnet powder of 10 ⁇ or less can be obtained.
  • the SmF eN-based magnet powder generates a high coercive force by setting the particle size to a single domain particle size.
  • the average particle size of the R 2 Fe (N, B) -based anisotropic magnet powder was set to 1 to 10 ⁇ m. If it is less than 1 ⁇ m, it is not preferable because (1) it is easily oxidized, (2) the residual magnetic flux density decreases, and the maximum energy product (BH) max decreases. If it exceeds 10 / im, (1) single domain particles cannot be obtained, and (2) the coercive force decreases, which is not preferable.
  • the reason why the ratio of the rooster is set to 15 to 40 ma ss% is that if the ratio is less than 15 ma ss%, the amount of filling between the constituent particles of the R 1 Fe B anisotropic magnet powder is small. .
  • the content exceeds 4 Omass% the amount of the R 1 FeB-based anisotropic magnet powder relatively decreases, and the maximum energy product (BH) max decreases.
  • R 2 F e (N, B) based anisotropic magnet powder 30 3. 2 k jZm 3 or more, more 3 1 9 miles Three or more are preferred.
  • the use of a surfactant is important when the bonded magnet is formed by heating, the fluidity of the R 1 Fe B anisotropic magnet powder and the R 2 Fe (N, B) anisotropic magnet powder in the resin. This is to increase Thereby, high lubricity, high filling property, high orientation and the like are exhibited during the heat molding, and a bonded magnet excellent in magnetic properties and weather resistance can be obtained.
  • the binder resin and the R 2 Fe (N, B) anisotropic magnet powder can be separated.
  • the degree of bonding increases. That is, both are integrated, and the ferromagnetic fluid layer behaves as a more simulated fluid.
  • the R 2 Fe (N, B) -based anisotropic magnet powder is uniformly dispersed in the resin due to the presence of the second surfactant, thereby improving the relative density and magnetic properties of the pound magnet. Also greatly contributes.
  • the surfactant is indispensable not only on the R 1 Fe B anisotropic magnet powder side but also on the R2 Fe (N, B) anisotropic magnet powder side.
  • a surfactant that coats the particle surface of the R 1 Fe B anisotropic magnet powder and a surfactant that coats the particle surface of the R 2 Fe (N, B) anisotropic magnet powder Although they are distinguished from each other for convenience, they may be the same or different.
  • the use of a common surfactant facilitates the coating process, which is preferable in production.
  • the type of the surfactant is not particularly limited, but is determined in consideration of the type of the resin used as the binder.
  • a surfactant such as a titanate-based coupling agent or a silane-based coupling agent can be used.
  • a silane coupling agent can be used in the case of a phenol resin.
  • the resin used in the present invention plays a role as a binder in the bonded magnet. It is not limited to a thermosetting resin, but may be a thermoplastic resin. Examples of the thermosetting resin include the above-described epoxy resin and phenol resin, and examples of the thermoplastic resin include nylon-2 and polyphenylene sulfide.
  • each magnet powder coated with a surfactant is mixed with R 1 Fe B based coarse powder and R
  • the 1 FeB-based coarse powder is obtained, for example, by a first coating step of drying after stirring the R1FeB-based anisotropic magnet powder and the solution of the first surfactant.
  • the R 2 Fe (N, B) -based fine powder is, for example, dried after stirring the R 2 Fe (N, B) -based anisotropic magnet powder and the solution of the second surfactant. Obtained by the second coating step.
  • the surfactant layer thus obtained has a thickness of about 5 to 2 Zm, and covers the entire surface of each powder particle.
  • the compound of the present invention is obtained, for example, by mixing an R 1 Fe B-based coarse powder, an R 2 Fe (N, B) -based fine powder, and a resin, and then heating and mixing the mixture. is there. Its form is granular with a particle size of about 50-500 m.
  • FIG. 1 shows a schematic transfer of this situation based on EPMA photographs taken by SEM observation of coarse NdFeB magnet powder and fine SmFeN magnet powder, which are examples of the magnetic powder. Shown in A.
  • FIG. 1B schematically shows a state of a conventional compound including NdFeB magnet powder and resin. As can be seen from Fig. 1B, in the case of the conventional compound, the resin is merely adsorbed on the particle surface of the NdFeB-based magnet powder.
  • the SmF eN-based fine powder in a state where the SmF eN-based magnet powder is encapsulated in the resin via the second surfactant is used.
  • the state is such that the NdFeB-based magnet powder is uniformly dispersed on the particle surface of the NdFeB-based coarse powder in a state of being coated with the first surfactant.
  • the surrounding area is further filled with resin.
  • FIG. 1A shows a state in which the NdFeB-based coarse powder is separated for each particle, the compound according to the present invention is not limited to such a state.
  • the compound of the present invention may be composed of a plurality of particles constituting the R 1 FeB-based coarse powder bound together. It may consist of a mixture of things.
  • FIGS. 2A and 2B schematically show a part of a bonded magnet obtained by press-molding these compounds in a heating magnetic field, similarly to FIGS. 1A and 1B.
  • FIG. 2A shows the bonded magnet of the present invention
  • FIG. 2B shows a conventional bonded magnet.
  • the particles of the NdFeB-based magnet powder come into direct contact with each other and the stress concentrates locally at the time of pressing.
  • the particles of the NdFeB-based magnet powder that have been subjected to hydrogenation treatment and have increased cracking susceptibility cause cracks at the mouth opening and cracks due to the cracks. Then, an oxide layer, which causes deterioration of magnetic properties, is formed on the newly generated active fracture surface.
  • the surface of each constituent particle of the NdFeB-based coarse powder is SmFeN, as is clear from FIG. 2A. It is in a state of being uniformly surrounded by the system fine powder and the resin. In other words, the constituent particles of the NdFeB-based coarse powder are in a state of being densely filled with them. As a result, the NdFeB-based coarse powder is in a state as if it were floating in a ferrofluid layer formed by the SmFeN-based fine powder and the resin.
  • the particles of the NdFeB-based coarse powder are placed in an environment with excellent lubricity, and the particles of the NdFeB-based coarse powder have a large attitude freedom. Get a degree.
  • the ferrofluid layer existing between the constituent particles of the NdFeB-based coarse powder plays a role of so-called cushion, and the constituent particles of the NdFeB-based coarse powder come into direct contact with each other, and To prevent excessive stress concentration. In this way, a micro-crack and a crack due to the micro-crack, which had occurred inside the conventional bonded magnet, were suppressed and prevented, and a bonded magnet with very little deterioration over time was obtained.
  • the bonded magnet was heat-formed from the compound obtained by heating and kneading the R 1 Fe B-based coarse powder, the R 2 Fe (N, B) -based fine powder, and the resin was described.
  • the above situation is not limited to such a case.
  • the magnetic properties are the same as in the above-described case.
  • the present inventors have confirmed that a bonded magnet having excellent weather resistance can be obtained. This is because by coating the surface of each magnetic powder with a surfactant, the conformability or wettability with the resin softened or melted by heating is greatly improved. Therefore, it is considered that the fluidity of the molten resin was improved. In such a case, it is more preferable to quickly bring the resin into a softened and molten state, so it is preferable to heat the resin at a relatively high temperature. For example, when a thermosetting resin is used, it may be formed by heating to a temperature higher than the curing point from the stage of magnetic field orientation.
  • the uniform dispersibility of the R 1 FeB-based coarse powder in the ferrofluid layer is further improved, and a bonded magnet having high magnetic properties and high weather resistance can be obtained more stably.
  • the “fluidity” referred to in the present specification relates to the filling property, lubricity, orientation, etc. of the RlFeB-based anisotropic magnet powder in the ferrofluid layer, and is more specific. Is related to the ease of movement such as rotation and the degree of freedom of posture.
  • This fluidity can be indexed by the viscosity of the compound used, the shearing torque during molding of the bonded magnet, or the relative density of the pound magnet when molded under any molding pressure. .
  • the relative density is used as an index of the liquidity. This is because the target permanent demagnetization rate can be measured with the sample whose relative density is measured.
  • the relative density is the ratio of the density of the compact to the theoretical density determined from the mixing ratio of the raw materials.
  • FIG. 3 shows the result of examining the relationship between the molding pressure when molding was actually performed under various molding pressures and the relative density of the obtained molded body.
  • ⁇ in the figure shows the relative density when the molding pressure of the sample No. 23 of the second embodiment described later is variously changed.
  • indicates the relative density of Sample No. 26
  • indicates the relative density of Sample No. HI.
  • a bonded magnet was formed using a compound obtained by heating and kneading a resin with NdFeB-based coarse powder and SmFeN-based fine powder to which a surfactant was added. This is the case.
  • the relative density rapidly increases from the stage where the molding pressure is low.
  • the molding pressure is about 198 MPa (2 ton Z cm 2 )
  • the phase density almost reaches saturation.
  • it can be performed at a very low molding pressure. That is, it exhibits excellent low-pressure moldability.
  • This reduction in molding pressure not only improves productivity, but also further suppresses cracking of the RlFeB anisotropic magnet powder, and reduces the oxygen content due to the improved filling rate. It is also effective for improving weather resistance (permanent demagnetization rate). Furthermore, by raising the packing ratio to near the limit and improving the orientation by high fluidity, the magnetic properties represented by (BH) max can be improved to a very high level.
  • Sample No. 23 ( ⁇ ) shows the case where each magnetic powder and resin were kneaded at room temperature and subjected to heating magnetic field molding.
  • the rise of the relative density with respect to the molding pressure is slow, and low-pressure moldability as in the case of Sample No. 26 (A) cannot be obtained. Therefore, considerable high-pressure molding must be performed to obtain the desired bonded magnet.
  • the weather resistance permanent demagnetization rate
  • Sample No. HI ( ⁇ ) is the case where neither heating kneading nor heating magnetic field molding was performed. In other words, this is the case where kneading and pressure molding are performed at room temperature. In this case, the rise of the relative density with respect to the molding pressure is even slower, and low-pressure moldability cannot be obtained. Furthermore, as is clear from Table 5, the weather resistance (permanent demagnetization rate) and the magnetic properties were not very good.
  • this ferrofluid layer is formed by dispersing R 2 Fe (N, B) -based fine powder in the resin, and surrounds the periphery of the R 1 Fe B-based coarse powder. Things.
  • the function of the ferrofluid layer can be mainly divided into fluidity and uniform dispersion.
  • the fluidity contributes to the improvement of the ease of rotation and the ease of attitude control of each magnet powder. Then, it increases the filling rate and orientation of the anisotropic magnet powder, and further acts to suppress cracking of the R 1 FeB-based coarse powder during molding. As described above, improving the filling rate and orientation improves (BH) max and the permanent demagnetization rate, and suppressing the cracking of the RlFeB-based coarse powder improves the permanent demagnetization rate.
  • Uniform dispersibility contributes to shortening the moving distance of R 2 Fe (N, B) -based fine powder and resin during bond magnet molding and suppressing uneven distribution of R 2 Fe (N, B) -based fine powder. Both of these enhance the filling rate by filling the voids formed between the constituent particles of the R 1 F.e B-based coarse powder, and increase the (BH) max and the permanent demagnetization rate of the bonded magnet. Also, R 2 F e ( 04532
  • N, B) Reducing the moving distance of fine powders and the like contributes to improving the productivity of bonded magnets by reducing molding pressure and enhancing low-pressure compactability.
  • R2Fe (N, B) -based fine powder in addition to improving the productivity associated with this low-pressure compactibility, it is also effective in preventing cracking of R1FeB-based coarse powder and is effective in bonding magnets. Contribute to the improvement of the permanent demagnetization rate.
  • the suppression of uneven distribution also maintains the uniformity of the surface magnetic flux of the magnet, and the quality of the pound magnet is low during mass production.
  • the present specification uses the relative density when the bonded magnet is formed under specific conditions.
  • (BH) max and the above-mentioned fluidity that affects the permanent demagnetization rate are indicated by molding temperature of 150 ° C, magnetic field 2.
  • molding pressure 882MPa industrial, pressure applied at the time of final product molding
  • the relative density of the bond magnet obtained by heating magnetic field molding under the conditions of use.
  • the relative density is a very high value of 94 to 99%. If the relative density is less than 94%, the fluidity is insufficient, and the ease of rotation and posture control of the R 1 Fe B coarse powder and the R 2 Fe (N, B) fine powder are low. For this reason, the filling property, orientation, and crack-preventing property during molding of the bonded magnet are also reduced, and a bonded magnet excellent in (BH) max and permanent demagnetization rate cannot be obtained.
  • the upper limit of the relative density is set to 99% or less because it is the manufacturing limit at the mass production level.
  • the relative density in the case where sufficient uniform dispersibility is imparted has a very high value of 95 to 99%. This is because by imparting uniform dispersibility, shortening the moving distance of R 2 Fe (N, B) -based fine powder and resin and preventing uneven distribution of R 2 Fe (N, B) -based fine powder, This is because the fluidity is increased and the filling rate and the effect of suppressing cracks are improved. As a result, a bonded magnet having more excellent (BH) max and permanent demagnetization rate can be obtained.
  • Molding pressure 39 The relative density of the bonded magnet obtained when the heating magnetic field is molded under the conditions of 2 MPa is used.
  • the relative density when more uniform dispersibility is imparted is as high as 92 to 99%.
  • the relative density of 9 2% Not Mitsurude has can not be obtained insufficiently good low moldability fluidity.
  • the reason why the upper limit of the relative density is 99% is as described above.
  • R 1 Fe B anisotropic magnet powder used in the examples according to the present invention and the comparative example a sample (Nd Fe B magnet powder) having the composition shown in Tables 1 and 2 was used.
  • This coarsely ground material was subjected to a d-HDDR treatment comprising a low-temperature hydrogenation step, a high-temperature hydrogenation step, a first exhaustion step, and a second exhaustion step under the following conditions. That is, in a hydrogen gas atmosphere at room temperature and a hydrogen pressure of 100 kPa, hydrogen was sufficiently absorbed by each sample alloy (low-temperature hydrogenation step). Then at 800 at 30? Heat treatment was performed for 480 minutes in a hydrogen gas atmosphere of & (hydrogen pressure) (high-temperature hydrogenation step). Subsequently, a heat treatment was performed for 160 minutes in a hydrogen gas atmosphere at a hydrogen pressure of 0.1 to 20 kPa while maintaining the temperature at 800 ° C. (first evacuation step).
  • a surfactant solution was added to the NdFeB-based magnet powder having each composition thus obtained, and the mixture was stirred and dried under vacuum (first coating step).
  • the solution of the surfactant was prepared by diluting a silane coupling agent (N-C Silicone A-187, manufactured by Nippon Yurika Co., Ltd.) twice with ethanol.
  • Sample No. 4 was prepared by diluting a titanate-based coupling agent (Preact KR41 (B), manufactured by Ajinomoto Co., Inc.) twice with methyl ethyl ketone as a surfactant solution. It was used.
  • an R 1 Fe B-based coarse powder (Nd Fe B-based coarse powder) composed of particles whose surface was coated with a surfactant was obtained.
  • sample No. C1 in Table 2 no surfactant was coated.
  • sample Nos. 1 to 8 in Table 1 and each comparative sample in Table 2 include commercially available SmF eN-based magnet powder (Sumitomo Metals). Mining Co., Ltd.) was used.
  • SmF eN-based magnet powder Suditomo Metals
  • Mining Co., Ltd. a commercially available SinF eN-based magnet powder (manufactured by Nichia Corporation) was also used. In each case, the same surfactant solution as described above was added, and the mixture was stirred and dried under vacuum (second coating step).
  • the method of coating the surfactant is not limited to the method performed on the NdFeB-based coarse powder or the SmFeN-based fine powder described above.
  • a surfactant solution for example, after mixing the R 1 Fe B anisotropic magnet powder and the R 2 Fe (N, B) anisotropic magnet powder with a Henschel mixer or the like, add a surfactant solution and stir. Vacuum drying may be used.
  • the temperature at which the heating and kneading step is performed may be any temperature as long as it is equal to or higher than the softening point of the epoxy resin.
  • an epoxy resin if it is below 90 ° C, it will not be in a molten state and the SmFeN-based fine powder cannot be uniformly dispersed in the resin.
  • the heating and kneading temperature is equal to or higher than the curing point of the epoxy resin, the resin can coat around the magnet powder and be uniformly dispersed.
  • the term “uniformly dispersed” refers to a state in which an epoxy resin is always present between the SmF eN-based fine powder and the NdFeB-based coarse powder.
  • the resin used this time has a softening point of 90 and a curing temperature (curing point) of 150 ° C.
  • the curing temperature is a temperature at which 95% of the resin ends the curing reaction by heating at that temperature for three minutes.
  • pound magnets for magnetic measurement were manufactured.
  • the molding conditions were as follows: molding temperature: 150 ° C, 2. OMA / m magnetic field (heating orientation step), molding pressure: 88 MPa (9 ton / cm 2 ). It was pressed (molding process).
  • the molding step is not limited to compression molding, and a known molding method such as injection molding or extrusion molding may be used.
  • the maximum energy product of the pound magnet of each of the obtained samples was measured and measured with a BH tracer (BHU-25, manufactured by Riken Electronics Sales Co., Ltd.). Permanent demagnetization rate is calculated from the difference between the initial magnetic flux of the molded bonded magnet and the magnetic flux obtained by re-magnetizing the magnet after holding it in the air atmosphere at 100 ° C for 1000 hours. It is the one that asked for.
  • MODEL FM-BIDSC manufactured by Denki Magnet Co., Ltd. was used for the measurement of the magnetic flux.
  • the relative density was determined by the method described above. That is, the dimensions of the compact after pressure molding were measured with a micrometer to calculate its volume, and its weight was measured with an electronic balance to determine the density of the compact. This was divided by the theoretical density obtained from the mixing ratio of the magnetic powder and the resin of each sample to obtain a relative density.
  • FIG. 4 shows a secondary electron image.
  • FIG. 5 shows an E PMA image of the Nd element. In FIG. 5, it is shown that the concentration of the Nd element is increasing in the order of blue ⁇ yellow ⁇ red. e Being a B-based powder particle.
  • FIG. 6 shows an E PMA image of the Sm element.
  • concentration of the Sm element increases in the order of blue ⁇ yellow ⁇ red.
  • Fig. 6 it can be seen that the entire periphery of all large-diameter particles (NdFeB-based powder particles) is covered with SmFeN-based powder particles, and that the large-diameter particles composed of NdFeB-based powder are used. It can be seen that the small-diameter particles of the SmFeN-based powder are uniformly and densely dispersed in the gaps formed therebetween. (Evaluation)
  • Sample Nos. 1 to 12 are provided with the average particle diameter and the compounding ratio referred to in the present invention.
  • bonded magnet made of any of the samples show a (BH) ma x is 1 44 k J / m a more high magnetic properties.
  • the permanent demagnetization rate which is an indicator of its aging, showed excellent characteristics of 6.5% or less in all samples.
  • the permanent demagnetization rate under a 100 ° C environment showed excellent characteristics of 5% or less in all samples.
  • the relative densities which indicate the fluidity of the compound during heat molding of the bonded magnet, are all as high as 92% or more.
  • the change in relative density due to the difference in molding pressure is very small. That is, it was confirmed that a sufficiently large relative density was obtained even when molding was performed at a low pressure, that is, the low-pressure moldability of the present invention was confirmed.
  • Samples N 0, 1 to 3, 7 to 10 and 12 emphasized both magnetic properties and weather resistance.
  • These composite rare earth anisotropic pound magnets exhibit extremely excellent properties with (BH) max of 168 kj / m 3 or more.
  • the bonded magnets, together with their excellent magnetic properties also exhibit extremely high weather resistance, a permanent demagnetization rate of 5.0% (100 ° C), which cannot be achieved with conventional composite bonded magnets. are doing.
  • Sample No. 4 shows a composite rare earth anisotropic bonded magnet which is based on the bonded magnets and the like of Samples Nos. 1 to 3 described above and further has improved weather resistance suitable for use in a high-temperature atmosphere.
  • As compared to 1-3 of the bonded magnet (BH) ma X is 1 64 k J
  • Zm 3 slightly lower one 4% or less permanent demagnetization (one specifically 3. 3%).
  • Samples Nos. 5 and 6 show composite rare-earth anisotropic bonded magnets based on the bonded magnets of Samples Nos. 1 to 3 and further improving the weather resistance and reducing the production cost.
  • the homogenization heat treatment was omitted and the production cost was reduced.
  • the inclusion of La that functions as an oxygen getter further increases the permanent demagnetization rate.
  • These bonded magnets have (BH) max of 14.5 kJ / m compared to the bonded magnets of sample No. 1-3. 3, 1 5 3 k jZm 3 slightly although lower and become very excellent in weather resistance even one 3.2% either permanent demagnetization.
  • the bonded magnet of sample No. 11 is a low-cost type in which the blending amount of NdFeB-based magnet powder, which is R1FeB-based coarse powder, is reduced.
  • NdFeB-based magnet powder which is R1FeB-based coarse powder
  • (BH) ma X force 44 k jZm 3
  • Sample No. I like 1-3 pounds magnet remote slightly and summer low permanent demagnetization is one 4.5% excellent weather It still shows sex.
  • Sample No. C1 is a case where the NdFeB-based magnet powder of sample No. 1 was not coated with a surfactant.
  • Sample No. C2 is the case where the surfactant was not applied to the SmF eN-based magnet powder of Sample No. 1.
  • the relative density at low pressure molding (392MPa) is low. This seems to be due to the low fluidity of the bonded magnets during hot forming.
  • the NdFeB-based since the surface of the NdFeB-based magnet powder is not coated with a surfactant, the NdFeB-based This is probably because the fluidity between the magnet powder and the ferrofluid layer was low.
  • the permanent demagnetization rate when molding at 88 2 MPa which is the normal industrial molding pressure
  • a ferrofluid layer in which the SmFeN-based magnet powder was sufficiently dispersed in the resin was not formed in the first place, and the fluidity was low.
  • the permanent demagnetization rate when molding at 882 MPa which is the molding pressure at the ordinary industrial level, is also inferior.
  • Sample No. D1 is the case where the average particle size of the NdFeB magnet powder was too small.
  • Sample No. D2 is the case where the average particle size was too large compared to Sample No. 4.
  • (BH) max is significantly reduced. Therefore, in order to improve the magnetic properties, it is important that the average particle size of the NdFeB-based magnet powder is within the range of the present invention.
  • Sample No. E1 is the case where the amount of the NdFeB-based coarse powder was smaller than that of sample No. 1.
  • Sample No. E2 shows the case where the amount was too large.
  • the blending amount increases, the blending amount of the SmF eN-based fine powder relatively decreases, and N The fine SmF eN-based powder cannot be uniformly dispersed on the entire surface of the dF e B-based coarse powder.
  • the relative density (fluidity) of the bonded magnet during heat molding has decreased, and the permanent demagnetization rate has also deteriorated accordingly.
  • sample No. F1 is the case where the amount of the SmF eN-based fine powder was smaller than that of Sample No. 4.
  • Sample No. F2 is the case where the blending amount was too large with respect to Sample No. 4.
  • the amount of the SmFeN-based fine powder is small, the SmFeN-based fine powder is not uniformly dispersed on the entire surface of the NdFeB-based coarse powder, as in the case of the sample No. E2.
  • the relative density (fluidity) of the bonded magnet at the time of heat molding decreases, and the permanent demagnetization rate and magnetic properties deteriorate accordingly.
  • the amount of the SmFeN-based fine powder is large, the amount of the NdFeB-based coarse powder is relatively reduced as in the case of the sample No. E1, and the magnetic properties are degraded.
  • Sample No. G1 is the case where the amount of epoxy resin was small.
  • G2 is when the amount is too large. If the compounding amount of the resin is small, the formation of a ferromagnetic fluid layer that can be formed when the bonded magnet is heat-formed becomes insufficient, and the fluidity of the NdFeB-based coarse powder is lost, so that the permanent demagnetization rate decreases. If the amount of the resin is too large, the amount of the NdFeB-based coarse powder or the like is relatively small, and the magnetic properties of the bonded magnet tend to decrease.
  • R1FeB-based coarse powder such as NdFeB-based coarse powder, SmFeN-based fine powder, etc. It has been confirmed that the R 2 Fe (N, B) -based fine powder and the resin must satisfy the average particle size and the compounding ratio referred to in the present invention.
  • the manufacturing conditions (kneading temperature) of the compound used for forming the bonded magnet and the forming conditions (forming temperature and forming pressure) for forming the bonded magnet using the compound were variously changed to obtain magnetic properties, Table 5 shows the results of a study on relative density, permanent demagnetization rate, and uniform dispersibility.
  • the types and amounts of the NdFeB-based coarse powder, SmFeN-based fine powder and resin used here are the same as those of Sample No. 1 of the first embodiment.
  • the manufacturing conditions for each bonded magnet are the same as in the first embodiment.
  • each trial The measurement of the bonded magnet made of the material was performed in the same manner as in the first example.
  • Sample Nos. 21 to 24 use compounds obtained by kneading each magnetic powder and resin at room temperature. In this case, each magnetic powder and resin are only physically mixed, and the resin dispersibility in the compound is low. For this reason, the relative density is low and low pressure molding is difficult.
  • Samples No. 25 and 26 used compounds obtained by heating and kneading each magnetic powder and resin to a temperature above the softening point. In this case, during the compound
  • the uniform dispersibility of the SmFeN-based fine powder is good. Therefore, it can be seen that sufficient relative density and magnetic properties can be obtained even at the time of low-pressure molding, and that the low-pressure moldability suitable for mass production of bonded magnets is excellent. And, because of the high fluidity and uniform dispersibility of the ferromagnetic fluid layer, the filling rate under the same molding pressure is higher. As a result, it is possible to obtain not only an improvement in gas characteristics but also an improvement in weather resistance due to elimination of oxygen.
  • Sample No. H2 is obtained by heating and kneading each magnetic powder and resin to a temperature higher than the hardening point of the thermosetting resin, and then performing a heating magnetic field molding at a temperature higher than the hardening point.
  • the surface of each magnetic powder is coated with a resin, and the uniform dispersibility in the compound is good.
  • curing of the thermosetting resin proceeds from this stage. As a result, the resin does not soften during the subsequent heating magnetic field molding, and the fluidity of the magnet powder in the resin during molding of the bonded magnet is poor, and the magnetic field of the bonded magnet cannot be sufficiently oriented. Is greatly reduced.
  • Example 7 12.8 6.4 Bal.0.3 0.2 0.5 Yes 106 75 Yes 3 23 2
  • Example E2 1 Z.5 6.4 Bal. 0.3 0.2 Yes 106 8B Yes 3 10 2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

