JP4080374B2 - 音響整合部材、超音波送受波器、超音波流量計およびこれらの製造方法 - Google Patents

音響整合部材、超音波送受波器、超音波流量計およびこれらの製造方法 Download PDF

Info

Publication number
JP4080374B2
JP4080374B2 JP2003136327A JP2003136327A JP4080374B2 JP 4080374 B2 JP4080374 B2 JP 4080374B2 JP 2003136327 A JP2003136327 A JP 2003136327A JP 2003136327 A JP2003136327 A JP 2003136327A JP 4080374 B2 JP4080374 B2 JP 4080374B2
Authority
JP
Japan
Prior art keywords
porous body
acoustic matching
ultrasonic
layer
matching member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003136327A
Other languages
English (en)
Other versions
JP2004045389A (ja
Inventor
誠吾 白石
範久 ▲高▼原
正明 鈴木
和彦 橋本
卓 橋田
英知 永原
雅彦 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003136327A priority Critical patent/JP4080374B2/ja
Publication of JP2004045389A publication Critical patent/JP2004045389A/ja
Application granted granted Critical
Publication of JP4080374B2 publication Critical patent/JP4080374B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波センサの音響整合層に用いる音響整合部材と、超音波送受信を行う超音波送受波器と、これらの製造方法、およびこれらを用いた超音波流量計に関するものである。
【0002】
【従来の技術】
近年、超音波が伝搬路伝達する時間を計測し、流体の移動速度を測定して流量を計測する超音波流量計がガスメータ等に利用されつつある。図13は超音波流量計の測定原理を示したものである。図13に示すように、流路を具備した測定管の管内には流体が速度Vにて図に示す方向に流れている。管壁103には、一対の超音波送受波器101、102が相対して設置されている。超音波送受波器101、102は、電気エネルギー/機械エネルギー変換素子として圧電セラミック等の圧電振動子を用いて構成されていて、圧電ブザー、圧電発振子と同様に共振特性を示す。ここでは超音波送受波器101を超音波送波器として用い、超音波送受波器102を超音波受波器として用いる。
【0003】
その動作は、超音波送受波器101の共振周波数近傍の周波数の交流電圧を圧電振動子に印加すると、超音波送受波器101は超音波送波器として働いて、管内を流れる流体中に同図中のL1で示す伝搬経路に超音波を放射し、超音波送受波器102が伝搬してきた超音波を受けて電圧に変換する。続いて、反対に超音波送受波器102を超音波送波器として用い、超音波送受波器101を超音波受波器として用いる。超音波送受波器102の共振周波数近傍の周波数の交流電圧を圧電振動子に印加することにより、超音波送受波器102は管内を流れる流体中に同図中のL2で示す伝搬経路に超音波を放射し、超音波送受波器101は伝搬してきた超音波を受けて電圧に変換する。このように、超音波送受波器101、102は、受波器としての役目と送波器としての役目を果たすので、一般に超音波送受波器と呼ばれる。
【0004】
また、このような超音波流量計では、連続的に交流電圧を印加すると超音波送受波器から連続的に超音波が放射されて伝搬時間を測定することが困難になるので、通常はパルス信号を搬送波とするバースト電圧信号を駆動電圧として用いる。以下、測定原理についてさらに詳細な説明を行う。駆動用のバースト電圧信号を超音波送受波器101に印加して超音波送受波器101から超音波バースト信号を放射すると、この超音波バースト信号は距離がLの伝搬経路L1を伝搬してt時間後に超音波送受波器102に到達する。超音波送受波器102では伝達して来た超音波バースト信号のみを高いS/N比で電気バースト信号に変換することができる。この電気バースト信号を電気的に増幅して、再び超音波送受波器101に印加して超音波バースト信号を放射する。この装置をシング・アラウンド装置と呼び、超音波パルスが超音波送受波器101から放射され伝搬路を伝搬して超音波送受波器102に到達するのに要する時間をシング・アラウンド周期といい、その逆数をシング・アラウンド周波数という。
【0005】
図13において、管の中を流れる流体の流速をV、流体中の超音波の速度をC(図示せず)、流体の流れる方向と超音波パルスの伝搬方向の角度をθとする。超音波送受波器101を超音波送波器、超音波送受波器102を超音波受波器として用いたときに、超音波送受波器101から出た超音波パルスが超音波送受波器102に到達する時間であるシング・アラウンド周期をt1、シング・アラウンド周波数f1とすれば、次式(1)が成立する。
【0006】
f1=1/t1=(C+Vcosθ)/L ・・・(1)
逆に、超音波送受波器102を超音波送波器として、超音波送受波器101を超音波受波器として用いたときのシング・アラウンド周期をt2、シング・アラウンド周波数f2とすれば、次式(2)の関係が成立する。
【0007】
f2=1/t2=(C−Vcosθ)/L ・・・(2)
したがって、両シング・アラウンド周波数の周波数差Δfは、次式(3)となり、超音波の伝搬経路の距離Lと周波数差Δfから流体の流速Vを求めることができる。
【0008】
Δf=f1−f2=2Vcosθ/L ・・・(3)
すなわち、超音波の伝搬経路の距離Lと周波数差Δfから流体の流速Vを求めることができ、その流速Vから流量を調べることができる。
【0009】
このような超音波流量計では精度が要求され、その精度を向上させるために、気体に超音波を送波、または気体を伝搬して来た超音波を受波する超音波送受波器を構成している圧電振動子における超音波の送受波面に形成される音響整合層の音響インピーダンスが重要となる。
【0010】
図12は従来の超音波送受波器20の構成を示す断面図である。10は音響整合手段である音響整合層、5はセンサケース、4は電極、3は振動手段である圧電体である。センサケース5と音響整合層10、またセンサケース5と圧電体3はエポキシ系の接着剤等を用いて接着されている。7は駆動端子あって、圧電体3の電極4にそれぞれ接続されている。6は二つの駆動端子の電気的独立を確保するための絶縁シールである。圧電体3で振動された超音波は特定の周波数で振動し、その振動はエポキシ系の接着剤を介してケースに伝わり、さらにエポキシ系の接着剤を介して音響整合層10に伝わる。整合した振動は空間に存在する媒体である気体に音波として伝搬する。
【0011】
この音響整合層10の役割は振動手段の振動を効率良く気体に伝搬させることにある。物質中の音速Cと密度ρとで式(4)のように音響インピーダンスZが定義される。
【0012】
Z=ρ×C ・・・(4)
音響インピーダンスは振動手段である圧電体と超音波の放射媒体である気体とでは大きく異なる。例えば、一般的な圧電体であるPZT(チタン酸ジルコン酸鉛)等のピエゾセラミックスの音響インピーダンス(Z0)は30×106kg/m2/s程度である。また、放射媒体である気体、例えば空気の音響インピーダンス(Z3)は400kg/m2/s程度である。このような音響インピーダンスの異なる境界面上では音波の伝搬に反射を生じて、透過する音波の強さが弱くなる。これを解決する方法として、振動手段である圧電体と超音波の放射媒体である気体のそれぞれの音響インピーダンスZ0とZ3に対して、両者の間に式(5)の関係を有する音響インピーダンスを持つ物質を挿入することによって、音の反射を軽減して音波の透過する強度を高める方法が一般に知られている。
【0013】
Z=(Z0×Z3)(1/2) ・・・(5)
この条件を満たす音響インピーダンスが整合した時の最適な値は、11×104kg/m2/s程度となる。この音響インピーダンスを満たす物質は、式(4)からわかるように固体で密度が小さく音速の遅いものであることが要求される。一般的に用いられている材料として、ガラスバルーンやプラスチックバルーンを樹脂材料で固めた材料を圧電体からなる超音波振動子の面に形成して使用されている。また、中空ガラス球を熱圧縮する方法、あるいは、溶融材料を発泡させる等の方法も使用されている。これは、例えば下記特許文献1等で開示されている。
