WO2003065600A1 - Recepteur a conversion directe et procede de reduction de decalage en continu - Google Patents

Recepteur a conversion directe et procede de reduction de decalage en continu Download PDF

Info

Publication number
WO2003065600A1
WO2003065600A1 PCT/JP2003/000783 JP0300783W WO03065600A1 WO 2003065600 A1 WO2003065600 A1 WO 2003065600A1 JP 0300783 W JP0300783 W JP 0300783W WO 03065600 A1 WO03065600 A1 WO 03065600A1
Authority
WO
WIPO (PCT)
Prior art keywords
pass filter
signal
variable gain
gain amplifier
frequency
Prior art date
Application number
PCT/JP2003/000783
Other languages
English (en)
French (fr)
Inventor
Hidenori Matsumoto
Toshio Obara
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/469,290 priority Critical patent/US7171185B2/en
Priority to KR10-2003-7012512A priority patent/KR100532266B1/ko
Priority to EP03734861A priority patent/EP1471653A4/en
Publication of WO2003065600A1 publication Critical patent/WO2003065600A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • H03G3/3068Circuits generating control signals for both R.F. and I.F. stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3809Amplitude regulation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70707Efficiency-related aspects

Definitions

  • the present invention relates to a DC (Direct Current) offset reduction method, an AGC (Auto Gain Control) circuit in a direct conversion receiver, a CDMA (Code Division Multiple Access) receiver, and a baseband variable gain amplifier circuit.
  • DC Direct Current
  • AGC Automatic Gain Control
  • CDMA Code Division Multiple Access
  • a direct conversion receiver is a receiver that multiplies an RF signal received by an antenna by a carrier (local signal) having substantially the same frequency and directly converts the signal to a baseband signal without converting to an intermediate frequency. Yes, contributing to miniaturization, weight reduction and low power consumption of wireless receivers.
  • the direct conversion receiver has a problem that a circuit-specific DC offset (hereinafter, DC offset) is generated.
  • DC offset circuit-specific DC offset
  • the inventor of the present invention studied mounting a direct conversion receiver on a CDMA receiver such as a mobile phone.
  • the AGC circuit required for the CDMA receiver causes a DC offset
  • the method of introducing the high-pass filter into the signal path as described above solves the problem of the DC offset caused by the AGC circuit. Things impossible Became clear.
  • the basic operation of the AGC circuit is to measure the received signal power, generate a control signal by comparing it with a target value, and change the gain of the variable gain amplifier using the control signal (negative feedback control operation). is there.
  • the CDMA receiver especially when the power is turned on, intermittent reception (the mobile phone is in standby mode, intermittently checks synchronization with the base station, and in other states, turns off the circuit power to reduce power consumption)
  • intermittent reception the mobile phone is in standby mode, intermittently checks synchronization with the base station, and in other states, turns off the circuit power to reduce power consumption
  • the W-CDMA system Immediately after power-up of the circuit at the time of power mode reception) or when handover between different frequency cells is performed in the compressed mode, use the W-CDMA system and the GSM (Global System for Mobile communications) system.
  • GSM Global System for Mobile communications
  • a direct conversion receiver requires a high-pass filter to block the DC component, while a CDMA receiver requires an AGC circuit, and a high-pass filter is inevitable. It is also a component of the AG C loop. '
  • the direct conversion receiver As described above, if an attempt is made to apply a direct conversion receiver to a receiver such as a CDMA system equipped with an AGC circuit, self-contradiction occurs in the operation of the AGC, and therefore, the direct conversion receiver is referred to as a CDMA receiver. It is difficult to actually use it. Disclosure of the invention
  • the present invention has been made to overcome such a new problem found by the inventor of the present application, and its object is to generate a direct conversion receiver due to AGC control.
  • An object of the present invention is to reduce DC offset and to enable accurate and high-speed AGC control without causing a problem of DC offset.
  • a period in which the DC offset is likely to increase is detected, and in that period, the time constant of the high-pass filter for blocking the DC component interposed in the signal path is made smaller than that in the normal operation, and the high-pass filter is used. It rapidly converges the transient response (differential waveform) of the passed signal, thereby reducing the DC offset to a negligible level in the actual operation of the circuit.
  • the amplitude-phase change of the modulated signal (received signal) component increases, causing a new problem that the deviation of the vector becomes large and the demodulation accuracy decreases.
  • E.V.M. error 'vector' magnitude
  • changing the time constant of the high-pass filter also gives a different deformation to the waveform of the received signal, which causes the demodulation accuracy to decrease.
  • the cutoff frequency of the high-pass filter is increased, and the generated DC offset is quickly brought to the same level as in the steady state. Convergence, and in other periods the high-pass filter's power-off frequency is lowered as usual.
  • the AGC circuit of the present invention takes measures against the essential problem that the DC offset increases due to its own AGC control operation, and stable operation is always guaranteed.
  • Figure 1 shows how the transient response waveforms overlap and a large DC offset occurs when the power cutoff frequency of the high-pass filter is fixed as before.
  • Fig. 2 is a diagram showing the relationship between the control value (analog control voltage) and the set gain in the variable gain amplifier in the baseband variable gain amplifier circuit.
  • FIG. 3 is a diagram showing a relationship between a control value (setting data) and a set gain in a variable gain amplifier in a baseband variable gain amplifier circuit.
  • Fig. 4 shows the relationship between the cut-off frequency of the high-pass filter and the demodulation accuracy (error characteristics) in the direct conversion receiver in Fig. 10.
  • Fig. 5 shows the power cut-off frequency of the high-pass filter changed in three steps. Waveform diagram showing how the transient response waveform converges when
  • Fig. 6 shows how the DC offset increases in proportion to the gain change (level change) when the gain set in the variable gain amplifier changes due to the AGC control in the direct conversion receiver in Fig. 10.
  • Figure 7 shows the relationship between the DC offset and the bit error rate (BER) of the demodulated signal.
  • FIG. 8 shows the relationship between the DC offset amount and the measured average power.
  • FIG. 9 shows that the transient response waveforms overlap when the cutoff frequency of the high-pass filter is switched higher than normal.
  • FIG. 10 is a diagram showing a state in which no direct conversion occurs, according to the first embodiment of the present invention.
  • Block diagram showing the configuration of a transceiver (CDMA receiver with built-in AGC circuit).
  • Fig. 11A shows AGC mode 1 (high-speed tracking mode: switching of cut-off frequency of high-pass filter) in the direct conversion receiver shown in Fig. 10.
  • Timing diagram showing the timing of measuring the average received power when the mode with
  • Fig. 11B shows the timing for measuring the average received power when the AGC mode 2 (low-speed tracking mode: mode without switching the cutoff frequency of the high-pass filter) is used in the direct conversion receiver in Fig. 10.
  • Fig. 12A shows the gain per update when AGC mode 1 (high-speed tracking mode: mode involving switching of the cutoff frequency of the high-pass filter) is used in the direct conversion receiver in Fig. 10.
  • Fig. 12B shows the per-update time when AGC mode 2 (low-speed tracking mode: mode without switching the cutoff frequency of the high-pass filter) is adopted in the direct conversion receiver in Fig. 10.
  • Fig. 13A shows the components that make up the AGC loop when AGC mode 1 (high-speed tracking mode: a mode that involves switching the cutoff frequency of a high-pass filter) is used in the direct conversion receiver in Fig. 10.
  • AGC mode 1 high-speed tracking mode: a mode that involves switching the cutoff frequency of a high-pass filter
  • Fig. 13B shows the components of the AGC loop when the AGC mode 2 (low-speed tracking mode: mode without switching the cutoff frequency of the high-pass filter) is adopted in the direct conversion receiver in Fig. 10. Timing diagram showing operation timing,
  • FIG. 14 is a flowchart showing the main operation procedures of the AGC circuit of the present invention (the AGC circuit mounted on the direct conversion receiver in FIG. 10).
  • FIG. 15 is a block diagram showing a configuration of a modification in which only the power control method of the baseband variable gain amplifier circuit is changed while the main configuration of the direct conversion receiver of FIG. 10 is kept as it is,
  • FIG. 16 is a block diagram showing a configuration of a direct conversion receiver (a CDMA receiver having an AGC circuit built-in) according to the second embodiment of the present invention
  • FIG. 17 is a direct view of FIG. A block diagram showing a configuration of a modified example in which only the power control method of the baseband variable gain amplifier circuit is changed while leaving the main configuration of the conversion receiver as it is,
  • FIG. 18 is a block diagram illustrating an example of a circuit configuration of a direct conversion receiver (a circuit that performs gain control of a variable gain amplifier using serial data) according to the third embodiment of the present invention.
  • FIG. 19 is a block diagram showing an example of a circuit configuration of a direct conversion receiver (a circuit for switching a time constant of a high-pass filter triggered by power-on) according to a third embodiment of the present invention.
  • FIG. 20 is a block diagram illustrating an example of a circuit configuration of a direct conversion receiver (a circuit instructing switching of a time constant of a high-pass filter using a PLL synthesizer) according to the third embodiment of the present invention. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • the gist of the present invention is to reduce the DC offset by reducing the time constant of the high-pass filter to prevent accumulation of DC component fluctuations when the DC offset increases due to the AGC control. That is.
  • the first method is to detect the amount of gain change in gain control, and to judge that there is a risk of an increase in DC offset when the gain exceeds a preset threshold value.
  • the third method is to detect the timing at which DC fluctuations are likely to occur based on the control signal of the control signal.
  • the third method is to move between cells based on the broadcast information included in the received signal in the compressed mode or the like. This is a method of obtaining information and identifying the timing at which DC fluctuations occur.
  • a situation in which the DC offset is likely to increase due to the gain switching of the variable gain amplifier by the AGC control is detected by any of the methods described above, and the time constant of the high-pass filter is changed for only a short period of time. In this way, accumulation of DC errors is prevented.
  • the feature of this embodiment is that the time constant of the high-pass filter is switched by detecting the amount of change in the gain of the variable gain amplifier.
  • Fig. 2 shows the gain characteristics of the variable gain amplifier when the gain of the variable gain amplifier circuit is changed using the analog control voltage.
  • Fig. 3 shows the variable characteristics when the control is performed using a digital control signal (serial data). It shows the gain characteristics of the gain amplifier.
  • the invention according to the present embodiment can be realized in a variable gain amplifying circuit having a characteristic in which the gain changes recurringly, as shown in FIG. 2 or FIG. Fig. 4 shows the relationship between the cut-off frequency of the high-pass filter and the demodulation accuracy (error characteristic) of the received signal.
  • Fig. 5 shows the convergence characteristics of the differential waveform with respect to the cut-off frequency of the high-pass filter. In FIG. 5, the cut-off frequency increases in the order of the characteristics S 1, S 2, and S 3.
  • FIG. 6 is a diagram showing the correspondence between the amount of change in gain set in the variable gain amplifier and the amount of generated DC offset.
  • Fig. 7 shows the BER (Bit Error Kate) characteristics of the demodulated signal due to the DC offset value near the sensitivity point
  • Fig. 8 shows the change in the average power measured value corresponding to the DC offset value when the received electric field is constant. Is shown.
  • the DC offset has little effect up to a certain value, and the maximum offset value in a range where this effect is small is defined as an allowable value (threshold).
  • the high-pass Filter power-off frequency It is best to lower the cutoff frequency of the high-pass filter below that.
  • Fig. 1 shows how the DC offset accumulates when the gain of the variable gain amplifier is frequently switched with a short interpal while the cutoff frequency of the high-pass filter is fixed as in the past.
  • FIG. 9 shows how the DC offset varies when the cutoff frequency of the high-pass filter is appropriately switched using the present invention.
  • the gain of a variable gain amplifier can be changed in 10 steps, and if the current gain is changed from level 1 to level 10, the gain can be changed in 10 steps at once. Since the level cannot be changed, it is necessary to change the level step by step at a high speed.
  • the differential waveform is output one after another from the high-pass finoletor with one gain change, and as shown in Fig. 1, the DC shift is accumulated, resulting in a large DC offset as a total torque. .
  • the cutoff frequency of the high-pass filter is instantaneously increased at a time when there is a high risk that the DC offset is large, and the time is fixed.
  • the cutoff frequency of the high-pass filter is dynamically changed, and the operation timing of each part configuring the AGC loop is considered while considering such a change in the cutoff frequency. Fine-grained control ensures a stable circuit operation while reliably preventing an increase in DC offset.
  • the direct-conversion receiver of this embodiment includes an antenna 25, a reception band-pass filter (RX-BPF) 26, a low-noise amplifier (LNA) 1, and a quadrature mixer 2a. , 2 b, local oscillator (local) 3, phase shifter 4, baseband variable gain amplifier 6, DC cut capacitors C1, C2, A / D converters 13a, 13b, decoder 17 It has a section 18, a received power measuring section 16, a timing control section 20, a gain calculation section 22, and a gain control section 23.
  • RX-BPF reception band-pass filter
  • LNA low-noise amplifier
  • the baseband variable gain amplifier 6 includes variable gain amplifiers 7 a, 7 b, 7 c, 7 d, 7 e, 7 f, low-pass finoleta (LPF) 8 a, 8 b, cut-off frequency switching high-pass It has filters (HPF) 12a, 12b, 12c, 12d, all-pass filters (APF) 14a, 14b, gain change detection unit 9, and filter control unit 11.
  • HPF filters
  • APF all-pass filters
  • the signal received by the antenna 25 is input to the LNA 1 after unnecessary signal components (including noise from the transmitter) outside the reception band are removed by the RX-BPF 26.
  • the LNA 1 amplifies the modulated received signal (f 0 soil ⁇ f) and outputs the amplified signal to the two quadrature mixers 2 a and 2 b.
  • the local oscillator 3 oscillates a signal having the same frequency as the output frequency of the LNA 1 (f 0) and outputs it to the phase shifter 4.
  • the phase shifter 4 converts the signal output from the local oscillator 3
  • the phase is forwarded to the quadrature mixer 2b while the phase is advanced to the quadrature mixer 2a.
  • the quadrature mixers 2 a and 2 b multiply the output from the LNA 1 (f 0 ⁇ f) by the output from the phase shifter 4 (f 0) and change the generated baseband signal ( ⁇ ) to a baseband variable. Output to gain amplifier circuit 6.
  • the signals input to the baseband variable gain amplifying circuit 6 are output at LPFs 8a, 8b, HPFs 12a, 12b, 12c, 12d, and APFs 14a, 14b. Constant unnecessary frequency components are removed, and amplified by the variable gain amplifiers 7a, 7b, 7c, 7d, 7e, and 7f according to a predetermined gain.
  • the HPFs 12a, 12b, 12c, and 12d remove the frequency components of the baseband signal below the cutoff frequency according to the cutoff frequency preset by the filter control unit 11. I do.
  • the gains of the variable gain amplifiers 7a, 7b, 7c, 7d are dynamically adjusted by the gain control unit 23.
  • the output signal of the baseband variable gain amplifying circuit 6 passes through the DC cut capacitors C 1 and C 2 for each of the I component and the Q component having a phase difference of 90 degrees, and then the AZD converters 13 a and 13 AZD conversion is performed in b, and decoding (including despreading) is performed in the decoder 17.
  • the outputs of the A / D converters 13a and 13b are also output to the reception power measurement unit 16.
  • the received power measuring unit 16 adds the square values of the amplitudes of the I component and the Q component of the received signal, and then converts the sum to a power value.
  • the power measurement values must be averaged over a certain section. Needs to be converted to a power value. This measurement section is determined by the reception mode signal output from the determination unit 18. This point will be described later.
  • the determination unit 18 is supplied with various information including the received signal, and also receives a signal VD for notifying power-on and a timing control signal VX for intermittent reception. Supplied.
  • the determination unit 18 determines the current reception state from various information included in the reception signal, or receives the current direct conversion reception signal based on the power-on notification signal VD or the timing control signal VX during intermittent reception. The operation status of the equipment is determined, the determination result is notified to the timing control unit 20, and the AGC mode signal 19 is provided to the reception power measurement unit 16, the gain calculation unit 22, and the gain control unit 23. .
  • the timing control section 20 is provided with a control signal to each of the reception power measurement section 16, gain calculation section 22, gain control section 23, and circuit power control section 24 in the baseband variable gain amplifier circuit 6. Give 21a to 21d to control the timing of each part in a comprehensive manner.
  • the circuit power supply control section 24 intermittently turns on and off the power supply of the baseband variable gain amplifier circuit 6 to realize a so-called intermittent reception (standby reception mode).
  • the AGC mode in this embodiment includes a high-speed mode (mode 1) and a low-speed mode (mode 2).
  • the high-speed mode (mode 1) is, for example, immediately after the power is turned on, before synchronization is established, and intermittently.
  • the gains of the variable gain amplifiers 7a, 7b, 7c, 7d, 7e, and 7f can be quickly followed. This is the mode used.
  • the low-speed mode (mode 2) is a mode adopted when the gain adjustment of the variable gain amplifier circuit converges and stable data reception is performed. In this mode, the DC offset does not increase. As described above, the frequency of updating the gain of the variable gain amplifier circuit is reduced, and the amount of one update is reduced, thereby suppressing the level of the harmonic component accompanying the gain switching.
  • the operation timings of the received power measurement unit 16, gain calculation unit 22, and gain control unit 23 are based on the AGC mode signal output from the judgment unit 18 and the timing control signal output from the timing control unit 20. It is determined based on 21a to 21c.
  • the operation timing of the circuit power control unit 24 is controlled by a timing control signal 21 d output from the timing control unit 20.
  • the gain control unit 23 sets the gain calculated by the gain calculation unit 22 to each of the variable gain amplifiers 7a, 7b, 7c, 7d, 7e, and 7f.
  • the gain change amount detection unit When the gain variation of the variable gain amplifier (the difference between the previous set value and the current set value) exceeds a predetermined threshold value, the gain change amount detection unit notifies the filter control unit 11 of this fact. Notice.
  • the filter control unit 11 Upon receiving the notification from the gain change amount detection unit 9, the filter control unit 11 switches the cutoff frequencies of the high-pass filters 12a, 12b, 12c, and 12d to high, and sets the time constant. Decrease the DC fluctuations quickly to make it smaller, and after a certain period of time, play back and lower the cutoff frequency.
  • Such switching of the cutoff frequency of the high-pass filter is performed in the AGC mode 1. That is, AGC mode 1 is a mode that involves switching the cutoff frequency of the high-pass filter.
  • the filter control unit 11 maintains the power cut-off frequency of the high-pass filter low (normal power cut-off frequency).
  • the reception power measurement section 16 appropriately changes the timing of the power measurement operation corresponding to the AGC mode.
  • FIG. 11 1A shows AGC mode 1 (mode with high-pass filter switching)
  • FIG. 11B is a diagram showing an example of the timing of the average power measurement in FIG. 11, and
  • FIG. 11B is a diagram showing an example of the timing of the average power measurement in AGC mode 2.
  • Fig. 11A suppose that the average power measurement period is tl to t3 (this period corresponds to, for example, one slot period), and in the initial period (tl to t2), the transition of the high-pass filter is performed. There is a high risk that the DC offset will increase due to the response (hence, the time constant of the high-pass filter is switched during this period), and it is highly likely that the power measurement will not be performed correctly. Perform subsequent measurements.