明細書 複合希 '土類異方性ボンド磁石、 複合希土類異方性ボンド磁石用コンパゥンドぉ よびそれらの製造方法 技術分野
本発明は、 磁気特性に優れると共にその経時変化が非常に少ない複合希土類異 方性ボンド磁石と、 それに用いるコンパウンドおよびそれらの製造方法に関する ものである。 背景技術 '
硬質磁石 (永久磁石) は、 モータ等の各種機器に利用されている。 中でも、 小 型で高出力が要求される車両モータ等への需要要求が強い。 このような硬質磁石 は、 高性能な磁気特性を有することは勿論、 モータ等の信頼性を確保する観点か ら、 その経時変化が少ないことが求められている。
高い磁気特性という観点から、 現在では、 希土類元素 (R ) とホウ素 (B ) と 鉄 (F e ) とからなる R F e B系の希土類磁石の開発が盛んに行われている。 こ のような R F e B系希土類磁石として、 例えば、 米国特許 4 8 5 1 0 5 8号公報 (以下、 「従来技術 1」 という。 ) 、 米国特許 5 4 1 1 6 0 8号公報 (以下、 「 従来技術 2」 とレ、う。 ) に、 磁気等方性を有する R F e B系磁石合金 (組成物) が開示されている。
ところが、 この希土類磁石は、 その主成分である希土類元素や F eの酸化等に より劣化し易く、 その高い磁気特性を安定的に確保することは難しい。 特に、 室 温以上で希土類磁石を使用する場合、 その磁気特性が急激に低下する傾向にある 。 このような磁石の経時変化は、 通常、 永久減磁率 (%) により定量的に指標さ れるが、 従来の希土類異方性磁石の場合、 この永久減磁率が 1 0 %を超えるもの がほとんどであった。 この、 永久減磁率は、 高温 ( 1 0 0 °Cまたは 1 2 0。C) 下 で長時間 (1 0 0 0時間) 経過した後に、 再着磁しても復元しない磁束の減少割 合である。 . 最近では、 大小粒径を有する 2種の希土類磁石粉末 (以下、 単に 「磁粉」 と適 宜いう。 ) とバインダである樹脂とを混合して加圧成形した希土類ボンド磁石 ( 以下、 単に 「ポンド磁石」 と適宜いう。 ) が提案されている。 この場合、 大粒径 の磁粉により形成された隙間に小粒径の磁粉が入り、 全体として充填率 (相対密 度) が向上する。 磁石の密度増加による磁気特性の向上は勿論、 そこへの酸素や 水分の侵入が抑制されて、 磁石の耐候性や耐熱性が向上する。 このようなボンド 磁石に関する開示は、 次に挙げるような公報になされている。
( 1 ) 特開平 5— 1 5 2 1 1 6号公報 (以下、 「公報 1」 という。 )
この公報には、 N d 2 F e 14 B合金からなる 径 5 0 0 /i m以下の磁粉 (以下 、 適宜 「N d F e B系合金粉末」 という。 ) と、 S m2 F e , 7N合金からなる粒 径 5 μ πι以下の磁粉 (以下、 適宜 「S mF e N系合金粉末」 という。 ) とを種々 の割合で混合した混合粉末に、 バインダーであるエポキシ榭脂を添加して、 加圧 成形し、 熱硬化させたボンド磁石が開示されている。
この場合、 N d 2 F e a B合金を単に微粉砕してしまうとその特性が低下する ことと、 S ra.2 F e i 7 N合金がもともと単軸粒子の保磁力機構を有するものであ ることを考慮して、 混合する粉末の粒径がそれぞれ定められている。 そして、 粗 い N d F e B系合金粉末の粒子間にできた隙間を、 細かい S mF e N系合金粉末 が埋めることで、 全体的に充填率が向上し、 高い磁気特性 (最大エネルギー積 ( B H) m a x : 1 2 8 k J /m3) のボンド磁石を得ている D
( 2 ) 特開平 6— 1 3 2 1 0 7号公報 (以下、 「公報 2」 という。 )
この公報にも、 上記公報 1と同様に、 N d F e B系合金粉末と SmF e N系合 金粉末とバインダ樹脂とを混合して加圧成形したボンド磁石が開示されているが 、 公報 1のレベルを超えるものではない。
この公報には、 各磁粉の粒径と配合割合については開示されているものの、 ボ ンド磁石の性能に大きく影響する磁粉の磁気特性やその製造方法については、 何 ら具体的な開示がなされていない。
( 3 ) 特開平 9— 9 2 5 1 5号公報 (以下、 「公報 3」 という。 )
この公報には、 平均粒径 1 5 0 μ πιの N d 2 F e 4 Bからなる異方性磁石粉末 と、 平均粒径 0. 5— 1 0. 7 μ mで配合割合が 0〜 5 0 %の3 て〇 ' 6 ? e 203からなるフェライ ト磁石粉末と、 バインダである 3 w t %のエポキシ樹脂 とを混合し、 真空乾燥、 加圧成形および熱硬化させて得た異方性ボンド磁石が開 示されている。 このボンド磁石は、 1 3 2〜1 50. 14 k Jノ msの高磁気特 性と、 永久減磁率一 3. 5- 5. 6 %の優れた耐熱性および耐候性を発揮して いるが、 磁気特性が未だ不十分であった。 この公報でいう永久減磁率は、 1 00 °C X 1 000時間後のものである。 また、 上記 Nd F e B系合金粉末は、 機械粉 碎による磁気特性の劣化を防ぐために、 HDDR法 (水素処理法) を用いてイン ゴットを粉碎したものであり、 N d2F e 14B正方晶.相からなる再結晶粒の集合 組織からなる。
この公報には、 粒径の異なる 2種の磁粉を混合してボンド磁石を製造する利点 として、 次のような説明がなされている。 すなわち、 ボンド磁石の成形に際して 、 異方性 Nd F e B系合金粉末の粒子間隙 (または、 薄くバインダ樹脂で被覆さ れたその粉末の粒子間隙) に、 フェライ ト磁石粉末が優先的に充填させる結果、 ボンド磁石の空孔率が減少する。
これにより、 ①〇2、 H20の侵入が抑制されて、 耐熱性ゃ耐候性が向上する。 ②従来空孔であった部分がフェライ ト磁石粉末粉末で置換されることで、 磁気特 性が向上する。 さらに、 ③ポンド磁石の成形時に生じる N d F e B系合金粉末へ の応力集中をフ ライ ト磁石粉末が緩和する結果、 Nd F e B系合金粉末の割れ が抑制される。 そのため、 ボンド磁石中で非常に活性な金属破面が露出すること が抑制されて、 ボンド磁石の耐熱性ゃ耐候性がさらに向上する。 加えて、 ④その フェライ ト磁石粉末による応力集中の緩和により、 N d F e B系合金粉末内への 歪みの導入も抑制されて、 磁気特性がさらに向上する。
(4) 特開平 9一 1 1 57 1 1号公報 (以下、 「公報 4」 という。 )
この公報には、 上記公報 3のフ ライ ト磁石粉末に替えて、 平均結晶粒径 50 rim以下の体心立方鉄おょぴ鉄ホウ化物を含む軟質磁性相と Nd2F e 14B型結 晶を有する硬質磁性相とからなる平均粒径 3. 8 μπιの等方性ナノコンポジット 磁石粉末を使用したボンド磁石が開示されている。 このボンド磁石は、 1 36. 8— 1 5 0. 4 k Jノ: m3の高磁気特十生と、 永久減磁率ー 4. 9〜一 6· 0%の 優れた耐熱性および耐候性を発揮しているものの、 磁気特性が未だ不十分であつ た。 この永久減磁率の測定方法および異方性 N d F e B系磁石粉末の製造方法は 、 公報 3の場合と同様である。
この公報 4では、 比較例として、 Nd F e B系磁石粉末と、 それよりも粒径の 小さい SmF e N系磁石粉末とを混合して製造したボンド磁石も開示している。 そのボンド磁石は、 初期磁気特性に優れるものの ( (BH) ma x : 146. 4 〜1 5 2. 8 k J/m3) 、 SmF e N系磁石粉末の劣化 (耐酸化性の弱さ) に 起因して、 耐候性が劣ること (永久減磁率: 一 1 3. 7〜一 1 3. 1 %) が示さ れている。
このように、 磁気特性及び耐候性の劣化について開示されている点が、 公報 1 や公報 2と異なるところである。
(5) 特開平 10— 28 98 14号公報 (以下、 「公報 5」 という。 ) この公報には、 磁石粉末の充填率と配向性とを向上させた異方性ボンド磁石が 開示されている。 具体的には、 一粒子がほぼ一結晶粒で構成された磁石粉末 (粗 粉末) と、 それよりも大幅に粒径が小さい粒子からなる磁石粉末 (微粉末) と混 合し、 加圧成形、 キュア熱処理を行って製作されたポンド磁石が開示されている 。 そこで使用されている両磁石粉末は、 同一の Sm—C o— F e— C u _ Z r系 合金を機械粉砕したものをさらに分級したものである。 平均結晶粒径を D、 粉末 粒径を dとしたとき、 その粗粉末は 0. 5D≤ d≤ l. 5 Dを満たし、 その微粉 未は 0. O lD^ d O. 1 Dを満たすように調製されている。
ちなみに、 HDDR処理により得られた磁石粉末は、 その組織変態により、 平 均結晶粒径は 0. 3 / m程度、 磁石粉末の粒径は約 200 /im程度である。 この ため、 HDD R処理により得られた磁石粉末を用いたボンド磁石は、 上記のよう なボンド磁石とは当然に異なったものとなる。
以上のように、 粒径の異なる磁石粉末を混合してボンド磁石を製造し、 ポンド 磁石の磁気特性や耐候性等を向上させる方法が種々提案されてきた。 しかし、'未 だ、 その性能は不十分である。 特に、 N d F e B系磁石粉末等の粗い磁性粉末と SmF e N系磁石粉末等の細かい磁性粉末とを混合したボンド磁石の場合、 上記 公報 4等にもあったように、 初期磁気特性には優れるものの、 耐候性は劣るもの とされてきた。 · 本発明は、 このような事情に鑑みてなされたものである。 すなわち、 従来にな い、 高い磁気特性および高い耐候性を備えたボンド磁石を提供することを目的と する。 また、 そのボンド磁石の製造に適したコンパウンドやそれらの製造方法を 提供することを目的とする。 発明の開示
本発明者は、 上記課題を解決すべく鋭意研究し、 各種系統的実験を重ねた結果 、 これまでの常識を覆し、 粗い N d F e B系磁石粉末と細かな SmF e N系磁石 粉末とを用いた場合でも、 初期磁気特性のみならず、 耐候性にも優れるボンド磁 石が得られることを新たに見いだした。 そして、 これに基づいて、 その Nd F e B系磁石粉末等からなる R 1 F e B系粗粉末とその SmF e N系磁石粉末等から なる R 2 F e (N、 B) 系微粉末とについても広く同様の効果が得られることを 思いつき本発明を完成させるに至った。 · (複合希土類異方性ボンド磁石)
すなわち、 本発明の複合希土類異方性ポンド磁石は、 イットリウム (Y) を含 む希土類元素 (以下、 「R 1」 と称する。 ) と鉄 (F e) とホウ素 (B) とを主 成分とする R 1 F e B系合金に水素化処理を施して得られた平均粒径が 50〜4 00 ' mである R 1 F e B系異方性磁石粉末と該 R 1 F e B系異方性磁石粉末の 構成粒子の表面を被覆する第 1界面活性剤とからなる R 1 F e B系粗粉末が 50 〜84質量% (ma s s %) と、 Yを含む希土類元素 (以下、 「R 2」 と称する 。 ) と F eと窒素 (N) または Bとを主成分とする平均粒径が 1〜1 O /imであ る R 2 F e (N、 B) 系異方性磁石粉末と該 R 2 F e (N、 B) 系異方性磁石粉 末の構成粒子の表面を被覆する第 2界面活性剤とからなる R 2 F e (N、 B) 系 微粉末が 1 5 ~ 40 m a s s %と、 バインダである樹脂が 1〜 10 m a s s %と からなり、
最大エネルギー積 (BH) ma xが 1 6 7〜 223 k j Zin3であり、 100 °Cで 1 000時間.経過後に再着磁して得られる磁束の減少割合を示す永久減磁率 が 6 %以下であることを特徴とする。
これにより、 従来になく優れた磁気特性を示すと共にその経時変化を非常に低 く抑えられる複合希土類異方性ボンド磁石 (以下、 適宜、 「ボンド磁石」 という
。 ) が得られた。 具体例を挙げれば、 そのボンド磁石は、 100 で1000時 間経過後に再着磁して得られる磁束の減少割合を示す永久減磁率が 6 %以下、 5 %以下、 さらには 4. 5%以下という優れた耐熱性、 耐候性を示す。 また、 最大 エネルギー積 (BH) ma xでいえば、 例えば、 1 6 7 k J Zm3以上、 1 80 k jZin3以上、 1 90 k J/m3以上、 Z O O k jZm3以上、 さらには 2 10 k J Zm3以上もの高い磁気特性を示す。 なお、 このような高磁気特性を得るた めに、 R l F e B系粗粉末の (BH) ma xが 2 7 9. 3 k jZm3以上、 R 2 F e (N、 B) 系微粉末の (BH) m a xが 30 3. 2 k J /m 3以上であるこ とが好ましレ、。
このように本発明のボンド磁石は、 磁気特性および耐候性を従来になく高次元 で両立している。 しかし、 ボンド磁石の用途に応じて、 いずれか一方の特性のみ をさらに高めることも可能である。 例えば、 高温環境下で使用されるボンド磁石 の場合、 磁気特性より耐候性が優先されることがある。 このような場合、 例えば 、 磁気特性を (BH) ma xで 1 60〜 1 6 5 k J Zm3程度 (例えば、 1 64 k J/m3) に少し低下させつつも、 耐侯性を永久減磁率で一 4%以下 (例えば 、 一 3. 3%) という優れたものとすることが好ましい。 また、 均質化熱処理の 省略による低コスト化を図れるものとして、 従来の RF e B系異方性磁石粉末よ り も Bを多く含有させたものゃ耐候性のさらなる向上を図る観点から L aを含有 させたものなどがある。 このようなボンド磁石では、 磁気特性を (BH) ma x で 1 40〜1 60 k J /m3程度に低下させつつも、 耐候性を永久減磁率で一 4 %以下 (例えば、 一 3. 4%) という優れたものにすることが好ましい。 さらに 、 R 1 F e B系粗粉末等の配合量を低下させてボンド磁石の低コスト化を図る場 合、 磁気特性が (BH) ma Xで 1 30〜140 k J /m3程度となっても、 永 久減磁率が一 5%以下 (例えば、 一 4. 5%) という優れた耐候性が確保されれ ば実用上十分な場合も多い。 そして、 後述する実施例からも明らかなように、 本 発明者はこのようなボンド磁石を実際に得ている。
ところで、 初期の磁気特性のみならず、 その経時変化が非常に小さいボンド磁 石が得られた理由おょぴメカニズムは、 現状、 次のように考えることができる。 なお、 本明細書でいう R 2 F e (N、 B) 系異方性磁石粉末には、 SmF e N系 磁石粉末等の R 2 F e N系異方性磁石粉末と N d F e B系磁石粉末等の R 2 F e B系異方性磁石粉末とが含まれる。 このため、 R 2 F e (N、 B) 系異方性磁石 粉末は、 少なく ともそれらの一方から構成されれば足る。 以下では、 適宜上、 R 2 F e (N、 B) 異方性磁石粉末の一例として、 R 2 F e N系異方性磁石粉末 (特に、 SmF e N系磁石粉末) を使用した場合について説明するが、 Nd F e B系磁石粉末等の R 2 F e B系異方性磁石粉末を除く趣旨ではないことを断って おく。 このような事情は、 R 2 F e (N、 B) 系微粉末についても同様である。
NdF e B系磁石粉末等の R 1 F e B系磁石粉末と S m F e N系磁石粉末等の R 2 F e (N、 B) 系磁石粉末とからなる複合希土類異方性ボンド磁石の経年劣 化の主因は、 前述した公報 4にも記載されていたように、 SmF eN系磁石粉末 等からなる R 2 F e (N、 B) 系磁石粉末の酸化のし易さにあるとこれまで考え られていた。 ところが、 本発明者が鋭意研究したところ、 水素化処理により得ら れた R 1 F e B系異方性磁石粉末 (特に、 NdF e B系磁石粉末) と R 2 F e ( N、 B) 系異方性磁石粉末 (特に、 SmF e N系磁石粉末) とからなるボンド磁 石の場合、 経年劣化の主因はむしろ、 ボンド磁石の成形時に発生する R 1 F e B 系異方性磁石粉末粒子のマイクロクラックによる割れにあると思われる。'このマ イク口クラックが発生すると、 活性な金属破面が露出し、 R l F e B系異方性磁 石粉末の酸化が進行して、 ボンド磁石の経年劣化が生じると考えられるからであ る。 特に、 水素化処理されて得られた R 1 F e B系異方性磁石粉末は、 マイクロ クラックによる割れ感受性が高いため、 上記経年劣化が生じ易い。
前述の公報 1、 2または 4にあったように、 単に、 水素化処理した R l F e B 系異方性磁石粉末と R 2 F e (N、 B) 系磁石粉末と樹脂とを配合混合してボン ド磁石を常温成形すると、 その成形時に生じる応力の緩和が不十分で、 R 1 F e B系異方性磁石粉末の構成粒子に生じるマイクロクラックによる割れを抑制また は防止することはできない。 さらに、 常温成形の場合、 樹脂の流動性が不十分で 高密度化が困難であり磁気特性の向上 図れないし、 酸化の要因である酸素の排 除が不十分なため、 磁気特性および耐候性ともに不十分なものとなっていた。 そこで本発明者は、 複合した磁石粉末からボンド磁石を成形する際に加熱成形 を採用し、 割れ感受性の高い R 1 F e B系異方性磁石粉末の各構成粒子が、 その 加熱成形中にできた流体層 (以下、 本発明ではこれを 「強磁性流体層」 という。 ) に浮遊したような状態を生じさせて、 前記構成粒子間の流動性を高め、 構成粒 子間に生じる応力を緩和することを着想した。 また、 このような強磁性流体層を 、 バインダである樹脂とこの樹脂中に分散した細かな R 2 F e (N、 B ) 系異方 性磁石粉末で構成することを着想した。 そして、 優れた磁気特性および耐候性を 備えたボンド磁石を得ることに成功した。
ここで注意すべきことは、 本発明のボンド磁石は、 従来のように、 粒径の異な る磁石粉末とバインダである樹脂とを単に混合、 成形しただけのものではない。 従来の常温成形の技術に対して、 単に加熱成形を採用した場合には、 必ずしも、 R 1 F e B系異方性磁石粉末が流体層中に浮遊したような状態とはならず、 その 構成粒子間で十分な流動性が得られないことを本発明者は確認している。 本発明 のように、 粗い R 1 F e B系異方性磁石粉末が流体層中に浮遊したような状態と なり各構成粒子間の流動性を高めるには、 R 1 F e B系異方性磁石粉末および R 2 F e ( N、 B ) 系異方性磁石粉末が共にバインダである樹脂に強くなじんでい る必要がある。
そこで本発明では、 その榭脂に対する界面の自由エネルギーを低下させる界面 活性剤で、 R 1 F e B系異方性磁石粉末と R 2 F e (N , B ) 系異方性磁石粉末 とをそれぞれ被覆することで上記問題を解決した。 この界面活性剤の介在により 、 その樹脂内で、 R 1 F e B系異方性磁石粉末と R 2 F e (N、 B ) 系異方性磁 石粉末とは、 従来とは異なる高い流動性を発揮する。 すなわち、 ボンド磁石の加 熱成形時に、 R 1 F e B系異方性磁石粉末や R 2 F e (N、 B ) 系異方性磁石粉 末が、 まるで前述の流体層に浮遊しているかのような状態となる。 粒径の大きな R 1 F e B系異方性磁石粉末から観れば、 樹脂中に粒径の小さい R 2 F e (N、 B ) 系異方性磁石粉末が流動性の高い強磁性流体層中に浮遊しているかのような 状態となる。
