WO2003085142A1 - Dispositif et procede de traitement thermique, support pour l'enregistrement d'un programme de traitement thermique et produit en acier - Google Patents

Dispositif et procede de traitement thermique, support pour l'enregistrement d'un programme de traitement thermique et produit en acier Download PDF

Info

Publication number
WO2003085142A1
WO2003085142A1 PCT/JP2003/004298 JP0304298W WO03085142A1 WO 2003085142 A1 WO2003085142 A1 WO 2003085142A1 JP 0304298 W JP0304298 W JP 0304298W WO 03085142 A1 WO03085142 A1 WO 03085142A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
steel material
induction heating
power
heating device
Prior art date
Application number
PCT/JP2003/004298
Other languages
English (en)
French (fr)
Inventor
Yoshitsugu Iijima
Hiroshi Mizuno
Hiroshi Sekine
Noritsugu Suzuki
Kiyoshi Nakano
Masatoshi Sugioka
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002105408A external-priority patent/JP4306178B2/ja
Priority claimed from JP2002105409A external-priority patent/JP4258165B2/ja
Priority claimed from JP2002113562A external-priority patent/JP4306179B2/ja
Priority claimed from JP2003058341A external-priority patent/JP4258235B2/ja
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to EP03745906A priority Critical patent/EP1496129A4/en
Priority to KR1020047003029A priority patent/KR100585540B1/ko
Publication of WO2003085142A1 publication Critical patent/WO2003085142A1/ja
Priority to US10/785,629 priority patent/US6891139B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/60Continuous furnaces for strip or wire with induction heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • Heat treatment equipment heat treatment method, recording medium on which heat treatment program is recorded, and steel material
  • the present invention relates to a technology for heat-treating steel using an induction heating device.
  • This heat treatment method is called uniform heating.
  • the heating stage includes a heating stage in which the steel material is heated in the induction heating furnace and a soaking stage in which the frequency is higher than that of the heating stage and the input power is reduced to heat the steel material.
  • An induction heating method has been proposed in which a quasi-heating stage is provided in which the induction heating is performed at the same frequency as that of the induction heating at a lower input power than the heating stage.
  • An object of the present invention is to provide a heat treatment apparatus, a heat treatment method, and a heat treatment method capable of performing a heat treatment so that a steel material has desired properties by accurately matching a surface temperature and an internal temperature of a steel material to a target.
  • An object of the present invention is to provide a recording medium on which a heat treatment program is recorded and a steel material.
  • the heat treatment apparatus includes a plurality of induction heating apparatuses for heating a steel material, a straightening device for straightening the steel material, a size of the steel material, a conveying speed of the steel material, a target heating temperature of the steel material, A computing device that determines the planned supply power to be supplied to the induction heating device based on the planned temperature of the steel material at the preceding stage of the induction heating device, and the planned supply power determined by the computing device to the induction heating device. And a power supply device for supplying the power.
  • the expected supply power to be supplied to the induction heating device for heating so that the difference from the second target temperature is within a predetermined range, or the surface temperature of the steel material being heated by the induction heating device is the third temperature.
  • the temperature exceeds the target temperature Determining the supply schedule power you supply to the induction heating device to a temperature in a predetermined position inside the steel thickness direction at the time of thermal completion heated to cormorants by the following fourth target temperature.
  • the present heat treatment apparatus can shorten the heating time by heating the steel material with the induction heating apparatus.
  • the heat treatment apparatus is provided with an arithmetic unit that calculates the electric power of the induction heating apparatus so that the temperature distribution inside the steel material becomes the target temperature distribution (therefore, the apparatus configuration is simple and inexpensive). and t its Ru can and this constituting the, Ri by this structure, uniform heating of interest, Ru can and accurately achieve child the surface heating.
  • FIG. 1 is a side view showing a schematic configuration of a steel production line to which the present invention is applied.
  • FIG. 2 is a side view showing a schematic configuration of the heat treatment apparatus according to the first embodiment of the present invention.
  • Figure 3 shows the symbols used in the equation for temperature change.
  • Fig. 4 is a flow chart showing the general procedure for obtaining the steel temperature distribution after heating from the heating power.
  • FIG. 5 is a diagram showing a schematic flow of a power calculation process for obtaining heating power.
  • FIG. 6 is a diagram schematically showing a flow of power calculation processing for obtaining heating power according to another embodiment.
  • Figure 7 shows the configuration of a system that implements the preprocessing method.
  • Fig. 8 is a diagram showing a correspondence table of steel size, transfer speed, and number of passes. '
  • FIG. 9 is a flow chart showing a schematic procedure for determining a transport speed by convergence calculation.
  • FIG. 10 is a flow chart showing a procedure for obtaining an influence coefficient when the heating start temperature is changed.
  • Fig. 11 is a flow chart showing the procedure for obtaining the influence coefficient when the target heating temperature is changed.
  • FIG. 12 is a diagram showing a configuration of a system according to a correction processing method.
  • FIG. 13 is a diagram illustrating a configuration of a system according to the combination processing method.
  • FIG. 14 is a diagram illustrating an operation of a tracking process.
  • FIG. 15 is a diagram showing a configuration of FF control.
  • FIG. 16 is a diagram showing a configuration of FF control.
  • FIG. 17 is a diagram showing a configuration of FB control.
  • FIG. 18 is a diagram showing a configuration of FB control. Figures 1 and 9 show the overall learning function.
  • steel is heated in a heating furnace and rises to around 1,200 ° C. Thereafter, the steel material is usually rolled to a predetermined thickness and width by a plurality of rolling mills. After rolling, steel still at 800 ° C to 1 000 ° C can be forcibly cooled by water or naturally cooled by air. Through this treatment, the steel is hardened. In particular, it has been found that by performing rapid cooling using an accelerated cooling device after rolling, the strength and toughness of the steel material can be enhanced.
  • a heat treatment such as tempering and annealing is performed again in a gas furnace.
  • the heat-treated steel is cut and shipped.
  • FIG. 1 is a side view showing a schematic configuration of a steel production line to which the present invention is applied.
  • This steel material production line measures the temperature of the heating furnace 2 for heating the steel 1, the rolling mill 3 for rough and finish rolling, the accelerated cooling device 4, the straightening device 5, the induction heating device 6, and the steel material 1. It consists of a temperature detector 7.
  • the straightening device 5 is used to correct the warpage and bending of the steel material 1, and then is heated by the induction heating device 6 installed on the line. Perform return processing.
  • the induction heating device 6 has a capability of heating the steel material 1 to a predetermined temperature.
  • heating can be performed with a small number. In this case, it is necessary to improve the temperature control accuracy of the steel material 1 while avoiding deteriorating the efficiency of the steel material production line including rolling. Therefore, it is necessary to select the number of reciprocations (number of passes) and the transport speed appropriately.
  • the heat treatment apparatus has the following functions.
  • the transport speed and electric power for heating steel 1 are determined by one of the following three processes. 1 Pre-processing method
  • the transfer speed and the number of passes are determined in advance from the scheduled heating start temperature and the target heating temperature of steel material 1, and the power required for heating is calculated based on the values.
  • the steel material 1 is heated by the electric power set by the induction heating device 6 while being transported at the determined transport speed.
  • the steel material is divided into virtual parts in the longitudinal direction, the heating power calculated by the setting calculation function is set for each virtual part, and the power is supplied according to the conveyance of the steel material in the power supply device.
  • the temperature of steel material 1 is measured by temperature detectors 7 provided before and after the induction heating device 6.
  • the heating power is corrected based on the measured temperature.
  • FF (feedforward) control and FB (feedback) control are provided.
  • FB (feedback) control are provided.
  • FIG. 2 is a side view showing a schematic configuration of the heat treatment apparatus according to the first embodiment of the present invention.
  • the steel material 1 is heated while moving in the induction heating devices 6 (the entrance of each induction heating device 6 is provided with a temperature detector 7 for detecting the temperature of the steel material.
  • the temperature signal obtained in step 7 is input to the control device 10.
  • the control device 10 controls the induction heating device 6 based on the temperature of the steel material 1 or the scheduled temperature for starting heating and the transport speed. Calculates the power to be supplied to the heater and outputs the value to the power supply device 12.
  • the power supply device 12 outputs the output of the induction heating device 6 so that the supplied power becomes the value given from the control device 6. Control.
  • the induction heating device 6 When the steel material 1 is heated by the induction heating device 6, the induction current is concentrated on the surface of the steel material, so that the surface is mainly heated. The interior of the steel is heated mainly by heat transfer from the surface.
  • the penetration depth varies with frequency and relative permeability, and is expressed by equation (1). Is done.
  • penetration depth R: specific resistance
  • / relative permeability
  • frequency c penetration depth ⁇ induced current flows into the steel material.
  • the penetration depth ⁇ is small, the induced current concentrates on the surface, so the heating also concentrates on the surface, and the inside of the steel material is heated by heat conduction from the surface. Therefore, even if the same electric power is applied, the surface heating temperature changes if the penetration depth differs. Therefore, the penetration depth is determined based on equation (1) to determine the current density distribution inside the steel material. From this current distribution, the heating power to the induction heating device 6 is determined.
  • equation (3) can be considered to represent the power distribution during induction heating.
  • Equations (4) to (6) are obtained from the difference equation of the heat conduction equation. . (+)
  • Equation (7) is the temperature difference equation obtained by dividing steel into three in the thickness direction.
  • Equation (4) is composed of heat transfer to the atmosphere, which is a boundary condition, and the amount of heat supplied from the heating device, and is expressed by Equation (8).
  • Equation (3) expresses equation (3) by a difference equation.
  • equation (9) is linearized with respect to Xi and j.
  • x be the temperature of the steel.
  • the term in equation (9) is linearly approximated using up to the first-order term of the Taylor expansion centered on.
  • the Taylor expansion up to the first order is expressed by equation (11). f _ o ) o + jio) ( x _ Xo ) '(11)
  • Expression (20) is obtained by multiplying the inverse of the matrix ⁇ by the left side.
  • FIG. 3 is a diagram showing symbols used in an equation representing a temperature change.
  • each induction heating device 6 from the position of the temperature detector 7 before the induction heating device 6 to the position of the temperature detector on the exit side of the induction heating device 6 is 1 i, and the distance between the induction heating devices is The power supplied to si and the induction heating device 6 is denoted by ui.
  • x 0 the induction heating device inlet Ri side temperature of the steel product 1
  • the induction heating device delivery temperature and tables in x * N represents the temperature before and after the respective induction heating device X i, the X 'i.
  • the temperature change between the induction heating devices for example, the temperature change between ⁇ -xl is expressed by equation (27).
  • the temperature as a result of heating by the first induction heating device that is, the outlet temperature X ′ of the induction heating device is expressed by the equation (28).
  • the temperature distribution xl,..., X * after the induction heating can be calculated by the heating power ui,..., UN.
  • FIG. 4 is a flow chart showing a schematic procedure for obtaining the temperature distribution of the steel material after heating from the heating power.
  • step T1 the power distribution inside the steel material to be heated is obtained by equation (3).
  • step T2 the distribution of the amount of heat supplied from the induction heating device 6 is obtained from the equations (8) to (10) based on the power distribution.
  • step T3 the amount of heat dissipated into the atmosphere is determined by equation (14).
  • step T4 using the obtained results, the coefficients expressed by equations (21), (22), and (23) for calculating the temperature change inside the steel material are calculated.
  • step T5 using the number of induction heating devices 6, the length of the devices, the interval between the devices, and the conveying speed of the steel material, the temperature distribution of the steel material 1 from the electric power supplied by the induction heating device 6 is determined. Ask. At this time, the temperature distribution of the steel 1 may be obtained by applying the equations (27) to (30), or the temperature distribution of the steel 1 may be obtained by applying the equation (32). .
  • the desired heat treatment is performed using this calculation method, that is, the heating power is determined so that the steel 1 has the target temperature distribution.
  • the following describes the procedure to be performed. This procedure can be realized in the control device 10 provided with the above calculation procedure.
  • FIG. 5 is a diagram showing a schematic flow of a power calculation process for obtaining heating power.
  • step S2 appropriate initial value power ui, ..., to determine the u N.
  • step S2 the heating temperature distribution X ⁇ ,..., X * on the outlet side of the induction heating device is calculated in accordance with the above calculation procedure (steps T1 to T4).
  • step S3 the heating temperature in each induction heating device is compared with a temperature condition that is a target temperature range, and it is determined whether or not the temperature condition is satisfied.
  • step S4 that is, if the temperature condition is satisfied, the calculation is ended with the heating power as the final heating power. If in the stearyl-up S 4 of the N o, that is, if you do not conform, the new induction heating power u ..., perform a straight teeth spear of temperature calculation gives u N..
  • the electric powers U l ,..., U N for realizing the target temperature distribution X * can be obtained.
  • a general method such as a linear programming method or a nonlinear programming method may be applied as a method for giving new heating powers U l ,..., U N. If the temperature condition is feasible, the solution can be obtained by a limited number of calculations.
  • the internal temperature of steel material 1 can be determined for each induction heating device in the heat treatment line, and the internal temperature of steel material 1 can be determined for each induction heating device. It is also possible to ask for it.
  • the surface temperature of the steel material during heating is heated below the target surface temperature, and the temperature at a predetermined position inside the steel material at the end of heating is within a predetermined range with respect to the target internal temperature. It is possible to set a power set value that can be controlled, that is, a power set value for a uniform heating process.
  • an electric power setting value capable of heating the surface temperature of the steel material during heating to a temperature equal to or higher than the target surface temperature and controlling the temperature at a predetermined position inside the steel material at the end of heating to be equal to or lower than the target internal temperature. That is, the power set value for the surface layer heat treatment can be determined.
  • the present embodiment is characterized in that heating power is determined so as to minimize the power consumption in the power calculation processing of the r-th embodiment. Therefore, the other configuration is the same as that of the first embodiment, and the detailed description is omitted.
  • FIG. 6 is a diagram showing a schematic flow of a power calculation process for obtaining heating power according to the second embodiment.
  • step S12 the heating temperature distribution X1X * on the outlet side of the induction heating device is calculated in accordance with the calculation procedure in step T1T4.
  • step S13 the heating temperature in each induction heating device is compared with a temperature condition that is a target temperature range, and it is determined whether or not the temperature condition is satisfied.