【0014】
しかし、これらの材料の音響インピーダンスは、50×104kg/m2/sより大きい値であり、さらに気体との整合を取り高感度を得るためには音響インピーダンスがさらに小さい材料が必要である。
【0015】
また前記音響整合層は単一層に限定されず、振動手段である圧電体と超音波の放射媒体である気体の音響インピーダンスとの間の値で徐々に変化するように、異なった音響インピーダンスを具備した複数層の材料で構成することがより好ましいことが広く一般に知られている。
【0016】
音響インピーダンスが異なる、音響整合層中を通過する超音波発振波長の約1/4の波長に成るように厚み調整した複数の音響整合層を層状に形成することが、超音波送受波器の広帯域化に有効であることが広く知られている。圧電体の音響インピーダンスZ0から、放射媒体である気体の音響インピーダンスZ3(Z0>Z3)にかけて除々に小さくなるように複数の整合層で構成することが好ましい(例えば非特許文献1)。例えば図14Aに示したように、音響整合層10における圧電体3側の密度を大きくし、放射媒体である気体側を小さくすることが考えられる。
【0017】
また、原理的意味から複数の層から構成される音響整合部材であるが、工業的な観点からは、2層構造で音響整合部材を構成することが有用である。すなわち音響整合層を複数層化することにより得られる効果と、それに伴う製造コストの増加を考えた際、2層構造で音響整合層を構成することが有効である。音響整合層を異なる2の層で構成する例として、例えば下記特許文献2に開示された発明では、微小中空材料を固めた密度の低い第一の整合層の超音波放射面に、ラミネート化した高分子多孔膜を接着することで2層構造とし、音響インピーダンス整合を効率よく行うと同時に超音波送受波器の送受波感度を向上させることが開示されている。
【0018】
音響整合層を2層構造で構成する場合においては、図14Bに示したように、比較的高い密度を有する整合部材11を第1層として圧電体3側に配置し、比較的低い密度を有する整合部材12を第2層として気体側に配置して一体化させることが理想的であると言える。
【0019】
前記のように音響整合層を音響インピーダンスの異なる複数の部材、特に2つの異なる部材(層)によって構成することが、原理的な意味からその有用性が知られているがその実用例は多くない。
【0020】
【特許文献1】
特許第2559144号公報
【特許文献2】
特開昭61−169100号公報
【非特許文献1】
「超音波便覧」、平成11年8月30日、丸善株式会社発行、108頁、115頁
【0021】
【発明が解決しようとする課題】
本発明者らは、従来の複数の異なる部材により成る音響整合部材について詳細に検討した結果、従来の部材には主に次の3つの問題があることがわかった。
【0022】
従来の音響整合部材は異なる材料を個別に用意し、貼り合わせるかまたはそれに準じた方法(例えば表面への塗布形成等)により製造されることが多く、その結果、(1)層間の接着面が物理的に弱く、超音波送受信時に振動と相まって、剥離しやすく、音響整合部材、さらにはこれを用いた超音波送受波器および超音波流量計の故障の原因になっていること。さらに、(2)異なる部材を接着剤等の第3の部材で貼り合わせる場合、実質的に3層構造の音響整合部材となり、音響整合層の最適設計が困難になること。すなわち、中間層としての接着材料の物性(密度、音速)および接着後の形状(中間層の厚み)等の影響が無視できず、設計が困難になる。また設計ができても接着材料の選択肢が少なくい点や、中間層の厚み制御が煩雑になることは避けられなかった。さらに3点目として、(3)異なった部材を個別に用意し、貼り合わせること自体の製造方法が煩雑であったことに起因して、超音波送受波器さらには超音波流量計の製造コストを引き上げてします問題があった。
【0023】
特に貼り合わせる音響整合部材に、前記の原理的な理由から低密度の部材としての多孔質体を選択した場合、接着する表面が平面状でなく、多くの空隙が存在しており、実質的に有効な接着面積(接着有効面積)は極めて少ない。接着有効面積が小さくなると、おのずと接着性が低下し、前記の(1)の問題が顕著に現れることになる。
【0024】
また接着できても、接着材料を用いた場合には多孔質体に浸透しやすく、図15に示したように接着剤が浸透した部分は局所的に密度の高い中間層13が生じてしまう。この中間層13は、多孔質体の空隙部分に接着剤が含浸した結果生じた層であるので、必ず第1層11および第2層12に比較して密度が高いものとなる。その結果、前記の「圧電体の音響インピーダンスZ0から、放射媒体である気体の音響インピーダンスZ3(Z0>Z3)にかけて除々に小さくなるように複数の整合層で構成」という理想的構成から逸脱し、前記(2)の問題が顕著に現れることになる。さらに第1層としての多孔質体に、液状の材料を塗布し、乾燥、硬化等により第2層を形成する方法を採った場合においても、多孔質体内部に液状材料が含浸された中間層が生じることは避けられず、同様な問題が生じることになる。いずれにしても前記(1)および(2)の問題がさらに顕著に現れることなる。
【0025】
本発明は、前記従来の問題を解決するため、層間の剥離が起き難く、故障しにくい音響整合部材、超音波送受波器、超音波流量計、およびこれらの製造方法を提供することを目的とする。
【0026】
【課題を解決するための手段】
前記目的を達成するため、本発明の音響整合部材の製造方法は、
(a)空隙を有する多孔質体を準備し、
(b)固体化後の体積が、前記多孔質体中の空隙部分の体積以上の流動性充填材料を準備し、
(c)前記空隙内部に前記流動性充填材料を充填し、
(d)前記空隙内部の流動性充填材料と前記多孔質体上の余剰の流動性充填材料とを同時に固体化することを特徴とする。
【0027】
次に本発明の超音波送受波器の製造方法は、
音響整合部材と、圧電体とを備え、超音波を送信または受信する超音波送受波器の製造方法であって、
(a)空隙を有する多孔質体を準備し、
(b)固体化後の体積が、前記多孔質体中の空隙部分の体積以上の流動性充填材料を準備し、
(c)前記空隙内部に前記流動性充填材料を充填し、
(d)前記空隙内部の流動性充填材料と前記多孔質体上の余剰の流動性充填材料とを同時に固体化することによって音響整合部材を形成し、
(e)前記音響整合部材の多孔質体側を、前記圧電体の表面もしくは密閉容器の前記圧電体の配置位置に対向した外面に貼り付けることを特徴とする。
【0028】
また、他の本発明の超音波送受波器の製造方法は、
音響整合部材と、圧電体とを備え、超音波を送信または受信する超音波送受波器の製造方法であって、
(a)空隙を有する多孔質体を準備し、
(b)固体化後の体積が、前記多孔質体中の空隙部分の体積以上の流動性充填材料を準備し、
(c)前記多孔質体を、圧電体の表面もしくは密閉容器の前記圧電体の配置位置に対向した外面に貼り付け、
(d)前記多孔質体の空隙内部に前記流動性充填材料を充填し、
(e)前記空隙内部の流動性充填材料と前記多孔質体上の余剰の流動性充填材料とを同時に固体化することを特徴とする。
【0029】
本発明の音響整合部材は、超音波を送信または受信する超音波送受波器に組み込むための音響整合部材であって、
空隙を有する多孔質体と、
固体化後の体積が前記多孔質体中の空隙部分の体積以上である流動性充填材料が前記空隙内部に充填され、かつ当該充填により余剰となった充填材料によって前記多孔質体上に形成された層と、
を有し、
前記空隙内部の流動性充填材料と前記多孔質体上の余剰の流動性充填材料とが同時に固体化して形成されたことを特徴とする。
【0030】
本発明の超音波送受波器は、上述した本発明の音響整合部材と圧電体とを備え、超音波を送信または受信する超音波送受波器であって、前記音響整合部材の多孔質体側に前記圧電体を配置したことを特徴とする。
【0031】
本発明の超音波流量計は、上述した本発明の超音波送受波器を備えた超音波流量計であって、
被測定流体が流れる流路を具備した測定管と、
前記測定管に、前記被測定流体の流れの上流側と下流側とに、対向させて配置した一対の前記超音波送受波器と、
前記超音波送受波器に超音波を送信させる送信回路と、
前記超音波送受波器が受信した超音波信号を処理する受信回路と、
前記一対の超音波送受波器の、送信から受信または受信から送信を切り替える送受切替回路と、
前記一対の超音波送受波器間の超音波伝搬時間計測回路と、
前記伝搬時間に基づき、前記被測定流体の流量に換算する演算部を含むことを特徴とする。
【0032】
【発明の実施の形態】