こう して、 上記の通り、 ボンド磁石の成形時に非常に高い応力緩和効果が得ら れ、 R 1 F e B系異方性磁石粉末のマイクロクラックの発生等に伴う磁気特性の 経年劣化が著しく低減された考えられる。 さらに、 この優れた流動性により、 + 分に高密度で非常に高い磁気特性をもつボンド磁石が得られるようになった。 こ れは、 各磁性粉末間の潤滑性が向上して、 非常に優れた充填性が得られたことを 意味する。 この高充填率は従来にないレベルであり、 これにより、 磁石の基本特 性である最大エネルギー積 (B H) m a Xが従来にない非常に優れた特性とする ことができる。 ここで、 従来の常温成形等によって充填率向上による高密度化を 図った場合、 R 1 F e B系粗粉末を破壊するために、 (B H) m a xは向上する ものの耐候性 (永久減磁特性) は劣化するのが通常であった。 すなわち、 このよ うな高密度化に際して、 磁気特性と耐候性とを両立させることは困難で、 両特性 は背反関係にあった。
ところが本発明のようにすることで、 R 1 F e B系粗粉末の破壊を防止しつつ 高密度化を達成でき、 さらに、.高密度化による空隙の減少による酸素排除効果も 加わり、 非常に優れた最大エネルギー積と永久減磁率とが得られ、 従来にないハ ィレベルで磁気特性および耐候性を両立させることができた。
また、 上記の優れた流動性は、 ボンド磁石を磁場中成形する際にも有効に作用 する。 すなわち、 各異方性磁性粉末の流動性が高い故に、 優れた配向性と充填性 が得られる。 この非常に優れた配向性と充填性との両立により、 磁気特性は一層 高められる。
なお、 本明細書では、 便宜上、 粗い R 1 F e B系異方性磁石粉末の表面が第 1 界面活性剤で被覆されたものを R 1 F e B系粗粉末と呼び、 細かい R 2 F e ( N 、 B ) 系異方性磁石粉末の表面が第 2界面活性剤で被覆されたものを R 2 F e ( N、 B ) 系微粉末と呼んでいる。
ところで、 前述したように、 上記強磁性流体層は、 バインダである樹脂とこの 樹脂中に均一分散した R 2 F e ( N、 B ) 系微粉末とからなる。 これは、 R 1 F e B系粗粉末とR 2 F e (N、 B ) 系微粉末と樹脂とからなる混合物 (粉末状で も成形体状でも良い。 ) を加熱してボンド磁石を成形する際に形成されるもめで ある。 具体的には、 その樹脂の軟化点以上で生じる液状層である。 従って、 この 強磁性流体層は、 樹脂の融点または軟化温度域で生じる。 この樹脂が反応若しく は変質しない範囲であれば、 その加熱温度が高い方が当然に流動性の高い強磁性 流体層が得られる。 この樹脂は、 熱可塑性樹脂でも熱硬化性樹脂でも良い。 03 04532 また、 その樹脂が熱硬化性樹脂の場合、 短時間ならその硬化点以上に加熱して も良い。 硬化点以上に加熱していても、 直ぐに熱硬化性樹脂が架橋等によって硬 化を開始することはないからである。 むしろ、 加熱成形の初期から硬化点以上に 加熱することで、 流動性に優れた強磁性流体層が素早く形成される。 特に、 通常 の工業上に必要とされるタク トにおいては、 高い流動性をもつ強磁性流体層が形 成され、 高密度で磁気特性に優れると共に耐候性にも優れるボンド磁石が得られ る。 なお、 いうまでもないが、 硬化点以上の温度で加熱する場合、 所定時間を経 過すると熱硬化性樹脂は硬化を開始して、 上記強磁性流体層は硬化層となる。 ま た、 その樹脂が熱可塑性樹脂の場合なら、 その後の冷却によって強磁性流体層は 固化層となる。
なお、 熱硬化性樹脂を使用して後述のコンパウンドを製造する場合、 加熱混練 中の温度は、 その樹脂の軟化点以上、 硬化点未満とすることが良い。 硬化点以上 の温度で加熱混練して製造したコンパウンドを用いると、 得られたポンド磁石に 割れが生じたり、 磁気特性が劣化したりするからである。
上述のように、 樹脂が軟化する温度域で、 その強磁性流体層は高い流動性をも ち、 粒径の粗い R 1 F e B系異方性磁石粉末は界面活性剤を介して、 その強磁性 流体層によって良好に潤滑される。 その結果、 ボンド磁石の成形時に非常に高い 応力緩和効果が得られ、 前述のマイクロクラックの発生やそれに伴う割れが防止 でき、 新生破面の酸化に伴う磁気特性の経年劣化が著しく低減される。 また、 こ のような優れた流動性に起因して、 高充填性、 高充填性に伴う酸素高排除性、 高 配向性、 高潤滑性等も得られ、 非常に高い磁気特性と高い耐候性とを備えたボン ド磁石が得られるようになった。
そして、 このような優れた耐候性を有するポンド磁石は、 室温環境下で使用さ れる機器のみならず、 酸化劣化が進行し易い髙温澴境下で使用される機器 (例え ば、 ハイブリッ ト車や電気自動車の駆動モータ等) に、 非常に好適である。 これ らの用途においては、 最大エネルギー積 (B H) m a X 1 6 7 k J /ni 3以上の 高磁気特性と永久減磁率が 6 %以下の優れた耐候性を保有するポンド磁右が求め られている。 本発明のボンド磁石は、 これらを初めて満足させたものである。 (複合希土類異方性ボンド磁石用コンパゥンド)
L0 本発明は、 上記ボンド磁石の製造に適したコンパウンドとしても把握できる。 すなわち本発明は、 R 1と F eと Bとを主成分とする R 1 F e B系合金に水素 化処理を施して得られた平均粒径が 5 0〜4 0 0 / mである R 1 F e B系異方性 磁石粉末と該 R 1 F e B系異方性磁石粉末の構成粒子の表面を被覆する第 1界面 活性剤とからなる R 1 F e B系粗粉末が 5 0〜8 4質量% (m a s s %) と、 R 2と F eと Nまたは Bとを主成分とする平均粒径が 1 ~ 1 0 /i mである R 2 F e (N、 B ) 系異方性磁石粉末と該 R 2 F e ( N、 B ) 系異方性磁石粉末の構成粒 子の表面を被覆する第 2界面活性剤とからなる R 2 F e (N、 B ) 系微粉末が 1 5〜 4 0 m a s s %と、 ノ ィンダである樹脂が 1〜 1 0 m a s s %と力 らなり、 前記 R 1 F e B系粗粉末の構成粒子の表面が、 前記樹脂中に前記 R 2 F e (N 、 B ) 系微粉末が均一分散した被覆層で被覆されていることを特徴とする複合希 土類異方性ポンド磁石用コンパウンドとしても良い。
このような優れた均一分散性、 すなわち、 R 1 F e B系粗粉末のまわりに R 2 F e (N、 B ) 系微粉末と樹脂とが均一分散していることにより、 ボンド磁石を 成形する際の成形圧力を比較的低く しても、 十分に高密度で非常に高い磁気特性 をもつボンド磁石が得られるようになった。 この成形圧力の低減は、 設備費の削 減や製造タク トの短縮による製造コス ト低減に寄与する。
これは、 R 1 F e B系粗粉末のまわりに R 2 F e (N、 B ) 系微粉末と樹脂と が均一分散していることで、 R 1 F e B系粗粉末間の空隙に R 2 F e (N、 B ) 系微粉末が移動する移動距離を短くできたことによると思われる。
また、 このような作用効果に加えて、 R 1 F e B系粗粉末のまわりに R 2 F e
( N , B ) 系微粉末と樹脂とが均一分散することで、 R 2 F e (N、 B ) 系微粉 末が加熱磁場成形中で偏在することが無くなり、 R 1 F e B系粗粉末の各構成粒 子間の空隙に R 2 F e (N、 B ) 系微粉末が均一、 かつ、 すばやく供給されるよ うになる。 そして、 さらに高い充填率と R 1 F e B系粗粉末の割れに対する^い 抑止効果とが低圧力下で容易に達成されるようになったと思われる。 そして、 こ れらの作用効果は、 R 1 F e B系粗粉末、 R 2 F e (N、 B ) 系微粉末および榭 脂を予め加熱混練してコンパウンドとしておいた場合に顕著に現れる。
この複合希土類異方性ボンド磁石用コンパゥンドは、 例えば、 成形温度 1 5 0 °C、 磁場 2. OMA/m. 成形圧力 3 9 2MP aの条件下で加熱磁場成形した際 に得られるボンド磁石の相対密度が 9 2〜9 9 %となると好適である。
(複合希土類異方性ボンド磁石およびそのコンパゥンドの製造方法)
さらに、 本発明は、 上記ボンド磁石ゃコンパウンドの製造方法としても把握で さる。
すなわち、 本発明は、 R 1と F eと Bとを主成分とする R 1 F e B系合金に水 素化処理を施して得られた平均粒径が 5 0〜4 0 0 mである R 1 F e B系異方 性磁石粉末の構成粒子の表面を第 1界面活性剤で被覆してなる R 1 F e B系粗粉 末が 5 0〜8 4m a s s %と、 R 2と F eと Nまたは Bとを主成分とする平均粒 径が 1〜 1 0 i mである R 2 F e (N、 B) 系異方性磁石粉末の構成粒子の表面 を第 2界面活性剤で被覆してなる R 2 F e (N、 B) 系微粉末が 1 5〜4 O m a s s %と、 バインダである樹脂が 1〜 1 Om a s s %とからなる混合物を、 該樹 脂の軟化点以上の温度に加熱すると共に該樹脂を軟化状態または溶融状態としつ つ配向磁場を印加して該 R 1 F e B系粗粉末および該 R 2 F e (N、 B) 系微粉 末をを配向させる加熱配向工程と、 該加熱配向工程後の混合物を加熱加圧成形す る成形工程とからなり、
該 R 1 F e B系粗粉末の構成粒子間に該 R 2 F e (N、 B) 系微粉末および該 樹脂が均一に充填されてなる複合希土類異方性ボンド磁石が得られることを特徴 とする複合希土類異方性ボンド磁石の製造方法としても良い。
ここで、 上記混合物は、 前記 R 1 F e B系粗粉末の構成粒子の表面が、 前記樹 脂中に前記 R 2 F e (N、 B) 系微粉末が均一分散した被覆層で被覆されたコン パウンドからなると好適である。
前述したように、 R 1 F e B系粗粉末のまわりに R 2 F e (N、 B) 系微粉末 と樹脂とが均一分散していることにより、 ボンド磁石を成形する際の成形圧力を 比較的低く しても、 十分に高密度で非常に高い磁気特性をもつボンド磁石が椿ら れる。 この成形圧力の低減は、 設備費の削減や製造タク トの短縮による製造コス ト低減に寄与する。 さらに、 R 2 F e (N、 B) 系微粉末が加熱磁場成形中で偏 在することが無くなり、 R 1 F e B系粗粉末の各構成粒子間の空隙に R 2 F e ( N、 B) 系微粉末が均一、 かつ、 すばやく供給されるようになる。 そして、 さら P 蘭聽 32
に高い充填率と R 1 F e B系粗粉末の割れに対する高い抑止効果とが低圧力下で 容易に達成され、 磁気特性および耐候性等に関して安定した品質のボンド磁石を 得易い。
このようなコンパゥンドは、 例えば、 前記 R 1 F e B系粗粉末と前記 R 2 F e (N、 B ) 系微粉末と前記樹脂とを該樹脂の軟化点以上の温度で加熱混練する加 熱混練工程を経て得られる。
すなわち、 R 1と F eと Bとを主成分とする R 1 F e B系合金に水素化処理を 施して得られた平均粒径が 5 0〜4 0 0 /i mである R 1 F e B系異方性磁石粉末 の構成粒子の表面を第 1界面活性剤で被覆してなる R 1 F e B系粗粉末を 5 0〜 8 4 m a s s %と、 R 2と F eと Nまたは Bとを主成分とする平均粒径が 1〜 1 0 / 111でぁる1 2 ? 6 ( N、 B ) 系異方性磁石粉末の構成粒子の表面を第 2界面 活性剤で被覆してなる R 2 F e (N、 B ) 系微粉末を 1 5〜4 0 m a s s °/oと、 バインダである樹脂を 1 ~ 1 O m a s s %とを混合する混合工程と、 該混合工程 後に得られた混合物を該樹脂の軟化点以上の温度で加熱混練する加熱混練工程と からなり、
前記 R 1 F e B系粗粉末の構成粒子の表面が、 前記樹脂中に前記 R 2 F e (N 、 B ) 系微粉末が均一分散した被覆層で被覆されたコンパウンドが得られること を特徴とする本発明の複合希土類異方性ボンド磁石用コンパゥンドの製造方法に より得られる。
ところで、 ボンド磁石の成形に必要となる各工程を、 連続的に一段階で行つて も良いし、 生産性、 寸法精度、 品質安定性等を考慮して多段階で行っても良い。 例えば、 加熱配向工程とその後の成形工程とを一つの成形型中で連続的に行って も良いし (一段成形) 、 異なる成形型中で行っても良い (二段成形) 。 また、 加 熱配向工程中に加圧を伴っても良い。 さらに、 原料 (混合粉末または本発明のコ ンパウンド) を秤量する工程をさらに別の成形型中で行っても良い (三段成形) D この 3段成形の場合、 加熱配向工程前の混合物を、 前記コンパウンド等を成形 型のキヤビティへ充填して加圧成形した予備成形体としておいても良い。 そして 、 加熱配向工程は、 この予備成形体に対して行えば良い。 このように、 ポンド磁 石の成形に必要な工程を多段階とすることで、 生産性の向上を図り易いし、 設備 PC画蘭 32
の自由度も増す。
ちなみに、 上記製造方法で、 加熱配向工程を設けているのは、 各異方性磁性粉 末を配向させることで、 高磁気特性のボンド磁石が得られるからである。 また、 高磁気特性が要求されるボンド磁石の場合、 その用途に応じて要求される磁界の 方向が決っているからである。 この加熱配向工程中での各磁性粉末の流動性が大 きい程、 磁気特性に優れたボンド磁石が得られる。 そこで、 例えば、 熱硬化性榭 脂を使用する場合、 その熱硬化性樹脂を硬化点以上に加熱して、 樹脂の流動性を 高めた状態で上記加熱配向工程を行うとより好適である。
(その他)
さらに、 上記製造方法を実施して得られたボンド磁石またはコンパウンドとし て把握することもできる。
すなわち、 本発明は、 上記複合希土類異方性ポンド磁石の製造方法によって得 られることを特徴とする複合希土類異方性ボンド磁石としても良い。
また、 本発明は、 上記複合希土類異方性ボンド磁石用コンパゥンドの製造方法 によつて得られることを特徴とする複合希土類異方性ボンド磁石用コンパゥンド としても良い。 図面の簡単な説明
図 1 Aは、 本発明に係る複合希土類異方性ボンド磁石用コンパウンドを模式的 に示した図である。
図 1 Bは、 従来のボンド磁石用コンパウンドを模式的に示した図である。
図 2 Aは、 本発明に係る複合希土類異方性ボンド磁石を模式的に示した図であ る。
図 2 Bは、 従来のボンド磁石を模式的に示した図である。
図 3は、 成形圧力と相対密度との関係を示すグラフである。
図 4は、 本発明に係る複合希土類異方性ボンド磁石を観察した S E M 2次電子 像写真であり、 ボンド磁石の金属粉末に注目したものである。
図 5は、 本発明に係る複合希土類異方性ボンド磁石を観察した N dの E P MA 像写真であり、 N d F e B系磁石粉末の N d元素に注目したものである。 0304532
図 6は、 本発明に係る複合希土類異方性ボンド磁石を観察した Smの E PMA 像写真であり、 R 2 F e (N、 B) 系異方性磁石粉末の Sm元素に注目したもの である。 発明を実施するための最良の形態
A. 実施形態
以下に実施形態を挙げて、 本発明をより詳しく説明する。 以下の内容は、 適宜 、 本発明のボンド磁石のみならず、 コンパウンドやそれらの製造方法にも該当す る。
( 1 ) R 1 F e B系異方性磁石粉末
① R 1 F e B系異方性磁石粉末は、 R 1と F eと Bとを主成分とする R 1 F e B 系合金に水素化処理を施して得られた粉末である。
本発明でいう水素化処理には、 HDDR処理法 (h y d r o g e n a t i o ii ― d e c omp o s i t i o n— d i s p r o p o t l o n a t ι o n— r e c omb i n a t i o n) や d— HD D R処理法がある。
HDDR処理法は、 主に 2つの工程からなる。 すなわち、 l O O kP a (l a t m) 程度の水素ガス雰囲気中で 500〜 1000°Cに保持し、 三相分解不均化 反応を起こさせる第 1工程 (水素化工程) と、 その後真空にして脱水素を行う脱 水素工程 (第 2工程) とカゝらなる。 脱水素工程は、 例えば、 水素圧力を 10— a以下の雰囲気にする工程である。 また、 その温度は、 例えば、 500〜1 00
0°Cとすれば良い。 なお、 本明細書でいう水素圧力は、 特に断らない限り水素の 分圧を意味する。 従って、 各工程中の水素分圧が所定値内であれば、 真空雰囲気 でも不活性ガス等の混合雰囲気でも良い。 その他、 HDDR処理自体については 、 特公平 7— 6856 1号公報、 特許第 25 76671号公報等に詳しく開示さ れているので、 適宜参照できる。
一方、 d— HDDR処理は、 公知文献 (三嶋ら : 日本応用磁気学会誌、 24 (
2000) 、 p . 407) にも詳細に報告されているように、 室温から高温にか げて、 R 1 F e B系合金と水素との反応速度を制御することによりなされる。 具 体的には、 室温でその合金に水素を十分に吸収させる低温水素化工程 (第 1工程 JP03/04532
) と、 低水素圧力下で三相分解不均化反応を起こさせる高温水素化工程 (第 2ェ 程) と、 可能な限り高い水素圧力下で水素を解離させる第 1排気工程 (第 3工程 ) と、 その後の材料から水素を除去する第 2排気工程 (第4工程) の4つの工程 から主になる。 HDD R処理と異なる点は、 温度や水素圧力の異なる複数の工程 を設けることで、 R 1 F e B系合金と水素との反応速度を比較的緩やかに保ち、 均質な異方性磁粉が得られるように工夫されている点である。
具体的にいうと、 低温水素化工程は、 例えば、 水素圧力が 3 0〜 200 k P a で 6 00°C以下の水素ガス雰囲気中に保持する工程である。 高温水素化工程は、 水素圧力が 2 0〜 1 0 0 k P aで 7 5 0〜9 0 0での水素ガス雰囲気中に保持す る工程である。 第 1排気工程は、 水素圧力が 0. l〜2 0 k P aで 7 5 0〜9 0
0°Cの水素ガス雰囲気中に保持する工程である。 第 2排気工程は、 水素圧力を 1
0一1 P a以下の雰囲気に保持する工程である。
このような上記 HDD R処理法や d— HDD R処理法を用いることにより、 R
1 F.e B系異方 ί生磁石粉末を工業レベルで量産できる。 特に、 異方性を高めた高 性能な磁石粉末を量産する観点からは、 d— HDD R処理法が好ましい。
② R 1 F e B.系異方性磁石粉末の平均粒径を 5 0〜400 //mとしたのは、 5 0 μ m未満では、 保磁力 ( i H c ) が低下し、 40 0 μτηを超えると残留磁束密度