  • step S14 If no in step S14, i.e. if not conforming Gives a new induction heating power uu N and restarts the temperature calculation.
  • step S15 the total power consumption, which is the sum of the power consumption of each induction heating device, Determine the power consumption and determine whether the total power consumption is minimized. That is, the heating power is determined so that the total power consumption in the induction heating device is minimized.
  • step S16 If No in step S16, that is, if the total power consumption does not meet the condition below a predetermined value, a new induction heating power is applied and the temperature calculation is performed again. If Y es in step S 16, that is, if the total power consumption meets the condition of not more than the predetermined amount, the calculation is terminated with the heating power as the final heating power. ⁇
  • the steel surface temperature at all points during the heating process is heated to the target surface temperature or higher, and the internal temperature after the heating process is within the target. This is the heating power that consumes the least power among the power settings for the surface layer heating treatment that heats the part below the internal temperature.
  • the present embodiment is characterized in that the optimal heating power obtained in the second embodiment is processed using a nonlinear programming with constraints such as a sequential quadratic programming. Therefore, the other configuration is the same as that of the second embodiment, and the detailed description is omitted.
  • the heating conditions and the like of the steel material in the first and second embodiments are expressed by mathematical expressions.
  • T * Central temperature value at the exit side of the induction heating device
  • T f Center temperature target value
  • T hinder-T is ⁇ 0 (35)
  • T i s Surface temperature at the outlet side of the i-th induction heating device
  • T Found Upper limit of surface temperature
  • l ⁇ i ⁇ N Since the center temperature is the heating target, it is represented by the condition of the equation. Is the highest on the outlet side of the induction heating device, so the temperature on the outlet side of the induction heating device is used, and since it is the upper limit of heating, it is expressed by the inequality. It is also possible to specify the range as in):
  • T Central temperature value at the induction heating device outlet side
  • ⁇ Target temperature target value c Target temperature range specified value
  • FIG. 7 is a configuration diagram of a system for realizing the pre-processing method.
  • the configuration of the production line for the c- steel material is the same as the above-described configuration, and thus the same reference numerals are given and the detailed description is omitted.
  • the data includes the size (width, thickness, and length) of steel material 1, the heating method, and the target heating temperature.
  • the pre-processing operation device 14 is provided in the control device 10.
  • the pre-processing operation unit 14 determines the transfer speed, the number of passes, and the power during heating based on the data. Then, the determined transport speed is output to the transport speed setting device 15 and the determined power is output to the power supply device 12.
  • Fig. 8 shows the correspondence table of steel size, transfer speed and number of passes.
  • the pre-processing operation unit 14 extracts the transport speed and the number of passes from the width, thickness, and length of the steel material based on this table. If the specifications do not match the values in the table, the values in the preceding and following tables are interpolated.
  • the table may be configured to extract the transfer speed and the number of passes based on at least one of the width, thickness, and length of the steel material.
  • FIG. 9 is a flow chart showing a schematic procedure for determining the transport speed by the convergence calculation. This method is characterized in that the transfer speed is determined so that the time required for the heat treatment is the shortest among the heating powers satisfying the condition of the heating temperature.
  • the transport speed is defined by the following equation.
  • V 0 [V 0 1, V 0 2, V 0 3, ⁇ , V 0 n] and V 0 : initial value of transport speed
  • V 0 may be an arbitrary value or may be determined based on an actual value.
  • step S21 the heating power is obtained by performing the power calculation shown in FIGS. 5 and 6 using the transport speed.
  • step S22 the heating temperature of steel material 1 under these heating conditions satisfies the constraint. Find out if you want to.
  • constraint conditions are the same as the temperature judgment conditions of step S3 in FIG. 5 and step S13 in FIG. 6, and the surface temperature and the internal temperature of steel material 1 are within the predetermined temperature ranges, respectively. It is to check the power.
  • step S22 If Yes in step S22, that is, if the constraint conditions are satisfied, it means that the power calculation was executed properly, and the condition was that the transfer speed was increased. In some cases, an appropriate amount of power may be required. Therefore, in step S23, the transport speed is increased by a predetermined amount. Note that the transport speed may be increased at a predetermined rate instead of the predetermined amount, or the transport speed may be increased based on a predetermined function.
  • step S24 the power calculation is performed again using the increased transport speed, and in step S25, it is checked whether the temperature of the steel material 1 after heating satisfies the constraint condition. If Y es in step S25, that is, if the constraints are satisfied, steps S23 to S25 are repeated. This allows a higher transport speed to be set.
  • step S25 If No in step S25, that is, if the constraint condition is not satisfied, the processing from step S26 for reducing the transport speed, which will be described later, is executed.
  • a transfer speed that satisfies the constraints and conditions used in the previous calculation may be adopted before proceeding with the processing.
  • step S22 that is, when the surface temperature and the internal temperature of the steel material 1 are not within the predetermined temperature ranges respectively, it means that the power calculation was not performed correctly. . If the power calculation is not performed correctly, the transfer speed is too high This is the case when the temperature of material 1 is low. The reason is that when the temperature of steel material 1 is high, the temperature can be lowered by lowering the amount of power, so that the power can always be obtained. .
  • step S26 since the temperature heating of the steel material 1 is insufficient, in step S26, the transport speed is reduced by a predetermined amount.
  • the transport speed is rather a predetermined amount, even if slower by a predetermined ratio rather good, also with good c their be decelerated based on a predetermined relational expression or function, the stearyl-up S 2 7,
  • the power calculation is performed again using the reduced transport speed, and in step S28, it is checked whether the temperature of the steel material 1 after heating satisfies the constraint condition.
  • step S28 If No in step S28, that is, if the constraint condition is not satisfied, steps S26 to S28 are further repeated. If Y es in step S 28, that is, if the constraint conditions are satisfied, this transport speed is adopted in step S 29. ⁇
  • the convergence calculation was performed from the initial value of the transport speed.However, power calculation was performed based on a plurality of transport speed values, and the fastest transport speed among the transport speeds that satisfied the constraints was determined. Is also good.
  • the transfer speed corresponding to the specifications of steel 1 to be heated is determined by the internal dividing method. May be calculated. Then, based on the transport speed determined here, the above-described power setting calculation is performed to determine the heating power. Then, the obtained heating power is sent to the power supply device 12 and the transfer speed is sent to the transfer speed setting device 15 to heat the steel 1.
  • FIG. 10 is a flow chart showing a procedure for obtaining an influence coefficient when the heating start temperature is changed.
  • the heating start temperature is T i
  • the change amount of the heating start temperature is ⁇ T i
  • the transfer speed obtained above is calculated as follows. Find the coefficient of how much should be changed.
  • This procedure is the same as the procedure for determining the transport speed shown in Fig. 9 ⁇ . Start the process with the influence coefficient set to 1, and adjust the influence coefficient so that heating is possible and the processing time is the shortest.
  • FIG. 11 is a flowchart showing a procedure for obtaining an influence coefficient when the heating target temperature is changed.
  • the heating target temperature is T r
  • the change amount of the heating target temperature is ⁇ T r
  • the heating target temperature is T r + AT r, which transport speed is obtained above? Is determined as to whether it is necessary to change only.
  • This procedure is the same as the procedure for determining the transport speed shown in FIG. Start processing with the influence coefficient set to 1, and adjust the influence coefficient so that heating is possible and the processing time is the shortest.
  • This influence coefficient is used in (2) correction processing method and (3) combination processing method, which will be described later.
  • FIG. 12 is a diagram showing a configuration of a system according to the correction processing method. Since the structure of the steel production line is the same as the above-described structure, the same reference numerals are given and the detailed description is omitted.
  • This process measures the heating start temperature of steel material 1 after accelerated cooling, determines the transfer speed, and calculates the heating power based on the measured temperature.
  • the heating start temperature of steel material 1 is determined by actual measurement. Further, the correction processing device 16 determines the heating target temperature based on the data from the production management computer 13.
  • the transport speed is the tape shown in Figure 8. It can also be obtained by interpolating the rule values.
  • B. When using the transfer speed obtained by the method described in the convergence calculation, determine using the formula (45) or (46) based on the actual measurement result of the heating start temperature. I do.
  • the heating power at the tip and tail is calculated according to the method described above.
  • each induction heating device when heating with this power are also stored for the tip and tail ends.
  • This attained temperature is a target value when performing FFFB control.
  • the heating power and the ultimate temperature of the middle part of the steel material are calculated by interpolating the heating power and the ultimate temperature of the tip and tail ends already determined.
  • FIG. 13 is a diagram showing a configuration of a system according to the combination processing method. Since the configuration of the steel production line is the same as the above-described configuration, the same reference numerals are given and the detailed description is omitted.
  • the preprocessing arithmetic unit 14 executes the preprocessing method. That is, the transfer speed and the electric power are determined based on the scheduled heating start temperature of steel material 1. The obtained transport speed and power are sent to the correction processing operation device 16.
  • the temperature detector 7 invites the steel 1 after the cooling process. Measure the heating start temperature just before the induction heating device. Then, the measured temperature is input to the correction processing operation device 16. .
  • TrO Scheduled heating start temperature
  • Tr 1 Actual measured heating start temperature
  • is a specified value, for example, 10 ° C
  • the correction processing arithmetic unit 16 corrects the transport speed by performing the above-described correction calculation, and sets the corrected transport speed as a new transport speed. Heating power is obtained by power setting calculation. '
  • Dragging processing function ⁇ steel material 1 is divided into virtual blocks in the longitudinal direction, and power setting, FF control, and F F control are performed for each block. 1 4, the heating power of the front end portion of the steel 1 obtained in t destination diagrams and tail end for explaining the operation of the bets la Kkingu process, obtaining the power value of each block of steel.
  • j For the induction heating device Then, assuming that the set power at the tip of steel material 1 is ⁇ (1, zo) and the set power at the tail end is M3 ⁇ 4 (N, zo), the set power at the middle is expressed by equation (49).
  • FIGS. 15 and 16 are diagrams showing the configuration of the FF control.
  • the FF control power calculation device 18 corrects the power based on the measurement signal of the temperature detector 7 installed on the entrance side of each induction heating device 6.
  • u ff (/, j) G (Tr (i, j)-Tm (i, j)) x dPdt (5 1)
  • G gain
  • Tr (ij) target temperature
  • ⁇ » actual temperature
  • power temperature influence coefficient
  • the FF control power calculation device 18 may be provided for each induction heating device 6, or all the induction heating devices 6 may be controlled by one unit. '.
  • FIGS. 17 and 18 are diagrams showing the configuration of the FB control.
  • the FB control power calculation device 19 corrects the power based on the measurement signal of the temperature detector 7 installed on the outlet side of each induction heating device 6. This power correction value is obtained by equation (52).
  • the heating correction power in this case is
  • the temperature control accuracy can be improved by performing the correction based on the actual temperature of the temperature detector 7 provided before and after the induction heating device 6.
  • FIG. 19 is a diagram for explaining the entire learning function. This model learning function has the following three learning functions.
  • n ⁇ l ⁇ / (v ⁇ xdt) (55)
  • x (k + n ⁇ ) A "'x (k) + ⁇ A' ⁇ l F (56)
  • n3 l2 / (y3xdt) (59)
  • N «l + « 2+ «3 (60)
  • x (k + N) A N x (k) + Y A- X F + (61)
  • Equation (62) relating to learning is obtained.
  • the amount of power supplied to the induction heating device 6 for heating to the target temperature 7 is given by the equation (63).
  • the power amount given by the equation (63) is supplied to the induction heating device 6.
  • the heating amount of Steel 1 does not reach the target heating amount.
  • the heating efficiency at which the supplied electric power affects the temperature rise of the steel material 1 is calculated by calculating the actual heating amount, and the target heating temperature is calculated in consideration of the heating efficiency of the induction heating device 6.
  • the amount of power supplied to obtain the amount is calculated.
  • the temperature detectors 7 on the inlet side and the outlet side of the induction heating device 6 detect the temperature at the same position of the steel material 1 with a time difference t 6 (). Then, the temperature difference detected by the temperature detector 7 at that time is the actual heating amount of the steel 1. Further, by performing the detection of the temperature detector 7 periodically, the amount of temperature rise of the entire steel material 1 can be detected.
  • T bo (i) c x A N x (K i) + ⁇ A ⁇ F + ⁇ ⁇ ) ⁇ ⁇ 3 ⁇ A ⁇ Bu, (/) (66)
  • the heating efficiency is similar to the given power supply. That is, this is the ratio of the amount of electric power actually used for heating, and is expressed by equation (67) by modifying equation (66).
  • the control device 10 in FIG. 2 performs the above-described calculation for each cycle, and gives it to the induction heating device 6 as a target electric energy.
  • the measurement by the temperature detector 7 is performed periodically to estimate the heating efficiency. Then, the estimation result of the heating efficiency is reflected in the calculation of the input power in the induction heating device 6 through which the current steel material 1 passes next. Thereby, the accuracy of the temperature control of the steel material 1 can be improved.
  • the efficiency [3 (i) obtained above] can be used in calculating the input power of the next block in the induction heating device. That is, the heating efficiency and the input power are represented by the following equations (69) and (70).
  • Equation (71) let Q 'be the amount of heat Q multiplied by the adjustment coefficient y, and determine the amount of heat removed from the atmosphere.
  • the temperature calculation is performed while changing the adjustment coefficient y, and the convergence calculation is performed so that the actual temperature and the estimated temperature are close to each other.
  • the amount of temperature drop in the straightening device 5 is determined by taking into account the heat removal by the roll of the straightening device 5, the heat removal by the air in the straightening device, and the heat removal by the cooling water. Thus, it can be obtained by equation (72).
  • T L T R + iST A + M w (72)
  • T L Estimated temperature drop at the straightening device
  • ⁇ ⁇ Russia Lumpur that by the contact heat extraction
  • ⁇ 7 ⁇ the atmosphere by that cooling to
  • ⁇ 7 cooling that by the water-cooled
  • each heat removal term is represented by equations (73) to (76).
  • Atmospheric heat transfer coefficient Atmospheric temperature
  • steel materials 1 can be classified and stored according to the thickness, width, and temperature rise amount, and can be used for steel materials with similar heating conditions after the next material.
  • the surface temperature and the partial temperature of the steel material can be accurately matched to the target, and heat treatment can be performed so that the steel material has the desired properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • General Induction Heating (AREA)

