WO2003062506A1 - Materiau metallique composite et son procede de production, materiau metallique grave et son procede de production, et condensateur electrolytique - Google Patents

Materiau metallique composite et son procede de production, materiau metallique grave et son procede de production, et condensateur electrolytique Download PDF

Info

Publication number
WO2003062506A1
WO2003062506A1 PCT/JP2003/000652 JP0300652W WO03062506A1 WO 2003062506 A1 WO2003062506 A1 WO 2003062506A1 JP 0300652 W JP0300652 W JP 0300652W WO 03062506 A1 WO03062506 A1 WO 03062506A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal material
composite metal
material according
thin film
producing
Prior art date
Application number
PCT/JP2003/000652
Other languages
English (en)
French (fr)
Inventor
Masatsugu Shimomura
Masaru Tanaka
Hiroshi Yabu
Masafumi Takebayashi
Ryuji Monden
Tamami Koyama
Yoshikazu Hosoda
Masashi Sakaguchi
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to EP03703046A priority Critical patent/EP1477589A4/en
Priority to KR10-2004-7011394A priority patent/KR20040078132A/ko
Priority to JP2003562364A priority patent/JPWO2003062506A1/ja
Publication of WO2003062506A1 publication Critical patent/WO2003062506A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes

Definitions

  • the present invention relates to a composite metal material in which a polymer thin film is formed on the surface of a metal material substrate, a method for producing the same, an etched metal material in which an etching pit is formed on the composite metal material, a method for producing the same, and It relates to an electrolytic capacitor.
  • aluminum is used to include both aluminum and its alloys.
  • the aluminum foil used for the electrode of the electrolytic capacitor is etched to increase the area coverage and improve the capacitance.
  • Various treatments have been performed on the wood. For example, control of (100) crystal orientation, adjustment of composition by adding trace elements such as Cu and Pb to aluminum, degreasing and cleaning before final annealing, and crystalline oxidation in final annealing Film formation treatment (Japanese Patent Publication No. 58-34925, Japanese Patent Application Laid-Open No. 3-122620, etc.).
  • the present invention generates etching pits with high density and uniformity, and can perform etching in a state in which the pits are used as a starting point in a deep state and in a state where coupling is unlikely to occur in a tunnel. It is an object of the present invention to provide a composite metal material capable of increasing the capacitance and a method for manufacturing the same, as well as a metal material etched and a method for manufacturing the same.
  • a first composite metal material of the present invention has the following configuration.
  • a composite metal material comprising a polymer thin film having a fine pattern formed on at least one surface of a metal material substrate by self-organization.
  • the polymer thin film is a film formed by drying a solution of a polymer compound in a hydrophobic organic solvent.
  • the second composite metal material of the present invention has the following configuration.
  • a composite metal material comprising a large number of fine spots composed of substances having higher conductivity than oxides of the metal material substrate arranged on at least one surface of the metal material substrate.
  • valve metal is aluminum.
  • composite metal material is an aluminum material for an electrolytic capacitor electrode.
  • a first method for producing a composite metal material of the present invention is a method capable of suitably producing the first composite metal material of the present invention, and has the following configuration.
  • a method for producing a composite metal material in which a polymer thin film having a fine pattern is formed by self-assembly on at least one surface of a metal material base material, wherein the polymer thin film is treated with a hydrophobic polymer A method for producing a composite metal material, which is formed by drying an organic solvent solution.
  • a solution of a polymer compound in a hydrophobic organic solvent is cast on the surface of the metal material substrate, and the organic solvent is evaporated and dew is formed on the solution surface.Furthermore, fine water droplets generated by the dew are removed. 17.
  • a solution of a polymer compound in a hydrophobic organic solvent is cast on the surface of another base material, the organic solvent is evaporated, and dew is condensed on the surface of the solution, and fine water droplets generated by the condensation are evaporated. As a result, a polymer thin film in which many pores are arranged is formed,
  • the amphiphilic polymer compound comprises polystyrene sulfonic acid and a long-chain dialki 21.
  • a method for producing a second composite metal material according to the present invention is a method capable of suitably producing the second composite metal material according to the present invention, and has the following configuration.
  • a method for producing a composite metal material which comprises removing the composite metal material.
  • the filling of a substance having higher conductivity than the oxide of the metal material base includes plating, 25.
  • the first etched metal material of the present invention is obtained by etching the first composite metal material of the present invention, and has the following configuration.
  • the second etched metal material of the present invention is obtained by etching the second composite metal material of the present invention, and has the following configuration.
  • the etched metal material is an etched electrolytic capacitor. 36.
  • the etched metal material according to the above item 36 which is an aluminum material for electrodes.
  • a first method for producing an etched metal material of the present invention is a method capable of suitably producing the first etched metal material of the present invention, and has the following configuration.
  • the composite metal material described in 1 to 9 above is subjected to an initial etching process without removing the polymer thin film to generate an etching pit, and then the polymer thin film is removed.
  • the second method for producing an etched metal material of the present invention is a method capable of suitably producing the second etched metal material of the present invention, and has the following configuration.
  • the electrolytic capacitor of the present invention uses the first or second etched metal material of the present invention as an electrode material, and has the following configuration.
  • An electrolytic capacitor characterized by using the etched metal material described in 36 or 37 above as an electrode material.
  • an etching pit that is uniformly distributed at high density based on the fine pattern is formed, and the surface area is increased.
  • the fine pattern has a pore structure in which a large number of pores are arranged, a particularly high-density and uniform etching pit is formed, and the diameter of the pores is 0.01 to 50 ⁇ m. In particular, or when the interval between the pores is 1 to 50, a particularly high surface area can be achieved.
  • the high-conductivity substance becomes a nucleus of an etching pit, so that the density is high and uniform. Etching pits are formed which are distributed in the pits.
  • the metal material base is made of a valve metal
  • it can be used as an electrode material of an electrolytic capacitor.
  • the valve action metal is aluminum, which can be used as an aluminum material for an electrolytic capacitor electrode.
  • the second composite metal material of the present invention when an etching treatment is performed, fine spots due to a substance having higher conductivity than the oxide of the metal material base become the nuclei of the etching pits, so that high density and uniformity are obtained. Etching pits are formed, and the surface area is increased.
  • the diameter of the fine spots is from 0.01 to 50 m, or when the distance between the fine spots is from 1 to 50 m, a particularly high surface area can be achieved.
  • the metal material base is made of a valve metal
  • it can be used as an electrode material of an electrolytic capacitor.
  • the valve metal is aluminum and the electrolytic capacitor It can be used as an aluminum material for sensor electrodes.
  • the above-described first composite metal material can be suitably produced.
  • a hydrophobic organic solvent solution of a polymer compound is directly cast on the surface of the metal material substrate and dried, a polymer thin film in which a large number of pores are arranged is adhered to the metal material substrate.
  • the formation of the polymer thin film and the lamination on the metal material substrate can be performed simultaneously. It can also be produced by bonding a polymer thin film separately formed on another substrate to the required metal foil substrate surface.
  • the nuclei of etching pits can be formed by filling a substance having high properties. The filling of the highly conductive substance can be easily performed by any of plating, vapor deposition, and immersion.
  • the polymer compound is an amphiphilic polymer compound such as an ionic complex of polystyrenesulfonic acid and a long-chain dialkylammonium salt, a polymer thin film having a pore structure can be formed.
  • the concentration of the solution of the polymer compound in the hydrophobic organic solvent is 0.01 to 10% by mass, a fine pattern and a pore structure having a required strength and a stable shape can be formed. .
  • the above-described second composite metal material can be suitably produced.
  • a hydrophobic organic solvent solution of a polymer compound is directly cast on the surface of the metal material substrate and dried, a polymer thin film having a large number of pores arranged thereon is adhered to the metal material substrate. It can be formed into a state, polymer thin film deposition and gold Lamination on the base material substrate can be performed simultaneously. It can also be produced by bonding a polymer thin film separately formed on another base material to the surface of the required metal foil base, and is more conductive than the oxide of the metal base material in the pores. Filling with a highly volatile substance can be easily performed by any of plating, vapor deposition, and immersion.
  • the polymer compound is an amphiphilic polymer compound such as an ionic complex of polystyrenesulfonic acid and a long-chain dialkylammonium salt, a polymer thin film having a pore structure can be formed.
  • the concentration of the solution of the polymer compound in the hydrophobic organic solvent is 0.01 to 10% by mass, a fine pattern and a pore structure having a required strength and a stable shape can be formed.
  • the polymer thin film after filling with the highly conductive substance can be easily removed by dissolution, and fine spots of the highly conductive substance based on the fine pattern can be formed on the surface of the metal material base material.
  • the first etched metal material of the present invention is formed by forming etching pits based on a fine pattern with respect to the first composite metal material, as described above, high density and uniformity are obtained. A distributed etching pit is formed, and the surface area is sufficiently enlarged.
  • the capacitance can be increased.
  • the second etched metal material of the present invention is obtained by forming an etching pit based on fine spots with respect to the second composite metal material, as described above, it has a high density and uniformity. Etching pits are formed, and the surface area is sufficient It has been expanded to.
  • the capacitance can be increased.
  • One of the manufacturing methods of the first etched metal material is to form an etching pit by performing an etching treatment on the first composite metal material without removing the polymer thin film.
  • a etched metal material in which etching pits are uniformly distributed at high density can be obtained.
  • Another method of producing the first etched metal material is to perform an initial etching process without removing the polymer thin film to generate etching pits, and then remove the polymer thin film. Further, since the etching pits are grown by performing an etching process, an etched metal material in which the etching pits are uniformly distributed at a high density can be obtained.
  • an etched metal material when the etched metal material is an etched aluminum material for an electrolytic capacitor electrode, an electrode material capable of high capacitance is provided by an enlarged surface area. can get.
  • an etching process is performed on the second composite metal material to form etching pits based on fine spots. A uniformly distributed etched metal material is obtained.
  • the etched metal material when the etched metal material is an etched aluminum material for an electrolytic capacitor electrode, an electrode material capable of high capacitance due to an enlarged surface area is used. can get.