  • AGC mode 2 (a mode corresponding to a state in which AGC has converged and stable reception is being performed), as shown in Fig. 11B, a wide measurement interval is used to increase measurement accuracy. (Period tl to t3). This allows correct power measurement regardless of the operation of the high-pass filter.
  • the operation of the gain calculator 22 is appropriately controlled in accordance with the AGC mode. That is, similarly to the reception power measurement unit 16, based on the AGC mode signal 19 from the determination unit 18 and the control signal 21b from the timing control unit 20, the gain calculation method and the gain control unit 23 The timing for sending data to is determined.
  • Fig. 12A shows an example of the amount of gain change per update and the update cycle in AGC mode 1
  • Fig. 12B shows the gain per update in AGC mode 2.
  • 6 shows an example of a change amount and an update cycle.
  • the amount of gain fluctuation (the difference between the current value and the previous value of the gain set in the variable gain amplifier) is expected to be large. Assuming the switching of the power-off frequency of the high-pass filter, the amount of gain change at one time is increased and the gain update timing is advanced to quickly converge to the optimum amplitude of the received signal.
  • il to i3 are the gain values calculated by the gain calculator 22, and the level of each gain value changes stepwise.
  • One update The maximum change is the gain value fl.
  • the level changes from level L0 to level L1, and this is the maximum allowable change (maximum gain change width) LMS It becomes 1.
  • the gain update cycle is also performed at short intervals (time t1 to t3).
  • the gain variation is not expected to be so large, so the gain variation per cycle is small and the gain update timing is relaxed. By doing so, it is appropriate to control the control according to the characteristics of the high-pass filter.
  • data may be received, and by setting the gain to a value that does not cause a DC offset exceeding the allowable value, a stable Reception is enabled.
  • the allowable maximum width of the gain change amount per update is suppressed to LMS2.
  • the gain update interval is also long (time t4 to t8) to ensure stable operation without generating a large DC offset.
  • the update timing of the gain change is preferably determined adaptively in consideration of the fading frequency in the actual use state and the envelope of the modulated signal.
  • the output from the gain calculating section 22 may output the gain calculated value as it is as serial data, or in the case of a variable gain amplifier of a type that performs gain control using a DC voltage, the output of the gain calculating section 22
  • the data value is converted to an analog voltage by the DZA converter and supplied to the variable gain amplifier. The control based on the serial data will be specifically described later with reference to FIGS.
  • the operation timing is determined based on the AGC mode signal from the determination unit 18 and the control signal 21c from the timing control unit 20.
  • the gain control section 23 After receiving the calculated value from the gain calculating section 22, the gain control section 23 immediately outputs the gain control signal S to the baseband variable amplifier 6, so that the gain calculating section 22 calculates the gain value in the gain calculating cycle (output The gain can be updated in synchronization with the period.
  • FIG. 13A is a timing chart showing an example of the operation timing of each part constituting the AGC control loop in AGC mode 1
  • FIG. 13B is a timing chart showing each part constituting the AGC control loop in AGC mode 2.
  • FIG. 4 is a timing chart showing an example of the operation timing of FIG.
  • the gain control of the variable gain amplifiers 7a to 7f is performed by the gain control unit 23 at times tl to t2, and at times t2 to t In 3, the gain change detection unit 9 measures the gain change (the difference between the current value and the previous value).
  • the filter control unit 11 cuts off the cutoff frequencies of the high-pass filters 12 a to 12 d during the period from time t 3 to t 4. ) Is switched to a higher frequency, and the cutoff frequency of the high-pass filter returns to the lower frequency at time t4 when the possibility that a large DC offset occurs is reduced.
  • the reception power measurement unit 16 stops measuring the reception power during the period from time t3 to t4, and starts measuring the average reception power from time t4.
  • the measurement of the received power is performed until time t5, and from time t5 to t6, the gain value to be set in the variable gain amplifier is calculated by the gain calculator 22 based on the actually measured received power. Then, after time t6, similar control is performed.
  • gain control is performed from time t1 to t2, a gain change is detected from time t2 to t3, and time t3 to t3. Power measurement is performed at 6, and a gain value is calculated from time t8 to t9. Thereafter, similar control is performed.
  • Figure 14 shows the AGC control operation (AGC mode switching, high-pass filter (Including the cut-off frequency switching operation).
  • AGC mode switching AGC mode switching, high-pass filter (Including the cut-off frequency switching operation).
  • the direct conversion receiver performs intermittent reception to reduce power consumption (reception in which the call from the base station is intermittently checked and the circuit power is turned off during other periods). ).
  • the determination unit 18 determines whether or not it is time to start up the different frequency measurement (step 101).
  • the gain of the variable gain amplifier does not converge and Since there is a high possibility that the DC offset will increase, the mode shifts to AGC mode 1 (step 102). Otherwise, the mode shifts to receive mode 2 (step 109).
  • AGC mode 1 After clearing the parameter n for recording the number of times the loop has been turned to zero (step 103), measure the power (in parallel with this, if necessary, 9. The cutoff frequency of the high-pass filter is switched by the control of the filter controller 11 (step 104). Then, gain calculation (step 105) and gain control (step 106) are performed. If the loop has not been rotated 10 times, AGC control is continued (steps 107 and 108) and the receiving unit The same control is repeated until immediately before is stopped (step 1 16).
  • the power is measured (step 110), the gain is calculated (step 111), the gain is controlled (step 112), and the data is determined (step 113).
  • step 114 when m out-of-synchronisms are detected, the process returns to AGC mode 2 because the gain setting of the variable gain amplifier must be restarted from the beginning, and if no out-of-sync is detected, Until the receiving unit becomes inactive. 15) Repeat the same control.
  • the DC offset increases with the gain switching of the variable gain amplifier under the AGC control.
  • measures are taken automatically to reduce the time constant of the high-pass filter to absorb the transient response at high speed, and to switch the power cut-off frequency (cut-off frequency) of such a high-pass filter (cutoff frequency).
  • the AGC mode 1) and the mode during stable operation (AGC mode 2) are divided into two modes, and the operation of each part that composes the AGC control loop is optimally controlled so that the AGC may become unstable. Therefore, very good negative feedback control is realized.
  • FIG. 15 shows the configuration of the modification.
  • the configuration of the direct conversion receiver in FIG. 15 is almost the same as the configuration in FIG. 10, but the configuration for turning on / off the power supply of the baseband variable gain amplifier circuit 6 is different.
  • the circuit power supply control unit 24 incorporated in the baseband variable gain amplifier circuit 6 turns on / off the circuit power supply based on the timing control signal 21 d from the timing control unit 20. I have.
  • variable amplifier power supply control unit 50 is provided externally, and the supply of the power supply voltage is controlled from here.
  • the variable gain amplifier circuit 6 of FIG. 15 is provided with a circuit (power input unit) 51 for inputting a power supply voltage supplied from the outside. '
  • FIG. 16 is a block diagram showing a configuration of a direct conversion receiver (W-CDMA receiver with built-in AGC) according to the second embodiment of the present invention.
  • the main configuration of the receiver according to the present embodiment is almost the same as that of the above-described first embodiment (FIG. 10), but in the present embodiment, the switching control of the time constant of the high-pass filter is determined.
  • AGC mode signal 19 and It is performed based on the timing control signal 21 e from the timing control unit 20, and is characterized in that the gain change amount detection unit 9 in FIG. 10 is removed.
  • the switching of the power-off frequency of the high-pass filter is necessary because the AGC does not converge at all, as in immediately after power-on, and the loop is turned at high speed, and the variable gain amplifier is switched. This is when it is necessary to make the gain follow the propagation environment at high speed.
  • each part of the AGC loop in such a case is controlled by the determination part 18 and the timing control part 20 as a whole. Therefore, the switching timing of the high-pass filter can be controlled by the AGC mode signal 19 output from the determination unit 18 and the control signal 21 e output from the timing control unit 20.
  • FIG. 17 is a block diagram showing a configuration of the modification.
  • the configuration of the direct conversion receiver in FIG. 17 is almost the same as the configuration in FIG. 16, but the configuration for turning on / off the power of the baseband variable gain amplifier circuit 6 is different.
  • the circuit power supply control section 24 incorporated in the baseband variable gain amplifier circuit 6 turns on / off the circuit power supply based on the timing control signal 21 d from the timing control section 20. are doing.
  • a variable amplifier power supply control unit 50 is provided externally, and the supply of the power supply voltage is controlled from here.
  • the baseband variable gain amplifying circuit 6 in FIG. 17 is provided with a circuit (power input unit) 51 for inputting a power supply voltage supplied from the outside.
  • the direct conversion receiver in Fig. 18 shows an example in which the gain of the variable gain amplifier is controlled by digital data (serial data) instead of an analog control signal.
  • the gain control section 23 outputs a gain control signal (serial data).
  • the serial data has a width of, for example, 16 bits, of which 10 bits are used as gain data, and the remaining 6 bits are freely used for various controls.
  • control data When the power cutoff frequency of the high-pass filter is switched, the control data is set to "1". Conversely, when the control data power is 0, the cutoff frequency is not switched.
  • the baseband variable gain amplifier circuit 6 it is necessary to provide a DZA converter as an interface.
  • the cutoff frequency of the high-pass filter is increased by switching from AGC mode 2 to AGC mode 1, and the cutoff frequency is again adjusted by switching from AGC mode 2 to AGC mode 1. Undo operation is performed automatically
  • the cutoff frequency of the high-pass filter has been increased and then restored, the digital data must be input again and instructed, or Time control is required.
  • the DZA converter 501 and the timer 502 are provided in the baseband variable gain amplifier circuit 6 to show that a predetermined time has elapsed since the cutoff frequency of the high-pass filter was switched.
  • the filter control section 11 restores the cutoff frequency at the timing when the predetermined time has elapsed.
  • the filter control unit 11 switches the power-off frequency of the high-pass filter to a higher frequency by turning on the power of the baseband variable gain amplifier circuit 6 as a trigger. .
  • one of the states in which an increase in DC offset is a problem is a state immediately after power-on or immediately after circuit power-on during intermittent reception. It is possible to understand by watching the operation of the part that controls
  • the filter control section 11 switches the power cutoff frequency of the high-pass filter to be higher. Thereafter, the elapse of the predetermined time is checked by the timer 502, and at the timing after the elapse of the predetermined time, the power-off frequency is restored.
  • the baseband variable gain amplifying circuit 6 externally controls the frequency of the output signal of the PLL circuit assuming that the baseband variable gain amplifier 6 has a built-in PLL circuit (frequency synthesizer using a PLL).
  • the instruction is to switch the cutoff frequency of the data.
  • the PLL frequency synthesizer is a circuit that inserts a variable frequency divider into the PLL loop and changes the frequency division ratio set in the frequency divider to extract an oscillation output of a desired frequency.
  • such a PLL circuit 703 is provided in the baseband variable gain amplifier circuit 6. Then, serial control data is output from the synthesizer control unit 701, and the serial interface 702 decodes the serial control data, and switches the oscillation frequency of the PLL circuit 703 and the control signal for switching the cutoff frequency. (The switching of the oscillation frequency, that is, the change of the cutoff frequency is performed at the same time because a large change in the electric field level is expected due to the confirmation of the different frequencies.)
  • the power cutoff frequency of the high-pass filter can be efficiently switched.
  • Control to restore the cut-off frequency is performed using the timer 502, as in the case of FIGS.
  • the AGC circuit in the direct conversion receiver of the present invention and the CDMA receiver equipped with the AGC circuit adapt the AGC operation, which is essential for stabilizing the amplitude of the received signal, to the environment. While ensuring high-speed and stable operation, the problem of DC offset (large DC shift due to accumulation of transient response waveforms of the high-pass filter) caused by the AGC operation is solved by the high-pass filter. This can be reliably prevented by using a new method of reducing the time constant for a very short time and rapidly converging the transient vibration waveform.
  • variable gain amplifier when the characteristics of the high-pass filter are fixed (when the cut-off frequency of the high-pass filter is low), the variable gain amplifier When the gain change is large, the offset from the ideal timing (sampling point) becomes large due to the occurrence of DC offset, and the demodulation accuracy (bit error rate) decreases, and a large power measurement error occurs. This will cause a substantial loss of reception.
  • the cutoff frequency of the high-pass filter is increased, that is, when the frequency approaches the frequency of the modulated signal (received signal) component, the change in amplitude and phase of the modulated signal (received signal) increases, and the demodulation accuracy decreases. Because of this problem, it is better to set the power cut-off frequency of the no-pass filter to a low value, so that good reception can be obtained under the condition that the DC offset does not fluctuate. The state can be realized.
  • the cutoff frequency of the high-pass filter is dynamically switched at an optimal timing.
  • AGC which is indispensable in a CDMA receiver
  • optimal control can be performed without worrying about a decrease in reception accuracy.
  • a direct conversion receiver with the characteristics of compactness and excellent power consumption is actually installed in a CDMA (including W-CDMA and IS95) receivers.
  • the receiver can be reduced in size and power consumption can be reduced.
  • the cutoff of the high-pass filter is performed during a period in which the DC offset of the internal circuit of the direct conversion receiver may increase beyond the allowable value due to the AGC operation.
  • Off frequency (time Control) to prevent the accumulation (addition) of DC shift.
  • the AGC circuit in the direct conversion receiver of the present invention is a countermeasure circuit against the problem that the DC offset increases due to the AGC operation itself (that is, it cuts the time constant of the high-pass filter by detecting the danger period).
  • Self-contradiction as in the conventional example, if the gain of the AGC loop is increased, the convergence of the AGC will be delayed if the gain of the AGC loop is increased. Therefore, AGC control can be freely performed according to the environment.
  • the AGC circuit it is necessary that the components constituting the negative feedback control loop operate stably while cooperating with each other, and the AGC circuit of the present invention requires the cut-off frequency of the high-pass filter.
  • Multiple AGC modes are provided in consideration of the presence / absence of switching, and consideration is given to the optimal operation of each part in each mode. That is, instead of controlling only the high-pass filter in the variable gain amplifier, the AGC circuit controls the measurement unit, the calculation unit, the gain control unit, and the power supply control unit in the variable amplifier appropriately. Regardless of the state, stable operation is guaranteed at all times.
  • the time constant of the high-pass filter for blocking the DC component existing in the signal path is made smaller than that in the normal operation. This allows the signal passing through the high-pass filter The transient response of the signal is quickly converged and the overlap of the differential waveforms is eliminated, thereby preventing the accumulation of the direct current shift.
  • the amount of change in the gain value set in the variable gain amplifier which is a component of the AGC control loop, exceeds a predetermined amount. Detects that the receiver is in the period immediately after turning on the power, the period immediately after the receiver is started in intermittent reception, or the period immediately after the start of the different frequency measurement in the W-CDMA system. It is determined that the period is likely to increase the offset.
  • An AGC circuit is provided when an amount of change in a gain value set in a variable gain amplifier that is a component of an AGC control loop exceeds a predetermined amount, or when a current direct conversion receiver is used.
  • the cutoff frequency of the high-pass filter is It has a filter control unit that switches to a higher frequency than the operation frequency, reduces the time constant of the high-pass filter, and converges DC fluctuations at high speed.
  • a gain change amount detection unit detects that the change amount of the gain of the variable gain amplifier is equal to or more than a predetermined amount, and receives a notification of the detection result.
  • the filter control unit switches the cutoff frequency of the high-pass filter to the higher side.
  • the gain calculator and the gain control unit perform the above-described configuration while the cutoff frequency of the high-pass filter is switched to the high side. At least one of increasing the change width or shortening the update cycle is performed to achieve faster AGC control than in normal operation. Since the danger of DC offset is reduced, the gain of the negative feedback loop is increased to speed up following the reception environment.
  • the filter control unit switches the cutoff frequency of the high-pass filter to the high side, and then returns the cutoff frequency to the low side again.
  • the received power is not measured in a section where the cutoff frequency of the high-pass filter is switched to a higher side within a predetermined period. Since the measured power value during the period when the DC offset increases is unreliable, this is not used as the basis for AGC control, thereby preventing the control reliability from deteriorating.
  • An AGC circuit determines whether or not a DC offset of a signal that has passed through a high-pass filter is likely to increase based on information included in the demodulated signal, or A determination unit is provided for making a determination based on the operation state of the direct conversion receiver itself, and notifying the determination result to the filter control unit. Upon receiving the notification from the determination unit, the filter control unit The cutoff frequency was switched to the higher side. According to this configuration, the above-described gain change amount detection unit becomes unnecessary.
  • a CDMA receiver is a CDMA receiver equipped with any one of the above-described AGC circuits.
  • the CDMA receiver has a small size, light weight, and low size that a direct conversion receiver has. It has excellent characteristics of power consumption, and guarantees stable operation without problems such as deterioration of demodulation accuracy and instability of AGC control due to DC offset.
  • a baseband variable gain amplifier circuit has a configuration in which a gain variation is detected and a cutoff frequency of a high-pass filter is switched.
  • a baseband variable gain amplifier circuit has a configuration in which a cutoff frequency of a high-pass filter is switched based on an AGC mode signal and a timing control signal.
  • a baseband variable gain amplifier circuit has a configuration in which digital control data is received and a cutoff frequency of a high-pass filter is switched.
  • a baseband variable gain amplifier circuit includes a PLL synthesizer. The cut-off frequency of the high-pass filter is switched by using a switch.
  • a baseband variable gain amplifier circuit has a configuration in which a cutoff frequency of a high-pass filter is switched based on a power-on timing.
  • the present specification is based on Japanese Patent Application No. 2002-0202551 filed on Jan. 29, 2002. All this content is included here. Industrial applicability
  • the present invention can be applied to an AGC (Auto Gain Control) circuit, a CDMA (Code Division Multiple Access) receiver, and a spanned variable gain amplifier circuit in a direct conversion receiver.
  • AGC Auto Gain Control
  • CDMA Code Division Multiple Access