Description

明 細 書
熱処理装置、 熱処理方法、 熱処理プロ グラ ムを記録した記録 媒体及び鋼材
技術分野
本発明は、 誘導加熱装置を用いて鋼材を熱処理する技術に 関する。
背景技術
鉄鋼プロ セス においては、 製品 と なる鋼材の硬度、 靭性等 の性質を向上させ、 よ り 強 く 粘 り 強い鋼材を製造する ため、 焼き入れ、 焼き戻 し、 焼き なま し等さ ま ざま な熱処理が行わ れている。 これらの熱処理は一般的に加熱過程と冷却過程に 分け られる。 この う ち加熱過程では鋼材の成分に応 じた変態 点温度が基準 と なる。 例えば、 焼入れの場合は変態点よ り も 高温に加熱 し、 焼き戻 しおよび焼き なま しでは変態点に達 し ないよ う に加熱を行わねばな らない。
よ って、 熱処理の 目 的に応 じて精度良 く 加熱する こ と が必 要である。 また、 同一部材内での品質のばらつき を抑える た めには、 鋼材の内部にわた り 均一に加熱する必要がある。 こ の熱処理方法を均一加熱とい う。
まだ、 一般に製造されている焼入れ、 焼き戻 しの熱処理を 施された鋼材は、 主に表面から冷却を受ける ため、 表面の硬 度が内部に比べて高 く な り がちである。 この よ う な板厚方向 の硬度分布を持った鋼材は、 腐食環境に弱 く 、 海洋や、 石油 天然ガスのパイ プライ ン等に使用 される と応力腐食割れを起 こ しゃすいこ とがわかっている。 そ こで、 表層部を高温で加熱する こ と によ り 軟化させ、 表 層部 と 内部の硬度差を少な く する処理が行われる こ と も ある( この熱処理方法を表層加熱と い う。
従来、 これ らの加熱条件を実現する加熱方法と して、 例え ば特開平 9 — 1 7 0 0 2 1 号公報に開示された、 誘導加熱装 置を用いた熱処理技術が知 られている。
本開示技術では、 鋼材を誘導加熱炉内で昇温させる加熱段 階と 、 加熱段階よ り も周波数を高 く し、 かつ投入電力を下げ て加熱する均熱段階と の間に、 加熱段階での誘導加熱と 同一 の周波数で、 かつ加熱段階よ り も投入電力を下げて誘導加熱 する準加熱段階を設ける誘導加熱方法が提案されている。
し力 しなが ら、 特開平 9 _ 1 7 0 0 2 1 号公報に開示され た技術では、 加熱時間が数十分を要する ため効率的ではない ( また、 鋼材の加熱途中において誘導加熱装置の周波数を変更. する ものであ るため、 周波数を切 り 替える機構を装備する必 要がある。 従って装置が高価にな り 、 さ らに装置の構造が複 雑になる。 また、 鋼材を加熱するための投入電力計算におい て、 精度良い温度制御を実現する上で必要な要素である鋼材 内部における誘導電流分布、 大気に よ る抜熱、 加熱装置の効 率、 鋼材の比熱等が考慮されていない。
発明の開示
本発明の 目 的は、 鋼材の表面温度、 内部温度を精度よ く 目 標に一致させ、 鋼材が 目 的の性質を もつよ う な熱処理を行 う こ と ができ る熱処理装置、 熱処理方法、 熱処理プロ グラ ムを 記録 した記録媒体及び鋼材を提供する こ と にある。 本発明における熱処理装置は、 鋼材を加熱する複数台の誘 導加熱装置と、 鋼材を矯正するための矯正装置と 、. 鋼材のサ ィ ズと、 鋼材の搬送速度と 、 鋼材の加熱目標温度と、 誘導加 熱装置の前段における鋼材の予定温度とに基づいて、 誘導加 熱装置に供給する供給予定電力を決定する演算装置と、 演算 装置によ り 決定された供給予定電力を誘導加熱装置に供給す る電源装置と を有し、 演算装置は、 誘導加熱装置によ る加熱 中の鋼材の表面温度が第 1 の 目標温度以下で、 加熱終了時の 鋼材厚み方向内部の所定位置における温度と第 2 の目標温度 と の差が所定範囲内になる よ う に加熱するために誘導加熱装 置に供給する供給予定電力、 または誘導加熱装置によ る加熱 中の鋼材の表面温度が第 3 の目標温度以上と な り 、 加熱終了 時の鋼材厚み方向内部の所定位置における温度が第 4 の 目標 温度以下と なるよ う に加熱するために誘導加熱装置に供給す る供給予定電力を決定する。
即ち、 本熱処理装置は、 鋼材を誘導加熱装置で加熱する こ と によ り 加熱時間を短縮する こ と ができ る。 また、 本熱処理 装置は、 鋼材の内部の温度分布が 目標とする温度分布と なる よ う な誘導加熱装置の電力を算出する演算装置を備えている( 従って、 装置構成が簡単と な り 安価に構成する こ とができ る t そ して、 この構成によ り 、 目的とする均一加熱、 表層加熱を 精度良く 実現するこ と ができ る。
図面の簡単な説明
図 1 は、 本発明が適用 される鋼材の製造ライ ンの概略構成 を示す側面図。 図 2 は、 本発明に係る第 1 の実施の形態の熱処理装置の概 略構成を示す側面図。
図 3 は、 温度変化を表す式に用いられる記号を表す図。 . 図 4 は、 加熱電力から加熱後の鋼材温度分布を求める概略 の手順を示すフ ロ ー図。
図 5 は、 加熱電力を求める電力演算処理の概略のフ ローを 示す図。
図' 6 は、 他の実施形態に係る、 加熱電力を求める電力演算 処理の概略のフ ローを示す図。
図 7 は、 事前処理方式を実現するシステ ム の構成図。
図 8 は、 鋼材のサイ ズと搬送速度とパス数の対応テーブル を示す図。 '
図 9 は、 収束計算によ って搬送速度を決定する概略の手順 を示すフ ロー図。
図 1 0 は、 加熱開始温度が変更されたと きの影響係数を求 める手順を示すフ ロー図。
図 1 1 は、 加熱目標温度が変更されたと きの影響係数を求 める手順を示すフ ロ ー図。
図 1 2 は、 修正処理方式に係る シス テム の構成を示す図。 図 1 3 は、 組合せ処理方式に係るシス テ ム の構成を示す図 図 1 4 は、 ト ラ ッキング処理の動作を説明する図。
図 1 5 は、 F F制御の構成を示す図。
図 1 6 は、 F F制御の構成を示す図。
図 1 7 は、 F B制御の構成を示す図。
図 1 8 は、 F B制御の構成を示す図。 図 1· 9 は、 学習機能の全体を説明する図。
発明を実施するための最良の形態
一般に、 鋼材は加熱炉内で加熱されて、 1 200 °C前後にまで 昇温する。 その後、 鋼材は、 通常複数台の圧延機によ り所定 の厚さ . 幅に圧延される。 圧延後、 まだ 800 °C〜 1 000 °Cにあ る鋼材は、 水によ り 強制冷却され、 または大気によ り 自然冷 却ざれる。 こ の処理によって、 鋼材は焼入れされる。 特に圧 延後に加速冷却装置によ る急速冷却を行う 'こ と によ り 、 鋼材 の強度や靭性を強化できる こ とがわかっている。
この後、 必要に応じて、 再びガス炉で焼き戻し、 焼き鈍し 等の熱処理が行われる。 熱処理が行われた鋼材は、 裁断され 出荷される。
図 1 .は、 本発明が適用 される鋼材の製造ライ ンの概略構成 を示す側面図である。 この鋼材製造ライ ンは、 鋼材 1 を加熱 する加熱炉 2 、 .粗圧延 · 仕上げ圧延を行 う圧延機 3 、 加速冷 却装置 4 、 矯正装置 5 、 誘導加熱装置 6及び鋼材 1 の温度を 測定する温度検出器 7で構成されている。
この鋼材製造ラ イ ンでは、 圧延過程と冷却過程の後に、 矯 正装置 5 を.用いて鋼材 1 の反り や曲が り を矯正した後、 ライ ン上に設置された誘導加熱装置 6 で焼き戻し処理を行う。
こ の鋼材製造ライ ンでは、 ガス炉によ る熱処理の代わ り に 誘導加熱装置 6 を用いて熱処理する。 従って、 イ ンライ ンで 焼き入れ処理後に焼き戻し処理を行う こ とができ るため、 能 率を飛躍的に向上させる こ とができ る。 また、 誘導加熱装置 6 を使用する こ と によ り 、 ガス炉を使用 した場合に比べて加 熱温度の精度を上げる こ と ができ る。 従って、 厚み方向の温 度分布をも精度良く 制御するこ とが可能.となる。
特に、 圧延後に加速冷却装置 4 によ る急速冷却を行い、 そ の直後、 誘導加熱装置 6 による熱処理を行う こ と によ り 、 .強 度ゃ靭性が強化した鋼材を製造する こ と.ができ る。 .
誘導加熱装置 6 は、 鋼材 1 を所定の温度に加熱でき る能力 を有する こ と が必須である。 しかし、 設備コ ス ト を抑える必 要が.ある。 そのため、 誘導加熱装置 6 に鋼材 1 を複数回往復 させて加熱する こ と によ り 、 少ない台数で加熱を行 う こ とが でき る。 この場合、 圧延を含めた鋼材製造ライ ンの能率を悪 化させる こ と を避けつつ、 鋼材 1 の温度制御精度を向上する 必要がある。 従って、 往復回数 (パス数) と搬送速度を適切 に選択する こ とが必要である。
したがって、 誘導加熱装置を用いて熱処理を行 う 際には、 次の点が重要である。
①加熱処理に要する時間と電力量を最小限に抑える。
②加熱処理中及び加熱終了時において、 鋼材の厚み方向の 温度分布が.所望の温度.分布となるよ う に加熱を行う。
③上記①②の熱処理を実現するための、 鋼材の搬送速度と 誘導加熱装置の電力を決定する。
従って、 本発明の実施の形態に係る熱処理装置は以下の機 能を備えている。
( 1 ) 設定計算機能
鋼材 1 を加熱するための搬送速度及び電力は以下の 3 つの 処理の内のいずれかの処理によつて決定される。 ①事前処理方式
予め、 鋼材 1 の加熱開始予定温度と加熱目標温度と から、 搬送速度とパス数を決め、 その値をも と に加熱に必要な電力 を計算する。 鋼材 1 は、 求めた搬送速度で搬送されつつ、 誘 導加熱装置 6 によって設定した電力で加熱される。
②修正処理方式
鋼材 1 の加熱開始前温度を実測 し、 実測された加熱開始前 温度と、 搬送速度と に基づいて加熱に必要な電力を計算する ( この計算においては、 必要に応 じて搬送速度を修正しつつ所 望の電力を求める。
③組合せ方式
上記①、 ②を組合わせた方式である。 鋼材 1 の加熱開始前 温度を実測する。 そ して、 実測 した温度が加熱開始予定温度 に近い場合は、 ①事前処理方式にて計算した搬送速度と電力 で加熱を行 う。 実測 した温度が予定温度と異なる場合は、 ② 修正処理方式にて求めた搬送速度と電力で加熱を行う。
( 2 ) ト ラ ッキング処理機能
鋼材を長手方向の仮想的な部分に分割 し、 設定計算機能で 算出 した加熱電力をその仮想的な部分ごと に設定し、. 電力供 給装置において鋼材の搬送に応 じて出力する。
( 3 ) 加熱電力補正機能
誘導加熱装置 6 の前後に設けた温度検出器 7 で鋼材 1 の温 度を測定する。 その実測温度によ り 、 加熱電力を補正する。 F F (フ ィ ー ドフォ ワー ド) 制御と F B (フ ィ ー ドバ ッ ク) 制御が設け られてレ、る。 ( 4 ) モデル学習機能
加熱電力を求めるための鋼材の伝熱モデル、 誘導加熱によ る効率推定モデル、 矯正装置での温度降下モデル等を実測 し た温度で修正する。
以下、 これらの機能について説明する。
I . 設定計算機能
まず、 鋼材 1 の加熱開始温度、 搬送速度が与え られた場合 の電力の計算方法について説明する。
図 2.は、 本発明に係る第 1 の実施の形態の熱処理装置の概 略構成を示す側面図である。
鋼材 1 は、 誘導加熱装置 6 の中を移動 しながら加熱される( それぞれの誘導加熱装置 6 の入り 口 には鋼材の温度を検出す る温度検出器 7 が備えられている。 上記温度検出器 7 で得ら れた温度信号は、 制御装置 1 0 に入力 される。 制御装置 1 0 は、 鋼材 1 の温.度若しく は加熱開始の予定温度と搬送速度と に基づいて誘導加熱装置 6 に供給する電力を計算 し、 その値 を電力供給装置 1 2 に出力する。 電力供給装置 1 2 は、 供給 電力が制御装置 6 から与え られた値になる よ う に誘導加熱装 置 6 の出力を制御する。
誘導加熱装置 6 で鋼材 1 を加熱する と 、 誘導電流は鋼材表 面に集中 して流れるため、 主に表面が加熱される。 そ して、 鋼材内部は、 主と して表面からの熱伝達で加熱される。
そこで、 誘導加熱装置 6 で加熱を行 う場合の鋼材内部の誘 導電流分布を求める。 鋼材内部の電流分布は、 浸透深さで表 現される。 浸透深さは周波数、 比透磁率で異な り 、 式(1)で表 される。
^ = 5.03 x R/( x / 100 (1)
ただし、 :浸透深さ、 R:比抵抗、 / :比透磁率、 :周波数 c 浸透深さ δ が大きい場合には誘導電流が鋼材内部まで流れ る。 浸透深 δ が小さい場合には、 誘導電流が表面に集中する ため加熱も表面に集中 し、 鋼材内部は表面からの熱伝導によ り加熱される。 したがって、 同 じ電力を投入 しても、 浸透深 さ が異なれば表面の加熱温度は変わって く る。. そ こで、 式 ( 1 )に基づいて浸透深さ を求めて鋼材内部での電流密度分布 を決定する。 この電流分布から、 誘導加熱装置 6 への加熱電 力を決定する。
一般的に鋼材表面からの距離 ζ と、 その位置での誘導電流 Ι(ζ)の関係は式(2)で表される。 α は定数である。
/(z) = exp(-z/S) (2)
よって、 鋼材表面から距離 z の位置での消費電力の比は式 (3)で表される。
Figure imgf000011_0001
すなわち.、 式(3)は誘導加熱の際の電力分布を表わしている と 考えるこ とができる。
次に、 誘導加熱装置 6 を用いた加熱中における鋼材の温度 変化を数式で表す。 熱伝導方程式の差分式から、 式(4)〜(6)を 得る。 . ( + )
Figure imgf000011_0002
K = /(cpxp) (5) h = tlnb (6) ただし、 《6 : 鋼材の厚み方向の分割数、 t : 鋼材の厚さ、 Xij : 時刻 j における厚み方向 iの温度(l≤ i≤ nb)、 cp: 比熱、 h: 厚み方向分割幅、
dt : サ ンプル周期、 Qi : 外部から鋼材に加わる熱量、' λ :熱伝 導率、 Ρ : 密度
式(4)から(6)を書き換える と、 鋼材を厚み方向に三分割した 温度差分式は式(7)になる。
Κ 1 —Κ
0 0
h2 dt 2h2 dt h2 2h2
Κ Κ 1 κ K 1 K K
X2 +\
2h2 h2 dt 2h2 2h2 dt h2 2h2
_ Κ K 1 — +1 K 1 K 0 — r +— 0 Λノ.
2h2 h2 dt 2h2 dt
(7)
式(4)の は境界条件である大気との熱伝達と、 加熱装置力 ら供給される熱量からな り 、 式(8)で表わされる。
Q^Q + fiB0ub (8)
1 εσ
( 3,ゾ 4一 Γ。4)+ (x3, ー Γ。
h pp
Q = (9)
1 εσ
(xh;-T )+A(X -Ta]
he n
E(3)
E(2) (10)
E(l) ただし、 :加熱装置供給熱量、 f : 放射率、 σ : ス テ フ ァ ン -ボルツマン定数、 ρ : 密度、 cP : 比熱、 0 : 加熱効率、 Ta : 大気温度
尚、 E(i)(i=l 3)は、 式(3)を差分式で表現したものである。 こ こで、 式(9)を Xi,j について線形化する。 鋼材の温度を x と し、 x。を中心に式(9)にある の項をテーラ展開の一次の項 までを使用 して線形近似する。 1 次までのテーラ展開は式(11) で表される。 f _ o)o + jio)(x_Xo)' (11)
0! ' 1! 0/ ただし、 /(1)(x。); f(x)の 1次微分。
式(11)を利用 して、 式(12)を得る
Figure imgf000013_0001
xi ^xoxi,j (13) よって、 式(9)は、 式(14)となる。
Figure imgf000013_0002
式(14)を用い、 式(7)を整理して式(15)を得る
Figure imgf000013_0004
Figure imgf000013_0003
ただし、 2
K 1 K
0
h2 dt 2h2
K K 1 K
E = (16)
2h2 h2 dt 2h2
K K 1
0 · +―
2h2 H dt
Figure imgf000014_0001
1 1
σε(-3χ0 4α 4)-λΤα
cpp
Q (18)
1 1
σε(-3χ0 4α 4)-λΤα
式(15)において、 行列 Ε の逆行列を左側から掛ける こ と に よ り 、 式(20)を得る。
+ E~lQ + fiE-]B0ub (19)
Figure imgf000014_0002
+ Bub +F (20)
Figure imgf000014_0003
を得る。 ただ し、
A = E-lA0 (21) F = E'lQ (22)
(23) である。
式(20)が鋼材 2 の温度変化の基本式と なる。 尚、 こ の式で ub = 0 とする と 、 大気によ る冷却過程時の温度変化を表す式 と なる。
次に、 誘導加熱装置 6 の手前に設置 した温度検出器 7 の位 置から、 誘導加熱装置出側の温度検出器 7 の位置までの温度 変化を表す式を作成する。
' 図 3 は、 温度変化を表す式に用いられる記号を表す図であ る。
誘導加熱装置 6 の手前の温度検出器 7 の位置から、 誘導加 熱装置 6 の出側の温度検出器位置までのそれぞれの誘導加熱 装置 6 の長さ を 1 i 、 誘導加熱装置同士の間隔を s i 、 それ ぞれの誘導加熱装置 6 への投入電力を u i と表す。 そ して、 鋼材 1 の誘導加熱装置入 り 側温度を x 0、 誘導加熱装置出側 温度を x * Nで表 し、 それぞれの誘導加熱装置前後の温度を X i 、 X ' i と表す。
誘導加熱装置の長さ を li、 間隔を si、 搬送速度を V と して 差分方程式での刻み数を求める。
n i = l / ( v X d t ) ··· (24) m i = s i / ( v X d t ) … (25) ただ し、 d t : 刻み時間、 n i 、 m i : 刻み数
