WO2003064980A1 - Couche d'adaptation acoustique, emetteur/recepteur ultrasonore, leurs procedes de fabrication, et debitmetre ultrasonore - Google Patents

Couche d'adaptation acoustique, emetteur/recepteur ultrasonore, leurs procedes de fabrication, et debitmetre ultrasonore Download PDF

Info

Publication number
WO2003064980A1
WO2003064980A1 PCT/JP2003/000812 JP0300812W WO03064980A1 WO 2003064980 A1 WO2003064980 A1 WO 2003064980A1 JP 0300812 W JP0300812 W JP 0300812W WO 03064980 A1 WO03064980 A1 WO 03064980A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic matching
matching layer
ultrasonic
gel
ultrasonic transducer
Prior art date
Application number
PCT/JP2003/000812
Other languages
English (en)
French (fr)
Inventor
Kazuhiko Hashimoto
Takashi Hashida
Masaaki Suzuki
Masahiko Hashimoto
Hidetomo Nagahara
Seigo Shiraishi
Norihisa Takahara
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP03734866A priority Critical patent/EP1382943A1/en
Priority to KR10-2003-7014113A priority patent/KR20040086504A/ko
Priority to US10/475,426 priority patent/US6969943B2/en
Priority to JP2003564530A priority patent/JP3549523B2/ja
Publication of WO2003064980A1 publication Critical patent/WO2003064980A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators

Definitions

  • the present invention relates to an acoustic matching layer used for matching acoustic impedance, an ultrasonic transducer for transmitting and receiving ultrasonic waves, a manufacturing method thereof, and an ultrasonic flowmeter using the same. Things. Background art
  • FIG. 10 is a cross-sectional view schematically showing a configuration of a conventional ultrasonic generator (also referred to as a “piezoelectric vibrator”) 10.
  • the ultrasonic generator 10 includes a case 1, a piezoelectric layer (vibration means) 2, and an acoustic impedance matching layer (matching means, hereinafter referred to as "acoustic matching layer”).
  • Case 1 and piezoelectric layer 2 are bonded using an adhesive layer made of an adhesive (for example, epoxy).
  • Case 1 and acoustic matching layer 100 are similarly connected using an adhesive.
  • the piezoelectric layer vibrates at about 500 kHz, and the vibration is transmitted to the case 1 via an adhesive layer (not shown) and further to the acoustic matching layer 100 via the adhesive layer.
  • the vibration of the acoustic matching layer 100 propagates as a sound wave to the gas existing in the space.
  • a pair of electrodes (not shown) for polarizing the piezoelectric layer 2 in the thickness direction is provided on both sides of the piezoelectric layer 2, and the The wave generator 10 can mutually convert electric energy and mechanical energy by the piezoelectric layer 2.
  • the case 1 has an upper plate 1a forming a recess enclosing the piezoelectric layer 2 and a bottom plate 1b arranged so as to seal the space in the recess, and the piezoelectric layer 2 is sealed in the recess. It has been.
  • One of the electrodes formed on the pair of main surfaces of the piezoelectric layer 2 is connected to the terminal 5a via the case 1, and the other is connected to the terminal 5b. Therefore, case 1 is generally formed from a conductive metal.
  • the role of the acoustic matching layer 100 is to efficiently transmit the vibration of the piezoelectric layer 2 to the gas.
  • the acoustic impedance Z defined as Eq. (1), depends on the sound velocity C and the density p of the substance, and differs greatly between the piezoelectric layer 2 and gas.
  • ⁇ 2 ( ⁇ 1 ⁇ ⁇ 3) 1/2 /
  • an acoustic matching layer provided on the vibrating surface of a piezoelectric layer (also called “ultrasonic transducer”) composed of piezoelectric ceramics such as PZT (lead zirconate titanate)
  • a piezoelectric layer also called “ultrasonic transducer”
  • PZT lead zirconate titanate
  • the acoustic matching layer 100 is made by hardening a micro glass balloon 110 with epoxy resin 112 To reduce the density. Since the glass balloon 110 needs to be sufficiently smaller than the wavelength of the sound transmitted through the acoustic matching layer, a glass balloon having a diameter of 100 m or less is used.
  • the intensity of the sound transmitted through the acoustic matching layer 100 to the gas also depends on the thickness of the acoustic matching layer 100 (the distance over which sound waves propagate in the acoustic matching layer).
  • the sound wave from the piezoelectric layer 2 is divided into a transmitted wave and a wave reflected at the boundary between the acoustic matching layer 100 and the gas.
  • the reflected wave is reflected at the boundary surface between the acoustic matching layer 100 and the piezoelectric layer 2, and in this case, becomes a wave whose phase is inverted.
  • a part of this wave is a wave transmitted at the boundary between the acoustic matching layer 100 and the gas.
  • the acoustic matching layer 100 including the glass balloon 110 When the acoustic matching layer 100 including the glass balloon 110 is used, its sound speed is 200 OmZs, and when the sound frequency is 500 kHz, the wavelength ⁇ of the sound propagating through the acoustic matching layer 100 is 4 mm. Therefore, the optimal value of the thickness t of the acoustic matching layer 100 is 1 mm.
  • the thickness t of the acoustic matching layer is an integral multiple of ⁇ 4.
  • FIG. 9 is a diagram schematically showing a configuration of an ultrasonic flowmeter including the above-described ultrasonic generator 10.
  • a pair of ultrasonic generators 10 are used as a pair of ultrasonic transducers 101 and 102. As shown in FIG.
  • the pair of ultrasonic generators 101 and 102 are disposed inside a pipe (tube wall) 52 that defines a gas flow path 51. If the ultrasonic transducer 101 or 102 breaks, gas leaks out of the pipe 52, so the material of the ultrasonic transducers 101 and 102 (case 1 in Fig. 9) is used. It is difficult to select a fragile material such as ceramic resin. Accordingly, metal materials such as stainless steel and iron are used for the material of the case.
  • the fluid is flowing in the flow path 51 at a velocity V in the direction indicated by the thick arrow along the flow path.
  • the ultrasonic transducers 101 and 102 are configured using a piezoelectric vibrator such as a piezoelectric ceramic as an electric energy-mechanical energy conversion element, and have a resonance characteristic similar to a piezoelectric buzzer or a piezoelectric oscillator. Shows sex.
  • the ultrasonic transducer 101 is used as an ultrasonic transducer
  • the ultrasonic transducer 102 is used as an ultrasonic receiver.
  • a driving circuit 54 for driving the ultrasonic transducers 101 and 102 is connected to the ultrasonic receiver 102 via a switching circuit 55 for switching between transmission and reception, and an ultrasonic pulse is supplied to the ultrasonic receiver 102.
  • Reception detection circuit 56 to detect, Timer 57 to measure the propagation time of the ultrasonic pulse, Operation unit 58 to calculate the flow rate from the output of timer 57, Drive circuit 54, and control signal to timer 57 Is connected to the control unit 59 that outputs a signal.
  • the ultrasonic transmitter 101 When an AC voltage having a frequency near the resonance frequency is applied to the piezoelectric layer of the ultrasonic transmitter 101, the ultrasonic transmitter 101 enters a propagation path indicated by L in the figure in an external fluid. Ultrasonic waves are radiated, and the ultrasonic wave receiver 102 receives the transmitted ultrasonic waves and converts them into a voltage.
  • the ultrasonic transducer 102 is used as an ultrasonic transducer.
  • the ultrasonic transducer 101 is used as an ultrasonic transducer.
  • the ultrasonic transmitter 102 is indicated by L in the figure in an external fluid.
  • the ultrasonic wave is radiated to the propagation path, and the ultrasonic wave receiver 101 receives the transmitted ultrasonic wave and converts it into a voltage.
  • the ultrasonic transmitters 101 and 102 serve as a receiver and a transmitter, they are generally called ultrasonic transmitters and receivers.
  • the propagation direction of the ultrasonic wave in the propagation path L is indicated by an arrow (two-way) shown in the propagation path L.
  • V is the flow velocity of the fluid flowing through the tube 52
  • C is the velocity of the ultrasonic wave in the fluid
  • the ultrasonic transducer 101 is used as a transmitter and the ultrasonic transducer 102 is used as a receiver, the ultrasonic pulses emitted from the ultrasonic transducer 101 transmit and receive ultrasonic waves.
  • the sing-around period which is the time to reach the unit 102, is t1 and the sing-around frequency f1
  • the following equation (4) holds.
  • the sing-around period is t 2 and the sing-around frequency f 2 is For example, the following equation (5) holds.
  • the flow velocity V of the fluid can be obtained from the distance L of the ultrasonic wave propagation path and the frequency difference ⁇ f, and the flow rate can be determined from the flow velocity V.
  • the acoustic matching layer is formed using a material with a low density, for example, a material obtained by solidifying a glass balloon or plastic balloon with a resin material.
  • a material with a low density for example, a material obtained by solidifying a glass balloon or plastic balloon with a resin material.
  • the method of thermally compressing the glass balloon Alternatively, the acoustic matching layer was formed by a method such as foaming a molten material.
  • the conventional acoustic matching layer is made by mixing a glass balloon with a particle size smaller than the wavelength of the ultrasonic wave into the epoxy resin (that is, air with a small acoustic impedance so that the ultrasonic wave is not diffusely reflected in the epoxy resin). Since the acoustic impedance Z2 of the acoustic matching layer is reduced by dispersing the gaps, it is possible to increase the mixing ratio of the glass balloon to the epoxy resin to further reduce the acoustic impedance. However, if the mixing ratio of the glass balloon is increased, the viscosity of the epoxy resin agent containing the glass balloon increases, and it becomes difficult to uniformly mix the glass balloon and the epoxy resin agent. There are certain limits to increasing the mixing ratio of glass balloons. Therefore, it is difficult to manufacture an acoustic matching layer having a lower acoustic impedance even more with a glass balloon-filled epoxy resin.
  • the acoustic Inpi one dance acoustic matching layer made of the conventional glass balloons incoming Riepokishi resin is about 1 2 X l 0 6 kg / s -. M 2, and the acoustic Inpi one acoustic matching layer made of only the epoxy resin This is approximately 23 for the dance, and the ultrasonic energy transmittance T is improved by 9Z 4 times compared to the case using the acoustic matching layer made of only epoxy resin.
  • T is 3%, which is not sufficient.
  • the acoustic matching layer used in the conventional ultrasonic transducer used in the ultrasonic flowmeter is formed by, for example, thermally compressing a glass balloon or foaming a molten material as described above. Had been. For this reason, the medium tends to be non-homogeneous due to breakage of the glass spheres due to pressure, separation due to insufficient pressure, foaming of the exfoliated molten material, etc., causing variations in the characteristics within the acoustic matching layer, which leads to variations in device precision. There was a problem that it was generating.
  • the applicant of the present application has filed an application in Japanese Patent Application No. 2001-15651 (filing date: February 28, 2001) to form an acoustic matching layer using dried gel. It describes that, for example, variation in characteristics in the acoustic matching layer can be reduced as compared with the conventional method using epoxy resin containing a glass balloon. However, for example, in order to further improve the performance of an ultrasonic flowmeter, it is desired to further reduce the variation in the characteristics of the acoustic matching layer using a dried gel.
  • the variation in the thickness of the acoustic matching layer is smaller than in the past, but also occurs when a dry gel is used.
  • a dry gel is formed by drying a wet gel.
  • the present invention has been made in view of the above problems, and has as its main objects to provide an acoustic matching layer with less variation in characteristics than before, and an ultrasonic wave including such an acoustic matching layer.
  • An object of the present invention is to provide a transducer and an ultrasonic flowmeter.
  • Another object of the present invention is to provide a method for manufacturing such an acoustic matching layer and an ultrasonic transducer.
  • the acoustic matching layer according to the first aspect of the present invention comprises a dry gel powder.
  • the dried gel has a density of 500 kg Zm 3 or less and an average pore diameter of 100 nm or less.
  • an average particle size of the powder of the dried gel is in a range from 1 am to 100 m.
  • the solid skeleton of the dried gel contains an inorganic oxide.
  • the solid skeleton is hydrophobized.
  • the inorganic oxide is gallium oxide or aluminum oxide.
  • the powder of the heat-binding polymer contains not more than 40% by mass of the whole.
  • the thermal binding polymer powder has an average particle diameter in a range from 0.1 m to 50 m.
  • the acoustic impedance is 5 xl 0 4 k gZ
  • the temperature change rate of the acoustic impedance within the range of 25 to 70 is ⁇ 0.04% or less (the absolute value is 0.04% or less).
  • the acoustic matching layer has a thickness of about 4 of the wavelength ⁇ of the sound wave propagating in the acoustic matching layer.
  • An ultrasonic transducer includes: a piezoelectric layer; and any one of the above acoustic matching layers provided on the piezoelectric layer.
  • the acoustic matching layer is directly bonded on the piezoelectric layer.
  • the piezoelectric device further includes a case having an upper plate forming a recess enclosing the piezoelectric layer, and a bottom plate arranged to seal a space in the recess.
  • the acoustic matching layer is adhered to an inner surface of the upper plate of the case, and is directly coupled to the upper surface of the upper plate so as to face the piezoelectric layer via the upper plate.
  • An ultrasonic flowmeter includes: a flow measurement unit through which a fluid to be measured flows; a pair of ultrasonic transducers provided in the flow measurement unit to transmit and receive an ultrasonic signal; A measuring circuit for measuring the ultrasonic propagation time between the wave devices, and a flow rate based on a signal from the measuring circuit.
  • An ultrasonic flowmeter including a flow rate calculation circuit for calculating, wherein each of the pair of ultrasonic transducers is configured by any one of the ultrasonic transducers described above.
  • the method for producing an acoustic matching layer according to the first aspect of the present invention includes the steps of: preparing a mixed powder of a dry gel powder and a heat-binding polymer powder; and press-forming the mixed powder. Include.
  • the step of preparing the mixed powder includes the step of preparing the dry gel; the step of preparing the powder of the heat-binding polymer; Pulverizing while mixing with molecular powder.
  • the step of pressure-forming the mixed powder includes the step of heating the mixed powder.
  • the step of press-molding the mixed powder includes a step of controlling a thickness of a molded body of the mixed powder obtained by press molding to a predetermined thickness.
  • the step of press-molding the mixed powder includes a step of supplying a predetermined amount of the mixed powder on a lower molding surface, and a step of forming the mixed powder supplied on the lower molding surface. Flattening the upper surface of the layer to be formed.
  • a method for manufacturing an ultrasonic transducer is a method for manufacturing an ultrasonic transducer including a piezoelectric layer and an acoustic matching layer provided on the piezoelectric layer. Forming the acoustic matching layer by any one of the above-described manufacturing methods. In one embodiment, the acoustic matching layer is directly bonded on the piezoelectric layer.
  • the ultrasonic wave transmission / reception further includes a case having an upper plate forming a concave portion enclosing the piezoelectric layer, and a bottom plate arranged to seal a space in the concave portion.
  • the acoustic matching layer is directly bonded to an upper surface of the upper plate of the case.
  • a method of manufacturing an ultrasonic transducer is a method of manufacturing an ultrasonic transducer including a piezoelectric layer and an acoustic matching layer provided on the piezoelectric layer.
  • A a step of preparing a gel raw material liquid; and (b) a thickness regulating member having a predetermined height on a surface on which the acoustic matching layer is formed.
  • the thickness of the acoustic matching layer is controlled to a predetermined thickness, so that variations in characteristics due to variations in thickness are suppressed.
  • the acoustic matching layer has a first acoustic matching layer disposed on the piezoelectric layer side, and a second acoustic matching layer provided on the first acoustic matching layer.
  • the process of forming the acoustic matching layer includes the above steps (a) to (f).
  • the height of the thickness regulating portion is about one fourth of the wavelength ⁇ of the sound wave propagating in the corresponding acoustic matching layer.
  • the dry gel used in the acoustic matching layer according to the present invention may be a dry gel having an inorganic oxide as a solid skeleton or a dry gel having an organic polymer as a solid skeleton.
  • 1 (a) and 1 (b) are cross-sectional views schematically showing a structure of an acoustic manufacturing layer according to an embodiment of the present invention.
  • FIG. 2 is a process chart illustrating a manufacturing method in the ultrasonic transducer according to the first embodiment of the present invention.
  • FIG. 3 is a process chart illustrating a manufacturing method in the ultrasonic transducer according to the second embodiment of the present invention.
  • FIG. 4 is a process chart for explaining a manufacturing method in the ultrasonic transducer according to the third embodiment of the present invention.
  • FIG. 5 is a process chart for explaining a manufacturing method in the ultrasonic transducer according to the fourth embodiment of the present invention.
  • FIG. 6 is a process chart for explaining a manufacturing method in the ultrasonic transducer according to the fifth embodiment of the present invention.
  • FIG. 7 is a process chart for explaining a manufacturing method in the ultrasonic transducer according to the sixth embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of the ultrasonic transducer according to the present invention.
  • FIG. 9 is a block diagram schematically showing a configuration of an ultrasonic flowmeter using a conventional ultrasonic transducer.
  • FIG. 10 is a cross-sectional view schematically showing a configuration of a conventional ultrasonic wave receiver.
  • FIG. 11 (a) and (b) are diagrams schematically showing the configuration of the acoustic matching layer of a conventional ultrasonic receiver, where (a) is a cross-sectional view and (b) is a view seen from above. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • the acoustic matching layer according to the first aspect of the present invention includes a dry gel powder.
  • a dry gel powder By forming the acoustic matching layer using the dry gel powder, characteristics of the wet gel that are caused by unevenness in the drying process are improved.
  • FIGS. 1A and 1B schematically show the structure of the acoustic manufacturing layer according to the first embodiment of the present invention, in which the variation is suppressed.
  • the acoustic matching layer 3A shown in FIG. 1 (a) is composed of a dry gel powder (hereinafter, sometimes referred to as “powder dry gel”) 3a and an additive 3b.
  • dry gel refers to a porous body formed by a sol-gel reaction, in which a solid skeleton solidified by the reaction of a gel raw material liquid is dried through a wet gel composed of a solvent. It is formed by removing the solvent.
  • the solvent is removed from the wet gel and dried under special conditions such as supercritical drying and freeze-drying, or ordinary drying such as heating drying, drying under reduced pressure, and natural drying.
  • Supercritical drying is a method in which a solvent is removed in a supercritical state at a temperature and pressure above its critical point, and there is no gas-liquid interface and no drying stress is applied to the solid skeleton of the gel. A very low-density dry gel can be obtained without the need to do this.
  • dried gels obtained by supercritical drying may be affected by stress in the operating environment, such as condensation, thermal stress, chemical stress, and mechanical stress.
  • dried gels obtained by ordinary drying methods are characterized by high durability against stress in the subsequent use environment because they can withstand drying stress.
  • aging the solid skeleton to increase its strength, applying temperature conditions or a polyfunctional water-phobic agent that is easy to polymerize to reinforce the solid skeleton when hydrophobizing Can be realized by controlling
  • when measuring the gas flow rate it may be used in various environments, so it is preferable to obtain the acoustic matching layer using a dry gel prepared by a normal drying method.
  • the dried gel obtained by the above method is a nanoporous body in which continuous pores having an average pore diameter in the range of 1 nm to 100 nm are formed by a solid skeleton having a nanometer size. Therefore, the low-density state with a density of 50 O kg / m 3 or less, preferably 40 O kg / m 3 or less In this state, the speed of sound propagating through the solid portion of the dried gel that forms the unique network skeleton is extremely low, and the speed of sound propagating through the gas portion of the porous body through the pores is also extremely low. It has. Therefore, it exhibits a very low value of 500 mZs or less as the speed of sound, and has a characteristic that a low acoustic impedance can be obtained.
  • the pore size is less than or equal to the mean free path of gas molecules, and the sound pressure is high when used as an acoustic matching layer due to the large pressure loss of gas. It also has the characteristic that it can be radiated at sound pressure.
  • the average particle size of the dried powder gel is preferably 1 m or more and 100 m or less. If it is smaller than this lower limit, the number of pores in the powder will decrease and the characteristic effect of the dried gel will be reduced, and the required amount of additives for molding will increase, so that a low-density acoustic matching layer is required. It can be difficult to obtain. If the average particle size of the powdered dry gel is larger than the upper limit, it is difficult to control the thickness of the acoustic matching layer, and it is difficult to form an acoustic matching layer with sufficient thickness uniformity and surface flatness. Sometimes.
  • the solid skeleton of the dried gel may be an inorganic oxide or an organic polymer.
  • the solid skeleton is made hydrophobic.
  • water-phobic for example, if moisture or impurities are present in the gas to be measured, it can be less affected by their adsorption or adhesion, and a more reliable acoustic matching layer can be obtained. .
  • Hydrophobicization of the solid skeleton of the dried gel of inorganic oxide is performed using a surface treatment agent such as a silane coupling agent.
  • a surface treatment agent such as a silane coupling agent.
  • Halogen silane treatment agents such as trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, and ethyltrichlorosilane