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Circuits Of Receivers In General (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

明 細 書 ダイレク トコンバージョン受信機おょぴ D Cオフセット低減方法
技術分野 ,
本発明は、 D C (Direct Current) オフセット低減方法、 ダイレク トコン バージョン受信機における A G C (Auto Gain Control)回路、 C D MA (Code Division Multiple Access)受信機およびベースバンド可変利得増幅回路に関 する。 背景技術
ダイレクトコンバージョン受信機は、 アンテナで受信された R F信号に、 実質的に同一周波数のキャリア (ローカル信号) を乗算し、 中間周波数への 変換を省いてダイレク トにベースパンド信号に変換する受信機であり、 無線 受信機の小型化、 軽量化および低消費電力化に貢献する。
ダイレクトコンバージョン受信機については、 例えば、 特開平 1 0— 2 4
7 9 5 3号公報に記載されている。
伹し、ダイレク トコンパージョン受信機は、回路固有の直流オフセット(以 下、 D Cオフセット) が発生するという問題がある。
この D Cオフセットに対する対策としては、 上述の特開平 1 0— 2 4 7 9 5 3号の図 1 1に記載されるように、信号経路にハイパスフィルタを揷入し、 コンデンサにより直流成分を阻止するという方法がある。
本願発明の発明者は、 ダイレク トコンバージョン受信機を携帯電話のよう な C D M A受信機に搭載することを検討した。
その結果、 C D MA受信機に必須の A G C回路が D Cオフセットを発生さ せる原因となり、 かつ、 上述のハイパスフィルタを信号経路に揷入する方法 では、 この A G C回路に起因する D Cオフセットの問題を解決できないこと が明らかとなった。
以下、 この問題点について説明する。
C D MA受信機の場合、 弱電界、 強電界のいずれのエリアにおいても、 同 一チャネル内の自己の端末の情報と他のユーザとのデータ識別を常に正しく 行うため、 A/Dコンバータ入力への信号振幅をある範囲内に保つ A G C回 路を設けることが必須である。
A G C回路の基本的動作は、 受信信号電力を実測し、 目標値との比較によ り制御信号を発生させ、 その制御信号により可変利得アンプのゲインを変化 させるというもの (負帰還制御動作) である。
C D MA受信機では、 特に、 電源投入時、 間欠受信 (携帯電話が待ち受け 状態となっていて、 基地局との同期を間欠的にチェックし、 その他の状態で は回路電源をオフして低消費電力モードとする受信) 時における回路の立ち 上げ直後、 あるいは、 コンプレストモードによる異周波数セル間のハンドォ ーバを行う場合、 W— C D MA方式と G S M (Global System for Mobile communications) 方式のように異なる方式の基地局が混在しているアジア 地域などで、方式の異なる基地局間でハンドオーバを行う場合、等において、 可変利得アンプの収束係数を、 現在の受信状態に適合するように高速に調整 する必要があり、 この場合には、 負帰還ループのゲインを増大させる必要が ある。
すなわち、 可変利得アンプのゲインを更新するインターバルを短くすると 共に、 1回のゲイン更新当たりの制御値の変化幅を大きくすることが必要で ある。
このように、 頻繁に、 かつ大きな変化幅で可変利得アンプのゲインを更新 すると、 そのゲイン切り換えに伴う電圧変動が、 信号経路に介在する上述の ハイパスフィルタのコンデンサに伝達され、 その結果として、 鋭い微分波形 が瞬時的に出力される。
この微分波形は、 時間経過と共に収束するが、 その収束の前に、 次の微分 波形が出力されると、 図 1に示すように、 微分波形が次々と重なり合って、 その結果として、 回路の直流電圧が大きくずれてしまう。 すなわち、 大きな D Cオフセットが発生する。
このような大きな DCオフセットが発生すると、復調信号の精度が低下し、 また、 正確な AG C制御が困難となる。
上述したように、 ダイレク トコンバージョン受信機においては、 直流成分 を阻止するためのハイパスフィルタは必要であり、 一方、 CDMA受信機で は AG C回路は必須であり、 そして、 ハイパスフィルタは、 必然的に AG C ループの構成要素でもある。 '
そして、 例えば、 電源投入時等の AG C制御の初期において、 AGCの収 束係数を大きく(ゲイン変化量を大きく)、 高速に外界の伝搬環境に追従させ ることも必須のことである。 このように、 収束を早めるために AGCの追従 能力を増大させると、 上述のように、 可変利得アンプのゲイン切り換えに同 期してハイパスフィルタから出力される微分波形の重なりによって DCオフ セットが発生し、 結局、 正確な AGC制御が困難となって、 可変利得アンプ のゲインを収束させるまでの時間が長くなる、 という矛盾した結果となる。 このように、 ダイレクトコンバージョン受信機を、 AG C回路を搭載した CDMA方式などの受信機に適用しようとすると、 AG C動作に自己矛盾が 生じ、 したがって、 ダイレク トコンバージョン受信機を、 CDMA受信機と して現実に使用することは困難である。 発明の開示
本発明は、 本願発明者によって見い出された、 このような新規な問題点を 克服するためになされたものであり、 その目的は、 ダイレクトコンパージョ ン受信機において、 AGC制御に起因して発生する DCオフセットを低減す ること、 ならびに、 DCオフセットの発生を問題とすることなく、 正確かつ 高速な AG C制御を可能とすることにある。 本発明では、 D Cオフセットが増大する可能性の高い期間を検出し、 その 期間において、 信号経路に介在する D C成分阻止用のハイパスフィルタの時 定数を通常動作時よりも小さく して、 ハイパスフィルタを通過した信号の過 渡応答 (微分波形) を急速に収束させ、 これにより、 D Cオフセットを、 回 路の実際の動作において無視できる程度に低減する。
これにより、 微分波形の重なりがなくなり、 直流分の変動の累積が防止さ れる。 よって、 大きな D Cオフセットが発生しない。
ハイパスフィルタの時定数を小さくすることは、 ハイノ スフイノレタの力ッ トオフ周波数 (遮断周波数) を高めることにより実現される。 ただし、 ハイ パスフィルタのカッ トオフ周波数をある値より高くすると、 つまり変調信号
(受信信号)成分の周波数に近づけると、変調信号(受信信号)成分の振幅 - 位相変化が大きくなり、 ベタ トルのずれが大きくなつて復調精度が低下する という新たな問題が生じる。
ここでいう、 復調精度とは、 E . V .M. (エラー 'ベク トル ' マグニュチュ ード) のことであり、 この復調精度は、 歪みをもつ実際の受信信号を復調す るタイミングが、 理想的な波形の受信信号を復調するタイミング (理想のサ ンプリング点) から、 どれだけずれているかにより決定される。
つまり、 ハイパスフィルタの時定数を変化させることは、 受信信号の波形 に今までとは異なる変形を与えることにもなり、 このことが、 復調精度を低 下させる原因となる。
そこで、 本発明では、 大きな D Cオフセットが大幅に発生するとき (発生 する危険性が高いとき) のみ、 ハイパスフィルタのカットオフ周波数を高く し、発生した D Cオフセットを速やかに定常状態と同様のレベルに収束させ、 これ以外の期間では、 ハイパスフィルタの力ットオフ周波数を通常通り低く する。
このように、 ハイパスフィルタの時定数の切り換えを、 受信状態 (受信機 の動作状態を含む) に応じて適切に制御することで、 受信精度の低下を問題 とすることなく、 D Cオフセッ トを効果的に抑制し、 かつ、 高速かつ正確な A G C制御を行うことができる。
すなわち、 本発明の A G C回路では、 自己の A G C制御動作に起因して D Cオフセットが増大するという本質的な問題に対する対策がなされており、 安定した動作が常に保障される。 図面の簡単な説明
図 1は、 ハイパスフィルタの力ットオフ周波数を従来どおり固定した場合 に、 過渡応答波形同士の重なりが生じて大きな D Cオフセットが発生する様 子を示した図、
図 2は、 ベースバンド可変利得増幅回路内の可変利得増幅器における、 制 御値 (アナログ制御電圧) と設定されるゲインとの関係を示す図、
図 3は、 ベースバンド可変利得増幅回路内の可変利得増幅器における、 制 御値 (設定データ) と設定されるゲインとの関係を示す図、
図 4は、 図 1 0のダイレク トコンバージョン受信機における、 ハイパスフ ィルタのカットオフ周波数と復調精度 (誤り特性) との関係を示す図、 図 5は、 ハイパスフィルタの力ットオフ周波数を 3段階に変化させた場合 の、 過渡応答波形が収束する様子を示す波形図、
図 6は、 図 1 0のダイレクトコンバージョン受信機における A G C制御に より、 可変利得増幅器に設定するゲインが変化した場合に、 そのゲインの変 動 (レベル変動) に比例して D Cオフセットが増大する様子を示した図、 図 7は、 D Cオフセット量と復調信号のビット誤り率 (B E R ) との関係 を示す図、
図 8は、 D Cオフセット量と平均電力測定値との関係を示す図、 図 9は、 ハイパスフィルタのカットオフ周波数を、 通常よりも高側に切り 換えた場合に、 過渡応答波形同士の重なりが生じない様子を示した図、 図 1 0は、 本発明の実施の形態 1にかかる、 ダイレクトコンバージョン受 信機 (AGC回路を内蔵した CDMA受信機) の構成を示すブロック図、 図 1 1 Aは、 図 10のダイレク トコンバージョン受信機において、 AGC モード 1 (高速追従モード : ハイパスフィルタの遮断周波数の切り換えを伴 うモード) が採用されている場合に、 受信平均電力を測定するタイミングを 示すタイミング図、
図 1 1 Bは、 図 10のダイレクトコンバージョン受信機において、 AGC モード 2 (低速追従モード : ハイパスフィルタの遮断周波数の切り換え無し のモード) が採用されている場合に、 受信平均電力を測定するタイミングを 示すタイミング図、
図 1 2Aは、 図 1 0のダイレクトコンバージョン受信機において、 AGC モード 1 (高速追従モード : ハイパスフィルタの遮断周波数の切り換えを伴 うモード) が採用されている場合における、 1回の更新当たりのゲイン変化 量と更新周期の例を示す図、
図 1 2 Bは、 図 10のダイレクトコンバージョン受信機において、 AGC モード 2 (低速速追従モード:ハイパスフィルタの遮断周波数の切り換え無 しのモード) が採用されている場合における、 1回の更新当たりのゲイン変 化量と更新周期の例を示す図、
図 1 3 Aは、 図 10のダイレク トコンバージョン受信機において、 AGC モード 1 (高速追従モード : ハイパスフィルタの遮断周波数の切り換えを伴 うモード) が採用されている場合における、 AGCループを構成する各部の 動作タイミングを示すタイミング図、
図 1 3 Bは、 図 10のダイレクトコンバージョン受信機において、 AGC モード 2 (低速追従モード : ハイパスフィルタの遮断周波数の切り換え無し のモード) が採用されている場合における、 AG Cループを構成する各部の 動作タイミングを示すタイミング図、
図 14は、 本発明の AG C回路 (図 1 0のダイレク トコンバージョン受信 機に搭載されている AG C回路) の主要な動作手順を示すフロー図、 図 1 5は、 図 1 0のダイレク トコンバージョン受信機の主要な構成はその ままにして、 ベースバンド可変利得増幅回路の電源制御方式のみを変更した 変形例の構成を示すプロック図、
図 1 6は、 本発明の実施の形態 2にかかる、 ダイレク トコンバージョン受 信機 (A G C回路を内蔵した C D MA受信機) の構成を示すブロック図、 図 1 7は、 図 1 6のダイレク トコンバージョン受信機の主要な構成はその ままにして、 ベースバンド可変利得増幅回路の電源制御方式のみを変更した 変形例の構成を示すプロック図、
図 1 8は、 本発明の実施の形態 3にかかる、 ダイレク トコンバージョン受 信機の回路構成の一例 (可変利得増幅器のゲイン制御をシリアルデータにて 行う回路) を示すブロック図、
図 1 9は、 本発明の実施の形態 3にかかる、 ダイレク トコンバージョン受 信機の回路構成の一例 (電源オンをトリガーとしてハイパスフィルタの時定 数を切り換える回路) を示すブロック図、
図 2 0は、 本発明の実施の形態 3にかかる、 ダイレク トコンバージョン受 信機の回路構成の一例 (P L Lシンセサイザを利用して、 ハイパスフィルタ の時定数の切り換えを指示する回路) を示すプロック図である。 発明を実施するための最良の形態
本発明の骨子は、 A G C制御に起因して D Cオフセットが増大する状況と なったときに、 ハイパスフィルタの時定数を小さく して、 直流分の変動の累 積を防止して D Cオフセットを低減することである。
ここで D Cオフセットが増大する状況であることを検出する方法としては、 大別して、 次の 3つの方法が考えられる。
第 1の方法は、 ゲイン制御のゲイン変化量を検出し、 予め設定した閾値を 越えた場合に D Cオフセットが増大する危険性あり、と判断する方法であり、 第 2の方法は、 ユーザにより電源投入時、 間欠受信の立ち上げ時などを内部 の制御信号に基づいて検知し、 D C変動が生じやすいタイミングを特定する 方法であり、 第 3の方法は、 コンプレストモード時などにおいて、 受信信号 に含まれる報知情報よりセル間を移動する等の情報を入手し、 これにより D C変動が生じるタイミングを特定する方法である。