する と鋼材 2 が誘導加熱装置によって順次加熱されていく と き の各位置の温度は式(26)で表される。 4
Figure imgf000016_0003
とおく 。
誘導加熱装置間の温度変化は、 た と えば χθ— xl 間の温度変 化は、 式(27)で表わされる。
f ヽ
, = Am0x0 + ∑ F (27)
V ノ
ま た、 一番 目 の誘導加熱装置で加熱された結果の温度、 即 ち誘導加熱装儷の出側温度 X ' は、 式 ( 2 8 ) で表 される χ[ (28)
Figure imgf000016_0001
式(28)に式(27)を代入して、 式(29)を得る
; = An m x0 + A" 1 T A \F + \ ^Α' \(F + Bux ) (29) この計算を次々 と 繰 り 返 してい く と 、 N台 目誘導加熱装置 の出側温度計位置での鋼材 1 の温度分布は式(30)の よ う に表 される。
― 0
Figure imgf000016_0002
(30)
これを整理する と 式(31)、 (32)のよ う に、 ui、 〜 、 UN の一次 式になる。
+ X (31) V ) + (32)
Figure imgf000017_0001
式(32)を使用する こと によって、 加熱電力 ui、 .··、 UN によ り 、 誘導加熱後の温度分布 xl、 ···、 X*を計算で求める こ と が でき る。
以上説明 した計算方法は、 制御装置 1 0 内において実現す る こ とができ る。 図 4 は、 加熱電力から加熱後の鋼材温度分 布を求める概略の手順を示すフ ロ ー図である。
ステ ッ プ T 1 では、 加熱しょ う とする鋼材内部における電 力分布を式(3)によ り 求める。 ステ ッ プ T 2 では、 その電力 分布に基づいて誘導加熱装置 6 から供給される熱量分布を式 (8)〜(10)によ り 求める。 ステ ップ T 3 では、 大気への放散熱 量を式(14)によ り 求める。 ステ ップ T 4 では、 これらの求め た結果を用いて、 鋼材内部の温度変化を求めるための式(21 ) (22), (23)で表される係数を算出する。
ステ ップ T 5 では、 誘導加熱装置 6 の台数、. 該装置の長さ . 該装置間の間隔、 鋼材の搬送速度を用い、 誘導加熱装置 6 が 供給する電力か ら鋼材 1 の温度分布を求める。 こ の際、. 式. (27)〜(30)を適用 して鋼材 1 の温度分布を求めても良 く 、 ま た式(32)を適用 して鋼材 1 の温度分布を求めても良い。
次に、 こ の計算方法を用いて所望の熱処理を行 う方法、 即 ち鋼材 1 が 目標とする温度分布と なる よ う な加熱電力を決定 する手順について説明する。 こ の手順は、 上記計算手順を備 えた制御装置 1 0 内において実現する こ とができる。
図 5 は、 加熱電力を求める電力演算処理の概略のフローを 示す図である。
ステ ッ プ S 1 では、 適当な初期値電力 u i、 …、 u N を決 定する。 ステ ップ S 2 では、 上記の計算手順 (ステ ップ T 1 〜 T 4 ) .に従って誘導加熱装置出側の加熱温度分布 X ί、 …, X *を計算する。 ステ ッ プ S 3 では、 各誘導加熱装置での加 熱温度と 目標とする温度範囲である温度条件と を比較 し、 温 度条件を満た しているかど う かの判定を行 う。
ステ ッ プ S 4 で Y e s の場合、 即ち、 温度条件に適合 して いれば、 その加熱電力を最終的な加熱電力 と して計算を終了 する。 ステ ップ S 4 で N o の場合、 即ち、 適合していない場 合は、 新たな誘導加熱電力 u …、 u N .を与えて温度計算 のやり直 しを行う。
以上の処理を繰り 返し行 う こ とで、 誘導加熱装置出側での 目標温度分布 X *を与えれば、 それを実現する電力 U l、 ···、 u N を求める こ と ができ る。 尚、 新しい加熱電力 U l、 …、 u N を与える方法は、 線形計画法、 非線形計画法な ど一般的な方 法を適甩すれば良い。 温度条件が実現可能であるな らば、 有 限回の計算で解を求める こ と ができ る。
本実施の形態では、 任意台数の誘導加熱装置を用いて鋼材 内部の温度を計算する こ と が可能である。 したがって、 熱処 理ライ ン内の誘導加熱装置一台毎に鋼材 1 の内部温度を求め る こ と も、 また誘導加熱装置複数台毎に鋼材 1 の内部温度を 求める こ と も可能と なる。
従って、. 加熱中における鋼材の表面温度を 目標表面温度以 下に加熱 し、 加熱終了時における鋼材の内部の所定位置の温 度を 目標内部温度に対 して所定範囲に納ま る よ う に制御する こ と のでき る電力設定値、 即ち均一加熱処理のための電力設 定値を定め る こ と ができ る。
また、 加熱中における鋼材の表面温度を 目標表面温度以上 に加熱 し、 加熱終了時における鋼材の内部の所定位置の温度 を 目標内部温度以下と なる よ う に制御する こ と のできる電力 設定値、 即ち表層加熱処理のための電力設定値を定める こ と ができ る。
次に、 第 2 の実施の形態の熱処理装置について説明する。 本実施形態では、 第 rの実施形態の電力演算処理において消 費電力量が最小になる よ う な加熱電力を求める点に特徴があ る。 従って、 それ以外の構成については第 1 の実施形態 と 同 一である ため、 詳細の説明を省略する。
図 6 は、 第 2 の実施形態に係る、 加熱電力を求める電力演 算処理の概略のフ ロ ーを示す図である。
ステ ッ プ S 1 1 では、 適当 な初期値電力 u u N を 決定する。 ステ ップ S 1 2 では、 ステ ップ T 1 T 4 の計算 手順に従って誘導加熱装置出側の加熱温度分布 X 1 X * を計算する。 ステ ップ S 1 3 では、 各誘導加熱装置での加熱 温度と 目標 と する温度範囲であ る温度条件 と を比較 し、 温度 条件を満た しているかど う かの判定を行 う 。
ステ ップ S 1 4 で N o の場合、 即ち、 適合 していない場合 は、 新たな誘導加熱電力 u u N を与えて温度計算の やり 直しを行う。 ステ ップ S 1 4 で Y e s の場合、 即ち、 温 度条件に適合して .いれば、 ステ ップ S 1 5 では、 各誘導.加熱 装置での消費電力量の和である合計消費電力量を求め、 合計 消費電力量が最少になるかど う かの判定を行 う。 すなわち、 誘導加熱装置での合計消費電力量が最少になる よ う な加熱電 力を求める。
ステ ッ プ S 1 6 で N o の場合、 即ち、 合計消費電力量が所 定量以下の条件に適合していない場合は、 新たな誘導加熱電 力を与えて温度計算のやり 直しを行 う。 ステ ップ S 1 6 で Y e s の場合、 即ち、 合計消費電力量が所定量以下の条件に適 合していれば、 その加熱電力を最終的な加熱電力 と して計算 を終了する。 ·
. こ の加熱電力が -最小値になる よ う に処理する条件は式(3 3 ) で表される。 "(ί·) →最少 (33) u( i) : i番目誘導加熱装置加熱電力、 N:誘導加熱装置台数 すなわち、 これら条件を満たす u(i)と は、 加熱工程中の全 ての時点での鋼材の表面温度が上限温度を超えず、 加熱工程 終了後の内部温度を内部温度目標範囲内に加熱する、 均一加 熱処理の電力設定の う ち、 最も消費電力の少ない加熱電力で ある。
また、 加熱工程中の全ての時点での鋼材の表面温度を 目標 表面温度以上に加熱し、 加熱工程終了後の内部温度を 目標内 部温度以下に加熱する表層加熱処理の電力設定の う ち、 最も 消費電力の少ない加熱電力である。
尚、 新 しい加熱電力 Ul、 …、 UN を与える方法は、 線形計 画法、 非線形計画法な ど一般的な方法で良 く 、 また遺伝子ァ ルゴリ ズムな どの最適化手法を適用 しても良い。
次に、 第 3 の実施の形態の熱処理装置について説明する。 本実施形態では、 第 2 の実施形態で求める最適な加熱電力を 逐次二次計画法等の制約条件付き非線形計画法を用いて処理 を行 う点に特徴がある。 従って、 それ以外の構成については 第 2 の実施形態と 同一であるため、 詳細の説明を省略する。
まず、 第 1 の実施形態、 第 2 の実施形態における鋼材の加 熱条件等を数式で表現する。
目標温度に関する条件式は、 式(34)、 式(35)で表現される c
T* - Tr=0 (34)
T*:誘導加熱装置出側での中心温度値、 Tf :中心温度目標値 T„-Tis≥0 (35)
T i s : i 番目誘導加熱装置出側での表面温度、 T„:表面温度 上限値 ただし、 l≤i<N 中心温度は加熱目標であるため等式の条件で表される。 表 面温度は、 誘導加熱装置出側で最も高く なるため、 誘導加熱 装置出側の温度を用いる。 また、 加熱上限値であるため不等 式で表される。 ただし、 中心温度 目標においては、 式(36)の よ う に範囲を指定するこ と も可能である。 :
|T,-Tr| ≤ c (36) T,:誘導加熱装置出側での中心温度値、 Τ 中心温度目標値 c:目標温度範囲指定値 これらは、 各誘導加熱装置の電力を求める際の制約条件と なる。 さ らに、 誘導加熱装置の能力にも制限があるので、 こ れを式(37)、 (38)で表して制約条件とする。
min > 0 (37) 伹し、 umin:電力最小値 max≥ 0 (38) 伹し、 umax:電力最大値 さ らに、 式(34)、 式(35)の制約条件において、 制約条件中 の温度 TN、 Tls は、 誘導加熱装置の加熱電力 u" ···、 UN を用 いて表すこ と ができる。 すなわち、 式(32)を用いて、 制約条 件式(34)、 (35)を加熱電力 i 、 ···、 uNで表す。 まず、 等式の加熱条件である式(34)は式(39)、 (40)で表わ される。
Tt-Tr=0 (39)
C 。 x。 +XNc+Xl +- + XNuN)-Tr = 0 (40) ただし、 Cw =[0 1 0]である。 さ らに、 不等式の制約条件は、 式(41)〜(44)で表すこ とが でき る。
≥0 (41) rra-/,(W])>o (42) 2
Tr~TNs≥0 (43)
H ("い…, ¾)≥o (44) ただし、 ',···, ("い…," J;u】 UNの一次式 これらよ り 、 目的関数、 制約条件がすべて加熱電力 Ul UNで表現されるため、 最適化手法の逐次 2 次計画法を適用す る こ とができる。 以上整理し直すと以下のよ う になる。 目的関数 最少('=1,2,'",
T vt
u(i) :i番目誘導加熱装置電力、 N :誘導加熱装置台数 等式制約条件: 7; -7; =0 Τ,:誘導加熱装置出側での中心温度 :中心温度目標値 不等式制約条件:
Figure imgf000023_0001
Tr - "い…, UN)≥ Q
/,(«,):-台目誘導加熱装置出側表面温度、 τ 表面温度上限 値、 /WW):N 台目誘導加熱装置出側表面温度、 Tr:表面温度上 限値
- )+« ≥0 um i n:電力最小値、 ura a jt:電力最大値 この問題設定を、 逐次二次計画法を用いて最適化を行う と 、 温度条件を満たす、 最少の加熱電力分布が求め られる。 すな わち、 加熱時の表面温度、 内部温度の 目標を、 必要最低限の 電力で実現するこ とができる。 次に設定計算機能である搬送速度と電力の決定方法につい て説明する。
①事前処理方式
図 7 は、 事前処理方式を実現するシステムの構成図である c 鋼材の製造ライ ンの構成は上述の構成と 同一であるため、 同 一符号を付して詳細の説明は省略する。
生産管理コ ン ピュータ 1 3 からは、 製造する予定の鋼材 1 に関するデータが事前処理演算装置 1 4 に送信されて く る。 データは、 鋼材 1 のサイ ズ (幅、 厚み、 長さ) 、 加熱方法、 加熱目標温度な どである。 こ こで、 事前処理演算装置 1 4 は 制御装置 1 0内に設けられている。
事前処理演算装置 1 4 は、 このデータに基づいて加熱時の 搬送速度とパス数、 及び電力を決定する。 そ して、 決定した 搬送速度を搬送速度設定装置 1 5 に出力 し、 決定した電力を 電力供給装置 1 2 に出力する。
こ こで、 搬送速度を決定する方法には、 テーブルから抽出 する方法と収束計算による方法がある。
a . テーブルから搬送速度を抽出する方法
図 8 は、 鋼材のサイズと搬送速度とパス数の対応テーブル を示す図である。
事前処理演算装置 1 4 は、 このテーブルに基づいて、 鋼材 のサイ ズである幅、 厚さ 、 長さ か ら搬送速度 と パス数'を抽出 する。 尚、 諸元の値が表の項目値に一致 しない場合は、 前後 の表の値を内挿して求める。
ま た、 鋼材のサイ ズである幅、 厚さ 、 長さ の内少な く と も 1 つの諸元に基づいて搬送速度 と パス数を抽出する よ う にテ 一ブルを構成しても良い。
b . 収束計算によ って搬送速度を決定する方法
図 9 は、 収束計算によ って搬送速度を決定する概略の手順 を示すフ ロ ー図であ る。 この方法では、 加熱温度の条件を満 たす加熱電力の内、 熱処理に要する時間が最も短 く なる よ う に搬送速度を定める点に特徴があ る。
尚、 誘導加熱装置群を複数回往復させて鋼材 1 を加熱する 場合には、 そのパス ごと に搬送速度を設定する こ と が可能で ある。 従っ て、 搬送速度は以下の式で定義する。
V 0 = [ V 0 1 , V 0 2 , V 0 3 , ■ · · , V 0 n ] ί且 し、 V 0 : 搬送速度初期値、
V 0 i ( i = l〜 n ) : i パス 目搬送速度初期値 ステ ップ S 2 0 では、 搬送速度 と して初期値を設定する。 こ こで、 初期値 V 0 は任意の値であっても 良 く 、 また実績値 に基づいて決定 して も良い。
ステ ップ S 2 1 では、 その搬送速度を用いて上述の図 5、 6 に示す電力演算を行い加熱電力を求める。 ステ ップ S 2 2 では、 この加熱条件で鋼材 1 の加熱後温度が制約条件を充足 する かど う かを調べる。 この制約条件は、 図 5 のステ ップ S 3 、 図 6 のステ ップ S 1 3 の温度判定条件 と 同一であ り 、 鋼 材 1 の表面温度、 内部温度がそれぞれ所定温度範囲内にある 力 ど う かを調べる も のである。
ステ ップ S 2 2 で Y e s の場合、 即ち、 制約条件を充足 し ている場合は、 電力演算が適正に実行された こ と を意味 して いる ため、 搬送速度を速く した条件であって も適切な電力量 が求め られる可能性がある。 従っ て、 ステ ッ プ S 2 3 では、 搬送速度を所定量だけ速く する。 尚、 搬送速度は所定量でな く 、 所定割合で速く して も良 く 、 また予め定めた関数に基づ いて搬送速度を増速 して も良い。
ステ ッ プ S 2 4 では、 增速 した搬送速度を用いて再度電力 演算を行い、 ス テ ッ プ S 2 5 では、 鋼材 1 の加熱後温度が制 約条件を充足するかど う かを調べる。 ス テ ッ プ S 2 5 で Y e s の場合、 即ち、 制約条件を充足する場合は、 更にス テ ッ プ S 2 3 〜 2 5 を繰り 返す。 これに よつてよ り 速い搬送速度を 設定する こ と ができ る。
ステ ッ プ S 2 5 で N o の場合、 即ち、 制約条件を充足 しな い場合は、 後に説明する、 搬送速度を減速するス テ ッ プ S 2 6 か らの処理を実行するが、 こ の処理に進まずに前回の計算 に用いた制約.条件を.充足する搬送速度を採用 して も良い。
ス テ ッ プ S 2 2 で N o の場合、 即ち、 鋼材 1 の表面温度、 内部温度がそれぞれ所定温度範囲にない場合は、 電力演算が 正 し く 行われなかった こ と を意味 している。 こ こ で、 電力演 算が正 し く 行われない場合は、 搬送速度が速すぎるために鋼 材 1 の温度が低く なつている場合である。 何故な らば、 鋼材 1 の温度が高い場合は、 電力量 低下させる こ どによ って温 度を下げる こ と が可能なため、 必ず電力量を求める こ と がで き る力 らである。
従って この場合には、 鋼材 1 の温度加熱が不十分であ る た め、 ステップ S 2 6 では、 搬送速度を所定量だけ遅く する'。 尚、 搬送速度は所定量でな く 、 所定割合で遅く して も 良 く 、 また予め定めた関係式または関数に基づいて減速 して も 良い c そ して、 ステ ップ S 2 7 では、 減速 した搬送速度を用いて 再度電力演算を行い、 ステ ップ S 2 8 では、 鋼材 1 の加熱後 温度が制約条件を充足する かど う かを調べる。
ステ ッ プ S 2 8 で N o の場合、 即ち、 制約条件を充足 しな い場合は、 更にステ ップ S 2 6 〜 2 8 を繰 り 返す。 ステ ップ S 2 8 で Y e s の場合、 即ち、 制約条件を充足する場合は、 ステ ップ S 2 9 では、 この搬送速度を採用する。 ·
本方式によれば、 所定の制約条件を満たす電力の内、 最も 搬送速度の速い加熱条件を最終結果と して得る こ と ができ、 従って、 最も処理時間が短 く なる熱処理条件を求める こ と が でき る。
尚、 本方式では、 搬送速度初期値か ら収束演算を行ったが , 複数の搬送速度値に基づいて電力演算を行い、 制約条件を満 たす搬送速度の内、 最速の搬送速度を求めても良い。 また、 過去の搬送速度実績値 と 鋼材 1 の諸元 (例えば、 厚み、 幅 等) の組合せに基づいて、 加熱 しょ う とする鋼材 1 の諸元に 対応する搬送速度を内分点法に よ って算出 しても 良い。 そ して、 こ こで決ま った搬送速度を も と に、 上述の電力設 定計算を行って加熱電力 を求める。 そ して、 求めた加熱電力 を電力供給装置 1 2 へ、 搬送速度を搬送速度設定装.置 1 5 へ 送り 、 鋼材 1 の加熱を実行させる。