  • alkoxysilane treatment agents such as trimethylmethoxysilane, trimethylethoxysilane, dimethyldimethoxysilane, and methyltriethoxysilane.
  • Silicone-based silane treatment agents such as oxamethyldisiloxane and dimethylsiloxane oligomers, amine-based silane treatment agents such as hexamethyldisilazane, and alcohol-based treatments such as propyl alcohol, butyl alcohol, hexyl alcohol, octanol, and decanol Agents and the like can be used.
  • a solid skeleton containing at least silicon oxide (silica) or aluminum oxide (alumina) can be suitably used.
  • the solid skeleton of the dried gel of an organic polymer can be made of a general thermosetting resin or thermoplastic resin.
  • polyurethane, polyurethane, phenol cured resin, polyacrylamide, polymethyl methacrylate and the like can be applied.
  • a dried gel having a solid skeleton of an inorganic oxide has excellent humidity resistance, chemical resistance, and excellent temperature characteristics of acoustic impedance. That is, when a dry gel of an inorganic oxide is used, the temperature change rate of the acoustic impedance in the following range from 25 to 70 is
  • An acoustic matching layer of -0.44% / or less (meaning that the absolute value is equal to or less than 0.04) can be obtained.
  • a conventional epoxy Z glass balloon system or organic polymer gel is used, it is difficult to make the absolute value of the temperature change rate of the acoustic impedance less than 0.04%.
  • the temperature change rate of the acoustic impedance is small, for example, when used in an ultrasonic flowmeter described later, high measurement accuracy can be obtained over a wide temperature range.
  • a polymer powder having thermal binding properties is preferably used as the additive (binder) 3b for bonding the powder dried gels 3a to each other and improving the mechanical strength of the acoustic matching layer 3A.
  • a polymer powder having thermal binding properties is preferably used. Can be. If a liquid material is used, it may penetrate into the pores of the dried gel and change the acoustic characteristics or lower the moldability. Therefore, it is preferable to use a solid material, particularly a powder.
  • thermobinding polymer refers to a polymer that is solid at room temperature, melts or softens by heating, and then solidifies.
  • the heat-binding polymer is not only a general thermoplastic resin (for example, engineering plastics such as polyethylene and polypropylene), but also, for example, a solid that is softened by heating once at room temperature, and then heat-crosslinks.
  • Curable resin for example, phenol resin, epoxy resin, polyurethane resin
  • the thermosetting resin contains the main agent and the curing agent, they may be added as separate powders. Of course, a mixture of a thermoplastic resin and a thermosetting resin may be used.
  • the melting (softening) temperature of the heat-binding polymer powder is preferably in the range of 80 to 250.
  • a heat-binding polymer When a heat-binding polymer is used as an additive, typically, as described later, melting (softening) occurs when the mixed powder of the powdered dry gel 3a and the additive is pressed and molded while being heated.
  • the added additive serves to bond the powder-dried gels 3a by solidifying with cooling and / or by crosslinking and hardening.
  • the average particle size of the heat-binding polymer powder is preferably 0.1 or more and 50 im or less. If it is smaller than the lower limit, the pore diameter becomes close to the pore diameter of the dried gel, so that the binding property may be reduced or the formability may be reduced. On the other hand, if it is larger than the upper limit, it may be difficult to obtain a low-density acoustic matching layer because the amount of addition required for molding increases. Further, the addition amount of the heat-binding polymer powder is preferably 40% by mass or less of the whole. If the total amount exceeds 40% by mass, the density when molded may increase. In order to obtain sufficient mechanical strength, for example, it is preferable to add 5% by mass or more of the whole.
  • additive A additive A
  • dry powder gel dry powder gel
  • additive B additive B
  • the additive 3b is the same heat-binding polymer powder as described above
  • the additive 3c is a short fiber.
  • the preferred range of the diameter of the short fiber is the above-mentioned heat-binding polymer powder. It is preferable that the average particle diameter is about the same as that of the above and the length of the fiber is about several m to several mm.
  • the addition amount of the two types of additives is preferably 40% by mass or less based on the whole, and the mixing ratio is appropriately set as necessary.
  • the acoustic matching layer using the dry powder gel of the present invention has an additional advantage that the acoustic impedance can be easily adjusted.
  • the acoustic impedance can be adjusted by mixing a plurality of types of dry powder gels having different densities.
  • the acoustic impedance can be adjusted by adjusting the amount of the additive A (additive B if necessary).
  • the amounts of the additives A and B are preferably within the above range in consideration of moldability and the like.
  • each of the acoustic matching layers 3A and 3B is preferably about one quarter of the wavelength ⁇ of the sound wave propagating in each acoustic matching layer.
  • a method of manufacturing an ultrasonic transducer is directed to a method of manufacturing an ultrasonic transducer including a piezoelectric layer and an acoustic matching layer provided on the piezoelectric layer.
  • the process of forming the acoustic matching layer includes: (a) a step of preparing a gel raw material liquid; and (b) providing a thickness regulating member having a predetermined height on a surface on which the acoustic matching layer is formed.
  • the step of applying the gel raw material liquid on the surface (c), and the thickness of the liquid layer formed by the gel raw material liquid applied on the surface (d) is substantially equal to the height of the thickness regulating member.
  • a dry powder gel can be prepared in advance, so that there is an advantage that the productivity of the ultrasonic transducer can be improved. That is, in the manufacturing process of the ultrasonic transducer described above, the step of solidifying the gel raw material liquid to obtain a wet gel and the step of drying the wet gel can be performed in advance, so that the ultrasonic transducer Manufacturing throughput can be improved.
  • the basic configuration of the ultrasonic transducer except for the acoustic matching layer and its joint structure, is the same as that of the conventional ultrasonic transducer 10 shown in FIG. 10, so duplicated explanations are omitted. I do.
  • the acoustic matching layer 100 shown in FIG. 8 is manufactured, and the acoustic matching layer 100 is attached to the piezoelectric layer 2 or the case 1 to implement an ultrasonic transducer manufacturing method.
  • the embodiment will be described.
  • FIG. 2 is a process diagram illustrating a method for manufacturing an ultrasonic transducer provided with the acoustic matching layer according to the first embodiment of the present invention. This figure will be described in the order of Step 1 to Step 4.
  • Step 1 consisting of porous low-density powder dry gel (density about 2 0 0 kg Z m 3 ⁇ 4 0 0 kg Z m 3) ' and 1 about 0 wt% (total relative Prepare the additive A and the additive B.
  • the dried gel prepared here does not necessarily have to be a powder. It may be in a block shape.
  • the dry gel is, for example, a silica dry gel having an average pore diameter of 20 nm
  • the additive A is a polypropylene powder
  • the additive B is a glass wool having a fiber diameter of about 10 zm.
  • Step 2 Put these in the same container, mix and pulverize to produce a fine powder. It is typically performed using a mill. Here, the pulverization conditions are adjusted so as to obtain a powdery dry gel having the desired average particle size described above. In addition, classification may be performed as necessary. Of course, the step of pulverizing the dried gel and the step of mixing may be performed separately.
  • Step 3 A desired amount of a mixed powder composed of a low-density dry powder gel, additive A and additive B is weighed and supplied onto case 1 to which piezoelectric layer 2 is adhered.
  • Step 4 From above, control the thickness of the compact of the mixed powder 3 and install a thickness regulating member (control section) 4 so that the thickness becomes approximately 4 mm. Press molding. Then, the additive A is once melted and then cooled and solidified, whereby the low-density dry powder gel is fixed. In addition, the additive B acts to further enhance the bonding strength of the powder-dried gels, so that a hard acoustic matching layer can be obtained. Further, by doing so, the acoustic matching layer 3 composed of the dry powder gel, the additive A, and the additive B can be bonded to the case 1 without using an adhesive.
  • the acoustic matching layer 3 can be directly bonded to the case 1 without using an adhesive. Stability (eg stability against gas containing sulfur S) is improved.
  • the acoustic matching layer formed in advance may be bonded to the case using an adhesive depending on the application.
  • the piezoelectric body may be simultaneously bonded at the time of pressurization and heat molding for forming an acoustic matching layer made of powdered dry gel.
  • a low-density, hard, low-acoustic-impedance, high-thickness, and high-accuracy acoustic matching layer can be formed.
  • a simple ultrasonic transducer can be obtained.
  • FIG. 3 is a process diagram illustrating a method for manufacturing an ultrasonic transducer having an acoustic matching layer according to the second embodiment of the present invention. This figure will be described in the order of Step 1 to Step 5.
  • Step 1 Prepare a low-density powdered dry gel consisting of a porous material and about 10% by mass of additive A.
  • additive A epoxy A resin (main agent) powder (additive A1) and a polyamide resin powder (additive A2) serving as a curing agent for the epoxy resin are used.
  • Step 2 Put them in the same container, mix and pulverize to produce fine powder.
  • Step 3 A desired amount of a mixed powder composed of a low-density dry powder gel, additive A1 and additive A2 is weighed and supplied onto case 1 to which piezoelectric layer 2 is adhered.
  • the process up to this step can be performed in the same manner as in the first embodiment.
  • Step 4 Vibration is applied to the case 1 into which the mixed powder 3 has been charged by means of a shaker or the like, and the layer of the mixed powder 3 that has been charged is planarized.
  • a thickness regulating member (control section) 4 is provided from above to control the thickness of the compact of the mixed powder 3 so that the thickness becomes about ⁇ 4, and the heating is performed. Press molding. Then, the additive A 1 and the additive A 2 undergo a cross-linking and curing reaction to fix the low-density powder dry gel, thereby obtaining a hard (excellent mechanical strength) acoustic matching layer.
  • the acoustic matching layer composed of the powdered dry gel, the additive A, and the additive B can be bonded to the case 1 without using an adhesive.
  • the piezoelectric body may be simultaneously bonded at the time of pressurization and heat molding for forming an acoustic matching layer made of powdered dry gel.
  • the method further includes a step of flattening the upper surface of the layer of the mixed powder before forming the molded body of the mixed powder by pressure molding. Therefore, the variation in characteristics is further smaller than that of the acoustic matching layer obtained in the first embodiment.
  • FIG. 4 is a process chart illustrating a method for manufacturing an ultrasonic transducer provided with an acoustic matching layer according to the third embodiment of the present invention. This figure will be described in the order of Step 1 to Step 4.
  • Step 1 Bond the piezoelectric layer 2 to the case 1.
  • the bonding can be performed using a known adhesive or the like.
  • Step 2 The thickness of the acoustic matching layer on this case 1 is controlled to be approximately ⁇ / 4, and an organic film or the like is used as a thickness regulating member (control unit). Install ring 3 1.
  • Step 3 On the case 1 in which the 0_ring 31 is installed, a solution of gay acid of ⁇ 9 to 10 is dropped as a sol solution, and the ⁇ of the aqueous solution of keic acid is adjusted to 5.5. I do. Then, it is pressed with a flat plate 32 from above to form a wet gel 33. When the aqueous solution of the citric acid gels, the ⁇ groups on the surface of case 1 react with the silanol groups of the raw material to form a chemical bond, and a wet gel film is formed on the surface of case 1.
  • Step 4 The obtained wet gel is hydrophobized with acetone solution of trimethylchlorosilane (TMSC) and dehydrated. After the solvent is replaced with hexane, the mixture is dried in a container maintained at 100 to form a silica dry gel film 34 of silicon oxide. Then, the low-density dry gel film is fixed, and an acoustic matching layer can be obtained.
  • TMSC trimethylchlorosilane
  • the acoustic matching layer made of the dried gel can be bonded to the case 1 without using an adhesive.
  • the piezoelectric body may be bonded after forming the acoustic matching layer made of dry gel.
  • FIG. 5 is a process chart illustrating a method for manufacturing an ultrasonic transducer provided with an acoustic matching layer according to the fourth embodiment of the present invention. This figure will be described in the order of Step 1 to Step 4.
  • Step 1 Bond the piezoelectric layer 2 to the case 1.
  • Step 2 The thickness of the acoustic matching layer on this case 1 is controlled, and the thickness regulating member (control section) is made of metal, etc. 4 1 so that the thickness of the acoustic matching layer is about ⁇ / 4. Is installed.
  • Step 3 On the case 1 in which the wires 41 are installed, an aqueous solution of gay acid of ⁇ 9 to 10 is dropped as a sol solution, and the ⁇ of the aqueous solution of keic acid is adjusted to 5.5. Then, it is pressed with a flat plate 32 from above to form a wet gel 33.
  • the aqueous solution of the citric acid gels the ⁇ group on the surface of case 1 reacts with the silanol group of the raw material to form a chemical bond, and a wet gel film is formed on the surface of case 1.
  • Step 4 The obtained wet gel is hydrophobized with acetone solution of trimethylchlorosilane (TMSC) and dehydrated. After replacing the solvent with hexane, dry in a container maintained at 10 ot, To form a dried silica gel film 34 of Then, the low-density dry gel film is fixed, and an acoustic matching layer can be obtained.
  • TMSC trimethylchlorosilane
  • the acoustic matching layer made of the dried gel can be bonded to the case 1 without using an adhesive.
  • the piezoelectric body may be adhered after forming the acoustic matching layer made of dry gel.
  • FIG. 6 is a process chart illustrating a method for manufacturing an ultrasonic transducer provided with an acoustic matching layer according to the fifth embodiment of the present invention. This figure will be described in the order of Step 1 to Step 4.
  • Step 2 A bead 51 is placed on the case 1 as a thickness control unit to control the thickness of the acoustic matching layer so that the thickness becomes ⁇ / 4.
  • the beads 51 for example, beads that are not melted or deteriorated in a subsequent process may be used, and beads formed of an inorganic material such as glass or an organic material such as a cross-linked polymer may be used. Can be.
  • Step 3 On the case 1 on which the beads 51 are placed, a carboxylic acid aqueous solution of ⁇ 9 to 10 is dropped as a sol solution to adjust the ⁇ of the aqueous solution of caicic acid to 5.5. After that, press down with a flat plate 32 from above, and wet gel Form 3 3 When the aqueous solution of gay acid gels, the OH groups on the surface of case 1 react with the silanol groups of the raw material to form a chemical bond, forming a wet gel film on the surface of case 1.
  • the acoustic matching layer made of the dried gel can be bonded to the case 1 without using an adhesive.
  • the piezoelectric body may be adhered after forming the acoustic matching layer made of dry gel.
  • FIG. 7 is a process chart illustrating a method for manufacturing an ultrasonic transducer including an acoustic matching layer according to the sixth embodiment of the present invention. This figure will be described in the order of Step 1 to Step 4.
  • Step 1 Adhere the piezoelectric layer 2 and the ceramic 61 to the case 1.
  • the ceramic 61 functions as a first acoustic matching layer.
  • the ceramic 61 silica, alumina, zirconia and the like can be suitably used.
  • Step 2 The thickness of the acoustic matching layer is controlled around the ceramic 6 1 on the case 1 and the thickness of the acoustic matching layer is controlled to about 4 by using an organic material as a thickness regulating member (control unit). Install a ring 31 consisting of a membrane.
  • Step 3 On the ceramic 61 on which the ⁇ ⁇ ⁇ -ring 31 is installed. An aqueous solution of gay acid of ⁇ ⁇ 9 to 10 is dropped as a sol solution, and the ⁇ ⁇ of the aqueous solution of caic acid is adjusted to 5.5. I do. Then, it is pressed with a flat plate 32 from above to form a wet gel 33. When the aqueous solution of the citric acid gels, the ⁇ groups on the surface of case 1 react with the silanol groups of the raw material to form a chemical bond, and a wet gel film is formed on the surface of case 1.
  • Step 4 The obtained wet gel is hydrophobized with acetone solution of trimethylchlorosilane (TMSC) and dehydrated. Further, it is dried in a container maintained at 50 t to form a silica dry gel film 34 of silicon oxide. Then, the low-density dried gel film is immobilized, and an acoustic matching layer can be obtained. After that, the piezoelectric vibrator 10 is completed by assembling the bottom plate (cover plate) of the case 1 and the drive terminals.
  • TMSC trimethylchlorosilane
  • the acoustic matching layer made of the dried gel can be adhered to the ceramic 61 without using an adhesive, and high sensitivity can be achieved by the two-layer acoustic matching layer.
  • the piezoelectric body may be adhered after forming the acoustic matching layer made of dry gel.
  • the acoustic impedance Zb of the second acoustic matching layer is the first acoustic matching layer.
  • Acoustic impedance of matching layer Za is also preferably small.
  • the density of the first acoustic matching layer is at 40 0 k gZm 3 or more 1 5 0 0 kg / m 3 within the range, the density of the second acoustic integer coupling layer 5 0 8/111 3 or more 5 0 0 It is preferable that the density is in the range of 1 ⁇ gZm 3 or less and the density of the second acoustic matching layer is lower than the density of the first acoustic matching layer.
  • the density of the first acoustic matching layer is at 4 0 0 kg Zm 3 Ultra 8 0 0 k gZm 3 within the range, the density of the second acoustic matching layer 5 0 kg Zm 3 or 4 0 0 kg Zm 3 Within the following range:
  • the first acoustic matching layer may be formed using a known material such as the ceramics exemplified here, a fibrous body of an inorganic material, a sintered porous body, or a material obtained by solidifying a glass balloon or a plastic balloon with a resin matrix. it can.
  • a second acoustic matching layer satisfying the above conditions can be obtained.
  • the second acoustic matching layer having low density, low acoustic impedance, and high thickness accuracy can be formed, so that the characteristics of the two-layer acoustic matching layer can be further improved. . Therefore, by using the acoustic matching layer of the present embodiment, it is possible to obtain a highly sensitive, highly reliable and stable ultrasonic transducer.
  • FIG. 8 is a cross-sectional view of the piezoelectric vibrator of the ultrasonic transducer used in the ultrasonic flowmeter of the present invention.
  • a piezoelectric vibrator 10 for performing mutual electric-ultrasonic conversion is composed of a piezoelectric layer 2 and an acoustic matching layer 100.
  • the piezoelectric layer 2 generates ultrasonic vibration, is made of a piezoelectric ceramic, a piezoelectric single crystal, or the like, is polarized in a thickness direction, and has electrodes on upper and lower surfaces.
  • the acoustic matching layer 100 transmits ultrasonic waves to gas, or gas
  • the mechanical vibrations of the piezoelectric layer 2 excited by the driving AC voltage are efficiently radiated as ultrasonic waves to an external medium, and the arriving ultrasonic waves are received. It has the role of efficiently converting sound waves into voltage, is formed using the above-described embodiment, and is attached to the outside of case 1 by chemical bonding in a state where the ultrasonic wave transmitting / receiving surface of piezoelectric layer 2 is formed. Have been combined.
  • the thickness of the acoustic matching layer 100 is strictly defined by the thickness control unit 101, there is no surface unevenness.
  • the piezoelectric vibrator 10 when a burst signal voltage having an AC signal component having a frequency near the resonance frequency of the ultrasonic transducer is applied to the drive terminal, the piezoelectric vibrator 10 becomes thicker. It vibrates in the vibration mode, and emits a burst of ultrasonic waves into a fluid such as a gas or liquid.
  • the acoustic matching layer according to the first aspect of the present invention contains the powder of the dry gel, the variation in the characteristics due to the unevenness of the drying process of the wet gel is suppressed.
  • the thickness of the acoustic matching layer is controlled. Therefore, variations in the characteristics of the acoustic matching layer due to variations in thickness and irregularities on the surface are suppressed. Furthermore, when a dried gel of an inorganic oxide or organic polymer is formed, the OH groups on the surface of the piezoelectric material or the surface of the container (case) react with the components of the raw material, and are chemically bonded and adhered. No, Iwayu An excellent effect of obtaining an ultrasonic transducer without an adhesive layer can also be obtained.
  • an acoustic matching layer made of a dried gel of an inorganic oxide or an organic polymer with a high thickness accuracy on a layer above the conventional acoustic matching layer, a more sensitive ultrasonic transducer can be realized. can get.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