本発明では、 A G C制御による可変利得増幅器のゲイン切り換えに起因す る D Cオフセットの増大が懸念される状況を、 上述のいずれかの方法で検出 し、 ハイパスフィルタの時定数をほんのわずかの期間だけ変化させて、 直流 分の誤差の累積を未然に防止する。
以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。
(実施の形態 1 )
本実施の形態の特徴は、 可変利得増幅器のゲイン変化量を検出して、 ハイ パスフィルタの時定数を切り換えることである。
本発明のダイレクトコンバージョン受信機の構成や動作を説明する前に、 まず、 ハイパスフィルタのカットオフ周波数の切り換えが、 ダイレク トコン バージョン受信機における D Cオフセッ トの低減に有効な理由について、 図 1〜図 9を用いて、 説明する。
図 2は、 アナログ制御電圧を用いて可変利得増幅回路の利得を変化させた 場合の可変利得増幅器のゲイン特性を示し、図 3は、ディジタル制御信号(シ リアルデータ) による制御をした場合の可変利得増幅器のゲイン特性を示し ている。
本実施の形態に係る発明は、 図 2あるいは図 3に示すように、 ゲインがリ ユアに変化する特性を持つ可変利得増幅回路において実現可能である。 図 4は、 ハイパスフィルタのカットオフ周波数と受信信号の復調精度 (誤 差特性) の関係を示し、 図 5は、 ハイパスフィルタのカッ トオフ周波数に対 する微分波形の収束特性を示す。 図 5において、 特性 S 1 , S 2 , S 3の順 に、 カットオフ周波数が高くなつている。
図 4からわかるように、 カットオフ周波数が高くなると変調信号成分の振 幅 -位相変化が大きくなることで復調精度が低下する。
また、 図 5からわかるように、 ハイパスフィルタのカットオフ周波数を高 くすると、 ハイパスフィルタの過渡特性により微分波形が発生した場合に、 その微分波形の電圧レベルの収束に要する時間が短くなる。
つまり、 ハイパスフィルタのカットオフ周波数を増大させると、 微分波形 の収束が早まるが、 一方で、 復調精度が劣化していく。 よって、 受信特性を 優先する際にはハイパスフィルタの力ットオフ周波数を下げなければならず、 また、 これに対して D C変動の収束を優先する際にはハイパスフィルタの力 ットオフ周波数を高く しなければならない。
図 6は、 可変利得増幅器に設定するゲインの変動量と、 発生する D Cオフ セット量の対応関係を示す図である。
図 6からわかるように、 ベースバンド可変利得増幅回路においては、 ゲイ ン変化量に比例して D C変動量が増加していく傾向がある。 このことから、 可変利得増幅回路に設定するゲインの変化が大きい時 (A G Cモード 1のと き)のみ、ハイパスフィルタの力ッ トオフ周波数を D C変動が安定するまでの 一定期間だけ高く し、 それ以外のとき(A G Cモード 2のとき)は、 カットォ フ周波数を低くすることで、 状況に合わせた最適な制御が可能になることが 推測される。
一方、図 7に感度点付近の D Cオフセット値による復調信号の B E R (Bit Error Kate) 特性を示し、 図 8に受信電界が一定状態における、 D Cオフセ ット値に対応した平均電力測定値の変化を示す。
図 7から、 D Cオフセット値が増えるに従って復調信号の B E R特性が劣 化していくことがわかり、 図 8から D Cオフセット値が增えるに従って測定 電力値が高い値を示すようになることがわかる。
つまり、 D Cオフセッ トは、 ある値までは影響が少ないのであり、 この影 響が少ない範囲の最大のオフセット値を許容値 (しきい値) として定め、 D Cオフセットがこれを越えたときは、 ハイパスフィルタの力ットオフ周波数 を高く し、 それ以下では、 ハイパスフィルタのカットオフ周波数を低くする ことが最良であるといえる。
図 1は、 従来のように、 ハイパスフィルタのカットオフ周波数を固定した ままで、 可変利得増幅器のゲイン切り換えを短いィンターパルで頻繁に行つ た場合において、 D Cオフセットが累積していく様子を示しており、図 9は、 本発明を用いて、 ハイパスフィルタのカットオフ周波数を適宜、 切り換えた 場合の、 D Cオフセッ トの変動の様子を示している。
図 1からわかるように、 1回のゲイン切り換えに対応して発生した微分波 形の電圧変動が十分に収束する前に、 次の微分波形が出力されると、 直流分 のシフトが次々と累積していき、 結果的に、 極めて大きな D Cオフセットが 発生することになる。
このような、大きな D Cオフセットが発生する危険性が高いのは、例えば、 電源投入時等に、 可変利得増幅器のゲインを、 大幅に、 しかも高速に変化さ せるときである。
例えば、 仮に、 可変利得増幅器のゲインを 1 0段階に変化させることがで きるとし、 現在のゲインがレベル 1であったものを、 レベル 1 0まで変化さ せる場合に、 一挙に 1 0段階のレベルを変化させることはできないから、 各 レベル毎に段階的に、 高速にレベルを変化させる必要がある。
このとき、 1回のゲインの切り換えに伴って、 ハイパスフィノレタからは、 次々と微分波形が出力され、図 1に示すように、直流分のシフトが累積して、 トータノレとして大きな D Cオフセットとなる。
これに対し、 図 9に示すように、 ハイパスフィルタの時定数を小さくする と、 微分波形は先鋭化し、 電圧レベルは急速に収束する。 つまり、 各微分波 形の重なりがなくなり、 これにより、 直流分のシフトが累積するという事態 が確実に防止されることになる。
したがって、 本発明のように、 D Cオフセットが增大する危険性の高いタ イミングで、 ハイパスフィルタのカツトオフ周波数を瞬間的に高く して時定 数を小さくすることで、 過渡応答による DC変動が発生しても速やかに収束 させることで DC変動の累積を防止し、 常に、 DC変動量を問題のないレべ ルに抑えることが可能となる。
以上の考察に基づいて、 本実施の形態では、 ハイパスフィルタのカットォ フ周波数をダイナミックに変化させると共に、 そのようなカットオフ周波数 の変化を考慮しつつ、 AG Cループを構成する各部の動作タイミングをきめ 細かく制御することにより、 DCオフセッ トの増大を確実に防止しつつ、 安 定した回路動作を保障する。
図 10に示されるように、 本実施の形態のダイレク トコンバージョン方式 の受信機は、 アンテナ 25、 受信用のバンドパスフィルタ (RX— B PF) 26、 ローノイズアンプ (LNA) 1、 直交ミキサ 2 a , 2 b、 局部発振器 (ローカル) 3、 移相器 4、 ベースバンド可変利得増幅回路 6、 直流カット コンデンサ C 1, C 2、 A/Dコンバータ 1 3 a, 1 3 b、 デコーダ 1 7、 判定部 1 8、 受信電力測定部 1 6、 タイミング制御部 20、 ゲイン算出部 2 2、 ゲイン制御部 23を有する。
また、 ベースバンド可変利得増幅回路 6は、 利得可変増幅器 7 a , 7 b, 7 c , 7 d , 7 e , 7 f 、 ローパスフィノレタ (LP F) 8 a , 8 b、 カット オフ周波数切り替えハイパスフィルタ (HP F) 1 2 a, 1 2 b, 1 2 c , 1 2 d、 オールパスフィルタ (APF) 14 a, 14 b、 ゲイン変化量検出 部 9、 フィルタ制御部 1 1を有する。
次いで、 ダイレクトコンバージョン受信機の動作について説明する。
アンテナ 25で受信された信号は、 RX— B P F 26により、 受信帯域外 の不要な信号成分 (送信機によるノィズを含む)が除去された後、 L N A 1に 入力される。 LNA 1は、 変調された受信信号(f 0土 Δ f)を増幅した後、 2 つの直交ミキサ 2 a, 2 bに出力する。
局部発振器 3は、 L N A 1の出力周波数と同一周波数の信号を発振し( f 0)、 移相 '器 4に出力する。 移相器 4は、 局部発振器 3から出力された信号を、 直 交ミキサ 2 aには位相をそのままで、 直交ミキサ 2 bには 90度位相を進め て出力する。 直交ミキサ 2 a, 2 bは、 LNA 1からの出力(f 0土 Δ f )と、 移相器 4からの出力(f 0)を乗算し、発生したベースバンド信号 (Δί)をベース バンド可変利得増幅回路 6に出力する。
ベースバンド可変利得増幅回路 6に入力された信号は、 L P F 8 a, 8 b , HPF 1 2 a, 1 2 b, 1 2 c , 1 2 d、 およぴ A P F 1 4 a , 14 bで所 定の不要な周波数成分が除去され、また、可変利得増幅器 7 a, 7 b, 7 c , 7 d, 7 e , 7 f において、 所定のゲインに従って増幅される。
ここで、 HPF 1 2 a, 1 2 b, 1 2 c, 1 2 dは、 フィルタ制御部 1 1 によって予め設定されたカットオフ周波数に従って、 ベースバンド信号の当 該カツトオフ周波数以下の周波数成分を除去する。
また、 可変利得増幅器 7 a, 7 b, 7 c , 7 dのゲインは、 ゲイン制御部 2 3によってダイナミックに調整される。
ベースバンド可変利得増幅回路 6の出力信号は、 位相が 90度異なる I成 分おょぴ Q成分毎に、 直流カットコンデンサ C 1, C 2を経由した後、 AZ Dコンバータ 1 3 a, 1 3 bにおいて AZD変換が行われ、 デコーダ 1 7に おいてデコード (逆拡散を含む) される。 A/Dコンバータ 1 3 a, 1 3 b の各出力は、 受信電力測定部 1 6にも出力される。
受信電力測定部 1 6では、 受信信号の I成分および Q成分の振幅の 2乗値 を加算後、 電力値に換算する。 W—CDMA方式のようにピークファクター が異なる受信信号を受信する装置においては、 受信タイミングにより受信レ ベルが異なっているため(システム的に決まる)、 電力測定値をある一定区間 で平均化することで電力値換算する必要がある。 この測定区間は、 判定部 1 8から出力される受信モード信号により決定される。 この点については、 後 述する。
判定部 1 8には、 受信信号の含まれる種々の情報が供給され、 また、 電源 投入を通知する信号 VDや、 間欠受信時におけるタイミング制御信号 VXも 供給される。
この判定部 1 8は、 受信信号に含まれる種々の情報から現在の受信状態を 判定し、 あるいは、 電源投入通知信号 V Dや、 間欠受信時におけるタイミン グ制御信号 V Xによって、 現在のダイレク トコンバージョン受信機の動作状 態を判定し、 その判定結果をタイミング制御部 2 0に通知すると共に、 A G Cモード信号 1 9を、 受信電力測定部 1 6、 ゲイン算出部 2 2およびゲイン 制御部 2 3に与える。
なお、タイミング制御部 2 0は、受信電力測定部 1 6、ゲイン算出部 2 2、 ゲイン制御部 2 3、 およびベースバンド可変利得増幅回路 6における回路電 源制御部 2 4のそれぞれに、 制御信号 2 1 a〜 2 1 dを与え、 各部のタイミ ングを統括的に制御する。 回路電源制御部 2 4は、 ベースバンド可変利得増 幅回路 6の電源を間欠的にオン Zオフさせて、 いわゆる間欠受信 (待ち受け 受信モード) を実現する。
ここで、 本実施の形態における A G Cモードとしては、 高速モード (モー ド 1 ) と低速モード (モード 2 ) があり、 高速モード (モード 1 ) は、 例え ば、 電源投入直後で同期確立前、 間欠受信立ち上げ時、 異周波数測定立ち上 げ時等において、 受信環境に適応して可変利得増幅器 7 a, 7 b , 7 c , 7 d , 7 e , 7 f のゲインを高速に追従させるときに採用されるモードである。 一方、 低速モード (モード 2 ) は、 可変利得増幅回路の利得調整が収束し て、 安定したデータ受信が行われている時に採用されるモードであり、 この モードでは、 D Cオフセットの増大を招かないように、 可変利得増幅回路の ゲインの更新頻度を少なくし、 また、 1回の更新量を小さく して、 ゲイン切 り換えに伴う高調波成分のレベルを抑制する。
受信電力測定部 1 6、 ゲイン算出部 2 2、 ゲイン制御部 2 3の各々の動作 タイミングは、 判定部 1 8から出力される A G Cモード信号と、 タイミング 制御部 2 0から出力されるタイミング制御信号 2 1 a〜 2 1 cに基づいて決 定される。 また、 回路電源制御部 24の動作タイミングは、 タイミング制御部 20か ら出力されるタイミング制御信号 21 dにより制御される。
ゲイン制御部 2 3は、 ゲイン算出部 22が算出したゲインを、 可変利得增 幅器 7 a , 7 b, 7 c , 7 d, 7 e , 7 f のそれぞれに設定する。
ゲイン変化量検出部は、 可変利得増幅器のゲイン変動量 (前回の設定値と 今回の設定値との差分量) が所定のしきい値を超える場合に、 このことをフ ィルタ制御部 1 1に通知する。
フィルタ制御部 1 1は、 ゲイン変化量検出部 9からの通知を受けると、 ハ ィパスフィルタ 1 2 a, 1 2 b, 1 2 c , 1 2 dのカッ トオフ周波数を高く 切り替え、 時定数を小さく して D C変動を速やかに収束させ、 一定時間経過 後に再ぴ、 カットオフ周波数を低くする。 このような、 ハイパスフィルタの カットオフ周波数の切り換えは、 AGCモード 1のときに行われる。 すなわ ち、 AG Cモード 1は、 ハイパスフィルタのカットオフ周波数の切り換え伴 うモードである。
一方、 上述の AGCモード 2のときには、 フィルタ制御部 1 1は、 ハイパ スフィルタの力ットオフ周波数を低いまま(通常の力ットオフ周波数のまま) 維持する。
以上の動作により、 AG C回路を搭載するダイレク トコンバージョン受信 機において、 AG C制御に起因して大きな DCオフセットが発生するのを確 実に防止することができる。
ただし、 AG C回路では、 負帰還制御ループの構成要素である各部が、 A GCモードに対応して協同して動作することが必要である。 したがって、 ノヽ ィパスフィルタの時定数の切り換えを考慮して、 各部の動作タイミングを最 適化することが重要である。
このような観点から、 本実施の形態では、 受信電力測定部 1 6では、 AG Cモードに対応して、 電力測定動作のタイミングを適宜、 変更する。
図 1 1 Aは、 AGCモード 1 (ハイパスフィルタの切り換えを伴うモード) における平均電力測定のタイミング例を示す図であり、 図 1 1 Bは、 AGC モード 2における平均電力測定のタイミング例を示す図である。
図 1 1 Aにおいて、 平均電力測定期間が t l〜 t 3であるとし (この期間 は、 例えば、 1スロット期間に対応する)、 その初期の期間 (t l〜 t 2) で は、 ハイパスフィルタの過渡応答によって DCオフセットが増大する危険性 が高く (ゆえに、 この期間においてハイパスフィルタの時定数の切り換えが 行われる)、電力測定が正しく行われない可能性が高いため、その区間の電力 測定を除き、 それ以降の測定を行う。
一方、 AGCモード 2 (AGCが収束して、 安定した受信が行われている 状態に対応するモード) では、 図 1 1 Bに示すように、 測定精度を高めるた めに、 測定区間を広くとる (期間 t l〜 t 3)。 これにより、 ハイパスフィル タの動作に関わらず電力測定を正しく行うことが可能となる
また、 ゲイン算出部 22の動作も、 AG Cモードに対応して、 適切に制御 される。 つまり、 受信電力測定部 16と同様に、 判定部 1 8からの AG Cモ ード信号 1 9およびタイミング制御部 20からの制御信号 2 1 bに基づいて、 ゲイン算出方法や、 ゲイン制御部 23へのデータ送出タイミングが決定され る。
図 1 2 Aは、 AGCモード 1のときの、 1回の更新あたりのゲイン変化量 および更新周期の一例を示し、 図 1 2 Bは、 AGCモード 2のときの、 1回 の更新あたりのゲイン変化量および更新周期の一例を示している。
図 1 2 Aのように、 AG Cモード 1のときは、 ゲイン変動量 (可変利得増 幅器に設定されるゲインの今回値と前回値との差) が大きくなることが予想 されるため、ハイパスフィルタの力ットオフ周波数の切り換えを前提として、 1回のゲイン変化量を大きく、 ゲイン更新タイミングを早くすることで、 速 やかに最適な受信信号の振幅に収束させる。
図 1 2Aにおいて、 i l〜 i 3は、 ゲイン算出部 2 2で算出されるゲイン 値であり、 各ゲイン値のレベルは、 段階的に変化している。 1回の更新あた りの変化量が最大なのは、 ゲイン値 f lであり、 このときは、 レベル L 0か らレベル L 1に変化しており、 これが許容される最大の変化量 (ゲインの最 大の変化幅) LMS 1となる。 また、 ゲインの更新周期も短い間隔 (時刻 t 1〜 t 3) で行われる。
一方、 図 1 2 Bに示すように、 AGCモード 2のときは、 ゲイン変動量が それほど大きくないことが予想されるため、 1回当たりのゲイン変化量を小 さく、 ゲイン更新タイミングをゆつく りとすることでハイパスフィルタの特 性に合わせた制御制御が適当である。 特に、 AG Cモード 2のときは、 デー タ受信が行われていることもあり、 許容値を越えた DCオフセットを発生さ せない程度のゲイン変動になるように設定することで、 安定的な受信が可能 になる。
すなわち、 図 1 2 Bでは、 1回の更新あたりのゲイン変化量の許容最大幅 が LMS 2に抑制されている。 また、 ゲインの更新間隔も長くして (時刻 t 4〜 t 8)、大きな DCオフセットを発生させずに安定した動作ができるよう に配慮している。
なお、 ゲイン変更の更新タイミングは、 実使用状態におけるフェージング 周波数、 変調信号の包絡線 (エンベロープ) との兼ね合いから、 適応的に決 定することが好ましい。
なお、 ゲイン算出部 22からの出力は、 ゲイン算出値をそのままシリアル データとして出力してもよいし、 直流電圧を用いてゲイン制御を行うタイプ の可変利得増幅器の場合は、 ゲイン算出部 22の算出データ値を DZA変換 器によりアナログ電圧に変換して、 可変利得増幅器に供給する。 シリアルデ ータによる制御については、 図 1 8〜図 20を用いて、 後に具体的に説明す る。
ゲイン制御部 23でも同様に、 判定部 1 8からの AGCモード信号やタイ ミング制御部 20からの制御信号 2 1 cに基づいて動作タイミングが決定さ れる。 ゲイン算出部 2 2からの算出値を受信後、 速やかにゲイン制御部 2 3から ゲイン制御信号 Sをベースバンド可変増幅器 6に出力することで、 ゲイン算 出部 22におけるゲイン値の算出周期 (出力周期) に同期したゲインの更新 を実現することができる。
図 1 3Aは、 AGCモード 1における、 AGC制御ループを構成する各部 の動作タイミングの一例を示すタイミング図であり、 図 1 3 Bは、 AGCモ ード 2における、 AG C制御ループを構成する各部の動作タイミングの一例 を示すタイミング図である。
図 1 3 Aに示すように、 AG Cモード 1のときは、 時刻 t l〜 t 2におい て、 ゲイン制御部 23による可変利得増幅器 7 a〜 7 f のゲイン制御が行わ れ、 時刻 t 2〜 t 3において、 ゲイン変化量検出部 9がゲイン変化 (今回値 と前回値との差分) が測定される。
検出されたゲイン変化量がしきい値を超えている場合には、 時刻 t 3〜 t 4の期間において、 フィルタ制御部 1 1により、 ハイパスフィルタ 1 2 a〜 1 2 dのカットオフ周波数 (i c) が高い周波数に切り換えられ、 大きな D Cオフセッ トが発生する可能性が低くなつた時刻 t 4に、 ハイパスフィルタ のカツトオフ周波数は元の低い周波数に戻る。
受信電力測定部 16は、 時刻 t 3〜 t 4の期間は、 受信電力の測定を中止 し、 時刻 t 4から受信平均電力の測定を開始する。 受信電力の測定は時刻 t 5まで行われ、 時刻 t 5〜 t 6において、 実測された受信電力に基づいて、 可変利得増幅器に設定すべきゲイン値が、 ゲイン算出部 2 2により算出され る。 そして、 時刻 t 6以降、 同様の制御が行われる。
AGCモード 2の場合には、 図 1 3 Bに示すように、 時刻 t 1〜 t 2にお いてゲイン制御が行われ、 時刻 t 2〜 t 3においてゲイン変化が検出され、 時刻 t 3〜 t 6において電力測定が行われ、 時刻 t 8〜 t 9においてゲイン 値が算出される。 以降、 同様の制御がなされる。
図 14に、 AG C制御動作 (AG Cモードの切り換え、 ハイパスフィルタ のカットオフ周波数の切り換え動作を含む) の主要な手順を示す。 図 1 4の フローでは、 ダイレクトコンバージョン受信機が、 消費電力削減のために間 欠受信 (基地局からの呼び出しを間欠的にチェックし、 それ以外の期間は回 路の電源をオフする態様の受信) を行っていることを前提としている。
まず、 電源が投入され、 あるいは、 間欠受信の立ち上げタイミングとなつ て受信部がオンすると (ステップ 1 00)、電源投入直後であるか、 間欠受信 立ち上げ時であるか、 あるいは、 コンプレストモードによる異周波数測定立 ち上げ時であるかを、 判定部 1 8が判定する (ステップ 1 0 1)。
ここで、 電源投入直後、 間欠受信立ち上げ時、 あるいは、 コンプレス トモ ードによる異周波数測定立ち上げ時である場合には、 可変利得増幅器のゲイ ンが収束しておらず、 ゲイン切り換えに伴って DCオフセットが増大する可 能性が高いから、 AGCモード 1に移行し (ステップ 1 02)、それ以外の場 合には、 受信モード 2に移行する (ステップ 1 09)。
AGCモード 1では、 ループを回した回数を記録するためのパラメータ n をゼロにクリアした後 (ステップ 1 0 3)、 電力測定 (必要な場合には、 これ と並行して、 ゲイン変化量検出部 9、 フィルタ制御部 1 1の制御によりハイ パスフィルタのカツトオフ周波数の切り換え)が行われる(ステップ 1 04)。 そして、 ゲイン算出 (ステップ 1 0 5)、 ゲイン制御 (ステップ 1 06) が 行われ、 ループが 1 0回まわっていない場合には AGC制御を続行し (ステ ップ 107, 1 08)、 受信部が非動作となる直前まで (ステップ 1 1 6)、 同様の制御を繰り返す。
一方、 AGCモード 2のときは、 電力測定を行い (ステップ 1 1 0)、 ゲイ ン算出 (ステップ 1 1 1)、 ゲイン制御 (ステップ 1 1 2)、 データ判定 (ス テツプ 1 1 3) を行う。
そして、 ステップ 1 14にて、 m回の同期外れを検出すると、 可変利得増 '幅器のゲイン設定を最初からやり直す必要があるために AGCモード 2に戻 り、 一方、 同期外れが検出されないならば、 受信部が非動作となる直前まで . 1 5)、 同様の制御を繰り返す。
このように、 本実施の形態のダイレク トコンバージョン受信機 (AGC内 蔵の W— CDMA方式の受信機) では、 AG C制御による可変利得増幅器の ゲイン切り換えに伴って DCオフセットが増大するという問題点に対して、 ハイパスフィルタの時定数を短く して過渡応答を高速に吸収するという対策 が自動的に採られると共に、 そのようなハイパスフィルタの力ットオフ周波 数 (遮断周波数) の切り換えを伴うモード (AGCモード 1) と、 安定した 動作時におけるモード (AG Cモード 2) に分けて、 AG C制御ループを構 成する各部の動作を、 最適にコントロールすることにより、 AG Cを不安定 化させる心配もなく、 きわめて良好な負帰還制御が実現される。
図 1 5に、 変形例の構成を示す。 図 1 5のダイレク トコンバージョン受信 機の構成は、 図 1 0の構成とほとんど同じであるが、 ベースバンド可変利得 増幅回路 6の電源をオン/オフさせるための構成が異なる。
図 1 0の場合、 ベースバンド可変利得増幅回路 6に内蔵される回路電源制 御部 24が、 タイミング制御部 20からのタイミング制御信号 2 1 dに基づ いて、 回路電源をオン/オフしている。
これに対し、 図 1 5では、 可変増幅器用電源制御部 50を外部に設けて、 ここから電源電圧の供給をコントロールするようにしている。 図 1 5のべ一 スパンド可変利得増幅回路 6には、 外部から供給される電源電圧を入力する ための回路 (電源入力部) 5 1が設けられている。 '
(実施の形態 2)
図 1 6は、 本発明の実施の形態 2にかかるダイレク トコンバージョン受信 機 (AG C内蔵の W— CDMA方式の受信機) の構成を示すブロック図であ る。
本実施の形態にかかる受信機の主要な構成は、 前掲の実施の形態 1 (図 1 0) とほぼ同じであるが、 本実施の形態の場合、 ハイパスフィルタの時定数 の切り換え制御を、 判定部 1 8から出力される AGCモード信号 1 9および タイミング制御部 2 0からのタイミング制御信号 2 1 eに基づいて行うこと とし、 図 1 0のゲイン変化量検出部 9を除去した点に特徴がある。
上述のように、 ハイパスフィルタの力ットオフ周波数の切'り換えが必要と なるのは、 電源投入直後のように、 A G Cがまったく収束しておらず、 高速 にループを回して、 可変利得増幅器のゲインを伝搬環境に高速追従させる必 要があるときである。
このような場合の A G Cループの各部の動作は、 判定部 1 8ならびにタイ ミング制御部 2 0により、 統括的に制御されている。 よって、 判定部 1 8か ら出力される A G Cモード信号 1 9およびタイミング制御部 2 0から出力さ れる制御信号 2 1 eによって、 ハイパスフィルタの切り換えタイミングも制 御することが可能である。
このような観点から、 図 1 6では、 フィルタ制御部 1 1に、 判定部 1 8か ら出力される A G Cモード信号 1 9およびタイミング制御部 2 0から出力さ れる制御信号 2 1 eを与えている。
これにより、 図 1 0において設けられていたゲイン変化量検出部 9が不要 となり、 回路の簡素化を図ることができる。
ただし、 図 1 6の構成を採用する場合には、 判定部 1 8から出力される A G Cモード信号 1 9をフィルタ制御部 1 1に伝達する信号線における遅延と、 タイミング制御部 2 0から出力される制御信号 2 1 eを伝達する信号線にお ける遅延とを精度よく揃える必要がある。
図 1 7は、 変形例の構成を示すブロック図である。
図 1 7のダイレクトコンパージョン受信機の構成は、 図 1 6の構成とほと んど同じであるが、 ベースバンド可変利得増幅回路 6の電源をオン Zオフさ せるための構成が異なる。
図 1 6の場合、 ベースバンド可変利得増幅回路 6に内蔵される回路電源制 御部 2 4が、 タイミング制御部 2 0からのタイミング制御信号 2 1 dに基づ いて、 回路電源をオン/オフしている。 これに対し、 図 1 7では、 可変増幅器用電源制御部 5 0を外部に設けて、 ここから電源電圧の供給をコントロールするようにしている。 図 1 7のべ一 スバンド可変利得増幅回路 6には、 外部から供給される電源電圧を入力する ための回路 (電源入力部) 5 1が設けられている。
(実施の形態 3 )
本発明の特徴であるハイパスフィルタの力ットオフ周波数の切り換えを、 実際の回路で行う場合の実現方法としては、 種々のものが考えられる。 本実 施の形態では、 上述の実施の形態では開示されていない、 カットオフ周波数 切り換えのための構成のパリエーションについて説明する。
図 1 8のダイレクトコンバージョン受信機では、 可変利得増幅器のゲイン 制御を、 アナ口グ制御信号ではなく、 ディジタルデータ (シリアルデータ) により行う例を示している。
ゲイン制御部 2 3からは、 ゲイン制御信号 (シリアルデータ) が出力され る。 このシリアルデータは、 例えば、 1 6ビットの幅を有し、 そのうちの 1 0ビットをゲインデータとし、 残りの 6ビットは、 種々の制御に自由に使用 できるようにしておく。
そして、 ハイパスフィルタの力ットオフ周波数の切り換えを行わせる場合 には制御データを" 1 "とし、 逆に、 制御データ力 0 "のときは、 カットオフ 周波数の切り換えは行わないことにする。
このように、 ゲイン調整をディジタルデータによって行う場合には、 ハイ パスフィルタの力ットオフ周波数の切り換えの有無を示すデータを送信する ことは容易である。
但し、ベースパンド可変利得増幅回路 6において、インタフェースとして、 D ZA変換器を設ける必要がある。 また、 アナログ制御信号によるゲイン調 整の場合、 A G Cモード 2から A G Cモード 1への切り換えで、 ハイパスフ ィルタのカツトオフ周波数を高め、 A G Cモード 2から A G Cモード 1への 切り換えで、 再び、 カットオフ周波数を元に戻すという動作を自動的に行わ せることができるが、 ディジタルデータによるゲイン調整の場合、 ハイパス フィルタのカットオフ周波数を一旦、 高めた後、 それを元に戻すためには、 再度、 ディジタルデータを入力して指示するか、 あるいはタイマによる時間 制御を行う必要がある。
図 1 8では、 ベースバンド可変利得増幅回路 6内に、 D ZAコンバータ 5 0 1を設けると共に、 タイマ 5 0 2を設けて、 ハイパスフィルタのカットォ フ周波数を切り換えてから所定時間が経過したことを検出できるようにし、 その所定時間経過のタイミングで、 フィルタ制御部 1 1が、 カッ トオフ周波 数を元に戻すようにしている。
図 1 9では、 アナログ制御信号によるゲイン調整の場合において、 ベース バンド可変利得増幅回路 6の電源のオンをトリガーとして、 フィルタ制御部 1 1がハイパスフィルタの力ットオフ周波数を高めに切り換えるようにして いる。
つまり、 上述のとおり、 D Cオフセッ トの増大が問題となる状態の一つと して、 電源投入直後や間欠受信時の回路電源オン直後の状態があり、 このよ うな状態にあることは、 回路電源を制御する部分の動作をウォッチングする ことで把握することが可能である。
そこで、 図 1 9では、 電源入力部 5 1から電源電圧が供給されるタイミン グで、 フィルタ制御部 1 1がハイパスフィルタの力ットオフ周波数を高めに 切り換える。 その後、 タイマ 5 0 2にて所定時間の経過をチェックし、 所定 時間経過後のタイミングで、 力ットオフ周波数を元に戻す。
図 1 9の構成の場合、 図 1 0のようにゲイン変動量をウォッチングする必 要はなく、 電源のオンのみに着目してハイパスフィルタの時定数の切り換え を行えるため、 回路構成を簡素化することができる。
また、 図 2 0では、 ベースバンド可変利得増幅回路 6が P L L回路 (P L Lを用いた周波数シンセサイザ) を内蔵していることを前提として、 外部か ら、 この P L L回路の出力信号の周波数を制御することで、 ハイパスフィル タのカツトオフ周波数の切り換えの指示を行うものである。
P L L周波数シンセサイザ (P L L回路) は、 P L Lのループに可変分周 器を挿入し、 この分周器に設定する分周比を変化させることにより、 所望の 周波数の発振出力を取り出す回路である。
図 2 0では、 このような P L L回路 7 0 3が、 ベースバンド可変利得増幅 回路 6に備えられている。 そして、 シンセサイザ制御部 7 0 1からシリアル 制御データを出力し、 シリアルインタフェース 7 0 2がこのシリアル制御デ ータを解読して、 P L L回路 7 0 3の発振周波数の切り替え及びカツトオフ 周波数を切り替える制御信号として、 フィルタ制御部 1 1に与えるようにす る(発振周波数の切り替え、 すなわち、 異周波確認により、 大きな電界レベル 変動が予想されるため、 同時にカツトオフ周波数の切り替えを行う)。
このように、 ベースバンド可変利得増幅回路 6に備わっている既存の回路 を利用することで、 効率よくハイパスフィルタの力ットオフ周波数の切り換 えを行うことができる。なお、カツトオフ周波数を元に戻す制御は、図 1 8、 図 1 9の場合と同じく、 タイマ 5 0 2を用いて行う。
以上説明したように、 本発明のダイレク トコンバージョン受信機における A G C回路、 およびこれを搭載した C D MA受信機では、 受信信号の振幅安 定化のために必須である A G C動作を環境に適応させて高速に、 かつ安定に 行わせることを保障しつつ、 その A G C動作に起因して発生する D Cオフセ ット (ハイパスフィルタの過渡応答波形の累積による D Cシフトの增大) の 問題を、 ハイパスフィルタの時定数をごく短い時間だけ小さくして過渡的な 振動波形を急速に収束させるという新規な手法を用いて、 確実に防止するこ とができる。
つまり、 ハイパスフィルタのカツトオフ周波数 (i c ) を切り換えること で、 常に最適な受信状態が実現される。
すなわち、 従来のように、 ハイパスフィルタの特性が固定されている場合 (ハイパスフィルタのカットオフ周波数が低い状態) では、 可変利得アンプ のゲイン変化が大きいとき、 D Cオフセッ トの発生により、 復調タイミング 力 理想的なタイミング (サンプリング点) からのずれが大きくなつて復調 精度 (ビットエラーレート) が低下し、 かつ、 大きな電力測定誤差が発生し て、 実質的に受信不能状態に陥ってしまう。
一方、 ハイパスフィルタのカッ トオフ周波数を高くすると、 つまり変調信 号 (受信信号) 成分の周波数に近づけると、 変調信号 (受信信号) の振幅 - 位相の変化が大きくなり復調精度を低下させる。 この問題があるために、 ノ、 ィパスフィルタの力ットオフ周波数は低めに設定しておくのが良いのであり、 こうしておけば、 D Cオフセッ トの変動が発生しないという条件下では、 良 好な受信状態を実現できることになる。
したがって、 これらの両方の場合の長所を享受できるようにするべく、 本 発明では、 ハイパスフィルタのカッ トオフ周波数を、 最適なタイミングでダ イナミックに切り換える。
これにより、 過渡特性に優れるハイパスフィルタ (カットオフ周波数が高 い状態) と、 静特性に優れるハイパスフィルタ (カッ トオフ周波数が低い状 態) の双方の長所を取り込むことができ、 これにより、 常に、 良好な受信状 態が実現されることになる。
また、 C D MA受信機において不可欠な A G Cに関しては、 受信精度の低 下を心配することなく、 最適な制御 (高速モードや低速モードの自在な切り 換え等) を行うことができる。
これにより、 コンパク トで低消費電力性に優れるという特性をもつダイレ クトコンバージョン受信機を、 C D MA方式 (W— C D MA方式や I S 9 5 に準拠した方式を含む) の受信機に現実に搭載することが可能となり、 これ により、 受信機の小型化、 低消費電力化が実現される。
以上説明したように、 本発明では、 ダイレク トコンバージョン受信機の内 部回路の直流分オフセットが、 A G C動作に起因して、 許容値を超えて増大 する可能性がある期間において、 ハイパスフィルタのカットオフ周波数 (時 定数) をダイナミックに切り換え制御し、 直流分のシフ トの累積 (加算) を 防止する。 これにより、 ダイレク トコンバージョン受信機を、 AGC回路を 内蔵する通信機器 (W— CDMA方式の受信機等) に、 安心して搭載するこ とが可能となる。
また、 本発明のダイレク トコンバージョン受信機における AGC回路は、 AG C動作自体に起因して、 DCオフセットが増大するという問題に対する 対策回路 (つまり、 危険期間を検出してハイパスフィルタの時定数を切り換 える回路) を内蔵しているため、 従来例のように、 受信状態に高速追従する ベく AGCループのゲインを高めると、 かえって、 AGCの収束を遅らせる 事態が発生するという自己矛盾が生じることがなく、 したがって、 環境に追 従して、 自在に AG C制御を行うことができる。
また、 AG C回路は、 負帰還制御ループを構成する各部が、 互いに協同し て同期をとりつつ安定に動作することが必要であるが、 本発明の AG C回路 では、 ハイパスフィルタのカツトオフ周波数の切り換えの有無を考慮して複 数の AG Cモードを設け、 各モード毎に、 各部が最適な動作をするように配 慮している。 すなわち、 可変利得増幅器内のハイパスフィルタみの制御でな く、測定部、算出部、ゲイン制御部、可変増幅器内の電源制御部の全てを各々、 適切に制御しているため、 AGC回路は、 どのような状態にあっても、 常に 安定に ¾作することが保障される。
本発明を用いることにより、 優れた特性をもちながら、 DCオフセッ トの 問題があるがゆえに、 実用化しにくかったダイレク トコンバージョン受信機 を、 CDMA受信機として、実際に使用することが可能となる。これにより、 CDMA受信機のさらなる小型化や低消費電力化 (電池の長寿命化) を達成 することが可能となる。
本発明の一形態によれば、 DCオフセッ トが増大する可能性の高い期間に おいて、 信号経路に介在する D C成分阻止用のハイパスフィルタの時定数を 通常動作時よりも小さくする。 これにより、 ハイパスフィルタを通過した信 号の過渡応答を急速に収束させ、 微分波形の重なりをなくすことにより、 直 流分のシフトが累積されることを防止する。
本発明の他の形態によれば、 上記の構成において、 A G C制御ループの構 成要素である可変利得増幅器に設定されるゲイン値の変化量が所定量を超え たこと、 あるいは、 現在のダイレクトコンバージョン受信機が、 電源投入直 後の期間、 間欠受信における受信機の立ち上げ直後の期間、 W— C D MAシ ステムにおける異周波数測定の開始直後の期間のいずれかにあることを検出 して、 D Cオフセットが増大する可能性の高い期間であると判定する。
本発明の他の形態の A G C回路は、 A G C制御ループの構成要素である可 変利得増幅器に設定されるゲイン値の変化量が所定量を超えたとき、 あるい は、 現在のダイレクトコンバージョン受信機が、 電源投入直後の期間、 間欠 受信における受信機の立ち上げ直後の期間、 W— C D M Aシステムにおける 異周波数測定の開始直後の期間のいずれかにあるときに、 前記ハィパスフィ ルタの遮断周波数を、通常動作における周波数より高い周波数に切り換えて、 ハイパスフィルタの時定数を小さくし、 D C変動を高速に収束させるフィル タ制御部を有している。
本発明の他の形態の A G C回路は、 ゲイン変化量検出部にて、 可変利得増 幅器のゲインの変化量が所定量以上であることを検出し、 その検出結果の通 知を受けて、 フィルタ制御部が、 ハイパスフィルタの遮断周波数を高側に切 り換える。
本発明の他の形態の A G C回路は、 上記の構成において、 ハイパスフィル タの遮断周波数が高側に切り換えられている期間では、 ゲイン算出器および ゲイン制御部は、 1回の更新当たりのゲインの変化幅を大きくするか、 ある いは、 更新の周期を短くするかの少なくとも一つを行って、 通常の動作時よ りも高速な A G C制御を実現する。 D Cオフセットの危険性が低減されてい るため、 負帰還ループのゲインを高く して、 受信環境への追従を高速化する ものである。 本発明の他の形態の A G C回路は、 上記の構成において、 フィルタ制御部 は、ハイパスフィルタの遮断周波数を高側に切り換えた後、再び低側に戻し、 電力測定部は、 所定期間における平均受信電力を測定するに際し、 所定期間 内の、 ハイパスフィルタの遮断周波数が高側に切り換えられている区間につ いては、 受信電力の測定を行わない。 D Cオフセッ トが増大する期間におけ る電力の実測値は信頼性が低いため、 これを A G C制御の基礎としないこと で、 制御の信頼性低下を防止するものである。
本発明の他の形態の A G C回路は、 ハイパスフィルタを通過した信号の D Cオフセットが増大する可能性が高い状態であるか否かを、 復調処理後の信 号に含まれる情報に基づいて、 あるいは、 ダイレク トコンバージョン受信機 自体の動作状態に基づいて判定し、 その判定結果をフィルタ制御部に通知す る判定部を設け、 判定部からの通知を受けると、 フィルタ制御部は、 ハイパ スフィルタの遮断周波数を、 高側に切り換えるようにした。 この構成によれ ば、 上記記載のゲイン変化量検出部が不要となる。
本発明の他の形態の C D MA受信機は、 上記いずれかに記載の A G C回路 を搭載した C D MA受信機であり、 この C D MA受信機は、 ダイレク トコン バージョン受信機のもつ小型、 軽量、 低消費電力という優れた特性をもち、 かつ、 D Cオフセットに起因する復調精度の低下や A G C制御の不安定化と いった問題もなく、 安定した動作を保障する。
本発明の他の形態のベースバンド可変利得増幅回路は、 ゲイン変動量を検 出してハイパスフィルタの遮断周波数を切り換える構成をとる。
本発明の他の形態のベースバンド可変利得増幅回路は、 A G Cモード信号 とタイミング制御信号に基づいてハイパスフィルタの遮断周波数を切り換え る構成をとる。
本発明の他の形態のベースバンド可変利得増幅回路は、 ディジタル制御デ ータを受けて、 ハイパスフィルタの遮断周波数を切り換える構成をとる。 本発明の他の形態のベースバンド可変利得増幅回路は、 P L Lシンセサイ ザを利用してハイパスフィルタの遮断周波数を切り換える構成をとる。
本発明の他の形態のベースバンド可変利得増幅回路は、 電源オンのタイミ ングを基準としてハイパスフィルタの遮断周波数を切り換える構成をとる。 本明細書は、 200 2年 1月 2 9 S出願の特願 200 2— 020 2 5 1に 基づく。 この内容はすべてここに含めておく。 産業上の利用可能性
本発明は、 ダイレク トコンバージョン受信機における AGC (Auto Gain Control) 回路、 CDMA (Code Division Multiple Access) 受信機およびべ 一スパンド可変利得増幅回路に適用することができる。

Claims

請求の範囲
1 . ダイレク トコンバージョン受信機において発生する D Cオフセットを 低減する方法であって、
D Cオフセットが増大する可能性の高い期間を検出し、その期間において、 信号経路に介在する D C成分阻止用のフィルタの時定数を通常動作時よりも 小さくして、 前記フィルタを通過した信号の過渡応答を急速に収束させる D Cオフセッ ト低減方法。
2 . D Cオフセッ トが増大する可能性の高い期間であることの検出は、 A G C制御ループの構成要素である可変利得増幅器に設定されるゲイン値の変 化量が所定量を超えたこと、 あるいは、 現在のダイレク トコンバージョン受 信機が、 電源投入直後の期間、 間欠受信における受信機の立ち上げ直後の期 間、 または異周波数測定の開始直後の期間のいずれかにあること、 に基づい て行われる請求の範囲第 1項記載の D Cオフセット低減方法。
3 . 受信した高周波信号に、 この高周波信号と実質的に同一の周波数の口 一カル信号を乗算して直接、 ベースバンド信号に変換し、 そのベースバンド 信号を、 可変利得増幅器、 ローパスフィルタ、 および D C成分カット用の遮 断周波数可変のハイパスフィルタを構成要素に含むベースバンド可変利得増 幅回路により増幅した後、 AZD変換ならびに復調処理を行うダイレク トコ ンバージョン受信機における A G C回路であって、
A G C制御ループの構成要素である可変利得増幅器に設定されるゲイン値 の変化量が所定量を超えたとき、 あるいは、 現在のダイレクトコンパージョ ン受信機が、 電源投入直後の期間、 間欠受信における受信機の立ち上げ直後 の期間、 異周波数測定の開始直後の期間のいずれかにあるときに、 前記ハイ パスフィルタの遮断周波数を、 通常動作における周波数より高い周波数に切 り換えて前記ハイパスフィルタの時定数を小さくし、 前記 D C変動を高速に 収束させるフィルタ制御部、 を有するダイレクトコンバージョン受信機にお ける A G C回路。
4 . 受信した高周波信号に、 この高周波信号と実質的に同一の周波数の口 一カル信号を乗算して直接、 ベースバンド信号に変換し、 そのベースバンド 信号を、 可変利得増幅器、 ローパスフィルタおよび D C成分カッ ト用のハイ パスフィルタを構成要素に含むベースバンド可変利得増幅回路により増幅し た後、 AZD変換ならびに復調処理を行う、 ダイレク トコンバージョン受信 機における A G C回路であって、
A/D変換後の信号に基づいて受信電力を測定する電力測定部と、 測定された受信電力と収束目標値との差の情報から、 前記可変利得増幅器 のゲインを算出するゲイン算出器と、
算出されたゲインに基づき、 前記可変利得増幅器のゲインを制御するゲイ ン制御部と、
前記ハイパスフィルタの遮断周波数を、 少なくとも、 高低 2段階に切り換 える機能をもっフィルタ制御部と、
前記ゲイン制御部による制御の結果、 前記可変利得増幅器のゲインが、 所 定量を超えて変化することを検出すると、 前記フィルタ制御部に通知するゲ イン変化量検出部と、 を有し、
前記フィルタ制御部は、 前記ゲイン変化量検出部からの通知を受けると、 前記ハイパスフィルタの遮断周波数を、 高側に切り換えるダイレク トコンバ 一ジョン受信機における A G C回路。
5 . 前記ハイパスフィルタの遮断周波数が高側に切り換えられている期間 では、 前記ゲイン算出器および前記ゲイン制御部は、 1回の更新当たりのゲ インの変化幅を大きくするか、 あるいは、 前記更新の周期を短くするかの少 なくとも一つを行う、 請求の範囲第 4項記載のダイレク トコンバージョン受 信機における A G C回路。
6 . 前記フィルタ制御部は、 前記ハイパスフィルタの遮断周波数を高側に 切り換えた後、 再び低側に戻し、 また、 前記電力測定部は、 所定期間における平均受信電力を測定するに際 し、 前記所定期間内の、 前記ハイパスフィルタの遮断周波数が高側に切り換 えられている区間については、 受信電力の測定を行わない、 請求の範囲第 4 項記載のダイレク トコンバージョン受信機における A G C回路。
7 . 受信した高周波信号に、 この高周波信号と実質的に同一の周波数の口 一カル信号を乗算して直接、 ベースバンド信号に変換し、 そのベースバンド 信号を、 可変利得増幅器、 ローパスフィルタおよび D C成分カット用のハイ パスフィルタを構成要素に含むベースバンド可変利得増幅回路により増幅し た後、 AZD変換ならぴに復調処理を行う、 ダイレク トコンバージョン受信 機における A G C回路であって、
AZD変換後の信号に基づいて受信電力を測定する電力測定部と、 測定された受信電力と収束目標値との差の情報から、 前記可変利得増幅器 のゲインを算出するゲイン算出器と、
算出されたゲインに基づき、 前記可変利得増幅器のゲインを制御するゲイ ン制御部と、
前記ハイパスフィルタの遮断周波数を、 少なくとも、 高低 2段階に切り換 える機能をもつフィルタ制御部と、
前記ハイパスフィルタを通過した信号の D Cオフセットが増大する可能性 が高い状態であるか否かを、 前記復調処理後の信号に含まれる情報に基づい て、 あるいは、 前記ダイレク トコンバージョン受信機自体の動作状態に基づ いて判定し、 その判定結果を前記フィルタ制御部に通知する判定部と、 を有 し、
前記判定部からの通知を受けると、 前記フィルタ制御部は、 前記ハイパス フィルタの遮断周波数を、 高側に切り換える、 ダイレク トコンバージョン受 信機における A G C回路。
8 . 前記ハィパスフィルタの遮断周波数が高側に切り換えられている期間 では、 前記ゲイン算出器および前記ゲイン制御部は、 1回の更新当たりのゲ インの変化幅を大きくするか、 あるいは、 前記更新の周期を短くするかの少 なくとも一つを行って、 通常の動作時よりも高速な A G C制御を実現する、 請求の範囲第 7項記載のダイレク トコンバージョン受信機における A G C回 路。
9 . 前記フィルタ制御部は、 前記ハイパスフィルタの遮断周波数を高側に 切り換えた後、 再ぴ低側に戻し、
また、 前記電力測定部は、 所定期間における平均受信電力を測定するに際 し、 前記所定期間内の、 前記ハイパスフィルタの遮断周波数が高側に切り換 えられている区間については、 受信電力の測定を行わない、 請求の範囲第 7 項記載のダイレクトコンバージョン受信機における A G C回路。
1 0 . 請求の範囲第 3項記載のダイレク トコンバージョン受信機における A G C回路を搭載した C D MA受信機。
1 1 . 請求の範囲第 4項記載のダイレク トコンバージョン受信機における A G C回路を搭載した C D MA受信機。
1 2 . 請求の範囲第 7項記載のダイレク トコンバージョン受信機における A G C回路を搭載した C D MA受信機。
1 3 . ダイレク トコンバージョン受信機に搭載される、 ベースバンド信号 を増幅するためのベースバンド可変利得増幅回路であって、
前記ベースバンド信号を増幅するための可変利得増幅器と、
ベースバンド信号の信号経路に介在する直流阻止用の、 遮断周波数を少な くとも高低 2段階に変化させることができるハイパスフィルタと、
前記可変利得増幅器に設定されるゲインの変化量が、 所定のしきい値を超 えていることを検出するゲイン変化量検出部と、
このゲイン変化量検出部により、 ゲインの変化量が前記所定のしきい値を 超えていることが検出された場合に、前記ハイパスフィルタの遮断周波数を、 高側に
切り換えるフィルタ制御部と、 を有するベースバンド可変利得増幅回路。
1 4 . ダイレクトコンバージョン受信機に搭載される、 ベースバンド信号 を増幅するためのベースバンド可変利得増幅回路であって、
前記ベースパンド信号を増幅するための可変利得増幅器と、
ベースバンド信号の信号経路に介在する直流阻止用の、 遮断周波数を少な くとも高低 2段階に変化させることができるハイパスフィルタと、
外部から供給される、 前記ダイレク トコンバージョン受信機の A G Cモー ド信号およびタイミング制御信号に基づいて、 前記ハイパスフィルタの遮断 周波数を切り換えるフィルタ制御部と、
を有するベースバンド可変利得増幅回路。
1 5 . ダイレク トコンバージョン受信機に搭載される、 ベースバンド信号 を増幅するためのベースバンド可変利得増幅回路であって、
前記ベースバンド信号を増幅するための可変利得増幅器と、
ベースバンド信号の信号経路に介在する直流阻止用の、 遮断周波数を少な くとも高低 2段階に変化させることができるハイパスフィルタと、
前記可変利得増幅器に設定するゲインデータ、 ならびに前記ハイパスフィ ルタの遮断周波数の切り換え指示データを含むディジタルデータを、 アナ口 グ信号に変換する D / Aコンバータと、
この D / Aコンバータの変換出力に含まれる、 前記遮断周波数の切り換え 指示データに対応する信号に基づき、 前記ハイパスフィルタの遮断周波数を 切り換えるフィルタ制御部と、
を有するベースバンド可変利得増幅回路。
1 6 . ダイレク トコンバージョン受信機に搭載される、 ベースバンド信号 を増幅するためのベースバンド可変利得増幅回路であって、
前記ベースパンド信号を增幅するための可変利得増幅器と、
ベースバンド信号の信号経路に介在する直流阻止用の、 遮断周波数を少な くとも高低 2段階に変化させることができるハイパスフィルタと、 P L Lシンセサイザ回路と、
この P L Lシンセサイザ回路の発振周波数を指定する指定データを含むデ イジタル制御信号を受信すると共に、 前記指定データにより指定された通り に前記 P L Lシンセサイザ回路から出力される発振出力を、 前記ハイパスフ ィルタの遮断周波数を切り換えるための制御信号として出力するインタフエ ース回路と、
前記ィンタフ ース回路から出力される前記制御信号に基づき、 前記ハイ パスフィルタの遮断周波数を切り換えるフィルタ制御部と、
を有するベースバンド可変利得増幅回路。
1 7 . ダイレク トコンバージョン受信機に搭載される、 ベースバンド信号 を增幅するためのベースバンド可変利得増幅回路であって、
前記べースバンド信号を増幅するための可変利得増幅器と、
ベースバンド信号の信号経路に介在する直流阻止用の、 遮断周波数を少な くとも高低 2段階に変化させることができるハイパスフィルタと、
前記ベースバンド可変利得増幅回路の電源のオン Zオフを実行する回路と、 この電源のオン/オフを実行する回路によって電源がオフからオンに変化 したことをトリガーとして、 前記ハイパスフィルタの遮断周波数を切り換え るフィルタ制御部と、
を有するベースバンド可変利得増幅回路。
PCT/JP2003/000783 2002-01-29 2003-01-28 Recepteur a conversion directe et procede de reduction de decalage en continu WO2003065600A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/469,290 US7171185B2 (en) 2002-01-29 2003-01-28 Direct conversion receiver and DC offset reducing method
KR10-2003-7012512A KR100532266B1 (ko) 2002-01-29 2003-01-28 다이렉트 컨버전 수신기 및 dc 오프셋 저감 방법
EP03734861A EP1471653A4 (en) 2002-01-29 2003-01-28 DIRECT CONVERSION RECEIVER AND CONTINUOUS SHIFT REDUCTION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002020251A JP3805258B2 (ja) 2002-01-29 2002-01-29 ダイレクトコンバージョン受信機
JP2002-020251 2002-01-29

Publications (1)

Publication Number Publication Date
WO2003065600A1 true WO2003065600A1 (fr) 2003-08-07

Family

ID=27654338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000783 WO2003065600A1 (fr) 2002-01-29 2003-01-28 Recepteur a conversion directe et procede de reduction de decalage en continu

Country Status (6)

Country Link
US (1) US7171185B2 (ja)
EP (1) EP1471653A4 (ja)
JP (1) JP3805258B2 (ja)
KR (1) KR100532266B1 (ja)
CN (1) CN1302625C (ja)
WO (1) WO2003065600A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1655835A3 (en) * 2003-09-16 2006-05-17 Sony Ericsson Mobile Communications Japan, Inc. Variable gain control circuit and receiver apparatus using the circuit
JP2007533266A (ja) * 2004-04-13 2007-11-15 スカイワークス ソリューションズ,インコーポレイテッド 直流オフセット補正システム及び方法
CN101103538A (zh) * 2005-01-14 2008-01-09 日本电气株式会社 通信设备、多频带接收机及接收机
US7356320B2 (en) 2003-12-18 2008-04-08 Samsung Electronics Co., Ltd. Apparatus and method for removing DC offset in a frequency direct-conversion device

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7007239B1 (en) * 2000-09-21 2006-02-28 Palm, Inc. Method and apparatus for accessing a contacts database and telephone services
US20060121938A1 (en) * 1999-08-12 2006-06-08 Hawkins Jeffrey C Integrated handheld computing and telephony device
US7503016B2 (en) * 1999-08-12 2009-03-10 Palm, Inc. Configuration mechanism for organization of addressing elements
US6781575B1 (en) 2000-09-21 2004-08-24 Handspring, Inc. Method and apparatus for organizing addressing elements
US8064886B2 (en) * 1999-08-12 2011-11-22 Hewlett-Packard Development Company, L.P. Control mechanisms for mobile devices
JP4523758B2 (ja) * 2003-02-12 2010-08-11 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 受信回路及び無線通信端末装置
US7139542B2 (en) * 2003-03-03 2006-11-21 Nokia Corporation Method and apparatus for compensating DC level in an adaptive radio receiver
US7295852B1 (en) * 2003-05-01 2007-11-13 Palm, Inc. Automated telephone conferencing method and system
WO2004100354A1 (en) * 2003-05-07 2004-11-18 Koninklijke Philips Electronics N. V. Receiver front-end with low power consumption
JP2005020119A (ja) * 2003-06-24 2005-01-20 Renesas Technology Corp 通信用半導体集積回路および無線通信システム並びにゲインおよびオフセットの調整方法
JP2005101693A (ja) * 2003-09-22 2005-04-14 Hitachi Kokusai Electric Inc 受信機
JP4090980B2 (ja) 2003-10-29 2008-05-28 松下電器産業株式会社 Dcオフセット過渡応答キャンセルシステム
JP4197485B2 (ja) * 2003-11-17 2008-12-17 パナソニック株式会社 無線受信装置および信号強度測定方法
US7184736B2 (en) * 2004-03-05 2007-02-27 Orion Microelectronics Corporation Apparatus and method for dynamic DC offset detection and cancellation using high pass filter with variable impedance and corner frequency
JP4468359B2 (ja) * 2004-03-08 2010-05-26 パナソニック株式会社 受信回路と、それを用いた受信装置および送受信装置
DE602004030210D1 (de) * 2004-03-18 2011-01-05 Infineon Technologies Ag Gleichspannungsoffsetkompensation
JP2005286806A (ja) * 2004-03-30 2005-10-13 Nec Corp 自動利得制御装置および自動利得制御方法
US7603098B2 (en) * 2004-03-31 2009-10-13 Broadcom Corporation Programmable IF frequency filter for enabling a compromise between DC offset rejection and image rejection
US7596195B2 (en) * 2004-03-31 2009-09-29 Broadcom Corporation Bandpass filter with reversible IQ polarity to enable a high side or low side injection receiver architecture
US7565127B2 (en) 2004-05-14 2009-07-21 Nec Corporation Signal processing unit
US8204466B2 (en) * 2004-05-21 2012-06-19 Realtek Semiconductor Corp. Dynamic AC-coupled DC offset correction
US7463704B1 (en) * 2004-07-01 2008-12-09 Atheros Communications, Inc. Multi-chain signal detection and gain control for automatic gain control systems
JP4028528B2 (ja) * 2004-07-05 2007-12-26 松下電器産業株式会社 ダイレクトコンバージョン受信装置及び携帯電話
US7073775B2 (en) * 2004-09-13 2006-07-11 Cameron International Corporation Rotating check valve for compression equipment
KR100663476B1 (ko) * 2004-10-11 2007-01-02 삼성전자주식회사 통신 시스템의 무선 단말기에서 송수신 장치의 이득을 제어하기 위한 장치 및 방법
US8243864B2 (en) * 2004-11-19 2012-08-14 Qualcomm, Incorporated Noise reduction filtering in a wireless communication system
JP4236631B2 (ja) * 2004-12-10 2009-03-11 株式会社東芝 無線受信機
CN100369383C (zh) * 2004-12-17 2008-02-13 北京六合万通微电子技术有限公司 无线接收系统中直流失调的消除方法、装置及系统
EP1713180A4 (en) * 2005-01-24 2010-03-17 Panasonic Corp RECEIVER DEVICE AND ELECTRONIC DEVICE THEREFOR
JP4500187B2 (ja) * 2005-03-08 2010-07-14 パナソニック株式会社 ダイレクトコンバージョン受信機
US7899431B2 (en) * 2005-04-04 2011-03-01 Freescale Semiconductor, Inc. DC offset correction system for a receiver with baseband gain control
FR2884382B1 (fr) * 2005-04-11 2007-05-25 Dibcom Sa Dispositif de reception de signaux analogiques de television numerique et recepteur correspondant.
JP4227599B2 (ja) 2005-04-12 2009-02-18 パナソニック株式会社 受信回路
JP4636926B2 (ja) * 2005-04-22 2011-02-23 三洋電機株式会社 マルチビットδς変調型daコンバータ
JP4830342B2 (ja) * 2005-04-28 2011-12-07 パナソニック株式会社 受信レベル制御装置、及び受信レベル制御方法
JP4669740B2 (ja) * 2005-05-31 2011-04-13 理研計器株式会社 焦電型赤外線ガス検知器
KR100726785B1 (ko) * 2005-08-17 2007-06-11 인티그런트 테크놀로지즈(주) 지상파 디지털 멀티미디어/디지털 오디오 방송용Low-IF 수신기.
WO2007032550A1 (ja) * 2005-09-14 2007-03-22 Nec Corporation 受信振幅補正回路及び受信振幅補正方法並びにそれを用いた受信機
JP4130831B2 (ja) * 2005-10-07 2008-08-06 松下電器産業株式会社 動的dcオフセット除去装置及び動的dcオフセット除去方法
GB0600762D0 (en) * 2006-01-16 2006-02-22 Bookham Technology Plc Jitter detection and reduction
JP4717675B2 (ja) * 2006-03-27 2011-07-06 パナソニック株式会社 無線受信装置
US7873126B2 (en) * 2006-04-03 2011-01-18 Qualcomm Incorporated Method and system for automatic gain control with intelligent selection of signal samples
US20070237265A1 (en) * 2006-04-11 2007-10-11 Hsiang-Hui Chang Demodulator and method thereof
US7881411B2 (en) * 2006-05-05 2011-02-01 Wi-Lan, Inc. Modulation dependent automatic gain control
US7653368B2 (en) * 2006-06-14 2010-01-26 Intel Corporation Radio receiver and a method thereof
FR2903546A1 (fr) * 2006-07-07 2008-01-11 St Microelectronics Sa Procede et dispositif de reduction de la composante continue d'un signal transpose en bande de base,en particulier dans un recepteur du type a conversion directe
JP4890174B2 (ja) * 2006-09-20 2012-03-07 富士通株式会社 無線通信装置および無線通信方法
US8433275B2 (en) * 2006-10-13 2013-04-30 Samsung Electronics Co., Ltd System and method for DC correction in wireless receivers
JP4946372B2 (ja) * 2006-11-13 2012-06-06 パナソニック株式会社 フィルタ回路とこれを用いた受信装置及び電子機器
US7742751B2 (en) * 2006-12-20 2010-06-22 Intel Corporation Filter scheme for receiver
CN101237261B (zh) * 2007-02-01 2014-04-09 中兴通讯股份有限公司 射频单元及其信号幅度调整方法
US7711342B2 (en) * 2007-02-27 2010-05-04 Pine Valley Investments, Inc. Signal adjustment techniques
DE102007024013B8 (de) * 2007-05-22 2009-04-16 Atmel Germany Gmbh Signalverarbeitungsvorrichtung und Signalverarbeitungsverfahren
US20090058531A1 (en) * 2007-08-31 2009-03-05 Nanoamp Solutions Inc. (Cayman) Variable gain amplifier
US20090088106A1 (en) * 2007-09-27 2009-04-02 Nanoamp Solutions Inc. (Cayman) Radio frequency filtering
JP2009088972A (ja) * 2007-09-28 2009-04-23 Toshiba Corp 無線通信の受信装置
JP4911088B2 (ja) * 2008-03-21 2012-04-04 富士通株式会社 無線通信装置および無線通信方法
EP2148481A1 (fr) * 2008-07-25 2010-01-27 STMicroelectronics N.V. Procédé et dispositif de traitement du décalage en courant continu d'une chaîne de réception radiofréquence avec plusieurs amplificateurs variables
TW201015860A (en) * 2008-10-01 2010-04-16 Ralink Technology Corp Flexible DC offset cancellation for direct conversion transceiver and control method thereof
JP2010093425A (ja) * 2008-10-06 2010-04-22 Sumitomo Electric Ind Ltd 基地局装置及び無線通信システム
TWI418143B (zh) * 2010-08-26 2013-12-01 Global Unichip Corp 一種具有自動增益控制裝置之通訊裝置以及自動增益控制的方法
JP5365601B2 (ja) * 2010-09-30 2013-12-11 株式会社Jvcケンウッド 復号装置および復号方法
JP5664388B2 (ja) * 2011-03-22 2015-02-04 富士通株式会社 携帯無線通信装置
CN102277288B (zh) * 2011-07-12 2013-02-13 深圳市慧慈现代生物科技有限公司 一种保健酒及其制备方法
JP5610635B2 (ja) * 2011-09-26 2014-10-22 パナソニック株式会社 受信回路及び受信機
JP2013175801A (ja) * 2012-02-23 2013-09-05 Goyo Electronics Co Ltd 無線受信装置
US9031567B2 (en) * 2012-12-28 2015-05-12 Spreadtrum Communications Usa Inc. Method and apparatus for transmitter optimization based on allocated transmission band
US8942656B2 (en) 2013-03-15 2015-01-27 Blackberry Limited Reduction of second order distortion in real time
US9197279B2 (en) 2013-03-15 2015-11-24 Blackberry Limited Estimation and reduction of second order distortion in real time
US8811538B1 (en) 2013-03-15 2014-08-19 Blackberry Limited IQ error correction
EP2779510B1 (en) 2013-03-15 2018-10-31 BlackBerry Limited Statistical weighting and adjustment of state variables in a radio
US8983486B2 (en) 2013-03-15 2015-03-17 Blackberry Limited Statistical weighting and adjustment of state variables in a radio
US10162404B2 (en) * 2013-10-18 2018-12-25 Sony Semiconductor Solutions Corporation Control apparatus, control method, cable, electronic apparatus, and communication apparatus with increased variation of connection mode
JP2015195490A (ja) * 2014-03-31 2015-11-05 富士通株式会社 伝送装置および光伝送システム
JP6583293B2 (ja) * 2015-01-14 2019-10-02 株式会社ソシオネクスト Agc回路および無線受信機
JP2017028630A (ja) * 2015-07-27 2017-02-02 株式会社東芝 帯域通過フィルタ及び無線通信機
EP3244584B1 (en) * 2016-05-11 2019-07-03 Stichting IMEC Nederland Receiver for frequency offset correction
CN106357281B (zh) * 2016-10-27 2017-06-16 西安科技大学 基于序列正交下变频的直流补偿接收机及信号接收方法
JP6812816B2 (ja) * 2017-02-03 2021-01-13 株式会社Jvcケンウッド 受信装置、受信方法、プログラム
US10320433B2 (en) * 2017-03-28 2019-06-11 Panasonic Corporation Radio receiving device and transmitting and receiving device
CN107276554B (zh) * 2017-06-22 2020-09-22 成都仕芯半导体有限公司 一种模拟移相器及射频信号相移方法
JP6929203B2 (ja) * 2017-11-15 2021-09-01 旭化成エレクトロニクス株式会社 ダイレクトコンバージョン受信機
US10530306B2 (en) * 2018-04-13 2020-01-07 Nxp Usa, Inc. Hybrid power amplifier circuit or system with combination low-pass and high-pass interstage circuitry and method of operating same
WO2020113532A1 (en) * 2018-12-06 2020-06-11 Beijing Didi Infinity Technology And Development Co., Ltd. Speech communication system and method for improving speech intelligibility
CN109828240A (zh) * 2019-03-21 2019-05-31 中国电子科技集团公司第三十八研究所 一种模拟基带电路及77GHz汽车雷达
CN112769413B (zh) * 2019-11-04 2024-02-09 炬芯科技股份有限公司 高通滤波器及其稳定方法以及adc录音系统
US11140633B2 (en) 2020-02-10 2021-10-05 Samsung Electronics Co., Ltd. Method and apparatus for loopback gain step calibration on RF chain with phase shifter
JP7060069B2 (ja) * 2020-12-17 2022-04-26 株式会社Jvcケンウッド 直流成分変動抑制装置、直流成分変動抑制方法、プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316998A (ja) * 1995-05-15 1996-11-29 Matsushita Electric Ind Co Ltd 受信装置
JPH08316997A (ja) * 1995-05-15 1996-11-29 Matsushita Electric Ind Co Ltd 受信装置
JPH11225179A (ja) * 1998-02-09 1999-08-17 Nec Corp ダイレクトコンバージョン受信装置
WO2000054420A1 (fr) * 1999-03-11 2000-09-14 Mitsubishi Denki Kabushiki Kaisha Dispositif terminal radio
JP2001197136A (ja) * 1999-11-12 2001-07-19 Hyundai Electronics Ind Co Ltd ホモダイン方式を用いるrf送受信装置
JP2002261638A (ja) * 2001-03-02 2002-09-13 Hitachi Ltd Agc制御を行う受信機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI112131B (fi) 1996-02-08 2003-10-31 Nokia Corp Menetelmä ja piirijärjestely signaalin erojännitteen pienentämiseksi
US6498929B1 (en) * 1996-06-21 2002-12-24 Kabushiki Kaisha Toshiba Receiver having DC offset decreasing function and communication system using the same
JP3731276B2 (ja) 1997-03-03 2006-01-05 三菱電機株式会社 受信機
KR100268449B1 (ko) * 1998-06-25 2000-10-16 윤종용 향상된 베이스 밴드 아날로그 회로를 구비하는시스템
JP2000216836A (ja) 1999-01-22 2000-08-04 Japan Radio Co Ltd Dcオフセット調整回路及び方法
US6442380B1 (en) * 1999-12-22 2002-08-27 U.S. Philips Corporation Automatic gain control in a zero intermediate frequency radio device
US6560448B1 (en) * 2000-10-02 2003-05-06 Intersil Americas Inc. DC compensation system for a wireless communication device configured in a zero intermediate frequency architecture
US7076225B2 (en) * 2001-02-16 2006-07-11 Qualcomm Incorporated Variable gain selection in direct conversion receiver
US7062244B2 (en) * 2001-12-28 2006-06-13 Texas Instruments Incorporated Speed-up mode implementation for direct conversion receiver

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316998A (ja) * 1995-05-15 1996-11-29 Matsushita Electric Ind Co Ltd 受信装置
JPH08316997A (ja) * 1995-05-15 1996-11-29 Matsushita Electric Ind Co Ltd 受信装置
JPH11225179A (ja) * 1998-02-09 1999-08-17 Nec Corp ダイレクトコンバージョン受信装置
WO2000054420A1 (fr) * 1999-03-11 2000-09-14 Mitsubishi Denki Kabushiki Kaisha Dispositif terminal radio
JP2001197136A (ja) * 1999-11-12 2001-07-19 Hyundai Electronics Ind Co Ltd ホモダイン方式を用いるrf送受信装置
JP2002261638A (ja) * 2001-03-02 2002-09-13 Hitachi Ltd Agc制御を行う受信機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1471653A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1655835A3 (en) * 2003-09-16 2006-05-17 Sony Ericsson Mobile Communications Japan, Inc. Variable gain control circuit and receiver apparatus using the circuit
US7356320B2 (en) 2003-12-18 2008-04-08 Samsung Electronics Co., Ltd. Apparatus and method for removing DC offset in a frequency direct-conversion device
JP2007533266A (ja) * 2004-04-13 2007-11-15 スカイワークス ソリューションズ,インコーポレイテッド 直流オフセット補正システム及び方法
CN101103538A (zh) * 2005-01-14 2008-01-09 日本电气株式会社 通信设备、多频带接收机及接收机
CN101103538B (zh) * 2005-01-14 2014-06-04 日本电气株式会社 通信设备、多频带接收机及接收机

Also Published As

Publication number Publication date
CN1302625C (zh) 2007-02-28
JP2003224488A (ja) 2003-08-08
KR20040002882A (ko) 2004-01-07
CN1498457A (zh) 2004-05-19
KR100532266B1 (ko) 2005-11-29
JP3805258B2 (ja) 2006-08-02
EP1471653A1 (en) 2004-10-27
EP1471653A4 (en) 2011-06-22
US20040097212A1 (en) 2004-05-20
US7171185B2 (en) 2007-01-30

Similar Documents

Publication Publication Date Title
WO2003065600A1 (fr) Recepteur a conversion directe et procede de reduction de decalage en continu
US8036619B2 (en) Oscillator having controllable bias modes and power consumption
US6782250B2 (en) Battery operated radio receivers having power save by reducing active reception time
JP3852919B2 (ja) 無線受信機
US8238858B2 (en) Communication device, multi-band receiver, and receiver
US7542527B2 (en) Frequency offset correction circuit device
US6766156B1 (en) Radio transmitter-receiver, high-frequency radio receiver, and control unit
US20050147192A1 (en) High frequency signal receiver and semiconductor integrated circuit
JP2002135157A (ja) マルチバンド携帯無線端末
JP2003289259A (ja) 高周波信号受信装置とその製造方法
JP2001016285A (ja) Afc回路
JP3551841B2 (ja) 受信機及びその利得制御方法
JP2808891B2 (ja) 受信機における自動利得制御装置および方法
KR101228778B1 (ko) 수신장치
KR20010087312A (ko) 자동이득제어장치 및 방법, 그리고 자동이득제어기능을구비한 무선통신장치
JPH06244754A (ja) 無線受信装置
JPH08139632A (ja) 狭帯域通信装置
AU778590B2 (en) Communication set radio communication system and automatic gain control method for radio communication set
US7920840B2 (en) Wireless receiver apparatus provided with gain control amplifier
JP4403141B2 (ja) 受信装置及び受信方法
WO2000051252A1 (fr) Dispositif de poste radio
JPH11298348A (ja) 受信装置
JP2001244861A (ja) 無線受信装置及び方法
JP3441311B2 (ja) 受信機
JP2007081708A (ja) 無線装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1047/KOLNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 10469290

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020037012512

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003734861

Country of ref document: EP

Ref document number: 038001160

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2003734861

Country of ref document: EP