  • the electrolytic capacitor of the present invention since the above-described etched metal material is used as an electrode material, a high capacitance can be obtained, and the size and performance of the electrolytic capacitor can be reduced. Miniaturization of embedded electronic devices And higher performance. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 (A) is a longitudinal sectional view schematically showing one embodiment of the first composite metal material of the present invention
  • FIG. 1 (B) is a cross section taken along line 1B_1B in FIG. 1 (A).
  • FIG. 2 (A) is a longitudinal sectional view schematically showing another embodiment of the first composite metal material of the present invention
  • FIG. 2 (B) is a sectional view taken along line 2B-2B in FIG. 2 (A). It is sectional drawing.
  • FIG. 3 (A) is a longitudinal sectional view schematically showing one embodiment of the second composite metal material of the present invention
  • FIG. 3 (B) is a cross section taken along line 3B-3B in FIG. 3 (A).
  • FIGS. 1A and 1B are schematic cross-sectional views of one embodiment of the first composite metal material of the present invention.
  • the polymer thin film (11) laminated on the surface of the metal material substrate (10) is a film formed by self-organization of a polymer compound, and is formed at the time of film formation. It has a fine pattern.
  • the polymer thin film (11) only needs to be laminated on at least one surface of the metal material base (10).
  • the metal material base (10) when used as an aluminum material for an electrolytic capacitor electrode, in order to increase the surface area as much as possible. It is preferred to be laminated on both sides.
  • the polymer thin film (11) is formed by drying a solution in which a polymer compound is dissolved in a hydrophobic organic solvent (hereinafter abbreviated as polymer solution). For example, when a polymer solution is cast on the substrate surface and dried, the polymer compound self-organizes on the substrate to form a film having a fine pattern.
  • polymer solution a solution in which a polymer compound is dissolved in a hydrophobic organic solvent
  • Examples of the fine pattern include a pore structure in which a large number of pores (12) are arranged as shown in FIG. 1 (B).
  • the pores (12) are used as a channel for introducing an etching solution to the surface of the metal material base (10). You.
  • FIGS. 2A and 2B show another embodiment of the first composite metal material of the present invention.
  • a substance having higher conductivity than the oxide of the metal material base material (10) hereinafter, abbreviated as “highly conductive substance”
  • the highly conductive substance acts as an etching nucleus.
  • the polymer thin film (11) having a pore structure as the fine pattern is formed, for example, through the following process.
  • FIGS. 1 (B) and 2 (B) illustrate a polymer thin film (11) in which a number of hexagonal pores (12) are formed in a fine state.
  • the pores often have a shape close to a hexagon or a circle.
  • the regular pore structure does not mean a strict geometric regular structure, but means that the structure has regularity and is not a random structure. Therefore, those having some irregularities in the pore shape, pore diameter, pore spacing, etc. are also included in the regular pore structure. This is because even if there is some disturbance, a high-density and uniform etching pit described later is formed without any problem.
  • the polymer thin film (11) casts a polymer solution directly on the surface of the metal material substrate (10), It is possible to form a close contact in 10). That is, the formation of the polymer thin film (11) and the metal material base The lamination to the material (10) can be performed simultaneously. Alternatively, the polymer thin film (11) separately formed on another base material is taken out and joined to the metal material base material (10) to produce the thin film.
  • the base material is not only metal, but also solid materials such as inorganic materials such as glass and silicon wafers, organic polymer materials having excellent organic solvent resistance such as polypropylene, polyethylene and polyetherketone, and the like. Liquids such as water, liquid paraffin, and liquid polyether can be used. Of these other substrates, water is preferred because it is easy to remove the polymer thin film and has excellent pore structure retention.
  • the polymer compound forming the polymer thin film is not limited.
  • suitable polymer compounds include an amphiphilic polymer compound having a hydrophobic group and a hydrophilic group, and a homopolymer of one kind of amphipathic molecule or a copolymer of two or more kinds of amphipathic molecules But it is good. Further, a copolymer with a molecule other than the amphiphilic polymer may be used, and a surfactant may be present.
  • amphiphilic polymer compound an ionic complex of polystyrene sulfonic acid and a long-chain dialkyl ammonium salt, polyethylene Glycol / polypropylene glycol block copolymer, acrylamide polymer as main chain skeleton, amphiphilic polymer compound having both dodecyl group as hydrophobic side chain and lactose group or carboxyl group as hydrophilic side chain, or Ionic complex of anionic polymers such as palin-dextran sulfate and nucleic acids (DNA and RNA) with long-chain alkylammonium salts, and amphiphilicity based on water-soluble proteins such as gelatin, collagen, and albumin It is preferable to use a polymer or the like.
  • polystyrene phosphinic acid examples include polystyrene phosphinic acid, polystyrene sulfonic acid, polylactic acid, and polycarbonate.
  • hydrophobic organic solvent for dissolving the polymer compound examples include a halogen-based solvent such as black form, an ester-based solvent such as ethyl acetate, a water-insoluble ketone, and carbon disulfide.A mixed solvent thereof is also used. it can.
  • concentration of the polymer compound in the polymer solution is preferably from 0.01 to 10% by mass. If the amount is less than 0.01% by mass, the strength of the polymer thin film (11) is insufficient. If the amount exceeds 10% by mass, it is difficult to form the pores (12) and maintain a stable shape.
  • the preferred concentration is 0.05-5% by weight.
  • the film formation environment is preferably a high humidity atmosphere in order to evaporate the organic solvent and condense and evaporate minute water droplets. Specifically, it is preferable to carry out the reaction in the air at a relative humidity of 50 to 95% and a temperature of 10 to 25 ° C.
  • the dimensions of the pores (12) are preferably from 0.01 to 50 m in diameter (D), and the dimensions are as follows:
  • the composite metal material (1) is used as an aluminum material for an electrolytic capacitor electrode to be subjected to an etching treatment. It is suitable when the etching pit is uniformly formed to efficiently increase the area coverage.
  • a particularly preferred diameter (D) of the pore (12) is 0.1 to 5 m.
  • the interval (P) between the pores (12) is preferably from 1 to 50 m. If it is less than 1 m, it may be connected to adjacent pits during etching, and if it exceeds 50 m, it is difficult to increase the number of pits.
  • a particularly preferred distance between the pores (12) is 1 to 15 m.
  • the thickness (T) of the polymer thin film (11) is formed to be about 100 nm to 2 m, and when it is used as an aluminum material for an electrolytic capacitor electrode, it is preferably 0.5 to l ⁇ m.
  • the metal material substrate (10) constituting the composite metal materials (1) and (2) is appropriately selected according to the purpose, regardless of the type and thickness of the metal.
  • Examples of the type of metal include a valve metal used as an electrode material of an electrolytic capacitor.
  • valve metal include aluminum, tantalum, magnesium, titanium, niobium, zirconium, zinc, bismuth, gay element and hafnium, and alloys of titanium with boron and tin, chromium and vanadium, palladium and antimony. Yes, aluminum can be recommended.
  • the presence of impurities is allowed in these metal material base materials, or Addition of trace elements is allowed. For example, in the case of aluminum,
  • the thickness is not limited, in the case of an etched metal material, 0.05 to 0.3 bandages are preferable in order to secure strength and flexibility after etching. Particularly preferably, it is 0.07 to 0.2 mm, more preferably 0.07 to 0.15 mm.
  • the heat treatment and the crystal structure of the metal material substrate (10) are not limited.
  • a hard material that is not subjected to heat treatment is an aggregate of elongated fibrous crystals elongated in the rolling direction. When this hard material is annealed at 300-400 ° C, it becomes a soft material that has almost completely completed primary recrystallization, and when it is annealed at 450-600 ° C, it has a stable high (100) plane crystal. It can be a soft material with grown grains.
  • any of the metal material bases described above can be used.
  • the metal material base material (10) may be a long material wound in a coil shape or a cut material.
  • the highly conductive substance (13) filling the pores (12) is preferentially dissolved at the time of etching and serves as a nucleus for generating pits. Select according to the relationship with gender.
  • the metal material base (10) is aluminum
  • Pb, Pb ⁇ , Cu, CuO, Cu 2 O, C, which has higher conductivity than aluminum, can be exemplified, and Pb and PbO can be recommended. .
  • the method of filling the pores (12) with the highly conductive substance (13) can be exemplified by plating, sputtering, vapor deposition, immersion, CVD, thermal spraying, ion plating, etc., and the filling speed is high and the high molecular film is damaged.
  • Plating, vapor deposition, and immersion are recommended because they can be processed at low cost and at low cost.
  • the above-mentioned first composite metal materials (1) and (2) are subjected to an etching treatment, and a first etched metal material of the present invention is produced.
  • the etching solution is converted from the metal material base through the fine pores (12).
  • an etching pit is formed. Since the pores (12) are finely arranged, the etching pit also grows in a tunnel-like manner in the film thickness direction according to the fine pattern, and is formed finely, densely and uniformly, and the surface area is enlarged.
  • bonding of the pores hardly occurs.
  • the highly conductive substance (13) is dissolved first. Then, an etching pit is formed at a position corresponding to the pore (12) of the metal material base material (10). Since the hole (12) is located, the etching pit grows in the direction of the film thickness in the direction of the film thickness in accordance with the fine pattern as in the case of the composite metal material (1), the surface area is increased, and the high capacitance is obtained. Is obtained.
  • the conditions for the etching treatment are not limited, and any conventional method may be used according to the application.
  • any conventional method may be used according to the application.
  • AC etching is used for low-pressure materials
  • DC etching is used for medium-high pressure materials.
  • Etching conditions, 1 ⁇ 1 0 0 OH z, current density 0. 0 2 5 ⁇ 2 OA / cm 2 an alternating or direct current etching ring electric quantity 0. 0 2 ⁇ 1 0 0 C / cm 2 can be exemplified .
  • the aluminum material for an electrolytic capacitor electrode produced according to the present invention is suitable for medium and high pressure, but is not limited to the medium and high pressure material.
  • the polymer thin film may be removed after forming the etching pit, or may be left without being removed. Further, the polymer thin film may be removed at the beginning of the formation of the etching pit, and thereafter, an etching process for further increasing the surface area may be performed.
  • the polymer thin film can be easily removed with an organic solvent such as acetone, methyl ethyl ketone, toluene, methyl cellulose, ethyl acetate, petroleum ether and the like.
  • the polymer thin film can also be easily removed by immersing the polymer thin film in warm water at a temperature higher than the melting temperature of the polymer thin film.
  • the etched metal material of the present invention includes both those obtained by removing the polymer thin film and those remaining.
  • the proper etching pit depends on the working voltage of the electrolytic capacitor.
  • medium pressure (250-350V) materials For medium pressure (250-350V) materials
  • the pit diameter is preferably 0.7 to 2 m, and the pit interval is preferably 1 to 2.5 m.
  • the pit diameter is preferably 1.5 to 3 m.
  • the pit interval is preferably 2 to 4 ⁇ m.
  • the pit diameter is an average value, and it is not necessary that all pits fall within this range.