本発明の音響整合部材によれば、音響インピーダンスが異なる第1層と第2層の少なくとも2つの層を含み、第1層が多孔質体と前記多孔質体中の空隙部に担持された充填材料との複合材料であり、かつ第2層が前記充填材料または前記多孔質体であるので、所望の音響インピーダンス材料同士を組み合わせることができる。また、前記第1層と第2層とは構成材料が連続しており、一体化しているため、層間の剥離が起き難く、故障しにくい。さらに接着剤などを用いないため、層間に泡を含むこともなく、多孔質材料に吸収されることもない。
【0033】
さらに、前記の問題の原因となっていた中間層が物理的に存在しない。その結果理想的構造の整合部材を構成可能で、設計が容易になる。
【0034】
また、第1層を多孔質体と充填材料との複合材料とし、第2層を充填材料とし、かつ第2層の充填材料と第1層中の充填材料と連続するような構成とすることが好ましい。
【0035】
本発明による前記音響整合層部材は、次のように具現化するとより好ましい。
【0036】
第一に、第1層の音響インピーダンスZ1と、第2層の音響インピーダンスZ2との関係が、Z1>Z2なる関係に成るように構成する。
【0037】
第二に、第1層の見掛け密度ρ1と、第2層の見掛け密度ρ2との関係が、ρ1>ρ2なる関係に成るように構成する。
【0038】
第三に、前記多孔質体および前記充填材料の内、少なくともいずれかを無機物で構成する。
【0039】
第四に 前記多孔質体を、セラミックもしくはセラミックスとガラスとの混合物の焼結多孔質体で構成する。
【0040】
第五に、前記充填材料を、無機酸化物の乾燥ゲルで構成する。
【0041】
また、本発明の超音波送受波器の前記密閉容器は、金属材料で構成することが好ましい。
【0042】
本発明の実施の形態について図面を用いて詳細に説明する。
【0043】
(実施の形態1)
本発明の実施の形態1は、図1に示したように第1層11と第2層12との2つの層で構成されている音響整合部材100であって、第1層11は、多孔質体1と前記多孔質体の空隙部に含浸硬化担持された充填材料2とで構成される複合材料である。また第2層12は、前記第1層11中の前記充填材料と同一な材料で構成されており、かつ第1層11中の充填材料と第2層12の材料との間には、少なくとも一部分が連続的に一体化されている。すなわち、第2層12を構成する充填材料2と、第1層11中の充填材料2とは、同時に固体化し、形成されたものであって、物理的に連続性がある。
【0044】
第2層12を構成する充填材料2は、第1層11中の多孔質体の空隙部内部まで、浸透硬化されており、その結果、第1層11と第2層12とは物理的形状効果(アンカー効果)により結着が強く、かつ第1層11と第2層12間に別の層(中間層)は存在しない。
【0045】
本発明による音響整合部材は、前記の構成にした結果、2層で構成される音響整合部材において層間の剥離が起き難く、かつ中間層が存在しないため設計も容易である。
【0046】
なお、少なくとも一部分、連続性があるというのは、製造上一部分に亀裂等により非連続が発生してしまっても構わないという意味である。
【0047】
参考形態1
本発明の参考形態1は、図2に示したように第1層11と第2層12との2つの層で構成されている音響整合部材100であって、第1層11は、多孔質体1と前記多孔質体の空隙部に含浸硬化担持された充填材料2とで構成される複合材料であり、また第2層12は、第1層11を形成する多孔質体1の空隙を有した一部分である。本実施の形態2による音響整合部材は、同一の多孔質体1の下層に充填材料2を充填させることにより、2つの層をもって構成されている。すなわち、多孔質体1の骨格と空隙部分に含浸硬化された充填材料2とで構成される複合材料である第1層11と、多孔質体1の骨格のみで構成される第2層12とを有する音響整合部材である。
【0048】
第1層11は、多孔質体1の空隙部分に充填材料2を充填させ一体化しており、かつ第2層12は多孔質体1自体であるので、両者層間には原理的に中間層は存在しない。また層間が剥離することは発生しがたく、信頼性の高い音響整合部材となる。
【0049】
本発明による音響整合部材は、前記の構成にした結果、2層で構成される音響整合部材において層間の剥離が起き難く、かつ中間層が存在しないため設計も容易である。
【0050】
なお、実施の形態1および参考形態1において、製造上の理由により、第1層中に充填材料が含浸されていない空隙が一部残存していてもかまわない。特に限定されないが、10体積%未満の残存であれば、実用上問題にならない。
【0051】
また、実施の形態1および参考形態1において、第1層の音響インピーダンスZ1と、第2層の音響インピーダンスZ2との関係が、Z1>Z2なる関係に成るように構成することが好ましい。圧電体の音響インピーダンスZ0から、放射媒体である気体の音響インピーダンスZ3(Z0>Z3)にかけて除々に音響インピーダンスが小さくなる構成とした整合層を用いることが原理的意味から好ましい。
【0052】
また、実施の形態1および参考形態1において、第1層の見掛け密度ρ1と、第2層の見掛け密度ρ2との関係が、ρ1>ρ2なる関係に成るように構成することが好ましい。ここで見掛け密度とは、重量を、空隙を含む体積で割った値のことをいう。前記式(4)に示したように音響インピーダンスは密度と音速との積によって定義される。音速が同程度であれば、見掛け密度が大きくなると、音響インピーダンスも大きくなる。本発明による音響整合部材は、前記(実施の形態1)もしくは(実施の形態2)のいずれの音響整合部材も、第1層は多孔質体の骨格と空隙部に含浸硬化された充填材料によって構成されており、また第2層は充填材料単体もしくは多孔質体で構成されている。したがって、本発明による音響整合部材は必ず、第1層の見掛け密度ρ1は、第2層の見掛け密度ρ2に比較して、ρ1>ρ2なる関係に成る。第一層を圧電体側、第2層を放射媒体側に配置させれば原理的な意味から好ましい。
【0053】
また、実施の形態1および参考形態1において、前記多孔質体および前記充填材料の内、すくなくともいずれかを無機物で構成することがより好ましい。音響整合層部材を物性(密度、音速、形状寸法)の温度変化率が有機物のそれに比較して小さい無機酸化物で構成すると、同音響整合部材を用いた超音波送受波器の使用環境温度変化に対して特性(出力、インピーダンス)変化が小さくなるために好ましい。多孔質体および充填材料の両方を無機物で構成することがより好ましい。
【0054】
実施の形態1および参考形態1において、前記多孔質体を、セラミックもしくはセラミックスとガラスとの混合物の焼結多孔質体で構成することが好ましい。本発明に用いる多孔質体は充填材料を含浸担持できる空隙を有する材料であればいずれの材料も適用できるが、前記のような物性の安定性、さらには化学的安定性(耐測定ガス安定性)から、セラミックもしくはセラミックとガラスとの混合物の焼結多孔質体を用いることがより好ましい。特に限定するものではないが、放射媒体である気体に対する整合性の意味から、0.4g/cm3から0.8g/cm3の見掛け密度を有した多孔質体であって、骨格材料は、SiO2粉体やSiO2粉体とガラス粉体との焼結体であることがより好ましい。
【0055】
さらに実施の形態1および参考形態1において、前記充填材料を、無機酸化物の乾燥ゲルで構成することがより好ましい。また充填材料として乾燥ゲルを用いる場合においては、乾燥ゲルの固体骨格部が疎水化されてなる構成を採ることが信頼性の意味からより好ましい。
【0056】
充填材料としては、多孔質体の空隙に含浸させる際には、含浸可能な流動性をもった材料である必要があり、さらに含浸後、何らかの処理(重合、熱効果、乾燥、脱水縮合等)で硬化し、前記多孔質体の空隙内部に担持される材料であることが必要である。
【0057】
有機高分子、乾燥ゲルなどが候補としてあるが、音響インピーダンスの観点からの低い見掛け密度を有し、かつ無機物であることが好ましいことから、特に無機酸化物の乾燥ゲルを用いるのが好ましい。ここで、乾燥ゲルとは、ゾルゲル反応によって形成される多孔質体であり、ゲル原料液の反応によって固体化した固体骨格部が溶媒を含んで構成された湿潤ゲルを経て、乾燥して溶媒除去することで形成されるものである。この乾燥ゲルは、ナノメートルサイズの固体骨格部によって平均細孔直径が1nmから100nmの範囲である連続気孔が形成されているナノ多孔質体ある。そのため、密度が0.4g/cm3以下の低密度な状態では、固体部分を伝搬する音速が極端に小さくなるとともに、細孔によって多孔質体内の気体部分を伝搬する音速も極端に小さくなるという性質を有する。そのため、音速として500m/s以下の非常に遅い値を示し、低い音響インピーダンスを得ることができるという特徴を有する。また、ナノーメートルサイズの細孔部では、気体の圧損が大きいために音響整合層として用いた場合に、音波を高い音圧で放射できるという特徴も有する。なお、乾燥ゲルの材質としては、無機材料、有機高分子材料などを用いることができるが、特に。無機酸化物の乾燥ゲルの固体骨格部は、酸化ケイ素(シリカ)または酸化アルミニウム(アルミナ)などゾルゲル反応で得られる一般的なセラミックスを成分として適用することがより好ましい。