(B r ) が低下するからである。 その平均粒径は、 74〜 1 5 0 であるとよ り好ましい。
また、 その酉己合比を 5 0〜8 4ma s s %としたのは、 5 Om a s s %未満で は最大エネルギー積 (BH) ma xが低下し、 84ma s s °/0を超えると、 強磁 性流体層が相対的に少なくなり、 永久減磁の抑制効果が薄れるからである。 その 配合比は、 7 0〜80ma s s °/0であるとより好ましい。 なお、 本明細書でいう m a s s %は、 ボンド磁石全体またはコンパゥンド全体を 1 00 ma s s 0/。とし たときの割合である。
③ R 1 F e B系異方性磁石粉末の組成は、 特に限定されないが、 例えば、 R 1が 1 1〜 1 6原子% ( a t %) 、 Bが 5. 5〜 1 5原子0/。 (a t %) および F eを 主成分とするものであり、 適宜、 不可避不純物を含み得る。 代表的なものは、 R 12F e 14Bを主相とするものである。 この場合、 R 1が 1 1 a t %未満では α F e相が析出して磁気特性が低下し、 1 6 a t %を超えると R l 2F e "B相が 減少し磁気特性が低下する。 また、 Bが 5. 5 a t。/0未満では、 軟磁性の R l 2 F e w相が析出して磁気特性が低下し、 15 a t°/0を超えると、 磁石粉末中の B リツチ相の体積分率が高くなり、 R.12F e 14B相が減少して磁気特性が低下す るため好ましくない。
このような R 1は、 スカンジウム (S c) 、 イッ トリ ウム (Y) 、 ランタノィ ドからなる。 もっとも、 磁気特性に優れる元素として、 1 1カ Y、 ランタン ( L a) 、 セリ ウム (C e) 、 プラセオジム (P r:) 、 ネオジム (Nd) 、 サマリ ゥム (Sm) 、 ガドリニウム (G d) 、 テルビウム (Tb) 、 ジスプロシウム ( Dy) 、 ホルミウム (Ho) 、 エルビウム (E r) 、 ツリ ウム (Τπα) およびル テチウム (L u) の少なく とも 1種以上からなると好適である。 この点は、 後述 の R 2に関しても同様である。 R 1は、 特に、 コス ト及び磁気特性の観点から、 Nd、 P rおよび D yの一種以上から主になると好ましい。
さらに、 本発明に係る R 1 F e B系異方性磁石粉末は、 上記 R 1とは別に、 D y、 T b、 Ndまたは P rの少なくとも一種以上の希土類元素 (R 3) を含有し ていると好ましい。 具体的には、 各粉末全体を 100 a t%としたときに、 R 3 を 0. 05〜5. 0 a t %含有すると好ましい。 これらの元素は、 R 1 F e B系 異方性磁石粉末の初期保磁力を高め、 ボンド磁石の経年劣化抑制にも効果を発揮 するからである。 これらのことは、 後述の R 2 F e (N、 B) 系異方性磁石粉末 についても同様であり、 例えば、 R 1と R 2とは同一でも良い。
R 3が 0. 05 a t。/。未満では、 初期保磁力の増加が少なく、 5 a t %を超え ると (BH) ma Xの低下を生じる。 R 3は 0. 1〜 3 a t %であるとより好ま しい。
また、 本発明の R 1 F e B系異方性磁石粉末は、 上記 R 1とは別に、 L aを含 有していると好ましい。 具体的には、 各粉末全体を 100 a t %としたとき 、 L aを 0. 00 1〜1. 0 a t。/。含有すると好ましい。 これにより、 その磁石粉 末やボンド磁石の経年劣化が抑制されるからである。 これらのことも、 後述の R 2 F e (N、 B) 系異方性磁石粉末についても同様である。
ここで、 L aが経年劣化の抑制に有効なのは、 L aは希土類元素 (R. E. ) 中で最も酸化電位の大きな元素である。 このため、 L aがいわゆる酸素ゲッタと して作用し、 前記 R l (Nd、 Dy等) よりも L aが選択的に (優先的に) 酸化 され、 結果的に L aを含有した磁石粉末やボンド磁石の酸化が抑制されるからで ある。 ン
ここで、 L aは、 不可避不純物のレベルを越える微量含有されている程度で、 耐候性等の向上効果を発揮する。 そして、 L aの不可避不純物レベル量が、 0. 00 1 a t %未満であることから、 本発明では、 1 &量を0. 00 l a t %以上 とした。 一方、 L aが 1. O a t%を超えると、 i H cの低下を招き好ましくな い。 ここで、 L a量の下限が、 0. 0 1 a t%、 0. 05 a t %、 さらには 0. 1 a t %であると、 十分な耐候性等の向上効果が発揮されより好ましい。 そして 、 耐候性等の向上および i H cの低下抑制の観点から、 &量が0. 01〜0. 7 a t %であると一層好ましい。 なお、 1 F e B系異方性磁石粉末中の Bが 1 0. 8〜 1 5 a t。/。の場合、 L aを含有する磁石粉末の組成は、 R l 2F e 14B 相を単一相若しくはほぼ単一相として存在させ得る合金組成ではなく、 R 12F 6 1481相と8—で i c h相等の多相組織からなる合金組成となる。
R 1 F e B系異方性磁石粉未は、 R l、 Bおよび F e以外に、 その磁気特性等 を向上させる種々の元素を含有しても良い。
例えば、 0. 01〜: L. O a t。/。のガリウム (Ga) 、 0. 01〜0. 6 a t %のニオブ (Nb) の 1種または 2種を含有することが好ましい。 G aを含有す ることで、 R 1 F e B系異方性磁石粉末の保磁力が向上する。 ここで、 G aの含 有量が 0. O l a t。/。未満では保磁力の向上の効果が得られず、 1. 0 a t。/0を 超えると逆に保磁力を減少させる。 Nbを含有することで、 水素化処理における 順組織変態および逆組織変態の反応速度が容易にコントロールできるようになる 。 ここで、 Nbの含有量が 0. 0 1 a t %未満では反応速度をコントロールする のが難しく、 0. 6 a t %を超えると保磁力を減少させる。 特に Ga、 N bを上 記範囲内で複合含有すると、 単体で含有した場合に比べ保磁力及び異方化とも向 上させることができ、 その結果 (BH) ma xを増加させる。
また、 アルミニウム (A 1 ) 、 ケィ素 (S i ) 、 チタン (T i ) 、 バナジウム (V) 、 クロム (C r ) 、 マンガン (Mn) 、 ニッケル (N i ) 、 銅 (Cu) 、 P 漏蘭 32
ゲ^^マユゥム (G e ) 、 ジルコニウム (Z r) 、 モリブデン (Mo) 、 インジゥ ム ( I n) 、 スズ (S n) 、 ハウニゥム (H f ) 、 タンタル (T a) 、 タンダス テン (W) 、 鉛 (P b) のうち 1種または 2種以上を合計で 0. 00 1〜5. 0 a t %含有することが好ましい。 これらの原子を含有することで、 得られた磁石 の保磁力、 角形比を改善することができる。 また、 含有量が 0· 00 1 a t %未 満では磁気特性の改善の効果が現れず、 5. 0 a 1: %を超えると析出相などが析 出し保磁力が低下する。
さらに、 コバルト (C o) を 0. 00 1〜 20 a t %で含有することが好まし い。 C oを含有することで、 ボンド磁石のキュリー温度を上げることができ、 温 度特性が改善される。 ここで、 C oの含有量が 0. 00 1 a t %未満では C 0含 有の効果が見られず、 20 a t %を超えると残留磁束密度が低下し磁気特性が低 下するようになる。
R 1 F e B系異方性磁石粉末の原料合金の調製方法は、 特に限定されないが、 一般的な方法どして、 高純度の合金材料を用い、 所定の組成となるようにそれぞ れを用意する。 これらを混合した後に、 高周波溶解法等の各溶解法により溶解し 、 これを铸造して合金のインゴッ トを作成する。 このインゴッ トを原料合金とし 、 これを粉砕して粗粉末状のものを原料合金としても良い。 さらに、 原料インゴ ットに均質化処理を施して組成分布の偏りを減少させた合金を原料合金とするこ ともできる。 加えて、 この均質化処理したインゴッ トを粉砕して粗粉末状とし、 これを原料合金とすることもできる。 なお、 インゴッ トの粉砕や、 上記水素化処 理後に行う粉末化は、 乾式若しくは湿式の機械粉砕 (ジョークラシシャ、 デイス クミル、 ボールミル、 振動ミル、 ジェットミル等) 等を用いて行うことができる 前述した、 D y、 T b、 N dまたは P r (R 3 ) 、 L a、 G a、 Nb、 C o等 の合金元素も、 上記調製中に原料舍金に含有させれば効率的である。 もっとも、 前述したように、 R 3や L aは R 1 F e B系異方性磁石粉末等の耐候性を向上さ せる元素であるから、 L aが磁石粉末の構成粒子等の表面またはそれらの近傍に 存在する方が好ましい。 従って、 原料合金中に最初から R 3や L aを含有させて おくよりも、 磁石粉末の製造途中または製造後に、 R 3系粉末や L a系粉末を R TJP03/04532
1 F e B系粉末に混合して、 磁石粉末の表面または内部に L aを拡散等させる方 がより耐候性に優れる磁石粉末が得られる。
なお、 R 3系粉末は、 少なく とも上記 R 3をを含有しておれば良く、 例えば、 R 3単体、 R 3合金、 R 3化合物およびそれらの水素化物等の一種以上からなる 。 また、 同様に、 L a系粉末は、 少なく とも L aを含有しておれば良く、 例えば 、 L a単体、 L a合金、 L a化合物およびそれらの水素化物等の一種以上からな る。 R 3合金や L a合金には、 磁気特性への影響等を考慮して、 遷移金属元素 ( TM) と L aとの合金、 化合物 (金属間化合物を含む) または水素化物からなる と好ましい。 これらの具体例を挙げれば、 例えば、 L a C o (Hx) . L a N d C o (Hx) 、 L a D y C o (Hx) 、 R 3 C o (Hx) 、 R 3 N d C o (H x ) 、 R 3 D y C o (Hx) 等がある。
R 3系粉末についても同様である。
なお、 それらの粉末が合金または化合物 (水素化物を含む) からなる場合、 そ の合金等に含有される R 3や L aは 20 a t %以上、 さらには 6 O a t %以上で あれば好適である。 また、 磁石粉末の表面または内部に R 3や L aを拡散する場 合は、 例えば、 R 1 F e B系磁石粉末に R 3系粉末や L a系粉末を混合してなる 混合粉末を、 6 73〜1 1 23 Kに加熱する拡散熱処理工程により行うことがで きる。 この拡散熱処理工程は、 R 3系粉末や L a系粉末の混合後に行っても、 そ の混合と同時に行っても良い。 この処理温度が 6 73 K未満では、 R 3系粉末や L a系粉末が液相になり難く、 十分な拡散処理が困難となる。 一方、 1 1 23 K を超えると、 R 1 F e B系磁石粉末等の結晶粒成長を生じ、 i Heの低下を招き 、 耐候性 (永久減磁率) を十分に向上させることができない。 その処理時間は、 0. 5〜 5時間が好ましレ、。 0. 5時間未満では R 3や L aの拡散が不十分とな り、 磁石粉末の耐候性等があまり向上しない。 一方、 5時間を超えると i Hcの 低下を招く。
なお、 言うまでもないが、 この拡散熱処理工程は、 酸化防止雰囲気 (例えば、 真空雰囲気) 中で行われるのが好ましい。 また、 この拡散熱処理工程を、 HDD R処理の脱水素工程や d— H D D R処理の第 1排気工程または第 2排気工程に融 合させて行う場合は、 それらの処理温度、 処理時間および処理雰囲気を両者の共 通する範囲に調整する。
これらの処理を行う際の R 1 F e B系磁石粉末、 R 3系粉末または L a系粉末 の形態 (粒径等) は問わないが、 拡散熱処理工程を効率的に進める観点から、 R 1 F e B系磁石粉末の平均粒径が 1 mm以下、 R 3系粉末や L a系粉末の平均粒 径が 2 5 m以下程度であれば好適である。 なお、 この R 1 F e B系磁石粉末は 、 水素化処理の進行具合により、 水素化物であったり磁石粉末であったり し、 ま た、 組織も 3相分解したものであったり、 それらが再結^したものであったりす る。
また、 R 1 F e B系磁石粉末の製造途中で R 3や L aを添加する場合、 相手材 である R 1 F e B系磁石粉末は、 多かれ少なかれ水素化物の状態となっている ( 以下、 この水素化物の粉末を 「R l F e BHx粉末」 という。 ) 。 何故なら、 水 素化工程後、 脱水素工程終了前または高温水素化工程後、 第 2排気工程終了前に R 3や L aを添加することになるからである。 この R 1 F e B 粉末等は、 水 素を含有しない場合に比べて、 R 1や F eが非常に酸化され難い状態にある。 こ のため、 酸化が抑制された状態で R 3や L aの拡散ゃコーティングを行うことで き、 耐候性に優れる磁石粉末を安定した品質で製造できる。 そして同理由により 、 R 3系粉末や L a系粉末も水素化物の状態にあることが好ましい。 例えば、 R 3 C oHxや L a C oHx等であれば良い。
さらに、 本発明の優れた磁気特性をもつポンド磁石を得る上で、 R l F e B系 異方性磁石粉末は、 27 9. 3 k j/m3以上、 さらには 344 k J/m3以上が 好ましい。
上迩した事情は、 後述の R 2 F e (N、 B) 系異方性磁石粉末の場合、 特に、 R 2 F e B系異方性磁石粉末の場合にも同様である。
(2) R 2 F e (N、 B) 系異方性磁石粉末
① R 2 F e (N、 B) 系異方性磁石粉末は、 粗い R 1 F e B系異方性磁石粉耒間 を充填して、 ボンド磁石の磁気特性、 特に最大エネルギー積を向上させる上で有 効となる。 この R 2 F e (N、 B) 系異方性磁石粉末には、 前述したように、 R 2 F e N系異方性磁石粉末と R 2 F e N系異方性磁石粉末とが含まれ、 それらの 少なく とも一種からなる。 いずれの場合でも、 R 2 F e (N、 B) 系異方性磁石 粉末は、 R 1 F e B系異方性磁石粉末よりも粒径が相当小ざいものである。
その組成は、 特に限定されず、 適宜、 不可避不純物を含んでも良い。 代表的な ものは、 Sm2F e 17Nを主相とするものである。 また、 R 2 F e (N、 B) 系 異方性磁石粉末の場合も、 主成分以外に、 その磁気特性等を向上させる種々の元 素を含有しても良い。
ちなみに、 R 2 F e (N、 B) 系異方性磁石粉末の一つである S m F e N系磁 石粉末は、 例えば、 次のような方法により得ることができる。 所望する組成の S m— F e合金を溶体化処理して窒素ガス中で粉砕する。 その粉砕後、 NH3斗 H2 混合ガス中で窒化処理を行った後に冷却する。 そして、 ジェットミル等で微粉砕 すれば、 10 μΐη以下の細かな SmF e N系磁石粉末が得られる。
②この SmF e N系磁石粉末は、 単磁区粒子サイズとなる粒径にすることで、 高 い保磁力が発生する。 このような観点から、 R 2 F e (N、 B) 系異方性磁石粉 末の平均粒径を 1〜 10 μ mとした。 1 μ m未満では、 ①酸化し易くなり、 ②残 留磁束密度が低下し最大エネルギー積 (BH) m a Xも低下するため好ましくな い。 1 0 /imを超えると①単磁区粒子が得られず、 ②保磁力が低下するため好ま 'しくない。
また、 その酉己合比を 1 5〜40ma s s%としたのは、 1 5ma s s %未満で は、 R 1 F e B系異方性磁石粉末の構成粒子間を充填するには量が少ない。 一方 、 4 Om a s s %を超えると、 相対的に R 1 F e B系異方性磁石粉末が少なくな り、 最大エネルギー積 (BH) ma xが低下する。
さらに、 本発明の優れた磁気特性をもつボンド磁石を得る上で、 R 2 F e (N 、 B) 系異方性磁石粉末は、 30 3. 2 k jZm3以上、 さらには 3 1 9 k m3以上が好ましい。
(3) 界面活性剤および樹脂
①界面活性剤を用いるのは、 ボンド磁石を加熱成形する際に、 R 1 F e B系異方 性磁石粉末および R2F e (N、 B) 系異方性磁石粉末の樹脂中での流動性を高 めるためである。 これにより、 その加熱成形時に高潤滑性、 高充填性、 高配向性 等が発現されて、 磁気特性および耐候性に優れたボンド磁石が得られる。
特に、 粒径の大きな R 1 F e B系粗粉末に着目すれば、 上記加熱成形時、 R 1 F e B系粗粉末はその全面を覆う第 1界面活性剤の存在によって、 強磁性流体層 の海の中に浮遊したような状態で存在するようになる。 その結果、 割れ感受性の 高い R 1 F e B系異方性磁石粉末からボンド磁石を成形する際にも、 その構成粒 子は容易に回転等して、 応力集中が大幅に緩和され、 マイクロクラックの進展が 防止される。
また、 R 2 F e (N、 B) 系異方性磁石粉末を界面活性剤で被覆することによ り、 バインダである樹脂と R 2 F e (N、 B) 系異方性磁石粉末との結合度が強 まる。 つまり、 両者は一体となって、 前記強磁性流体層は一層擬似的な流体とし て振舞うようになる。 また、 R 2 F e (N、 B) 系異方性磁石粉末は、 第2界面 活性剤の存在により、 樹脂内に均一に分散した状態となり、 ポンド磁石の相対密 度および磁気特性の向上にも大きく寄与する。
このように、 R 1 F e B系異方性磁石粉末側のみならず、 その R2 F e (N、 B ) 系異方性磁石粉末側にも界面活性剤は不可欠である。
本究明の場合、 R 1 F e B系異方性磁石粉末の粒子表面を被覆する界面活性剤 と、 R 2 F e (N、 B) 系異方性磁石粉末の粒子表面を被覆する界面活性剤とを 便宜上区別しているが、 両者は同一でも異なっても良い。 共通の界面活性剤を利 用すればその被覆処理が容易となり、 生産上好ましい。
このような界面活性剤の種鎮は、 特に限定されないが、 バインダとしてしょう される樹脂の種類を考慮して決定される。 例えば、 その樹脂がエポキシ樹脂なら 、 界面活性剤としてチタネート系力ップリング剤あるいはシラン系力ップリング 剤を挙げることができる。 このほか、 樹脂と界面活性剤との組み合わせとして、 フエノール樹脂ならシラン系カップリング剤を利用できる。
②本発明で用いる樹脂は、 ボンド磁石中のバインダと しての役割を果たす。 それ は、 熱硬化性樹脂に限らず、 熱可塑性樹脂でも良い。 熱硬化性樹脂には、 例えば 、 前述のエポキシ樹脂、 フエノール樹脂等あり、 熱可塑性樹脂には、 例えば ί 2 ナイロン、 ポリフエ二レンサルファイ ド等がある。