  • the etched aluminum material for an electrolytic capacitor electrode is subjected to a chemical conversion treatment, but the chemical conversion treatment conditions are not limited.
  • the treatment conditions are as follows: at least one of oxalic acid, adipic acid, boric acid, phosphoric acid, sodium gayate, etc.
  • the electrolyte concentration is 0.05 to 20% by mass, the electrolyte temperature is 0 to 90 ° C, and the current density is 0
  • An example is a chemical conversion treatment of lmA / cm 2 to l A / cm 2 , a required formation voltage and a formation time of 60 minutes or less.
  • Particularly preferable chemical conversion conditions are that the electrolyte concentration is 0.1 to 15% by mass.
  • the electrolyte temperature is 20 to 70 ° C, the current density is 1 to 100 mA / cm 2 , and the formation time is within 30 minutes.
  • a phosphoric acid immersion treatment for improving water resistance, a heat treatment for strengthening the film, or an immersion treatment in boiling water can be performed.
  • a high capacitance can be obtained by using the above-described etched metal material, that is, a metal material having an increased surface area, as an electrode material. (Second composite metal material)
  • FIGS. 3A and 3B schematically show an embodiment of the second composite metal material of the present invention.
  • this composite metal material (3) at least one surface of the metal material substrate (10) has a substance having higher conductivity than the oxide of the metal material substrate (10), that is, the first composite metal material described above.
  • a large number of fine spots (14) made of a substance equivalent to the highly conductive substance filled in the pores (12) are arranged.
  • the fine spots (14) are formed, for example, by arranging a polymer thin film having a large number of pores arranged on the surface of a metal material substrate (10). It is formed by filling a highly conductive substance and then removing the polymer thin film.
  • the material and thickness of the metal material base material (10) and the material of the highly conductive substance in the second composite metal material (3) are the same as those of the first composite metal material.
  • the diameter (D) and the interval (P) of the fine spots (14) made of a highly conductive material are the diameters (D) and (D) of the fine pores (12) of the first composite metal material (1) (2). According to the interval (F).
  • the method for producing the second composite metal material (3) up to the step of filling a highly conductive substance into the pores of the polymer thin film (11) disposed on the surface of the metal material substrate (10). This is the same as the manufacturing process for the first composite metal material (2). Therefore, the method for forming the polymer thin film (11) and the method for filling the highly conductive substance are in accordance with the method for producing the first composite metal material (2).
  • the polymer thin film (11) can be removed by dissolving and removing it with an organic solvent such as acetone, methyl ethyl ketone, toluene, methyl cell solvent, ethyl acetate, petroleum ether, or hot water above the melting temperature of the polymer thin film. Dissolution and removal by immersion in water can be exemplified.
  • the above-described second composite metal material (3) is subjected to an etching process, and the second etched metal material of the present invention is produced.
  • the etching pits In the etching process, since the highly conductive material is arranged in fine spots (14), the etching pits also grow in a tunnel-like manner in the film thickness direction following the fine spots (14), and are fine, dense and uniform. Formed and the surface area is enlarged. In addition, since the gap between adjacent pores is secured more than the subsequent chemical conversion film, the pores are unlikely to be bonded.
  • an etched metal material having such an etching pit formed thereon, such as an aluminum material is used, a high capacitance can be obtained due to an increase in the surface area.
  • Etching conditions are in accordance with the above-described method of producing the first etched metal material, and appropriate pits and chemical conversion conditions after the etching are also in accordance with the first etched metal material when used for an aluminum material for an electrolytic capacitor electrode. .
  • a high-purity aluminum ingot having an A1 purity of 99.9% was produced by a semi-continuous process. Then, these ingots are rolled into foils through homogenization, face milling, hot rolling, cold rolling, intermediate annealing, etc. by a conventional method, and an aluminum material base material having a thickness of 110 m is formed. (10) Made.
  • the aluminum material base (10) is degreased and cleaned, and then, in an annealing furnace in an Ar gas atmosphere, the actual temperature is raised from room temperature to 540 ° C at 50 ° CZh, and then 540 ° C. C was held for 24 hours, allowed to cool naturally in the furnace, and then taken out of the furnace, which was used as a common aluminum material base in the following examples.
  • a plurality of types of composite aluminum materials I-A, I-B, and I-C are formed on the aluminum material base (10) by changing the processing conditions to form a polymer thin film (11) having a different pore structure. I-D was prepared. These composite aluminum materials IA, IB, IC, and ID correspond to the first composite metal material (1) of the present invention shown in FIGS. 1 (A) and 1 (B). (Composite aluminum material I-A)
  • a 3 g / 1 chloroform solution of a polyion complex was prepared from polystyrene sulfonic acid and dimethyloctadecyl ammonium chloride as a polymer solution. Then, the polymer solution was cast on one side of the aluminum material base material (10) at a rate of 5 m 1 / m 2 , and high humidity air at 20 ° C and a relative humidity of 70% was flowed at a flow rate of 3 1 / "Minute for 1 minute.
  • the surface of the aluminum material substrate (10) has tunnel-shaped pores (12) that are almost regular hexagons.
  • a polymer thin film (11) was formed, in which the polymer film (11) was regularly arranged, and had a thickness (T) of 2 m and an average diameter (D) of the pores (12) of 3 ⁇ m. 111, average pore spacing (P): Further, the same operation was performed on the other surface side of the aluminum material base material (10) to form a polymer thin film (11) having a regular pore structure. did.
  • a composite aluminum material was obtained in the same manner as IA except that the polyion complex concentration was 1 gZl chloroform solution and the amount of high humidity air blown was 21 minutes in IA above.
  • the polymer thin film (11) thus formed had a thickness (T) of 2 m, an average diameter (D) of the pores (12) of 2 m, and an average pore interval (P) of 3 im.
  • the polymer thin film (11) thus formed had a thickness (T) of 10 m, an average diameter (D) of the pores (12) of 5 m, and an average pore interval (P) of 7 m.
  • a composite aluminum material was obtained in the same manner as in I-C, except that the amount of the polymer solution cast was 0.5 ml / m 2 in I-C described above.
  • the polymer thin film (11) thus formed had a thickness (T) of 1 m, an average diameter (D) of the pores (12) of 5 m, and an average pore interval (P) of 7 m.
  • a highly conductive substance was filled into the pores (12) of the polymer thin film (11) with respect to these composite aluminum materials I_A, IB, I-C, and I-D.
  • Composite aluminum materials II-A, II-B, II-C, and II-D with the structure shown in the composite metal material (2) of (B) were prepared. These composite aluminum materials II-A, II-B, II-C, II-D correspond to the first composite metal material of the present invention.
  • Pb was filled into the pores of the polymer thin film by electroplating.
  • the plating conditions were as follows: a Pb plate was used as an anode, and current was supplied at a current density of 1 A / m 2 for 30 seconds.
  • Cu was filled in the pores of the polymer thin film by electroplating.
  • the plating conditions were such that electricity was supplied for 30 seconds at a current density of 1 A / m 2 using the Cu plate as the anode.
  • C was vapor-deposited on the composite aluminum material I-C by an ordinary method, and C was filled in the pores of the polymer thin film.
  • the composite aluminum material is immersed in an aqueous solution of Pb ion concentration: 0.5 mol / 1 for 2 minutes with respect to the composite aluminum material I-D for 2 minutes, and then dried in a dryer at 80 ° C to obtain a polymer.
  • a Pb compound (oxide) was filled in the pores of the thin film.
  • composite aluminum materials II-A, II-B and II-C For these composite aluminum materials II-A, II-B and II-C, the polymer thin film (11) was removed, and fine spots made of a highly conductive substance were formed on the surface of the metal material substrate (10).
  • Composite aluminum materials III-A, III-B and III-C in which (14) were arranged were manufactured. These composite aluminum materials III-A, III-B, and III-C correspond to the third composite metal material (3) of the present invention shown in FIGS. 3 (A) and 3 (B).
  • composite aluminum material III—A The composite aluminum material II-A was immersed in acetone for 1 minute to remove the polymer thin film, thereby obtaining a composite aluminum material III-A in which fine spots composed of Pb were arranged.
  • the composite aluminum material II-B was immersed in methyl ketone for 1 minute to remove the high molecular thin film, thereby obtaining a composite aluminum material 111-B having fine spots composed of Cu.
  • the composite aluminum material II-C was immersed in warm water at 90 ° C for 3 minutes to remove the high molecular thin film, and a composite aluminum material III-C with fine spots composed of C was obtained.
  • each of the composite aluminum materials described above was subjected to an etching treatment under any of the following conditions A and B, and the etched aluminum for electrolytic capacitor electrodes of Nos. 1 to 19 shown in Table 1 was obtained. Materials were made. In Comparative Example No. 20, the aluminum material base (10) without the polymer thin film (11) was etched.
  • the composite aluminum material is immersed in a first electrolytic solution (lmol / 1 hydrochloric acid + 3.2 mol Zl sulfuric acid aqueous solution) at 80 ° ⁇ , and a direct current having a current density of 0.2 AZcm 2 is supplied for 100 seconds to perform electrolytic etching. did. Furthermore, it was immersed in a second electrolytic solution (1.5 mol Zl hydrochloric acid + 0.005 ⁇ 1 oxalic acid aqueous solution) at 90 ° C, and subjected to chemical etching for 10 minutes.
  • a first electrolytic solution lmol / 1 hydrochloric acid + 3.2 mol Zl sulfuric acid aqueous solution
  • a direct current having a current density of 0.2 AZcm 2 is supplied for 100 seconds to perform electrolytic etching. did.
  • a second electrolytic solution 1.5 mol Zl hydrochloric acid + 0.005 ⁇ 1 oxalic acid aqueous solution
  • the composite aluminum material was immersed in a 10% ferric chloride aqueous solution at 50 ° C. for 10 minutes, then pulled up and washed with water. As a result, the pores or high conductivity Only the fine spots of the conductive material were chemically etched. Furthermore, it was immersed in a second electrolytic solution (5% hydrochloric acid + 10% sulfuric acid aqueous solution) at 75 ° C., and was subjected to electrolytic etching by applying a direct current of 0.2 A / cm 2 for 100 seconds. Subsequently, the same liquid was used for 10 minutes for chemical leaching.
  • a second electrolytic solution 5% hydrochloric acid + 10% sulfuric acid aqueous solution
  • the etched aluminum material for electrolytic capacitor electrodes was subjected to a chemical conversion treatment at 350 V in a boric acid bath, and the capacitance was measured.
  • the capacitance is shown in Table 1 as a relative value with the capacitance of Comparative Example No. 20 being 100%.
  • the etched aluminum material for the electrolytic capacitor electrode manufactured in each example has a more uniform hole diameter and spacing of the etching pits than the comparative example, and a high capacitance can be obtained by increasing the area coverage.
  • the bonding of the etching pits was observed, a giant pit was formed, and the pit interval was not uniform.
  • the composite metal material of the present invention can generate etching pits with high density and uniformity based on regularly arranged fine patterns of a polymer thin film. Etching can be performed deep from the pits and in a state where coupling is unlikely to occur in the tunnel, and it is possible to reliably increase the area coverage and increase the capacitance of the electrolytic capacitor. Eventually, the size and performance of the electrolytic capacitor can be reduced, and the size and performance of electronic devices incorporating the electrolytic capacitor can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • ing And Chemical Polishing (AREA)