明 細 書 音響整合層、 超音波送受波器およびこれらの製造方法、 ならびに超 音波流量計 技術分野
本発明は、 音響インピーダンスを整合 (マッチング) するために 用いられる音響整合層、 超音波の送受信を行う超音波送受波器、 お よびこれらの製造方法、 ならびにこれらを用いた超音波流量計に関 するものである。 背景技術
図 1 0は、 従来の超音波発生器 ( 「圧電振動子」 ということもあ る。 ) 1 0の構成を模式的に示す断面図である。 超音波発生器 1 0 は、 ケース 1、 圧電体層 (振動手段) 2と、 音響インピーダンス整 合層 (整合手段、 以下、 「音響整合層」 という。 ) である。 ケース 1 と圧電体層 2とは接着剤 (例えばエポキシ系) からなる接着層を 用いて接着されている。 ケース 1 と音響整合層 1 0 0とは、 同様に 接着剤を用いて接続されている。 圧電体層は約 5 0 0 k H zで振動 し、 その振動は接着層 (不図示) を介してケース 1に伝わり、 さら に接着層を介して音響整合層 1 0 0に伝わる。 音響整合層 1 0 0の 振動は空間に存在する気体に音波として伝搬する。 なお、 簡単のた めに説明を省略するが、 圧電体層 2を厚さ方向に分極させるための 一対の電極 (不図示) が圧電体層 2の両面に設けられており、 超音 波発生器 1 0は、 圧電体層 2によって、 電気エネルギーと機械エネ ルギ一とを相互に変換することができる。 ケース 1は、 圧電体層 2 を内包する凹部を形成する上板 1 aと、 凹部内の空間を密閉するよ うに配置される底板 1 bとを有し、 圧電体層 2は凹部内に密閉され ている。 圧電体層 2の一対の主面に形成されている電極の一方は、 ケース 1を介して端子 5 aに接続され、 他方は端子 5 bに接続され ている。 従って、 ケース 1は、 一般に導電性を有する金属から形成 される。
音響整合層 1 0 0の役割は圧電体層 2の振動を効率良く気体に伝 搬させることにある。 物質の音速 Cと密度 pとで ( 1 ) 式のように 定義される音響インピーダンス Zが圧電体層 2と気体とで大きく異 なる。
Z = P X C · · · ( 1 )
圧電体層 2を構成する圧電体の音響ィンピーダンス Z 1は 3 0 X 1 06 (k g/ s · m2) で気体、 例えば空気の音響インピーダン ス Z 3は 4. 2 8 X 1 02 ( k g / s - m2) である。 圧電体と金 属の音響インピーダンスはほぼ等しい。 このように音響インピーダ ンスの異なる境界面上では音 (振動) の伝搬に反射が生じるように なり、 その結果、 透過する音の強さが弱くなる。 ところが、 2つの 異なる音響インピーダンスの物質の間に別の音響インピーダンスを 持つ物質を挿入することによって、 音の反射を軽減することができ る。 圧電体層 2と空間 (音波が放出される側の気体媒体) との間に下 記 ( 2 ) 式の関係を満たす音響インピーダンス Z 2を持つ物質を揷 入することにより音の反射をなくせることが一般に知られている。
Ζ 2 = (Ζ 1 · Ζ 3 ) 1 /2 · · · ( 2 )
上述の Ζ 1 = 3 0 X 1 06 (k g s · m2) および Z 3 = 4.
2 8 X 1 02 (k gZs · m2) を用いると、 この Z 2の値は 0. 1 1 X 1 06 (k gZs · m2) となる。 この音響インピーダンス を満たす物質は、 固体で密度が小さく音速の遅いものであることが 要求される。
P Z T等の圧電体を用いた気体用超音波発生器においても、 一般 に、 P Z Tで発生した超音波を伝搬媒体である気体 (空気) に効率 良く放射するため、 その振動面に空気との音響ィンピーダンスを整 合するための整合層が設けられる。 P Z Tで発生した超音波を空気 中に放射する超音波トランスデューサでは、 空気 (気体) の音響ィ ンピーダンス Z 1 (約 4 0 0 k g Zs - m2) が P Z T (固体) の 音響インピーダンス Ζ 3 (約 3 0 X l 05k gZ s ' m2) に対し て略 1 0万分の 1 と桁違いに小さいため、 超音波を効率良く放射す るためには、 音響整合層の音響インピーダンスが極めて重要になる < 従来、 P Z T (チタン酸ジルコン酸鉛) 等の圧電セラミックスか ら構成された圧電体層 ( 「超音波振動子」 ということもある。 ) の 振動面に設けられる音響整合層として、 図 1 1に示すように、 ガラ スバルーン (中空の微小なガラス球) 1 1 0が混入されたエポキシ 樹脂 1 1 2からなる音響整合層 1 0 0が知られている。 音響整合層 1 0 0は微小なガラスバルーン 1 1 0をエポキシ樹脂 1 1 2で固め たものを用いて密度を小さく している。 ガラスバルーン 1 1 0は音 響整合層を伝わる音の波長よりも十分小さくする必要があるので、 直径が 1 00 m以下のものを用いている。
音響整合層 1 00を透過して気体に伝達する音の強さは音響整合 層 1 00の厚さ(音響整合層中を音波が伝播する距離) にも関係す る。 圧電体層 2からの音の波は透過する波と、 音響整合層 1 00と 気体との境界面で反射する波とに分かれる。 反射した波は音響整合 層 1 00と圧電体層 2との境界面で反射し、 この場合、 位相が反転 した波となる。 この波の一部が音響整合層 1 00と気体との境界面 で透過する波となる。 これらの波が合成されることによって、 透過 率 Tが最大となる厚さ tを求めると、 t =AZ4となる。
ガラスバルーン 1 1 0を含む音響整合層 1 00を用いた場合、 そ の音速は 200 OmZsなので、 音の周波数が 500 kHzの場合 は、 音響整合層 1 00中を伝播する音の波長 λは 4 mmとなる。 従 つて音響整合層 1 00の厚さ tは 1 mmが最適値となる。
超音波振動子の振動面に音響整合層を設けた場合の超音波振動子 から外部伝搬媒体への超音波エネルギー透過率 Tを求める理論式は, 音響整合層の厚さ tを ΛΖ4の整数倍に設定すると下記 (3) 式の ように簡素化されて表される。
Τ-4 · Ζ 1 · Ζ 3 · Ζ 22/ (Ζ 1 · Ζ 3 + Ζ 22) 2
• · · (3) 従来のガラスバルーン入りエポキシ樹脂を用いた音響整合層 1 0 0において、 空気に対する超音波エネルギー透過率 Τと音響整合層 1 00の音響インピーダンス Ζ 2との関係を検討すると、 ガラスバ ルーン入りエポキシ樹脂の音響ィンピーダンスはおよそ 1. 2 X 1 06 k g / s · πι2で、 Z 22= l . 4 4 X 1 01 2となるのに対し 上述の例では Z 1 · Ζ 3は Z 1 · Ζ 3 = 4 0 0 Χ 1. 2 X 1 06 = 4. 8 X 1 08で、 Z 1 · Ζ 3《 Ζ 22となるので上記 ( 3 ) 式は 更に Τ= 4 · Ζ 1 · Ζ 3ΖΖ 22に近似され、 超音波エネルギー透 過率 Τは音響整合層 1 0 0の音響インピーダンス Ζ 2の 2乗に反比 例することがわかる。 すなわち、 音響整合層 1 0 0の音響インピー ダンス Ζ 2は小さい程、 超音波エネルギー透過率 Τは向上する。 また、 図 9は上述した超音波発生器 1 0を備える超音波流量計の 構成を模式的に示す図である。 ここでは、 一対の超音波発生器 1 0 を一対の超音波送受波器 1 0 1および 1 0 2として用いている。 一対の超音波発生器 1 0 1および 1 0 2は、 図 9に示すように、 気体の流路 5 1を規定する管 (管壁) 5 2の内部に配置される。 超 音波送受波器 1 0 1または 1 0 2が割れると気体が管 5 2の外部に 漏れるので、 超音波送受波器 1 0 1および 1 0 2のケース (図 9の ケース 1 ) の材料にはセラミックゃ樹脂などの割れやすい材質を選 択することが困難である。 従って、 ケースの材料にはステンレス、 鉄などの金属材料が用いられる。
今、 図 9に示すように、 流路 5 1に流体が速度 Vにて、 流路に沿 つて太線矢印で示す方向に流れているとする。 管壁 5 2の内側には. 一対の超音波送受波器 1 0 1および 1 0 2が互いに相対して設置さ れている。 超音波送受波器 1 0 1および 1 0 2は、 電気エネルギー 機械エネルギー変換素子として、 圧電セラミック等の圧電振動子 を用いて構成されていて、 圧電ブザー、 圧電発振子と同様に共振特 性を示す。 ここでは、 例えば、 超音波送受波器 1 0 1を超音波送波 器として用い、 超音波送受波器 1 0 2を超音波受波器として用いる, また、 超音波送波器 1 0 1 と超音波受波器 1 0 2には、 これらの送 受信を切り替える切替回路 5 5を介して、 超音波送受波器 1 0 1, 1 0 2を駆動する駆動回路 5 4と、 超音波パルスを検知する受信検 知回路 5 6、 超音波パルスの伝搬時間を計測するタイマ 5 7、 タイ マ 5 7の出力より流量を演算によって求める演算部 5 8、 駆動回路 5 4とタイマ 5 7に制御信号を出力する制御部 5 9が接続されてい る。
超音波流量計の動作を以下に説明する。
まず、 共振周波数近傍の周波数の交流電圧を超音波送波器 1 0 1 の圧電体層に印加すると、 超音波送波器 1 0 1は外部の流体中に同 図中の Lで示す伝搬経路に超音波を放射し、 超音波受波器 1 0 2が 伝搬してきた超音波を受けて電圧に変換する。
続いて、 反対に超音波送受波器 1 0 2を超音波送波器として用い. 超音波送受波器 1 0 1を超音波受波器として用いる。 共振周波数近 傍の周波数の交流電圧を超音波送波器 1 0 2の圧電体層に印加する ことにより、 超音波送波器 1 0 2は外部の流体中に同図中の Lで示 す伝搬経路に超音波を放射し、 超音波受波器 1 0 1は伝搬してきた 超音波を受けて電圧に変換する。 このように、 超音波送波器 1 0 1 および 1 0 2は、 受波器としての役目と送波器としての役目を果た すので、 一般に超音波送受波器と呼ばれる。 伝播経路 L内の超音波 の伝播方向は、 伝播経路 L内に示した矢印 (双方向) である。 図 9において、 管 5 2の中を流れる流体の流速を V、 流体中の超 音波の速度を C、 流体の流れる方向 (太線矢印) と超音波パルスの 伝搬方向 (L内の矢印) の角度を 0とする。 超音波送受波器 1 0 1 を送波器、 超音波送受波器 1 0 2を受波器として用いたときに、 超 音波送受波器 1 0 1から出た超音波パルスが超音波送受波器 1 0 2 に到達する時間であるシング · アラウンド周期を t 1、 シング · ァ ラウンド周波数 f 1とすれば、 次式 (4) が成立する。
f 1 = 1 / t 1 = (C + V c o s /L - · · (4)
逆に、 超音波送受波器 1 0 2を送波器として、 超音波送受波器 1 0 1を受波器として用いたときのシング ' アラウンド周期を t 2、 シング · アラウンド周波数 f 2とすれば、 次式 ( 5) の関係が成立 する。
f 2 = 1 / t 2 = (C - V c o s 0 ) ZL · · · ( 5 ) 従って、 両シング · ァラウンド周波数の周波数差 Δ f は、 次式 ( 6 ) となり、 超音波の伝搬経路の距離 Lと周波数差 Δ f から流体 の流速 Vを求めることができる。
A f = f l - f 2 = 2 V c o s 0 /L · · · (6)
すなわち、 超音波の伝搬経路の距離 Lと周波数差 Δ f から流体の 流速 Vを求めることができ、 その流速 Vから流量を調べることがで きる。
従来の超音波発生器においては、 音響整合層の音響ィンピーダン スを低く抑えるために、 密度が小さな材料、 例えばガラスバルーン やプラスチックバルーンを樹脂材料などで固めた材料を用いて音響 整合層を形成していた。 また、 ガラスバルーンを熱圧縮する方法、 あるいは、 溶融材料を発泡させる等の方法によって音響整合層を形 成していた。 これらの方法は、 例えば特許第 2 5 5 9 1 4 4号公報 等に開示されている。
従来の音響整合層は、 エポキシ樹脂に超音波の波長に比べて粒径 の小さいガラスバルーンを混入することにより (すなわち、 ェポキ シ樹脂内に超音波を乱反射させないような音響インピーダンスの小 さい空気の隙間を散在させることにより) 音響整合層の音響ィンピ 一ダンス Z 2を低下させるものであるから、 エポキシ樹脂に対する ガラスバルーンの混合比率を高めて音響インピーダンスの一層の低 下を図ることも考えられるが、 ガラスバルーンの混合比率を高くす ると、 ガラスバルーン入りのエポキシ樹脂剤の粘度が高くなり、 ガ ラスバルーンとエポキシ樹脂剤とを均一に混合することが困難とな るので、 エポキシ樹脂剤に対するガラスバルーンの混合比率を高め るには一定の限界がある。 従って、 ガラスバルーン入リエポキシ樹 脂でより一層、 音響インピーダンスの低い音響整合層を製造するこ とは困難である。
また、 上記従来のガラスバルーン入リエポキシ樹脂からなる音響 整合層の音響ィンピ一ダンスはおよそ 1 . 2 X l 0 6 k g / s - m 2であり、 エポキシ樹脂のみからなる音響整合層の音響ィンピ一ダ ンスに対して略 2 3であり、 エポキシ樹脂のみからなる音響整合 層を用いたものに比べると、 超音波エネルギー透過率 Tは 9 Z 4倍 に改善される。 しかし、 それでも上記 ( 3 ) 式よリガラスバルーン入リエポキシ 樹脂からなる音響整合層を用いた場合の超音波エネルギー透過率 T を算出すると、 T 3 %であるから、 十分でないことが分かる。 また、 超音波流量計に使用している従来の超音波送受波器に使用 している音響整合層は、 上述したようにガラスバルーンを熱圧縮し たり、 溶融材料を発泡する等の方法が採られていた。 このため、 圧 力によるガラス球の破損、 圧力不足による分離、 剥離溶融材料の発 泡等の原因によって媒質が不均質になり易く、 音響整合層内で特性 にバラツキが生じ、 これが機器精度のバラツキを発生させていると いう問題があった。
さらに、 上記従来のガラスバルーン入リエポキシ樹脂からなる音 響整合層の製造工程においては、 ガラスバルーン入りエポキシ樹脂 の硬化物を所望の大きさおよび または厚さにするために、 切断お よび/または表面研磨などの機械加工を施していたため、 音響整合 層の厚さが好ましい値からずれたり、 または厚さが不均一となった り、 あるいは表面に凹凸が形成されるという問題があり、 超音波送 受波器としての十分な性能を得ることができなかった。
一方、 本出願人は、 特願 2 0 0 1 — 5 6 5 0 1号 (出願日 : 2 0 0 1年 2月 2 8日) に、 乾燥ゲルを用いて音響整合層を形成するこ とによって、 従来のガラスバルーン入リエポキシ樹脂を用いる塲合 よりも、 例えば音響整合層内の特性のばらつきを低減できることを 記載している。 しかしながら、 例えば、 超音波流量計などのさらな高性能化のた めに、 乾燥ゲルを用いた音響整合層の特性のばらつきをさらに低減 することが望まれている。
本発明者が検討した結果によると、 音響整合層の厚さのばらつき は、 従来よりも小さいものの、 乾燥ゲルを用いた場合にも発生する, また、 湿潤ゲルを乾燥させることによって乾燥ゲルを形成すると、 乾燥過程の不均一さに起因する特性のばらつきがあることがわかつ た。 発明の開示
本発明は、 上記課題に鑑みてなされたものであり、 その主な目的 は、 従来よりも特性のばらつきが低減された音響整合層を提供する こと、 およびそのような音響整合層を備える超音波送受波器ならび に超音波流量計を提供することにある。 また、 そのような音響整合 層および超音波送受波器の製造方法を提供することにある。
本発明の第 1の局面による音響整合層は乾燥ゲルの粉末を含む。 ある実施形態において、 前記乾燥ゲルの密度が 5 0 0 k g Z m 3 以下であり、 平均細孔直径が 1 0 0 n m以下である。
ある実施形態において、 前記乾燥ゲルの粉末の平均粒径が 1 a m 以上 1 0 0 m以下の範囲内にある。
ある実施形態において、 前記乾燥ゲルの固体骨格部が、 無機酸化 物を含む。 前記固体骨格部は疎水化されていることが好ましい。
ある実施形態において、 前記無機酸化物は、 酸化ゲイ素または酸 化アルミニウムである。 ある実施形態において、 熱結着性高分子の粉末を全体の 4 0質 量%以下含む。
ある実施形態において、 前記熱結着性高分子の粉末は、 平均粒径 が 0. 1 m以上 5 0 m以下の範囲内にある。
ある実施形態において、 音響インピーダンスが 5 x l 04k gZ
3 - 012以上 2 0 1 041^ / 3 * 1112以下の範囲内にある。
ある実施形態において、 2 5で以上 7 0 以下の範囲内における 音響インピーダンスの温度変化率が、 — 0. 0 4 % で以下 (絶対 値が 0. 0 4 %ノ 以下) である。
ある実施形態において、 前記音響整合層中を伝播する音波の波長 λの約 4分の 1の厚さを有する。
