WO2003068861A1 - Compositions de polymeres styreniques antistatiques - Google Patents

Compositions de polymeres styreniques antistatiques Download PDF

Info

Publication number
WO2003068861A1
WO2003068861A1 PCT/FR2002/000384 FR0200384W WO03068861A1 WO 2003068861 A1 WO2003068861 A1 WO 2003068861A1 FR 0200384 W FR0200384 W FR 0200384W WO 03068861 A1 WO03068861 A1 WO 03068861A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
composition according
weight
acid
parts
Prior art date
Application number
PCT/FR2002/000384
Other languages
English (en)
Inventor
Christophe Lacroix
Martin Baumert
Original Assignee
Atofina
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atofina filed Critical Atofina
Priority to KR10-2004-7011819A priority Critical patent/KR20040086322A/ko
Priority to EP02701372A priority patent/EP1470189A1/fr
Priority to US10/502,978 priority patent/US6962956B2/en
Priority to CA002474557A priority patent/CA2474557A1/fr
Priority to JP2003567980A priority patent/JP2005517757A/ja
Priority to CNA028284542A priority patent/CN1622975A/zh
Priority to AU2002234709A priority patent/AU2002234709A1/en
Priority to PCT/FR2002/000384 priority patent/WO2003068861A1/fr
Publication of WO2003068861A1 publication Critical patent/WO2003068861A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the invention relates to anti-static styrene polymer compositions and more specifically a composition comprising a styrene polymer (A), a copolymer (B) containing polyamide blocks and polyether blocks essentially comprising ethylene oxide units - (C2H4 - 0) - and a compatriot reading (C).
  • A styrene polymer
  • B copolymer
  • C compatriot reading
  • styrene polymer (A) antistatic properties This is to give the styrene polymer (A) antistatic properties.
  • the formation and retention of static electricity charges on the surface of most plastics is known.
  • the presence of static electricity on thermoplastic films leads for example these films to stick to each other making their separation difficult.
  • the presence of static electricity on packaging films can cause the accumulation of dust on the objects to be packaged and thus hinder their use.
  • Styrene resins such as, for example, polystyrene or ABS are used to make housings for computers, telephones, televisions, photocopiers and many other objects. Static electricity causes the accumulation of dust but above all can also damage the microprocessors or the components of the electronic circuits contained in these objects.
  • compositions based on styrene resin having a surface resistivity measured according to standard IEC93 less than 5.10 13 ⁇ / D or a volume resistivity measured according to standard IEC93 less than 5.10 16 ⁇ .cm (we choose the type of resistivity depending on the application, it being understood that these two types of resistivity evolve in the same direction anyway). It is indeed considered that such resistivities provide sufficient antistatic properties for certain applications in the field of polymer materials in contact with electronic components.
  • antistatic agents such as ionic surfactants of the ethoxylated amino or sulfonate type which are added to polymers.
  • antistatic properties of the polymers depend on the ambient humidity and they are not permanent since these agents migrate to the surface of the polymers and disappear. It was then proposed as antistatic agents copolymers with polyamide blocks and hydrophilic polyether blocks, these agents have the advantage of not migrating and therefore to give permanent antistatic properties and more independent of ambient humidity.
  • Japanese patent application JP 60 170 646 A published on September 4, 1985 describes compositions consisting of 0.01 to 50 parts of polyether block amide and 100 parts of polystyrene, they are useful for making sliding parts and resistant parts to wear. Antistatic properties are not mentioned.
  • Patent application EP 167 824 published on January 15, 1986 describes compositions similar to the previous ones and according to one form of the invention, the polystyrene can be mixed with a polystyrene functionalized with an unsaturated carboxylic anhydride. These compositions are useful for making injected parts. Antistatic properties are not mentioned.
  • compositions comprising 5 to 80% of polyetheresteramide and 95 to 20% of a thermoplastic resin chosen among others from polystyrene, ABS and PMMA, this resin being functionalized with acrylic acid or maleic anhydride .
  • the amount of polyetheresteramide in the examples is 30% by weight of the compositions.
  • Patent EP 242 158 describes antistatic compositions comprising 1 to 40% of polyetheresteramide and 99 to 60% of a thermoplastic resin chosen from styrene resins, PPO and polycarbonate.
  • the compositions also comprise a vinyl polymer functionalized with a carboxylic acid which may for example be a polystyrene modified with methacrylic acid.
  • JP 08239530 JP08143780 The prior art shows either mixtures (i) of styrene resin and polyetheresteramide without compatibilizer, or mixtures (ii) of polyetheresteramide and functionalized styrene resin or mixtures (iii) of polyetheresteramide, non-styrene resin functionalized and functionalized styrene resin.
  • mixtures (i) are antistatic if the polyetheresteramide is well chosen but have poor mechanical properties, in particular the elongation at break is much less than that of styrene resin alone.
  • mixtures (ii) and (iii) it is necessary to have a functionalized styrene resin, which is complicated and expensive.
  • the object of the invention is to make the ordinary styrene resins used to make the objects mentioned above antistatic, these resins not being functionalized.
  • styrene resin compositions comprising a styrene resin and a copolymer with polyamide blocks and polyether blocks, having an excellent elongation at break, an excellent stress at break and an excellent impact resistance (notched charpy), compared to the same composition without compatibilizer.
  • the present invention relates to a composition
  • a composition comprising per 100 parts by weight: - 99 to 60 parts by weight of a styrene polymer (A), - 1 to 40 parts by weight of (B) + (C), (B) being a polyamide block and polyether block copolymer essentially comprising ethylene oxide units - (C2H4 - O) -, (C) being a compatibilizer chosen from block copolymers comprising at least one polymerized block comprising styrene and at least one polymerized block comprising ethylene oxide units.
  • the repeating unit is -0-CH 2 -CH -.
  • This block can also be called PEG block (which means polyethylene glycol).
  • the composition according to the invention may not comprise polyphenyleneoxide (PPO).
  • styrene polymers (A) examples include polystyrene, polystyrene modified with elastomers, random or block copolymers of styrene and dienes such as butadiene, copolymers of styrene and acrylonitrile (SAN ), SAN modified by elastomers, in particular ABS, which is obtained for example by grafting (graft-polymerization) of styrene and acrylonitrile on a polybutadiene or butadiene-acrylonitrile copolymer trunk, mixtures of SAN and d ABS.
  • polystyrene polymers (A) examples include polystyrene, polystyrene modified with elastomers, random or block copolymers of styrene and dienes such as butadiene, copolymers of styrene and acrylonitrile (SAN ), SAN modified by elastomers, in particular ABS, which
  • the elastomers mentioned above may for example be EPR (abbreviation of ethylene-propylene-rubber or ethylene-propylene elastomer), EPDM (abbreviation of ethylene-propylene-diene rubber or ethylene-propylene-diene elastomer), polybutadiene, acrylonitrile-butadiene copolymer, polyisoprene, isoprene-acrylonitrile copolymer.
  • A can be an impact polystyrene comprising a polystyrene matrix surrounding rubber nodules generally comprising polybutadiene.
  • part of the styrene may be replaced by unsaturated monomers copolymerizable with styrene, by way of example, we may cite alpha-methylstyrene and (meth) acr ⁇ l esters.
  • A can comprise a styrene copolymer, which may be mentioned styrene-alpha-methylstyrene copolymers, styrene-chlorostyrene copolymers, styrene-propylene copolymers, styrene-butadiene copolymers, styrene-isoprene copolymers, styrene copolymers -vinyl chloride, styrene-vinyl acetate copolymers, styrene-alkyl acrylate copolymers (methyl, ethyl, butyl, octyl, phenyl acrylate), styrene-alkyl methacrylate copolymers ( (methyl, ethyl, butyl, phenyl methacrylate), styrene - methyl chloroacrylate copolymers and styrene
  • the styrene polymer A preferably comprises more than 50% by weight of styrene. In the case where the styrene polymer is SAN, it preferably contains more than 75% by weight of styrene.
  • the polymers (B) with polyamide blocks and polyether blocks result from the copolycondensation of polyamide sequences with reactive ends with polyether sequences with reactive ends, such as, inter alia: 1) Polyamide sequences with diamine chain ends with polyoxyalkylene sequences with ends of dicarboxylic chains.
  • polyetherdiols Polyamide sequences at the ends of dicarboxylic chains with polyoxyalkylene sequences at the ends of diamine chains obtained by cyanoethylation and hydrogenation of polyoxyalkylene alpha-omega dihydroxylated aliphatic sequences called polyetherdiols.
  • polyamide sequences at the ends of dicarboxylic chains with polyetherdiols the products obtained being, in this particular case, polyetheresteramides.
  • the copolymers (B) are advantageously of this type.