Description

明 細 書 複合金属材料およびその製造方法、 エッチングされた金属材料およびその製造 方法、 ならびに電解コンデンサ
この出願は、 2 0 0 2年 1月 2 5日付で出願された日本国特許出願特願 2 0 0 2— 1 7 4 6 8号、 および 2 0 0 2年 2月 2 2日付で出願された米国特許出願第 6 0 / 3 5 8 , 3 7 2号の優先権主張を伴うものであり、 その開示内容は、 その まま本願の一部を構成するものである。
技術分野
この発明は、 金属材料基材の表面に高分子薄膜が形成された複合金属材料およ びその製造方法、 この複合金属材料にエッチングピッ トを形成したエッチングさ れた金属材料およびその製造方法、 ならびに電解コンデンサに関する。
なお、 この明細書において、 「アルミニウム」 の語はアルミニウムおよびその 合金の両者を含む意味で用いられる。
背景技術
近年、 電子機器の小型化、 プリント基板の高密度実装化、 実装の効率化等の要 請かち電子部品のチップ化、 小型化が著しく進展し、 これに伴い電解コンデンサ の高容量化の要請が高まつている。
通常、 電解コンデンサ電極に使用されるアルミニウム箔は、 拡面率を高めて静 電容量を向上させるためにエッチング処理される。 そして、 エッチング処理によ り形成されるエッチングピットの数が多いほど、 また長いほど拡面率が高くなる ため、 エッチング適性を改善すべきエッチング処理の前工程としてアルミニウム 材に様々な処理が行われている。 例えば (1 0 0 ) 結晶方位への制御、 アルミ二 ゥム材への C u、 P bなどの微量元素の添加による組成の調整、 最終焼鈍前の脱 脂洗浄、 最終焼鈍での結晶性酸化膜の形成処理等である (特公昭 5 8 - 3 4 9 2 5号、 特開平 3— 1 2 2 2 6 0号等) 。
しかしながら、 単に各エッチングピットの数や長さだけでは容量向上の限界に 近づいている。 アルミニウム箔の拡面率を向上させるためには局部エッチング、 未エッチング、 表面溶解を少なくして、 エッチング面でエッチングピッ トを均一 に、 かつ高密度に発生させる必要がある。 上述の種々の方法では、 高密かつ均一 にエッチングピットを発生させる点で十分でなく、 ますます増大しつつある静電 容量への要望に応えうるものではない。
従って、 現在のアルミニウム箔は、 エッチング過程での孔食ピットの分布を制 御できず、 トンネル状ピッ トが結合して拡大されるべき表面積をロスしている。 このため、 現状の静電容量は理想容量に対して 5 0〜6 5 %にとどまっている。 容量向上に向けて、 過去に異物質の付着や機械的に欠陥を形成する試みが行われ てきたが、 実現されていない。 発明の開示
この発明は、 上述の技術背景に鑑み、 エッチングピットを高密度かつ均一に発 生させ、 このピットを基点として深くかつトンネル内で結合が起こりにくい状態 でエッチングでき、 確実に拡面率を高めて静電容量の増大を図りうる複合金属材 料およびその製造方法、 ならぴにエッチングされた金属材料およびその製造方法 の提供を目的とする。
前記目的を達成するために、 この発明の第 1の複合金属材料は以下の構成を有 する。
( 1 ) 金属材料基材の少なくとも片面に、 微細パターンを有する高分子薄膜が 自己組織化によって形成されてなることを特徴とする複合金属材料。 (2) 前記高分子薄膜は、 高分子化合物の疎水性有機溶媒溶液の乾燥によって 形成された膜である前項 1に記載の複合金属材料。
(3) 前記微細パターンは、 多数の細孔が配列した細孔構造である前項 1また は 2に記載の複合金属材料。
(4) 前記細孔は直径 0. 0 l〜50 / mである前項 3に記載の複合金属材料
(5) 前記細孔は 1~50 mの間隔で形成されている前項 3または 4に記載 の複合金属材料。
(6) 前記細孔内に前記金属材料基材の酸化物よりも導電性の高い物質が充填 されている前項 3〜 5のいずれかに記載の複合金属材料。
(7) 前記金属材料基材は弁作用金属からなる前項 1〜 6のいずれかに記載の 複合金属材料。
( 8 ) 前記弁作用金属はアルミニウムである前項 7に記載の複合金属材料。
( 9 ) 前記複合金属材料は電解コンデンサ電極用アルミニウム材料である前項 8に記載の複合金属材料。
また、 この発明の第 2の複合金属材料は、 以下の構成を有する。
(10) 金属材料基材の少なくとも片面に、 多数の該金属材料基材の酸化物より も導電性の高い物質からなる微細斑点が配列してなることを特徴とする複合 金属材料。
(11) 前記微細斑点は直径 0. 0 l〜50 ;«mである前項 10に記載の複合金 属材料。
(12) 前記微細斑点は 1〜50 mの間隔で形成されている前項 1 1または 1 2に記載の複合金属材料。
(13) 前記金属材料基材は弁作用金属からなる前項 10〜12のいずれかに記 載の複合金属材料。
(14) 前記弁作用金属はアルミニウムである前項 13に記載の複合金属材料。 (15) 前記複合金属材料は電解コンデンサ電極用アルミニウム材料である前項
1 4に記載の複合金属材料。
この発明の第 1の複合金属材料の製造方法は、 この発明の第 1の複合金属材料 を好適に製造し得る方法であって、 以下の構成を有する。
(16) 金属材料基材の少なくとも片面に、 微細パターンを有する高分子薄膜が 自己組織化によって形成されてなる複合金属材料の製造方法であって、 前記高分子薄膜を、 高分子化合物の疎水性有機溶媒溶液の乾燥によって形 成することを特徴とする複合金属材料の製造方法。
(17) 前記金属材料基材の表面に、 高分子化合物の疎水性有機溶媒溶液をキヤ ストし、 該有機溶媒を蒸発させるとともに溶液表面で結露させ、 さらにこの 結露によつて生じた微小水滴を蒸発させることにより、 多数の細孔が配列し た高分子薄膜を形成させる、 前項 1 6に記載の複合金属材料の製造方法。
(18) 他の基材の表面に、 高分子化合物の疎水性有機溶媒溶液をキャストし、 該有機溶媒を蒸発させるとともに溶液表面で結露させ、 さらにこの結露によ つて生じた微小水滴を蒸発させることにより、 多数の細孔が配列した高分子 薄膜を形成させ、
前記基材から高分子薄膜を取出し、 前記金属材料基材の表面に接合する、 前項 1 6に記載の複合金属材料の製造方法。
(19) さらに、 前記細孔内に前記金属材料基材の酸化物よりも導電性の高い物 質を充填する前項 1 7または 1 8に記載の複合金属材料の製造方法。
(20) 前記金属材料基材の酸化物よりも導電性の高い物質の充填は、 めっき、 蒸着、 浸潰のいずれかの方法により行う前項 1 9に記載の複合金属材料の製 造方法。
(21) 前記高分子化合物は、 両親媒性高分子化合物である前項 1 6〜2 0のい ずれかに記載の複合金属材料の製造方法。
(22) 前記両親媒性高分子化合物は、 ポリスチレンスルホン酸と長鎖ジアルキ ルアンモニゥム塩のイオン錯体である前項 2 1に記載の複合金属材料の製造 方法。
(23) 前記高分子化合物の疎水性有機溶媒溶液の濃度は、 0. 0 1〜 1 0質量 %である前項 1 6〜2 2のいずれかに記載の複合金属材料の製造方法。
(24) 前記高分子薄膜の成膜は、 高温高湿度雰囲気中で行う前項 1 6〜2 3の いずれかに記載の複合金属材料の製造方法。
この発明の第 2の複合金属材料の製造方法は、 この発明の第 2の複合金属材料 を好適に製造し得る方法であって、 以下の構成を有する。
(25) 金属材料基材の少なくとも片面に、 多数の、 該金属材料基材の酸化物よ りも導電性の高い物質からなる微細斑点が配列してなる複合金属材料の製造 方法であって、
前記金属材料基材の表面に多数の細孔が配列した高分子薄膜を配置し、 該 細孔内に前記金属材料基材ょりも電位の卑なる金属を充填した後、 高分子薄 膜を除去することを特徴とする複合金属材料の製造方法。
(26) 前記金属材料基材の表面に、 高分子化合物の疎水性有機溶媒溶液をキヤ ストし、 該有機溶媒を蒸発させるとともに溶液表面で結露させ、 さらにこの 結露によって生じた微小水滴を蒸発させることにより、 高分子薄膜の形成お よび前記金属材料基材への配置を行う前項 2 5に記載の複合金属材料の製造 方法。
(27) 他の基材の表面に、 高分子化合物の疎水性有機溶媒溶液をキャス ト し、 該 有機溶媒を蒸発させるとともに溶液表面で結露させ、 さらにこの結露によつ て生じた微小水滴を蒸発させることにより、 多数の細孔が配列した高分子薄 膜を形成させ、 前記基材から高分子薄膜を取出し、 前記金属材料基材の表面 に接合することによつて配置する前項 2 5に記載の複合金属材料の製造方法
(28) 前記金属材料基材の酸化物よりも導電性の高い物質の充填は、 めっき、 蒸着、 浸漬のいずれかの方法により行う前項 2 5〜2 7に記載の複合金属材 料の製造方法。
(29) 前記高分子化合物は、 両親媒性高分子化合物である前項 2 5〜 2 8のい ずれかに記載の複合金属材料の製造方法。
(30) 前記両親媒性高分子化合物は、 ポリスチレンスルホン酸と長鎖ジアルキ ルアンモニゥム塩のイオン錯体である前項 2 9に記載の複合金属材料の製造 方法。
(31) 前記高分子化合物の疎水性有機溶媒溶液の濃度は、 0. 0 1〜 1 0質量 %である前項 2 5〜3 0のいずれかに記載の複合金属材料の製造方法。 (32) 前記高分子薄膜の成膜は、 高温高湿度雰囲気中で行う前項 2 5〜3 1の いずれかに記載の複合金属材料の製造方法。
(33) 前記高分子薄膜の除去は溶解によって行う前項 2 5〜3 2のいずれかに 記載の複合金属材料の製造方法。
この発明の第 1のエッチングされた金属材料は、 この発明の第 1の複合金属材 料をエッチングしたものであって、 以下の構成を有する。
(34) 前項 1〜9に記載された複合金属材料に対し、 微細パターンに基づいて エッチングピッ トが形成されてなることを特徴とするエッチングされた金属 材料。
(35) 前記エッチングされた金属材料は、 エッチングされた電解コンデンサ電 極用アルミニウム材料である前項 3 4に記載のエッチングされた金属材料。 この発明の第 2のエッチングされた金属材料は、 この発明の第 2の複合金属材 料をエッチングしたものであって、 以下の構成を有する。
(36) 前項 1 0 ~ 1 5に記載された複合金属材料に対し、 微細斑点に基づいて エッチングピッ 卜が形成されてなることを特徴とするエッチングされた金属 材料。
(37) 前記エッチングされた金属材料は、 エッチングされた電解コンデンサ電 極用アルミニウム材料である前項 3 6に記載のエッチングされた金属材料。 この発明の第 1のエッチングされた金属材料の製造方法は、 この発明の第 1の エッチングされた金属材料を好適に製造し得る方法であって、 以下の構成を有す る。
(38) 前項 1〜9に記載された複合金属材料に対し、 高分子薄膜を除去するこ となくエッチング処理を施してエッチングピッ トを形成することを特徴とす るエツチングされた金属材料の製造方法。
(39) 前項 1〜9に記載された複合金属材料に対し、 高分子薄膜を除去するこ となく初期エッチング処理を施してエッチングピッ トを発生させた後、 前記 高分子薄膜を除去し、 さらにエッチング処理を施してエッチングピッ トを成 長させることを特徴とするエツチングされた金属材料の製造方法。
(40) 前記エッチングされた金属材料は、 エッチングされた電解コンデンサ電 極用アルミニウム材料である前項 3 8または 3 9に記載のエッチングされた 金属材料の製造方法。
この発明の第 2のエッチングされた金属材料の製造方法は、 この発明の第 2の エッチングされた金属材料を好適に製造し得る方法であって、 以下の構成を有す る。
(41) 前項 1 0〜1 5に記載された複合金属材料に対し、 エッチング処理を施 してエッチングピッ トを形成することを特徴とするエッチングされた金属材 料の製造方法。
(42) 前記エッチングされた金属材料は、 エッチングされた電解コンデンサ電 極用アルミニウム材料である前項 4 1に記載のエッチングされた金属材料の 製造方法。
この発明の電解コンデンサは、 電極材料としてこの発明の第 1または第 2のェ ツチングされた金属材料が用いられたものであって、 以下の構成を有する。
(43) 電極材料として、 前項 3 4または 3 5に記載されたエッチングされた金 属材料が用いられてなることを特徴とする電解コンデンサ。
(44) 電極材料として、 前項 3 6または 3 7に記載されたエッチングされた金 属材料が用いられてなることを特徴とする電解コンデンサ。 この発明の第 1の複合金属材料によれば、 エッチング処理を施すと微細パター ンに基づいて高密度で均一に分布するエッチングピッ トが形成され、 表面積が拡 大される。
前記微細パターンが多数の細孔が配列した細孔構造である場合には、 特に高密 度で均一なエッチングピッ トが形成され、 前記細孔の直径が 0. 0 1〜5 0〃m である場合、 あるいは前記細孔の間隔が 1〜5 0 である場合に特に高い拡面 率を達成できる。
また、 前記細孔内に前記金属材料基材の酸化物よりも導電性の高い物質が充填 されている場合は、 該高導電性物質がエッチングピッ トの発生核となるため、 高 密度で均一に分布するエッチングピッ トが形成される。
前記金属材料基材が弁作用金属からなる場合は、 電解コンデンサの電極材料と して使用できる。 例えばその前記弁作用金属はアルミニウムであり、 電解コンデ ンサ電極用アルミニウム材料として使用できる。
この発明の第 2の複合金属材料によれば、 エッチング処理を施すと、 金属材料 基材の酸化物よりも導電性の高い物質による微細斑点がエッチングピットの発生 核となるため、 高密度で均一に分布するエッチングピットが形成され、 表面積が 拡大される。
る。
前記微細斑点の直径が 0. 0 1〜5 0 mである場合、 あるいは前記微細斑点 の間隔が 1〜5 0 mである場合に特に高い拡面率を達成できる。
前記金属材料基材が弁作用金属からなる場合は、 電解コンデンサの電極材料と して使用できる。 例えばその前記弁作用金属はアルミニウムであり、 電解コンデ ンサ電極用アルミニウム材料として使用できる。
この発明の第 1の複合金属材料の製造方法によれば、 上述した第 1の複合金属 材料を好適に製造し得る。
この製造方法において、 前記金属材料基材の表面に、 直接高分子化合物の疎水 性有機溶媒溶液をキャスト して乾燥させる場合は、 多数の細孔が配列した高分子 薄膜を金属材料基材に密着状態に形成させることができ、 高分子薄膜の成膜と金 属材料基材への積層とを同時に行うことができる。 また、 他の基材上に別途形成 した高分子薄膜を、 所要の金属箔基体表面に接合することによつても製造できる また、 前記細孔内に前記金属材料基材の酸化物よりも導電性の高い物質を充填 することによってエッチングピッ 卜の発生核を形成することができる。 この高導 電性物質の充填は、 めっき、 蒸着、 浸潰のいずれかの方法により容易に行うこと ができる。
また、 前記高分子化合物が、 例えばポリスチレンスルホン酸と長鎖ジアルキル アンモニゥム塩のイオン錯体のような両親媒性高分子化合物である場合に、 細孔 構造を有する高分子薄膜を形成できる。
また、 前記高分子化合物の疎水性有機溶媒溶液の濃度が 0. 0 1〜 1 0質量% である場合には、 所要の強度を有しかつ安定した形状の微細パターン、 細孔構造 を形成できる。
また、 前記高分子薄膜の成膜を高温高湿度雰囲気中で行うことにより、 微細パ ターン、 細孔構造を確実に形成できる。
この発明の第 2の複合金属材料の製造方法によれば、 上述した第 2の複合金属 材料を好適に製造し得る。
この製造方法において、 前記金属材料基材の表面に、 直接高分子化合物の疎水 性有機溶媒溶液をキャストして乾燥させる場合は、 多数の細孔が配列した高分子 薄膜を金属材料基材に密着状態に形成させることができ、 高分子薄膜の成膜と金 属材料基材への積層とを同時に行うことができる。 また、 他の基材上に別途形成 した高分子薄膜を、 所要の金属箔基体表面に接合することによつても製造できる また、 前記細孔内への金属材料基材の酸化物よりも導電性の高い物質の充填は 、 めっき、 蒸着、 浸潰のいずれかの方法により容易に行うことができる。
また、 前記高分子化合物が、 例えばポリスチレンスルホン酸と長鎖ジアルキル アンモニゥム塩のイオン錯体のような両親媒性高分子化合物である場合に、 細孔 構造を有する高分子薄膜を形成できる。
また、 前記高分子化合物の疎水性有機溶媒溶液の濃度が 0. 0 1 ~ 1 0質量% である場合には、 所要の強度を有しかつ安定した形状の微細パターン、 細孔構造 を形成できる。
また、 前記高分子薄膜の成膜を高温高湿度雰囲気中で行うことにより、 微細パ ターン、 細孔構造を確実に形成できる。
また、 高導電性物質充填後の高分子薄膜は溶解によって容易に除去でき、 金属 材料基材表面に微細パターンに基づく高導電性物質による微細斑点を形成するこ とができる。
この発明の第 1のエッチングされた金属材料は、 第 1の複合金属材料に対し、 微細パターンに基づいてエッチングピットが形成されてなるものであるから、 上 述したように、 高密度で均一に分布するエッチングピッ トが形成され、 表面積が 十分に拡大されている。
このような前記エッチングされた金属材料を、 エッチングされた電解コンデン サ電極用アルミニウム材料として用いることにより、 静電容量を増大させること ができる。
この発明の第 2のエッチングされた金属材料は、 第 2の複合金属材料に対し、 微細斑点に基づいてエッチングピッ トが形成されてなるものであるから、 上述し たように、 高密度で均一に分布するエッチングピッ トが形成され、 表面積が十分 に拡大されている。
このような前記エッチングされた金属材料を、 エッチングされた電解コンデン サ電極用アルミニウム材料として用いることにより、 静電容量を増大させること ができる。
前記第 1のエッチングされた金属材料の製造方法の一つは、 第 1の複合金属材 料に対し、 高分子薄膜を除去することなくエツチング処理を施してエッチングピ ットを形成するものであるから、 エッチングピッ トが高密度で均一に分布するェ ツチチングされた金属材料を得られる。
また、 第 1のエッチングされた金属材料の製造方法の他の一つは、 高分子薄膜 を除去することなく初期エッチング処理を施してエッチングピットを発生させた 後、 前記高分子薄膜を除去'し、 さらにエッチング処理を施してエッチングピッ ト を成長させるものであるから、 エッチングピッ トが高密度で均一に分布するエツ チングされた金属材料を得られる。
これらのエッチングされた金属材料の製造方法において、 前記エッチングされ た金属材料はエッチングされた電解コンデンサ電極用アルミニウム材料である場 合には、 拡大された表面積によって高静電容量の可能な電極材料を得られる。 前記第 2のエツチングされた金属材料の製造方法は、 第 2の複合金属材料に対 し、 エッチング処理を施して微細斑点の基づくエッチングピットを形成するもの であるから、 エッチングピッ トが高密度で均一に分布するエッチチングされた金 属材料を得られる。
また前記エッチングされた金属材料の製造方法において、 前記エッチングされ た金属材料はエッチングされた電解コンデンサ電極用アルミニウム材料である場 合には、 拡大された表面積によって高静電容量の可能な電極材料を得られる。 この発明の電解コンデンサは、 電極材料として上述のエッチングされた金属材 料が用いられているため、 高静電容量を得ることができ、 電解コンデンサの小型 化および高性能化、 ひいてはこの電解コンデンサを組み込んだ電子機器の小型化 および高性能化が可能となる。 図面の簡単な説明
図 1 (A) はこの発明の第 1の複合金属材料の一実施形態を模式的に示す縦断 面図であり、 図 1 (B ) は図 1 (A) の 1 B _ 1 B線における断面図である。
図 2 (A) はこの発明の第 1の複合金属材料の他の実施形態を模式的に示す縦 断面図であり、 図 2 (B) は図 2 (A) の 2 B—2 B線における断面図である。
図 3 (A) はこの発明の第 2の複合金属材料の一実施形態を模式的に示す縦断 面図であり、 図 3 (B ) は図 3 (A) の 3 B— 3 B線における断面図である。 発明を実施するための最良の形態
〔第 1の複合金属材料〕
図 1 (A) (B ) に、 この発明の第 1の複合金属材料の一実施形態の模式的断 面図を示す。 前記複合金属材料(1)において、 金属材料基材(10)の表面に積層され た高分子薄膜(11)は、 高分子化合物の自己組織化によって形成された膜であり、 成膜時に形成された微細パターンを有する。 前記高分子薄膜(11)は、 金属材料基 材(10)の少なくとも片面に積層されていれば良いが、 電解コンデンサ電極用アル ミニゥム材料として使用する場合は、 表面積を可及的に拡大させるために両面に 積層されていることが好ましい。
前記高分子薄膜(11)は、 高分子化合物を疎水性有機溶媒に溶解させた溶液 (以 下、 ポリマー溶液と略する) を乾燥させることによって形成させる。 例えば、 基 材表面にポリマ一溶液をキャストして乾燥させると、 高分子化合物が基材上に自 己組織化して微細パターンを有する膜を形成する。
前記微細パターンとして、 図 1 ( B ) に示すような多数の細孔(12)が配列した 細孔構造を例示できる。 この発明の第 1の複合金属材料(1)の一実施形態において は、 細孔(12)を金属材料基材(10)の表面へのエッチング液の導入路として利用す ' る。
また、 図 2 (A) (B) にこの発明の第 1の複合金属材料の他の実施形態を示 す。 この複合金属材料(2)においては、 前記細孔(12)内に金属材料基材(10)の酸化 物よりも導電性の高い物質 (以下、 「高導電性物質」 と略する。 ) が充填されて いる。 前記高導電性物質は、 後に詳述するように、 エッチング核として作用する 前記微細パターンとして細孔構造を有する高分子薄膜(11)は、 例えば次の過程 を経て形成される。
基材上にキャストしたポリマー溶液において、 有機溶媒が蒸発する際に潜熱を 奪い、 空気中の水分子がポリマー溶液表面に微粒子となって凝結する。 一方、 ポ リマー溶液の親水性部分の働きによって、 水と疎水性有機溶媒との間の表面張力 が減少し、 水微粒子が凝集して 1つの塊になり微小な水滴となる。 水滴の大きさ はほぼ均一であるため、 溶媒の蒸発に伴って水滴が細密充填した状態に並んでい き、 規則的に配列された状態となる。 そして、 さらに水滴が蒸発すると、 水滴の あった部分が空隙となって膜の厚さ方向に細孔(12)が形成される。 水滴が铸型と して作用し、 規則的な細孔構造を有する、 ハニカム構造の高分子薄膜(11)が形成 される。 図 1 ( B ) および図 2 ( B ) は、 多数の六角形の細孔(12)が細密状態に 形成された高分子薄膜(11)を例示している。 細孔は図示例の六角形の他に、 六角 形に近い円形や、 円形となることが多い。 また、 規則的な細孔構造とは、 厳密な 幾何学上の規則的構造を意味するのではなく、 構造に規則性が認められてランダ ム構造ではないことを意味する。 従って、 細孔形状、 細孔の直径、 孔の間隔等に 多少に乱れがあるものも規則的な細孔構に含まれる。 多少の乱れがあっても、 後 述の高密度で均一なエッチングピッ トが問題なく形成されるためである。
この発明の第 1の複合金属材料(1) (2)の製造に際し、 前記高分子薄膜(11)は金 属材料基材(10)の表面にポリマー溶液を直接キャストし、 金属材料基材(10)に密 着状態に形成することが可能である。 即ち、 高分子薄膜(11)の成膜と金属材料基 材(10)への積層とを同時に行うことができる。 また、 他の基材上で別途形成させ た高分子薄膜(11)を取り出して、 これを金属材料基材(10)に接合させることによ つても製造することができる。 他の基材上で形成する場合、 基材は金属の他、 ガ ラス、 シリコンウェハー等の無機材料、 ポリプロピレン、 ポリエチレン、 ポリエ ーテルケトン等の耐有機溶剤性に優れた有機高分子材料等の固体、 水、 流動パラ フィン、 液状ポリエーテル等の液体を使用することができる。 これらの他の基材 のうち、 高分子薄膜の取出しが容易で細孔構造の保持性が優れている点で、 水が 好適である。
前記高分子薄膜を形成する高分子化合物は限定されない。 好適な高分子化合物 として、 疎水性基と親水性基が両親媒性高分子化合物を例示でき、 1種の両親媒 性分子の単独重合体でも、 2種以上の両親媒性分子の共重合体でも良い。 また、 両親媒性高分子以外の分子との共重合体でも良く、 界面活性剤が存在しても良い 前記両親媒性高分子化合物として、 ポリスチレンスルホン酸と長鎖ジアルキル アンモニゥム塩のイオン錯体、 ポリエチレングリコール/ポリプロピレングリコ ールブロック共重合体、 アクリルアミ ドポリマーを主鎖骨格とし、 疎水性側鎖と してドデシル基と親水性側鎖としてラクトース基あるいはカルボキシル基を併せ 持つ両親媒性高分子化合物、 あるいはへパリンゃデキストラン硫酸、 核酸 (D N Aや R NA) などのァニオン性高分子と長鎖アルキルアンモニゥム塩とのイオン コンプレックス、 ゼラチン、 コラーゲン、 アルブミン等の水溶性タンパク質を親 水性基とした両親媒性ポリマ一等を利用することが好ましい。
また、 その他の高分子化合物として、 ポリスチレンフォスフィン酸、 ポリスチ レンスルフォン酸、 ポリ乳酸、 ポリカーボネート等を例示できる。
高分子化合物を溶解させる疎水性有機溶媒としては、 クロ口ホルム等のハロゲ ン系溶媒、 酢酸ェチル等のエステル系、 非水溶性ケトン、 二硫化炭素等を例示で き、 これらの混合溶媒も使用できる。 前記ポリマー溶液において高分子化合物の濃度は 0. 0 1〜 1 0質量%が好ま しい。 0. 0 1質量%未満では高分子薄膜(11)の強度が不足し、 1 0質量%を超 えると細孔(12)の形成と安定した形状保持が困難となる。 好ましい濃度は 0. 0 5〜5質量%である。
また、 成膜環境は、 有機溶媒の蒸発、 微小水滴の結露と蒸発が行われる環境と するために高湿度雰囲気が好ましい。 具体的には相対湿度: 5 0〜9 5 %、 温度 : 1 0 ~ 2 5 °Cの大気中で行うのが好ましい。
前記細孔(12)の寸法は直径 (D ) 0 . 0 1〜5 0 mが好ましく、 この寸法は 、 複合金属材料(1)をエツチング処理に供する電解コンデンサ電極用アルミニウム 材料として使用し、 多数のエッチングピッ トを均一に形成して拡面率を効率良く 増大させる場合に適している。 特に好ましい細孔(12)の直径 (D) は 0 . 1 ~ 5 mである。
また、 前記細孔(12)の間隔 (P ) は 1 ~ 5 0 mが好ましい。 1 m未満では エッチング時に隣接ピットと連結するおそれがあり、 5 0 mを越えるとピッ ト 数の増大が困難である。 特に好ましい細孔(12)の間隔は 1〜 1 5 mである。 さらに、 前記高分子薄膜(11)の厚さ (T) は 1 0 0 n m~ 2 m程度に形成さ れ、 電解コンデンサ電極用アルミニウム材料として用いる場合は 0. 5〜 l 〃m が好ましい。
前記複合金属材料(1) (2)を構成する金属材料基材(10)は、 金属の種類、 厚さ等 を問わず、 用途に応じて適宜選定する。
金属の種類としては、 電解コンデンサの電極用材料として使用される弁作用金 属を例示できる。 弁作用金属として、 アルミニウム、 タンタル、 マグネシウム、 チタン、 ニオブ、 ジルコニウム、 亜鉛、 ビスマス、 ゲイ素、 ハフニウムの金属単 体、 チタンにホウ素とスズ、 クロムとバナジウム、 パラジウムとアンチモンを添 加した合金を例示でき、 これらのうちアルミニウムを推奨できる。 また、 これら の金属材料基材においては、 不純物の存在が許容され、 あるいは必要に応じて適 宜微量元素の添加が許容される。 例えば、 アルミニウムの場合、 微量元素として
S i、 Fe、 Cu、 Pb、 Zn、 Ga、 Z r等がある。 し力、し、 電解コンデンサ 電極用アルミニウム材料の場合には、 化成処理において皮膜欠陥の発生を抑制す るために、 純度が 99. 9%以上の高純度アルミニウムを使用することが好まし い。
また、 厚さも限定されないものの、 エッチングされた金属材料の場合はエッチ ング後の強度や可撓性を確保するために、 0. 05〜0. 3匪が好ましい。 特に 好ましくは 0. 07〜0. 2匪であり、 さらに 0. 07〜0. 15mmが好ましい また、 前記金属材料基材(10)は、 熱処理や結晶構造も限定されない。 例えば、 アルミニウム材料の場合、 熱処理を施さない硬質材料は、 圧延方向に引き延ばさ れた細長い繊維状結晶の集合体となっている。 このような硬質材料に対し、 30 0-400 °Cで焼鈍すると、 ほぼ完全に一次再結晶を完了した軟質材料となり、 450〜600°Cで焼鈍すると、 安定した高 (100) 面を有する結晶粒が成長 した軟質材料とすることができる。 この発明においては、 上述したいずれの金属 材料基材でも使用できる。 また、 金属材料基材(10)は、 コイル状に巻かれた長尺 のものであっても、 裁断されたものであっても良い。
また、 前記細孔(12)内に充填する高導電性物質(13)は、 エッチング時に優先的 に溶解させてピッ 卜の発生核となるものであるから、 金属材料基材(10)の導電性 との関係により選択する。 金属材料基材(10)がアルミニウムの場合は、 アルミ二 ゥムよりも導電性の高い、 Pb、 Pb〇、 Cu、 CuO、 Cu2O、 Cを例示でき 、 P bおよび P bOを推奨できる。
前記高導電性物質(13)の細孔(12)への充填方法は、 めっき、 スパッタ、 蒸着、 浸漬、 CVD、 溶射、 イオンプレーティング等を例示でき、 充填速度が速く高分 子膜のダメージが少なく、 かつ低コストで処理できる点でめっき、 蒸着、 浸漬を 推奨できる。 上述した第 1の複合金属材料(1) (2)はエッチング処理に供され、 この発明の第 1のエッチングされた金属材料が作製される。
エッチング処理において、 図 1 (A) ( B) に示す高分子薄膜(11)のみが形成 された複合金属材料(1)では、 微細パターンである前記細孔(12)からエッチング液 が金属材料基材(10)に到達して、 エッチングピッ トが形成される。 前記細孔(12) は微細に配列しているから、 エッチングピッ トも微細パターンに倣つて膜厚方向 にトンネル状に成長し、 微細、 高密度かつ均一に形成され、 表面積が拡大される 。 また、 隣接する細孔との間隔は後の化成皮膜以上に確保されているから、 細孔 の結合は起こりにくい。 このようなエッチングピッ トが形成されたエッチングさ れた金属材料、 例えばアルミニウム材料を使用すると、 表面積の拡大によって高 静電容量が得られる。
また、 図 2 (A) (B) に示す細孔(12)内に高導電性物質(13)が充填された複 合金属材料( では、 まず優先的に高導電性物質(13)が溶解して細孔(12)が露出し 、 続いて金属材料基材(10)の細孔(12)対応位置にエッチングピッ トが形成される 。 高導電性物質(13)の存在箇所は即ち細孔(12)の存在位置であるから、 上記複合 金属材料(1)と同じく、 エッチングピッ 卜が微細パターンに倣って膜厚方向にトン ネル状に成長し、 表面積が拡大され、 高静電容量が得られる。
エッチング処理条件は限定されず、 用途に応じて常法に従えば良い。 例えば、 電解コンデンサ電極用アルミ二ゥム材料の場合は、 塩素ィオンを含む水溶液にリ ン酸、 硫酸、 硝酸等を添加した処理液中で電解エッチングするのが一般的である 。 また、 低圧用材料の場合は交流エッチング、 中高圧用材料の場合は直流エッチ ングが一般的である。, エッチング条件は、 1〜 1 0 0 O H z、 電流密度 0 . 0 2 5〜2 O A/ c m2, 電気量 0. 0 2〜 1 0 0 C / c m2の交流または直流エッチ ングを例示できる。 直流電解エッチングと交流電解エッチングを併用しても良い し、 直流電解エッチングのみでも良い。 また、 多段エッチングでも良いし、 化学 エッチングを行っても良い。 なお、 本発明によって作製される電解コンデンサ電極用アルミニウム材料は中 高圧用に適しているが、 中高圧用材料に限定するものではない。
前記高分子薄膜は、 エッチングピッ ト形成後に除去しても良いし、 除去せずに そのまま残しても良い。 また、 エッチングピッ トの形成の初期に高分子薄膜を除 去し、 その後さらに拡面率を高めるエッチング処理を施しても良い。 いずれの場 合も、 高分子薄膜はアセトン、 メチルェチルケトン、 トルエン、 メチルセルロソ ルブ、 酢酸ェチル、 石油エーテル等の有機溶剤で容易に除去できる。 また、 高分 子薄膜の溶解温度以上の温水に浸漬することによつても該高分子薄膜を容易に除 去できる。
本発明のエッチングされた金属材料は、 高分子薄膜を除去したものと、 残した ものの両方を包含する。
エッチングされた金属材料において、 エッチングピッ トの適正ピッ トは、 電解 コンデンサの使用電圧によって異なる。 中圧 (250〜350V) 用材料の場合
、 ピッ ト径は 0. 7〜2 ^mが好ましく、 ピッ ト間隔は 1~ 2. 5〃mが好まし い。 高圧 (500 V以上) 用材料の場合、 ピッ ト径は 1. 5〜3 mが好ましく
、 ピッ ト間隔は 2~4〃mが好ましい。 なお、 ここでいうピッ ト径とは平均値で あり、 全ピッ トがこの範囲に入ってる必要はない。
また、 エッチングされた電解コンデンサ電極用アルミニウム材料は、 化成処理 がなされるが、 その化成処理条件は限定されない。 処理条件として、 蓚酸、 アジ ピン酸、 ホウ酸、 リン酸、 ゲイ酸ナトリウム等の少なくとも 1種を電解液を用い
、 その電解液濃度が 0. 05〜20質量%、 電解液温度 0~90°C、 電流密度 0
. lmA/cm2~l A/cm2, 所要化成電圧で化成時間 60分以内の化成処理 ' を例示できる。 特に好ましい化成処理条件は、 電解液濃度が 0. 1-15質量%
、 電解液温度 20〜70°C、 電流密度 1〜100mA/cm2、 化成時間 30分以 内である。 化成処理後、 さらに必要に応じて、 耐水性向上のためのリン酸浸漬処 理、 皮膜強化のための熱処理または沸騰水への浸漬処理を行うことができる。 また、 電解コンデンサにおいて、 電極材料として上述のエッチングされた金属 材料、 即ち表面積が拡大された金属材料を用いることにより、 高静電容量を得る ことができる。 〔第 2の複合金属材料〕
図 3 (A) (B) に、 この発明の第 2の複合金属材料の一実施形態を模式的に ' 示す。 この複合金属材料(3)において、 金属材料基材(10)の少なくとも片面に、 該 金属材料基材(10)の酸化物よりも導電性の高い物質、 即ち上述した第 1の複合金 属材料 (2)において細孔(12)内に充填された高導電性物質と同等の物質からなる多 数の微細斑点(14)が配列している。