【0058】
なお、実施の形態1および参考形態1において、第1層と第2層とは同じ外径を有していなくとも構わない。すなわち本発明の音響整合部材は、2層を有した音響整合部材であって、前記の構成要件を満たしていれば、一方の層の外径が他方の外径に比較して大きくてもよい。
【0059】
また、実施の形態1および参考形態1において、音響整合部材により、音響インピーダンスを整合して超音波送受波器の感度を向上するには、音響整合層の厚さにも関係する。すなわち、透過強度が最大となるのは、音響整合層を透過する超音波が音響整合層と超音波の放射媒体との境界面および音響整合層と超音波振動子との境界面での反射係数を考慮して求めた超音波の反射率がもっとも小さくなる条件の時であり、音響整合層の厚さが超音波発振波長の1/4のときである。特に限定するものではないが、第1層の厚みが、その音響整合層中を通過する超音波発振波長の約1/4の波長に成るように構成にすることが高感度化に効果がある。同様に第2層の厚みが、その音響整合層中を通過する超音波発振波長の約1/4の波長になるように構成にすることも効果があり、第1層および第2層の厚みを共に約1/4の波長となるようにするのが最も効果がある。なお、超音波の発振波長の約1/4の波長とは、1/8波長から3/8波長の範囲程度である。つまり、それ以上に小さいと音響整合層として働かなくなり、それより大きいと反射率が極大になる1/2波長に近づくため感度が逆に低下してしまう。
【0060】
(実施の形態
図3に本発明の実施の形態による超音波送受波器の断面図を示す。図3における超音波送受波器200は、本発明の前記実施の形態1および参考形態1に記載の音響整合部材10と、圧電体3と、電極4とで構成されている。さらに音響整合層部材10は前記のように第1層11と第2層12との2層構造であって、音響整合部材の第1層側に圧電体3が配置されてなる。圧電体3は、超音波振動を発生するもので、圧電セラミックや圧電単結晶等からなり、厚さ方向に分極され、上下面に電極4を有している。音響整合部材10は、前記したように気体に超音波を送波、または気体を伝搬して来た超音波を受波するためのもので、駆動交流電圧により励振される圧電体3の機械的振動が外部の媒体に超音波として効率よく出ていき、到来した超音波が効率よく電圧に変換される役目を有し、圧電体3の超音波送受波面としての圧電体3の片側に形成されている。
【0061】
本実施の形態による超音波送受波器は、その音響整合層として、2層構造を有する音響整合部材を用いた結果、層間の接着面が物理的に強く、容易に剥離することがなく、その結果、故障の少ない超音波送受波器を得ることができる。
【0062】
(実施の形態
図4に本発明の実施の形態による超音波送受波器の断面図を示す。図4における超音波送受波器201は、本発明の前記実施の形態1および参考形態1に記載の音響整合部材10と、圧電体3と、電極4と、密閉容器5で構成されている。
【0063】
圧電体3は、超音波振動を発生するもので、圧電セラミックや圧電単結晶等からなり、厚さ方向に分極され、上下面に電極4を有している。本実施の形態における超音波送受波器では、前記圧電体3が密閉容器5の内面に接着配置されており、さらに音響整合層部材10は前記のように第1層11と第2層12との2層構造を有する音響整合層部材であって、前記音響整合層部材10の第1層11が、前記密閉容器5の前記圧電体の配置位置に対向した外面に配置されている。また、図4における7は駆動端子あって、圧電体3の電極4にそれぞれ接続されている。また6は二つの駆動端子の電気的独立を確保するための絶縁シールである。
【0064】
本実施の形態の構成による超音波送受波器は、前記の実施の形態の構成による効果作用に加え、密閉容器5を設けることが取扱いの簡便さなどの点で有効となる。さらに密閉容器5は機械的に構造を支持する働きを有する。
【0065】
なお、密閉容器5は、密度0.8g/cm3以上であり、その構造支持層の厚さが構造支持層中の超音波発振波長の1/8未満であることが有用である。このような密度、厚みを選択した場合、すなわち、構造支持材層は密度が高く音速が速いことによって、その厚さが超音波発振波長よりも十分に小さいときには、超音波の送受波には影響が極めて小さくなる。
【0066】
密閉容器5の材料としては、金属材料や、セラミック、ガラスなどの無機材料、さらにプラスチックなどの有機材料を用いることができる。特に密閉容器を構成する材料を導電性材料、特に金属材料を選択した場合、圧電体4を発振、または受信した超音波を検知する電極の働きも有する。可燃性ガスを検知対象とする場合は、密閉容器5にすることで、圧電体4をガスと隔離することができる。内部は窒素などの不活性ガスでパージしておくのが好ましい。
【0067】
(実施の形態
図5は本実施の形態における超音波流量計の一例の断面説明図とそのブロック図である。被測定流体が流れる流路51を具備した測定管52と、前記測定管に、前記被測定流体の流れの上流側と下流側とに、対向させて配置した一対の前記超音波送受波器101および102と、前記超音波送受波器に超音波を送信させる送信回路53と、前記超音波送受波器に超音波を受信させる受信回路54と、前記一対の超音波送受波器の、送信から受信または受信から送信を切り替える送受切替回路55と、カウンタ回路とクロック・パルス発生回路から構成される超音波伝搬時間計測回路56と、前記伝搬時間に基づき、前記被測定流体の流量に換算する演算部57とからなる超音波流量計である。58はクロック・パルス発生回路、59はカウンタ回路である。
【0068】
以下、本発明による超音波流量計の動作について順を追って説明する。
【0069】
非測定流体、例えばLPガスを図面左方向から右方向(図中→方向)に流通させ、送信回路53より、一定の周期で送信信号を発信させる。送信された信号は、送受切替回路55によってまず超音波送受波器101に伝達され、同超音波送受波器101が駆動される。例えば、駆動周波数は約500kHzとする。駆動した超音波送受波器101から超音波が送信され、その超音波を対向して設置された超音波送受波器102が受信し、受信した信号は送受切替回路55を経由し、受信回路54に入力される。送信回路53からの送信信号(T)と受信回路54からの受信信号(R)とが、クロック・パルス発生回路58およびカウンタ回路59から構成される超音波伝搬時間計測回路56に入力され、伝搬時間t1が計測される。次に伝搬時間t1の測定と逆に、送受切替回路55を用い、超音波送受波器102で超音波パルスを送信し、超音渡送受波器101で受信することで、超音波伝搬時間計測回路58で伝搬時間t2を演算する。
【0070】
ここで、超音波送受波器101と超音渡送受波器102の中心を結ぶ距離をL、LPガスの無風状態での音速をC、流路51内での流速をV、非測定流体の流れの方向と超音波送受波器101および102の中心を結ぶ線との角度をθとすると、既知である距離L、角度θ、音速C、および計測した伝搬時間t1およびt2から流速Vが求められ、その流速Vから流量を調べることができることとなり、流量計を構成できる。
【0071】
(実施の形態
本実施の形態は、音響整合部材の製造方法を示す。図6A−Cを用いて説明する。まず空隙を有する多孔質体を準備する(図6A)。多孔質体としては、後に充填材料を充填できる孔を有していれば、無機物、有機物もしくは無機物と有機物の複合体のいずれも用いることができるが、前記記載のように音響整合の意味からセラミック多孔質体がより好ましい。より具体的には、例えば、セラミック粉体とガラス粉体の混合粉体と、適当な粒度の有機物球と、バインダー樹脂の水溶液とを攪拌混合し、所望の形状に成形し、後に熱処理することで前記有機物球とバインダー樹脂および水を加熱除去し、セラミック粉体とガラス粉体との焼結体のみを残存させる方法で作製することができる。
【0072】
次に前記多孔質体の空隙部分の体積以上の流動性充填材料を準備し、図6Bに示したように、多孔質体1を容器8としてのシャーレ等に配置し、準備した流動性充填材料21を空隙部分に充填する。
【0073】
次に前記空隙内部の流動性充填材料と余剰の流動性充填材料とを同時に固体化させる。最後に容器8から取り出し、所望の形状に調整することで、図6Cに示したような音響整合部材100を製造することができる。
【0074】
なお、充填材料としては、多孔質体の空隙に含浸させる際には、含浸可能な流動性をもった材料である必要があり、さらに含浸後、何らかの処理(重合、熱効果、乾燥、脱水縮合等)で硬化し、前記多孔質体の空隙内部に担持される材料であることが必要である。
【0075】
本発明の製造方法によれば、空隙部分の含浸させた固体化前の流動性充填材料と、空隙部分以外の余剰の流動性充填材料とを、同時に固体化する方法とした結果、図1に示したような、2層構造を有し、第2層を構成する充填材料2と、第1層中に充填さえた充填材料2とは物理的に連続性をもった音響整合部材を製造することが可能である。また本発明の製造方法によれば、2層を有する音響整合部材の製造方法において、第1層と第2層とを別々に製造し、後に別材料によって貼り合わせるような従来の製造方法とは異なり、第1層と第2層間に別の層(中間層)は製造方法上、発生せず、かつ設計も容易である。