  • the polyamide sequences with dicarboxylic chain ends originate, for example, from the condensation of alpha-omega aminocarboxylic acids, lactams or dicarboxylic acids and diamines in the presence of a chain-limiting dicarboxylic acid.
  • the number-average molar mass Mn of the polyamide blocks is between 300 and 15,000 and preferably between 600 and 5,000.
  • the mass Mn of the polyether blocks is between 100 and 6,000 and preferably between 200 and 3,000.
  • polymers containing polyamide blocks and polyether blocks can also comprise units distributed randomly. These polymers can be prepared by the simultaneous reaction of polyether and precursors of polyamide blocks.
  • polyetherdiol, a lactam (or an alpha-omega amino acid) and a chain-limiting diacid can be reacted in the presence of a little water.
  • a polymer is obtained which essentially has polyether blocks, polyamide blocks of very variable length, but also the various reactants which have reacted randomly which are distributed statistically along the polymer chain.
  • polymers containing polyamide blocks and polyether blocks whether they originate from the copolycondensation of polyamide and polyether blocks prepared beforehand or from a reaction in one step, exhibit, for example, shore D hardnesses which may be between 20 and 75 and advantageously between 30 and 70 and an intrinsic viscosity between 0.8 and 2.5 measured in metacresol at 250 ° C for an initial concentration of 0.8 g / 100 ml.
  • the MFIs can be between 5 and 50 (235 ° C under a load of 1 kg)
  • polyetherdiol blocks are either used as such and copolycondensed with polyamide blocks with carboxylic ends, or they are aminated to be transformed into polyether diamines and condensed with polyamide blocks with carboxylic ends. They can also be mixed with polyamide precursors and a chain limiter to make polymers with polyamide blocks and polyether blocks having randomly distributed units. Polymers with polyamide and polyether blocks are described in patents US 4,331,786, US 4,115,475, US 4 195015, US 4,839,441, US 4,864,014, US 4,230,838 and US 4,332,920.
  • polyamide sequences with dicarboxylic chain ends originate, for example, from the condensation of alpha-omega aminocarboxylic acids, lactams or dicarboxylic acids and diamines in the presence of a chain-limiting dicarboxylic acid. .
  • alpha omega aminocarboxylic acids there may be mentioned aminoundecanoic acid, as an example of a lactam, there may be mentioned caprolactam and lauryllactam, as an example of a dicarboxylic acid, there may be mentioned adipic acid , decanedioic acid and dodecanedioic acid, by way of example of a diamine, mention may be made of hexamethylene diamine.
  • the polyamide blocks are made of polyamide 12 or of polyamide 6.
  • the melting point of these polyamide blocks which is also that of the copolymer (B) is generally 10 to 15 ° C. below that of PA 12 or PA 6.
  • the polyamide sequences result from the condensation of one or more alpha omega aminocarboxylic acids and / or of one or more lactams having from 6 to 12 carbon atoms in the presence of a dicarboxylic acid having 4 to 12 carbon atoms and are of low mass, that is to say Mn from 400 to 1000.
  • alpha omega aminocarboxylic acid mention may be made of aminoundecanoic acid and aminododecanoic acid.
  • dicarboxylic acid By way of example of dicarboxylic acid, mention may be made of adipic acid, sebacic acid, isophthalic acid, butanedioic acid, 1,4 cyclohexyldicarboxylic acid, terephthalic acid, sodium or lithium salt of sulphoisophthalic acid, dimerized fatty acids (these dimerized fatty acids have a dimer content of at least 98% and are preferably hydrogenated) and dodecanedioic acid HOOC - (CH2) n-COOH.
  • a lactam mention may be made of caprolactam and lauryllactam.
  • Caprolactam should be avoided unless the polyamide is purified from the monomeric caprolactam which remains dissolved therein.
  • Polyamide sequences obtained by condensation of lauryllactam in the presence of adipic acid or dodecanedioic acid and of mass Mn 750 have a melting temperature of 127-130 ° C.
  • the polyamide sequences result from the condensation of at least one alpha omega aminocarboxylic acid (or a lactam), at least one diamine and at least one dicarboxylic acid.
  • the alpha omega aminocarboxylic acid, the lactam and the dicarboxylic acid can be chosen from those mentioned above.
  • the diamine can be an aliphatic diamine having from 6 to 12 atoms, it can be arylic and / or cyclic saturated.
  • Examples include hexamethylenediamine, piperazine, 1-aminoethylpiperazine, bisaminopropylpiperazine, tetramethylene diamine, octamethylene diamine, decamethylene diamine, dodecamethylene diamine, 1, 5 diaminohexane, 2, 2,4-trimethyl-1, 6-diamino-hexane, polyols diamine, isophorone diamine (IPD), methyl pentamethylenediamine (MPDM), bis (aminocyclohexyl) methane (BACM), bis (3-methyl- 4 aminocyclohexyl) methane (BMACM).
  • IPD isophorone diamine
  • MPDM methyl pentamethylenediamine
  • ALM bis (aminocyclohexyl) methane
  • BMACM bis (3-methyl- 4 aminocyclohexyl) methane
  • the various constituents of the polyamide block and their proportion are chosen to obtain a melting temperature below 150 ° C. and advantageously between 90 and 135 ° C.
  • Copolyamides at low melting temperature are described in US Patents 4,483,975, DE 3,730,504, US 5,459,230.
  • the same proportions of the constituents are used for the polyamide blocks of (B).
  • (B) can also be the copolymers described in US 5,489,667.
  • the polyether blocks can represent 5 to 85% by weight of (B).
  • the polyether blocks can contain other units than the ethylene oxide units, such as for example propylene oxide or polytetrahydrofuran (which leads to polytetramethylene glycol sequences).
  • PEG blocks can also be used simultaneously, i.e. those consisting of ethylene oxide units, PPG blocks, ie those consisting of propylene oxide units and PTMG blocks, ie those consisting of tetramethylene glycol units also called polytetrahydrofuran.
  • PEG blocks or blocks obtained by oxyethylation of bisphenols, such as for example bisphenol A are used. These latter products are described in patent EP 613 919.
  • the quantity of polyether blocks in (B) is advantageously from 10 to 50 % by weight of (B) and preferably from 35 to 50%.
  • copolymers of the invention can be prepared by any means allowing the polyamide blocks and the polyether blocks to be attached. In practice, essentially two methods are used, one said in 2 steps, the other in one step.
  • the 2-step process consists first of all in preparing the polyamide blocks with carboxylic ends by condensation of the polyamide precursors in the presence of a chain-limiting dicarboxylic acid, then in a second step in adding the polyether and a catalyst. If the polyamide precursors are only lactams or alpha omega aminocarboxylic acids, a dicarboxylic acid is added. If the precursors already comprise a dicarboxylic acid, it is used in excess relative to the stoichiometry of the diamines. The reaction is usually carried out between 180 and 300 ° C, preferably 200 to 260 ° C, the pressure in the reactor is established between 5 and 30 bars, it is maintained for approximately 2 hours.
  • the pressure is slowly reduced by putting the reactor into the atmosphere and then the excess water is distilled, for example an hour or two.
  • the polyamide with carboxylic acid ends having been prepared, the polyether and a catalyst are then added.
  • the polyether can be added one or more times, as can the catalyst.
  • the polyether is first added, the reaction of the OH ends of the polyether and of the COOH ends of the polyamide begins with ester bond formations and elimination of water; Water is removed as much as possible from the reaction medium by distillation and then the catalyst is introduced to complete the bonding of the polyamide blocks and of the polyether blocks.
  • This second step is carried out with stirring preferably under a vacuum of at least 5 mm Hg (650 Pa) at a temperature such that the reagents and copolymers obtained are in the molten state.
  • this temperature can be between 100 and 400 ° C. and most often 200 and 300 ° C.
  • the reaction is followed by measuring the torsional torque exerted by the molten polymer on the agitator or by measuring the electric power consumed by the agitator. The end of the reaction is determined by the value of the target torque or power.
  • the catalyst is defined as being any product making it possible to facilitate the bonding of the polyamide blocks and of the polyether blocks by esterification.
  • the catalyst is advantageously a derivative of a metal (M) chosen from the group formed by titanium, zirconium and hafnium.
  • tetraaoxides which correspond to the general formula M (OR) 4, in which M represents titanium, zirconium or hafnium and the Rs, identical or different, denote alkyl radicals, linear or branched, having from 1 to 24 carbon atoms.
  • to C24 from which are chosen the radicals R of the tetraaoxides used as catalysts in the process according to the invention are for example such as methyl, ethyl, propyl, isopropyl, butyl, ethylhexyl, decyl, dodecyl, hexadodecyl.
  • the preferred catalysts are the tetraaoxides for which the radicals R, identical or different, are alkyl radicals C-
  • Examples of such catalysts are in particular Z r (OC2H5) 4, Z r (0-isoC3H7) 4, Z r (OC4Hg) 4,