前記微細斑点(14)は、 例えば金属材料基材(10)の表面に多数の細孔が配列した 高分子薄膜を配置し、 該細孔内に金属材料基材(10)の酸化物よりも導電性の高い 物質を充填した後、 高分子薄膜を除去することによって形成される。 換言すれば 、 上述した第 1の複合金属材料 (2)の製造工程において、 高分子薄膜(11)の細孔( 12)内に高導電性物質(13)を充填した後、 高分子薄膜(11)を除去することによって 形成される。 従って、 第 2の複合金属材料(3)における金属材料基材(10)の材質お よび厚さ、 高導電性物質の材質は第 1の複合金属材料に準ずる。 また、 高導電性 物質からなる微細斑点(14)の直径 (D ) および間隔 (P ) は、 第 1の複合金属材 (1) (2)の料細孔(12)の直径 (D) および間隔 (F ) に準ずる。
また、 第 2の複合金属材料(3)の製造方法に関し、 金属材料基材(10)の表面に配 置した高分子薄膜(11)の細孔内に高導電性物質を充填する工程までは第 1の複合 金属材料 (2)の製造工程と共通である。 従って、 高分子薄膜(11)の形成方法および 高導電性物質の充填方法は第 1の複合金属材料 (2)の製造方法に準ずる。
高分子薄膜(11)の除去方法は、 アセトン、 メチルェチルケトン、 トルエン、 メ チルセル口ソルブ、 酢酸ェチル、 石油エーテル等の有機溶剤による溶解除去、 あ るいは高分子薄膜の溶解温度以上の温水への浸漬による溶解除去を例示できる。 上述した第 2の複合金属材料 (3)はエッチング処理に供され、 この発明の第 2の エッチングされた金属材料が作製される。
エツチング処理において、 高導電性物質が微細斑点(14)に配列しているから、 エツチングピッ トも微細斑点(14)に倣って膜厚方向にトンネル状に成長し、 微細 、 高密度かつ均一に形成され、 表面積が拡大される。 また、 隣接する細孔との間 隔は後の化成皮膜以上に確保されているから、 細孔の結合が起こりにくい。 この ようなエッチングピッ トが形成されたエッチングされた金属材料、 例えばアルミ 二ゥム材料を使用すると、 表面積の拡大によつて高静電容量が得られる。
エツチング条件は上述した第 1のエツチングされた金属材料の製造方法に準じ 、 電解コンデンサ電極用アルミニウム材料に用いる場合の適正ピットやエツチン グ後の化成処理条件も第 1のエッチングされた金属材料に準じる。 実施例
金属材料基材の製造に際しては、 まず、 半連続铸造にて、 A 1純度 9 9. 9 9 %の高純度アルミニウム铸塊を作製した。 そして、 これらの鍩塊に対し、 常法に より均質化処理、 面削、 熱間圧延、 冷間圧延、 中間焼鈍等を経て箔に圧延し、 厚 さ 1 1 0 mのアルミニウム材料基材を(10)作製した。 前記アルミニウム材料基 材(10)に対し、 脱脂洗浄後、 A rガス雰囲気の焼鈍炉内で、 実体温度を室温から 5 4 0 °Cまで 5 0 °CZhで昇温させた後 5 4 0 °Cで 2 4時間保持し、 炉内で自然 冷却させてから炉出し、 これを以下の実施例において共通のアルミニウム材料基 材として用いた。
前記アルミニウム材料基材(10)に対し、 処理条件を変えて異なる細孔構造を有 する高分子薄膜(11)を形成して複数種の複合アルミニウム材料 I一 A、 I一 B、 I一 C、 I一 Dを作製した。 これらの複合アルミニウム材料 I—A、 I一 B、 I — C、 I— Dは、 図 1 (A) (B) で示した本発明の第 1の複合金属材料(1)に対 応する。 (複合アルミニウム材料 I—A)
高分子薄膜(11)の形成に際しては、 ポリマー溶液として、 ポリスチレンスルフ ォン酸と塩化ジメチルォクタデシルアンモニゥムとからポリイオン錯体の 3 g/ 1 クロロフオルム溶液を調製した。 そして、 前記アルミニウム材料基材(10)の一 面側に前記ポリマ一溶液を 5 m 1 /m2の割合でキャス ト し、 20 °C、 相対湿度 7 0%の高湿度空気を流量 3 1 /"分で 1分間吹き付けた。 その結果、 図 1の複合金 属材料(1)に示すように、 アルミニウム材料基材(10)の表面に略正六角形でトンネ ル状の細孔(12)が規則的に配列した高分子薄膜(11)が形成された。 この高分子薄 膜(11)は膜厚 (T) : 2 mであり、 細孔(12)の平均直径 (D) : 3 111、 平均 孔間隔 (P) : であった。 さらに、 前記アルミニウム材料基材(10)の他面 側にも同様の操作を行って規則的細孔構造を有する高分子薄膜(11)を形成した。
(複合アルミニウム材料 I一 B)
上述の I — Aにおいて、 ポリイオン錯体濃度を 1 gZlクロロフオルム溶液と し、 高湿度空気の吹き付け量を 2 1ノ分とした以外は、 I— Aと同様にして複合 アルミニウム材料を得た。 形成された高分子薄膜(11)は膜厚 (T) : 2 mであ り、 細孔(12)の平均直径 (D) : 2 m、 平均孔間隔 (P) : 3 i mであった。 (複合アルミニウム材料 I一 C)
上述の I — Aにおいて、 ポリマー溶液のポリスチレンスルフォン酸の代わりに 、 ポリ力プロラクトンを用いた以外は I— Aと同様にして複合アルミニウム材料 を得た。 形成された高分子薄膜(11)は膜厚 (T) : 1 0 mであり、 細孔(12)の 平均直径 (D) : 5 m、 平均孔間隔 (P) : 7 mであつ†。
(複合アルミニウム材料 I 一 D)
上述の I —Cにおいて、 ポリマー溶液のキャスト量を 0. 5m l /m2とした以 外は、 I—Cと同様にして複合アルミニウム材料を得た。 形成された高分子薄膜 (11)は膜厚 (T) : 1 mであり、 細孔(12)の平均直径 (D) : 5 m、 平均孔 間隔 (P) : 7 mであった。 また、 これらの複合アルミニウム材料 I _A、 I— B、 I一 C、 I一 Dに対し 、 高分子薄膜(11)の細孔(12)内に高導電性物質を充填し、 図 2 (A) (B) の複 合金属材料(2)に示す構造の複合アルミニウム材料 II一 A、 II一 B、 II— C、 II一 Dを作製した。 これらの複合アルミニウム材料 II— A、 II一 B、 II— C、 II一 D は、 この発明の第 1の複合金属材料に対応する。
(複合アルミニウム材料 Π— Α)
複合アルミニウム材料 I一 Aに対し、 電気めつきにより高分子薄膜の細孔内に Pbを充填した。 めっき条件は、 P b板を陽極として電流密度 1 A/m2で 30秒 間通電することとした。
(複合アルミニウム材料 II— B)
複合アルミニゥム材料 I _ Bに対し、 電気めつきにより高分子薄膜の細孔内に Cuを充填した。 めっき条件は、 C u板を陽極として電流密度 1 A/m2で 30秒 間通電することとした。
(複合アルミニウム材料 II一 C)
複合アルミニウム材料 I一 Cに対し、 常法により Cを蒸着し、 高分子薄膜の細 孔内に Cを充填した。
(複合アルミニウム材料 II— D)
複合アルミニウム材料 I—Dに対し、 Pbイオン濃度: 0. 5モル / 1の水溶 液に該複合アルミニウム材料を 2分間浸潰し、 その後 80°Cの乾燥機中で乾燥さ せることにより、 高分子薄膜の細孔内に Pb化合物 (酸化物) を充填した。
また、 これらの複合アルミニウム材料 II— A、 II一 B、 II— Cに対し、 高分子 薄膜(11)を除去して、 金属材料基材(10)の表面に高導電性物質からなる微細斑点 (14)が配列した複合アルミニウム材料 III一 A、 III— B、 III— Cを製作した。 こ れらの複合アルミニウム材料 III— A、 III一 B、 III— Cは、 図 3 (A) (B) で 示した本発明の第 3の複合金属材料(3)に対応する。
(複合アルミニウム材料 III— A) 複合アルミニウム材料 II一 Aをァセトン中に 1分間浸漬することにより高分子 薄膜を除去し、 P bからなる微細斑点が配列した複合アルミニウム材料 III— Aを 得た。
(複合アルミニウム材料 III— B)
複合アルミニウム材料 II一 Bをメチルケトン中に 1分間浸潰することにより高 分子薄膜を除去し、 C uからなる微細斑点が配列した複合アルミニウム材料 111一 Bを得た。
(複合アルミニウム材料 III一 C)
複合アルミニウム材料 II一 Cを 90 °Cの温水中に 3分間浸漬することにより高 分子薄膜を除去し、 Cからなる微細斑点が配列した複合アルミニウム材料 III一 C を得た。 次に、 各実施例において、 上述の各複合アルミニウム材料に下記 A, Bのいず れかの条件でエッチング処理を施し、 表 1に示す No.1〜19のエッチングされた 電解コンデンサ電極用アルミニウム材料を作製した。 また、 比較例 No.20におい ては高分子薄膜(11)のないアルミニウム材料基材(10)にエッチング処理を施した
〔エッチング条件 A〕
前記複合アルミニウム材料を、 80°〇の第1電解液 (lmol/1塩酸 +3. 2m olZl硫酸水溶液) に浸漬し、 電流密度 0. 2 AZcm2の直流を 100秒間通電 して電解エッチングを施した。 さらに、 90°Cの第 2電解液 (1. 5molZl塩酸 + 0. 005 βπιοΐΖ 1蓚酸水溶液) に浸漬し、 10分間ケミカルエッチングを施 した。
〔エッチング条件 Β〕
前記複合アルミニウム材料を、 50°Cの 10%塩化第二鉄水溶液に 10分間浸 潰した後、 引き上げて水洗した。 これにより、 高分子薄膜の細孔部分または高導 電性物質の微細斑点部分のみが化学エッチングされた。 さらに、 75°Cの第 2電 解液 (5%塩酸+ 10%硫酸水溶液) に浸漬し、 電流密度 0. 2 A/cm2の直流 を 100秒間通電して電解エッチングを施した。 続いて、 同液で 10分間ケミカ ルェツチングを行った。
上述の実施例および比較例でエッチングされた電解コンデンサ電極用アルミ二 ゥム材料について、 エッチングピットのピッ ト径とピット間隔を測定した。 測定 値を表 1に示す。 なお、 これらの測定値は全ピッ トの半数以上がこの範囲に入つ ていること示している。
一方、 エッチングされた電解コンデンサ電極用アルミニウム材料をそれぞれホ ゥ酸浴中 350Vで化成処理し、 静電容量を測定した。 静電容量を、 比較例 No.2 0の静電容量を 100%とした相対値で表 1に示す。
表 1
Figure imgf000027_0001
表 1の結果より、 各実施例で作製したエッチングされた電解コンデンサ電極用 アルミニウム材料は、 エッチングピットの孔径と間隔が比較例よりも均一であり 、 拡面率の増大により高静電容量が得られることを確認した。 一方、 比較例では エッチングピッ トの結合が見られ、 巨大ピッ トが形成され、 ピッ ト間隔も不均一 であった。
ここに用いられた用語および表現は、 説明のために用いられたものであって限 定的に解釈するために用いられたものではなく、 ここに示されかつ述べられた特 徴事項の如何なる均等物をも排除するものではなく、 この発明のクレームされた 範囲内における各種変形をも許容するものであると認識されなければならない。 産業上の利用可能性
本発明の複合金属材料は、 高分子薄膜の規則的に配列した微細パターンに基づ いてエッチングピッ トを高密度かつ均一に発生させることができる。 そして、 こ のピットを基点として深くかつトンネル内で結合が起こりにくい状態でエツチン グでき、 確実に拡面率を高めて電解コンデンサにおける静電容量の増大を図るこ とができる。 ひいては電解コンデンサの小型化および高性能化、 この電解コンデ ンサを組み込んだ電子機器の小型化および高性能化が可能となる。