【0076】
以上、本実施の形態による製造方法を用いれば、前記実施の形態1に記載した優れた音響整合部材を容易に製造することが可能である。
【0077】
参考形態2
参考形態2は、音響整合部材の製造方法について説明する。空隙部分に流動性充填材料を充填し、固体化することで2層を有する音響整合部材を製造する方法であることは、前記の実施の形態と基本的に同一であり、材料についても同一物を用いることができる。図7A−Cを用いて説明する。
【0078】
参考形態2における製造方法は、前記の実施の形態と同様に空隙を有する多孔質体1を準備し(図7A)と、流動性充填材料21とを準備する。次に図7Bに示したように前記空隙の内、少なくとも一部分の空隙内部に前記流動性充填材料21を充填し、前記空隙内部の流動性充填材料を固体化させる。最後に容器8から取り出し、所望の形状に調整することで、図7Cに示したような多孔質体と充填材料との複合材料で形成された第1層と、多孔質体のみで形成された第2層とを有する音響整合部材100を製造することが可能である。
【0079】
本発明の製造方法により得られる音響整合部材は、図2に示したように、その第1層が多孔質体と前記多孔質体の空隙部分に充填固体化された充填材料との複合材料で構成される。さらに第2層は、第1層中の多孔質体の一部分で構成されており、かつ第1層の多孔質体の骨格と第2層を構成する多孔質体の骨格は連続性のあるものである。したがって、本方法によれば、第1層と第2層間に別の層(中間層)は製法上発生せず、実施の形態に記載の理由と同様な理由により、従来の個々の層を事前に製造し後に貼り合わせる方法に比較しても、層間の剥離は発生しがたく信頼性の高い音響整合部材を得ることができ、かつ設計も容易である。
【0080】
以上、本参考形態2による製造方法を用いれば、前記の参考形態2に記載した優れた音響整合部材を容易に製造することが可能である。
【0081】
(実施の形態
本実施の形態は、超音波送受波器の製造方法であり、図8A−Dを用いて説明する。まず本発明の製造方法によって得られた音響整合部材100と、密閉容器5の蓋部と、圧電体3とを準備し(図8A,B)、前記音響整合部材の第1層側を、前記圧電体の表面もしくは前記密閉容器の前記圧電体の配置位置に対向した外面に貼り付ける(図8C)。なお、貼り付ける方法は特に限定されないが、エポキシ系樹脂接着剤やエポキシ系樹脂シート材料を用い、密閉容器5、圧電体3および音響整合部材の間に形成もしくは配置し、加圧加熱することにより、硬化接着する方法がより好ましい。最後に所望の配線、および駆動端子を形成することで、図8Dに示したような超音波送受波器201を製造することが可能である。
【0082】
なお、図8Dには密閉容器を用いた場合を示したが、音響整合部材の第1層側を直接圧電体に貼り付ける構成としても構わない。その場合は、図3に示したような超音波送受波器を製造することができる。
【0083】
本製造方法によれば、その音響整合層として、2層構造を有する音響整合部材を用いた結果、層間の接着面が物理的に強く、容易に剥離することがなく、その結果故障の少ない優れた超音波送受波器を容易に製造することが可能である。
【0084】
(実施の形態
本実施の形態は、超音波送受波器の別の製造方法であり、図9A−Eを用いて説明する。
【0085】
本製造方法では、まず図9A,Bに示したように、充填材料を具備しない多孔質体1のみを準備し、前記圧電体3の表面もしくは前記密閉容器5の前記圧電体の配置位置に対向した外面に貼り付ける(図9C)。次に前記多孔質体の空隙部分に流動性充填材料21を充填し固体化することで(図9D)、音響整合部材100を一体化した超音波送受波器201を得る(図9E)。
【0086】
なお、図9Dにおける容器8は、充填材料の形成に際し、固体化前の流動性充填材料21が流失しないように担持させるものであって、最終的は取り除くのが好ましい。なお、超音波送受波器としての機械的強度向上のため、最終製品まで残存させても構わない。
【0087】
本製造方法は、特に充填材料として見掛け密度が低く、固体化後の機械的強度が低い材料を選択した場合、生産性の向上において有効である。すなわち本製造方法では、固体化後の充填材料に比較して機械強度が高い、多孔質体を事前に密閉容器もしくは圧電体に接着し、最後に比較的機械強度の低い充填材料を形成する構成とした。前記実施の形態8でも記載したように、整合部材等の接着にはエポキシ系樹脂接着剤を用いることが好ましく、十分な接着性を確保するためには、加圧することが不可欠である。特に図1に示したような充填材料21が超音波の放射媒体側の表面に露出する音響整合部材の場合、加圧接着する際、充填材料が崩壊し、超音波送受波器を製造が困難になる。本発明による製造方法では充填材料を部材の接着後に形成するので、充填材料形成後、加圧されることはない。したがって超音波送受波器の製造が容易になる。
【0088】
【実施例】
以下実施例を用いてさらに具体的に説明する。
【0089】
(実施例1)
本実施例1は、前記の(実施の形態)および(実施の形態)に記載の製造方法を用い、(実施の形態1)に記載の音響整合部材および(実施の形態)に記載の超音波送受波器を得た例である。主に図9A−Eを用いて詳細に説明する。
【0090】
(1)多孔質体の形成
多孔質体の骨格を形成する材料として、平均粒径0.9μmのSiO2粉と、平均粒径5.0μmのCaO−BaO−SiO2系ガラスフリットを重量比で1:1に混合し、ボールミルを用いて粉砕することで、平均粒径が0.9μmのセラミック混合粉を得た。得られたセラミック混合粉と、平均粒径が30μmのアクリル樹脂製微小球(綜研化学社製商品名“ケミスノー”)とを、体積比で1:9になるように混合し、ポリビニルアルコールを主原料としたバインダーを添加し、混練することによって、粒径が0.1〜1mmの造粒粉を作製した。前記造粒紛を円板成形プレス治具に仕込み、10000N/cm2で1分間の加圧をして、直径20mm、厚み2mmの乾式成形円板を得た。次にこの乾式円板を400℃で4時間熱処理して、アクリル樹脂微小球およびバインダーを焼去させた後、900℃で2時間焼成し、多孔質体1としてのセラミック多孔質体を得た。得られたセラミック多孔質体は、見掛け密度0.65g/cm3、空隙率80体積%で,音速が1800m/sec、すなわち音響インピーダンスが約1.2×106kg/m3secであった。得られた多孔質体を直径12mm、厚み0.85mmに研磨調整した。
【0091】
(2)圧電体と容器
圧電体3としては、所望サイズのチタン酸ジルコン酸鉛(PZT)セラミック体の上下面に電極を形成し、分極した振動子を用いた。また密閉容器5としては、ステンレス製のステンレスケースを準備した。
【0092】
(3)多孔質体の接合
得られた多孔質体1としてのセラミック多孔質体と、密閉容器5としてのステンレスケースと、圧電体3としての振動子を、層間にそれぞれ厚み25μmのエポキシ系樹脂接着シート(日立化成製、品番;T2100)配置し、図9Cに示したように積層し、図面中上下方向から100N/cm2の加重をかけ、150℃で2時間加熱することで接着一体化した。
【0093】
(4)充填材料の形成
接着一体化した部材の音響整合層部分に、容器8として、内径12mm、高さ1.5mm、肉厚0.5mmのポリテトラフルオロエチレン製リングをはめ込んだ。次に流動性充填材料21として、テトラメトキシシランとエタノールとアンモニア水溶液(0.1規定)をモル比で1対3対4になるように調製した約0.1cm3のゲル原料液を、セラミック多孔質体の上方より、多孔質体の空隙に気泡が残存しないように注意し、注ぎいれた。注ぎ入れた流動性充填材料としてのゲル液は、その後、ゲル化して固体化したシリカ湿潤ゲルとなった。さらに得られた湿潤ゲルを、二酸化炭素を使用して12MPa、50℃で超臨界乾燥させることで、充填材料2としてのシリカ乾燥ゲルとした。音響整合部材中の第2層、すなわち充填材料2のみで形成された部分の厚みは、0.085mmであった。またシリカ乾燥ゲル単体、すなわち前記第2層部分の密度は0.2g/cm3、音速180m/sであった。
【0094】
(5)超音波送受波器の形成
容器8としてのポリテトラフルオロエチレン製リングをはずし、最終的に図9Eに示したような超音波送受波器201を得た。
【0095】
以上のように、前記の(実施の形態)による製造方法に沿った操作によって得られた本実施例1による超音波送受波器は、前記の(実施の形態)に示した超音波送受波器であって、さらに該超音波送受波器は、前記の(実施の形態)に記載の製造方法に沿った製造方法によって得られた前記(実施の形態1)記載の音響整合部材を用いている。