本発明の第 1の局面による超音波送受波器は、 圧電体層と、 前記 圧電体層上に設けられた上記のいずれかの音響整合層とを備える。
ある実施形態において、 前記音響整合層が前記圧電体層上に直接 結合されている。
ある実施形態において、 前記圧電体層を内包する凹部を形成する 上板と、 前記凹部内の空間を密閉するように配置される底板とを有 するケースをさらに有し、 前記圧電体層は前記ケースの前記上板の 内面に接着されており、 前記音響整合層は、 前記上板を介して前記 圧電体層に対向するように前記上板の上面に直接結合されている。 本発明の第 1の局面による超音波流量計は、 被測定流体が流れる 流量測定部と、 前記流量測定部に設けられ超音波信号を送受信する 一対の超音波送受波器と、 前記超音波送受波器間の超音波伝搬時間 を計測する計測回路と、 前記計測回路からの信号に基づいて流量を 算出する流量演算回路とを備える超音波流量計であって、 前記一対 の超音波送受波器のそれぞれは、 上記のいずれかに記載の超音波送 受波器で構成されている。
本発明の第 1の局面による音響整合層の製造方法は、 乾燥ゲルの 粉末と熱結着性高分子の粉末との混合粉末を用意する工程と、 前記 混合粉末を加圧成形する工程とを包含する。
ある実施形態において、 前記混合粉末を用意する工程は、 前記乾 燥ゲルを用意する工程と、 前記熱結着性高分子の粉末を用意するェ 程と、 前記乾燥ゲルと前記熱結着性高分子の粉末とを混合しながら 粉砕する工程とを包含する。
ある実施形態において、 前記混合粉末を加圧成形する工程は、 前 記混合粉末を加熱する工程を包含する。
ある実施形態において、 前記混合粉末を加圧成形する工程は、 加 圧成形によって得られる前記混合粉末の成形体の厚さを所定の厚さ に制御する工程を包含する。
ある実施形態において、 前記混合粉末を加圧成形する工程は、 下 側成形面上に所定量の前記混合粉末を供給する工程と、 前記下側成 形面上に供給された前記混合粉末が形成する層の上面を平坦化する 工程とを包含する。
本発明の第 1の局面による超音波送受波器の製造方法は、 圧電体 層と、 前記圧電体層上に設けられた音響整合層とを備えた超音波送 受波器の製造方法であって、 前記音響整合層を上記のいずれかの製 造方法によって形成する工程を包含する。 ある実施形態において、 前記音響整合層は前記圧電体層上に直接 接合される。
ある実施形態において、 前記超音波送受波は、 前記圧電体層を内 包する凹部を形成する上板と、 前記凹部内の空間を密閉するように 配置される底板とを有するケースをさらに有し、 前記音響整合層は 前記ケースの前記上板の上面に直接接合される。
本発明の第 2の局面による超音波送受波器の製造方法は、 圧電体 層と、 前記圧電体層上に設けられた音響整合層とを備えた超音波送 受波器の製造方法であって、 前記音響整合層を形成するプロセスが. ( a ) ゲル原料液を調製する工程と、 (b ) 前記音響整合層が形成 される面上に、 所定の高さを有する厚さ規制部材を設ける工程と、 ( c ) 前記面上に前記ゲル原料液を付与する工程と、 (d ) 前記面 上に付与された前記ゲル原料液が形成する液層の厚さを前記厚さ規 制部材の高さに略一致させる工程と、 ( e ) 前記ゲル原料液から湿 潤ゲルを形成する固体化工程と、 ( f ) 前記湿潤ゲルに含まれる溶 媒を除去することによって乾燥ゲルを形成する乾燥工程とを包含す る。 第 2の局面の超音波送受波器の製造方法によると、 音響整合層 の厚さが所定の厚さに制御されるので、 厚さのばらつきに起因する 特性のばらつきが抑制される。
ある実施形態において、 前記音響整合層は、 前記圧電体層側に配 置された第 1音響整合層と、 前記第 1音響整合層上に設けられた第 2音響整合層を有し、 前記第 2音響整合層を形成するプロセスが、 前記工程 ( a ) 〜 ( f ) を包含する。 ある実施形態において、 前記厚さ規制部の高さは、 対応する音響 整合層中を伝播する音波の波長 λの約 4分の 1である。
本発明による音響整合層に用いられる乾燥ゲルは、 無機酸化物を 固体骨格部とする乾燥ゲルであっても良いし、 有機高分子を固体骨 格部とする乾燥ゲルであっても良い。 図面の簡単な説明
図 1 ( a ) および (b ) は、 本発明の実施形態による音響製造層 の構造を模式的に示す断面図である。
図 2は、 本発明の第 1の実施の形態の超音波送受波器における製 造方法を説明する工程図である。
図 3は、 本発明の第 2の実施の形態の超音波送受波器における製 造方法を説明する工程図である。
図 4は、 本発明の第 3の実施の形態の超音波送受波器における製 造方法を説明する工程図である。
図 5は、 本発明の第 4の実施の形態の超音波送受波器における製 造方法を説明する工程図である。
図 6は、 本発明の第 5の実施の形態の超音波送受波器における製 造方法を説明する工程図である。
図 7は、 本発明の第 6の実施の形態の超音波送受波器における製 造方法を説明する工程図である。
図 8は、 本発明の超音波送受波器の断面図である。
図 9は、 従来の超音波送受波器を用いた超音波流量計の構成を模 式的に示すブロック図である。
4 図 1 0は、 従来の超音波受波器の構成を模式的に示す断面図であ る。
図 1 1 ( a) および (b) は、 従来の超音波受波器の音響整合層 の構成を模式的に示す図であり、 ( a) は断面図、 (b) は上から 見た図である。 発明を実施するための最良の形態
本発明の第 1の局面による音響整合層は、 乾燥ゲルの粉末を含む, 音響整合層を乾燥ゲルの粉末を用いて形成することによって、 湿潤 ゲルの乾燥過程の不均一さに起因する特性のばらつきが抑制される, 図 1 ( a) および (b) に、 本発明の第 1の局面による実施形態 の音響製造層の構造を模式的に示す。
図 1 ( a) に示す音響整合層 3 Aは、 乾燥ゲルの粉末 (以下、 「粉末乾燥ゲル」 ということもある。 ) 3 aと、 添加剤 3 bとで構 成されている。
本明細書における 「乾燥ゲル」 とは、 ゾルゲル反応によって形成 される多孔体であり、 ゲル原料液の反応によって固体化した固体骨 格部が溶媒を含んで構成された湿潤ゲルを経て、 乾燥して溶媒除去 することで形成されるものである。
乾燥ゲルを得るために、 湿潤ゲルから溶媒除去して乾燥する方法 としては、 超臨界乾燥、 凍結乾燥などの特別な条件の乾燥方法や、 加熱乾燥、 減圧乾燥、 自然放置乾燥などの通常の乾燥方法を用いる ことができる。 超臨界乾燥は、 溶媒をその臨界点以上の温度、 圧力条件にした超 臨界状態で除去する方法であり、 気液界面がなくゲルの固体骨格部 に乾燥ストレスを与えることがないため収縮したりすること無く、 非常に低密度の乾燥ゲルを得ることができる。 その反面、 超臨界乾 燥で得た乾燥ゲルは、 使用環境におけるストレス、 例えば結露や熱 ストレス、 薬品ストレス、 機械ストレス等の影響を受けることもあ る。
それに対して、 通常の乾燥方法によって得られる乾燥ゲルは、 乾 燥ストレスに耐え得るために、 その後の使用環境におけるストレス に対しても耐久性が高いという特徴がある。 このような通常の乾燥 方法で低密度の乾燥ゲルを得るためには、 乾燥する前に湿潤ゲルの 段階で、 固体骨格部がストレスに耐え得るようにしておく必要があ る。 例えば、 固体骨格部を熟成して強度を増したり、 疎水化する際 に固体骨格部を補強するように温度条件や重合しやすい多官能の疎 水化剤を適用したり、 細孔の大きさを制御したりすることで実現す ることができる。 特に、 気体の流量を計測する際には、 いろいろな 環境で使用されることがあるために、 通常の乾燥方法で作製した乾 燥ゲルで音響整合層を得るのが好ましい。 また、 通常の乾燥方法を 適用する場合には、 超臨界乾燥のような高圧のプロセスではないた めに、 設備が簡易になり、 取扱いも行いやすいなどの利点もある。 上述の方法で得られる乾燥ゲルは、 ナノメートルサイズの固体骨 格部によって平均細孔直径が 1 n mから 1 0 0 n mの範囲内にある 連続気孔が形成されているナノ多孔体ある。 そのため、 密度が 5 0 O k g / m 3以下、 好ましくは 4 0 O k g / m 3以下の低密度な状 態では、 乾燥ゲルの有する特異な網目状骨格を形成している固体部 分を伝搬する音速が極端に小さくなるとともに、 細孔によって多孔 体内の気体部分を伝搬する音速も極端に小さくなるという性質を有 する。 そのため、 音速として 5 0 0 m Z s以下の非常に遅い値を示 し、 低い音響インピーダンスを得ることができるという特徵を有す る。
また、 ナノメートルサイズの細孔部では、 細孔サイズが気体分子 の平均自由行程と同程度以下となっており、 気体の圧損が大きいた めに音響整合層として用いた場合に、 音波を高い音圧で放射できる という特徴も有する。
粉末乾燥ゲルの平均粒径は 1 m以上 1 0 0 m以下であること が好ましい。 この下限値よりも小さいと粉末中の細孔数が減少して 乾燥ゲルの特徴的に効果が低減されるとともに、 成形する際の添加 剤の必要量が増加するため低密度の音響整合層を得ることが難しく なることがある。 粉末乾燥ゲルの平均粒径が上限値よりも大きいと. 音響整合層の厚さ制御が難しくなり、 厚さの均一性および表面の平 坦性が十分な音響整合層を形成することが難しくなることがある。 乾燥ゲルの固体骨格部は、 無機酸化物または有機高分子であって もよい。 また、 固体骨格部が疎水化されていることが好ましい。 疎 水化することによって、 例えば、 計測対象の気体中に水分や不純物 が存在した場合に、 それらの吸着や付着の影響を受けにくくできる ので、 より信頼性の高い音響整合層を得ることができる。
無機酸化物の乾燥ゲルの固体骨格部の疎水化は、 例えばシラン力 ップリング剤などの表面処理剤を用いて行う。 表面処理剤としては, トリメチルクロルシラン、 ジメチルジクロルシラン、 メチルトリク ロルシラン、 ェチルトリクロルシランなどのハロゲン系シラン処理 剤、 トリメチルメ トキシシラン、 トリメチルエトキシシラン、 ジメ チルジメ トキシシラン、 メチルトリエトキシシランなどのアルコキ シ系シラン処理剤、 へキサメチルジシロキサン、 ジメチルシロキサ ンオリゴマーなどのシリコーン系シラン処理剤、 へキサメチルジシ ラザンなどのアミン系シラン処理剤、 プロピルアルコール、 ブチル アルコール、 へキシルアルコール、 ォク夕ノール、 デカノールなど のアルコール系処理剤などを用いることができる。
また、 これらの処理剤の有するアルキル基の水素が一部または全 てがフッ素に置換したフッ素化処理剤を用いれば、 疎水化 (撥水 性) に加えて、 撥油性、 防汚性などのさらに優れた効果が得られる ものである。
なお、 無機酸化物の乾燥ゲルの固体骨格部は、 少なくとも酸化ケ ィ素 (シリカ) または酸化アルミニウム (アルミナ) を成分とする ものを好適に用いることができる。 また、 有機高分子の乾燥ゲルの 固体骨格部は、 一般的な熱硬化性樹脂、 熱可塑性樹脂により構成す ることができる。 例えば、 ポリウレタン、 ポリウレァ、 フエノール 硬化樹脂、 ポリアクリルアミ ド、 ポリメタクリル酸メチルなどを適 用することもできる。
特に、 無機酸化物の固体骨格部を有する乾燥ゲルは、 耐湿信頼性 や、 耐化学薬品性に優れると共に、 音響インピーダンスの温度特性 に優れる。 すなわち、 無機酸化物の乾燥ゲルを用いると、 2 5 :以 上 7 0で以下の範囲内における音響インピーダンスの温度変化率が,
8 - 0 . 0 4 % /で以下 (絶対値が 0 . 0 4 以下という意味) の音響整合層を得ることができる。 これに対し、 従来のエポキシ Z ガラスバルーン系や、 有機高分子ゲルを用いると、 上記音響インピ 一ダンスの温度変化率の絶対値を 0 . 0 4 %ノ 以下とすることは 難しい。
音響ィンピ一ダンスの温度変化率が小さいと、 例えば後述する超 音波流量計に用いた場合、 広い温度範囲に亘つて高い測定精度を得 ることができる。
粉末乾燥ゲル 3 aを互いに結合し、 音響整合層 3 Aの機械的な強 度を向上するための添加剤 (バインダ) 3 bとしては、 熱結着性を 有する高分子粉末を好適に用いることができる。 液状の材料を用い ると、 乾燥ゲルの細孔内部に浸透し、 音響特性を変えてしまったり, 成形性を低かさせることがあるので、 固形材料、 特に粉末を用いる ことが好ましい。
ここで、 「熱結着性高分子」 とは、 室温において固形で、 加熱に よって溶融または軟化し、 その後固化する高分子を指す。 熱結着性 高分子は、 一般的な熱可塑性樹脂 (例えば、 ポリエチレンやポリプ ロピレンなどのエンジニアリングプラスチック) だけでなく、 例え ば室温においては固形で加熱によって一旦軟化し、 その後、 架橋硬 化する熱硬化性樹脂 (例えば、 フエノール樹脂、 エポキシ樹脂、 ゥ レタン樹脂) を用いることができる。 また、 熱硬化性樹脂が主剤と 硬化剤とを含む場合、 それぞれを別粉末として添加しても良い。 も ちろん、 熱可塑性樹脂と熱硬化性樹脂とを混合して用いても良い。
9 熱結着性高分子粉末の溶融 (軟化) 温度は 8 0 以上 2 5 0 以下 の範囲にあることが好ましい。
添加剤として熱結着性高分子を用いると、 典型的には、 後述する ように、 粉末乾燥ゲル 3 aと添加剤との混合粉末を加熱しながら加 圧成形する際に、 溶融 (軟化) した添加剤が、 冷却に伴って固化す ることにより、 および/または、 架橋硬化することにより、 粉末乾 燥ゲル 3 a同志を接合する役割を果たす。
熱結着性高分子粉末の平均粒径は 0 . 1 以上 5 0 i m以下で あることが好ましい。 この下限値よりも小さいと粉末乾燥ゲルの細 孔径に近くなるため、 結着性が低下したり、 成形性が低下すること がある。 また上限値よりも大きいと、 成形に必要な添加量が増加す るため、 低密度の音響整合層を得ることが難しくなることがある。 また、 熱結着性高分子粉末の添加量は全体の 4 0質量%以下であ ることが好ましい。 全体の 4 0質量%を超えると、 成形した際の密 度が高くなつてしまうことがある。 また、 十分な機械強度を得るた めには、 例えば、 全体の 5質量%以上添加することが好ましい。 上記の添加剤 ( 「添加剤 A」 ということがある。 ) と粉末乾燥ゲ ルとの接合を強化するために、 図 1 ( b ) に模式的に示した音響整 合層 3 Bのように、 繊維 (無機繊維 (例えはグラスウール) や有機 繊維) ゃゥイス力などをさらに添加しても良い ( 「添加剤 B」 とい うことがある。 ) 。 図 1 ( b ) の音響整合層 3 Bにおいて、 添加剤 3 bは上記と同じ熱結着性高分子の粉末であり、 添加剤 3 cは短繊 維である。 短繊維の好適な直径の範囲は上記の熱結着性高分子粉末 の平均粒径と同程度であり、 繊維の長さは数 m〜数 m m程度であ ることが好ましい。
2種類の添加剤の添加量は、 全体に対して、 4 0質量%以下であ ることが好ましく、 配合比率は、 必要に応じて適宜設定される。 本発明の粉末乾燥ゲルを用いた音響整合層は、 音響インピーダン スを調整しやすいという利点をさらに有している。 例えば、 互いに 異なる密度を有する複数の種類の粉末乾燥ゲルを混合することによ つて、 音響インピーダンスを調整することができる。 さらに、 上記 の添加剤 A (必要に応じて添加剤 B ) の量を調節することによって. 音響インピーダンスを調整することができる。 勿論、 添加剤 Aおよ び Bの添加量は、 成形性などを考慮して上記の範囲内とすることが 好ましい。
なお、 音響整合層 3 Aおよび 3 Bの厚さは、 それぞれの音響整合 層中を伝播する音波の波長 λの約 4分の 1の厚さとすることが好ま しい。
本発明の第 2の局面による実施形態の超音波送受波器の製造方法 は、 圧電体層と、 圧電体層上に設けられた音響整合層とを備えた超 音波送受波器の製造方法であって、 音響整合層を形成するプロセス が、 ( a ) ゲル原料液を調製する工程と、 (b ) 音響整合層が形成 される面上に、 所定の高さを有する厚さ規制部材を設ける工程と、 ( c ) 面上に前記ゲル原料液を付与する工程と、 (d ) 面上に付与 されたゲル原料液が形成する液層の厚さを厚さ規制部材の高さに略 一致させる工程と、 ( e ) ゲル原料液から湿潤ゲルを形成する固体 化工程と、 ( f ) 湿潤ゲルに含まれる溶媒を除去することによって 乾燥ゲルを形成する乾燥工程とを包含する。 従って、 音響整合層の 厚さが所定の厚さに制御されるので、 厚さのばらつきに起因する特 性のばらつきが抑制される。
勿論、 音響整合層を上記の粉末乾燥ゲルを用いて形成することに よって、 更に特性のばらつきが抑制されることは言うまでもない。 また、 粉末乾燥ゲルを用いると、 予め粉末乾燥ゲルを作製しておく ことができるので、 超音波送受波器の生産性を向上することができ るという利点も得られる。 すなわち、 上述した超音波送受波器の製 造プロセスにおいて、 ゲル原料液を固体化して湿潤ゲルを得る工程 およびこれを乾燥する工程を予め実行しておく ことができるので、 超音波送受波器の製造のスループッ トを向上できる。
以下、 本発明のより具体的な実施形態を説明する。 なお、 音響整 合層およびその接合構造を除く、 超音波送受波器の基本的な構成は 図 1 0に示した従来の超音波送受波器 1 0と同じであるので、 重複 する説明は省略する。
次に、 図 2から図 7を用いて、 図 8に示した音響整合層 1 0 0を 製造し、 それを圧電体層 2あるいはケース 1に貼り付け超音波送受 波器を製造する方法の実施の形態について説明する。
(第 1の実施の形態)
図 2は本発明の第 1の実施の形態の音響整合層を備えた超音波送 受波器の製造方法を説明する工程図である。 この図を工程 1〜工程 4の順に説明する。
•工程 1 : 多孔体からなる低密度の粉末乾燥ゲル (密度約 2 0 0 k g Z m 3〜 4 0 0 k g Z m 3 ) ' と 1 0質量%程度 (全体に対し て) の添加剤 Aと添加剤 Bとを用意する。 ここで用意する乾燥ゲル は粉末である必要は必ずしもない。 ブロック状でもよい。 乾燥ゲル は例えば平均細孔径が 2 0 n mのシリカ乾燥ゲルであり、添加剤 A はポリプロピレン粉末であり、 添加剤 Bは繊維径が 1 0 z m程度の グラスウールである。
•工程 2 : これらを同一容器内に入れ、 混合粉砕し、 微細な紛末 を作製する。 典型的にはミルを用いて実行される。 ここで、 上述し た所望の平均粒径の粉末乾燥ゲルが得られるように、 粉砕条件を調 整する。 また、 必要に応じて分級してもよい。 もちろん、 乾燥ゲル の粉碎工程と、 混合工程とを別に行っても良い。
•工程 3 : 低密度の粉末乾燥ゲルと添加剤 Aと添加剤 Bとからな る混合粉末を所望の量秤量し、 圧電体層 2が接着されたケース 1の 上に供給する。
• 工程 4 : この上から混合粉末 3の成形体の厚さを制御し、 約入 Z 4の厚さになるようにするために厚さ規制部材 (制御部) 4を設 置し、 加熱加圧成型する。 そうすると、 添加剤 Aが一旦溶融し、 そ の後冷却固化することによって、 低密度の粉末乾燥ゲルが固定化さ れる。 また、 添加剤 Bは、 添加剤 Aが粉末乾燥ゲル同志の結合強度 をさらめに高めるに作用し、 硬い音響整合層を得ることができる。 また、 このようにすることによって、 粉末乾燥ゲルと添加剤 Aと 添加剤 Bとからなる音響整合層 3は、 接着剤を使用せずにケース 1 に接着することができる。
もちろん、 上述したように粉末乾燥ゲルを用いて音響整合層を形 成する過程で、 音響整合層の厚さを制御することが好ましいが、 粉 末乾燥ゲルを用いるだけでも、 従来よりも特性のばらつきの小さい 音響整合を得ることができる。 また、 上述の方法を用いると、 接着 剤を用いることなく、 音響整合層 3をケース 1に直接接合すること ができるので、 従来のようにエポキシ系の接着剤を必要とせず、 化 学的な安定性 (例えば硫黄 Sを含むガスに対する安定性) が向上す る。 しかしながら、 用途などによっては、 予め形成した音響整合層 を接着剤を用いてケースに接合しても良い。
また、 この時、 圧電体は粉末乾燥ゲルからなる音響整合層を形成 する加圧加熱成型時に同時に接着させてもよい。
本実施形態によると、 低密度で、 硬い、 音響インピーダンスの低 レ 、 厚さ精度の高い、 高精度な音響整合層を形成することができ、 これを用いることによって高感度な信頼性の高い安定な超音波送受 波器を得ることができる。
なお、 ここでは、 圧電体層 2を内包する凹部を形成する上板 1 a と、 凹部内の空間を密閉するように配置される底板 1 bとを有する ケース 1 を用いた例を示したが、 これに限られない。 例えば、 圧電 体層 2上に音響整合層 3を直接接合したものを円筒状のケース内に 密閉してもよい。
(第 2の実施の形態)
図 3は本発明の第 2の実施の形態の音響整合層を備えた超音波送 受波器の製造方法を説明する工程図である。 この図を工程 1〜工程 5の順に説明する。
•工程 1 : 多孔体からなる低密度の粉末乾燥ゲルと、 1 0質量% 程度の添加剤 Aとを用意する。 ここで、 添加剤 Aとして、 エポキシ 樹脂 (主剤) の粉末 (添加剤 A 1 ) と、 このエポキシ樹脂の硬化剤 となるポリアミ ド樹脂の粉末 (添加剤 A 2 ) とを用いる。
•工程 2 : これらを同一容器内に入れ、 混合粉碎し、 微細な紛末 を作製する。
·工程 3 : 低密度の粉末乾燥ゲルと添加剤 A 1 と添加剤 A 2とか らなる混合粉末を所望の量秤量し、 圧電体層 2が接着されたケ一ス 1の上に供給する。
この工程までは、 上記の実施形態 1 と同様に実行することができ る。
· 工程 4 : この混合粉末 3の投入されたケース 1を加震器等によ り振動を加え、 投入された混合粉末 3の層の平坦化を行う。
-工程 5 : この上から混合粉末 3の成形体の厚さを制御し、 約 λ Ζ 4の厚さになるようにするために厚さ規制部材 (制御部) 4を設 置し、 加熱加圧成型する。 そうすると、 添加剤 A 1 と添加剤 A 2と が架橋硬化反応を起こし、 低密度の粉末乾燥ゲルが固定化され、 硬 い (機械強度の優れた) 音響整合層を得ることができる。
このようにすることによって、 粉末乾燥ゲルと添加剤 Aと添加剤 Bとからなる音響整合層は、 接着剤を使用せずにケース 1に接着す ることができる。
また、 この時、 圧電体は粉末乾燥ゲルからなる音響整合層を形成 する加圧加熱成型時に同時に接着させてもよい。
本実施形態によると、 加圧成形によって混合粉末の成形体を形成 する前に、 混合粉末の層の上面を平坦化する工程をさらに包含して いるので、 実施形態 1で得られる音響整合層よりもさらに特性のば らつきが小さい。
(第 3の実施の形態)
図 4は本発明の第 3の実施の形態の音響整合層を備えた超音波送 受波器の製造方法を説明する工程図である。 この図を工程 1〜工程 4の順に説明する。
•工程 1 : ケース 1に圧電体層 2を接着する。 接着は公知の接着 剤などを用いて行うことができる。
•工程 2 : このケース 1の上に音響整合層の厚さを制御し、 約 λ / 4の厚さになるようにするために厚さ規制部材 (制御部) として 有機膜等からなる〇—リング 3 1を設置する。
•工程 3 : この 0 _リング 3 1が設置されたケース 1の上に、 ゾ ル溶液として ρ Η 9〜 1 0のゲイ酸水溶液を滴下し、 ケィ酸水溶液 の ρ Ηを 5 . 5に調整する。 その後、 上から平板 3 2で押え、 湿潤 ゲル 3 3を形成する。 このケィ酸水溶液がゲル化するときに、 ケー ス 1の表面の Ο Η基と原料のシラノール基が反応して化学結合し、 ケース 1の表面に湿潤ゲル膜が形成される。
•工程 4 : 得られた湿潤ゲルをトリメチルクロルシラン (T M S C ) のアセトン溶液にて疎水化し、 脱水処理を行う。 また、 へキサ ンに溶媒置換後、 1 0 0でに維持した容器中で乾燥し、 酸化ケィ素 のシリカ乾燥ゲル膜 3 4を形成する。 そうすると、 低密度の乾燥ゲ ル膜が固定化され、 音響整合層を得ることができる。
このようにすることによって、 乾燥ゲルからなる音響整合層は、 接着剤を使用せずにケース 1に接着することができる。 なお、 この時、 圧電体は乾燥ゲルからなる音響整合層を形成した 後に接着させてもよい。
以上により、 低密度で、 音響インピーダンスの低い、 厚さ精度の 高い、 高精度な音響整合層を形成することができ、 これを用いるこ とによって高感度な信頼性の高い安定な超音波送受波器を得ること ができる。
(第 4の実施の形態)
図 5は本発明の第 4の実施の形態の音響整合層を備えた超音波送 受波器の製造方法を説明する工程図である。 この図を工程 1〜工程 4の順に説明する。
• 工程 1 : ケース 1 に圧電体層 2を接着させる。
• 工程 2 : このケース 1 の上に音響整合層の厚さを制御し、 約 λ / 4の厚さになるようにするために厚さ規制部材 (制御部) として 金属等からなるワイア 4 1 を設置する。
· 工程 3 : このワイア 4 1が設置されたケース 1の上に、 ゾル溶 液として ρ Η 9〜 1 0のゲイ酸水溶液を滴下し、 ケィ酸水溶液の ρ Ηを 5 . 5に調整する。 その後、 上から平板 3 2で押え、 湿潤ゲル 3 3を形成する。 このケィ酸水溶液がゲル化するときに、 ケース 1 の表面の〇Η基と原料のシラノ一ル基が反応して化学結合し、 ケー ス 1の表面に湿潤ゲル膜が形成される。
• 工程 4 : 得られた湿潤ゲルをトリメチルクロルシラン (T M S C ) のアセトン溶液にて疎水化し、 脱水処理を行う。 また、 へキサ ンに溶媒置換後、 1 0 o t に維持した容器中で乾燥し、 酸化ゲイ素 のシリカ乾燥ゲル膜 3 4を形成する。 そうすると、 低密度の乾燥ゲ ル膜が固定化され、 音響整合層を得ることができる。
このようにすることによって、 乾燥ゲルからなる音響整合層は、 接着剤を使用せずにケース 1 に接着することができる。
また、 この時、 圧電体は乾燥ゲルからなる音響整合層を形成した 後に接着させてもよい。
以上により、 低密度で、 音響インピーダンスの低い、 厚さ精度の 高い、 高精度な音響整合層を形成することができ、 これを用いるこ とによって高感度な信頼性の高い安定な超音波送受波器を得ること ができる。
(第 5の実施の形態)
図 6は本発明の第 5の実施の形態の音響整合層を備えた超音波送 受波器の製造方法を説明する工程図である。 この図を工程 1〜工程 4の順に説明する。
· 工程 1 : ケース 1 に圧電体層 2を接着させる。
• 工程 2 : このケース 1の上に音響整合層の厚さを制御し λ / 4 の厚さになるようにするために厚さ制御部としてビーズ 5 1 を設置 する。 ビーズ 5 1 としては、 例えば、 後工程の処理において、 溶け たり、 変質しないものであればよく、 ガラスなどの無機材料や架橋 された高分子などの有機材料などから形成されたビーズを用いるこ とができる。
• 工程 3 : このビーズ 5 1が設置されたケース 1の上に、 ゾル溶 液として ρ Η 9〜 1 0のケィ酸水溶液を滴下し、 ケィ酸水溶液の ρ Ηを 5 . 5に調整する。 その後、 上から平板 3 2で押え、 湿潤ゲル 3 3を形成する。 このゲイ酸水溶液がゲル化するときに、 ケース 1 の表面の O H基と原料のシラノール基が反応して化学結合し、 ケー ス 1の表面に湿潤ゲル膜が形成される。
• 工程 4 : 得られた湿潤ゲルをジメチルジメ トキシシランのァセ トン溶液にて疎水化し、 脱水処理を行う。 また、 へキサンに溶媒置 換後、 1 0 0 =Cに維持した容器中で乾燥し、 酸化ゲイ素のシリカ乾 燥ゲル膜 3 4を形成する。 そうすると、 低密度の乾燥ゲル膜が固定 化され、 音響整合層を得ることができる。
このようにすることによって、 乾燥ゲルからなる音響整合層は、 接着剤を使用せずにケース 1 に接着することができる。
また、 この時、 圧電体は乾燥ゲルからなる音響整合層を形成した 後に接着させてもよい。
以上により、 低密度で、 音響インピーダンスの低い、 厚さ精度の 高い、 高精度な音響整合層を形成することができ、 これを用いるこ とによって高感度な信頼性の高い安定な超音波送受波器を得ること ができる。
(第 6の実施の形態)
図 7は本発明の第 6の実施の形態の音響整合層を備えた超音波送 受波器の製造方法を説明する工程図である。 この図を工程 1〜工程 4の順に説明する。
• 工程 1 : ケース 1 に圧電体層 2およびセラミック 6 1 を接着さ せる。 セラミック 6 1は第 1の音響整合層として機能する。 例えば. セラミック 6 1 としては、 シリカ、 アルミナ、 ジルコニァなどを好 適に用いることができる。 • 工程 2 : このケース 1の上のセラミック 6 1上の周辺に音響整 合層の厚さを制御し、 約 4の厚さになるようにするために厚さ 規制部材 (制御部) として有機膜等からなる Ο—リ ング 3 1 を設置 する。
· 工程 3 : この Ο —リング 3 1が設置されたセラミック 6 1上に. ゾル溶液として ρ Η 9〜 1 0のゲイ酸水溶液を滴下し、 ケィ酸水溶 液の ρ Ηを 5 . 5に調整する。 その後、 上から平板 3 2で押え、 湿 潤ゲル 3 3を形成する。 このケィ酸水溶液がゲル化するときに、 ケ ース 1の表面の Ο Η基と原料のシラノール基が反応して化学結合し, ケース 1の表面に湿潤ゲル膜が形成される。
• 工程 4 : 得られた湿潤ゲルをトリメチルクロルシラン (T M S C ) のアセトン溶液にて疎水化し、 脱水処理を行う。 さらに、 5 0 t に維持した容器中で乾燥し、 酸化ケィ素のシリカ乾燥ゲル膜 3 4を形成する。 そうすると、 低密度の乾燥ゲル膜が固定化され、 音 響整合層を得ることができる。 その後、 ケース 1の底板 (蓋板) 、 駆動端子等を組み付けると圧電振動子 1 0が出来上がる。
このようにすることによって、 乾燥ゲルからなる音響整合層は、 接着剤を使用せずにセラミック 6 1 に接着することができ、 さらに 2層音響整合層による高感度化を達成することができる。
また、 この時、 圧電体は乾燥ゲルからなる音響整合層を形成した 後に接着させてもよい。
2層構造の音響整合層 (圧電体層側を第 1音響整合層、 気体側を 第 2音響整合層とする) を採用する場合、 第 2音響整合層の音響ィ ンピーダンス Z bが第 1音響整合層の音響ィンピーダンス Z aより も小さいことが好ましい。 また、 第 1音響整合層の密度が 40 0 k gZm3以上 1 5 0 0 k g/m3以下の範囲内にあり、 第 2音響整 合層の密度が 5 0 8 /1113以上 5 0 0 1^ gZm3以下の範囲内に あり、 かつ第 2音響整合層の密度が第 1音響整合層の密度よりも小 さいことが好ましい。 例えば、 第 1音響整合層の密度が 4 0 0 k g Zm3超 8 0 0 k gZm3以下の範囲内にあり、 第 2音響整合層の 密度が 5 0 k g Zm3以上 4 0 0 k g Zm3以下の範囲内にある。 第 1音響整合層は、 ここで例示したセラミックスや、 無機材料の 繊維体、 焼結多孔体、 ガラスバルーンやプラスチックバルーンを樹 脂マトリクスで固めた材料などの公知の材料を用いて形成すること ができる。 一方、 乾燥ゲルを用いることによって上記の条件を満足 する第 2音響整合層を得ることができる。
本実施形態によると、 低密度で、 音響インピーダンスの低い、 厚 さ精度の高い第 2音響整合層を形成することができるので、 2層構 造の音響整合層の特性をさらに向上することができる。 従って、 本 実施形態の音響整合層を用いることによって、 高感度な信頼性の高 い安定な超音波送受波器を得ることができる。
(第 7の実施の形態)
図 8は本発明の超音波流量計に用いる超音波送受波器の圧電振動 子の断面図である。 この図において、 電気—超音波相互変換を行う 圧電振動子 1 0は、 圧電体層 2と音響整合層 1 0 0で構成されてい る。 圧電体層 2は、 超音波振動を発生するもので、 圧電セラミック や圧電単結晶等からなり、 厚さ方向に分極され、 上下面に電極を有 している。 音響整合層 1 0 0は、 気体に超音波を送波、 または気体 を伝搬して来た超音波を受波するためのもので、 駆動交流電圧によ り励振される圧電体層 2の機械的振動が外部の媒体に超音波として 効率よく放射され、 到来した超音波が効率よく電圧に変換される役 目を有し、 上記実施の形態を用いて形成され、 圧電体層 2における 超音波の送受波面を形成する状態にしてケース 1の外側に化学結合 により貼り合わされている。
さらに、 厚さ制御部 1 0 1によって音響整合層 1 0 0の厚さが厳 密に規定されることによって表面凹凸も存在しない。
このように構成されている超音波送受波器では、 駆動端子に超音 波送受波器の共振周波数近傍の周波数の交流信号成分を持つバース ト信号電圧を印加すると、 圧電振動子 1 0は厚さ振動モードで振動 し、 気体または液体中等の流体中にバースト状の超音波を放射する ことになる。 産業上の利用可能性
本発明の第 1の局面による音響整合層は、 乾燥ゲルの粉末を含む ので、 湿潤ゲルの乾燥過程の不均一さに起因する特性のばらつきが 抑制される。
本発明の第 2の局面によると、 音響整合層の製造プロセスにおい て、 音響整合層の厚さが制御される。 従って、 音響整合層の厚さの ばらつきや表面の凹凸に起因する特性のばらつきが抑制される。 さらに、 無機酸化物または有機高分子の乾燥ゲルの形成時に、 圧 電体表面または容器 (ケース) 表面の O H基と原料の成分が反応し て化学的に結合されて貼り付けられるので、 接着層の無い、 いわゆ る接着層レスの超音波送受波器が得られるという優れた効果も得ら れる。
また、 従来の音響整合層の上層に、 この厚さ精度の高い、 無機酸 化物または有機高分子の乾燥ゲルからなる音響整合層を形成するこ とによって、 さらに高感度な超音波送受波器が得られる。