Claims

請 求 の 範 囲
( 1 ) 金属材料基材の少なくとも片面に、 微細パターンを有する高分子薄膜が 自己組織化によって形成されてなることを特徴とする複合金属材料。
( 2 ) 前記高分子薄膜は、 高分子化合物の疎水性有機溶媒溶液の乾燥によって 形成された膜である請求項 1に記載の複合金属材料。
( 3 ) 前記微細パターンは、 多数の細孔が配列した細孔構造である請求項 1ま たは 2に記載の複合金属材料。
( 4 ) 前記細孔は直径 0. 0 1〜5 0 mである請求項 3に記載の複合金属材 料。
( 5 ) 前記細孔は 1〜5 0 mの間隔で形成されている請求項 3または 4に記 載の複合金属材料。
( 6 ) 前記細孔内に前記金属材料基材の酸化物よりも導電性の高い物質が充填 されている請求項 3〜 5のいずれかに記載の複合金属材料。
( 7 ) 前記金属材料基材は弁作用金属からなる請求項 1〜 6のいずれかに記載 の複合金属材料。
( 8 ) 前記弁作用金属はアルミ二ゥムである請求項 7に記載の複合金属材料。
( 9 ) 前記複合金属材料は電解コンデンサ電極用アルミニウム材料である請求 項 8に記載の複合金属材料。
(10) 金属材料基材の少なくとも片面に、 多数の該金属材料基材の酸化物より も導電性の高い物質からなる微細斑点が配列してなることを特徴とする複合 金属材料。
(11) 前記微細斑点は直径 0. 0 1〜5 0 mである請求項 1 0に記載の複合 金属材料。
(12) 前記微細斑点は 1 ~ 5 0 mの間隔で形成されている請求項 1 1または 1 2に記載の複合金属材料。
(13) 前記金属材料基材は弁作用金属からなる請求項 1 0〜1 2のいずれかに 記載の複合金属材料。
(14) 前記弁作用金属はアルミニウムである請求項 1 3に記載の複合金属材料
(15) 前記複合金属材料は電解コンデンサ電極用アルミニウム材料である請求 項 1 4に記載の複合金属材料。
(16) 金属材料基材の少なくとも片面に、 微細パターンを有する高分子薄膜が 自己組織化によつて形成されてなる複合金属材料の製造方法であつて、 前記高分子薄膜を、 高分子化合物の疎水性有機溶媒溶液の乾燥によって形 成することを特徴とする複合金属材料の製造方法。
(17) 前記金属材料基材の表面に、 高分子化合物の疎水性有機溶媒溶液をキヤ ストし、 該有機溶媒を蒸発させるとともに溶液表面で結露させ、 さらにこの 結露によつて生じた微小水滴を蒸発させることにより、 多数の細孔が配列し た高分子薄膜を形成させる、 請求項 1 6に記載の複合金属材料の製造方法。
(18) 他の基材の表面に、 高分子化合物の疎水性有機溶媒溶液をキャストし、 該有機溶媒を蒸発させるとともに溶液表面で結露させ、 さらにこの結露によ つて生じた微小水滴を蒸発させることにより、 多数の細孔が配列した高分子 薄膜を形成させ、
前記基材から高分子薄膜を取出し、 前記金属材料基材の表面に接合する、 請求項 1 6に記載の複合金属材料の製造方法。
(19) さらに、 前記細孔内に前記金属材料基材の酸化物よりも導電性の高い物 質を充填する請求項 1 7または 1 8に記載の複合金属材料の製造方法。
(20) 前記金属材料基材の酸化物よりも導電性の高い物質の充填は、 めっき、 蒸着、 浸潰のいずれかの方法により行う請求項 1 9に記載の複合金属材料の 製造方法。
(21) 前記高分子化合物は、 両親媒性高分子化合物である請求項 1 6〜2 0の いずれかに記載の複合金属材料の製造方法。
(22) 前記両親媒性高分子化合物は、 ポリスチレンスルホン酸と長鎖ジアルキ ルアンモニゥム塩のイオン錯体である請求項 2 1に記載の複合金属材料の製 造方法。
(23) 前記高分子化合物の疎水性有機溶媒溶液の濃度は、 0. 0 1〜1 0質量 %である請求項 1 6 ~ 2 2のいずれかに記載の複合金属材料の製造方法。
(24) 前記高分子薄膜の成膜は、 高温高湿度雰囲気中で行う請求項 1 6 ~ 2 3 のいずれかに記載の複合金属材料の製造方法。
(25) 金属材料基材の少なくとも片面に、 多数の、 該金属材料基材の酸化物よ りも導電性の高い物質からなる微細斑点が配列してなる複合金属材料の製造 方法であって、
前記金属材料基材の表面に多数の細孔が配列した高分子薄膜を配置し、 該 細孔内に前記金属材料基材の酸化物よりも導電性の高い物質を充填した後、 高分子薄膜を除去することを特徴とする複合金属材料の製造方法。
(26) 前記金属材料基材の表面に、 高分子化合物の疎水性有機溶媒溶液をキヤ スト し、 該有機溶媒を蒸発させるとともに溶液表面で結露させ、 さらにこの 結露によって生じた微小水滴を蒸発させることにより、 高分子薄膜の形成お よび前記金属材料基材への配置を行う請求項 2 5に記載の複合金属材料の製 造方法。
(27) 他の基材の表面に、 高分子化合物の疎水性有機溶媒溶液をキャスト し、 該 有機溶媒を蒸発させるとともに溶液表面で結露させ、 さらにこの結露によつ て生じた微小水滴を蒸発させることにより、 多数の細孔が配列した高分子薄 膜を形成させ、 前記基材から高分子薄膜を取出し、 前記金属材料基材の表面 に接合することによって配置する請求項 2 5に記載の複合金属材料の製造方 法。
(28) 前記金属材料基材の酸化物よりも導電性の高い物質の充填は、 めっき、 蒸着、 浸潰のいずれかの方法により行う請求項 2 5 ~ 2 7に記載の複合金属 材料の製造方法。
(29) 前記高分子化合物は、 両親媒性高分子化合物である請求項 2 5〜2 8の いずれかに記載の複合金属材料の製造方法。
(30) 前記両親媒性高分子化合物は、 ポリスチレンスルホン酸と長鎖ジアルキ ルアンモニゥム塩のイオン錯体である請求項 2 9に記載の複合金属材料の製 造方法。
(31) 前記高分子化合物の疎水性有機溶媒溶液の濃度は、 0. 0 1 ~ 1 0質量 %である請求項 2 5 ~ 3 0のいずれかに記載の複合金属材料の製造方法。
(32) 前記高分子薄膜の成膜は、 高温高湿度雰囲気中で行う請求項 2 5〜3 1 のいずれかに記載の複合金属材料の製造方法。
(33) 前記高分子薄膜の除去は溶解によって行う請求項 2 5〜3 2のいずれか に記載の複合金属材料の製造方法。
(34) 請求項 1〜9に記載された複合金属材料に対し、 微細パターンに基づい てエッチングピットが形成されてなることを特徴とするエッチングされた金 属材料。
(35) 前記エッチングされた金属材料は、 エッチングされた電解コンデンサ電 極用アルミニウム材料である請求項 3 4に記載のエッチングされた金属材料 o
(36) 請求項 1 0〜1 5に記載された複合金属材料に対し、 微細斑点に基づい てエツチングピッ トが形成されてなることを特徴とするエツチングされた金 属材料。
(37) 前記エッチングされた金属材料は、 エッチングされた電解コンデンサ電 極用アルミニウム材料である請求項 3 6に記載のエッチングされた金属材料
(38) 請求項 1〜9に記載された複合金属材料に対し、 高分子薄膜を除去する ことなくエッチング処理を施してエッチングピッ トを形成することを特徴とする エッチングされた金属材料の製造方法。
(39) 請求項 1〜9に記載された複合金属材料に対し、 高分子薄膜を除去する ことなく初期エッチング処理を施してエッチングピットを発生させた後、 前 記高分子薄膜を除去し、 さらにエッチング処理を施してエッチングピットを 成長させることを特徴とするエッチングされた金属材料の製造方法。
(40) 前記エッチングされた金属材料は、 エッチングされた電解コンデンサ電 極用アルミニウム材料である請求項 3 8または 3 9に記載のエッチングされ た金属材料の製造方法。
(41) 請求項 1 0〜1 5に記載された複合金属材料に対し、 エッチング処理を 施してエッチングピッ トを形成することを特徴とするエッチングされた金属 材料の製造方法。
(42) 前記エッチングされた金属材料は、 エッチングされた電解コンデンサ電 極用アルミニウム材料である請求項 4 1に記載のエッチングされた金属材料 の製造方法。
(43) 電極材料として、 請求項 3 4または 3 5に記載されたエッチングされた 金属材料が用いられてなることを特徴とする電解コンデンサ。
(44) 電極材料として、 請求項 3 6または 3 7に記載されたエッチングされた 金属材料が用いられてなることを特徴とする電解コ
PCT/JP2003/000652 2002-01-25 2003-01-24 Materiau metallique composite et son procede de production, materiau metallique grave et son procede de production, et condensateur electrolytique WO2003062506A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03703046A EP1477589A4 (en) 2002-01-25 2003-01-24 METAL COMPOSITE MATERIAL AND PRODUCTION METHOD THEREFOR, METAL METAL MATERIAL AND METHOD OF PRODUCTION THEREOF AND ELECTROLYTIC CONDENSER
KR10-2004-7011394A KR20040078132A (ko) 2002-01-25 2003-01-24 복합 금속 재료 및 그 제조 방법, 에칭된 금속 재료 및 그제조 방법 및 전해 콘덴서
JP2003562364A JPWO2003062506A1 (ja) 2002-01-25 2003-01-24 複合金属材料およびその製造方法、エッチングされた金属材料およびその製造方法、ならびに電解コンデンサ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-17468 2002-01-25
JP2002017468 2002-01-25
US35837202P 2002-02-22 2002-02-22
US60/358,372 2002-02-22

Publications (1)

Publication Number Publication Date
WO2003062506A1 true WO2003062506A1 (fr) 2003-07-31

Family

ID=27615706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000652 WO2003062506A1 (fr) 2002-01-25 2003-01-24 Materiau metallique composite et son procede de production, materiau metallique grave et son procede de production, et condensateur electrolytique

Country Status (3)

Country Link
EP (1) EP1477589A4 (ja)
CN (1) CN1639392A (ja)
WO (1) WO2003062506A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294596A (ja) * 2004-03-31 2005-10-20 Nippon Chemicon Corp 電解コンデンサ
JP2005294595A (ja) * 2004-03-31 2005-10-20 Nippon Chemicon Corp 電解コンデンサ
WO2006022358A1 (ja) * 2004-08-24 2006-03-02 Teijin Limited 積層体
WO2009038061A1 (ja) * 2007-09-21 2009-03-26 Fujifilm Corporation 複層フィルム及びその製造方法
JP2009242546A (ja) * 2008-03-31 2009-10-22 Fujifilm Corp 多孔フィルムの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102150227B (zh) * 2008-10-10 2013-05-15 松下电器产业株式会社 电容器用电极箔及其制造方法和使用该电极箔的固体电解电容器
CN101967673A (zh) * 2010-08-27 2011-02-09 中国科学院海洋研究所 利用电解刻蚀在金属铝表面制备超疏水膜的方法
US9202639B2 (en) * 2012-08-17 2015-12-01 Nokia Technologies Oy Apparatus and associated methods
CN108302319B8 (zh) * 2017-07-13 2021-06-25 哈工大泰州创新科技研究院有限公司 斑点复合金属材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151818A (ja) * 1984-08-21 1986-03-14 昭和アルミニウム株式会社 電解コンデンサ用アルミニウム電極材の製造方法
EP0459461A1 (en) * 1990-05-31 1991-12-04 Toshiba Tungaloy Co. Ltd. Multi-colored product and process for producing the same
JPH08253878A (ja) * 1995-03-16 1996-10-01 Toppan Printing Co Ltd エッチング部品の製造方法
JP2000251236A (ja) * 1998-12-28 2000-09-14 Toshiba Corp 磁気記録装置、磁気記録媒体およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3940546B2 (ja) * 1999-06-07 2007-07-04 株式会社東芝 パターン形成方法およびパターン形成材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151818A (ja) * 1984-08-21 1986-03-14 昭和アルミニウム株式会社 電解コンデンサ用アルミニウム電極材の製造方法
EP0459461A1 (en) * 1990-05-31 1991-12-04 Toshiba Tungaloy Co. Ltd. Multi-colored product and process for producing the same
JPH08253878A (ja) * 1995-03-16 1996-10-01 Toppan Printing Co Ltd エッチング部品の製造方法
JP2000251236A (ja) * 1998-12-28 2000-09-14 Toshiba Corp 磁気記録装置、磁気記録媒体およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1477589A4 *
TORU USHIROGOCHI: "Nano material", TOSHIBA REVIEW, vol. 56, no. 10, 1 October 2001 (2001-10-01), pages 66 - 67, XP002975402 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294596A (ja) * 2004-03-31 2005-10-20 Nippon Chemicon Corp 電解コンデンサ
JP2005294595A (ja) * 2004-03-31 2005-10-20 Nippon Chemicon Corp 電解コンデンサ
WO2006022358A1 (ja) * 2004-08-24 2006-03-02 Teijin Limited 積層体
WO2009038061A1 (ja) * 2007-09-21 2009-03-26 Fujifilm Corporation 複層フィルム及びその製造方法
JPWO2009038061A1 (ja) * 2007-09-21 2011-01-06 富士フイルム株式会社 複層フィルム及びその製造方法
JP2009242546A (ja) * 2008-03-31 2009-10-22 Fujifilm Corp 多孔フィルムの製造方法

Also Published As

Publication number Publication date
CN1639392A (zh) 2005-07-13
EP1477589A4 (en) 2007-12-12
EP1477589A1 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
TWI478185B (zh) 超級電容器及其製造方法
KR101587369B1 (ko) 산소 발생용 양극 및 그의 제조방법
WO2003062506A1 (fr) Materiau metallique composite et son procede de production, materiau metallique grave et son procede de production, et condensateur electrolytique
US6855408B2 (en) Composite metal material and method for manufacturing the same, etched metal material and method for manufacturing the same and electrolytic capacitor
JPS63232855A (ja) 陽極酸化アルミニウム基材を含む触媒およびその製法
KR20140101423A (ko) 산소 발생용 양극 및 그의 제조방법
KR102179028B1 (ko) 열교환기용 외판 또는 부품 표면의 초소수성화 방법
JPWO2003062506A1 (ja) 複合金属材料およびその製造方法、エッチングされた金属材料およびその製造方法、ならびに電解コンデンサ
JP5053702B2 (ja) コンデンサ用電極シートおよびその製造方法
JPH0722094B2 (ja) 電解コンデンサ電極用アルミニウム材料の製造方法
JP4498682B2 (ja) 電解コンデンサ電極用アルミニウム材の製造方法及び電解コンデンサ用電極材の製造方法、並びにアルミニウム電解コンデンサ。
JP2635357B2 (ja) 電解コンデンサ用アルミニウム材料の製造方法
JP2602357B2 (ja) 電解コンデンサ電極用アルミニウム合金箔
JP3582451B2 (ja) アルミ電解コンデンサ用陽極箔の製造方法
JPH1136053A (ja) 電解コンデンサ用アルミニウム材の製造方法および電解 コンデンサ用アルミニウム材
JP2793964B2 (ja) 電解コンデンサ陰極用アルミニウム箔
JP3920306B1 (ja) 電解コンデンサ用アルミニウム箔
JP2008045172A (ja) 電解コンデンサ電極用アルミニウム材、電解コンデンサ用電極材の製造方法、電解コンデンサ用電極材ならびにアルミニウム電解コンデンサ
JP3959106B2 (ja) 電解コンデンサ電極用硬質アルミニウム箔
JPH0566007B2 (ja)
CN109811313A (zh) 一种高电阻率基底上多孔氧化铝模板的制备方法
JP4226930B2 (ja) 電解コンデンサ電極用アルミニウム材、エッチングされた電解コンデンサ電極用アルミニウム材、ならびに電解コンデンサ
JP2003193260A (ja) エッチング特性に優れた電解コンデンサ電極用アルミニウム箔およびその製造方法、ならびに電解コンデンサ電極用アルミニウムエッチド箔のの製造方法
JP2001143971A (ja) エッチング安定性に優れた低圧用硬質電解Al箔およびその製法
CN116275057B (zh) 基于粉末烧结制备具有微电偶的电子铝箔的腐蚀预处理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003562364

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047011394

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003703046

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038045419

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003703046

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003703046

Country of ref document: EP