【0096】
得られた超音波送受波器の、超音波500kHzでの送受波特性を評価した。作製した超音波送受波器を一対対向して超音波流量計を形成し、一方の超音波送受波器から500kHzの矩形波を発信し、他の超音波送受波器で受信したときの出力波形について評価を行った。その一例を図10A−Bに示す。図10Aは実施例1による超音波送受波器の応答波形であり、波形の立ち上がりが早く、流量計に用いた際、計測に適した波形であった。また図10Bは周波数特性結果であり、500kHzを中心に広い周波数帯域をもった超音波送受波器が得られた。
【0097】
本実施例による超音波送受波器は、2層で構成される音響整合部材であるが、2層間には中間層がなく、層間の剥離が起き難く、設計および製造も容易な優れた超音波送受波器である。
【0098】
参考例
参考例は、前記の(参考形態2)および(実施の形態6)に記載の製造方法を用い、(参考形態1)に記載の音響整合部材および(実施の形態)に記載の超音波送受波器を得た例である。主に図7A−Cおよび図8A−Dを用いて詳細に説明する。
【0099】
(1)音響整合部材の形成
多孔質体は、前記の実施例1に詳細記載した同様な製造方法で得られた多孔質体を厚み1.25mmに研磨調整し、多孔質体1としてのセラミック多孔質体を得た。得られた多孔質体を図7Aに示したように容器8としてのポリテトラフルオロエチレン製シャーレに配置し、前記セラミック多孔質体の一部の空隙部分に図7Bに示したように流動性充填材料21として、フィラー(平均粒子径約1μmのアルミナAl23粉)入りエポキシ樹脂を所望の量、含浸させ加熱硬化させた。含浸に際しては、空隙部分に十分流動含浸するよう、若干減圧した。なお充填材料2としての熱硬化型フィラー入りエポキシ樹脂単体では、密度4.5g/cm3、音速2500m/sの物性値を有していた。
【0100】
引き続き、セラミック多孔質体の空隙中以外の余剰のエポキシ樹脂を研磨切除し、図2に示した本発明実施の形態2に述べたような音響整合部材100を得た。
【0101】
以上の操作を経て、図2に示したような、多孔質体1の骨格と空隙部分に含浸硬化された充填材料2とで構成される複合材料である第1層と、多孔質体1の骨格のみで構成される第2層とを有する音響整合部材を得た。なお、第1層の厚みは0.4mm、第2層の厚みは0.85mmであった。
【0102】
(2)圧電体と容器
圧電体と容器についても前記実施例1に記載のものと同様なものを用いた。
【0103】
(3)音響整合部材の接合
得られた音響整合部材と、密閉容器5としてのステンレスケースと、圧電体3としての振動子を、層間にそれぞれ厚み25μmのエポキシ系樹脂接着シート(日立化成製、品番;T2100)配置し、図8Cに示したように積層し、図面中上下方向から100N/cm2の加重をかけ、150℃で2時間加熱することで接着一体化した。
【0104】
(4)超音波送受波器の形成
最終的に図8Dに示したような超音波送受波器201を得た。
【0105】
以上のように、前記の(実施の形態)による製造方法に沿った操作によって得られた本参考例による超音波送受波器は、前記の(実施の形態)に示した超音波送受波器であって、さらに該超音波送受波器は、前記の(参考形態2)に記載の製造方法に沿った製造方法によって得られた前記(参考形態1)記載の音響整合部材を用いている。
【0106】
前記実施例1と同様に、得られた超音波送受波器の、超音波500kHzでの送受波特性を比較した。その一例を図11A−Bに示す。図11Aは参考例による超音波送受波器の応答波形であり、波形の立ち上がりが早く、流量計に用いた際、計測に適した波形であった。また図11Bは周波数特性結果であり、500kHzを中心に広い周波数帯域をもった超音波送受波器が得られた。
【0107】
参考例による超音波送受波器は、前記の実施例1と同様に、本発明による音響整合部材を用いており、2層で構成される音響整合部材であり、2層間には中間層がなく、層間の剥離が起き難く、設計および製造も容易な超音波送受波器である。
【0108】
(比較例1)
本比較例は、従来の技術により音響整合部材を製造した一例である。図16を用いて説明する。
【0109】
(1)第1層の形成
第1層として、実施例1と同様な方法で得られた多孔質体を用いた。すなわち、見掛け密度0.65g/cm3、空隙率80体積%のセラミックス多孔質体を,直径12mm、厚み1.2mmに研磨調整して第1層とした。
【0110】
(2)第2層の形成
実施例1と同様に、テトラメトキシシランとエタノールとアンモニア水溶液(0.1規定)をモル比で1対3対4になるように調製したゲル原料液を、ポリテトラフルオロエチレン製シャーレ中で常温にて24時間自然放置することでゲル化させ、湿潤ゲル体を得た。この湿潤ゲル体を約直径12mm、厚み3mmに切り出し、前記第1層としてのセラミック多孔質体表面に載せた状態で二酸化炭素を使用して12MPa、50℃で超臨界乾燥させることで、第2層としてのシリカ乾燥ゲルとした。
【0111】
以上の方法により、第1層がセラミックス多孔質体、第2層がシリカ乾燥ゲルである2層構造の音響整合部材の製造を試みた。
【0112】
同様な方法により、5個の音響整合部材の製造を試みたが、5個中の3個は、乾燥後第1層と第2層が分離もしくは第2層間に亀裂が発生し、2層構造の音響整合部材を得ることはできなかった。この原因は、第1層のセラミックス多孔質体が平面ではなく、実質的に有効な接着面積が得られなかったため、十分な接着に至らなかったためであると考えられる。
【0113】
また残りの2個について、その断面構造を観察したところ、図16に示した模式図のように、第1層11と第2層12との間に、多孔質体の空隙部分にシリカ乾燥ゲルが含浸した約0.050〜0.100mmの中間層13が観察された。この中間層13は、見掛け密度0.65g/cm3の多孔体の空隙部分(空隙率80体積%)に、見掛け密度0.2g/cm3のシリカ乾燥ゲルが含浸し形成された層であることから、0.81g/cm3(=0.65+(0.2×0.8))の見掛け密度を有するそうであると推察される。
【0114】
したがって、中間層の見掛け密度は、第1層の見掛け密度ρ1(0.65g/cm3)より高く、前記の「圧電体の音響インピーダンスZ0から放射媒体である気体の音響インピーダンスZ3(Z0>Z3)に徐々に小さくなるように複数の整合層で構成する」という理想的構造から逸脱する結果になった。
【0115】
【発明の効果】
本発明による音響整合層部材は、多層で構成される音響整合部材であるが、層間には独立した中間層がなく、層間の剥離が起き難く、また中間層の存在に起因にした設計上の困難さを回避できる整合層部材である。また本発明の製造方法によれば、前記音響整合部材を容易に製造することが可能であり、よって製造コストも低く抑えることができる。
【0116】
さらに本発明による音響整合部材を用いた超音波送受波器および超音波流量計は、本発明による前記特性をもつ音響整合部材を用いた結果、特性が良好でかつ故障の少ないものとすることができる。さらに本発明によれば、それらの製造方法は容易であり、製造方法が煩雑であったことに起因した製造コストの高上を抑制することができる。
【図面の簡単な説明】
【図1】本発明の実施形態1における音響整合部材の断面模式図。
【図2】本発明の参考形態1における音響整合部材の断面模式図。
【図3】本発明の実施形態における超音波送受波器の断面模式図。
【図4】本発明の実施形態における超音波送受波器の断面模式図。
【図5】本発明の実施形態における超音波流量計の動作を説明するブロック図。
【図6】A−Cは本発明の実施形態における音響整合部材の製造方法を説明する模式図。
【図7】A−Cは本発明の参考形態2における音響整合部材の製造方法を説明する模式図。
【図8】A−Dは本発明の実施形態における超音波送受波器の製造方法を説明する模式図。
【図9】A−Eは本発明の実施形態における超音波送受波器の製造方法を説明する模式図。
【図10】Aは本発明の実施例1における超音波送受波器の応答波形図、Bは同、超音波送受波器の周波数特性図。
【図11】Aは本発明の参考例における超音波送受波器の応答波形図、Bは同、超音波送受波器の周波数特性図。
【図12】従来の超音波送受波器の断面模式図。
【図13】従来の超音波流量計の原理説明図。
【図14】A、Bは従来の超音波送受波器の断面模式図。
【図15】従来技術による超音波送受波器の断面模式図。
【図16】従来技術による音響整合部材の断面模式図。
【符号の説明】
1 多孔質体
2 充填材料
3 圧電体
4 電極
5 密閉容器
6 絶縁シール
7 駆動電極
8 容器
10 音響整合層
11 第1層
12 第2層
13 中間層
21 流動性充填材料
51 流路
52 測定管
53 送信回路
54 受信回路
55 送受切替回路
56 超音波伝搬時間計測回路
57 演算部
10,100 音響整合部材
101,102,200,201 超音波送受波器