次に、 加熱開始温度、 加熱目標温度が変更になった場合の 搬送速度の影響係数を求める方法について説明する。
図 1 0 は、 加熱開始温度が変更 された と き の影響係数を求 める手順を示すフ ロ ー図である。 この手順に よ って、 加熱開 始温度を T i 、 加熱開始温度の変更量を Δ T i と し、 加熱開 始温度が T i + Δ Τ ί の場合に、 上記で求めた搬送速度を どれ だけ変更すれば良いのかの係数を求める。
. こ の手順は図 9 ·に示 した搬送速度を決定する手順と 同様で ある。 影響係数を 1 と して処理を開始 し、 加熱可能で最も処 理時間が短く なる よ う に影響係数を調整する。
こ う して求めた影響係数の値を q と する と 、 実際の加熱開 始温度が T i + Δ Tの場合の搬送速度 ν'は、 式(45)で求め られ る。
Figure imgf000028_0001
同様に、 加熱目標温度が変更になっ た場合の速度変更係数 も求める。 .
図 1 1 は、 加熱 目標温度が変更 された と き の影響係数を求 める手順を示すフ ロ ー図である。 この手順に よ って、 加熱 目 標温度を T r 、 加熱 目標温度の変更量を Δ T r と し、 加熱 目 標温度が T r + A T r の場合に、 上記で求めた搬送速度を どれ だけ変更すればよいのかの係数を求める。
この手順は図 9 に示した搬送速度を決定する手順と 同様で ある。 影響係数.を 1 と して処理を開始し、 加熱可能で最も処 理時間が短く なるよ う に影響係数を調整する。
こ う して求めた影響係数の値を q とする と 、 実際の加熱開 始温度が T 'r + Δ Τの場合の搬送速度 v'は、 下式(46)で求め ら れる。
Figure imgf000029_0001
尚、 この影響係数は、 後述する処理である、 ②修正処理方 式と③組合せ処理方式で使用される。
②修正処理方式
図 1 2 は、 修正処理方式に係るシステムの構成を示す図で ある。 鋼材の製造ラ イ ンの構成は上述の構成と 同一であるた め、 同一符号を付して詳細の説明は省略する。
本処理は加速冷却後の鋼材 1 の加熱開始温度を実測 し、 そ の温度によ り搬送速度の決定、 加熱電力の算出を行う 処理で ある。
これは、 以下の手順によって行う。
( i ) 加熱開始温度の取得と加熱目標温度の決定
鋼材 1 の加熱開始温度は実測によ り 求める。 また、 生産管 理コ ンピュータ 1 3 からのデータ に基づいて修正処理演算装 置 1 6 が加熱目標温度を決定する。
( ϋ ) 搬送速度の決定
次に搬送速度を決定する。 搬送速度は、 図 8 に示すテープ ル値を補間する こ と によ り 求める こ と もでき る。 また b . 収 束計算において記載した方法で得られた搬送速度を使用する 場合には、 加熱開始温度の実測結果に基づいて、 式(45 )また は式(46 )を用いて補正して決定する。
( iii ) 鋼材の先端部と尾端部の加熱電力の計算
加熱電力は、 先端部と尾端部では異なるため、 上述の方法. 即ち、 図 4 〜 6 に示す電力を求める手順に従って、 先端と尾 端の加熱電力をそれぞれ演算する。
( iv ) 鋼材の先端部と尾端部の各誘導加熱装置での到達温 度の計算
さ らに、 こ の電力で加熱 した場合の各誘導加熱装置入り 側 と 出側での到達温度も先端と尾端について保存 しておく 。 こ の到達温度は F F F B制御を行う際の目標値となる。 '
( V ) 電力と温度の補間
そ して、 鋼材の中間部の加熱電力と到達温度を、 既に求め た先端部と尾端部の加熱電力と到達温度を補間 して求める。
③組合せ処理方式
図 1 3 は、 組合せ処理方式に係るシス テ ム の構成を示す図 である。 鋼材の製造ライ ンの構成は上述の構成と 同一である ため、 同一符号を付して詳細の説明は省略する。
まず事前処理演算装置 1 4 が事前処理方式を実行する。 即 ち、 鋼材 1 の加熱開始予定温度に基づいて、 搬送速度と電力 を求める。 こ の求め られた搬送速度と電力は修正処理演算装 置 1 6 に送られる。
一方、 温度検出器 7 は、 冷却過程を終えた後の鋼材 1 の誘 導加熱装置手前での加熱開始温度を実測する。 そ してこの実 測温度は、 修正処理演算装置 1 6 に入力される。.
実測した加熱開始温度が加熱予定温度に近いと き、 例えば , 式(47 )が成立する と きは、 事前処理で求めた搬送速度と加熱 電力で加熱を行う。
| TrO-Tr l | α ( 47 )
TrO:加熱開始予定温度、 Tr 1:加熱開始実測温度、 α は所定 の値で例えば、 10 °C
一方、 式(48 )が成立する と きは、 修正処理演算装置 1 6 は, 上述の修正計算を行って、 搬送速度を修正 し、' 修正された搬 送速度を新たな搬送速度と して加熱電力を電力設定計算によ り求める。'
I TrO-Tr l | > α 式 ( 48 ) こ のよ う に して求めた搬送速度と電力をそれぞれ、 搬送速 度設定装置 1 5 、 電力供給装置 1 2へ伝送し、 鋼材 1 の加熱 を行う。
このよ う に、 事前処理と修正処理を組み合わせる こ と によ り 、 効率的で最適な搬送速度と加熱電力を用いて加熱を行う こ とができる。
Π . ドラ ッキング処理機能 · この処理では、 鋼材 1 .を長手方向の仮想的なブロ ック に分 割し、 そのブロ ック 毎に電力設定と F F制御、 F Β制御を行 う。 図 1 4 は、 ト ラ ッキング処理の動作を説明する図である t 先に求めた鋼材 1 の先端部と尾端部の加熱電力から、 鋼材 の各ブロ ッ ク の電力設定値を求める。 j 台目誘導加熱装置に ついて、 鋼材 1 の先端部の設定電力 ^ (1,ゾ)、 尾端部の設定電力 (N,ゾ)とする と、 中間部の設定電力は、 式(49)で表される。
" ) )(ト1) +" ) (49) 同様に、 中間部の目標温度は式(50)で表現される。 .
7>( ) = ^¾5^ ( ^(U) (50) ト ラ ッキング処理では、 搬送ロールから入力される回転速 度信号、 温度検出器 7 の温度検出信号を元に、 鋼材 1 の現在 位置を随時推定する。 そ して、 鋼材 1 の該当ブロ ックが各誘 導加熱装置 6 に入った時点で、 そのプロ ック に対応する電力 を各誘導加熱装置 6 に出力する。
ΠΙ . 加熱電力補正機能 ( F F制御と F B制御)
上記のよ う に数式モデルを使って温度推定や電力設定を行 う際は、 数式モデルの誤差によ り 、 温度に誤差が生じる場合 がある。 このため、 誘導加熱装置入り 側及び出側に設置され た温度検出器 7 で測定した鋼材 1 の実測温度によ.り 、 電力を 補正する。
図 1 5 、 1 6 は、 F F制御の構成を示す図である。 F F制 御電力演算装置 1 8 は、 各誘導加熱装置 6 の入り側に設置さ れた温度検出器 7 の測定信号に基づいて、 電力を補正する。
鋼材 1 の先端から i 番目 の部分の j 台目誘導加熱装置の電 力補正値は、 式(5 1 )で与え られる。
uff (/, j) = G(Tr(i, j) - Tm(i, j)) x dPdt ( 5 1 ) ただ し、 補正電力、 G:ゲイ ン、 Tr(ij):目標温度、 Γ» :実績温度、 :電力温度影響係数、 である。
尚、 F F制御電力演算装置 1 8 は、 誘導加熱装置 6毎に設 けても良く 、 また全誘導加熱装置 6 を統括 して 1 台で制御し ても良い。 ' .
図 1 7 、 1 8 は、 F B制御の構成を示す図である。 F B制 御電力演算装置 1 9 は、 各誘導加熱装置 6 の出側に設置され た温度検出器 7 の測定信号に基づいて、 電力を補正する。 こ の電力補正値は、 式 ( 5 2 ) で求め られる。
Uj!Xi,j)=[Gp(j ,j)-Tdm(j,j))+SGi(Tdr(i,j)—T i(iJ) dPdt (52) ただし、 "^, :補正電力、 Gp ゲイ ン、 (¾:ゲイ ン、 7>(/,ゾ): 目標温度、 7¾ ゾ):実績温度、 :電力温度影響係数、 である( 尚、 F B制御電力演算装置 1 9 は、 誘導加熱装置 6 毎に設 けても良く 、 また全誘導加熱装置 6 を統括 して 1 台で制御し ても良い。
さ らに、 後述する加熱効率を逐次推定し、 F F制御や F B 制御の結果に反映させる こ と も有効である。 この場合の加熱 補正電力は、 それぞれ、
uff = /X}{ {i,f)—Tm{j,j)xdPdt (53)
Figure imgf000033_0001
dPdt (54) と なる。
但し、 ]3 : 加熱効率補正係数である。
このよ う に、 誘導加熱装置 6 の前後に備え付け られた温度 検出器 7 による実績温度によ り 補正を行う こ と によ り 、 温度 制御精度を向上させる こ と ができ る。 IV . モデル学習機能
図 1 9 は、 学習機能の全体を説明する図である。 本モデル 学習機能は、 以下の · 3 つの学.習機能を備えている。
①誘導加熱装置 6 の加熱効率を推定する加熱効率の学習
②空冷による温度降下量を推定する空冷学習
③矯正装置 5 における温度降下量を推定する矯正装置での 温度降下推定量とモデル学習
以下、 これらの学習方法について説明する。
①加熱効率の学習
図 2 における区間 1 、 区間 2 、 区間 3 の距離をそれぞれ、 11、 12、 13、 またそれぞれの区間の通過速度をそれぞれ、 vl v2、 v3 とする。 そ して、 鋼材 1 の内部の温度分布 X ( k )を 下式で定義する.
区間 1 の終端での温度は、 式(56)で表される。
n\ = l\/(v\xdt) (55) x(k+n\) = A"'x(k) + ^ A'~lF (56)
ΐ=1
誘導加熱装置 6 での供給電力量を《6とする と、 区間 2 の終 端での温度は、 式(58)で表される。
Figure imgf000034_0001
x(k + "1 + nl) = An]+n2x(k) + 2 A'-]F + βΤ A"lBub (58)
ί-1 さ らに区間 3 の終端での温度は、 式(61 )で表される
n3 = l2/(y3xdt) (59)
N = «l+«2+«3 (60) x(k + N) = ANx(k) + Y A-XF + (61)
Figure imgf000035_0001
これが 目標温度 7;に等 し く なる よ う に を決めればよいの で、 学習に関する式(62)が求め られる。
Tr =cxx(k + N) (62)
学習式(62)によ り 、 目標温度 7;に加熱するための誘導加熱 装置 6への供給電力量は式(63)で与え られる。
Tr - c x(k) - (63)
Figure imgf000035_0002
しかしながら、 誘導加熱装置 6 での電力損失、 また供給さ れた電力量が鋼材 1 を昇温させる際の加熱損失な どのため、 式(63)で与え られる電力量を誘導加熱装置 6 に供給しても、 鋼材 1 の昇温量が 目標昇温量に達しない場合が多い。
+このため、 供給電力量が鋼材 1 の温度上昇に及ぼす加熱効 率を、 実昇温量を求める こ と によ り 算出 し、 誘導加熱装置 6 の加熱効率を考慮した上で、 目標昇温量を得るための供給電 力量を算出する こ と にする。
鋼材 1 の搬送速度と 、 誘導加熱装置 6 の入 り 側と 出側に設 置された温度検出器 7 の設置間隔から、 被加熱材のある部分 が温度検出器間を通過する時間が求め られる。
図 2 に示すよ う に、 先端から i 番目 の区間 1 、 区間 2 、 区 間 3 における移動速度をそれぞれ、 vl(/)、 v2(/)、 v3(/)と する と温度検出器間の通過時間は以下の式 ( 6 4 ) で求め られる tb ( = II I vl() + 121 v2( +73 / v3(z) (64) 但し、 t i) : 温度検出器間の通過時間
したがって、 誘導加熱装置 6 の入側および出側の温度検出 器 7 では、 時間差 t6()をもって、 鋼材 1 の同 じ位置の温度が 検出される。 そ して、 その際の温度検出器 7 の検出 した温度 差が鋼材 1 の実昇温量と なる。 さ らに、 温度検出器 7 の検出 を周期的に行う こ と によ り 、 鋼材 1全体の昇温量を検出する こ と ができ る。
尚、 鋼材 1 の先端から i 番目の区間の検出温度を Tbi(i)と し て、 入り側温度検出器位置での温度分布は一様である と仮定 する。 (')
x(k,i) (65)
U 伹 し、 rw (り被加熱材の先端か ら i 番 目 の区間の検出温度、 x(k,i) : 被.加熱材の時刻 k での先端から i番目 の区間の温度 式(30.)で、 i 番目 の効率を (/)と して、 供給電力量 ub ( を与 えた場合、 出側.温度検出器位置での温度 Tb。(i)は式 ( 6 6 ) と なる。
Tbo(i) = cx ANx(K i) +∑ A^F + β{ί)Αη3∑ A^Bu, (/) (66) 加熱効率は、 与え られた電力供給量の う ち実際に加熱に使 用 される電力量の割合であ り 、 式(66)を変形 して、 式(67)で 表わされる。
Figure imgf000037_0001
伹し、 ?0') : 加熱効率、 wfc(0 : 加熱装置への供給電力量
そ して、 推定された加熱効率を用いて、 次段の誘導加熱装 置 6 への供給電力量は以下の式 ( 6 8 ) で与えちれる。 ub (0 = Tb0 (/) - cxANx(k, i) -c (68)
Figure imgf000037_0002
図 2 の制御装置 1 0 は、 周期ごと に上記め計算を行い、 誘 導加熱装置 6へ目標電力量と して与える。
すなわち、 温度検出器 7 での計測を周期的に行い、 加熱効 率を推定する。 そ して、 こ の加熱効率の推定結果を現鋼材 1 が次に通過する誘導加熱装置 6 での投入電力計算に反映させ る。 それによ り 、 鋼材 1 の温度制御の精度を向上させる こ と ができる。
また、 上で求めた効率 ]3 (i)を当該誘導加熱装置における次 プロ ッ クの投入電力を計算する際に使用する こ と もでき る。 すなわち、 加熱効率と投入電力は、 以下の式(69)、 (70)で表 される。
、 ί «2
) = Tbo (/) - cxANx(k, i) -c A'-'F / c -^A^Bu^i) (69)
i=l ノ ΐ-1
A'-]Bub(i) (70)
Figure imgf000037_0003
鋼材 1 の温度分布を考慮した効率推定を行い、 その結果を 次プロ ック に反映させて行く ため、 温度制御の精度を向上さ せる こ とができる。 ②空冷学習
式(9)に示す温度推定計算の中で、 大気 と の対流や熱伝達 に よ る抜熱の量を推定する こ と に よ り 、 鋼材の伝熱計算の学 習を行 う 。
式(71)に示すよ う に、 熱量 Q に調整係数 y を乗 じた Q ' を 大気の抜熱量とする。 こ の調整係数 y を変更 しなが ら温度計 算を行い、 実績温度 と推定温度が近く なる よ う に収束計算を 行 う 。
Q' = yQ (71) γ は、 鋼材のサイ ズや鋼種によ り 分類して保存 してお く こ と も考え られる。
③矯正装置での温度降下量推定と モデル学習
矯正装置 5 での温度降下量は、 矯正装置 5 の.ロ ールに よ る 抜熱、 矯正装置内での大気に よ る抜熱 と冷却水に よ る抜熱を 考慮する こ と によ り 、 式(72)で求める こ と ができ る。
TL= TR+iSTA+Mw (72)
TL : 矯正装置での温度降下量推定値
ΔΓΛ : ロ ールによ る接触抜熱、 Δ7^ : 大気に よ る冷却, △7 : 水冷に よ る冷却
さ ら に、 それぞれの抜熱項は式(73)〜(76)で表わされる。
^R -hR(Ts-TR)/^rR (73)
Tr =LR/v (74)
hR ロ ール熱伝達係数、 7; : 鋼材表面温度、 TR : 口 ール表面温度
: ロ ール接触時間、 : ロ ール接触距離、 V : 搬 送速度
ATA =hA(TA-Ts) (75)
. Δ7^ : 大気によ る冷却温度
: 大気の熱伝達率、 : 大気温度
■ ATlv =hfr(Tw-Ts) (76)
: 水冷による冷却温度
: 水冷の熱伝達率、 : 冷却水温度
しかしながら、 これらの温度推定値は、 実計測に伴う 計測 誤差や、 ロールの磨耗、 冷却水のかか り 具合などの経年変化 によ る影響が大き く なつている。 そこで、 矯正装置 5 の前後 で実績した温度を用いて、 これらの推定式に補正を加える。 補正式は式(77)で与える。
fL :aTL (77)
テ : 補正された矯正装置での温度降下量、 α : 調整係数 調整係数ひは式(78)で求める。
a = {TL-TA-Tw)l{t0-tx) (78)
t。 : 矯正装置入り 側温度、 t, : 矯正装置出側温度 式(78)で求めた調整係数を用いれば、 矯正装置 5 の温度推 定式の誤差を補正し、 温度降下量の経年変化を補正する こ と ができ る。
このよ う に して求めた調整係数 αは、 次材以降の加熱電力 を決定する際に使用する。 また、 鋼材 1 の厚みや幅や昇温量 ごと に分類して保存しておき、 次材以降、 同様の加熱条件の 鋼材に使用する こ とができ る。
産業上の利用可能性 本発明に よれば、 鋼材の表面温度、 內部温度を精度よ く 目 標に一致させ、 鋼材が 目 的の性質をもつよ う な熱処理を行 う こ と ができ る。