  • the catalyst used in this process according to the invention can consist solely of one or more of the tetraaicoxides of formula M (OR) 4 defined above. It can also be formed by the association of one or more of these tetraaoxides with one or more alkali or alkaline-earth alcoholates of formula (R-jO) pY in which Rj denotes a hydrocarbon residue, advantageously an alkyl residue in Cj to C24, and preferably at C- to Cs, Y represents an alkali or alkaline earth metal and p is the valence of Y.
  • the amounts of alkali or alkaline earth alcoholate and of zirconium or hafnium tetraaoxides as the combined to form the mixed catalyst can vary within wide limits. However, it is preferred to use amounts of alcoholate and tetraalkoxide such that the molar proportion of alcoholate is substantially equal to the molar proportion of tetraalkoxide.
  • the proportion by weight of catalyst that is to say of the tetraaicoxide or oxides when the catalyst does not contain alkali or alkaline earth alcoholate or indeed of all of the tetraaoxide (s) and of alkaline or alkaline alcoholates earthy when the catalyst is formed by the association of these two types of compounds, advantageously varies from 0.01 to 5% of the weight of the mixture of the polyamide dicarboxylic with the polyoxyalkylene glycol, and is preferably between 0.05 and 2% of this weight.
  • salts of the metal (M) in particular the salts of (M) and of an organic acid and the complex salts between the oxide of (M) and / or l hydroxide of (M) and an organic acid.
  • the organic acid can be formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauryac acid, acid myristic, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, cyclohexane carboxylic acid, phenylacetic acid, benzoic acid, salicylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, phthalic acid and crotonic acid.
  • Acetic and propionic acids are particularly preferred.
  • M is zirconium.
  • zirconyl salts These salts can be called zirconyl salts.
  • the Applicant without being bound by this explanation, believes that these zirconium and organic acid salts or the complex salts mentioned above release ZrO ++ during the process.
  • the product sold under the name of zirconyl acetate is used.
  • the quantity to be used is the same as for the derivatives M (OR) 4- This process and these catalysts are described in the patents
  • all the reagents used in the two-step process are mixed, that is to say the polyamide precursors, the chain-limiting dicarboxylic acid, the polyether and the catalyst. These are the same reagents and the same catalyst as in the two-step process described above. If the polyamide precursors are only lactams, it is advantageous to add a little water.
  • the copolymer has essentially the same polyether blocks, the same polyamide blocks, but also a small part of the various reactants which have reacted randomly which are distributed statistically along the polymer chain.
  • the reactor is closed and heated with stirring as in the first step of the two-step process described above.
  • the pressure is established between 5 and 30 bars.
  • the reactor is placed under reduced pressure while maintaining vigorous stirring of the molten reactants.
  • the reaction is followed as above for the two-step process.
  • the catalyst used in the one-step process is preferably a salt of the metal (M) and an organic acid or a complex salt between the oxide of (M) and / or the hydroxide of (M) and an acid organic.
  • the ingredient (B) can also be a polyetheresteramides (B) having polyamide blocks comprising sulfonates of dicarboxylic acids either as chain limiters of the polyamide block or associated with a diamine as one of the constituent monomers of the polyamide block and having polyether blocks essentially consisting of alkylene oxide units, as described in international application PCT / FR00 / 02889.
  • this is a block copolymer comprising at least one polymerized block comprising styrene and at least one polymerized block comprising ethylene oxide units.
  • the polymerized block comprising styrene is generally present in C in an amount of 60 to 99% by weight and preferably from 60 to 98% by weight.
  • the polymerized block comprising ethylene oxide units is generally present in C at a rate of 40 to 1% by weight and preferably from 40 to 2% by weight.
  • the polymerized block comprising styrene generally has a glass transition temperature greater than 100 ° C. and preferably comprises at least 50% by weight of styrene.
  • the polymerized block comprising styrene can also comprise an unsaturated epoxide (obtained by copolymerization), the latter preferably being glycidyl methacrylate.
  • the unsaturated epoxide can be present in an amount of 0.01% to 5% by weight in the polymerized block comprising styrene.
  • the block copolymer comprising at least one polymerized block comprising styrene and at least one polymerized block comprising ethylene oxide units can also be grafted with an unsaturated epoxide, preferably glycidyl methacrylate.
  • unsaturated epoxides there may be mentioned: aliphatic glycidyl esters and ethers such as allyl glycidyl ether, vinyl glycidyl ether, glycidyl itaconate and maleate, glycidyl (meth) acrylate, and - aiicyclic glycidyl esters and ethers such as 2-cyclohexene-1-glycidyl ether, cyclohexene-4,5-diglycidyl carboxylate, cyclohexene-4-glycidyl carboxylate, 5-norbornene-2-methyl-2-glycidyl carboxylate and endo cis-bicyclo (2,2,1) -5-heptene-2,3-diglycidyl dicarboxylate.
  • aliphatic glycidyl esters and ethers such as allyl glycidyl ether, vinyl glycidyl
  • part of the styrene can be replaced by unsaturated monomers copolymerizable with styrene, by way of example, Palpha-methylstyrene and (meth) acrylic esters can be mentioned.
  • the block comprising styrene is a styrene copolymer which may be cited as an example, styrene-alpha-methylstyrene copolymers, styrene-chlorostyrene copolymers, styrene-butadiene copolymers, styrene-isoprene copolymers, styrene copolymers -vinyl chloride, styrene-vinyl acetate copolymers, styrene-alkyl acrylate copolymers (methyl, ethyl, butyl, octyl, phenyl acrylate), styrene-alkyl methacrylate copolymers ( (methyl, ethyl, butyl, phenyl methacrylate), styrene - methyl chloroacrylate copolymers and styrene
  • the polymerized block comprising ethylene oxide units does not include a comonomer.
  • This block generally ends with the -OH function originating from the ethylene glycol used as monomer to prepare it.
  • C may be: a diblock copolymer comprising a block of a polymer of styrene and a block of a polymer of ethylene glycol (polethylene glycol); a diblock copolymer comprising a block of homopolystyrene and a block of a polymer of ethylene glycol (polethylene glycol);
  • the compatibilizer C may in particular be prepared by controlled radical polymerization techniques in the presence of a stable free radical (generally a nitroxide) on the principle of teaching WO9411412 or WO 96/24260 or EP 927727.
  • Anti-statism increases with the proportion of (B) and for equal amounts of (B) with the proportion of ethylene oxide units contained in (B).
  • (B) sufficient for obtaining, at the level of the final composition, a surface resistivity measured according to standard IEC93 Less than 5.10 13 ⁇ / D.
  • a proportion of (B) in sufficient proportion so that the final composition has a volume resistivity measured according to the IEC93 standard less than 5.10 16 ⁇ .cm.
  • the amount of (B) + (C) is advantageously from 5 to 30 parts for
  • the ratio (B) / (C) is advantageously between 4 and 10.
  • the amount of C in the composition can range from 0.5 to 5 parts by weight per 100 parts by weight of composition.
  • compositions of the invention are prepared by the usual techniques of thermoplastics such as for example by extrusion or using twin-screw mixers.
  • the present invention also relates to objects manufactured with the preceding compositions; these are, for example, films, tubes, plates, packaging, computer, fax or telephone cases.
  • POE poly (ethylene glycol) methyl ether
  • the solid compounds (POE-OH, Azocarboxy and DMAP) are weighed, mixed and introduced into a glass reactor of 11. Then the solvents are added (first dichloromethane to dissolve the POE-OH then the THF to dissolve the azocarboxy) and tempered at 0 ° C.
  • the DCC is introduced using a syringe and a needle (it is in solution in dichloromethane) through a septum.
  • the reaction is carried out at 0 ° C for one hour and is left at room temperature for 20 hours (with mechanical stirring).
  • the product is filtered on B ⁇ chner: the filtrate is collected and the solvents (THF and CH 2 CI 2 ) are evaporated (rotary evaporator at room temperature). Then the residue is dissolved in CH 2 CI 2 , filtered through B filtrchner.
  • the filtrate is evaporated again (rotary evaporator at room temperature) and the product is dried in an oven at room temperature for 12 h (74% yield).
  • the initiator contains 83.3% 4,4'-azobis (cyanovaiericpolyethylene glycol ester) and 16.2% PEG-OH unreacted.
  • TEMPO-OH is dissolved in styrene and then introduced into a flask containing the initiator from step 1.
  • the flask is degassed by bubbling nitrogen for approximately 20 min.
  • the flask is placed in an oil bath previously heated to 140 ° C.
  • the polymerization is carried out for 720 min and samples to follow the kinetics are regularly taken. Time zero corresponds to obtaining a reaction medium temperature of 100 ° C.
  • the product is precipitated in methanol, filtered and dried under vacuum at 50 ° C for 12 h. Results:
  • the analyzes are carried out in THF at room temperature.