本発明で樹脂の配合比を l〜10ma s s%としたのは、 1 m a s s °/o未満で は、 バインダとしての結合力に欠け、 l Oma s s %を超えると高い (BH) m a x等の磁気特性が低下する。 ③本発明では、 界面活性剤で被覆した各磁石粉末を R 1 F e B系粗粉末および R
2 F e (N、 B) 系微粉末と呼んでいるが、 「粗」 粉末または 「微 j 粉末は、 そ れぞれの相対的な粒径を便宜的に呼称するために用いているだけに過ぎない。 R
1 F e B系粗粉末は、 例えば、 R 1 F e B系異方性磁石粉末と上記第 1界面活性 剤の溶液とを攪拌後に乾燥させる第 1被覆工程により得られる。 同様に、 R 2 F e (N、 B) 系微粉末は、 例えば、 R 2 F e (N、 B) 系異方性磁石粉末と上記 第 2界面活性剤の溶液とを攪袢後に乾燥させる第 2被覆工程により得られ 。 こ うして得られた界面活性剤層は、 膜厚が◦ · 5〜 2 Z m程度のものであり、 各粉 末粒子の全面をコーティングしている。
(4) コンパウンドとボンド磁石
本発明のコンパウンドは、 例えば、 R 1 F e B系粗粉末と R 2 F e (N、 B) 系微粉末と樹脂とを混合した後に、 それらの混合物を加熱混鍊して得られるもの である。 その形態は、 粒径が 50〜500 m程度の顆粒状である。
この様子を、 上記磁性粉末の一例である粗い N d F e B系磁石粉末と微細な S mF eN系磁石粉末とについて S EM観察により撮影した E P M A写真に基づき 模式的に転写したものを図 1 Aに示す。 図 1 Bは、 N d F e B系磁石粉末と樹脂 とからなる従来のコンパゥンドの様子を模式的に示したものである。 図 1 Bから 判るように、 従来のコンパウンドの場合、 N d F e B系磁石粉末の粒子表面に、 樹脂が吸着してい'るだけである。
これに対し、 図 1 Aから判るように、 本発明のコンパウンドの場合は、 SmF e N系磁石粉末が第 2界面活性剤を介して樹脂に包込まれた状態にある SmF e N系微粉末が、 Nd F e B系磁石粉末が第 1界面活性剤によって被覆された状態 にある N d F e B系粗粉末の粒子表面に均一に分散した状態となっている。 そし て、 その周囲がさらに樹脂により埋められた状態となっている。 なお、 図 1Aで は、 N d F e B系粗粉末が一粒毎に分離している様子を示しているが、 本発明に いうコンパウンドはこのような状態のものには限られない。 すなわち、 本発明の コンパウンドは、 R 1 F e B系粗粉末の構成粒子が複数結着したものからなって いても良いし、 さらには、 一粒毎に分離したものと複数粒が結着したものの混合 物からなっても良い。 次に、 これらのコンパウンドを加熱磁場中で加圧成形して得たボンド磁石の一 部を拡大し、 図 1 A、 Bと同様に模式的に示したものが図 2 A、 Bである。 図 2 Aは本発明のボンド磁石を示し、 図 2 Bは従来のボンド磁石を示す。 図 2 Bをみ れぱ明らかなように、 従来のボンド磁石の場合、 加圧成形に際して、 N d F e B 系磁石粉末の粒子同士が直接接触し合って局部に応力が集中する。 その結果、 水 素化処 ¾されて割れ感受性が高くなっている N d F e B系磁石粉末の粒子は、 マ イク口クラックやそれによる割れ等を生じる。 そして、 新たに生成された活性な 破面には磁気特性の劣化原因となる酸化層が形成されるようになる。
—方、 本発明のボンド磁石の場合、 コンパウンドを加熱磁場中成形する際、 図 2 Aから明らかなように、 N d F e B系粗粉末の各構成粒子の表面は、 S m F e N系微粉末と樹脂とにより均一に囲繞された状態となる。 つまり、 N d F e B系 粗粉末の各構成粒子間は、 それらによって密に充填された状態となっている。 そ の結果、 N d F e B系粗粉末は、 S m F e N系微粉末と樹脂とによって形成され た強磁性流体層中にまるで浮遊しているかのような状態となっている。 この強磁 性流体層による高い流動性によって、 N d F e B系粗粉末の粒子同士は潤滑性に 優れた環境下に置かれ、 N d F e B系粗粉末の粒子同士は大きな姿勢自由度を得 る。 また、 N d F e B系粗粉末の構成粒子間に存在する強磁性流体層はいわゆる クッシヨンの役割を果して、 N d F e B系粗粉末の各構成粒子が直接に接触して 、 局部的な応力集中を生じるのを妨げる。 こうして、 従来のボンド磁石内部に生 じていたようなマイクロクラックやそれによる割れ等が抑制、 防止されて、 経年 劣化が非常に少ないボンド磁石が得られた。
ここでは、 R 1 F e B系粗粉末と R 2 F e (N、 B ) 系微粉末と樹脂とを加熱 混練して得たコンパゥンドから、 ボンド磁石を加熱成形した場合について説明し たが、 上記のような事情はこのような場合に限られるものではない。
すなわち、 上記コンパウンドを使用せずに、 各磁性粉末と樹脂との混合粉末等 を成形型のキヤビティ等へ直接充填して、 加熱成形した場合であっても、 上述の 場合と同様に、 磁気特性および耐候性に優れたボンド磁石が得られることを本発 明者は確認している。 これは、 各磁性粉末の表面を界面活性剤で被覆することで 、 加熱により軟化または溶融した樹脂とのなじみ性または濡れ性が非常に向上し たため、 溶融した樹脂の流動性が向上したと考えられる。 このような場合、 樹脂 を素早く軟化溶融状態とするのがより好ましいので、 比較的高温で加熱すると良 い。 例えば、 熱硬化性樹脂を使用する場合であれば、 磁場配向する段階から硬化 点以上に加熱して成形すれば良い。
勿論、 上記コンパウンドを使用することで、 強磁性流体層中での R 1 F e B系 粗粉末の均一分散性がさらに向上し、 高磁気特性および高耐候性のボンド磁石が より安定して得られるのは言うまでもない。
ところで、 本明細書でいう 「流動性」 は、 上記強磁性流体層中での、 R l F e B系異方性磁石粉末の充填性、 潤滑性、 配向性等に関連し、 より具体的には、 そ の回転等の移動容易性や姿勢自由度等に関連する。
この流動性は、 使用するコンパウンドの粘度、 ボンド磁石の成形時におけるせ ん断トルク、 任意の成形圧力下での成形した場合のポンド磁石の相対密度等のい ずれによっても、 指標することができる。 但し、 本明細書では、 相対密度をその 流動性の指標とした。 なぜなら、 相対密度を測定した試料そのもので目的である 永久減磁率を測定できるからである。 ここで相対密度とは、 原料の配合比から決 る理論密度に対する、 成形体の密度の比率である。
次に、 実際に、 種々の成形圧力下で成形した場合の成形圧力と、 得られた成形 体の相対密度との関係を調べた結果を図 3に示した。 同図中の酾は、 後述する第 2実施例の試料 N o . 2 3の成形圧力を種々変更した場合の相対密度を示す。 同 様に、 ▲は試料 N o . 2 6に係る相対密度であり、 ♦は試料 N o . H Iに係る相 対密度である。
試料 N o . 2 6 (▲) は、 界面活性剤を付与した N d F e B系粗粉末および S m F e N系微粉末と樹脂とを加熱混練したコンパウンドを使用してボンド磁石を 成形した場合である。 この場合、 成形圧力が低い段階から相対密度が急増する。 そして、 成形圧力が 1 9 8 M P a ( 2 t o n Z c m 2 ) 程度で、 ほぼその相 ^密 度が飽和状態に到達する。 このため、 所望の特性をもつポンド磁石を成形する際 、 非常に低い成形圧力で行うことができる。 すなわち、 優れた低圧成形性を発現 する。 この成形圧力の低減は、 単に生産性の向上のみならず、 R l F e B系異方 性磁石粉末の割れ等をさらに抑制し、 充填率の向上に起因する含有酸素量の低下 による耐候性 (永久減磁率) の向上にも有効である。 さらには、 限界付近までの 充填率の引上げと、 高い流動性による配向性の向上により、 (BH) ma xで代 表される磁気特性が非常に高いレベルまで向上し得る。
試料 No. 23 (■) は、 各磁性粉末と樹脂とを室温で混練したものを加熱磁 場成形した場合である。 この場合、 成形圧力に対する相対密度の立上がりが鈍く 、 試料 No. 26 (A) の場合のような低圧成形性は得られない。 従って、 所望 のボンド磁石を得るには相当の高圧成形をしなければならない。 もっともこの場 合でも、 表 5を観れば明らかなように、 耐候性 (永久減磁率) は十分に優れたも のとなつている。
試料 No. H I (♦) は、 加熱混練も加熱磁場成形もしなかった場合である。 つまり、 室温で混練および加圧成形を行った場合である。 この場合、 成形圧力に 対する相対密度の立上がりがさらに鈍く、 低圧成形性は得られない。 さらに、 表 5を観れば明らかなように、 耐候性 (永久減磁率) および磁気特性もあまり優れ たものではなかった。
試料 N o. 26 (▲) の場合のように、 低圧成形したポンド磁石であっても、 非常に優れた磁気特性および耐候性が得られるのは、 その加熱磁場成形中に出現 する強磁性流体層に依るところが大きいと考えられる。 この強磁性流体層は、 前 述しょうに、 樹脂中に R 2 F e (N、 B) 系微粉末が分散したものであって、 R 1 F e B系粗粉末の周囲を囲繞しているものである。 この強磁性流体層の機能は 、 主として流動性と均一分散性とに分けることができる。
流動性は、 各磁石粉末の回転容易性および姿勢制御容易性の向上に寄与する。 そして、 異方性磁石粉末の充填率および配向性を高め、 さらには、 成形時の R 1 F e B系粗粉末の割れ抑止に作用する。 前述したように、 充填率および配向性の 向上は (BH) ma Xおよび永久減磁率を向上させ、 R l F e B系粗粉末の割れ 抑止は永久減磁率を向上させる。
均一分散性は、 ボンド磁石成形時の R 2 F e (N、 B) 系微粉末および樹脂の 移動距離短縮化と R 2 F e (N、 B) 系微粉末の偏在抑止に寄与する。 これらは 共に R 1 F .e B系粗粉末の構成粒子間に形成される空隙を埋めて充填率を向上さ せ、 ボンド磁石の (BH) m a Xおよび永久減磁率を高める。 また、 R 2 F e ( 04532
N、 B) 系微粉末等の移動距離短縮化は、 成形圧力を低減し低圧成形性を高めて 、 ボンド磁石の生産性向上に寄与する。 また、 R2 F e (N、 B) 系微粉末の偏 在抑止は、 この低圧成形性に伴う生産性向上に加えて、 R 1 F e B系粗粉末の割 れ抑止にも有効でボンド磁石の永久減磁率向上に寄与する。 なお、 この偏在抑止 により、 磁石の表面磁束の均一性も保持されて、 量産時、 ポンド磁石の品質が安 JLし レヽ。
このようにボンド磁石の成形時に出現する強磁性流体層の機能を客観的に対比 可能とするために、 本明細書では、 特定条件下でボンド磁石を成形したときの相 対密度を使用する。
主として、 配向性、 充填率および割れ抑止性の観点から、 (BH) ma xおよ び永久減磁率に影響を及す前記流動性を指標する際には、 成形温度 1 50°C、 磁 場 2. OMA/m (2. 5 T) 、 成形圧力 882MP a (工業上、 最終的な製品 成形時に付与される圧力) の条件下で加熱磁場成形したときに得られるボンド磁 石の相対密度を使用する。
本発明のように、 十分な流動性が得られる場合の相対密度は、 94〜99%と いう非常に高い値となる。 相対密度が 94%未満では、 流動性が不十分で、 R 1 F e B系粗粉末および R 2 F e (N、 B) 系微粉末の回転容易性や姿勢制御容易 性も低い。 このため、 ボンド磁石の成形時における充填性、 配向性および割れ抑 止性も低下して、 (BH) ma Xおよび永久減磁率に優れたボンド磁石が得られ ない。 一方、 相対密度の上限を 99%以下としたのは、 それが量産レベルでの製 造限界だからである。
ここでさらに十分な均一分散性を付与した場合 (例えば、 各磁性粉末と樹脂と の加熱混練を行った場合) の相対密度は、 95〜99%という非常に高い値とな る。 これは、 均一分散性の付与により、 R 2 F e (N、 B) 系微粉末および樹脂 の移動距離短縮化と R 2 F e (N、 B) 系微粉末の偏在化防止によって、 更に、 流動性が増して充填率および割れ抑止効果が向上するからである。 この結果、 ( BH) ma xおよび永久減磁率の一層優れたボンド磁石が得られる。
次に、 主として低圧成形性の観点から、 生産性の向上に影響を及す前記均一分 散性を指標する際には、 成形温度 1 50°C、 磁場 2. OMA/m (2. 5 T) 、 成形圧力 39 2MP aの条件下で加熱磁場成形したときに得られるボンド磁石の 相対密度を使用する。
ここでさらに十分な均一分散性を付与した場合 (例えば、 上 IB加熱混練を行つ た場合) の相対密度は、 92〜9 9%という高い値となる。 相対密度が92%未 満では、 流動性が不十分で良好な低圧成形性が得られない。 この相対密度の上限 が 9 9%である理由は前述した通りである。
B. 実施例
(a) 第 1実施例
(試料の製造)
(1) R 1 F e B系粗粉末の製造
① R 1 F e B系異方性磁石粉末の製造
本発明に係る実施例およびその比較例に使用される R 1 F e B系異方性磁石粉 末として、 表 1および表 2に示す組成をもつ試料 (Nd F e B系磁石粉末) を d 一 HDDR処理により製造した。 具体的には、 先ず、 表 1および表 2に示した組 成に調製した合金インゴッ ト (3 O k g程度) を溶解 '铸造して製造した。 この インゴシトにァノレゴンガス雰囲気中で 1 140〜1 1 50°Cx 40時間の均質化 処理を施した (伹し、 試料 No. 5、 6は除く) 。 さらに、 このインゴッ トをジ ヨークラッシャにより平均粒径が 10 mm以下の粗粉碎物に粉砕した。 この粗粉 碎物に、 次の条件の低温水素化工程、 高温水素化工程、 第 1排気工程および第 2 排気工程とからなる d— HDDR処理を施した。 すなわち、 室温、 水素圧力 1 0 0 k P aの水素ガス雰囲気下で、 各試料合金へ十分に水素を吸収させた (低温水 素化工程) 。 次に、 800でで30 ? & (水素圧力) の水素ガス雰囲気下で、 480分間の熱処理を施した (高温水素化工程) 。 引き続き、 800°Cに保持し たまま、 水素圧力 0. 1〜 20 k P aの水素ガス雰囲気下で、 160分間の熱処 理を施した (第 1排気工程) 。 最後に、 60分間、 ロータリポンプおよび拡散ポ ンプで真空引きして、 10_ip a以下の真空雰囲気下で冷却した (第 2排気工程 ;) 。 こうして、 1バッチ当たり、 各 10 k g程度の Nd F e B系磁石粉末をそれ ぞれ作製した。 なお、 平均粒径は、 ふるい分級後の各級の重量を測定し、 おもみ つき平均により求めた。 これは、 本明細書中の他の平均粒径についても同様であ る。
②界面活性剤の被覆
こうして得られた各組成からなる N d F e B系磁石粉末に、 界面活性剤の溶液 を加えて、 攪拌させならがら真空乾燥させた (第 1被覆工程) 。 界面活性剤の溶 液は、 シラン系カップリング剤 (日本ユリカー株式会社製、 Nひ Cシリコーン A - 1 8 7) をエタノールで 2倍に稀釈したものである。 但し、 試料 No. 4につ いては、 界面活性剤の溶液として、 チタネート系カップリング剤 (味の素株式会 社製、 プレンァク ト KR41 (B) ) をメチルェチルケトンで 2倍に稀釈したも のを使用した。
こう して、 界面活性剤で表面が被覆された粒子からなる R 1 F e B系粗粉末 ( Nd F e B系粗粉末) が得られた。 伹し、 表 2中の試料 No. C 1については、 界面活性剤の被覆を行わなかった。
(2) R 2 F e (N、 B) 系微粉末の製造
先ず、 R 2 F e (N、 B) 系異方性磁石粉末として、 表 1中の試料 No. 1〜 8および表 2中の各比較試料には、 市販の SmF eN系磁石粉末 (住友金属鉱山 株式会社製) を使用した。 また、 表 1中の試料 No. 9〜12には、 同じく市販 の SinF eN系磁石粉末 (日亜化学工業株式会社製) を使用した。 いずれの試料 の場合にも、 前述したものと同様の界面活性剤の溶液を加えて、 攪拌させならが ら真空乾燥させた (第 2被覆工程) 。 こうして、 界面活性剤で表面が被覆された 粒子からなる各種の R 2 F e (N、 B) 系微粉末 (SmF eN系微粉末) が得ら れた。 但し、 表 2中の試料 No. C 2については、 この界面活性剤の被覆を行わ な力 つた。
なお、 界面活性剤の被覆方法は、 上述の N d F e B系粗粉末や SmF e N系微 粉末について行った方法には限られない。 例えば、 R 1 F e B系異方性磁石粉末 と R 2 F e (N、 B) 系異方性磁石粉末とをヘンシェルミキサー等で混合した後 、 界面活性剤の溶液を加えて攪拌させながら真空乾燥するという方法をとつても 良い。
( 3 ) 複合希土類異方性ボンド磁石用コンパゥンドの製造 上記 N d F e B系粗粉末と SmF e N系微粉末とを表 1およぴ表 2に示した配 合比 (ma s s %) で、 ヘンシヱエルミキサーによりそれぞれ混合した。 その混 合物に表 1および表 2に示した割合でエポキシ樹脂を加えて (混合工程) 、 バン バリーミキサーにより、 1 10°Cで加熱混鍊を行ってコンパウンドを得た (加熱 混練工程) 。 この混鍊には、 上記バンバリ一ミキサーの他、 ニーダ一等の混鍊機 を使用しても良い。
この加熱混練工程を行う温度は、 そのェポキシ樹脂の軟化点以上であれば良く 、 例えば、 9◦〜 1 30 の範囲で行える。 エポキシ樹脂の場合、 90°C未満で は溶融状態とならなず、 SmF eN系微粉末を樹脂中に均一分散させることがで きない。 また、 この加熱混練温度がエポキシ樹脂の硬化点以上であっても、 樹脂 が磁石粉末の周りをコーティングし、 均一に分散はし得る。 但し、 この場合、 ェ ポキシ樹脂の硬化が進行するため、 その後に磁場配向させることができず、 成形 後の磁気特性が大幅に低下し得る。 なお、 ここで均一に分散とは、 SmF eN系 微粉末と Nd F e B系粗粉末との間にエポキシ樹脂が必ず存在している状態をい ラ。
今回使用した樹脂の軟化点は、 90でで、 硬化温度 (硬化点) は 1 50°Cであ る。 ここで、 硬化温度は、 その温度で 3ひ分間加熱することで、 樹脂の 95%が 硬化反応を終了する温度とする。
( 4 ) 複合希土類異方性ボンド磁石の製造
得られた各種コンパウンドを用いて、 磁気測定用ポンド磁石を製造した。 この ときの成形条件は、 成形温度 1 50°C、 2. OMA/mの磁場中で (加熱配向ェ 程) 、 成形圧力 8 8 2MP a (9 t o n/cm2) の条件の下で加熱加圧成形し た (成形工程) 。
また、 本発明の低圧成形性を確認するために、 成形温度 1 50°C、 2. OMA Zmの磁場中で (加熱配向工程) 、 成形圧力 3 92MP a (4 t o n^c mz) の条件の下でも加熱加圧成形した (成形工程) 。 これらにより、 いずれもマ X 7 7 mmの立方体状の成形体を得た。