Claims

請 求 の 範 囲
1. 乾燥ゲルの粉末を含む、 音響整合層。
2. 前記乾燥ゲルの密度が 5 0 0 k gZm3以下であり、 平均細 孔直径が 1 0 0 nm以下である、 請求項 1に記載の音響整合層。
3. 前記乾燥ゲルの粉末の平均粒径が 1 以上 1 0 0 / m以下 の範囲内にある、 請求項 1または 2に記載の音響整合層。
4. 前記乾燥ゲルの固体骨格部が、 無機酸化物を含む、 請求項 1 から 3のいずれかに記載の音響整合層。
5. 前記無機酸化物は、 酸化ケィ素または酸化アルミニウムであ る、 請求項 3に記載の音響整合層。
6. 熱結着性高分子の粉末を全体の 4 0質量%以下含む、 請求項 1から 5のいずれかに記載の音響整合層。
7. 前記熱結着性高分子の粉末は、 平均粒径が 0. l im以上 5
0 m以下の範囲内にある、 請求項 6に記載の音響整合層。
8. 音響インピーダンスが 5 x 1 04 k g / s ' m2以上 2 0 1 0 k g/ s · m2以下の範囲内にある、 請求項 1から 7のいずれか に記載の音響整合層。 9. 2 5 以上 7 0 以下の範囲内における音響インピーダンス の温度変化率が、 — 0. 04 % で以下である、 請求項 1から 8の いずれかに記載の音響整合層。
1 0. 前記音響整合層中を伝播する音波の波長 λの約 4分の 1の 厚さを有する、 請求項 1から 9のいずれかに記載の音響整合層。
1 1. 圧電体層と、 前記圧電体層上に設けられた請求項 1カゝら 1 0のいずれかに記載の音響整合層とを備えた超音波送受波器。 1 2. 前記音響整合層が前記圧電体層上に直接結合されている、 請求項 1 1に記載の超音波送受波器。
1 3. 前記圧電体層を内包する凹部を形成する上板と、 前記凹部 内の空間を密閉するように配置される底板とを有するケースをさら に有し、
前記圧電体層は前記ケースの前記上板の内面に接着されており、 前記音響整合層は、 前記上板を介して前記圧電体層に対向するよ うに前記上板の上面に直接結合されている、 請求項 1 1に記載の超 音波送受波器。
1 4 . 被測定流体が流れる流量測定部と、 前記流量測定部に設け られ超音波信号を送受信する一対の超音波送受波器と、 前記超音波 送受波器間の超音波伝搬時間を計測する計測回路と、 前記計測回路 からの信号に基づいて流量を算出する流量演算回路とを備える超音 波流量計であって、
前記一対の超音波送受波器のそれぞれは、 請求項 1 1から 1 3の いずれかに記載の超音波送受波器で構成されている、 超音波流量計,
1 5 . 乾燥ゲルの粉末と熱結着性高分子の粉末との混合粉末を 用意する工程と、
前記混合粉末を加圧成形する工程と、
を包含する、 音響整合層の製造方法。
1 6 . 前記混合粉末を用意する工程は、
前記乾燥ゲルを用意する工程と、
前記熱結着性高分子の粉末を用意する工程と、
前記乾燥ゲルと前記熱結着性高分子の粉末とを混合しながら粉砕 する工程と、
を包含する請求項 1 5に記載の音響整合層の製造方法。
1 7 . 前記混合粉末を加圧成形する工程は、 前記混合粉末を加熱 する工程を包含する、 請求項 1 6に記載の音響整合層の製造方法。
1 8 . 前記混合粉末を加圧成形する工程は、 加圧成形によって得 られる前記混合粉末の成形体の厚さを所定の厚さに制御する工程を 包含する、 請求項 1 5から 1 7のいずれかに記載の音響整合層の製 造方法。
1 9 . 前記混合粉末を加圧成形する工程は、
下側成形面上に所定量の前記混合粉末を供給する工程と、 前記下側成形面上に供給された前記混合粉末が形成する層の上面 を平坦化する工程と、
を包含する、 請求項 1 5から 1 8のいずれかに記載の音響整合層の 製造方法。
2 0 . 圧電体層と、 前記圧電体層上に設けられた音響整合層とを 備えた超音波送受波器の製造方法であって、
前記音響整合層を請求項 1 5から 1 8のいずれかの製造方法によ つて形成する工程を包含する、 超音波送受波器の製造方法。
2 1 . 前記音響整合層は前記圧電体層上に直接接合される、 請求 項 2 0に記載の超音波送受波器の製造方法。
2 2 . 前記超音波送受波は、 前記圧電体層を内包する凹部を形成 する上板と、 前記凹部内の空間を密閉するように配置される底板と を有するケースをさらに有し、 前記音響整合層は前記ケースの前記上板の上面に直接接合される 請求項 2 0に記載の超音波送受波器の製造方法。
2 3 . 圧電体層と、 前記圧電体層上に設けられた音響整合層とを 備えた超音波送受波器の製造方法であって、
前記音響整合層を形成するプロセスが、
( a ) ゲル原料液を調製する工程と、
( b ) 前記音響整合層が形成される面上に、 所定の高さを有す る厚さ規制部材を設ける工程と、
( c ) 前記面上に前記ゲル原料液を付与する工程と、
( d ) 前記面上に付与された前記ゲル原料液が形成する液層の 厚さを前記厚さ規制部材の高さに略一致させる工程と、
( e ) 前記ゲル原料液から湿潤ゲルを形成する固体化工程と、
( f ) 前記湿潤ゲルに含まれる溶媒を除去することによって乾 燥ゲルを形成する乾燥工程と、
を包含する、 超音波送受波器の製造方法。
2 4 . 前記音響整合層は、 前記圧電体層側に配置された第 1音響 整合層と、 前記第 1音響整合層上に設けられた第 2音響整合層を有 し、
前記第 2音響整合層を形成するプロセスが、 前記工程 ( a ) 〜 ( f ) を包含する、 請求項 2 3に記載の超音波送受波器の製造方法,
2 5 . 前記厚さ規制部の高さは、 対応する音響整合層中を伝播す る音波の波長 λの約 4分の 1である、 請求項 2 2または 2 3のいず れかに記載の超音波送受波器の製造方法。
PCT/JP2003/000812 2002-01-28 2003-01-28 Couche d'adaptation acoustique, emetteur/recepteur ultrasonore, leurs procedes de fabrication, et debitmetre ultrasonore WO2003064980A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03734866A EP1382943A1 (en) 2002-01-28 2003-01-28 Acoustic matching layer, ultrasonic transmitter-receiver, their manufacturing methods, and ultrasonic flowmeter
KR10-2003-7014113A KR20040086504A (ko) 2002-01-28 2003-01-28 음향 정합층, 초음파 송수파기 및 이들의 제조 방법, 및초음파 유량계
US10/475,426 US6969943B2 (en) 2002-01-28 2003-01-28 Acoustic matching layer and ultrasonic transducer
JP2003564530A JP3549523B2 (ja) 2002-01-28 2003-01-28 音響整合層、超音波送受波器およびこれらの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-18047 2002-01-28
JP2002018047 2002-01-28
JP2002-27834 2002-02-05
JP2002027834 2002-02-05

Publications (1)

Publication Number Publication Date
WO2003064980A1 true WO2003064980A1 (fr) 2003-08-07

Family

ID=27667427

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2003/000813 WO2003064981A1 (fr) 2002-01-28 2003-01-28 Couche d'adaptation acoustique, emetteur/recepteur ultrasonore, et debitmetre ultrasonore
PCT/JP2003/000812 WO2003064980A1 (fr) 2002-01-28 2003-01-28 Couche d'adaptation acoustique, emetteur/recepteur ultrasonore, leurs procedes de fabrication, et debitmetre ultrasonore

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000813 WO2003064981A1 (fr) 2002-01-28 2003-01-28 Couche d'adaptation acoustique, emetteur/recepteur ultrasonore, et debitmetre ultrasonore

Country Status (6)

Country Link
US (2) US6989625B2 (ja)
EP (2) EP1382943A1 (ja)
JP (2) JP3549523B2 (ja)
KR (2) KR20040086503A (ja)
CN (2) CN100491930C (ja)
WO (2) WO2003064981A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190852A1 (ja) * 2012-06-22 2013-12-27 パナソニック株式会社 音響整合部材及びその製造方法、及びこれを用いた超音波送受波器、超音波流量計
CN112393753A (zh) * 2019-08-16 2021-02-23 咏业科技股份有限公司 一种超声波传感器