Abstract

La présente invention concerne une composition comprenant pour 100 parties en pois 99 à 60 parties d'un polymère styrènique (A), 1 à 40 parties de (B) + (C), (B) étant un copolymère à blocs polyamide et blocs polyether comprenant essentiellement des motifs oxyde d'éthylène (C2H4-O)-, (C) étant un comptabilisant choisi parmi les copolymères à blocs comprenant au moins un bloc polymérisé comprenant du styrène et au mois un bloc polymérisé comprenant des motifs d'éthylène, (B)/(C)étant compris entre 2 et 10.

Description

COMPOSITIONS DE POLYMÈRES STYRENIQUES ANTISTATIQUES
L'invention concerne des compositions de polymères styrèniques antistatiques et plus précisément une composition comprenant un polymère styrènique (A), un copolymère (B) à blocs polyamides et blocs polyéthers comprenant essentiellement des motifs oxyde d'éthylène — (C2H4 — 0)— et un compatibi lisant (C).
Il s'agit de donner au polymère styrènique (A) des propriétés antistatiques. La formation et la rétention de charges d'électricité statique à la surface de la plupart des matières plastiques sont connues. La présence d'électricité statique sur des films thermoplastiques conduit par exemple ces films à se coller les uns sur les autres rendant leur séparation difficile. La présence d'électricité statique sur des films d'emballage peut provoquer l'accumulation de poussières sur les objets à emballer et ainsi gêner leur utilisation. Les résines styrèniques telles que par exemple le polystyrène ou l'ABS sont utilisées pour faire des boîtiers _d'ordinateurs, de téléphones, de téléviseurs, de photocopieurs ainsi que de nombreux objets. L'électricité statique provoque l'accumulation de poussières mais surtout peut aussi endommager les microprocesseurs ou les constituants des circuits électroniques contenus dans ces objets. Pour ces applications, on cherche généralement des compositions à base de résine styrènique présentant une résistivité superficielle mesurée selon la norme IEC93 inférieure à 5.1013 Ω/D ou une résistivité volumique mesurée selon la norme IEC93 inférieure à 5.1016 Ω.cm (on choisi le type de résistivité en fonction de l'application, étant entendu que ces deux types de résistivité évoluent de toute façon dans le même sens). On considère en effet que de telles résistivités procurent des propriétés antistatiques suffisantes pour certaines applications dans le domaine des matériaux polymère en contact avec des composants électroniques.
L'art antérieur a décrit des agents antistatiques tels que des surfactants ioniques du type aminés ethoxylées ou sulfonates qu'on ajoute dans des polymères. Cependant les propriétés antistatiques des polymères dépendent de l'humidité ambiante et elles ne sont pas permanentes puisque ces agents migrent à la surface des polymères et disparaissent. Il a alors été proposé comme agents antistatiques des copolymères à blocs polyamides et blocs polyéthers hydrophiles, ces agents ont l'avantage de ne pas migrer et donc de donner des propriétés antistatiques permanentes et de plus indépendantes de l'humidité ambiante.
La demande de brevet japonais JP 60 170 646 A publiée le 4 septembre 1985 décrit des compositions constituées de 0,01 à 50 parties de polyether bloc amide et de 100 parties de polystyrène, elles sont utiles pour faire des pièces de glissement et des pièces résistant à l'usure. Les propriétés antistatiques ne sont pas citées.
La demande de brevet EP 167 824 publiée le 15 janvier 1986 décrit des compositions similaires aux précédentes et selon une forme de l'invention le polystyrène peut être mélangé avec un polystyrène fonctionnalisé par un anhydride carboxylique insaturé. Ces compositions sont utiles pour faire des pièces injectées. Les propriétés antistatiques ne sont pas citées.
La demande de brevet japonais JP 60 023 435 A publiée le 6 février
1985 décrit des compositions antistatiques comprenant 5 à 80% de polyetheresteramide et 95 à 20% d'une résine thermoplastique choisie entre autres parmi le polystyrène, l'ABS et le PMMA, cette résine étant fonctionnalisée par l'acide acrylique ou l'anhydride maléique. La quantité de polyetheresteramide dans les exemples est de 30% en poids des compositions. Le brevet EP 242 158 décrit des compositions antistatiques comprenant 1 à 40% de polyetheresteramide et 99 à 60% d'une résine thermoplastique choisie parmi les résines styrèniques, le PPO et le polycarbonate. Selon une forme préférée les compositions comprennent aussi un polymère vinylique fonctionnalisé par un acide carboxylique pouvant être par exemple un polystyrène modifié par l'acide méthacrylique.
La demande de brevet internationale PCT/FR00/02140 enseigne l'utilisation de copolymeres du styrène et d'un anhydride d'acide carboxylique insaturé, de copolymeres de l'éthylène et d'un anhydride d'acide carboxylique insaturé, de copolymeres de l'éthylène et d'un époxyde insaturé, de copolymeres blocs SBS ou SIS greffés par un acide carboxylique ou un anhydride d'acide carboxylique insaturé comme compatibilisant entre une résine styrènique et un copolymère à blocs polyamide et blocs polyether. Comme documents de l'art antérieur, on peut encore citer : EP 927727, - J. Polym. Sci, Part C: Polym. Lett. (1989), 27(12), 481
J. Polym. Sci, Part B, Polym. Phys. (1996), 34(7), 1289 JAPS, (1995), 58(4), 753 JP 04370156 JP 04239045 JP 02014232 JP 11060855 JP 11060856 - JP 09249780
JP 08239530 JP08143780 L'art antérieur montre soit des mélanges (i) de résine styrènique et de polyetheresteramide sans compatibilisant, soit des mélanges (ii) de polyetheresteramide et de résine styrènique fonctionnalisée soit encore des mélanges (iii) de polyetheresteramide, de résine styrènique non fonctionnalisée et de résine styrènique fonctionnalisée.
Les mélanges (i) sont antistatiques si le polyetheresteramide est bien choisi mais ont de mauvaises propriétés mécaniques, en particulier l'allongement à la rupture est très inférieur à celui de la résine styrènique seule. Quant aux mélanges (ii) et (iii) il est nécessaire de disposer d'une résine styrènique fonctionnalisée ce qui est compliqué et coûteux. Le but de l'invention est de rendre antistatique les résines styrèniques ordinaires utilisées pour faire les objets cités plus haut, ces résines n'étant pas fonctionnalisées. On a maintenant trouvé qu'en utilisant des compatibilisants particuliers on pouvait obtenir des compositions de résines styrèniques comprenant une résine styrènique et un copolymère à blocs polyamide et blocs polyether , ayant un excellent allongement à la rupture , une excellente contrainte à la rupture et une excellente résistance au choc (charpy entaillé), comparé à la même composition sans compatibilisant. La présente invention concerne une composition comprenant pour 100 parties en poids : - 99 à 60 parties en poids d'un polymère styrènique (A), - 1 à 40 parties en poids de (B) + (C), (B) étant un copolymère à blocs polyamide et blocs polyether comprenant essentiellement des motifs oxyde d'éthylène — (C2H4 — O) — , (C) étant un compatibilisant choisi parmi les copolymeres à blocs comprenant au moins un bloc polymérisé comprenant du styrène et au moins un bloc polymérisé comprenant des motifs oxyde d'éthylène. Dans le bloc polymérisé comprenant des motifs oxyde d'éthylène, le motif répétitif est -0-CH2-CH -. Ce bloc peut également être appelé bloc PEG (qui signifie polyéthylène glycol). La Composition selon l'invention peut ne pas comprendre de polyphénylèneoxyde (PPO).
A titre d'exemple de polymère styrènique (A) on peut citer le polystyrène, le polystyrène modifié par des élastomères, les copolymeres statistiques ou à bloc du styrène et des diènes comme le butadiène, les copolymeres du styrène et de l'acrylonitrile (SAN), le SAN modifié par des élastomères en particulier l'ABS qu'on obtient par exemple par greffage (graft-polymérisation) de styrène et d'acrylonitrile sur un tronc de polybutadiène ou de copolymère butadiène-acrylonitrile, les mélanges de SAN et d'ABS. Les élastomères mentionnés ci dessus peuvent être par exemple l'EPR (abréviation d'éthylène-propylène-rubber ou élastomère éthylène-propylene), l'EPDM (abréviation d'éthylène-propylene-diène rubber ou élastomère éthylène-propylene-diène), le polybutadiène, le copolymère acrylonitrile-butadiène, le polyisoprène, le copolymère isoprène-acrylonitrile. Notamment, A peut être un polystyrène choc comprenant une matrice de polystyrène entourant des nodules de caoutchouc généralement comprenant du polybutadiène.
Dans les polymères (A) qu'on vient de citer une partie du styrène peut être remplacée par des monomères insaturés copolymèrisables avec le styrène, à titre d'exemple on peut citer l'alpha-methylstyrène et les esters (meth)acrγliques. Dans ce cas, A peut comprendre un copolymère du styrène dont on peut citer les copolymeres styrène-alpha-méthylstyrène, les copolymeres styrène-chlorostyrène, les copolymeres styrène-propylène, les copolymeres styrène-butadiène, les copolymeres styrène-isoprène, les copolymeres styrène-chlorure de vinyle, les copolymeres styrène-acétate de vinyle, les copolymeres styrène-acrylate d'alkyle (acrylate de méthyle, d'éthyle, de butyle, d'octyle, de phényle), les copolymeres styrène - méthacrylate d'alkyle (méthacrylate de méthyle, d'éthyle, de butyle, de phényle), les copolymeres styrène - -chloroacrylate de méthyle et les copolymeres styrène - acrylonitrile - acrylate d'alkyle. Dans ces copolymeres, la teneur en comonomères va généralement jusqu'à 20% en poids. La présente invention concerne aussi des polystyrènes metallocènes à haut point de fusion.
On ne sortirait pas du cadre de l'invention si (A) était un mélange de deux ou plusieurs des polymères précédents.
Le polymère styrènique A comprend de préférence plus de 50% en poids de styrène. Pour le cas ou le polymère styrènique est le SAN , il contient de préférence plus de 75 % en poids de styrène. Les polymères (B) à blocs polyamides et blocs polyéthers résultent de la copolycondensation de séquences polyamides à extrémités réactives avec des séquences polyéthers à extrémités réactives, telles que, entre autres : 1) Séquences polyamides à bouts de chaîne diamines avec des séquences polyoxyalkylènes à bouts de chaînes dicarboxyliques.
2) Séquences polyamides à bouts de chaînes dicarboxyliques avec des séquences polyoxyalkylènes à bouts de chaînes diamines obtenues par cyanoéthylation et hydrogénation de séquences polyoxyalkylène alpha- oméga dihydroxylées aliphatique appelées polyétherdiols.
3) Séquences polyamides à bouts de chaînes dicarboxyliques avec des polyétherdiols, les produits obtenus étant, dans ce cas particulier, des polyétheresteramides. Les copolymeres (B) sont avantageusement de ce type. Les séquences polyamides à bouts de chaînes dicarboxyliques proviennent, par exemple, de la condensation d'acides alpha-oméga aminocarboxyliques, de lactames ou de diacides carboxyliques et diamines en présence d'un diacide carboxylique limiteur de chaîne.
La masse molaire en nombre Mn des séquences polyamides est comprise entre 300 et 15 000 et de préférence entre 600 et 5 000. La masse Mn des séquences polyether est comprise entre 100 et 6 000 et de préférence entre 200 et 3 000.
Les polymères à blocs polyamides et blocs polyéthers peuvent aussi comprendre des motifs répartis de façon aléatoire. Ces polymères peuvent être préparés par la réaction simultanée du polyether et des précurseurs des blocs polyamides.