Claims

請 求 の 範 囲
1 . 熱処理装置であって、
鋼材を加熱する複数台の誘導加熱装置と、
前記鋼材を矯正するための矯正装置と、
前記鋼材のサイ ズと 、 前記鋼材の搬送速度と、 前記鋼材の 加熱目標温度と、 前記誘導加熱装置の前段における前記鋼材 の予定温度と に基づいて、 前記誘導加熱装置に供給する供給 予定電力を演算する演算装置と 、
前記演算装置によ り 演算された供給予定電力を前記誘導加 熱装置に供給する電源装置と を有し、
前記演算装置は、
前記誘導加熱装置による加熱中の前記鋼材の表面温度が第
1 の 目標温度以下で、 加熱終了時の鋼材厚み方向内部の所定 位置における温度と第 2の 目標温度と の差が所定範囲内にな る よ う に加熱するために前記誘導加熱装置に供給する供給予 定電力、 または前記誘導加熱装置によ る加熱中の前記鋼材の 表面温度が第 3 の目標温度以上と な り 、 加熱終了時の鋼材厚 み方向内部の所定位置における温度が第 4 の.目標温度以下と なる よ う に加熱するために前記誘導加熱装置に供給する供給 予定電力を演算する。
2 . 請求項 1 記載の熱処理装置であって、
前記誘導加熱装置は、 前記鋼材の圧延ライ ン上に設置され て、 圧延後に加速冷却装置によ って急速に冷却された前記鋼 材を加熱する。
3 . 請求項 1 記載の熱処理装置であって、 前記鋼材の搬送速度は、 前記鋼材のサイ ズに基づいて予め 定め られた搬送速度である。
4 . 請求項 1記載の熱処理装置であって、
前記演算装置は、
前記鋼材の搬送速度と前記供給予定電力を含むデータから 誘導加熱後における前記鋼材の表面温度と厚み方向の内部温 度と を推定する温度推定手段と、
前記鋼材の表面温度と厚み方向の内部温度とが所定の温度 条件に適合するかど う かを判定する適合判定手段と、
前記温度条件に適合しない場合は、 前記供給予定電力を修 正して前記温度推定手段と前記適合判定手段と を繰り 返して 実行する判定処理手段と、
前記温度条件に適合する場合は、 その演算に用いられた供 給予定電力を前記誘導加熱装置に供給する電力とする電力決 定手段と を有する。
5 . 請求項 1記載の熱処理装置であって、
前記演算装置は、
前記鋼材の搬送速度と前記供給予定電力を含むデータから 誘導加熱後における前記鋼材の表面温度と厚み方向の内部温 度と を推定する温度推定手段と、
前記鋼材の表面温度と厚み方向の内部温度とが所定の温度 条件に適合するかど う かを判定する適合判定手段と、
前記温度条件に適合しない場合は、 前記供給予定電力を修 正して前記温度推定手段と前記適合判定手段と を繰り 返 して 実行する判定処理手段と、 前記温度条件に適合する場合は、 その演算に用いられた供 給予定電力に基づいて、 前記鋼材の加熱に使用されるそれぞ れの誘導加熱装置の電力量の合計値が所定の値以下である電 力条件に適合するかど う かを判定する電力量判定手段と、 前記電力条件に適合する場合は、 その演算に用いられた供 給予定電力を前記誘導加熱装置に供給する電力とする電力決 定手段と を有する。
6 . 請求項 1 記載の熱処理装置であって、
前記演算装置は、
前記鋼材の搬送速度と前記供給予定電力を含むデータから 誘導加熱後における前記鋼材の表面温度と厚み方向の内部温 度と を推定する温度推定手段と、
前記鋼材の表面温度と厚み方向の内部温度とが所定の温度 条件に適合するかど う かを判定する適合判定手段と、
前記温度条件に適合する供給予定電力の内、 前記鋼材の加 熱に使用 されるそれぞれの誘導加熱装置の電力量の合計値が 最小になる供給予定電力を前記誘導加熱装置に供給する電力 とする電力決定手段と を有する。
7 . 請求項 1記載の熱処理装置であって、
前記演算装置は、
前記誘導加熱装置によ る加熱後の前記鋼材の厚み方向の温 度分布を推定する温度分布推定手段を更に備えた。
8 . 請求項 7記載の熱処理装置であって、
前記温度分布推定手段は、
前記鋼材の搬送速度に基づいて、 前記誘導加熱装置内にお ける前記鋼材の厚み方向の誘導電流分布を求めて前記鋼材内 部の発生熱量を算出する発生熱量算出手段と、
前記誘導加熱装置外における前記鋼材から大気への放散熱 量を算出する放散熱量算出手段と 、
前記発生熱量と前記放散熱量と を境界条件と して前記鋼材 の内部への熱伝導を演算 して前記鋼材の表面温度と厚み方向 の内部温度と を推定する温度演算手段と を有する。.
9 . 請求項 7記載の熱処理装置であって、
前記温度分布推定手段は、 矯正装置によ る前記鋼材の厚み. 方向の温度降下量を推定する冷却温度推定手段を有する。
1 0 . 請求項 1 記載の熱処理装置であって、
前記演算装置は、
前記鋼材の長手方向に仮想的に複数の区画に分割し、 この 区画単位で前記鋼材の加熱に使用 された加熱電力 と前記鋼材 の温度検出値と の屨歴を管理する加熱履歴管理手段を更に有 する。
1 1 . 請求項 1 記載の熱処理装置であって、
前記演算装置は、
前記鋼材の搬送速度と前記供給予定電力を含むデータから 誘導加熱後における前記鋼材の表面温度と厚み方向の内部温 度と を推定する温度推定手段と、
前記鋼材の表面温度と厚み方向の内部温度とが所定の温度 条件に適合するかど う かを判定する適合判定手段と、
前記温度条件に適合する供給予定電力の内、 前記鋼材の搬 送速度が最大になる供給予定電力を前記誘導加熱装置に供給 する電力どずる電力決定手段と を有する。
1 2 . 請求項 1 記載の熱処理装置であって、
前記演算装置は、
前記鋼材の搬送速度と前記供給予定電力を含むデータから 誘導加熱後における前記鋼材の表面温度と厚み方向の内部温 度と を推定する温度推定手段と、
. 前記鋼材の表面温度と厚み方向の内部温度とが所定の温度 条件に適合するかど う かを判定する適合判定手段と、
前記温度条件に適合しない場合は、 前記供給予定電力を修 正して前記温度推定手段と前記適合判定手段と を繰り 返して 実行する判定処理手段と、
前記温度条件に適合する場合は、 その演算に用いられた供 給予定電力に基づいて、 前記鋼材の加熱に使用されるそれぞ れの誘導加熱装置の電力量の合計値が所定の値以下である電 力条件に適合するかど う かを判定する電力判定手段と、
前記電力条件に適合する場合は、 前記搬送速度を増加 した 新たな搬送速度を用いて前記温度推定手段、 前記適合判定手 段、 前記判定処理手段、 前記電力判定手段を前記温度条件に 適合しなく なるまで繰り 返して実行し、 前記温度条件と前記 電力条件に適合する最終の演算に用いられた搬送速度を新た な搬送速度と して獲得する搬送速度演算手段.と を有する。
1 3 . 熱処理装置であって、
鋼材の圧延ライ ン上に設置され、 圧延された前記鋼材を急 速に冷却する加速冷却装置の後段に配された複数台の誘導加 熱装置と、 前記鋼材を矯正するための矯正装置と、
前記圧延ライ ン上に設置され前記鋼材の温度を検出する少 なく と も 1 つの温度検出器と、
前記鋼材のサイズと、 前記鋼材の搬送速度と、 前記鋼材の 加熱目標温度と 、 前記誘導加熱装置の前段における前記鋼材 の前記温度検出器で測定した実測温度と に基づいて、 前記誘 導加熱装置に供給する供給予定電力を演算する演算装置と、 前記演算装置によ り 演算された供給予定電力を前記誘導加 熱装置に供給する電源装置と を有 し、
前記演算装置は、
前記誘導加熱装置による加熱中の前記鋼材の表面温度が第 1 の 目標温度以下で、 加熱終了時の鋼材厚み方向内部の所定 '位置における温度と第 2の 目標温度どの差が所定範囲内にな る よ う に加熱するために前記誘導加熱装置に供給する供給予 定電力、 または前記誘導加熱装置によ る加熱中の前記鋼材の 表面温度が第 3 の目標温度以上と な り 、 加熱終了時の鋼材厚 み方向内部の所定位置における温度が第 4 の 目標温度以下と なる よ う に加熱するために前記誘導加熱装置に供給する供給 予定電力を演算する。
1 4 . 請求項 1 3記載の熱処理装置であって、- 前記演算装置は、
前記搬送速度と前記温度検出器で測定した鋼材温度に基づ いて加熱後の鋼材温度を推定する推定手段と、 .
推定した鋼材温度が所定温度範囲内にない場合には、 前記 搬送速度を変更 して前記推定手段を繰り 返え して実行させる 繰り 返し手段と 、
推定した鋼材温度が所定温度範囲内にある場合には、 該搬 送速度に基づいて前記鋼材を 目標温度に加熱するた.めに前記 誘導加熱装置に供給する供給予定電力を演算する電力演算手 段と を有する。
1 5 . 請求項 1 3 記載の熱処理装置であって、
前記演算装置は、
前記鋼材の搬送速度と前記供給予定電力を含むデータから 誘導加熱後における前記鋼材の表面温度と厚み方向の内部温 度と を推定する温度推定手段と、
前記鋼材の表面温度と厚み方向の内部温度とが所定の温度 条件に適合するかど う かを判定する適合判定手段と、.
前記温度条件に適合しない場合は、 前記供給予定電力を修 正 して前記温度推定手段と前記適合判定手段と を繰り 返して 実行する判定処理手段と、
前記温度条件に適合する場合は、 その演算に用いられた供 給予定電力を前記誘導加熱装置に供給する電力とする電力決 定手段とを有する。
1 6 . 請求項 1 3記載の熱処理装置であって、
前記演算装置は、
前記鋼材の搬送速度と前記供給予定電力を含むデータから 誘導加熱後における前記鋼材の表面温度と厚み方向の内部温 度と を推定する温度推定手段と、
前記鋼材の表面温度と厚み方向の内部温度とが所定の温度 条件に適合するかど う かを判定する適合判定手段と、 前記温度条件に適合しない場合は、 前記供給予定電力を修 正 して前記温度推定手段と前記適合判定手段と を繰り 返 して 実行する判定処理手段と、
前記温度条件に適合する場合は、 その演算に用いられた供 給予定電力に基づいて、 前記鋼材の加熱に使用されるそれぞ れの誘導加熱装置の電力量の合計値が所定の値以下である電 力条件に適合するかど う かを判定する電力量判定手段と 、 前記電力条件に適合する場合は、 その演算に用いられた供 給予定電力を前記誘導加熱装置に供給する電力とする電力決 定手段と を有する。
1 7 . 請求項 1 3記載の熱処理装置であって、
前記演算装置は、
前記鋼材の搬送速度と前記供給予定電力を含むデータから 誘導加熱後における前記鋼材の表面温度と厚み方向の内部温 度と を推定する温度推定手段と、
前記鋼材の表面温度と厚み方向の内部温度とが所定の温度 条件に適合するかど う かを判定する適合判定手段と、
前記温度条件に適合する供給予定電力の内、 前記鋼材の加 熱に使用されるそれぞれの誘導加熱装置の電力量の合計値が 最小になる供給予定電力を前記誘導加熱装置に供給する電力 とする電力決定手段と を有する。
1 8 . 請求項 1 3記載の熱処理装置であって、
前記演算装置は、
前記誘導加熱装置による加熱後の前記鋼材の厚み方向の温 度分布を推定する温度分布推定手段を更に備える。
1 9 . 請求項 1 8記載の熱処理装置であって、
前記温度分布推定手段は、
前記鋼材の搬送速度に基づいて、 前記誘導加熱装置内にお ける前記鋼材の厚み方向の誘導電流分布を求めて前記鋼材内 部の発生熱量を算出する発生熱量算出手段と 、
前記誘導加熱装置外における前記鋼材から大気への放散熱 量を算出する.放散熱量算出手段と 、
前記発生熱量.と前記放散熱量と を境界条件ど して前記鋼材 の内部への熱伝導を演算 して前記鋼材の表面温度 と.厚み方向 の内部温度とを推定する温度演算手段と を有する。
2 0 . 請求項 1 8記載の熱処理装置であって、
前記温度分布推定手段は、 矯正装置によ る前記鋼材の厚み 方向の温度降下量を推定.する冷却温度推定手段を有する。
.
2 1 . 請求項 1 3記載の熱処理装置であって、
前記演算装置は、 .
前記鋼材の長手方向に仮想的に複数の区画に分割し、 この 区画単位で前記鋼材の加熱に使用 された加熱電力 と前記鋼材 の温度検出値と の履歴を管理する加熱履歴管理手段を更に有 する。
2 2 . 請求項 2 1 記載の熱処理装置であって、
初段の誘導加熱装置の入り側に設け られた前記温度検出器 で検出された前記鋼材の先頭部分の温度と後端部分の温度と 前記鋼材の搬送速度と に基づいて、 前記鋼材の先頭部分と後 端部分についてそれぞれの誘導加熱装置毎の加熱目標温度を 算出する 目標温度算出手段と、 前記鋼材の先頭部分と後端部分においては、 前記加熱目標 温度に基づいてそれぞれの誘導加熱装置に供給する電力を算 出 し、 前記鋼材の先頭部分と後端部分の移動に合わせて前記 電力を制御 して前記電源装置に供給する電力供給手段と、 前記鋼材の先頭部分と後端部分に挟まれた中間部分におい ては、 前記鋼材の先頭部分の実測温度と、 後端部分の実測温 度と 、 当該中間部分の実測温度と に基づいて、 前記鋼材の先 頭部分と後端部分の誘導加熱装置毎の加熱目標温度を補正 .し- て前記中間部分の誘導加熱装置毎の加熱目標温度を算出する 中間部分目標温度算出手段と、
前記中間部分の誘導加熱装置毎の加熱目標温度に基づいて それぞれの'誘導加熱装置に供給する中間電力を算出.し、 前記 鋼材の中間部分の移動に合わせて前記中間電力を制御 して前 記電源装置に供給する中間電力制御手段と を備える。 .
2 3 . 請求項 1 3記載の熱処理装置であって、
少なく と も 1 つの前記誘導加熱装置の前後に前記温度検出 器を有し、
前記演算装置は、
前記誘導加熱装置に供給した電力と前記温度検出器で測定 した前記鋼材の上昇温度と に基づいて前記誘導加熱装置の加 熱効率を推定する加熱効率推定手段と、
次に熱処理予定の前記鋼材に対 して求めた電力を前記加熱 効率を用いて補正演算する補正演算手段と を有する。
2 4 . 請求項 1 3記載の熱処理装置であって、
前記演算装置は、 前記圧延ライ ンにおける前記鋼材の大気への放散熱量を実 績温度によって修正する温度降下量修正手段と、
次に熱処理予定の前記鋼材に対 して、 前記修正された放散 . 熱量によって推定された温度降下量に基づいて、 前記鋼材を 目標温度に加熱するための供給予定電力を演算する冷却補正 電力演算手段と を有する。
2 5 . 請求項 1 3記載の熱処理装置であって、
前記演算装置は、
前記圧延ライ ンにおける前記鋼材の前記矯正装置によ る温 度降下量を、 前記矯正装置の前後に設置された温度検出器に よって測定された実測温度によ って修正する温度降下量修正 手段と、 '
次に熱処理予定の前記鋼材に対して、 前記修正された矯正 装置での温度降下量に基づいて、 前記鋼材を 目標温度に加熱 するための供給予定電力を演算する冷却補正電力演算手段と を有する。 .
2 6 . 請求項 1 3記載の熱処理装置であって、
前記誘導加熱装置間に前記温度検出器を少なく と も 1 つ有 し、 . .
前記温度検出器で測定した鋼材温度と、 予め与え.られたそ の位置での 目標温度と の差に基づいて前段の誘導加熱装置に 供給する電力を制御するフ ィ ー ドバック制御手段と、
前記温度検出器で測定した鋼材温度と、 予め与えられたそ の位置での 目標温度との差に基づいて後段の誘導加熱装置に 供給する電力を制御するフ ィ ー ドフォ ヮー ド制御手段と を更に備えた。
2 7 . 請求項 2 6記載の熱処理装置であって、
前記フ ィ ー ドバッ ク制御手段は、
前記鋼材の長手方向に仮想的に分割 した複数の区画単位に 、 前記温度検出器で測定した鋼材温度と、 予め与えられたそ の位置での 目標温度と の差に基づいて前段の誘導加熱装置に 供給する電力を制御する。
2 8 . 請求項 2 6.記載の熱処理装置であって、
前記フ ィ ー ドフォ ヮー ド制御手段は、
前記鋼材の長手方向に仮想的に分割 した複数の区画単位に 、 前記温度検出器で測定した鋼材温度と、 予め与えられたそ の位置での 目標温度と の差に基づいて後段の誘導加熱装置に 供給する加熱電力を制御する。
2 9 . 熱処理装置であって、
鋼材の圧延ライ ン上に設置され、 圧延された前記鋼材を急 速に冷却する加速冷却装置の後段に配された複数台の誘導加 熱装置と、
前記鋼材を矯正するための矯正装置と、
前記圧延ライ ン上に設置され前記鋼材の温度を検出する少 な く と も 1 つの温度検出器と、