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK200101780A (da) * 2001-11-30 2002-11-27 Danfoss As Ultralydstransducer
DE10211886B4 (de) * 2002-03-18 2004-07-15 Dornier Medtech Gmbh Verfahren und Einrichtung zum Erzeugen bipolarer akustischer Impulse
JP3764162B2 (ja) * 2002-12-20 2006-04-05 松下電器産業株式会社 超音波送受波器およびその製造方法、ならびに超音波流量計
WO2005020631A1 (ja) * 2003-08-22 2005-03-03 Matsushita Electric Industrial Co., Ltd. 音響整合体およびその製造方法、ならびに超音波センサおよび超音波送受信装置
EP1542005B1 (en) * 2003-12-09 2007-01-24 Kabushiki Kaisha Toshiba Ultrasonic probe with conductive acoustic matching layer
JP4181103B2 (ja) * 2004-09-30 2008-11-12 株式会社東芝 超音波プローブおよび超音波診断装置
US7297408B2 (en) * 2004-11-16 2007-11-20 The Lubrizol Corporation Antifouling coating for sensor transducers used for monitoring fluid properties
US20060246044A1 (en) * 2004-12-15 2006-11-02 Dornier Medtech System Gmbh Methods for improving cell therapy and tissue regeneration in patients with cardiovascular and neurological diseases by means of shockwaves
JP4497370B2 (ja) * 2005-05-31 2010-07-07 日本碍子株式会社 微小物体の飛翔状態検出装置、及び微小物体の飛翔状態検出方法
US7641130B2 (en) * 2005-08-26 2010-01-05 Altapure Llc Methods and apparatus for optimizing aerosol generation with ultrasonic transducers
DE102006062706B4 (de) 2006-03-30 2012-12-06 Krohne Ag Ultraschalldurchflußmeßgerät
WO2008077096A2 (en) * 2006-12-19 2008-06-26 Cedars-Sinai Medical Center Ultrasonic bath to increase tissue perfusion
JP4888112B2 (ja) * 2006-12-28 2012-02-29 パナソニック株式会社 超音波送受波器および超音波流量計
JP4301298B2 (ja) * 2007-01-29 2009-07-22 株式会社デンソー 超音波センサ及び超音波センサの製造方法
US7694570B1 (en) * 2007-03-30 2010-04-13 Cosense, Inc Non-invasive dry coupled disposable/reusable ultrasonic sensor
DE102007028352A1 (de) * 2007-06-15 2008-12-18 Endress + Hauser Flowtec Ag Anpassungsschicht zur Anbringung im Schallstrahl eines Clamp-ON Ultraschallsensor
DE102007060989A1 (de) * 2007-12-14 2009-06-18 Endress + Hauser Flowtec Ag Ultraschallwandler zur Bestimmung und/oder Überwachung eines Durchflusses eines Messmediums durch ein Messrohr
JP5346182B2 (ja) * 2008-07-30 2013-11-20 富士フイルム株式会社 体腔内超音波探触子
US8022595B2 (en) * 2008-09-02 2011-09-20 Delaware Capital Formation, Inc. Asymmetric composite acoustic wave sensor
JP4642891B2 (ja) * 2008-09-25 2011-03-02 株式会社シンクロン 光学フィルターの製造方法
US8531089B2 (en) * 2008-10-17 2013-09-10 Konica Minolta Medical & Graphic, Inc. Array-type ultrasonic vibrator
US7658114B1 (en) 2008-11-17 2010-02-09 General Electric Company Ultrasonic flow meter
TWI405955B (zh) * 2009-05-06 2013-08-21 Univ Nat Taiwan 使用超音波探頭聲波匹配層以改變聲波頻率的方法
US8264126B2 (en) 2009-09-01 2012-09-11 Measurement Specialties, Inc. Multilayer acoustic impedance converter for ultrasonic transducers
US8073640B2 (en) * 2009-09-18 2011-12-06 Delaware Capital Formation Inc. Controlled compressional wave components of thickness shear mode multi-measurand sensors
US20110214909A1 (en) 2010-03-05 2011-09-08 International Business Machines Corporation Hydrophobic Silane Coating for Preventing Conductive Anodic Filament (CAF) Growth in Printed Circuit Boards
US8166829B2 (en) 2010-06-29 2012-05-01 Daniel Measurement And Control, Inc. Method and system of an ultrasonic flow meter transducer assembly
GB2486680A (en) * 2010-12-22 2012-06-27 Morgan Electro Ceramics Ltd Ultrasonic or acoustic transducer that supports two or more frequencies
EP2662154B1 (en) 2011-02-15 2017-03-15 Halliburton Energy Services, Inc. Acoustic transducer with impedance matching layer
EP2678643A1 (en) * 2011-02-23 2014-01-01 Miitors ApS Ultrasonic flow meter
US20140130607A1 (en) * 2011-07-13 2014-05-15 Panasonic Corporation Manufacturing method of acoustic matching member, acoustic matching member, ultrasonic transmitter/ receiver unit incorporating acoustic matching member, and ultrasonic flow meter device
US9530955B2 (en) 2011-11-18 2016-12-27 Acist Medical Systems, Inc. Ultrasound transducer and processing methods thereof
JP2015508960A (ja) 2012-01-30 2015-03-23 ピエゾテック・エルエルシー パルスエコー音響変換装置
WO2013183292A1 (ja) * 2012-06-05 2013-12-12 パナソニック株式会社 超音波送受波器およびそれを備えた超音波流量計
JP5313411B1 (ja) 2012-08-24 2013-10-09 パナソニック株式会社 シリカ多孔体および光マイクロフォン
CN104054355B (zh) * 2012-11-16 2018-12-04 阿西斯特医疗系统有限公司 超声换能器及其加工方法
WO2014136221A1 (ja) * 2013-03-06 2014-09-12 三菱電機株式会社 障害物検知装置
US9536511B2 (en) 2013-12-31 2017-01-03 Acist Medical Systems, Inc. Ultrasound transducer stack
JP5548834B1 (ja) * 2014-03-11 2014-07-16 東京計装株式会社 超音波流量計
JP5580950B1 (ja) * 2014-05-16 2014-08-27 東京計装株式会社 超音波流量計
CN107580721B (zh) * 2015-05-11 2021-02-19 测量专业股份有限公司 用于具有金属保护结构的超声波换能器的阻抗匹配层
US10794872B2 (en) * 2015-11-16 2020-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Acoustic measurement of fabrication equipment clearance
US10212812B2 (en) 2016-01-15 2019-02-19 International Business Machines Corporation Composite materials including filled hollow glass filaments
JP6692182B2 (ja) * 2016-02-29 2020-05-13 日本マタイ株式会社 機能性フィルムの製造方法
CN105606141A (zh) * 2016-02-29 2016-05-25 汉得利(常州)电子股份有限公司 全方位球形超声波传感器
WO2017212511A1 (ja) * 2016-06-09 2017-12-14 パナソニックIpマネジメント株式会社 積層体、超音波送受波器および超音波流量計
US10518293B2 (en) 2016-12-09 2019-12-31 Sensus USA, Inc. Thickness-planar mode transducers and related devices
US10632499B2 (en) 2016-12-09 2020-04-28 Sensus USA, Inc. Thickness mode transducers and related devices and methods
CN107083550A (zh) * 2017-02-21 2017-08-22 机械科学研究总院先进制造技术研究中心 一种温度、送粉量可自动调试智能激光熔覆头
EP3586331A1 (en) 2017-02-21 2020-01-01 Sensus Spectrum LLC Multi-element bending transducers and related methods and devices
CA3050145A1 (en) 2017-02-24 2018-08-30 Justin Rorke Buckland Ultrasonic devices including acoustically matched regions therein
CN107202630A (zh) * 2017-06-28 2017-09-26 上海理工大学 用于计量管理的超声波多层传感器
JP7108816B2 (ja) * 2017-06-30 2022-07-29 パナソニックIpマネジメント株式会社 音響整合層
KR20210002703A (ko) 2018-05-02 2021-01-08 울트라햅틱스 아이피 엘티디 개선된 음향 전송 효율을 위한 차단 플레이트 구조체
DE102018206937A1 (de) * 2018-05-04 2019-11-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Impedanzanpassungsvorrichtung, Wandlervorrichtung und Verfahren zum Herstellen einer Impedanzanpassungsvorrichtiung
ES2735648B2 (es) * 2018-06-19 2020-05-20 Sedal S L U Dispositivo de mezcla de liquidos con control electronico de alta dinamica de regulacion y metodo de funcionamiento del mismo
RU2707124C1 (ru) * 2019-03-11 2019-11-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный морской технический университет" (СПбГМТУ) Способ измерения массового расхода нефтепродуктов в трубопроводе
DE102019116080A1 (de) * 2019-06-13 2020-12-17 USound GmbH MEMS-Schallwandler mit einer aus Polymer ausgebildeten Membran
US11664779B2 (en) * 2019-07-03 2023-05-30 Toyota Motor Engineering & Manufacturing North America, Inc. Acoustic impedance matching with bubble resonators
JP7281668B2 (ja) * 2019-08-02 2023-05-26 パナソニックIpマネジメント株式会社 超音波送受信器、および超音波流量計
JP7374824B2 (ja) * 2020-03-12 2023-11-07 キヤノンメディカルシステムズ株式会社 超音波プローブ、音響レンズ、超音波診断装置、及び超音波プローブ用カプラ
CN112111154A (zh) * 2020-09-27 2020-12-22 北京瑞祥宏远科技有限公司 无损检测用超声耦合剂及其制备方法
US20220416755A1 (en) * 2021-06-29 2022-12-29 Baker Hughes Oilfield Operations Llc Acoustic impedance matching material and system
CN114397369B (zh) * 2021-12-31 2023-12-22 临沂大学 一种用于混凝土损伤监测的可埋入多维声发射传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243640B2 (ja) * 1980-12-08 1987-09-16 Matsushita Electric Ind Co Ltd
JPH068808B2 (ja) * 1986-08-30 1994-02-02 キヤノン株式会社 集束型超音波探触子
JPH10253604A (ja) * 1997-03-07 1998-09-25 Matsushita Electric Ind Co Ltd 超音波探触子

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277367A (en) * 1978-10-23 1981-07-07 Wisconsin Alumni Research Foundation Phantom material and method
US4211948A (en) * 1978-11-08 1980-07-08 General Electric Company Front surface matched piezoelectric ultrasonic transducer array with wide field of view
US4366406A (en) * 1981-03-30 1982-12-28 General Electric Company Ultrasonic transducer for single frequency applications
US4523122A (en) * 1983-03-17 1985-06-11 Matsushita Electric Industrial Co., Ltd. Piezoelectric ultrasonic transducers having acoustic impedance-matching layers
US4756808A (en) * 1985-05-31 1988-07-12 Nec Corporation Piezoelectric transducer and process for preparation thereof
GB2225426B (en) * 1988-09-29 1993-05-26 Michael John Gill A transducer
FR2665699A1 (fr) * 1990-08-07 1992-02-14 Thomson Csf Ceramique piezoelectrique a porosite controlee.
DE4028315A1 (de) * 1990-09-06 1992-03-12 Siemens Ag Ultraschallwandler fuer die laufzeitmessung von ultraschall-impulsen in einem gas
DE69421011T2 (de) * 1993-07-15 2000-06-08 General Electric Co., Schenectady Breitband Ultraschallwandler und ihr Fabrikationsverfahren
US6043589A (en) * 1997-07-02 2000-03-28 Acuson Corporation Two-dimensional transducer array and the method of manufacture thereof
US6057632A (en) * 1998-06-09 2000-05-02 Acuson Corporation Frequency and bandwidth controlled ultrasound transducer
US6307302B1 (en) * 1999-07-23 2001-10-23 Measurement Specialities, Inc. Ultrasonic transducer having impedance matching layer
CA2332158C (en) * 2000-03-07 2004-09-14 Matsushita Electric Industrial Co., Ltd. Ultrasonic probe
JP3611796B2 (ja) * 2001-02-28 2005-01-19 松下電器産業株式会社 超音波送受波器、超音波送受波器の製造方法及び超音波流量計
JP2002259267A (ja) 2001-03-01 2002-09-13 Matsushita Electric Ind Co Ltd 動画配信方法および動画配信装置およびそのプログラム記録媒体
US6788620B2 (en) * 2002-05-15 2004-09-07 Matsushita Electric Ind Co Ltd Acoustic matching member, ultrasound transducer, ultrasonic flowmeter and method for manufacturing the same
US6822376B2 (en) * 2002-11-19 2004-11-23 General Electric Company Method for making electrical connection to ultrasonic transducer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243640B2 (ja) * 1980-12-08 1987-09-16 Matsushita Electric Ind Co Ltd
JPH068808B2 (ja) * 1986-08-30 1994-02-02 キヤノン株式会社 集束型超音波探触子
JPH10253604A (ja) * 1997-03-07 1998-09-25 Matsushita Electric Ind Co Ltd 超音波探触子

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190852A1 (ja) * 2012-06-22 2013-12-27 パナソニック株式会社 音響整合部材及びその製造方法、及びこれを用いた超音波送受波器、超音波流量計
JPWO2013190852A1 (ja) * 2012-06-22 2016-02-08 パナソニックIpマネジメント株式会社 音響整合部材及びその製造方法、及びこれを用いた超音波送受波器、超音波流量計
CN112393753A (zh) * 2019-08-16 2021-02-23 咏业科技股份有限公司 一种超声波传感器
US11433427B2 (en) 2019-08-16 2022-09-06 Unictron Technologies Corporation Ultrasonic transducer

Also Published As

Publication number Publication date
KR20040086503A (ko) 2004-10-11
US6989625B2 (en) 2006-01-24
US6969943B2 (en) 2005-11-29
JP3549523B2 (ja) 2004-08-04
KR20040086504A (ko) 2004-10-11
US20040113523A1 (en) 2004-06-17
CN100491930C (zh) 2009-05-27
JP3552054B2 (ja) 2004-08-11
JPWO2003064980A1 (ja) 2005-05-26
US20040124746A1 (en) 2004-07-01
EP1477778A1 (en) 2004-11-17
CN1568421A (zh) 2005-01-19
CN1249405C (zh) 2006-04-05
JPWO2003064981A1 (ja) 2005-05-26
EP1382943A1 (en) 2004-01-21
CN1522360A (zh) 2004-08-18
WO2003064981A1 (fr) 2003-08-07

Similar Documents

Publication Publication Date Title
WO2003064980A1 (fr) Couche d&#39;adaptation acoustique, emetteur/recepteur ultrasonore, leurs procedes de fabrication, et debitmetre ultrasonore
EP1363269B1 (en) Acoustic matching member, ultrasonic transducer, ultrasonic flowmeter and method for manufacturing the same
JP3611796B2 (ja) 超音波送受波器、超音波送受波器の製造方法及び超音波流量計
JP3764162B2 (ja) 超音波送受波器およびその製造方法、ならびに超音波流量計
CN103540152A (zh) 渐变过渡声阻抗匹配材料配制方法
JP4080374B2 (ja) 音響整合部材、超音波送受波器、超音波流量計およびこれらの製造方法
JP2004029038A (ja) 超音波流量計
JP4014940B2 (ja) 音響整合部材、超音波送受波器、超音波流量計およびこれらの製造方法
JP2008261732A (ja) 超音波送受波器とそれを使用した超音流速流量計
JP2004085579A (ja) 超音波流量計
JP2003284191A (ja) 音響整合部材とその製造方法、それを用いた超音波送受波器、および超音波流量計
JP4153796B2 (ja) 超音波送受波器および超音波流量計
Nagahara et al. Airborne Ultrasonic Transducer
JP2006023099A (ja) 音響整合層およびそれを用いた超音波送受信器並びにこの超音波送受信器を有する超音波流れ計測装置
JP2003329501A (ja) 音響整合部材、超音波送受波器および超音波流量計
WO2013190852A1 (ja) 音響整合部材及びその製造方法、及びこれを用いた超音波送受波器、超音波流量計

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2003564530

Country of ref document: JP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: EXCEPT/SAUF US, EP (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR)

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10475426

Country of ref document: US

Ref document number: 2003734866

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020037014113

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003734866

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038012928

Country of ref document: CN