Par exemple, on peut faire réagir du polyétherdiol, un lactame (ou un alpha-oméga amino acide) et un diacide limiteur de chaîne en présence d'un peu d'eau. On obtient un polymère ayant essentiellement des blocs polyéthers, des blocs polyamides de longueur très variable, mais aussi les différents réactifs ayant réagi de façon aléatoire qui sont répartis de façon statistique le long de la chaîne polymère.
Ces polymères à blocs polyamides et blocs polyéthers qu'ils proviennent de la copolycondensation de séquences polyamides et polyéthers préparées auparavant ou d'une réaction en une étape présentent, par exemple, des duretés shore D pouvant être comprises entre 20 et 75 et avantageusement entre 30 et 70 et une viscosité intrinsèque entre 0,8 et 2,5 mesurée dans le métacrésol à 250° C pour une concentration initiale de 0,8 g/100 ml. Les MFI peuvent être compris entre 5 et 50 (235°C sous une charge de 1 kg)
Les blocs polyétherdiols sont soit utilisés tels quels et copolycondensés avec des blocs polyamides à extrémités carboxyliques, soit ils sont aminés pour être transformés en polyether diamines et condensés avec des blocs polyamides à extrémités carboxyliques. Ils peuvent être aussi mélangés avec des précurseurs de polyamide et un limiteur de chaîne pour faire les polymères à blocs polyamides et blocs polyéthers ayant des motifs répartis de façon statistique. Des polymères à blocs polyamides et polyéthers sont décrits dans les brevets US 4331 786, US 4 115475, US 4 195015, US 4839441, US 4 864 014, US 4230838 et US 4332 920.
Selon une première forme de l'invention Les séquences polyamides à bouts de chaînes dicarboxyliques proviennent, par exemple, de la condensation d'acides alpha-oméga aminocarboxyliques, de lactames ou de diacides carboxyliques et diamines en présence d'un diacide carboxylique limiteur de chaîne. A titre d'exemple d'acides alpha oméga aminocarboxyliques on peut citer l'acide aminoundecanoïque, à titre d'exemple de lactame on peut citer le caprolactame et le lauryllactame, à titre d'exemple de diacide carboxylique on peut citer l'acide adipique, l'acide decanedioïque et l'acide dodecanedioïque, à titre d'exemple de diamine on peut citer Phexamethylène diamine. Avantageusement les blocs polyamides sont en polyamide12 ou en polyamide 6. La température de fusion de ces séquences polyamides qui est aussi celle du copolymère (B) est en général 10 à 15°C en dessous de celle du PA 12 ou du PA 6.
Selon la nature de (A) il peut être utile d'utiliser un copolymère (B) ayant une température de fusion moins élevée pour ne pas dégrader (A) pendant l'incorporation de (B), c'est ce qui fait l'objet des deuxième et troisième forme de l'invention ci dessous. Selon une deuxième forme de l'invention les séquences polyamides résultent de la condensation d'un ou plusieurs acides alpha oméga aminocarboxyliques et/ou d'un ou plusieurs lactames ayant de 6 à 12 atomes de carbone en présence d'un diacide carboxylique ayant de 4 à 12 atomes de carbone et sont de faible masse c'est-à-dire Mn de 400 à 1000. A titre d'exemple d'acide alpha oméga aminocarboxylique on peut citer l'acide aminoundecanoïque et l'acide aminododécanoïque. A titre d'exemple d'acide dicarboxylique on peut citer l'acide adipique, l'acide sébacique, l'acide isophtalique, l'acide butanedioïque, l'acide 1,4 cyclohexyldicarboxylique, l'acide téréphtalique, le sel de sodium ou de lithium de l'acide sulphoisophtalique, les acides gras dimérisés(ces acides gras dimérisés ont une teneur en dimère d'au moins 98% et sont de préférence hydrogénés) et l'acide dodécanédioïque HOOC-(CH2) n-COOH. A titre d'exemple de lactame on peut citer le caprolactame et le lauryllactame.
On évitera le caprolactame à moins de purifier le polyamide du caprolactame monomère qui y reste dissous.
Des séquences polyamides obtenues par condensation du lauryllactame en présence d'acide adipique ou d'acide dodécanédioïque et de masse Mn 750 ont une température de fusion de 127 - 130°C.
Selon une troisième forme de l'invention les séquences polyamides résultent de la condensation d'au moins un acide alpha oméga aminocarboxylique (ou un lactame), au moins une diamine et au moins un diacide carboxylique. L'acide alpha oméga aminocarboxylique, le lactame et le diacide carboxylique peuvent être choisis parmi ceux cités plus haut.
La diamine peut être une diamine aliphatique ayant de 6 à 12 atomes, elle peut être arylique et/ou cyclique saturée.
A titre d'exemples on peut citer l'hexaméthylènediamine, la piperazine, l'1-aminoethylpipérazine, la bisaminopropylpiperazine, la tetraméthylène diamine, l'octaméthylène diamine, la decaméthylène diamine, la dodecaméthylène diamine, le 1 ,5 diaminohexane, le 2,2,4-triméthyl-1 ,6- diamino-hexane, les polyols diamine, l'isophorone diamine (IPD), le méthyle pentaméthylènediamine (MPDM), la bis(aminocyclohéxyl) méthane (BACM), la bis(3-méthyl-4 aminocyclohéxyl) méthane (BMACM).
Dans les deuxième et troisième forme de l'invention les différents constituants de la séquence polyamide et leur proportion sont choisis pour obtenir une température de fusion inférieure à 150°C et avantageusement comprise entre 90 et 135°C. Des copolyamides à basse température de fusion sont décrits dans les brevets US 4 483 975, DE 3 730 504, US 5 459 230. On reprend les mêmes proportions des constituants pour les blocs polyamides de (B). (B) peut être aussi les copolymeres décrits dans US 5 489 667.
Les blocs polyether peuvent représenter 5 à 85 % en poids de (B). Les blocs polyether peuvent contenir d'autres motifs que les motifs oxyde d'éthylène tels que par exemple de l'oxyde de propylène ou du polytetrahydrofurane(qui conduit aux enchaînements polytetraméthylène glycol). On peut aussi utiliser simultanément des blocs PEG c'est à dire ceux constitués de motifs oxyde d'éthylène, des blocs PPG c'est à dire ceux constitués de motifs oxyde de propylène et des blocs PTMG c'est à dire ceux constitués de motifs tetraméthylène glycol appelés aussi polytetrahydrofurane. On utilise avantageusement des blocs PEG ou des blocs obtenus par oxyethylation de bisphenols, tels que par exemple le bisphenol A. Ces derniers produits sont décrits dans le brevet EP 613 919. La quantité de blocs polyether dans (B) est avantageusement de 10 à 50% en poids de (B) et de préférence de 35 à 50%.
Les copolymeres de l'invention peuvent être préparés par tout moyen permettant d'accrocher les blocs polyamide et les blocs polyether. En pratique on utilise essentiellement deux procédés l'un dit en 2 étapes, l'autre en une étape.
Le procédé en 2 étapes consiste d'abord à préparer les blocs polyamide à extrémités carboxyliques par condensation des précurseurs de polyamide en présence d'un diacide carboxylique limiteur de chaîne puis dans une deuxième étape à ajouter le polyether et un catalyseur. Si les précurseurs de polyamide ne sont que des lactames ou des acides alpha oméga aminocarboxyliques, on ajoute un diacide carboxylique. Si les précurseurs comprennent déjà un diacide carboxylique on l'utilise en excédent par rapport à la stœchiometrie des diamines. La réaction se fait habituellement entre 180 et 300°C, de préférence 200 à 260°C la pression dans le réacteur s'établit entre 5 et 30 bars, on la maintient environ 2 heures. On réduit lentement la pression en mettant le réacteur à l'atmosphère puis on distille l'eau excédentaire par exemple une heure ou deux. Le polyamide à extrémités acide carboxylique ayant été préparé on ajoute ensuite le polyether et un catalyseur. On peut ajouter le polyether en une ou plusieurs fois, de même pour le catalyseur. Selon une forme avantageuse on ajoute d'abord le polyether, la réaction des extrémités OH du polyether et des extrémités COOH du polyamide commence avec formations de liaison ester et élimination d'eau ; On élimine le plus possible l'eau du milieu réactionnel par distillation puis on introduit le catalyseur pour achever la liaison des blocs polyamide et des blocs polyether. Cette deuxième étape s'effectue sous agitation de préférence sous un vide d'au moins 5 mm Hg (650 Pa) à une température telle que les réactifs et les copolymeres obtenus soient à l'état fondu. A titre d'exemple cette température peut être comprise entre 100 et 400°C et le plus souvent 200 et 300°C. La réaction est suivie par la mesure du couple de torsion exercée par le polymère fondu sur l'agitateur ou par la mesure de la puissance électrique consommée par l'agitateur. La fin de la réaction est déterminée par la valeur du couple ou de la puissance cible. Le catalyseur est défini comme étant tout produit permettant de faciliter la liaison des blocs polyamide et des blocs polyether par estérification. Le catalyseur est avantageusement un dérivé d'un métal (M) choisi dans le groupe formé par le titane, le zirconium et le hafnium.
A titre d'exemple de dérivé on peut citer les tetraaicoxydes qui répondent à la formule générale M(OR)4, dans laquelle M représente le titane, le zirconium ou le hafnium et les R, identiques ou différents, désignent des radicaux alcoyles, linéaires ou ramifiés, ayant de 1 à 24 atomes de carbone.
Les radicaux alcoyles en C<| à C24 parmi lesquels sont choisis les radicaux R des tetraaicoxydes utilisés comme catalyseurs dans le procédé suivant l'invention sont par exemple tels que méthyle, éthyle, propyl, isopropyl, butyle, éthylhexyl, décyl, dodécyl, hexadodécyl. Les catalyseurs préférés sont les tetraaicoxydes pour lesquels les radicaux R, identiques ou différents, sont des radicaux alcoyles en C-| à Ce- Des exemples de tels catalyseurs sont notamment Zr (OC2H5)4, Zr (0-isoC3H7)4, Zr(OC4Hg)4,
Zr(OC5H1 1)4, Zr(OC6H13)4, Hf(OC2H5)4, Hf(OC4H9)4, Hf(0-isoC3H7)4.
Le catalyseur utilisé dans ce procédé suivant l'invention peut consister uniquement en un ou plusieurs des tetraaicoxydes de formule M(OR)4 définis précédemment. Il peut encore être formé par l'association d'un ou plusieurs de ces tetraaicoxydes avec un ou plusieurs alcoolates alcalins ou alcalino-terreux de formule (R-jO)pY dans laquelle R-j désigne un reste hydrocarboné, avantageusement un reste alcoyle en C-j à C24, et de préférence en C-] à Cs, Y représente un métal alcalin ou alcalino-terreux et p est la valence de Y. Les quantités d'alcoolate alcalin ou alcalino-terreux et de tetraaicoxydes de zirconium ou de hafnium que l'on associe pour constituer le catalyseur mixte peuvent varier dans de larges limites. On préfère toutefois utiliser des quantités d'alcoolate et de tetraaicoxydes telles que la proportion molaire d'alcoolate soit sensiblement égale à la proportion molaire de tétraalcoxyde.
La proportion pondérale de catalyseur, c'est-à-dire du ou des tetraaicoxydes lorsque le catalyseur ne renferme pas d'alcoolate alcalin ou alcalino-terreux ou bien de l'ensemble du ou des tetraaicoxydes et du ou des alcoolates alcalins ou alcalino-terreux lorsque le catalyseur est formé par l'association de ces deux types de composés, varie avantageusement de 0,01 à 5 % du poids du mélange du polyamide dicarboxylique avec le polyoxyalcoylène glycol, et se situe de préférence entre 0,05 et 2 % de ce poids.