前記鋼材のサイズと.、 前記鋼材の搬送速度と、 前記鋼材の 加熱目標温度と 、 前記誘導加熱装置の前段における前記鋼材 の予定温度と に基づいて、 前記誘導加熱装置に供給する第 1 の供給予定電力を演算する第 1 の演算装置と 、
前記鋼材のサイズと、 前記鋼材の搬送速度と、 前記鋼材の 加熱目標温度と、 前記誘導加熱装置の前段における前記鋼材 の前記温度検出器で測定した実測温度と に基づいて、 前記誘 導加熱装置に供給する第 2 の供給予定電力を演算する第 2 の 演算装置と、 .
前記鋼材の予定温度と前記鋼材の実績温度と の差が所定の 範囲内にあれば前記.第 1 の供給予定電力を供給予定電力 と.し て選択し、 前記鋼材の予定温度と前記鋼材の実績温度と の差 が所定の範囲内になければ前記第 2 の供給予定電力を供給予 定電力と して選択する電力選択装置と 、
前記電力選択装置によ り 選択された供給予定電力を前記誘 導加熱装置に供給す.る電源装置と を有 し、
前記第 1 及び第 2 の演算装置は、
前記誘導加熱装置による加熱中の前記鋼材の表面温度が第 1 の 目標温度以下で、 加熱終了時の鋼材厚み方向内部の所定 位置における温度と第 2 の 目標温度と の差が所定範囲内にな る よ う に加熱するために前記誘導加熱装置に供給する供給予 定電力、 または前記誘導加熱装置によ る加熱中の前記鋼材の 表面温度が第 3 の目標温度以上と な り 、 加熱終了時の鋼材厚 み方向内部の所定位置における温度が第 4 の 目標温度以下と なる よ う に加熱するために前記誘導加熱装置に供給する供給 予定電力を演算する。
3 0 . 鋼材を加熱する複数台の誘導加熱装置と、 前記鋼 材を矯正するための矯正装置と、 前記誘導加熱装置に供給す る供給予定電力を演算する演算装置と 、 前記演算装置によ り 演算 された供給予定電力を前記誘導加熱装置に供給する電源 装置と を有する熱処理装置の熱処理方法であって、 前記鋼材のサイ ズと、 前記鋼材の搬送速度と、 前記鋼材の 加熱目標温度と 、 前記誘導加熱装置の前段における前記鋼材 の予定温度と に基づいて、
前記誘導加熱装置による加熱中の前記鋼材の表面温度が第
1 の 目標温度以下で、 加熱終了時の鋼材厚み方向内部の所定 位置における温度と第 2 の 目標温度と の差が所定範囲内にな る よ う に加熱するために前記誘導加熱装置に供給する供給予 定電力を演算するス テ ッ プ、
または前記誘導加熱装置によ る加熱中の前記鋼材の表面温 度が第 3 の 目標温度以上と な り 、 加熱終了時の鋼材厚み方向 内部の所定位置における温度が第 4 の 目標温度以下と なる よ う に加熱するために前記誘導加熱装置に供給する供給予定電 力を演算するステ ップを備える。
3 1 .. 請求項 3 0記載の熱処理方法であって、
前記誘導加熱装置は、 前記鋼材の圧延ライ ン上に設置され . て、 圧延後に加速冷却装置によって急速に冷却された前記鋼 材を加熱する。
3 2 . 請求項 3 ひ記載の熱処理方法であって、
前記鋼材の搬送速度は、 前記鋼材のサイ ズに基づいて予め 定め られた搬送速度である。
3 3 . 請求項 3 0記載の熱処理方法であって、
前記鋼材の搬送速度と前記供給予定電力を含むデータから 誘導加熱後における前記鋼材の表面温度と厚み方向の内部温 度と を推定する温度推定ステ ップと、 前記鋼材の表面温度と厚み方向の内部温度とが所定の温度 条件に適合するかどう かを判定する適合判定ステ ップと 、 ' 前記温度条件に適合 しない場合は、 前記供給予定電力を修 正 して前記温度推定手段と前記適合判定手段と を繰り 返 して 実行する判定処理ステ ップと 、
前記温度条件に適合する場合は、 その演算に用いられた供 給予定電力を前記誘導加熱装置に供給する電力とする電力決 定ステ ップと を更に備える。
3 4 . 鋼材の圧延ライ ン上に設置され、 圧延された前記 鋼材を急速に冷却する加速冷却装置の後段に配された複数台 の誘導加熱装置と、 前記鋼材を矯正するための矯正装置 と、 前記圧延ライ ン上に設置され前記鋼材の温度を検出する少な . く と も 1 つの温度検出器と 、 前記誘導加熱装置に供給する供 給予定電力を演算する演算装置と、 前記演算装置によ り 演算 された供給予定電力を前記誘導加熱装置に供給する電源装置 と を有する熱処理装置の熱処理方法であって、
前記鋼材のサイズと 、 前記鋼材の搬送速度と、 前記鋼材の 加熱目標温度と 、 前記誘導加熱装置の前段における前記鋼材 の前記温度検出器で測定した実測温度と に基づいて、
前記誘導加熱装置による加熱中の前記鋼材の表面温度が第 1 の 目標温度以下で、 加熱終了時の鋼材厚み方向内部の所定 位置における温度と第 2の 目標温度との差が所定範囲内にな る よ う に加熱するために前記誘導加熱装置に供給する供給予 定電力を演算するステ ップ、
または前記誘導加熱装置によ る加熱中の前記鋼材の表面温 度が第 3 の 目標温度以上と な り 、 加熱終了時の鋼材厚み方向 内部の所.定位置における温度が第 4の 目標温度以下と なる よ う に加熱するため.に前記誘導加熱装置に供給する供給予定電 力を演算するス テ ッ プを備える。
3 5 . 請求項 3 4記載の熱処理装置であって、
前記搬送速度と前記温度検出器で測定した鋼材温度に基づ いて加熱後の鋼材温度を推定する推定ステ ップと 、
推定した鋼材温度が所定温度範囲内にない場合には、 前記 搬送速度を変更 して前記推定手段を繰り 返え して実行させる 繰り 返しステ ップと、
推定した鋼材温度が所定温度範囲内にある場合には、 該搬 送速度に基づいて前記鋼材を 目標温度に加熱するために前記 誘導加熱装置に供給する供給予定電力を演算する電力演算ス テ ツプと を更に備える。
3 6 . 鋼材の圧延ラィ ン上に設置され、 圧延された前記 鋼材を急速に冷却する加速冷却装置の後段に配された複数台 の誘導加熱装置と、 前記鋼材を矯正するための矯正装置と、 前記圧延ラ イ ン上に設置され前記鋼材の温度を検出する少な く と も 1.つの温度検出器と、 前記誘導加熱装置に供給する供 給予定電力を演算する演算装置と 、 前記演算された供給予定 電力を前記誘導加熱装置に供給する電源装置と を有する熱処 理装置の熱処理方法であって、
前記誘導加熱装置によ る加熱中の前記鋼材の表面温度が第 1 の 目標温度以下で、 加熱終了時の鋼材厚み方向内部の所定 位置における温度と第 2 の 目標温度と の差が所定範囲内にな る よ う に加熱するために前記誘導加熱装置に供給する供給予 定電力を演算する供給予定電力演算ステ ッ プ、
または前記誘導加熱装置によ る加熱中の前記鋼材の表面温度 が第 3 の 目標温度以上と.な り 、 加熱終了時の鋼材厚み方向内 部の所定位置における温度が第 4 の目標温度以下と なる よ う に加熱するために前記誘導加熱装置に供給する供給予定電力 を演算する供給予定電力演算ステ ップと 、
前記鋼材の予定温度と前記鋼材の実績温度との差が所定の 範囲内にあれば、 前記鋼材のサイ ズと 、. 前記鋼材の搬送速度 と、 前記鋼材の加熱目標温度と、 前記誘導加熱装置の前段に おける前記鋼材の予定温度と に基づいて、 前記供給予定電力 演算ステ ッ プを実行するステ ップと 、
前記鋼材の予定温度と前記鋼材の実績温度との差が所定の 範囲内になければ、 前記鋼材のサイズと、 前記鋼材の搬送速 度と、 前記鋼材の加熱目標温度と 、 前記誘導加熱装置の前段 における前記鋼材の前記温度検出器で測定した実測温度と に 基づいて、 前記供給予定電力演算ステ ップを実行する ステ ツ プと備える。
3 7. . 鋼材を加熱する複数台の誘導加熱装置と、 前記鋼 材を矯正するための矯正装置と、 前記誘導加熱装置に供給す る供給予定電力を演算する演算装置と 、 前記演算装置によ り 演算された供給予定電力を前記誘導加熱装置に供給する電源 装置と を有する熱処理装置の熱処理プロ グラムを記録 した記 録媒体であって、
コ ンピュータ に、 前記鋼材のサイ ズと 、 前記鋼材の搬送速度 と 、 前記鋼材の 加熱 目標温度と 、 前記誘導加熱装置の前段における前記鋼材 の予定温度 と に基づいて、
前記誘導加熱装置に よ る加熱中の前記鋼材の表面温度が第 1 の 目標温度以下で、 加熱終了時の鋼材厚み方向内部の所定 位置における温度と 第 2 の 目標温度と の差が所定範囲内にな る よ う に加熱するために前記誘導加熱装置に供給する供給予. 定電力を演算するステ ップ、
ま たは前記誘導加熱装置によ る加熱中の前記鋼材の表面温 度が第 3 の 目標温度以上と な り 、 加熱終了時の鋼材厚み方向 内部の所定位置におけ る温度が第 4 の 目標温度以下と な る よ う に加熱するために前記誘導加熱装置に供給する供給予定電 力を演算するステ ップを実行させるためのプロ グラ ムを記録 した記録媒体。
3 8 . . 請求項 3 7 記載の記録媒体であって、.
前記誘導加熱装置は、 前記鋼材の圧延ラ イ ン上に設置 され て、 圧延後に加速冷却装置によ って急速に冷却された前記鋼 材を加熱する。
3 9 . 請求項 3 7 記載の記録媒体であって、
前記鋼材の搬送速度は、 前記鋼材のサイ ズに基づいて予め 定め られた搬送速度である。
4 0 . 請求項 3 7 記載の記録媒体であって、
コ ン ピュータ に、
前記鋼材の搬送速度と前記供給予定電力を含むデータ から 誘導加熱後における前記鋼材の表面温度と厚み方向の内部温 度と を推定する温度推定ステ ップと 、
前記鋼材の表面温度と厚み方向の内部温度とが所定の温度 条件に適合するかど う かを判定する適合判定 テ ップと、 前記温度条件に適合しない場合は、 前記供給予定電力を修 正 して前記温度推定手段と 前記適合判定手段と を繰り 返して 実行する判定処理ステ ップと 、
前記温度条件に適合する場合は、 その演算に用いられた供 給予定電力を前記誘導加熱装置に供給する電力とする電力決 定ステ ップと を更に実行させるためのプロ グラムを記録する
4 1 . 鋼材の圧延ライ ン上に設置され、 圧延された前記 鋼材を急速に冷却する.加速冷却装置の後段に配された複数台 の誘導加熱装置と、 前記鋼材を矯正するための矯正装置と、 前記圧延ラ イ ン上に設置され前記鋼材の温度を検出する少な く と も 1 つの温度検出器と 、 前記誘導加熱装置に供給する供 給予定電力を演算する演算装置と、 前記演算装置によ り 演算 された供給予定電力を前記誘導加熱装置に供給する電源装置 と を有する熱処理装置の熱処理プロ グラムを記録した記録媒 体であって、
コ ンピュータ に、
前記鋼材のサイ ズと 、 .前記鋼材の搬送速度と、 前記鋼材の 加熱目標温度と、 前記誘導加熱装置の前段における前記鋼材 の前記温度検出器で測定した実測温度と に基づいて、
前記誘導加熱装置による加熱中の前記鋼材の表面温度が第 1 の 目標温度以下で、 加熱終了時の鋼材厚み方向内部の所定 位置における温度と第 2 の 目標温度と の差が所定範囲内にな る よ う に加熱するために前記誘導加熱装置に供給する供給予 定電力を演算するス テ ッ プ、
または前記誘導加熱装置によ る加熱中の前記鋼材の表面温 度が第 3 の 目標温度以上と な り 、 加熱.終了時の鋼材厚み方向 内部の所定位置における温度が第 4 の 目標温度以下と なる よ う に加熱するために前記誘導加熱装置に供給する供給予定電 力を演算するステ ップを実行させるためのプロ グラムを記録 した記録媒体。 '
4 2 . 請求項 4 1 記載の記録媒体であって、
コ ン ピ ータ に、
前記搬送速度と前記温度検出器で測定した鋼材温度に基づ いて加熱後の鋼材温度を推定する推定ステ ップと 、
. 推定した鋼材温度が所定温度範囲内にない場合には、 前記 搬送速度を変更 して前記推定手段を繰り 返え して実行させる 繰り 返しステップと 、 - 推定した鋼材温度が所定温度範囲内にある場合には、 該搬 送速度に基づいて前記鋼材を 目標温度に加熱するために前記 誘導加熱装置に供給する供給予定電力を演算する電力演算ス テ ツプと を実行させるプロ グラムを更に記録する。
4 3 . 鋼材の圧延ラ イ ン上に設置され、 圧延された前記 鋼材を急速に冷却する加速冷却装置の後段に配された複数台 の誘導加熱装置と、 前記鋼材を矯正するための矯正装置と、 前記圧延ラ イ ン上に設置され前記鋼材の温度を検出する少な く と も 1 つの温度検出器と、 前記誘導加熱装置に供給する供 給予定電力を演算する演算装置と 、 前記演算された供給予定 電力を前記誘導加熱装置に供給する電源装置と を有する熱処 理装置の熱処理プロ グラムを記録 した記録媒体であって、 コ ンピュータに、 .
' 前記誘導加熱装置による加熱中の前記鋼材の表面温度が第 1 の 目標温度以下で、 加熱終了時の鋼材厚み方向内部の所定 位置における温度と第 2 の 目標温度と の差が所定範囲内にな る よ う に加熱するために前記誘導加熱装置に供給する供給予 定電力を演算する供給予定電力演算ステ ッ プ、
または前記誘導加熱装置による加熱中の前記鋼材の表面温度 が第 3 の 目標温度以上と な り 、 加熱終了時の鋼材厚み方向内 部の所定位置における温度が第 4 の 目標温度以下と なる よ う に加熱するために前記誘導加熱装置に供給する供給予定電力 を.演算する供給予定電力演算ステ ップと、
前記鋼材の予定.温度と前記鋼材の実績温度と の差が所定の 範囲内にあれば、 前記鋼材のサイ ズと 、: 前記鋼材の搬送速度 と、 前記鋼材の加熱目標温度と、 前記誘導加熱装置の前段に おける前記鋼材の予定温度と に基づいて、 前記供給予定電力 演算ステ ップを実行する ステ ップと 、
前記鋼材の予定温度と前記鋼材の実績温度との差が所定の 範囲内になければ、 前.記鋼材のサイズと、 前記鋼材の搬送速 度と 、 前記鋼材の加熱目標温度と 、 前記誘導加熱装置の前段 における前記鋼材の前記温度検出器で測定した実測温度と に 基づいて、 前記供給予定電力演算ステ ップを実行するステ ツ プと 実行させるためのプロ グラムを記録した記録媒体。 ■4 4 . 鋼材であって、
前記鋼材は、 請求項 3 0記載の熱処理方法によって熱処理 される.。
4 5 . 鋼材であって、
前記鋼材は、 請求項 3 1 記載の熱処理.方法によ って熱処理 される。 '
4 6 . 鋼材であって、
前記鋼材は、 請求項 3 2記載の熱処理方法によ って熱処理 される。
4 7 . 鋼材であって、
前記鋼材は、 請求項 3 3記載の熱処理方法によって熱処理 される。
4 .8 . 鋼材であって、
前記鋼材は、 請求項 3 4記載の熱処理方法によ って熱処理 される。
4 9 . ·鋼材であって、
前記鋼材は、 請求項 3 5記載の熱処理方法によ って熱処理 される。
5 0 . 鋼材であって、
前記鋼材は、 請求項 3 6記載の熱処理方法によ って熱処理 される。
PCT/JP2003/004298 2002-04-08 2003-04-03 Dispositif et procede de traitement thermique, support pour l'enregistrement d'un programme de traitement thermique et produit en acier WO2003085142A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03745906A EP1496129A4 (en) 2002-04-08 2003-04-03 THERMAL PROCESSING DEVICE AND METHOD, SUPPORT FOR RECORDING THERMAL PROCESSING PROGRAM, AND STEEL PRODUCT
KR1020047003029A KR100585540B1 (ko) 2002-04-08 2003-04-03 열 처리 장치, 열 처리 방법 및 열 처리 프로그램을 기록한 기록 매체
US10/785,629 US6891139B2 (en) 2002-04-08 2004-02-25 Heat treatment apparatus, heat treatment method, medium on which heat treatment program is recorded, and steel product