これらの成形体に、 空芯コイルを用いて励磁電流 1000 OAを加えることに より、 4. 0Tの磁場中で着磁を行い (着磁工程) 、 複合希土類異方性ボンド磁 石とした。 なお、 成形工程には、 圧縮成形に限らず、 射出成形、 押し出し成形等 の公知の成形方法を利用しても良い。
(試料の測定)
(1) 表 1および表 2に示す各試料からなる磁気測定用ボンド磁石について、 磁 気特性、 永久減磁率および相対密度をそれぞれ測定した。 具体的には次の通りで あ 。
得られた各試料のポンド磁石の最大エネルギー積を BHトレーサー (理研電子 販売株式会社製、 BHU— 25) で測定して求めた。 永久減磁率は、 成形された ボンド磁石の初期磁束と、 100°Cの大気雰囲気中に 1000時間保持した後に 再着磁して得られた磁束との差から、 その減少分の初期磁束に対する割合を求め たものである。 この磁束の測定には、 電子磁気株式会社製、 MODEL FM- B I D S Cを用いた。
相対密度は、 前述した方法で求めた。 すなわち、 加圧成形後の成形体の寸法を マイクロメータで測定してその体積を算出し、 電子天秤でその重量を測定するこ とで、 その成形体の密度を求めた。 これを各試料の磁性粉末および樹脂の配合比 から求まる理論密度で除して相対密度を求めた。
こうして得られた結果を表 3および表 4に示す。
(2) 表 1の試料 No. 1からなるボンド磁石について、 SEM観察した写真を 図 4〜6に示す。 この写真は、 島津製作所株式会社製、 EPMA— 1600を用 いて撮影したものである。
図 4は、 2次電子像を示す。 図 5は、 N d元素の E PMA像を示す。 この図 5 中では、 青→黄→赤の順で Nd元素の濃度が濃くなつていることが示されており 、 大径粒子に N dが濃化していることから、 その粒子が N d F e B系粉末粒子で あることが角罕る。
図 6は、 Sm元素の E PMA像を示す。 この図 6中では、 青→黄→赤の順で S m元素の濃度が濃くなつていることが示されている。 この図 6から、 全ての大径 粒子 (Nd F e B系粉末粒子) の周囲全面が、 SmF e N系粉末粒子で覆いつぐ されていることと、 Nd F e B系粉末からなる大径粒子間に形成された隙間に S mF e N系粉末の小径粒子が均一にかつ密に分散していることが解る。 (評価)
表 1 ~4から次のことが解る。
( 1) 実施例について
試料 N o. 1〜1 2のいずれの実施例も、 本発明でいう平均粒径、 配合比を備 えたものである。 いずれの試料からなるボンド磁石も、 (BH) ma xが 1 44 k J /ma 以上の高い磁気特性を示している。 また、 その経年劣化の指標となる 永久減磁率は、 全ての試料で 6. 5 %以下という優れた特性を示した。 特に、 1 0 0°C環境下での永久減磁率は、 全ての試料で、 5%以下という優れた特性を示 した。 また、 ボンド磁石の加熱成形時におけるコンパウンドの流動性を指標する 相対密度は、 いずれも 9 2 %以上という高密度である。 特に、 試料 No. 1〜1 2の場合、 成形圧力の相違による相対密度の変化が非常に小さい。 つまり、 低圧 で成形した場合でも、 十分に大きな相対密度が得られること、 つまり、 本発明の 低圧成形性が確認された。
試料 N 0 , 1〜3、 7〜1 0、 1 2は、 磁気特性および耐候性の両立を重視し たものである。 これらの複合希土類異方性ポンド磁石は、 (BH) ma xが 1 6 8 k j/m3 以上という非常に優れた特性を示す。 さらに、 そのボンド磁石は、 その優れた磁気特性と共に、 従来の複合ボンド磁石では到達し得なかった永久減 磁率— 5. 0% ( 1 0 0 °C) という非常に優れた耐候性をも発揮している。
上記試料 N o. 1〜3のボンド磁石等をベースに、 さらに、 高温雰囲気での使 用に適した耐候性を高めた複合希土類異方性ボンド磁石を試料 N o. 4に示した 。 これは、 試料 N o. 1〜3のボンド磁石に比べて (BH) ma Xが 1 64 k J Zm3と僅かに低いものの、 永久減磁率は一 4 %以下 (具体的には一 3. 3%) という優れた耐候性を示している。
また、 試料 N o . 1〜 3のボンド磁石等をベースに、 一層の耐候性向上と製造 コスト低減とを図った複合希土類異方性ボンド磁石を試料 N o . 5、 6に示した 。 これらのボンド磁石は、 B含有量を高くすることで、 均質化熱処理を省略し、 製造コストの低減を図ったものである。 また、 酸素ゲッタとして機能する L aを 含有させることで、 永久減磁率をさらに高めたものである。 これらのボンド磁石 は、 試料 N o . 1〜 3のボンド磁石等に比べて (BH) ma Xが 1 4 5 k J/m 3、 1 5 3 k jZm3と若干低くなっているものの、 永久減磁率はいずれも一 3. 2 %で非常に耐候性に優れたものとなっている。
さらに、 試料 No. 1 1のボンド磁石は、 R 1 F e B系粗粉末である N d F e B系磁石粉末の配合量を低減した低コストタイプのものである。 このボンド磁石 では、 (BH) ma X力 44 k jZm3と試料 No. 1〜3のポンド磁石等よ りも若干低くなつているものの、 永久減磁率は一 4. 5 %であり優れた耐候性を 示していることに変わりない。
(2) 比較例について
①試料 N o. C 1は、 試料 N o . 1の N d F e B系磁石粉末に界面活性剤の被覆 を施さなかった場合である。 試料 No. C 2は、 試料 No. 1の SmF eN系磁 石粉末に界面活性剤の被覆を施さなかった場合である。 いずれの場合も、 低圧成 形 (392MP a) した際の相対密度が低くなつている。 これは、 ボンド磁石の 加熱成形時の流動性が低かったためと思われる。 具体的には、 試料 N o. C 1の 場合、 N d F e B系磁石粉末の表面に界面活性剤の被覆がないために、 ボンド磁 石の加熱成形中において、 N d F e B系磁石粉末と強磁性流体層との流動性が低 かったためと思われる。 このため、 通常の工業レベルでの成形圧力である 88 2 MP aで成形した時の永久減磁率は劣っている。 試料 N o . C 2の場合、 S m F e N系磁石粉末が樹脂中に十分に分散した強磁性流体層がそもそも形成されず、 流動性が低かったためと思われる。 これに伴い、 同様に、 通常の工業レベルでの 成形圧力である 8 82MP aで成形した時の永久減磁率は劣っている。
②試料 No. D 1は、 N d F e B系磁石粉末の平均粒径が小さ過ぎた場合である 。 試料 No. D 2は、 試料 No. 4に対して平均粒径が大き過ぎた場合である。 いずれの場合も、 (BH) m a Xが大きく低下している。 従って、 磁気特性の向 上を図る上で、 N d F e B系磁石粉末の平均粒径が本発明の範囲内であることが 重要である。
③試料 N o . E 1は、 試料 N o . 1に対して N d F e B系粗粉末の配合量が少な かった場合である。 試料 No. E 2は、 その配合量が多すぎた場合である。 d F e B系粗粉末の配合量が少ないと、 その分磁気特性が低下している。 逆に、 そ の配合量が多くなると、 相対的に SmF e N系微粉末の配合量が少なくなり、 N d F e B系粗粉末の全表面に SmF e N系微粉末が均一に分散できなくなる。 そ の結果、 ボンド磁石の加熱成形時の相対密度 (流動性) が低下して、 その分、 永 久減磁率も劣化している。 ·
④試料 No. F 1は、 試料 No. 4に対して SmF e N系微粉末の配合量が少な かった場合である。 試料 No. F 2は、 試料 No. 4に対して配合量が多すぎた 場合である。 SmF e N系微粉末が少ない場合は、 試料 N o . E 2と同様に、 S mF e N系微粉末が N d F e B系粗粉末の全表面に均一に分散されなくなる。 そ の結果、 ボンド磁石の加熱成形時の相対密度 (流動性) が低下して、 その分、 そ の永久減磁率および磁気特性が劣化している。 SmF e N系微粉末が多い場合は 、 試料 N o . E 1と同様、 相対的に N d F e B系粗粉末が少なくなり、 磁気特性 が劣化している。
⑤試料 No. G 1は、 エポキシ樹脂の配合量が少なかった場合である。 試料 No
. G2は、 その配合量が多すぎた場合である。 樹脂の配合量が少ないと、 ボンド 磁石を加熱成形際にできる強磁性流体層の形成が不十分となり、 N d F e B系粗 粉末の流動性が失われて、 永久減磁率が低下する。 樹脂の配合量が多すぎると、 . 相対的に Nd F e B系粗粉末等の配合量が少なくなるため、 ボンド磁石の磁気特 性が低下する傾向となる。
以上のことから、 磁気特性に優れ、 経年劣化の少ないボンド磁石を得るために は、 N d F e B系粗粉末等の R 1 F e B系粗粉末、 S m F e N系微粉末等の R 2 F e (N、 B) 系微粉末および樹脂が、 本発明でいう平均粒径や配合比を満たさ なければならないことが確認された。
(b) 第 2実施例
(試料の製造および測定)
ボンド磁石の成形に使用するコンパウンドの製造条件 (混練温度) と、 そのコ ンパウンドを用いてボンド磁石を成形する際の成形条件 (成形温度および成形圧 力) とを種々変更して、 磁気特性、 相対密度、 永久減磁率および均一分散性につ いて調べた結果を表 5に示す。 ここで使用した N d F e B系粗粉末、 SmF e N 系微粉末および樹脂の種類と配合量は、 第 1実施例の試料 No. 1と同様である 。 また、 各ボンド磁石の製造条件も第 1実施例の場合と同様である。 また、 各試 料からなるボンド磁石の測定も、 第 1実施例の場合と同様に行った。
(評価)
表 5から次のことが解る。
①試料 N o . 2 1〜 2 4は、 各磁性粉末と樹脂とを室温で混練して得たコンパゥ ンドを使用したものである。 この場合、 各磁性粉末と樹脂とは物理的に混合する のみであり、 コンパウンド中における樹脂分散性は低い。 このため、 相対密度が 低く、 低圧成形は困難である。
もっとも、 加熱混練を行わない場合であっても、 軟化点 (9 0 °C) 以上の加熱 成形を行うと、 N d F e B系粗粉末と S m F e N系微粉末は界面活性剤で被覆さ れているため、 その加熱成形中にできた樹脂の溶融層からなる流体層中に、 S m F e N系微粉末が強くなじみ、 結果的に本発明でいう強磁性流体層が形成される に至っていたと考えられる。 この強磁性流体層に出現により、 ボンド磁石の成形 中に高い流動性が付与される。 そして、 磁石粉末の高充填性、 高配向性、 N d F e B系粗粉末のマイクロクラックの抑止性 (割れ抑止性) 等が発現した結果、 磁 気特性および耐候性に優れた複合希土類異方性ボンド磁石が得られたと思われる 。 この場合、 成形圧力を 8 8 2 M P aや 9 8 O M P aまで高めることで、 相対密 度も十分に高まり、 磁気特性および耐候性に優れた'ボンド磁石が得られる。 また 、 加熱磁場成形中の温度を硬化点 (1 5 0 °C) 以上とすることで、 上記強磁性流 体層による流動性が早期に得られる。
②試料 N o . 2 5、 2 6は、 各磁性粉末と樹脂とを軟化点以上に加熱して混練し て得たコンパウンドを使用したものである。 この場合、 コンパウンド中における
S m F e N系微粉末の均一分散性が良好となっている。 このため、 低圧成形した 際にも十分な相対密度おょぴ磁気特性が得られ、 ボンド磁石の量産に好適な低圧 成形性に優れることが解る。 そして、 強磁性流体層による流動性および均一分散 性が高いために、 同一成形圧での充填率もより高くなつている。 その結果、 気 特性の向上と共に酸素の排除に伴う耐候性の向上が得られる。
また、 加熱磁場成形中の温度を硬化点 (1 5 0 °C) 以上とすることで、 その成 形中の流動性が増し、 磁気特性や永久減磁率の向上、 さらには、 タク ト短縮によ る量産性の向上が望める。 ③試料 N o . H Iの場合、 各磁性粉末と樹脂とを室温混練すると共に室温磁場成 形をしている。 このため、 ボンド磁石の成形時における樹脂中の磁石粉末の流動 性や溶融した樹脂中での均一分散性および低圧成形性が悪く、 各成形圧力での相 対密度も一層低いものとなっている。 この場合、 高圧成形しても、 相対密度も磁 気特性も低いボンド磁石しか得られていない。
④試料 N o . H 2は、 各磁性粉末と樹脂とを熱硬化性樹脂の硬化点以上に加熱し て混練し、 さらに、 その硬化点以上で加熱磁場成形したものである。 硬化点以上 で加熱混練した場合、 各磁性粉末の表面を樹脂がコーティングしてコンパウンド 中における均一分散性は良好である。 しかし、 この段階から熱硬化性樹脂の硬化 が進行する。 このため、 その後の加熱磁場成形中で樹脂が軟化せず、 ボンド磁石 の成形時における樹脂中での磁石粉末の流動性が劣り、 十分な磁場配向をさせる ことができないので、 ボンド磁石の磁気特性は大きく低下したものとなる。
SmFeNI系微粉末
NdFeB系粗粉末
10¾Sm-7¾7Fe-13¾N(afc%) τ -ポキ 試料 樹脂の
No. 組成 (at%)
界面 平均粒径 配合比 界面 平均粒径 配合比 (%) 活性剤 (%) 活性剤 (%)
Nd Dy B Fe Ga Nb Zr Co La Pr
1 12.5 6.4 Bal. 0.3 0.2 有 106 78 有 3 20 2
2 12,5 0.5 6.4 Bal. 0.3 0.2 有 150 76 有 3 22 2
3 12.5 6.4 Bal. 0.3 0.2 3.0 有 106 75 有 3 23 Z
4 13.5 0.5 6.4 Bal. 0.3 0.2 有 75 77 有. 3 21 1
5 12.3 12.1 Bal. 0.3 0.2 3.0 0.02 有 80 80
有 Z 18 1
6· 12.5 0.7 12.0 Bal. 0.3 0.2 5:0 0.3 有 122 80 有 2 18 1 施
例 7 12.8 6.4 Bal. 0.3 0.2 0.5 有 106 75 有 3 23 2
Β 12.3 6.3 Bal. 0.3 0.2 6.0 有 68 75 有 3 22.5 1.5 θ 12.6 6.5 Bal. 0.3 0.1 17.4 有 125 83 有 3 15.5 1.5
10 12.8 6.0 Bal. 0.5 0,1 15.0 有 130 72 有 2 25.5 2.5 t l 12.5 6.2 Bal. 有 90 62.5 有 2 35 2.5
12 12.0 6.2 Bal. 0.3 0.2 0.5 有 88 63 有 2 35 Z
SmFeN系微粉末
NdFeB系粗粉末 エポキシ
10%Sm-77¾Fe-1%3N
試料 (at%) 樹脂の
No. 配合比
1成 (at¾)
界面 平均粒径 配合比 界面 平均粒径 配合比 (%)
Nd Dy B Fe Ga Nfa Zr Co La Pr 活性剤 (%) 活性剤 (ii m) (%)
C I 12.5 一 6.4 Bal. 0.3 0.2 一 一 ― 一 無 106 7B 有 3 20 2
C2 12.5 6.4 Bal. 0.3 0.2 有 106 78 無 3 20 Z
Dl 1 3.5 0.5 6.4 . Bal. 0.3 02 有 45 78 有 3 20 2 to D2 13.5 0.5 6.4 Bal. 0.3 0.2 有 425 78 有 3 20 2 比 E1 12.5 6.4 Bal. 0.3 0.2 有 106 45 有 3 53 2 較
例 E2 1 Z.5 6.4 Bal. 0.3 0.2 有 106 8B 有 3 10 2
Fl 13.5 0.5 6.4 Bal. 0.3 0.2 有 106 86 有 3 12 2
F2 13.5 0.5 6.4 Bal. 0.3 0.2 有 106 53 有 3 45 2
G1 12.5 6.4 Bal. 0.3 0.2 有 106 79.5 有 3 20 0.5
G2 12.5 6.4 Bal. 0.3 0.2 有 106 73 有 3 15 12
最大 相対密度 永久減磁率
—搭 Nc eB 丄 、ノレ 系粗粉末 試料 (BH) max (%) (%) の全表面 (こおける SmFeN系微粉末 成形圧力 成形圧力 雰囲気温度 雰囲気温度 の均一分散性
(kJ/m3)
392 Pa 8B2 Pa 100DC 120¾
1 95 97.5 -4.0 -6.1
2 171 96 97.5 -3.9 -5.5
3 201 94 95 -4.8 -5.1 o - =·
4 164 95 96 -3.3 -5.0 -8
5 145 95 97 -3.4 -4.9 ■
6 153 96 97 -3.2 -4.8
例 7 95 97.5 - 3.2 -4.8 お
8 206 96 97.5 -3.4 - 5.2 有
9 168 95 97 -3.4 -5.4 有
10 169 94 97 - 3.5 -5.6 有
1 1 1 4 94 96 -4.5 -6.5 有
12 185 93 96 -4.3 -6.2 有
最大 相対密度
ェネル 積 (%) NdFeB系粗粉末
試料 (BH) max (%) 雰囲気温度 の全表面における
比鼓の額
No. 100°C SmFeN系微粉末の
(kJ/m3) 成形圧力 成形圧力 成形圧力 均一分散性
392MPa 882MPa 882MPa
NdFeB系磁粉
G1 180 87 94 -6.1
(全面でない) 界面活性剤無し
無 SmFeN'系磁粉
C2 182 87 94 -7.0
(均一でない) 界面活性剤無し
NdFeB系磁粉平均粒径
D1 127 94 95 -4.0 有
下限外れ
NdFeB系磁粉平均粒径
D2 135 95 96 -3.5 有
上限外れ
NdFeB系磁粉配合比 比 E1 160 94 95 -4.5 有
下限外れ
例 E2 無 NdFeB系磁粉配合比
175 90 93 -6.0
(全面でない) 上限外れ
SmFeN系磁粉配合比
F1 151 89 92 -6.2
(全面でない) 下限外れ
SmFeN系磁粉配合比
FZ 135 93 95 -5.0 有
上限外れ
樹脂配合比
G1 180 92 93 -7.0 有
下限外れ
樹脂配合比
G2 130 94 96 -3.0 有
上限外れ
加熱混練 磁場中成形条件 - 相対密度 永久減磁率 成形圧力: 392MPa 試料 /皿 エネルギー積 ( ) 均一 のときの相対密度
No. 成形圧力 (BH)max 雰囲気温度 分散性
(°C) (ΜΡΆ) (kJ/m3) (%) 100°C (%)
21 120 882 164.0 94.0 4.1 X
22 τ ί 980 173.0 96.0 4.4 X
Ϊ 23 τ 150 882 165.0 94.4 4.1 X
87.0 例 24 ΐ ΐ 980 174.3 96.0 4.0 X
25 120 120 882 184.0 97,0 3.7 O 95.0
26 Τ 150 ί 184.0 97.5 3.7 O 95.0 比 H1 .ΙΜ. 882 137.2 85.0 7.1 X 75.0 較
例 H2 150 150 ί 133.5 93.0 4.2 O 75.0

Claims

請求の範囲
1. イン トリウム (Y) を含む希土類元素 (以下、 「R 1」 と称する。 ) と鉄 (F e) とホウ素 (B) とを主成分とする R 1 F e B系合金に水素化処理を施し て得られた平均粒径が 50〜400 μπιである R 1 F e B系異方性磁石粉末と該 R 1 F e B系異方性磁石粉末の構成粒子の表面を被覆する第 I界面活性剤とから なる R 1 F e B系粗粉末が 50〜 84質量。/。 (ma s s %) と、
Yを含む希土類元素 (以下、 「R 2」 と称する。 ) と F eと窒素 (N) または Bとを主成分とする平均粒径が 1〜1 O mである R 2 F e (N、 B) 系異方性 磁石粉末と該 R 2 F e (N、 B) 系異方性磁石粉末の構成粒子の表面を被覆する 第 2界面活性剤とからなる R 2 F e (N、 B) 系微粉末が 1 5〜 40 m a s s % と、 ·
バインダである榭脂が 1〜 1 Om a s s °/0とからなり、
最大エネルギー積 (BH) ma Xが 1 6 7〜223 k J/m3であり、
100°Cで 1000時間経過後に再着磁して得られる磁束の減少割合を示す永 久減磁率が 6 %以下であることを特徴とする複合希土類異方性ボンド磁石。
2. 前記 R 1 F e B系異方性磁石粉末または前記 R 2 F e (N、 B) 系異方性 磁石粉末の少なくとも一方は、 全体を 100 a t %としたときに、 ジスプロシゥ ム (Dy) 、 テノレビゥム (Tb) 、 ネオジム (Nd) またはプラセオジム (P r ) の少なく とも一種以上の希土類元素 (以下、 「R 3」 という。 ) を 0. 05〜 5 a t%含有する請求の範囲第 1項に記載の複合希土類異方性ボンド磁石。
3. 前記 R 1 F e B系異方性磁石粉末または前記 R 2 F e (N、 B) 系異方性 磁石粉末の少なくとも一方は、 全体を 100 a t %としたときにランタン (L a ) を 0. 0 1〜1 a t%含有する請求の範囲第 1項に記載の複合希土類異方性ボ ンド磁石。
4. R 1と F eと Bとを主成分とする R 1 F e B系合金に水素化処理を施して 得られた平均粒径が 5 o〜400 /imである R 1 F e B系異方性磁石粉末の構成 粒子の表面を第 1界面活性剤で被覆してなる R 1 F e B系粗粉末が 50-84m a s s °/0と、 R 2と F eと Nまたは Bとを主成分とする平均粒径が 1〜 10 /i m である R 2 F e (N、 B) 系異方性磁石粉末の構成粒子の表面を第 2界面活性剤 で被覆してなる R 2 F e (N、 B) 系微粉末が 1 5〜4 Om a s s %と、 バイン ダである樹脂が 1~1 Oma s s %とからなる混合物を、 該樹脂の軟化点以上の 温度に加熱すると共に該樹脂を軟化状態または溶融状態としつつ配向磁場を印加 して該 R 1 F e B系粗粉末および該 R 2 F e (N、 B) 系微粉末をを配向させる 加熱配向工程と、
該加熱配向工程後の混合物を加熱加圧成形する成形工程とからなり、 該 R 1 F e B系粗粉末の構成粒子間に該 R 2 F e (N、 B) 系微粉末および該 樹脂が均一に充填されてなる複合希土類異方性ボンド磁石が得られることを特徴 とする複合希土類異方性ボンド磁石の製造方法。
5. 前記混合物は、 前記 R 1 F e B系粗粉末の構成粒子の表面が、 前記樹脂中 に前記 R 2 F e (N、 B) 系微粉末が均一分散した被覆層で被覆されたコンパゥ ンドからなる請求の範囲第 4項に記載の複合希土類異方性ボンド磁石の製造方法
6. 前記コンパウンドは、 前記 R 1 F e B系粗粉末と前記 R 2 F e (N、 B) 系微粉末と前記樹脂とを該樹脂の軟化点以上の温度で加熱混練する加熱混練工程 を経て得られる請求の範囲第 5項に記載の複合希土類異方性ボンド磁石用コンパ ゥンドの製造方法。
7. 前記混合物は、 前記コンパウンドを成形型のキヤビティへ充填し加圧成形 した予備成形体からなる請求の範囲第 5項に記載の複合希土類異方性ボンド磁石 の製造方法。
8. 前記樹脂は、 熱硬化性樹 aであり、 前記加熱配向工程は、 該熱硬化性樹脂の硬化点以上の温度で加熱してなされる 請求の範囲第 4項に記載の複合希土類異方性ボンド磁石の製造方法。
9. R 1と F eと Bとを主成分とする R 1 F e B系合金に水泰化処理を施して 得られた平均粒径が 50〜400 μιηである R l F e B系異方性磁石粉末と該 R 1 F e B系異方性磁石粉末の構成粒子の表面を被覆する第 1界面活性剤とからな る R 1 F e B系粗粉末が 50 84質量0 /0 (ma s s %) と、
R 2と F eと Nまたは Bとを主成分とする平均粒径が 1〜 10 /imである R 2 F e (N、 B) 系異方性磁石粉末と該 R 2 F e (N、 B) 系異方性磁石粉末の構 成粒子の表面を被覆する第 2界面活性剤とからなる R 2 F e (N、 B) 系微粉末 力 1 5〜40ma s s %と、
バインダである樹脂が 1〜 1 Om a s s %とからなり、
前記 R 1 F e B系粗粉末の構成粒子の表面が、 前記樹脂中に前記 R 2 F e (N 、 B) 系微粉末が均一分散した被覆層で被覆されていることを特徴とする複合希 土類異方性ボンド磁石用コンパゥンド。
1 0. 成形温度 1 50°C、 磁場 2. OMA/m, 成形圧力 392 M P aの条件 下で加熱磁場成形した際に得られるボンド磁石の相対密度が 92〜99°/。となる 請求の範囲第 9項に記載の複合希土類異方性ボンド磁石用コンパゥンド。
1 1. 前記 R 1 F e B系異方性磁石粉末または前記 R 2 F e (N、 B) 系異方 性磁石粉未の少なくとも一方は、 全体を 100 a t %としたときに、 D y、 T b 、 N dまたは P rの少なく とも一種以上の希土類元素 (R 3) を 0. 05〜5 a t %含有する請求の範囲第 9項に記載の複合希土類異方性ボンド磁石用コンパゥ ンド。
1 2. 前記 R 1 F e B系異方性磁石粉末または前記 R 2 F e (N、 B) 系異方 性磁石粉末の少なくとも一方は、 それぞれの全体を 100 a t %としたときに L aを 0. 0 1〜1 a t %含有する請求の範囲第 9項に記載の複合希土類異方性ボ ンド磁石用コンパゥンド。
1 3. R 1と F eと Bとを主成分とする R l F e B系合金に水素化処理を施し て得られた平均粒径が 50〜400 /imである R 1 F e B系異方性磁石粉末の構 成粒子の表面を第 1界面活性剤で被覆してなる R 1 F e B系粗粉末を 50〜 84 ma s s °/0と、 R 2と F eと Nまたは Bとを主成分とする平均粒径が 1〜 1 Ο μ mである R 2 F e (N、 B) 系異方性磁石粉末の構成粒子の表面を第 2界面活性 剤で被覆してなる R 2 F e (N、 B) 系微粉末を 1 5〜4 Om a s s %と、 パイ ンダである樹脂を 1〜1 Oma s s %とを混合する混合工程と、
該混合工程後に得られた混合物を該樹脂の軟化点以上の温度で加熱混練する加 熱混練工程とからなり、
前記 R 1 F e B系粗粉末の構成粒子の表面が、 前記樹脂中に前記 R 2 F e (N 、 B) 系微粉末が均一分散した被覆層で被覆されたコンパウンドが得られること を特徴とする複合希土類異方性ボンド磁石用コンパウンドの製造方法。
14. 請求の範囲第 4〜 8項のいずれかに記載した複合希土類異方性ボンド磁 石の製造方法によって得られることを特徴とする複合希土類異方性ボンド磁石。
1 5. 請求の範囲第 1 3項に記載した複合希土類異方性ボンド磁石用コンパゥ ンドの製造方法によって得られることを特徴とする複合希土類異方性ボンド磁石 用コンパゥンド。
PCT/JP2003/004532 2002-04-09 2003-04-09 Aimant anisotrope lie composite de terres rares, compose pour aimant anisotrope lie composite de terres rares, et procede de production de l'aimant WO2003085684A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003236030A AU2003236030A1 (en) 2002-04-09 2003-04-09 Composite rare earth anisotropic bonded magnet, compound for composite rare earth anisotropic bonded magnet, and method for production thereof
JP2003582779A JPWO2003085684A1 (ja) 2002-04-09 2003-04-09 複合希土類異方性ボンド磁石、複合希土類異方性ボンド磁石用コンパウンドおよびそれらの製造方法
EP03745989A EP1494251A4 (en) 2002-04-09 2003-04-09 COMPOSITE ANISOTROPIC BONDED RARE-EDGE MAGNET, COMPOSITION FOR COMPOSITE ANISOTROPIC-BONDED RARE-DAMAGNETS, AND METHOD FOR THE PRODUCTION THEREOF
US10/509,687 US20050145301A1 (en) 2002-04-09 2003-04-09 Composite rare earth anisotropic bonded magnet, compound for composite rare earth anisotropic bonded magnet, and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP02/03541 2002-04-09
PCT/JP2002/003541 WO2003085683A1 (fr) 2002-04-09 2002-04-09 Aimant agglomere anisotrope de terre rare composite, compose pour un aimant agglomere anisotrope de terre rare composite, et procede de preparation de ce dernier

Publications (1)

Publication Number Publication Date
WO2003085684A1 true WO2003085684A1 (fr) 2003-10-16

Family

ID=28694863

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2002/003541 WO2003085683A1 (fr) 2002-04-09 2002-04-09 Aimant agglomere anisotrope de terre rare composite, compose pour un aimant agglomere anisotrope de terre rare composite, et procede de preparation de ce dernier
PCT/JP2003/004532 WO2003085684A1 (fr) 2002-04-09 2003-04-09 Aimant anisotrope lie composite de terres rares, compose pour aimant anisotrope lie composite de terres rares, et procede de production de l'aimant

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003541 WO2003085683A1 (fr) 2002-04-09 2002-04-09 Aimant agglomere anisotrope de terre rare composite, compose pour un aimant agglomere anisotrope de terre rare composite, et procede de preparation de ce dernier

Country Status (6)

Country Link
US (1) US20050145301A1 (ja)
EP (1) EP1494251A4 (ja)
JP (1) JPWO2003085684A1 (ja)
CN (1) CN1647218A (ja)
AU (1) AU2003236030A1 (ja)
WO (2) WO2003085683A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022101A1 (ja) * 2004-08-24 2006-03-02 Matsushita Electric Industrial Co., Ltd. 自己組織化した網目状境界相を有する異方性希土類ボンド磁石とそれを用いた永久磁石型モータ
JP2006080115A (ja) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd 異方性希土類−鉄系ボンド磁石
EP1752994A1 (en) * 2004-06-17 2007-02-14 Matsushita Electric Industrial Co., Ltd. Process for producing self-assembled rare earth-iron bonded magnet and motor utilizing the same
WO2010084812A1 (ja) * 2009-01-22 2010-07-29 住友電気工業株式会社 冶金用粉末の製造方法、圧粉磁心の製造方法、圧粉磁心およびコイル部品
JP2010199222A (ja) * 2009-02-24 2010-09-09 Seiko Instruments Inc 異方性ボンド磁石の製造方法、磁気回路及び異方性ボンド磁石
JP2010206045A (ja) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd 磁石成形体及びその製造方法
US7812484B2 (en) 2004-11-30 2010-10-12 Aichi Steel Corporation Permanent magnet for motor, motor housing, and motor device
JP2011060975A (ja) * 2009-09-09 2011-03-24 Nissan Motor Co Ltd 磁石成形体およびその製造方法
JP2021118213A (ja) * 2020-01-23 2021-08-10 愛知製鋼株式会社 ボンド磁石とコンパウンドの製造方法
JP2021190706A (ja) * 2020-06-01 2021-12-13 有研稀土高技術有限公司Grirem Hi−Tech Co., Ltd. 異方性結合磁石およびその作製方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060054245A1 (en) * 2003-12-31 2006-03-16 Shiqiang Liu Nanocomposite permanent magnets
US20110229918A1 (en) * 2008-12-11 2011-09-22 Covalys Biosciences Ag Method of Quantifying Transient Interactions Between Proteins
JP5267800B2 (ja) * 2009-02-27 2013-08-21 ミネベア株式会社 自己修復性希土類−鉄系磁石
JP4923151B2 (ja) * 2010-03-31 2012-04-25 日東電工株式会社 永久磁石及び永久磁石の製造方法
CN102568730A (zh) * 2010-12-31 2012-07-11 上海爱普生磁性器件有限公司 一种高机械强度粘结钕铁硼永磁体及其制备方法
CN102324814B (zh) * 2011-08-26 2013-08-28 邓上云 一种永磁交流同步电机用钕铁硼/铁氧体复合磁体的制备工艺
JP6451656B2 (ja) * 2016-01-28 2019-01-16 トヨタ自動車株式会社 希土類磁石の製造方法
US11440091B2 (en) * 2018-01-22 2022-09-13 Nichia Corporation Methods of producing bonded magnet and compound for bonded magnets
CN109698067B (zh) * 2019-01-14 2022-02-08 太原开元智能装备有限公司 各向异性粘结磁体的制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243702A (ja) * 1989-03-17 1990-09-27 Japan Steel Works Ltd:The 異方性樹脂結合型永久磁石用希土類合金粉末
JPH03236202A (ja) * 1990-02-14 1991-10-22 Tdk Corp 焼結永久磁石
JPH0661023A (ja) * 1992-08-11 1994-03-04 Asahi Chem Ind Co Ltd 希土類ボンド磁石
JPH06132107A (ja) * 1992-10-16 1994-05-13 Citizen Watch Co Ltd 複合希土類ボンド磁石
JP2000003809A (ja) * 1998-06-16 2000-01-07 Sumitomo Metal Mining Co Ltd 樹脂結合型金属組成物および金属成形体
JP2001135509A (ja) * 1999-08-20 2001-05-18 Hitachi Metals Ltd 等方性希土類磁石材料、等方性ボンド磁石、回転機およびマグネットロール
JP2001313205A (ja) * 1999-11-24 2001-11-09 Hitachi Metals Ltd 等方性コンパウンド、等方性ボンド磁石、回転機及びマグネットロール
JP2002093610A (ja) * 2000-09-20 2002-03-29 Aichi Steel Works Ltd 異方性磁石粉末の製造方法、異方性磁石粉末の原料粉末およびボンド磁石
JP2002190404A (ja) * 2000-10-04 2002-07-05 Sumitomo Special Metals Co Ltd 希土類焼結磁石およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851058A (en) * 1982-09-03 1989-07-25 General Motors Corporation High energy product rare earth-iron magnet alloys
JPH0663056B2 (ja) * 1984-01-09 1994-08-17 コルモーゲン コーポレイション 非焼結永久磁石合金及びその製造方法
JPH0555020A (ja) * 1991-08-29 1993-03-05 Seiko Epson Corp 樹脂結合型磁石
JPH05159916A (ja) * 1991-12-04 1993-06-25 Idemitsu Kosan Co Ltd 樹脂被覆磁石粉末組成物
US5643491A (en) * 1992-12-28 1997-07-01 Aichi Steel Works, Ltd. Rare earth magnetic powder, its fabrication method, and resin bonded magnet
EP0654801B1 (en) * 1993-11-11 2000-06-07 Seiko Epson Corporation Magnetic powder, permanent magnet produced therefrom and process for producing them
JPH09312230A (ja) * 1996-03-19 1997-12-02 Sumitomo Special Metals Co Ltd 異方性ボンド磁石の製造方法
JPH09186012A (ja) * 1996-12-26 1997-07-15 Aichi Steel Works Ltd 磁気異方性樹脂結合型磁石
JP3719492B2 (ja) * 1999-02-26 2005-11-24 日亜化学工業株式会社 希土類系磁性粉末及びその表面処理方法並びにそれを用いた希土類ボンド磁石
US6444052B1 (en) * 1999-10-13 2002-09-03 Aichi Steel Corporation Production method of anisotropic rare earth magnet powder
US6790296B2 (en) * 2000-11-13 2004-09-14 Neomax Co., Ltd. Nanocomposite magnet and method for producing same
JP4023138B2 (ja) * 2001-02-07 2007-12-19 日立金属株式会社 鉄基希土類合金粉末および鉄基希土類合金粉末を含むコンパウンドならびにそれを用いた永久磁石
US7357880B2 (en) * 2003-10-10 2008-04-15 Aichi Steel Corporation Composite rare-earth anisotropic bonded magnet, composite rare-earth anisotropic bonded magnet compound, and methods for their production

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243702A (ja) * 1989-03-17 1990-09-27 Japan Steel Works Ltd:The 異方性樹脂結合型永久磁石用希土類合金粉末
JPH03236202A (ja) * 1990-02-14 1991-10-22 Tdk Corp 焼結永久磁石
JPH0661023A (ja) * 1992-08-11 1994-03-04 Asahi Chem Ind Co Ltd 希土類ボンド磁石
JPH06132107A (ja) * 1992-10-16 1994-05-13 Citizen Watch Co Ltd 複合希土類ボンド磁石
JP2000003809A (ja) * 1998-06-16 2000-01-07 Sumitomo Metal Mining Co Ltd 樹脂結合型金属組成物および金属成形体
JP2001135509A (ja) * 1999-08-20 2001-05-18 Hitachi Metals Ltd 等方性希土類磁石材料、等方性ボンド磁石、回転機およびマグネットロール
JP2001313205A (ja) * 1999-11-24 2001-11-09 Hitachi Metals Ltd 等方性コンパウンド、等方性ボンド磁石、回転機及びマグネットロール
JP2002093610A (ja) * 2000-09-20 2002-03-29 Aichi Steel Works Ltd 異方性磁石粉末の製造方法、異方性磁石粉末の原料粉末およびボンド磁石
JP2002190404A (ja) * 2000-10-04 2002-07-05 Sumitomo Special Metals Co Ltd 希土類焼結磁石およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1494251A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1752994A1 (en) * 2004-06-17 2007-02-14 Matsushita Electric Industrial Co., Ltd. Process for producing self-assembled rare earth-iron bonded magnet and motor utilizing the same
EP1752994A4 (en) * 2004-06-17 2007-11-28 Matsushita Electric Ind Co Ltd PROCESS FOR MANUFACTURING A SELF-ASSEMBLED RARE-IRON BOND MAGNET AND MOTOR THEREWITH
US7967919B2 (en) 2004-06-17 2011-06-28 Panasonic Corporation Process for producing self-assembled rare earth-iron bonded magnet and motor utilizing the same
WO2006022101A1 (ja) * 2004-08-24 2006-03-02 Matsushita Electric Industrial Co., Ltd. 自己組織化した網目状境界相を有する異方性希土類ボンド磁石とそれを用いた永久磁石型モータ
EP1793393A1 (en) * 2004-08-24 2007-06-06 Matsushita Electric Industrial Co., Ltd. Anisotropic rare earth bonded magnet having self-organized network boundary phase and permanent magnet motor utilizing the same
EP1793393A4 (en) * 2004-08-24 2007-11-28 Matsushita Electric Ind Co Ltd ANISOTROPER RARE-BONDED MAGNET WITH SELF-ORGANIZED NETWORK PHASE AND PERMANENT MAGNETIC MOTOR THEREWITH
CN101006529B (zh) * 2004-08-24 2010-05-26 松下电器产业株式会社 具有自组织化的网状边界相的各向异性稀土类粘结磁铁和使用该磁铁的永久磁铁型电动机
JP4710830B2 (ja) * 2004-08-24 2011-06-29 パナソニック株式会社 自己組織化した網目状境界相を有する異方性希土類ボンド磁石とそれを用いた永久磁石型モータ
US7828988B2 (en) 2004-08-24 2010-11-09 Panasonic Corporation Anisotropic rare earth bonded magnet having self-organized network boundary phase and permanent magnet motor utilizing the same
JP2006080115A (ja) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd 異方性希土類−鉄系ボンド磁石
US7812484B2 (en) 2004-11-30 2010-10-12 Aichi Steel Corporation Permanent magnet for motor, motor housing, and motor device
WO2010084812A1 (ja) * 2009-01-22 2010-07-29 住友電気工業株式会社 冶金用粉末の製造方法、圧粉磁心の製造方法、圧粉磁心およびコイル部品
JPWO2010084812A1 (ja) * 2009-01-22 2012-07-19 住友電気工業株式会社 冶金用粉末の製造方法、圧粉磁心の製造方法、圧粉磁心およびコイル部品
JP2010199222A (ja) * 2009-02-24 2010-09-09 Seiko Instruments Inc 異方性ボンド磁石の製造方法、磁気回路及び異方性ボンド磁石
JP2010206045A (ja) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd 磁石成形体及びその製造方法
JP2011060975A (ja) * 2009-09-09 2011-03-24 Nissan Motor Co Ltd 磁石成形体およびその製造方法
US10287656B2 (en) 2009-09-09 2019-05-14 Nissan Motor Co., Ltd. Rare earth magnet molding and method for manufacturing the same
JP2021118213A (ja) * 2020-01-23 2021-08-10 愛知製鋼株式会社 ボンド磁石とコンパウンドの製造方法
JP7453512B2 (ja) 2020-01-23 2024-03-21 愛知製鋼株式会社 ボンド磁石とコンパウンドの製造方法
JP2021190706A (ja) * 2020-06-01 2021-12-13 有研稀土高技術有限公司Grirem Hi−Tech Co., Ltd. 異方性結合磁石およびその作製方法
JP7335292B2 (ja) 2020-06-01 2023-08-29 有研稀土高技術有限公司 異方性結合磁石およびその作製方法

Also Published As

Publication number Publication date
EP1494251A4 (en) 2007-07-25
WO2003085683A1 (fr) 2003-10-16
EP1494251A1 (en) 2005-01-05
US20050145301A1 (en) 2005-07-07
CN1647218A (zh) 2005-07-27
JPWO2003085684A1 (ja) 2005-08-18
AU2003236030A1 (en) 2003-10-20

Similar Documents

Publication Publication Date Title
WO2003085684A1 (fr) Aimant anisotrope lie composite de terres rares, compose pour aimant anisotrope lie composite de terres rares, et procede de production de l'aimant
WO2011070847A1 (ja) 希土類異方性磁石粉末およびその製造方法とボンド磁石
JP4618553B2 (ja) R−t−b系焼結磁石の製造方法
WO2008065903A1 (en) R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
JP5273039B2 (ja) R−t−b系焼結磁石およびその製造方法
JP4805998B2 (ja) 永久磁石とそれを用いた永久磁石モータおよび発電機
WO2012161189A1 (ja) 希土類-鉄-窒素系合金材、希土類-鉄-窒素系合金材の製造方法、希土類-鉄系合金材、及び希土類-鉄系合金材の製造方法
JP6447380B2 (ja) 比抵抗が大きいSmFeN系のメタルボンド磁石成形体
EP2830069A1 (en) R-T-B-M sintered magnet and manufacturing method thereof
JP2012253247A (ja) 複合磁性材及びその製造方法
JP2024133523A (ja) 希土類焼結ネオジム-鉄-ボロン磁石の製造方法
WO2012029527A1 (ja) R-t-b系希土類永久磁石用合金材料、r-t-b系希土類永久磁石の製造方法およびモーター
JP2011049440A (ja) R−t−b系永久磁石の製造方法
JPWO2004003245A1 (ja) ボンド磁石用合金、等方性磁石粉末および異方性磁石粉末とそれらの製造方法並びにボンド磁石
JP3731597B2 (ja) 複合希土類異方性ボンド磁石、複合希土類異方性ボンド磁石用コンパウンドおよびそれらの製造方法
JPS62198103A (ja) 希土類−鉄系永久磁石
JPH04241402A (ja) 永久磁石の製造方法
JPH05335120A (ja) 異方性ボンド磁石製造用固体樹脂バインダー被覆磁石粉末およびその製造法
JP4466491B2 (ja) 動力用モータ
JP2007250605A (ja) R−t−b系希土類永久磁石の製造方法
JP2003168602A (ja) 異方性希土類ボンド磁石およびその製造方法
JP2002075715A (ja) 異方性バルク交換スプリング磁石およびその製造方法
KR102236096B1 (ko) 세라믹 본드 자석 제조방법 및 이를 통해 제조된 세라믹 본드 자석
JP2708578B2 (ja) ボンド磁石
JP2018152526A (ja) RFeB系焼結磁石の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2003582779

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN IN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003745989

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038079887

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10509687

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003745989

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003745989

Country of ref document: EP