A titre d'exemple d'autres dérivés on peut citer aussi les sels du métal (M) en particulier les sels de (M) et d'un acide organique et les sels complexes entre l'oxyde de (M) et/ou l'hydroxyde de (M) et un acide organique. Avantageusement l'acide organique peut être l'acide formique, l'acide acétique, l'acide propionique, l'acide butyrique, l'acide valérique, l'acide caproïque, l'acide caprylique, l'acide lauryque, l'acide myristique, l'acide palmitique, l'acide stéarique, l'acide oléique, l'acide linoléique, l'acide linolénique, l'acide cyclohexane carboxylique, l'acide phénylacétique, l'acide benzoïque, l'acide salicylique, l'acide oxalique, l'acide malonique, l'acide succinique, l'acide glutarique, l'acide adipique, l'acide maléique, l'acide fumarique, l'acide phtalique et l'acide crotonique. Les acides acétique et propionique sont particulièrement préférés. Avantageusement M est le zirconium. Ces sels peuvent s'appeler sels de zirconyle. La demanderesse sans être liée par cette explication pense que ces sels de zirconium et d'un acide organique ou les sels complexes cités plus haut libèrent ZrO++ au cours du procédé. On utilise le produit vendu sous le nom d'acétate de zirconyle. La quantité à utiliser est la même que pour les dérivés M(OR)4- Ce procédé et ces catalyseurs sont décrits dans les brevets
US 4,332,920, US 4,230,838, US 4,331,786, US 4,252,920, JP 07145368A, JP 06287547A, et EP 613919.
S'agissant du procédé en une étape on mélange tous les réactifs utilisés dans le procédé en deux étapes c'est-à-dire les précurseurs de polyamide, le diacide carboxylique limiteur de chaîne, le polyether et le catalyseur. Il s'agit des mêmes réactifs et du même catalyseur que dans le procédé en deux étapes décrit plus haut. Si les précurseurs de polyamide ne sont que des lactames il est avantageux d'ajouter un peu d'eau.
Le copolymère a essentiellement les mêmes blocs polyéthers, les mêmes blocs polyamides, mais aussi une faible partie des différents réactifs ayant réagi de façon aléatoire qui sont répartis de façon statistique le long de la chaîne polymère.
On ferme et on chauffe le réacteur sous agitation comme dans la première étape du procédé en deux étapes décrit plus haut. La pression s'établit entre 5 et 30 bars. Quand elle n'évolue plus on met le réacteur sous pression réduite tout en maintenant une agitation vigoureuse des réactifs fondus. La réaction est suivie comme précédemment pour le procédé en deux étapes. Le catalyseur utilisé dans le procédé en une étape est de préférence un sel du métal (M) et d'un acide organique ou un sel complexe entre l'oxyde de (M) et/ou l'hydroxyde de (M) et un acide organique.
L'ingrédient (B) peut également être un polyetheresteramides (B) ayant des blocs polyamide comprenant des sulfonates d'acides dicarboxyliques soit comme limiteurs de chaîne du bloc polyamide soit associés à une diamine comme l'un des monomères constitutifs du bloc polyamide et ayant des blocs polyéthers constitués essentiellement de motifs oxyde d'alkylène, comme décrit dans la demande internationale PCT/FR00/02889.
S'agïssant du compatibilisant C, celui-ci est un copolymère à blocs comprenant au moins un bloc polymérisé comprenant du styrène et au moins un bloc polymérisé comprenant des motifs oxyde d'éthylène.
Le bloc polymérisé comprenant du styrène est généralement présent dans C à raison de 60 à 99 % en poids et de préférence de 60 à 98 % en poids.
Le bloc polymérisé comprenant des motifs oxyde d'éthylène est généralement présent dans C à raison de 40 à 1 % en poids et de préférence de 40 à 2% en poids. Le bloc polymérisé comprenant du styrène a généralement une température de transition vitreuse supérieure à 100°C et comprend de préférence au moins 50 % en poids de styrène. Le bloc polymérisé comprenant du styrène peut également comprendre un époxyde insaturé (obtenu par copolymérisation), ce dernier étant de préférence le méthacrylate de glycidyle. L'époxyde insaturé peut être présent à raison de 0,01 % à 5% en poids dans le bloc polymérisé comprenant du styrène.
Le copolymère à blocs comprenant au moins un bloc polymérisé comprenant du styrène et au moins un bloc polymérisé comprenant des motifs oxyde d'éthylène peut également être greffé par un époxyde insaturé, de préférence le méthacrylate de glycidyle.
A titre d'exemple d'époxydes insaturés, on peut citer : les esters et éthers de glycidyle aliphatiques tels que l'allyl glycidyléther, le vinyle glycidyléther, le maléate et l'itaconate de glycidyle, le (méth)acrylate de glycidyle, et - les esters et éthers de glycidyle aiicycliques tels que le 2- cyclohexène-1 -glycidyléther, le cyclohexène-4,5-diglycidyl carboxylate, le cyclohexène-4-glycidyl carboxylate, le 5-norbornène-2-méthyl-2-glycidyl carboxylate et l'endo cis-bicyclo(2,2,1)-5-heptène-2,3-diglycidyl dicarboxylate. Dans le bloc comprenant du styrène, une partie du styrène peut être remplacé par des monomères insaturés copolymèrisables avec le styrène, à titre d'exemple on peut citer Palpha-methylstyrène et les esters (meth)acryliques. Dans ce cas, le bloc comprenant du styrène est un copolymère du styrène dont on peut citer comme exemple, les copolymeres styrène-alpha-méthylstyrène, les copolymeres styrène-chlorostyrène, les copolymeres styrène-butadiène, les copolymeres styrène-isoprène, les copolymeres styrène-chlorure de vinyle, les copolymeres styrène-acétate de vinyle, les copolymeres styrène-acrylate d'alkyle (acrylate de méthyle, d'éthyle, de butyle, d'octyle, de phényle), les copolymeres styrène - méthacrylate d'alkyle (méthacrylate de méthyle, d'éthyle, de butyle, de phényle), les copolymeres styrène - -chloroacrylate de méthyle et les copolymeres styrène - acrylonitrile - acrylate d'alkyle.
De préférence, le bloc polymérisé comprenant des motifs oxyde d'éthylène ne comprends pas de comonomere. Ce bloc se termine généralement par la fonction -OH provenant de l'éthylène glycol utilisé comme monomère pour le préparer. Notamment, C peut être: un copolymère dibloc comprenant un bloc d'un polymère du styrène et un bloc d'un polymère de l'éthylène glycol (poléthylène glycol); un copolymère dibloc comprenant un bloc d'homopolystyrène et un bloc d'un polymère de l'éthylène glycol (poléthylène glycol);
On ne sortirait pas du cadre de l'invention en utilisant un ou plusieurs compatibilisants C. Le compatibilisant C peut notamment être préparée par les techniques de polymérisation radicalaire contrôlée en présence de radical libre stable (généralement un nitroxyde) sur le principe de l'enseignement du W09411412 ou WO 96/24260 ou EP 927727.
L'antistatisme augmente avec la proportion de (B) et pour des quantités égales de (B) avec la proportion de motifs oxyde d'éthylène contenus dans (B).
Selon l'application, on pourra préférer inclure une proportion de (B) suffisante pour l'obtention au niveau de la composition finale d' une résistivité superficielle mesurée selon la norme IEC93 Inférieure à 5.1013Ω/D. Selon l'application, on pourra préférer inclure une proportion de (B) en proportion suffisante pour que la composition finale ait une une résistivité volumique mesurée selon la norme IEC93 inférieure à 5.1016 Ω.cm. La quantité de (B)+(C) est avantageusement de 5 à 30 parties pour
95 à 70 parties de (A) et de préférence de 10 à 20 pour 90 à 80 parties de
(A). Le rapport (B)/(C) est avantageusement compris entre 4 et 10. La quantité de C dans la composition peut aller de 0,5 à 5 parties en poids pour 100 parties en poids de composition.
On ne sortirait pas du cadre de l'invention en ajoutant des charges minérales (talc, Ca3CO, kaolin ...), des renforts (fibre de verre, fibre minérale, fibre de carbone, ...), des stabilisants (thermique, UV), des agents ignifugeants et des colorants. Les compositions de l'invention se préparent par les techniques habituelles des thermoplastiques telles que par exemple par extrusion ou à l'aide de mélangeurs bivis.
La présente invention concerne aussi les objets fabriqués avec les compositions précédentes ; ce sont par exemple des films, des tubes, des plaques, des emballages, des boîtiers d'ordinateurs, de télécopieur ou de téléphone.
On donne ci-après un mode opératoire de préparation d'un copolymère à bloc PS-b-PEG. Produits utilisées : - HO-TEMPO (ou TEMPO-OH): 4-hydroxy-2,2,6,6-tétraméthyl-1- pipéridinyloxy habituellement commercialisé sous la dénomination 4-hydroxy
TEMPO;
Azocarboxy : 4,4'-azobis(cyanovaleric acid):
Figure imgf000014_0001
(ce produit es commercialisé par ATOFINA sous le nom « Azocarboxy »)
POE : poly(ethylene glycol) methyl éther:
CH3— (O— CH2— CH2)45— OH DCC : Dicyclohexylcarbodiimide:
Figure imgf000015_0001
DMAP : Dimethylaminopyridine:
Figure imgf000015_0002
La synthèse est effectué en deux étapes :
1. Synthèse du macroamorceur AZO-PEG , puis
2. Polymérisation radicalaire (contrôlée) de styrène
1. Synthèse du macroamorceur AZO-PEG Pour cette synthèse le tableau ci-dessous rassemble les ingrédients et les quantités utilisées :
Figure imgf000015_0003
Les composés solides (POE-OH, Azocarboxy et DMAP) sont pesés, mélangés et introduits dans un réacteur en verre de 11. Puis les solvants sont ajoutés (en premier du dichlorométhane pour solubiliser le POE-OH puis le THF pour solubiliser l'azocarboxy) et tempéré à 0°C. Le DCC est introduit à l'aide d'une seringue et d'une aiguille (il est en solution dans le dichlorométhane) à travers un septum. La réaction est faite à 0°C pendant une heure et est laissée à température ambiante pendant 20 heures (sous agitation mécanique). Ensuite le produit est filtré sur Bϋchner : le filtrat est récupéré et les solvants (THF et CH2CI2) sont évaporés (évaporateur rotatif à température ambiante). Ensuite le résidu est solubilisé dans du CH2CI2, filtré sur Bϋchner. Le filtrat est évaporé à nouveau (évaporateur rotatif à température ambiante) et le produit est séché à l'étuve à température ambiante pendant 12 h (rendement 74 %).
Analyse RMN C13
Figure imgf000016_0001
Ces résultats sont déterminés par l'analyse RMN du C13. L'amorceur contient 83.3 % 4,4'-azobis(cyanovaiericpolyèthylene glycol ester) et 16.2 % PEG-OH non-réagi.
Polymérisation radicalaire contrôlée
Figure imgf000016_0002
Le TEMPO-OH est solubilisé dans le styrène puis introduit dans un ballon contenant l'amorceur de l'étape 1. On dégaze le ballon en bullant de l'azote pendant environ 20 min. Ensuite le ballon est placé dans un bain d'huile préalablement chauffé vers 140°C. La polymérisation est conduite pendant 720 min et des échantillons pour suivre la cinétique sont régulièrement prélevés. Le temps zéro correspond à l'obtention d'une température de milieu réactionnel de 100°C. A la fin de la synthèse le produit est précipité dans du méthanol, filtré et séché sous vide à 50°C pendant 12 h. Résultats :
Les analyses sont faites dans le THF à température ambiante.
Figure imgf000017_0001
Les échantillons ont été analysés à 50°C dans du chloroforme-d par RMN 1 H : A partir de l'intégration du massif des protons aromatiques du PS (en retirant la contribution du styrène monomère), de l'intégration des raies du groupement CH2= du styrène monomère et de l'intégration de la raie des groupements éthers du PEG, nous avons déterminé le ratio massique PS/PEG ainsi que la teneur massique en styrène monomère par rapport au polymère.
Afin d'avoir une idée de la composition massique, nous avons utilisé les Mn déterminés par GPC et déduit un ratio masse PS / masse PEG en supposant la Mn du PEG égale à 2 000 g/mol. Les résultats GPC et RMN concordent bien.
Figure imgf000017_0002

Claims

REVENDICATIONS
DI.DDD
1 composition comprenant pour 100 parties en poids : - 99 à 60 parties en poids d'un polymère styrènique (A), - 1 à 40 parties en poids de (B) + (C),
(B) étant un copolymère à blocs polyamide et blocs polyether comprenant essentiellement des motifs oxyde d'éthylène — (C2H4 — O) — , (C) étant un compatibilisant choisi parmi les copolymeres à blocs comprenant au moins un bloc polymérisé comprenant du styrène et au moins un bloc polymérisé comprenant des motifs oxyde d'éthylène, le rapport en masse (B)/(C) étant compris entre 2 et 10.
2 Composition selon la revendication 1 dans laquelle (B) est en proportion suffisante pour que la composition finale ait une résistivité superficielle mesurée selon la norme IEC93 Inférieure à 5.1013Ω/D. 3 Composition selon l'une des revendications précédentes dans laquelle (B) est en proportion suffisante pour que la composition finale ait une une résistivité volumique mesurée selon la norme IEC93 inférieure à 5.1016 Ω.cm.
4 Composition selon l'une des revendications précédentes dans laquelle le rapport (B)/(C) est compris entre 4 et 10
5 Composition selon l'une des revendications précédentes dans laquelle (A) comprend plus de 50 % de styrène.
6 Composition selon l'une des revendications précédentes caractérisée en ce que la quantité de (C) va de 0,5 à 5 parties en poids dans 100 parties en poids de composition.
7 Composition selon l'une des revendications précédentes caractérisée en ce que le bloc polymérisé comprenant du styrène est présent dans C à raison de 60 à 99 % en poids et en ce que le bloc polymérisé comprenant des motifs oxyde d'éthylène est présent dans C à raison de 40 à 1 % en poids.
8 Composition selon l'une des revendications précédentes caractérisée en ce que le bloc polymérisé comprenant du styrène est présent dans C à raison de 60 à 98 % en poids et en ce que le bloc polymérisé comprenant des motifs oxyde d'éthylène est présent dans C à raison de 40 à 2% en poids.
9 Composition selon l'une des revendications précédentes caractérisée en ce que le bloc polymérisé comprenant du styrène comprend au moins 50 % en poids de styrène. 10 Composition selon l'une des revendications précédentes caractérisée en ce le bloc polymérisé comprenant du styrène comprends du méthacrylate de glycidyle.
11 Composition selon l'une des revendications précédentes caractérisée en ce que le bloc polymérisé comprenant des motifs oxyde d'éthylène ne comprend pas de comonomere.
12 Composition selon l'une des revendications précédentes caractérisée en ce que le copolymère à blocs comprenant au moins un bloc polymérisé comprenant du styrène et au moins un bloc polymérisé comprenant des motifs oxyde d'éthylène est greffé par le méthacrylate de glycidyle.
13 Composition selon l'une des revendications précédentes caractérisée en ce que (A) est un copolymère styrène-butadiène.
14 Composition selon l'une des revendications précédentes dans laquelle la quantité de (B)+(C) est de 5 à 30 parties pour 95 à 70 parties de
(A).
15 Composition selon la revendication précédente dans laquelle la quantité de (B)+(C) est de 10 à 20 pour 90 à 80 parties de (A).
16 Composition selon l'une des revendications précédentes caractérisée en ce qu'elle ne comprend pas de polyphénylèneoxyde.
17 Objets fabriqués dans une composition selon l'une des revendications précédentes.
18 Utilisation de l'objet de la revendication précédente pour entrer en contact avec des composants électroniques.
PCT/FR2002/000384 2002-01-31 2002-01-31 Compositions de polymeres styreniques antistatiques WO2003068861A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR10-2004-7011819A KR20040086322A (ko) 2002-01-31 2002-01-31 정전기 방지 스티렌계 중합체 조성물
EP02701372A EP1470189A1 (fr) 2002-01-31 2002-01-31 Compositions de polymeres styreniques antistatiques
US10/502,978 US6962956B2 (en) 2002-01-31 2002-01-31 Antistatic strenique polymer compositions
CA002474557A CA2474557A1 (fr) 2002-01-31 2002-01-31 Compositions de polymeres styreniques antistatiques
JP2003567980A JP2005517757A (ja) 2002-01-31 2002-01-31 帯電防止特性を有するスチレン系ポリマー組成物
CNA028284542A CN1622975A (zh) 2002-01-31 2002-01-31 抗静电苯乙烯类聚合物组合物
AU2002234709A AU2002234709A1 (en) 2002-01-31 2002-01-31 Antistatic strenique polymer compositions
PCT/FR2002/000384 WO2003068861A1 (fr) 2002-01-31 2002-01-31 Compositions de polymeres styreniques antistatiques

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2002/000384 WO2003068861A1 (fr) 2002-01-31 2002-01-31 Compositions de polymeres styreniques antistatiques

Publications (1)