Claims (15)

  1. 響整合部材の製造方法であって、
    (a)空隙を有する多孔質体を準備し、
    (b)固体化後の体積が、前記多孔質体中の空隙部分の体積以上の流動性充填材料を準備し、
    (c)前記空隙内部に前記流動性充填材料を充填し、
    (d)前記空隙内部の流動性充填材料と前記多孔質体上の余剰の流動性充填材料とを同時に固体化することを特徴とする音響整合部材の製造方法。
  2. 音響整合部材と、圧電体とを備え、超音波を送信または受信する超音波送受波器の製造方法であって、
    (a)空隙を有する多孔質体を準備し、
    (b)固体化後の体積が、前記多孔質体中の空隙部分の体積以上の流動性充填材料を準備し、
    (c)前記空隙内部に前記流動性充填材料を充填し、
    (d)前記空隙内部の流動性充填材料と前記多孔質体上の余剰の流動性充填材料とを同時に固体化することによって音響整合部材を形成し、
    (e)前記音響整合部材の多孔質体側を、前記圧電体の表面もしくは密閉容器の前記圧電体の配置位置に対向した外面に貼り付けることを特徴とする超音波送受波器の製造方法。
  3. 音響整合部材と、圧電体とを備え、超音波を送信または受信する超音波送受波器の製造方法であって、
    (a)空隙を有する多孔質体を準備し、
    (b)固体化後の体積が、前記多孔質体中の空隙部分の体積以上の流動性充填材料を準備し、
    (c)前記多孔質体を、圧電体の表面もしくは密閉容器の前記圧電体の配置位置に対向した外面に貼り付け、
    (d)前記多孔質体の空隙内部に前記流動性充填材料を充填し、
    (e)前記空隙内部の流動性充填材料と前記多孔質体上の余剰の流動性充填材料とを同時に固体化することを特徴とする超音波送受波器の製造方法。
  4. 超音波を送信または受信する超音波送受波器に組み込むための音響整合部材であって、
    空隙を有する多孔質体と、
    固体化後の体積が前記多孔質体中の空隙部分の体積以上である流動性充填材料が前記空隙内部に充填され、かつ当該充填により余剰となった充填材料によって前記多孔質体上に形成された層と、
    を有し、
    前記空隙内部の流動性充填材料と前記多孔質体上の余剰の流動性充填材料とが同時に固体化して形成された音響整合部材。
  5. 前記空隙内部の流動性充填材料と前記多孔質体上の余剰の流動性充填材料とが同一材料にて連続的に形成された請求項4に記載の音響整合部材。
  6. 前記空隙内部の流動性充填材料と前記多孔質体上の余剰の流動性充填材料とが一体形成された請求項4に記載の音響整合部材。
  7. 前記多孔質体中の空隙部分に充填材料を充填することで形成された、前記多孔質体と前 記充填材料から成る第1層の音響インピーダンスZ1と、前記多孔質体上に形成された第2層の音響インピーダンスZ2との関係が、
    Z1>Z2
    なる関係である請求項4〜6のいずれかに記載の音響整合部材。
  8. 前記多孔質体中の空隙部分に充填材料を充填することで形成された、前記多孔質体と前記充填材料から成る第1層の見掛け密度ρ1と、前記多孔質体上に形成された第2層の見掛け密度ρ2との関係が、
    ρ1>ρ2
    なる関係である請求項4〜7のいずれかに記載の音響整合部材。
  9. 前記多孔質体および前記充填材料のうち、少なくとも一方が無機物である請求項4〜8のいずれかに記載の音響整合部材。
  10. 前記多孔質体が、セラミックもしくはセラミックスとガラスとの混合物の焼結多孔質体である請求項に記載の音響整合部材。
  11. 前記充填材料が、無機酸化物の乾燥ゲルである請求項9または10に記載の音響整合部材。
  12. 請求項4〜11のいずれかに記載の音響整合部材と圧電体とを備え、超音波を送信または受信する超音波送受波器であって、前記音響整合部材の多孔質体側に前記圧電体を配置したことを特徴とする超音波送受波器。
  13. 前記圧電体が密閉容器の内面に配置されてなり、前記音響整合部材の多孔質体側が、前記密閉容器の前記圧電体の配置位置に対向した外面に配置されている請求項12に記載の超音波送受波器。
  14. 前記密閉容器が金属材料である請求項13に記載の超音波送受波器。
  15. 請求項12〜14のいずれかに記載の超音波送受波器を備えた超音波流量計であって、
    被測定流体が流れる流路を具備した測定管と、
    前記測定管に、前記被測定流体の流れの上流側と下流側とに、対向させて配置した一対の前記超音波送受波器と、
    前記超音波送受波器に超音波を送信させる送信回路と、
    前記超音波送受波器が受信した超音波信号を処理する受信回路と、
    前記一対の超音波送受波器の、送信から受信または受信から送信を切り替える送受切替回路と、
    前記一対の超音波送受波器間の超音波伝搬時間計測回路と、
    前記伝搬時間に基づき、前記被測定流体の流量に換算する演算部を含むことを特徴とする超音波流量計。
JP2003136327A 2002-05-15 2003-05-14 音響整合部材、超音波送受波器、超音波流量計およびこれらの製造方法 Expired - Fee Related JP4080374B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136327A JP4080374B2 (ja) 2002-05-15 2003-05-14 音響整合部材、超音波送受波器、超音波流量計およびこれらの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002140687 2002-05-15
JP2003136327A JP4080374B2 (ja) 2002-05-15 2003-05-14 音響整合部材、超音波送受波器、超音波流量計およびこれらの製造方法