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2002-105409 2002-04-08
JP2002105408A JP4306178B2 (ja) 2002-04-08 2002-04-08 鋼材の加熱方法及びそのプログラム
JP2002-105408 2002-04-08
JP2002105409A JP4258165B2 (ja) 2002-04-08 2002-04-08 鋼材の加熱方法及びそのプログラム
JP2002-113562 2002-04-16
JP2002113562A JP4306179B2 (ja) 2002-04-16 2002-04-16 鋼材の熱処理方法及びそのプログラム
JP2003058341A JP4258235B2 (ja) 2003-03-05 2003-03-05 鋼材の加熱方法及びそのプログラム
JP2003-058341 2003-03-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/785,629 Continuation US6891139B2 (en) 2002-04-08 2004-02-25 Heat treatment apparatus, heat treatment method, medium on which heat treatment program is recorded, and steel product

Publications (1)

Publication Number Publication Date
WO2003085142A1 true WO2003085142A1 (fr) 2003-10-16

Family

ID=28795106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004298 WO2003085142A1 (fr) 2002-04-08 2003-04-03 Dispositif et procede de traitement thermique, support pour l'enregistrement d'un programme de traitement thermique et produit en acier

Country Status (6)

Country Link
US (1) US6891139B2 (ja)
EP (1) EP1496129A4 (ja)
KR (1) KR100585540B1 (ja)
CN (1) CN1292081C (ja)
TW (1) TWI224144B (ja)
WO (1) WO2003085142A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113008595A (zh) * 2021-02-26 2021-06-22 中冶东方工程技术有限公司 一种冶金行业的机器人综合取制样系统及方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7857919B2 (en) 2003-06-16 2010-12-28 Jfe Steel Corporation Process for producing steel product and production facility therefor
WO2005012580A1 (ja) * 2003-08-05 2005-02-10 Jfe Steel Corporation 鋼材の製造方法およびその製造設備
WO2006030686A1 (ja) 2004-09-14 2006-03-23 Ntn Corporation 高周波熱処理装置、高周波熱処理方法および高周波熱処理製品
KR100847974B1 (ko) * 2004-10-14 2008-07-22 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 압연, 단조 또는 교정 라인의 재질 제어 방법 및 그 장치
US7683288B2 (en) * 2005-08-12 2010-03-23 Thermatool Corp. System and method of computing the operating parameters of a forge welding machine
JP2007077424A (ja) * 2005-09-12 2007-03-29 Ntn Corp 高周波焼戻方法、高周波焼戻設備および高周波焼戻製品
US20070095878A1 (en) * 2005-11-03 2007-05-03 Paul Scott Method and system for monitoring and controlling characteristics of the heat affected zone in a weld of metals
DE102007039279B3 (de) * 2007-08-20 2009-01-02 Muhr Und Bender Kg Wärmebehandlung von flexibel gewalztem Band
EP2287345A1 (de) * 2009-07-23 2011-02-23 Siemens Aktiengesellschaft Verfahren zur Steuerung und/oder Regelung eines Induktionsofens für eine Walzanlage, Steuer- und/oder Regeleinrichtung für eine Walzanlage und Walzanlage zum Herstellen von Walzgut
EP2557183A1 (de) * 2011-08-12 2013-02-13 Siemens Aktiengesellschaft Verfahren zum Betrieb einer Konti-Glühe für die Verarbeitung eines Walzguts
DE102013225579A1 (de) * 2013-05-22 2014-11-27 Sms Siemag Ag Vorrichtung und Verfahren zur Steuerung und/oder Regelung eines Glüh- oder Wärmebehandlungsofens einer Metallmaterial bearbeitenden Fertigungsstraße
CN106232250B (zh) * 2014-04-23 2018-07-20 东芝三菱电机产业系统株式会社 轧制系统
WO2015188278A1 (en) 2014-06-13 2015-12-17 M3 Steel Tech Inc. Modular micro mill and method of manufacturing a steel long product
US9850553B2 (en) * 2014-07-22 2017-12-26 Roll Forming Corporation System and method for producing a hardened and tempered structural member
EP3345688B1 (en) 2015-09-03 2022-12-14 Toshiba Mitsubishi-Electric Industrial Systems Corporation System for controlling hot-rolled steel plant
CN105463178B (zh) * 2015-11-27 2018-07-27 首钢京唐钢铁联合有限责任公司 一种带钢加热功率的控制方法及装置
CA3012298C (en) * 2016-01-28 2021-03-02 Jfe Steel Corporation Steel sheet temperature control device and temperature control method
CN105950858B (zh) * 2016-07-05 2018-05-01 山东天海高压容器有限公司 用于钢瓶热处理的自动控制方法
ES2663508B1 (es) * 2017-03-31 2019-02-25 La Farga Yourcoppersolutions S A Sistema y procedimiento de control de la recristalización de una pieza tubular metálica
CN106941738A (zh) * 2017-05-05 2017-07-11 应达工业(上海)有限公司 一种用于坯料轧制线的坯料感应加热设备
CN107586924A (zh) * 2017-10-19 2018-01-16 江门市凯骏机电有限公司 一种自动退火装置
CN113924173B (zh) * 2020-05-11 2023-11-28 东芝三菱电机产业系统株式会社 感应加热方法及感应加热系统
CN112697290B (zh) * 2020-11-27 2022-03-22 攀钢集团攀枝花钢铁研究院有限公司 钢坯入炉温度的检测方法
CN113088661A (zh) * 2021-03-29 2021-07-09 江西耐乐铜业有限公司 一种智能铜管在线退火设备及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641328A (en) * 1979-09-10 1981-04-18 Kawasaki Steel Corp Method and apparatus for controlling temperature of continuous heating apparatus
US4307276A (en) * 1976-07-30 1981-12-22 Nippon Steel Corporation Induction heating method for metal products
JPS62238328A (ja) * 1986-04-07 1987-10-19 Mitsubishi Electric Corp 加熱制御装置
JPS6338531A (ja) * 1986-08-05 1988-02-19 Nippon Steel Corp 電縫鋼管溶接部の誘導加熱制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1570916A (en) * 1976-02-06 1980-07-09 Nippon Steel Corp Method of induction heating of metal materials
FR2509562A1 (fr) * 1981-07-10 1983-01-14 Cem Comp Electro Mec Procede et dispositif de chauffage homogene par induction electromagnetique a flux transversal de produits plats, conducteurs et amagnetiques
US4420667A (en) * 1982-06-21 1983-12-13 Park-Ohio Industries, Inc. Induction heating method and apparatus for elongated workpieces
US5487795A (en) * 1993-07-02 1996-01-30 Dong Won Metal Ind. Co., Ltd. Method for heat treating an impact beam of automotive vehicle door and a system of the same
JP3370499B2 (ja) * 1995-12-19 2003-01-27 新日本製鐵株式会社 被加熱素材の誘導加熱方法
US5770838A (en) * 1996-09-11 1998-06-23 Drever Company Induction heaters to improve transitions in continuous heating system, and method
US5885522A (en) * 1996-09-12 1999-03-23 Midland Steel Products Co. Method and apparatus for heat treating and straightening structural members
JP2001006864A (ja) * 1999-06-25 2001-01-12 Nkk Corp 誘導加熱装置
US6180933B1 (en) * 2000-02-03 2001-01-30 Bricmont, Inc. Furnace with multiple electric induction heating sections particularly for use in galvanizing line

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307276A (en) * 1976-07-30 1981-12-22 Nippon Steel Corporation Induction heating method for metal products
JPS5641328A (en) * 1979-09-10 1981-04-18 Kawasaki Steel Corp Method and apparatus for controlling temperature of continuous heating apparatus
JPS62238328A (ja) * 1986-04-07 1987-10-19 Mitsubishi Electric Corp 加熱制御装置
JPS6338531A (ja) * 1986-08-05 1988-02-19 Nippon Steel Corp 電縫鋼管溶接部の誘導加熱制御方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1990, JIS HANDBOOK TEKKO, ISBN: 4-542-12010-4, pages: 1273, XP002932371 *
See also references of EP1496129A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113008595A (zh) * 2021-02-26 2021-06-22 中冶东方工程技术有限公司 一种冶金行业的机器人综合取制样系统及方法

Also Published As

Publication number Publication date
KR100585540B1 (ko) 2006-05-30
KR20040029114A (ko) 2004-04-03
EP1496129A1 (en) 2005-01-12
CN1292081C (zh) 2006-12-27
TWI224144B (en) 2004-11-21
US6891139B2 (en) 2005-05-10
US20040164071A1 (en) 2004-08-26
CN1549865A (zh) 2004-11-24
TW200307051A (en) 2003-12-01
EP1496129A4 (en) 2006-02-22

Similar Documents

Publication Publication Date Title
WO2003085142A1 (fr) Dispositif et procede de traitement thermique, support pour l&#39;enregistrement d&#39;un programme de traitement thermique et produit en acier
KR100847974B1 (ko) 압연, 단조 또는 교정 라인의 재질 제어 방법 및 그 장치
WO2009011070A1 (ja) 冷却制御方法、冷却制御装置及び冷却水量計算装置
JP2000167615A (ja) 巻取温度制御方法及び制御装置
KR102122143B1 (ko) 강판의 온도 제어 장치 및 온도 제어 방법
WO2014006681A1 (ja) 温度制御装置
JP4598586B2 (ja) 冷却制御方法、装置、及びコンピュータプログラム
TWI754979B (zh) 用於控制在輥軋機中之一冷卻裝置之方法
JP2004034122A (ja) 巻取温度制御装置
JP4598580B2 (ja) 冷却制御方法、装置、及びコンピュータプログラム
JP4923390B2 (ja) 熱処理装置及び鋼材の製造方法
JP4408221B2 (ja) 鋼板の水冷プロセスにおける熱伝達係数推定方法および冷却制御方法
JP4258341B2 (ja) 鋼板長手方向の材質均一性に優れた高強度鋼板の製造方法
JP4396237B2 (ja) 鋼材の熱処理装置及び鋼材の製造方法
JP2005279655A (ja) 連続式加熱炉の鋼材抽出温度予測方法
JP3537215B2 (ja) 加熱炉の温度制御装置
JP6784182B2 (ja) 鋼板の温度制御方法、及び、鋼板の温度制御装置
JP2010247234A (ja) 冷却制御方法、装置、及びコンピュータプログラム
JP6627609B2 (ja) 冷却制御方法及び冷却装置
JPH08252622A (ja) 熱間圧延機出側の材料温度計算の補正学習方法
JP2006183108A (ja) 鋼材の熱処理装置及び鋼材の製造方法
JPH0663849B2 (ja) 連続加熱炉における材料温度の測定方法
JP2010167503A (ja) 冷却制御方法、装置、及びコンピュータプログラム
JP3945212B2 (ja) 厚鋼板の熱処理装置および熱処理方法
JP2022108448A (ja) 制御装置、制御方法、およびプログラム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10785629

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2003745906

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003745906

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038009412

Country of ref document: CN

Ref document number: 1020047003029

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003745906

Country of ref document: EP