Publication Number Publication Date
WO2003068861A1 true WO2003068861A1 (fr) 2003-08-21

Family

ID=27675983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/000384 WO2003068861A1 (fr) 2002-01-31 2002-01-31 Compositions de polymeres styreniques antistatiques

Country Status (8)

Country Link
US (1) US6962956B2 (fr)
EP (1) EP1470189A1 (fr)
JP (1) JP2005517757A (fr)
KR (1) KR20040086322A (fr)
CN (1) CN1622975A (fr)
AU (1) AU2002234709A1 (fr)
CA (1) CA2474557A1 (fr)
WO (1) WO2003068861A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282707A (ja) * 2005-03-31 2006-10-19 Asahi Kasei Chemicals Corp 帯電防止用押出シート

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095604A (ja) * 2008-10-16 2010-04-30 Ube Ind Ltd ゴム組成物
JP2012515559A (ja) 2009-01-26 2012-07-12 ナノインク インコーポレーティッド 制御された先端部材負荷用蒸着を含む大面積均質アレイの製作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2519012A1 (fr) * 1981-12-29 1983-07-01 Ato Chimie Composition nouvelle formee d'un melange intime de polyolefines et de polyetheresteramides
JPH09302172A (ja) * 1996-05-20 1997-11-25 Nippon Steel Chem Co Ltd 帯電防止性スチレン系樹脂組成物

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029720A (en) * 1972-08-10 1977-06-14 Badische Anilin- & Soda-Fabrik Aktiengesellschaft Block or graft copolymers of polyalkylene oxides and vinylaromatic or diene polymers
FR2273021B1 (fr) 1974-05-31 1977-03-11 Ato Chimie
FR2318185A1 (fr) 1975-07-17 1977-02-11 Ato Chimie Procede de preparation de copolyesteramides comme produits a mouler
US4195015A (en) 1976-07-30 1980-03-25 Ato Chimie Heat and aging stable copolyetheresteramides and method of manufacturing same
FR2401947A1 (fr) 1977-09-02 1979-03-30 Ato Chimie Procede de preparation de polyether-ester-amides sequences utilisables, entre autres, comme produits a mouler, a extruder ou a filer
FR2466478B2 (fr) 1979-10-02 1986-03-14 Ato Chimie Procede de preparation de copolyetheresteramides aliphatiques elastomeres
DE3247755A1 (de) 1982-12-23 1984-06-28 Plate Bonn Gmbh, 5300 Bonn Copolyetheresteramide, verfahren zu ihrer herstellung und deren verwendung zum heisssiegeln von textilien
JPS6023435A (ja) 1983-07-19 1985-02-06 Toray Ind Inc 制電性樹脂組成物
JPS60170646A (ja) 1984-02-16 1985-09-04 Daicel Chem Ind Ltd 樹脂組成物
JPS6110411A (ja) 1984-06-19 1986-01-17 Daicel Chem Ind Ltd 樹脂組成物
FR2582659B1 (fr) 1985-06-03 1987-07-31 Saint Gobain Isover Alliages de polymeres polystyrene polyamide
IT1210168B (it) 1985-06-05 1989-09-06 I C E Co S P A Struttura portante per pavimenti sopraelevati.
EP0242158B1 (fr) 1986-04-14 1994-01-19 Toray Industries, Inc. Compositions de résine thermoplastique intrinsèquement antistatique
FR2611726B1 (fr) 1987-02-26 1989-06-16 Atochem Polyesteramides et polyetherthioether-ester-amides - leur procede de fabrication
JPH0214232A (ja) 1988-07-01 1990-01-18 Japan Synthetic Rubber Co Ltd 熱可塑性樹脂組成物
JPH03237149A (ja) 1990-02-14 1991-10-23 Toagosei Chem Ind Co Ltd 制電性樹脂組成物
JPH04239045A (ja) 1991-01-10 1992-08-26 Ube Ind Ltd 帯電防止性樹脂組成物
US5489667A (en) 1991-03-20 1996-02-06 Atochem Deutschland Gmbh Polyetheresteramides and process for making and using the same
JP2773806B2 (ja) 1991-06-14 1998-07-09 宇部興産株式会社 熱可塑性樹脂組成物
DE4134967C1 (fr) * 1991-10-23 1992-12-10 Th. Goldschmidt Ag, 4300 Essen, De
JPH0768508B2 (ja) 1992-05-19 1995-07-26 三洋化成工業株式会社 帯電防止剤
US5322912A (en) 1992-11-16 1994-06-21 Xerox Corporation Polymerization processes and toner compositions therefrom
US5652326A (en) 1993-03-03 1997-07-29 Sanyo Chemical Industries, Ltd. Polyetheresteramide and antistatic resin composition
DE4318047C2 (de) 1993-05-29 1995-09-14 Atochem Elf Deutschland Verwendung von Copolyamiden als Schmelzkleber zum Heißsiegeln
JPH08143780A (ja) 1994-11-24 1996-06-04 Nippon Oil & Fats Co Ltd 熱可塑性樹脂組成物
US5575714A (en) 1995-02-07 1996-11-19 Binair Groep B.V. Method and apparatus to pour fluid around fresh produce
JPH08239530A (ja) 1995-03-02 1996-09-17 Nippon Steel Chem Co Ltd スチレン系樹脂組成物
JPH09249780A (ja) 1996-03-14 1997-09-22 Nippon Steel Chem Co Ltd スチレン系樹脂組成物
JP3361249B2 (ja) * 1997-08-08 2003-01-07 アトフィナ・ジャパン株式会社 熱可塑性樹脂組成物の製造方法及び成形品
JPH1160855A (ja) 1997-08-27 1999-03-05 Nippon Steel Chem Co Ltd スチレン系樹脂組成物
JPH1160856A (ja) 1997-08-27 1999-03-05 Nippon Steel Chem Co Ltd スチレン系樹脂組成物
FR2773158B1 (fr) 1997-12-30 2000-02-04 Atochem Elf Sa Procede de polymerisation radicalaire controlee faisant intervenir une faible quantite de radical libre stable
US6825270B1 (en) * 1999-08-04 2004-11-30 Atofina Antistatic styrene polymer compositions
CA2355705C (fr) 1999-10-18 2007-04-24 Atofina Polyetheresteramides et compositions de polymeres antistatiques les contenant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2519012A1 (fr) * 1981-12-29 1983-07-01 Ato Chimie Composition nouvelle formee d'un melange intime de polyolefines et de polyetheresteramides
JPH09302172A (ja) * 1996-05-20 1997-11-25 Nippon Steel Chem Co Ltd 帯電防止性スチレン系樹脂組成物

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; GUO, TIANYING ET AL: "Study on the nylon 6/ polystyrene blends with the styrene-ethylene oxide diblock copolymer as compatibilizer", XP002178938, retrieved from STN Database accession no. 129:276874 HCA *
DATABASE WPI Section Ch Week 199806, Derwent World Patents Index; Class A13, AN 1998-059343, XP002201648 *
GAOFENZI XUEBAO (1998), (4), 459-464 *
GUO T-Y ET AL: "Compatibility and mechanical properties of polyamide-6/ polystyrene/diblock poly(styrene-b-ethylene oxide) copolymer blends", EUROPEAN POLYMER JOURNAL, PERGAMON PRESS LTD. OXFORD, GB, vol. 37, no. 2, 15 December 2000 (2000-12-15), pages 241 - 246, XP004219635, ISSN: 0014-3057 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282707A (ja) * 2005-03-31 2006-10-19 Asahi Kasei Chemicals Corp 帯電防止用押出シート
JP4690761B2 (ja) * 2005-03-31 2011-06-01 旭化成ケミカルズ株式会社 帯電防止用押出シート

Also Published As

Publication number Publication date
US6962956B2 (en) 2005-11-08
US20050014899A1 (en) 2005-01-20
KR20040086322A (ko) 2004-10-08
CN1622975A (zh) 2005-06-01
JP2005517757A (ja) 2005-06-16
CA2474557A1 (fr) 2003-08-21
EP1470189A1 (fr) 2004-10-27
AU2002234709A1 (en) 2003-09-04

Similar Documents

Publication Publication Date Title
CA2306336C (fr) Compositions de polymeres antistatiques
EP1121391A1 (fr) Compositions de polymeres styreniques antistatiques
EP2115040B1 (fr) Composition thermoplastique souple a tenue aux huiles amelioree et utilisation d&#39;une telle composition
CA2355705C (fr) Polyetheresteramides et compositions de polymeres antistatiques les contenant
FR2824329A1 (fr) Compositions de polymeres antistatique
WO2001018111A2 (fr) Compositions de polymeres acryliques antistatiques
CA2228735C (fr) Compositions de resines thermoplastiques multiphases
EP1045007B1 (fr) Compositions de résines thermoplastiques comprenant une phase dispersée rigide
EP1583800A1 (fr) Compositions thermoplastiques renforcees aux chocs comprenant un polyamide et un copolymere a blocs
EP1572802A1 (fr) Composites a base de polymeres styreniques
EP1516002A2 (fr) Copolymeres sequences
EP1470188A1 (fr) Composition de polymeres styreniques antistatiques
WO2003068861A1 (fr) Compositions de polymeres styreniques antistatiques
FR2820139A1 (fr) Compositions de polymeres styreniques antistatiques
FR2820138A1 (fr) Compositions de polymeres styreniques antistatiques
FR2798666A1 (fr) Compositions de polymeres acryliques antistatiques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002701372

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2474557

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10502978

Country of ref document: US

Ref document number: 1020047011819

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003567980

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20028284542

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002701372

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002701372

Country of ref document: EP