Publications (2)

Publication Number Publication Date
JP2004045389A JP2004045389A (ja) 2004-02-12
JP4080374B2 true JP4080374B2 (ja) 2008-04-23

Family

ID=31719392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136327A Expired - Fee Related JP4080374B2 (ja) 2002-05-15 2003-05-14 音響整合部材、超音波送受波器、超音波流量計およびこれらの製造方法

Country Status (1)

Country Link
JP (1) JP4080374B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1542005B1 (en) 2003-12-09 2007-01-24 Kabushiki Kaisha Toshiba Ultrasonic probe with conductive acoustic matching layer
JP2008157850A (ja) * 2006-12-26 2008-07-10 Matsushita Electric Ind Co Ltd 超音波振動子とその製造方法と超音波流速流量計
JP4983260B2 (ja) * 2007-01-09 2012-07-25 パナソニック株式会社 超音波振動子
JP2008193194A (ja) * 2007-02-01 2008-08-21 Matsushita Electric Ind Co Ltd 超音波振動子とそれを用いた超音波流速・流量計
JP2008193290A (ja) * 2007-02-02 2008-08-21 Matsushita Electric Ind Co Ltd 音響整合部材、超音波送受波器、および超音波流量計
JP4983282B2 (ja) * 2007-02-07 2012-07-25 パナソニック株式会社 音響整合部材
JP4857296B2 (ja) 2008-03-07 2012-01-18 パナソニック株式会社 音響整合体
JP6509050B2 (ja) 2014-06-18 2019-05-08 三菱鉛筆株式会社 炭素質音響整合層及びその製造方法

Also Published As

Publication number Publication date
JP2004045389A (ja) 2004-02-12

Similar Documents

Publication Publication Date Title
US6788620B2 (en) Acoustic matching member, ultrasound transducer, ultrasonic flowmeter and method for manufacturing the same
JP3552054B2 (ja) 音響整合層および超音波送受波器
JP3611796B2 (ja) 超音波送受波器、超音波送受波器の製造方法及び超音波流量計
JP3764162B2 (ja) 超音波送受波器およびその製造方法、ならびに超音波流量計
WO2017212511A1 (ja) 積層体、超音波送受波器および超音波流量計
JP4080374B2 (ja) 音響整合部材、超音波送受波器、超音波流量計およびこれらの製造方法
JP6032512B1 (ja) 積層体、超音波送受波器および超音波流量計
JP4014940B2 (ja) 音響整合部材、超音波送受波器、超音波流量計およびこれらの製造方法
JP2008261732A (ja) 超音波送受波器とそれを使用した超音流速流量計
JP2005037219A (ja) 超音波送受波器及びその製造方法
JP2004029038A (ja) 超音波流量計
JP4153796B2 (ja) 超音波送受波器および超音波流量計
JP6751898B2 (ja) 積層体、超音波送受波器および超音波流量計
JP2003329501A (ja) 音響整合部材、超音波送受波器および超音波流量計
JP4382411B2 (ja) 超音波送受波器およびその製造方法
JP2004343658A (ja) 超音波送受波器とその製造方法及びそれを用いた超音波流量計
JP2008157850A (ja) 超音波振動子とその製造方法と超音波流速流量計
JP2004085579A (ja) 超音波流量計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4080374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees