WO2003001714A1 - Circuit de commande de gain automatique et procede correspondant, ainsi que dispositif de demodulation faisant intervenir leur utilisation - Google Patents

Circuit de commande de gain automatique et procede correspondant, ainsi que dispositif de demodulation faisant intervenir leur utilisation Download PDF

Info

Publication number
WO2003001714A1
WO2003001714A1 PCT/JP2002/006364 JP0206364W WO03001714A1 WO 2003001714 A1 WO2003001714 A1 WO 2003001714A1 JP 0206364 W JP0206364 W JP 0206364W WO 03001714 A1 WO03001714 A1 WO 03001714A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
gain control
gain
burst
amplification
Prior art date
Application number
PCT/JP2002/006364
Other languages
English (en)
French (fr)
Inventor
Kenji Komori
Masataka Wakamatsu
Hideaki Sato
Takashi Usui
Kazuyuki Saijo
Shinichi Tanabe
Hideo Morohashi
Kazuhiro Fujimura
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to DE60221526T priority Critical patent/DE60221526T2/de
Priority to US10/362,295 priority patent/US7397872B2/en
Priority to EP02741298A priority patent/EP1401134B1/en
Publication of WO2003001714A1 publication Critical patent/WO2003001714A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • H03G3/3078Circuits generating control signals for digitally modulated signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention relates to an automatic gain control circuit applied to a receiver of a wireless communication system, a method thereof, and a demodulator using the same, and particularly to, for example, orthogonal frequency division multiplexing ( ⁇ FDM).
  • ⁇ FDM orthogonal frequency division multiplexing
  • AGC automatic gain control
  • a burst signal called a preamble signal is inserted at the head of a modulated signal and transmitted.
  • the AGC circuit mounted on the synchronous demodulator synchronizes timing within the period of the burst signal, and controls the amplification gain based on the reception level of the burst signal.
  • FIG. 1 is a block diagram showing a configuration example of a demodulation device equipped with a conventional AGC circuit applicable to a wireless communication system using burst synchronization.
  • FIG. 1 The apparatus shown in FIG. 1 is disclosed in Japanese Patent Application Laid-Open No. H11-205278.
  • the demodulation device 10 includes an automatic gain control amplification unit (AG CAMP) 101, an A / D converter (ADC) 102, an OFDM demodulation unit (DEMOD) 103, a delay unit It comprises a (DLY) 104, a burst detection unit (BDT) 105, a packet detection unit (PDT) 106, and an amplification gain control unit (AGCTL) 107.
  • AG CAMP automatic gain control amplification unit
  • ADC A / D converter
  • DEMOD OFDM demodulation unit
  • DEMOD OFDM demodulation unit
  • DLY burst detection unit
  • BDT packet detection unit
  • ACTL amplification gain control unit
  • OFDM reception signal RS received by an antenna is input to automatic gain control amplification section 101.
  • received signal RS is subjected to automatic gain control, and is output to AZD converter 102 as an optimal signal level.
  • the case where the automatic gain control is performed and the case where the control gain is fixed are controlled by the control signal S107 from the amplification gain controller 107.
  • the input received signal is The log signal is converted into a digital signal, and the digital reception signal S 102 is output to the OFDM demodulation unit 103, the delay unit 104, and the burst detection unit 105.
  • the digital reception signal S102 is subjected to discrete Fourier transform based on the output of the cost detection unit 105, and the OFDM signal is demodulated.
  • S 103 is output to the packet detector 106 and the processing circuit at the next stage.
  • the digital reception signal S102 is delayed by the burst period and output to the burst detection unit 105 as the signal S104.
  • burst detection section 105 digital received signal S102 and its delayed signal S104 are correlated, and a burst signal having a period determined by the communication system is detected.
  • the detection result is output to the OFDM demodulation unit 103 and the amplification gain control unit 107 as a signal S105.
  • the packet detection unit 106 detects the unique word at the head of the bucket from the demodulated signal S103 from the OFDM demodulation unit 103, and determines whether or not the bucket has been correctly demodulated. Then, the end time of the packet is detected, and the detection result is output to the amplification gain controller 10 # as a signal S106.
  • the automatic gain control amplification unit 1 based on the output signal S105 from the burst detection unit 105 and the output signal S106 from the bucket detection unit 106, the automatic gain control amplification unit 1 It is determined whether or not the automatic gain control of 01 is fixed, and the result of the determination is output to the automatic gain control amplifier 101 as a control signal S 107.
  • the demodulator of FIG. 1 fixes or varies the control gain in the automatic gain control amplifier 101 depending on whether or not burst synchronization has been established in the burst synchronization system. It is suitable for a burst synchronous communication system in which synchronization timing and data / packet timing are transmitted in a time-division manner.
  • the OFDM modulation method performs inverse Fourier transform on 2 n power signal symbols that have been subjected to primary modulation (QP SK, 16 SAM, etc.). In this way, we can obtain a variable power equation that configures 2 n subcarriers orthogonal to each other on the frequency axis.
  • the OFDM modulated signal by the OFDM modulation method is a composite signal of a plurality of modulated waves, the ratio of the peak amplitude to the average amplitude is large and the amplitude fluctuation is large.
  • the optimum gain is gradually drawn over several packets, an error occurs in the first packet, and the communication efficiency is degraded due to data retransmission and the like. There is a benefit.
  • the received signal level greatly varies depending on the transmission output of individual devices and the distance between the devices.
  • the gain control circuit not the optimum gain for each packet, but the average gain of all the buckets is drawn, and the system may break down. Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and has as its object to realize a high-speed and accurate level capture, which can prevent an error from occurring, and can prevent a system from breaking down. It is to provide a gain control circuit and a method thereof, and a demodulation device using the same.
  • a first aspect of the present invention provides a data signal An automatic gain control circuit for controlling the amplification gain of a received signal having a burst portion including at least a preamble signal at the beginning, wherein the automatic gain amplifies an input received signal level with a gain according to the gain control signal.
  • a control amplification unit a reception signal power observation unit that detects the power of the reception signal; a delay unit that delays the output of the automatic gain control amplification unit for a fixed time; an output signal of the automatic gain control amplification unit and the delay unit
  • a burst detection unit that performs burst detection based on the correlation operation of the output signals of the above and outputs a burst synchronization detection signal, and upon receiving a trigger signal indicating the start of burst detection, has a first gain set in advance.
  • the gain control signal is output to the automatic gain control amplification unit so as to amplify the signal.
  • a second gain is calculated based on the received signal power value, and the gain control signal is output to the automatic gain control amplifier so as to amplify the signal with the second gain.
  • the received signal power value is obtained by receiving the output signal of the automatic gain control amplifier, and when the burst synchronization detection signal is received by the burst detection unit, the third gain is calculated based on the obtained received signal power value.
  • an amplification gain control section for outputting the gain control signal to the automatic gain control amplification section so as to amplify the gain with the third gain.
  • a burst portion including at least a preamble signal is added to the head of a data signal, and the preamble signal is divided into two stages of a first half and a second half.
  • An automatic gain control circuit for controlling the amplification gain of the received signal, wherein the automatic gain control amplification section amplifies the input received signal level with a gain corresponding to the gain control signal; and Based on a received signal power observation unit to be detected, a delay unit for delaying the output of the automatic gain control amplification unit for a fixed time, and a correlation operation between the output signal of the automatic gain control amplification unit and the output signal of the delay unit. A burst detection is performed.
  • a strike detection unit upon receiving a trigger signal indicating a burst detection start Outputting the gain control signal to the automatic gain control amplification section so as to amplify the signal with the first gain set in advance, and receiving the first burst synchronization detection signal by the burst detection section;
  • a second gain is calculated based on the received signal power value detected by the power observation unit, and the gain control signal is output to the automatic gain control amplification unit so as to amplify with the second gain.
  • An amplification gain control unit that calculates a third gain based on the signal power value and outputs the gain control signal to the automatic gain control amplification unit so as to amplify the signal with the third gain.
  • the amplification gain control section sets the gain of the automatic gain control amplification section after setting the third gain until the start of the next burst detection. Is fixed to the third gain.
  • the burst signal includes a reference signal following a preamble signal, and receives the correlation operation result of the burst detection unit to convert the reference signal.
  • An amplification control unit for detecting and outputting the second burst synchronization detection signal or the third burst synchronization detection signal to the amplification gain control unit, wherein the amplification gain control unit
  • the mode shifts to the standby mode for the trigger signal, and the gain of the automatic gain control amplification unit is adjusted to the third gain until the next trigger signal is input.
  • the received signal power monitoring unit is reset each time burst detection is started, and detects the received signal power after reset.
  • the received signal power measuring unit detects a peak value of the received signal.
  • a burst of a received signal is provided.
  • a reference signal is inserted in a data signal section following the section, and the amplification gain control section finely adjusts the value of the third gain during a reference signal section.
  • the amplification gain control section obtains a received signal power value in a reference signal section, and calculates the received signal power value in a previous reference signal section. To fine-tune the value of the third gain.
  • a third aspect of the present invention is an automatic gain control circuit for controlling the amplification gain of a received signal in which a burst portion including at least a preamble signal is added to the head of a data signal.
  • An automatic gain control amplifier for amplifying an input received signal level with a gain corresponding to the gain control signal; and an analog-to-digital converter for converting an output signal of the automatic gain control amplifier from an analog signal to a digital signal.
  • a reception signal power observation unit for detecting the power of the reception signal, a delay unit for delaying the output of the automatic gain control amplification unit for a fixed time, a digital output signal of the analog / digital converter and the delay unit
  • a burst detection unit that detects a burst based on the correlation operation of the output signals of the first and second stages and outputs a burst synchronization detection signal;
  • the gain control signal is output to the automatic gain control amplification unit so as to be amplified with a first gain set in advance, and when the reception signal power is detected by the reception signal power observation unit, Calculating a second gain based on at least the detected received signal power value; outputting the gain control signal to the automatic gain control amplification unit so as to amplify the signal with the second gain;
  • a burst portion including at least a preamble signal is added to the head of a data signal, and the preamble signal is added to the beginning of the data signal.
  • An automatic gain control circuit that controls the amplification gain of a received signal that is divided into two stages, a half section and a second half section, and that amplifies the input received signal level with a gain according to the gain control signal.
  • a delay section for delaying the output for a fixed time; and a burst detection based on a correlation operation between the digital output signal of the analog / digital converter and the output signal of the delay section.
  • the first A burst detector that outputs a burst synchronization detection signal and outputs a second burst synchronization detection signal for detecting the second half section.
  • the gain control signal is output to the automatic gain control amplifier so that the signal is amplified with a first gain set in advance, and the first signal is output from the burst detector.
  • a second gain is calculated based on the received signal power value detected by the received signal power observation unit, and the gain control signal is amplified so as to be amplified with the second gain.
  • the signal is output to the automatic gain control amplifying section, and the digital output signal of the analog / digital converter amplified by the second gain is received and integrated to obtain a received signal power value.
  • a third gain is calculated based on the obtained received signal power value, and the gain control signal is amplified so as to amplify with the third gain. To have the amplification gain controller for outputting the dynamic gain control amplifier.
  • the amplification gain control unit adds the second gain to the received signal power value obtained by the received signal power observation unit and adds the second gain to the analog signal Z. Calculate based on reference signal power value without distorting digital converter
  • the amplification gain control unit optimizes the received signal power after gain control in addition to the received signal power value for which the third gain has been obtained. It is calculated based on the converted reference signal power value.
  • the amplification gain control unit may add a second gain to the received signal power value obtained by the received signal power observation unit, The second gain is calculated based on the first reference signal power value that does not distort the digital converter, and in addition to the received signal power value for which the third gain has been obtained, the second signal obtained by optimizing the received signal power after gain control. Calculate based on the reference signal power value.
  • the amplification gain control unit sets the gain of the automatic gain control amplification unit after setting the third gain until the start of the next burst detection. Is fixed to the third gain.
  • the burst signal includes a reference signal following a preamble signal, and receives the correlation operation result of the burst detection signal to generate the reference signal.
  • the received signal power monitoring unit is reset every time burst detection is started, and detects the received signal power after reset.
  • the received signal power observation unit detects a peak value of the received signal.
  • a reference signal is inserted in a data signal section following a burst section of a received signal, and the amplification gain control section includes a reference signal section. During this, the third gain value is finely adjusted.
  • the amplification gain control unit Calculates the received signal power value in the reference signal section, and finely adjusts the third gain value based on the received signal power value in the previous reference signal section.
  • a fifth aspect of the present invention is an automatic gain control method for controlling the amplification gain of a received signal in which a burst portion including at least a preamble signal is added to the head of a data signal.
  • the amplification gain is set so as to amplify the signal with the first gain set in advance, and when the burst detection is started, the received signal is amplified with the first gain.
  • the power of the received signal is detected, a second gain is calculated based on the detected power value of the received signal, and the amplification gain is set so as to amplify with the second gain.
  • the power value of the received signal amplified with the gain of the above is obtained, and burst detection is performed based on the correlation operation of the received signal amplified with the second gain and the delay signal of the received signal, and burst is detected.
  • the third gain based on the amplified received signal power value at the second gain obtained above was calculated, setting the amplification gain so as to amplify with the third gain.
  • a burst portion including at least a preamble signal is added to the head of a data signal, and the preamble signal is divided into two stages of a first half and a second half.
  • An automatic gain control method for controlling an amplification gain of a divided received signal wherein when starting burst detection, the amplification gain is set so as to amplify with a first gain set in advance, and When the detection is started, the received signal is amplified with the first gain, and in parallel with this, the power of the received signal is detected, and the received signal amplified with the first gain and the received signal are amplified.
  • a burst is detected in the first half of the preamble signal based on the correlation operation of the delayed signal, and when a burst in the first half is detected, a second gain is calculated based on the detected received signal power value.
  • the amplification gain is set so as to be amplified with the second gain, the power value of the reception signal amplified with the second gain is obtained, and the reception signal amplified with the second gain and the The above based on the correlation operation of the delay signal of the received signal
  • a burst is detected in the latter half of the preamble signal, and when a burst in the latter half is detected, a third gain is calculated based on the received signal power value amplified by the second gain obtained above, and the third gain is calculated.
  • the amplification gain is fixed to the third gain until the start of the next burst detection.
  • the burst signal includes a reference signal following a preamble signal, and receives the correlation operation result at the time of detecting the burst to generate the reference signal.
  • the mode shifts to a standby mode of a burst detection start command, and the amplification gain is fixed at the third gain until the next burst detection start command is received.
  • a reference signal is inserted in a data signal section following a burst section of a received signal, and the reference signal section is included in the reference signal section. Fine adjustment of the third gain value is performed.
  • the received signal power value in the reference signal section is determined, and the third signal power value is calculated based on the received signal power value in the previous reference signal section. Fine-tune the gain value.
  • an amplification gain of a reception signal in which a burst portion including at least a preamble signal is added to a head portion of a data signal is controlled, and the reception signal after amplification is controlled.
  • An automatic gain control amplification section for amplifying an input received signal level with a gain according to a gain control signal; a received signal power observation section for detecting the power of the received signal; A delay unit for delaying the output of the gain control amplification unit for a fixed time; a burst for detecting a burst based on a correlation operation between the output signal of the automatic gain control amplification unit and the output signal of the delay unit and outputting a burst synchronization detection signal Upon receiving a trigger signal indicating the start of burst detection and the detection unit, the automatic gain control signal is used to amplify the gain control signal with the first gain set in advance. Output to the control amplifier, and when the received signal power is detected by the received signal power observation unit,
  • Calculating a second gain based on the detected received signal power value outputting the gain control signal to the automatic gain control amplifying unit so as to amplify the signal with the second gain, and
  • a received signal power value is obtained by receiving the amplified output signal of the automatic gain control amplifying unit, and when a burst synchronization detection signal is received by the burst detecting unit, a third gain is obtained based on the obtained received signal power value.
  • an amplification gain control unit that outputs the gain control signal to the automatic gain control amplification unit so as to amplify the gain with the third gain.
  • a burst portion including at least a preamble signal is added to the head of a data signal, and the preamble signal is divided into two stages of a first half and a second half.
  • a demodulator for controlling the amplification gain of the received signal, and demodulating the amplified received signal, wherein the automatic gain control amplification unit amplifies the input received signal level with a gain according to the gain control signal;
  • a reception signal power observation unit for detecting the power of the reception signal; a delay unit for delaying the output of the automatic gain control amplification unit for a certain time; and an output signal of the automatic gain control amplification unit and an output signal of the delay unit.
  • a second gain is calculated based on the reception signal power value detected by the reception signal power observation unit, and the second gain is amplified with the second gain.
  • the gain control signal is output to the automatic gain control amplification unit so as to receive the output signal of the automatic gain control amplification unit amplified by the second gain to obtain a received signal power value.
  • a third gain is calculated based on the obtained received signal power value, and amplification is performed with the third gain.
  • an amplification gain control section for outputting the gain control signal to the automatic gain control amplification section.
  • a ninth aspect of the present invention is to control the amplification gain of a reception signal in which at least a burst part including a preamble signal is added to the head of a data signal, and to control the amplification of the reception signal.
  • An automatic gain control amplifier for amplifying an input received signal level with a gain according to a gain control signal, and converting an output signal of the automatic gain control amplifier from an analog signal to a digital signal.
  • An analog Z-to-digital converter a reception signal power observation unit for detecting the power of the reception signal, a delay unit for delaying the output of the automatic gain control amplification unit for a predetermined time, a digital output signal of the analog-to-digital converter, A burst detection unit that performs burst detection based on the correlation operation of the output signal of the delay unit and outputs a burst synchronization detection signal;
  • the gain control signal is output to the automatic gain control amplification section so as to amplify the signal with the first gain set in advance, and the received signal power is detected by the received signal power observation section.
  • a second gain is calculated based on at least the detected received signal power value, and the gain control signal is output to the automatic gain control amplification unit so as to amplify with the second gain
  • the digital output signal of the analog / digital converter amplified by the second gain is received and integrated to obtain a received signal power value, and when a burst synchronization detection signal is received by the burst detection unit, the obtained received signal is obtained.
  • An amplification gain control unit that calculates a third gain based on the power value, and outputs the gain control signal to the automatic gain control amplification unit so as to amplify with the third gain; Including an automatic gain control circuit having.
  • a burst portion including at least a preamble signal is added to the beginning of a data signal, and the preamble signal is divided into two stages, a first half interval and a second half interval.
  • a demodulator for controlling the amplification gain of the received signal, and demodulating the amplified received signal, wherein the automatic gain control amplifier amplifies the input received signal level with a gain according to the gain control signal;
  • Above automatic gain control An analog Z digital converter for converting the output signal of the width section from an analog signal to a digital signal; a reception signal power observation section for detecting the power of the reception signal; and a delay for delaying the output of the automatic gain control amplification section for a predetermined time.
  • the first half of the preamble signal is detected based on the correlation calculation between the digital output signal of the analog / digital converter and the output signal of the delay section.
  • a burst detector that outputs a signal and outputs a second burst synchronization detection signal that detects the latter half section, and receives a trigger signal indicating the start of burst detection and amplifies it with a preset first gain
  • the gain control signal is output to the automatic gain control amplification section, and the burst detection section outputs the first burst synchronization detection signal.
  • the second gain is calculated based on the received signal power value detected by the received signal power observation unit, and the gain control signal is transmitted to the automatic gain control amplification unit so that the signal is amplified with the second gain.
  • Receiving and integrating the digital output signal of the analog Z digital converter amplified by the second gain to obtain a received signal power value, and receiving the second burst synchronization detection signal by the burst detection section, An amplification gain control unit that calculates a third gain based on the obtained received signal power value and outputs the gain control signal to the automatic gain control amplification unit so as to amplify the gain with the third gain. Includes automatic gain control circuit.
  • the reception signal is modulated based on an orthogonal frequency division multiplexing modulation scheme.
  • a gain control signal is output from the amplification gain control unit to the automatic gain control amplification unit, and the amplification gain of the automatic gain control amplification unit is set in advance.
  • the first gain for example, the maximum value
  • the preamble signal at the head of the received signal is input to the automatic gain control amplifier.
  • the automatic gain control amplifier for example, the first half of the preamble signal of the received signal is amplified with the first gain (maximum gain), and output, for example, in the A / D converter in the evening.
  • the preamble signal of the received signal is input to the received signal power monitoring unit.
  • the received signal power observing section the power of the received signal is observed, for example, a peak voltage is measured, and the received signal power value having a value corresponding to the input received signal level is supplied to the amplification gain control section.
  • the preamble signal portion of the received signal is converted from an analog signal to a digital signal and supplied to an amplification gain control section, a delay section, and a burst detection section.
  • the digital reception signal is delayed by a burst period for burst detection and output to the burst detection section.
  • a burst signal having a period determined by the communication system is detected.
  • a first synchronization detection indicating that the first half X section of the preamble signal has been detected A signal is generated and output to the amplification gain control unit.
  • burst detection can be performed without reducing the detection rate because the autocorrelation circuit is used in the burst detection unit.
  • the amplification gain control unit receives the first burst synchronization detection signal from the burst detection unit, and receives the received signal power value detected by the received signal observation unit and the AZD command.
  • the gain is calculated based on an appropriate value that does not distort the signal, and the gain control signal is set to the calculated value.
  • This gain control signal is supplied to the automatic gain control amplifier.
  • the automatic gain control amplifier receives the gain control signal and sets the gain to a second gain, which is a calculated value.
  • the gain of the automatic gain control amplification unit includes analog signal processing in the process of calculating the peak value of the received signal power, and includes a slight variation, so that the rough gain Control.
  • the remaining first half and second half of the preamble signal of the received signal are amplified with a gain according to the received signal level, and output to the A / D converter.
  • the preamble signal portion of the received signal is converted from an analog signal to a digital signal and supplied to an amplification gain control unit, a delay unit, and a burst detection unit.
  • the digital reception signal is delayed by a burst period for burst detection and output to the burst detection section.
  • the burst detector performs correlation (autocorrelation and cross-correlation) between the digital received signal by the A / D converter and the delayed signal by the delay unit.
  • the amplification gain control unit receives a signal passed through the A / D converter without distortion at a gain based on the received signal power, and for example, integrates the digital signal value of the received signal to obtain an accurate signal. The power value is measured.
  • the amplification gain control unit receives the second burst synchronization detection signal from the burst detection unit, and receives the digital integration value and A / D of the received signal passed through the A / D converter without distortion.
  • the gain is calculated based on the optimal value that does not distort the D converter, and the gain control signal is set to the calculated value.
  • This gain control signal is supplied to the automatic gain control amplifier.
  • the automatic gain control amplifier receives the gain control signal and sets the gain to the third gain, which is the optimum calculated value.
  • the remaining second half of the preamble signal of the received signal, the reference signal and the data signal are amplified with the gain according to the received signal level, and output to the A / D converter. Is done.
  • a reference signal and a data portion of a received signal are converted from an analog signal to a digital signal and supplied to an amplification gain control unit, a delay unit, and a burst detection unit.
  • the digital reception signal is delayed by a burst period for burst detection and output to the burst detection unit.
  • the cross-correlation power which is the cross-correlation result
  • the timing control unit After a predetermined time from the first timing, a third synchronization detection signal is output to the amplification gain control unit.
  • the amplification gain control unit that has received the third synchronization detection signal returns to the initial mode, that is, the standby mode for the trigger signal.
  • FIG. 1 is a block diagram showing a configuration example of a demodulation device equipped with a conventional AGC circuit applicable to a wireless communication system using burst synchronization.
  • FIG. 2 is a block diagram showing an embodiment of a burst synchronous demodulator to which the automatic gain control circuit according to the present invention is applied.
  • FIG. 3 is a diagram showing a burst signal section including a representative preamble signal of the IEEE 802.11a system.
  • FIG. 4 is a diagram showing a burst signal section including a representative preamble signal of the BRAN system.
  • FIG. 5 is a diagram showing a burst signal section including a typical preamble signal of the WIRELESS 394 system.
  • FIG. 6 is a diagram showing a signal form in which a reference signal REF is inserted into a data signal section that is longer than a certain period in the Wireless 394 394 system.
  • FIG. 7 is a circuit diagram showing a specific configuration of the automatic gain control amplifier of FIG.
  • FIG. 8 is a diagram showing an example of the gain control characteristic of the gain control amplifier of FIG. 7.
  • FIG. 9 shows the output of the received signal power observing section with respect to the input level of the received signal. It is a figure showing a force characteristic.
  • FIG. 10 is a circuit diagram showing a specific configuration example of the reception signal processing unit in FIG.
  • FIG. 11 is a circuit diagram showing a specific configuration example of the burst detection unit and the timing control unit in FIG.
  • FIG. 12 is a circuit diagram showing a configuration example of the autocorrelation circuit of FIG.
  • FIG. 13 is a circuit diagram showing a configuration example of the cross-correlation circuit of FIG.
  • FIGS. 14A to 14G are diagrams showing timing charts from the autocorrelation processing of the burst detection unit to the output of the synchronization detection signals Xpulse and ypulse.
  • FIGS. 15A to 15F are diagrams showing timing charts from the cross-correlation processing of the burst detection unit to the output of the synchronization detection signal cuise and the FFT timing signal TFFT.
  • FIG. 16 is a flowchart for explaining the first stage of the gain control operation in the amplification gain control unit according to the present invention.
  • FIG. 17 is a flowchart illustrating a second stage of the gain control operation in the amplification gain control unit according to the present invention.
  • FIG. 18 is a flowchart for explaining a third stage of the gain control operation in the amplification gain control unit according to the present invention.
  • FIG. 19 is a circuit diagram showing a specific configuration example of the amplification gain control unit in FIG.
  • FIGS. 20A to 20H are diagrams showing evening timing charts for explaining the operation of the amplification gain control unit in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 2 is a block diagram showing an embodiment of a burst synchronous demodulator to which the automatic gain control circuit according to the present invention is applied.
  • the burst synchronous demodulator 20 has an automatic gain control amplification unit (AGCAMP) 201, a received signal power observation unit (POW) 202, and an A / D converter (ADC) 203 , Digital / analog (D / A) converter (DAC) 204, A / D converter (ADC) 205, received signal processing unit (RXP RC) 206, OFDM demodulation unit (DEMOD) 207, delay unit (DLY) 208 , A burst detection section (BDT) 209, a timing control section (TMG) 210, and an amplification gain control section (AGCTL) 211 as main components.
  • a CAAMP automatic gain control amplification unit
  • POW received signal power observation unit
  • ADC ADC
  • DAC Digital / analog converter
  • ADC ADC
  • RXP RC received signal processing unit
  • DEMOD OFDM demodulation unit
  • DLY delay unit
  • a burst detection section BDT
  • TMG timing control section
  • an automatic gain control system of a burst synchronous demodulator of a 5-GHz band wireless LAN system will be described as an example of a burst synchronous communication system.
  • the 5 GHz band wireless LAN system employs an OFDM modulation scheme to achieve excellent communication performance over a wide band.
  • the OFDM modulation method has high strength against ghost and multipath, but weak strength against nonlinearity (non-linearity) of the circuit.
  • a burst signal of 10 to 20 X seconds called a preamble signal is inserted at the beginning of the modulated signal, and the timing is synchronized within this interval.
  • / D converter 203 It is necessary to capture the level of the voltage amplitude within a signal allowable range that does not cause distortion.
  • a frequency characteristic of a transmission path called a reference signal is observed, and a reference signal for correcting a data signal (actual communication data) following the preamble signal is provided. Since the level of the digital signal output from the A / D converter 203 is not allowed to fluctuate between the reference signal and the overnight signal, it is necessary to keep the gain of the automatic gain control amplifier 201 constant. is there.
  • three levels of level acquisition are performed in order to realize high-speed and high-performance level acquisition performed in the above preamble section.
  • FIG. 3 is a diagram showing a burst signal section including a typical preamble signal of an IEEE 802.11a system
  • FIG. 4 is a burst signal including a typical preamble signal of a BRAN system
  • FIG. 5 is a diagram showing a signal portion
  • FIG. 5 is a diagram showing a burst signal portion including a typical preamble signal of the Wire 1 ess 1394 system.
  • a 16, B 16, etc. indicate the pattern identification and the burst period
  • IA 16 indicates the phase inverted pattern of A 16 Is represented.
  • C 64 represents a reference signal, and 3 shows this part of the evening.
  • pattern B16 is repeated 10 times, whereas in BRAN, the first five periods are different (A16, IA16, A16, IA 16, IA 16).
  • the pattern is A16, IA16, A16, IA16, A16, IA16, A16, IA16, IA16, IA16.
  • a reference signal REF is inserted in a data signal section longer than a certain period.
  • the transmission characteristics are measured again for each of the reference signals, thereby preventing the deterioration of the reception performance.
  • each element of the demodulation device that demodulates a received signal by inserting a burst signal portion including a signal of 10 to 20 // seconds called a preamble signal at the head of the modulated signal is as follows: It has various configurations and functions.
  • the automatic gain control amplification section 201 converts the reception signal RS received by an antenna (not shown) based on the level of the gain control signal Vagc from the amplification gain control section 211 supplied through the DAC 204. Automatic gain control is performed, and the signal RX at the desired level is output to the AZD converter 203 as.
  • the automatic gain control amplifier 201 controls the case where the automatic gain control is performed by the gain control signal Vagc from the amplification gain controller 211 and the case where the control gain is fixed.
  • FIG. 7 is a circuit diagram showing a specific configuration of the automatic gain control amplifier 201. It is.
  • the automatic gain control amplifier 201 includes a gain control amplifier (GCA) 201 1, a local oscillator 201 2, a multiplier 201 3, an amplifier 2014, and a It has a 10 MHz band pass filter (BPF) 20 15.
  • GCA gain control amplifier
  • BPF band pass filter
  • the local oscillator 2012 and the multiplier 2013 constitute a frequency conversion circuit.
  • Local oscillator 20 12 outputs, for example, signal e [j 2 ⁇ f cw t) of carrier frequency i cw to multiplier 2013.
  • [] indicates a power of e.
  • the received signal (IF input signal) RS is amplified by the gain control amplifier 201 1 with the gain determined by the gain control signal Vagc, and the local oscillator 20 12 After the frequency conversion by the frequency conversion circuit composed of the device 2013, the band is limited by the BPF 2015 to obtain the output signal (IF output) RX.
  • FIG. 8 is a diagram showing gain control characteristics of the gain control amplifier 201 1 of FIG.
  • the horizontal axis represents the gain control signal Vagc, and the vertical axis represents the gain.
  • the gain control amplifier 201 1 has a gain of 0 to 80 dB when the gain control signal Vagc is in the range of 0 V to 1 V (linear). Has changed. ,
  • control gain range is 80 dB.
  • the received signal power observation unit 202 includes a peak detection circuit (Peak Det) 2021 as a peak value detection circuit as shown in FIG. 7, measures the peak voltage of the received signal RS, and inputs the measured signal. The signal is converted to an electric field strength signal RSSI, which is a voltage signal having a value corresponding to the received signal level, and output to the AZD converter 205.
  • RSSI electric field strength signal
  • a peak value is detected instead of an average value.
  • a reset signal is given to reset the peak detection circuit (Peak Det) 2021 and observe the maximum peak value thereafter.
  • FIG. 9 is a diagram showing output characteristics of received signal power observation section 202 with respect to the input level of the received signal.
  • the horizontal axis represents the input level
  • the vertical axis represents the voltage of the field strength signal RRS I.
  • the voltage of the field strength signal RSSI changes linearly from 0 V to 2 V when the input level is in the range of 70 dBB to 120 dBBV. ing.
  • the A / D converter 203 converts the analog reception signal RX output from the automatic gain control amplifier 201 into a digital signal, and outputs the digital reception signal RXD to the reception signal processing unit 206.
  • the DZA converter 204 converts the gain control signal Vagc generated by the amplification gain control unit 211 from a digital signal to an analog signal, and outputs it to the automatic control gain amplification unit 201.
  • the AZD converter 205 converts the electric field strength signal RS SI output from the received signal power observation unit 202 from an analog signal to a digital signal RS S ID and outputs the signal to the amplification gain control unit 211.
  • Received signal processing section 206 converts digital received signal RXD into baseband signals bb-re (real part) and bb-im (imaginary part), and reduces the sampling frequency of the baseband signal to a lower frequency.
  • the signal is converted (down-sampled) and subjected to complex multiplication based on the error detection frequency ⁇ f by the burst detection unit 209 to correct the frequency offset to generate a signal S 206 (sy—re and sy—im).
  • FIG. 10 is a circuit diagram showing a specific configuration example of received signal processing section 206 in FIG.
  • the received signal processing unit 206 includes a baseband conversion circuit 2061, digital low-pass filters (LPF) 2062, 2063, down-conversion circuits 2064, 2065, and a frequency offset correction circuit. 2066.
  • LPF digital low-pass filters
  • the base-span conversion circuit 206 1 is composed of a local oscillator 206 1 1 and multipliers 206 1 2, 206 13.
  • the baseband conversion circuit 2061 multiplies the received signal RXD (if) by the carrier frequency fcw in the multipliers 20612 , 20613 to obtain the input reception signal as shown in the equation (1).
  • the signal RXD (if) is converted to baseband signals b b_r e, bb—im and supplied to LPFs 2062 and 2063, respectively.
  • the LPFs 2062 and 2063 have a transversal circuit configuration of, for example, a linear phase FIR (finite impulse response).
  • the LPF 2062 is connected in cascade with respect to the input line of the baseband signal bb-re to form a shift register (n_ 1) delay units 1 re- 1 to lre- n- 1 and the input Multipliers 2 re for multiplying the output signals of the baseband signal bb—re and the delay units 1 re—l to lre—n_l by filter coefficients h (0) to h (n—1), respectively _ l ⁇ 2 re—n and n multipliers 2 r It is composed of an adder 3re that adds the output signals of e-1 to 2re-n and outputs the result to the down-conversion circuit 2064.
  • the LPF 2063 is composed of (n_l) delay units 1 im_l to 1 im—n-1 that are cascaded to the input line of the base band signal bb—im and constitute a shift register. Filler coefficients h (0) and more for the input 'baseband signal bb-im and the output signals of the delay units 1 im-1 to 1 im-nl, respectively! ! (n-1) multiplied by n multipliers 2 im— 1 to 2 im— n and n multipliers 2 im— 1 to 2 im— It consists of an adder 3 im that outputs.
  • LPFs 2062 and 2063 and down-converting circuits 2064 and 2065 convert the sampling frequency of the baseband signals bb-re and bb-im to a signal dc-re from 100 MHz to 25 MHz, for example. You.
  • the LPFs 2062 and 2063 restrict the band of the baseband signal b b—re and b b—im so that adjacent carriers do not return.
  • the down-sampling timing in the down-converting circuits 2064 and 2065 is such that the clock is thinned out after receiving the supply of the signal En.
  • the frequency offset correction circuit 2066 includes a local oscillator 2061, multipliers 2062 to 20665, and adders 20666 and 20667.
  • the frequency offset correction circuit 2066 reflects the error detection frequency ⁇ f given by the burst detection unit 209 on the oscillation output of the local oscillator 2061, and multiplies the oscillation output and the signal d c_r e by the multiplier 20662.
  • 20665 complex multiplication, the oscillation output and the signal dc—im are complex multiplied by the multipliers 20663 and 20664
  • the adder 20666 adds the output of the multiplier 20662 and the output of the multiplier 20663
  • the adder 20667 adds the output of the multiplier 20664 and the output of the multiplier 20665, whereby the following equations (2) and (3) are obtained.
  • the signals sy-re and syim are generated as shown in (1) and output to the OFDM demodulation section 207, delay section 208, cost detection section 209, and amplification gain control section 211.
  • the signals sy-re and sy-im are subjected to high-speed discrete Fourier transform in synchronization with the FFT timing signal TFFT supplied from the timing control section 210 to demodulate the OFDM signal, and Output to the processing circuit.
  • the delay unit 208 delays the output signal S206 of the received signal processing unit 206, that is, the signals sy_re and sy_im by the burst period for burst detection, and detects the burst as the signal S208. Output to section 209.
  • a burst of 16 clock cycles is detected using the delay amount of the delay unit 208 as 16 clocks.
  • the delay amount of the delay unit 208 is
  • Burst detection for the first 5 cycles as 2 clocks and burst detection for the second 5 cycles can be performed by setting the delay amount of the delay unit 208 to 16 clock delays, but two delay means with different delays I need. [0 1 6 7] In the burst detection of the W irelessl 394 system, a burst of the first 5 cycles can be detected by setting the delay amount of the delay unit 208 to 32 clocks, and a burst of the second 5 cycles with the same delay amount can be detected. Burst detection can also be performed.
  • Burst detection section 209 correlates signal S 206 (sy-re and sy-im) from received signal processing section 206 with delayed signal S 208 from delay section 208, and determines a communication system. Detects the period signal, detects the parameters related to the packet and frame structure, and synchronizes with the timing signal TMNG (X, Y, C) by the timing control unit 210 as a synchronous timing window signal.
  • the first and second synchronization detection signals S209W (xpulse, ypulse) are generated and output to the amplification gain control unit 211.
  • the burst detection unit 209 outputs a predetermined correlation result and a valid signal S209C that is a reference of the timing signal output to the timing control unit 210.
  • burst detection section 209 calculates an error frequency from the phase difference between the real part and the imaginary part of the received signal based on the correlation result, generates error detection frequency ⁇ f, Output to 206.
  • the timing control section 210 generates the first and second synchronization detection signals S 209 W (xpulse, ypulse) by the burst detection section 209 using the trigger signal r xwn dw as a trigger.
  • the timing signal TMNG (X, Y, C) is output to the burst detector 209.
  • the timing control unit 210 observes the peak timing from the correlation result by the burst detection unit 209, and outputs the third synchronization detection signal S210 (cpulse) a predetermined time after this peak timing. Output to amplification gain control section 211, and outputs FFT timing signal TFFT to OFDM demodulation section 207.
  • FIG. 11 is a circuit diagram showing a specific configuration example of the burst detection unit 209 and the timing control unit 210 in FIG. [0 1 74]
  • the burst detection unit 209 includes an autocorrelation circuit 20901, a cross-correlation circuit 20902, a coefficient table 20903, delay units 20904 and 20905 with a delay amount set to 32 clocks, and a delay amount of 48.
  • Delay section set for clocks 2 0906 to 20909, Moving average circuit 209 10 to 209 15, Absolute value calculation circuit 209 16 to 209 18, Threshold circuit 209 19, 20920, Comparison circuit 20 92 1 , 20922, timing window X circuit 20923, timing window Y circuit 20924, timing window C circuit 20925, frequency error detection circuit 20926, and latch circuit 20927.
  • the timing control section 210 has a peak search circuit 21 001, and a timing counter 210 002.
  • the signals sy_re and sy-im supplied from the received signal processing circuit 206 are input to an autocorrelation circuit 20901, a cross-correlation circuit 20902, and an absolute value calculation circuit 20916.
  • the signal sy-re is delayed by the delay unit 208 re by 16 clocks and input to the autocorrelation circuit 20901.
  • the signal sy—im is delayed by 16 clocks in the delay unit 208im and input to the autocorrelation circuit 20901.
  • FIG. 12 is a circuit diagram showing a configuration example of an autocorrelation circuit.
  • the autocorrelation circuit 20901 includes, as shown in FIG. 12, multipliers 11 to 14 and adders 15 and 16.
  • the autocorrelation circuit 20901 uses the fact that the X and Y sections in the first half of the brimble signal added to the head of the received signal are periodic functions of 16 clocks, and the input signal sy_r e And sy—im and 16-clock delay sections 208 re and 208 im output sy—re * and sy_im * are conjugate-complexed to obtain auto-correlation outputs acre and acim, and delay sections 20904 to 20907 and And moving average circuit 20 9 10 to 209 13 [0 1 8 1] Specifically, a multiplier 11 multiplies the input signal s y_r e and the delay signal s y_r e * by a complex, and multiplies the input signal s y_r e and the delay signal s y_ im * Multiplier 13 multiplies the input signal sy—im and the delayed signal s y_r e * in a multiplier 13 and multiplies the input
  • An elementary multiplication is performed, and an adder 15 adds an output of the multiplier 11 to an output of the multiplier 15 to obtain an autocorrelation output signal acre, and an adder 16 outputs the output of the multiplier 12 and the multiplier 14 To obtain an autocorrelation output signal acim.
  • the cross-correlation circuit 20902 is cascaded to the input line of the signal sy-re to form a shift register (m-1) delay units 2 lre_l to 21 re-m-1 and the input signal sy-re and each delay 2 1 re- ;! M multipliers for multiplying the output signals of 22 1 re -m-1 by the coefficients set in the coefficient table 2 090 3, respectively. And an adder 23 re for adding the output signals of 22 re-l to 22 re-m and outputting the correlation output signal cc-re to the absolute value calculation circuit circuit 20918.
  • the cross-correlation circuit 20902 is connected in cascade to the input line of the signal sy_im and constitutes a shift register (m_ 1) delay units 2 1 im—
  • the coefficient table 20903 is set for 1 to 21 i mm-1 and the input signal s y_ im and the output signal of each delay unit 2 1 im—1 to 21 i mm-1.
  • an adder 23 im that adds the output signals of 2222 im ⁇ m and outputs a cross-correlation output signal c c ⁇ im to the absolute value calculation circuit circuit 209 18.
  • the cross-correlation circuit 20902 writes the input signals sy-re and sy-im sequentially into the shift register, and stores the value of each tap with the value of the coefficient table 209 03 and each multiplier 22 re-l to 22. re—m, 22 im—l to 22 im_m To obtain the cross-correlation outputs cc-re and cc-im.
  • the coefficient table stores the data value of 32 clocks before the C64 section in the latter half of the preamble signal.
  • the output signal a cr e of the autocorrelation circuit 2090 1 is a moving average circuit 2
  • the signal is input to 09 12 directly and delayed by 48 clocks via the delay unit 20906, averaged (integrated), and input to the absolute value calculation circuit 209 17.
  • the output signal ac im of the autocorrelation circuit 20901 is input to the moving average circuit 209 13 directly and delayed by 48 clocks via the delay unit 20907, and is averaged. (Integrated) is input to the absolute value calculation circuit 209 17.
  • the autocorrelation power ACP is obtained by calculating the absolute value (re 2 + im 2 ) by squaring the real part re and the imaginary part im in the absolute calculation circuit 20917. Output to circuit 20 92 1.
  • the output signal acre of the autocorrelation circuit 20901 is input to the moving average circuit 20910 directly and delayed by 32 clocks via the delay unit 20904, and is averaged (integrated). ) Is input to the frequency error detection circuit 20926.
  • the output signal acim of the autocorrelation circuit 20901 is input to the moving average circuit 209111 directly and after being delayed by 32 clocks via the delay unit 20905, and is averaged. (Integrated) is input to the frequency error detection circuit 20926.
  • the output signal of the absolute value calculation circuit 20916 is input to the moving average circuit 20915 directly and delayed by 32 clocks via the delay unit 20909, and is averaged (integrated). ) Is input to the threshold circuit 20930.
  • a threshold value of autocorrelation th—ac is defined and supplied to the comparison circuit 20921.
  • the threshold value of the cross-correlation t h — c c is defined and supplied to the comparison circuit 20922.
  • the autocorrelation power ACP is compared with the autocorrelation threshold value th_ac, and the result is output to the timing window X circuit 20923 and the timing window Y circuit 20924. You.
  • the peak timing of the cross-correlation power C CP by the burst detection section 209 is observed by the peak search circuit 21001, and the timing is output to the timing counter 2 1002.
  • the timing counter 2 1002 increments the counter with the trigger signal r xwn dw input as a trigger, and at a predetermined timing, the evening timing signals TX and TYTC are set to the timing window of the burst detection unit 209.
  • the timing window is multiplied by the comparison result of the comparison circuits 20923, 20924, and 20925, and the first synchronization is performed from the timing window X circuit 20923.
  • the detection signal xpu 1 se is output from the timing window Y circuit 20924 to the second synchronization detection signal ypu 1 se to the amplification gain control unit 211.
  • peak search circuit 21001 receives the peak timing of cross-correlation power CCP, and timing counter 21002 performs third synchronization after a certain time from the peak timing.
  • the detection signal cpu 1 se is output to the amplification gain control section 211, and the FFT timing signal TFFT is output to the OFDM demodulation section 207.
  • FIGS. 14A to 14G are diagrams showing timing charts from the autocorrelation processing of the burst detection unit to the output of the synchronization detection signals xpu1se and ypu1se.
  • FIG. 14A shows a preamble and reference portion of input signal S206 (sy-re, sy_im), and Fig. 14B shows a delay obtained by delaying signal S206 by delay section 208.
  • FIG. 14C shows the autocorrelation power ACP
  • FIG. 14D shows the timing window X
  • FIG. 14E shows the timing window Y
  • FIG. 14F shows the first synchronization detection signal X p U 1 se
  • FIG. 14G shows the second synchronization detection signal ypulse.
  • the preamble signal of the Wirelessl 394 has five X periods and five Y periods, each having 16 clock periods. As shown in FIG. In the X and Y sections, the autocorrelation power AC P increases.
  • FIG. 5 is a diagram showing an evening timing chart until a synchronization detection signal cpuise and an FFT timing signal TFFT are output.
  • FIG. 15A shows an input signal S 206 (sy_r e, sy__ im), and FIG. 15B shows a cross-correlation power CCP.
  • 5C shows the evening timing window C
  • FIG. 15D shows the valid signal ccVa1id output from the timing window circuit 20925
  • FIG. 15E shows the third synchronization detection signal cpulse.
  • FIG. 15F shows the FFT timing signal TFFT.
  • Fig. 15C more accurate peak detection can be performed by setting the timing window C before and after the timing when the cross-correlation power C CP is maximized. After 32 clocks from the peak timing detected in this way, as shown in FIGS. 15E and 15F, the third synchronization detection signal cuise and the FFT timing signal TFFFT are output.
  • the FFT timing signal TFFT is output after 64 clocks, and thereafter, it is repeatedly output in 72 clock cycles.
  • the frequency error detection circuit 2 0 9 2 6 calculates the phase difference from the real part and the imaginary part of the autocorrelation output signal, and calculates the error frequency A; f from the following equation (4). calculate.
  • ⁇ f tan one 1 (acim / aere) X ( 1/3 2) X 20 x 1 0 6 (Hz)
  • Amplification gain control section 211 receives digital received signal S 206 after gain control by automatic gain control amplification section 201 from reception signal processing section 206, and A / D converter
  • the digital electric field strength signal RS SID indicating the peak level of the received signal RS of the received signal power observation unit 202 by the bar signal 205 and the first and second signals as the synchronization timing window signal from the burst detection unit 209
  • the timing control unit 210 Based on the synchronization detection signal S209W (xpu1se, ypu1se) and the third synchronization detection signal S210 (cpu1se) by the timing control unit 210, the details will be described below.
  • the control for controlling the gain of the automatic gain control amplifier 201 is performed in accordance with the synchronous burst detection timing, and the gain is controlled by changing the gain voltage Vagc so that the received signal has the optimum signal level. Then, the gain control signal Vagc is output to the automatic gain control amplifier 201 via the D / A converter 204.
  • the gain control signal Vagc is output from the amplification gain control section 2 1 1 at the maximum value (ST 2), and automatic gain control amplification is performed.
  • the gain of the unit 201 is set to the maximum (first gain) (ST3), and burst detection is performed by a combination of the delay unit 208 and the burst detection unit 209.
  • burst detection can be performed without lowering the detection rate because the autocorrelation circuit 20901 is used in the burst detector 209. It is.
  • the received signal power is observed by the received signal power observation unit 202 and the electric field strength signal RS SI, which is the received signal power signal, is converted into an AZD converter 20 Input as a digital signal RS SID via 5 (ST 5).
  • a peak value (peak value) is detected instead of an average value.
  • a reset signal is given, the peak detection circuit is reset, and the maximum peak value thereafter is observed.
  • the digital electric field strength signal RS SID The gain is calculated based on the level (ST8), the gain control signal Vagc is set to the calculated value CVI (ST9), and the gain of the automatic gain control amplifier 201 is calculated via the DZA comparator 204 CVI (Second gain) (ST 10).
  • control gain CG1 at this time is calculated based on the following equation.
  • VRS SI indicates the received signal power value observed by the received signal power observation unit 202
  • Vrefl indicates the first reference signal power value that is an appropriate value that does not distort the A / D converter 203. ing.
  • the gain of the automatic gain control amplification unit 201 includes analog signal processing in the process of calculating the peak value of the received signal power, includes a slight variation, and is rough. Gain control is performed.
  • the amplification gain control unit 211 integrates the digital value of the received signal and measures the accurate signal power (ST 1 1).
  • the second synchronization detection signal S209W (ypu1se) is received by the burst detection unit 209. (ST 13), calculates the gain based on the digital integrated value of the received signal S 206 passed through the A / D converter 203 without distortion (ST 13), and sets the gain control signal Vagc to the calculated value CV 2 Then (ST14), the gain of the automatic gain control amplification unit 201 is set to the calculated value CV2 (third gain) via the DZA converter 204 and optimized (ST15).
  • Control gain CG2 at this time is calculated based on the following equation.
  • VI is the received signal power value after passing through the AZD converter 203 integrated by the amplification gain control unit 211
  • Vref2 is the second reference signal power value
  • the received signal after gain control The optimum values of the power are shown.
  • the optimized gain value is fixed until the end of the data signal and the start of the next burst detection (ST16).
  • a reset signal is supplied to received signal power observation section 202 to reset peak detection circuit 2021 and observe the maximum peak value thereafter.
  • FIG. 19 is a circuit diagram showing a specific configuration example of the amplification gain control section 211 of FIG.
  • the amplification gain control section 2 11 1 has an initial gain table 2 1 1 0 1.
  • the amplification gain control unit 211 is configured to generate a synchronization detection timing pulse, that is, a trigger signal r xwn dw, a first synchronization detection signal xpu 1 se by the burst detection unit 209, and a second synchronization detection. It has a state machine configuration based on the signal yp u 1 se and the third synchronization detection signal cuise by the timing control unit 210, and different gains agc of the automatic gain control amplification unit 201 are output in each of the states 0 to 3. Is controlled to be.
  • FIGS. 2OA to 20H are diagrams each showing an evening timing chart for explaining the operation of the amplification gain control unit in FIG.
  • Fig. 20A shows an input signal S206 (sy_re, sy_im)
  • Fig. 20B shows a trigger signal rx wn dw
  • Fig. 20C shows a first synchronization detection
  • 20D shows the signal xP u 1 se
  • FIG. 20D shows the second synchronization detection signal ypu 1 se
  • FIG. 20E shows the third synchronization detection signal cpulse
  • FIG. 20F shows the state
  • FIG. The gain control signal Vagc is shown
  • FIG. 20H shows the received signal RX output from the automatic gain control amplifier 201.
  • An appropriate gain is selected from the initial gain table 21101 based on the flag signal StationID.
  • the initial gain table 2 110 1 is set so as to have the maximum gain.
  • the trigger signal r xwn dw is passed through the gain selection circuit 21 1 13 at the rising timing, and the gain is obtained from the control gain adjustment table 2 1 1 14 Output as control signal Vagc and state Move to 1.
  • the initial gain (maximum gain) determined by the initial F gain table 2111 is output as the gain control signal Vagc.
  • RSI gain gain-rssi is calculated in adder 211108 as in equation (6). Then, as shown in FIGS. 20C, 20F, and 20G, at the input timing of the first synchronization detection signal xpu 1 se, the selection gain of the gain selection circuit 21 1 13 is added from the initial gain to the adder 2 1 1 Switch to the RS SI gain gain rssi by 08, output the gain control signal Vagc from the control gain adjustment table 21 114, and go to state 2.
  • rssiref is a value obtained by subtracting 40 in advance because the bit width is set to 8 bits with the R SSI reference value, and 40 is added and corrected during gain calculation.
  • the R SSI gain gain—rssi is output as the gain control signal Vagc.
  • Multiplier 2 1 103 squares input signal sy_r e, squares input signal sy—im in multiplier 2 1104, squares input signal sy—im, and adds these in adder 2 1 105 to input received signal.
  • the digital integrated value is calculated through the adder 2 1106, the delay unit 2110 9, and the delay unit 2110, and the received signal level adssi is calculated by the logarithmic converter 2 1 1 1 1 into the formula ( Calculate as in 7).
  • the adssi gain gain—rssi is expressed as in equation (8). Is calculated.
  • the selection gain of the gain selection circuit 2 1 1 1 2 is set to the RS SI gain. Switch from rssi to adssi gain gain_rss i by adder 2 1 1 0 7, output as gain control voltage signal Vagc from control gain adjustment table 2 1 1 1 4, and transition to state 3.
  • adssi gain gain—rssi is output as a gain control signal Vagc.
  • the gain control voltage signal Vagc holds the ad ss i gain gain—rs s i.
  • the gain control signal Vagc is set to the maximum value and output from the amplification gain control unit 211 with the trigger signal rxwndw as a trigger.
  • the gain control signal Vagc is converted into an analog signal by the D / A converter 204 and supplied to the automatic gain control amplifier 201.
  • the automatic gain control amplifying section 201 receives the gain control signal, which is an analog signal. In response to the signal Vagc, the gain is set to the maximum first gain.
  • the preamble signal at the head of received signal RS is input to automatic gain control amplification section 201.
  • the substantially X section in the first half of the preamble signal of the received signal RS is amplified with the maximum gain and output to the AZD comparator 203 as the signal RX.
  • the preamble signal of the received signal RS is input to the received signal fog observation unit 202.
  • the received signal R is input to the received signal fog observation unit 202.
  • RS SI which is a voltage signal that takes a value according to the input received signal level, and is converted to an A / D converter.
  • the electric field strength signal RS SI which is the received signal power signal is input to the amplification gain control section 211 as a digital signal RS SI D via the A / D converter 205.
  • the preamble signal portion of received signal RS is converted from an analog signal to a digital signal, and is supplied to received signal processing section 206 as signal RXD.
  • input digital received signal RXD is converted into baseband signals bb_re (real part) and bb-im (imaginary part), and the sampling frequency of the baseband signal is lower. Is converted to
  • the output signal S206 of the reception signal processing unit 206 that is, the signals sy_r e and sy—im are delayed by the burst period for burst detection, and the burst is detected as the signal S208.
  • burst detection section 209 autocorrelation and cross-correlation between signal S206 (sy-re and sy-im) by reception signal processing section 206 and delayed signal S208 by delay section 208 are obtained.
  • a first synchronization detection signal S209W (which indicates that the first X section of the preamble signal has been detected) xpu 1 se) is generated and output to the amplification gain control unit 211.
  • burst detection can be performed without reducing the detection rate because the autocorrelation circuit is used in the burst detection unit 209.
  • an error frequency is calculated from the phase difference between the real part and the imaginary part of the received signal based on the autocorrelation result, and error detection frequency ⁇ f is generated. Is output to
  • Amplification gain control section 211 receives burst synchronization detection signal S209W (xpulse) from burst detection section 209, calculates gain based on the level of digital field strength signal RSSID, and controls gain.
  • the signal Vagc is set to the calculated value CV1.
  • the gain control signal Vagc is converted to an analog signal by the DZA converter 204 and supplied to the automatic gain control amplifier 201.
  • Automatic gain control amplification section 201 receives gain control signal Vagc, which is an analog signal, and sets the gain to the second gain of the calculated value.
  • the gain of the automatic gain control amplification section 201 is Analog signal processing is included in the process of calculating the peak value of the signal power, and there is some variation, resulting in rough gain control.
  • automatic gain control amplification section 201 the remaining X section and second half Y section of the preamble signal of received signal RS are amplified with a second gain according to the received signal level, and A is used as signal RX.
  • Output to / D Comparator 203 the remaining X section and second half Y section of the preamble signal of received signal RS are amplified with a second gain according to the received signal level, and A is used as signal RX.
  • the preamble signal portion of the received signal RS is converted from an analog signal to a digital signal and supplied to the received signal processing unit 206 as a signal RXD.
  • the input digital received signal RXD is converted into baseband signals bb-re (real part) and bb-im (imaginary part), and the sampling frequency of the baseband signal is lower. Is converted to
  • the frequency offset is corrected based on the error detection frequency ⁇ ⁇ ⁇ f by the burst detection unit 209 to generate a signal S206 (sy_re and sy_im), and the OFDM demodulation unit 207, the delay unit 208 and the burst detection unit 209.
  • the output signal S206 of the received signal processing unit 206 that is, the signals sy_r e and sy-im are delayed by the burst period for burst detection, and the burst is detected as the signal S208.
  • burst detection section 209 autocorrelation and cross-correlation between signal S206 (sy__re and sy-im) by reception signal processing section 206 and delay signal S2 ⁇ 8 by delay section 208 are obtained.
  • a synchronization detection signal S209W (ypu1se) is generated and output to the amplification gain control section 211.
  • the burst detector 209 calculates an error frequency from the phase difference between the real part and the imaginary part of the received signal based on the autocorrelation result, generates an error detection frequency ⁇ f, and generates the received signal. Output to the processing unit 206.
  • Amplification gain control section 211 receives signal S206 passed through AZD converter 203 without distortion with a gain based on the received signal power, and integrates the digital value of the received signal. And the exact signal power is measured.
  • the amplification gain control unit 211 receives the second synchronization detection signal S209W (ypulse) from the north detection unit 209, and turns off the A / D converter 203.
  • the gain is calculated based on the integration value of the digitized signal of the received signal S206 passed through the distortion, and the gain control signal Vagc is set to the calculated value CV2.
  • the gain control signal Vagc is converted into an analog signal by the DZA converter 204 and supplied to the automatic gain control amplifier 201.
  • Automatic gain control amplification section 201 receives gain control signal Vagc, which is an analog signal, and sets the gain to the third gain of the optimum calculated value.
  • the automatic gain control amplification section 201 the remaining Y section of the preamble signal of the received signal RS, the reference C 64 and data after C 16 and the data having the third gain corresponding to the received signal level are provided. It is amplified and output to AZD converter 203 as signal RX.
  • the reference C64 and the data portion of the received signal RS are converted from an analog signal to a digital signal and supplied to the received signal processing unit 206 as a signal RXD.
  • the frequency offset is corrected based on the error detection frequency ⁇ f by the burst detection unit 209, and the signal S206 (sy—re and sy—
  • output signal S206 of received signal processing section 206 that is, signals sy-re and sy-im are delayed by a burst cycle for detecting a noise, and signal S2 Output to burst detector 209 as 208
  • the autocorrelation and cross-correlation with 208 are taken.
  • the cross-correlation power which is the cross-correlation result, is supplied to the timing control unit 210, based on which the peak timing is observed, and after a predetermined time from this peak timing, the third synchronization detection signal S 210 (cpu 1 se) is output to the amplification gain control section 211, and the FFT timing signal TFFT is output to the OFDM demodulation section 207.
  • the amplification gain control unit 211 Upon receiving the third synchronization detection signal S210 (cp1se), the amplification gain control unit 211 returns to the initial mode, that is, the standby mode for the trigger signal rxwndw.
  • the optimized gain value is fixed until the end of the data signal and the start of the next burst detection.
  • the output signal S206 of the reception signal processing section 206 that is, the signals sy_re and sy__im are output from the timing control section 2
  • the fast discrete Fourier transform is performed in synchronization with the FFT timing signal TFFT supplied by 10 and 0 FDM signal is demodulated.
  • the automatic gain control amplification unit 201 amplifies the input received signal level with a gain according to the gain control signal, and the automatic gain control amplification
  • the output of the AZD converter 203 that converts the output signal of the unit 201 from an analog signal to a digital signal, the received signal power observation unit 202 that detects the power of the received signal, and the output of the automatic gain control amplifier Performs burst detection based on the correlation operation between the digital received signal and the output signal of the delay unit, and outputs the first burst synchronization detection signal when the first half of the preamble signal is detected.
  • a gain control signal is automatically used to amplify with a maximum value.
  • the signal is output to the control amplification unit, and when the first burst synchronization detection signal is received by the burst detection unit, the second gain is calculated based on the received signal power value detected by the received signal power observation unit, and the second gain is calculated.
  • a gain control signal is output to the automatic gain control amplification unit so as to amplify with a gain, and the digital reception signal amplified with the second gain is integrated to obtain a received signal power value.
  • an amplification gain control that calculates a third gain based on the obtained received signal power value and outputs a gain control signal to the automatic gain control amplification unit so as to amplify with the third gain. Since the section 211 is provided, the following effects can be obtained.
  • the preamble signal can be burst detected in two stages, coarse gain control is performed when the first burst is detected, and precise gain control is performed when the next burst is detected. Recovery when the burst detection timing is incorrect Lee can do.
  • a pattern of a signal to be digitally integrated can be specified, and more accurate level acquisition can be performed.
  • a reference signal is inserted into the data signal at regular intervals in order to support the synchronous transfer mode.
  • the gain control signal output from the amplification gain control section 21 1 at the timing of the reference signal uses the above (6) based on the digital integration value in the C64 section of the previous reference signal. Can be calculated.
  • the automatic gain control circuit and method of the present invention, and the demodulation device Since it is possible to perform high-speed and accurate level acquisition, it can be applied to burst synchronous communication systems such as wireless LAN.
  • the automatic gain control circuit and method and the demodulation apparatus of the present invention perform level acquisition in a multipath environment by performing fine adjustment of level acquisition for each reference signal. Because it can be realized more accurately, in systems that support synchronous transfer mode, such as the W ire 1 ess 1 3 9 4 system, the reference signal is inserted at regular intervals during the de-evening signal. Applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

明 糸田 書 自動利得制御回路およびその方法、 並びにそれらを用いた復調装置 技術分野
[000 1 ] 本発明は、 無線通信システムの受信機等に適用される自動利得制 御回路、 およびその方法、 並びにそれを用いた復調装置に係り、 特に、 たとえば 直交周波数分割多重 (〇 F DM: Orthogonal Frequency Division Multiplexing ) 変調方式で変調され、 この変調パケット信号の先頭にプリアンブル信号を含む バースト信号が付加された無線信号を受信する無線通信システム等に適用される 自動利得制御回路およびその方法、 並びにそれを用いた復調装置に関するもので ある。 背景技術
[ 0002] ディジタル復調装置では、 アナログ信号をディジタル信号に変換 するアナログ Zディジタル (A/D) コンバータのダイナミックレンジには限り がある。
[ 0003] このため、 A/Dコンバータのダイナミックレンジを越えて A/ D変換されたディジタル信号は、 信号歪みを含んだ形態で出力されることになる
[ 0004] また、 無線 LANシステム等の無線通信システムのように、 多数 の機器間での通信が行われるシステムでは、 個別機器の送信出力および機器間の 距離により、 受信信号レベルが大きく異なる。
[ 000 5] したがって、 無線通信システムにおいては、 受信信号レベルを A /Dコンバータのダイナミックレンジ内に調整する必要がある。 このために、 無 線通信システムの同期復調装置には、 受信信号レベルを A/Dコンバータのダイ ナミックレンジ内に調整するための回路として、 自動利得制御 (AGC : Automa tic Gain Control) 回路が搭載されている。
[00 06] また、 無線通信システムにおいては、 変調信号の先頭にプリアン ブル信号と呼ばれるバースト信号を挿入して送信している。
[0007] そして、 同期復調装置に搭載される AGC回路は、 このバースト 信号の期間内にタイミング同期をとる一方、 バースト信号の受信レベルに基づい て増幅利得の制御を行う。
[0008] このように、 いわゆるパースト同期を用いた無線通信システムに 適用可能な A G C回路として、 様々な回路が提案されている。
[00 09] 図 1は、 バースト同期を用いた無線通信システムに適用可能な従 来の AG C回路を搭載した復調装置の構成例を示すブロック図である。
[00 1 0] 図 1の装置は、 特開平 1 1— 205278号公報に開示されてい るものである。
[00 1 1] この復調装置 10は、 図 1に示すように、 自動利得制御増幅部 ( AG CAMP) 101、 A/Dコンバータ (ADC) 102、 OF DM復調部 ( DEMOD) 1 03、 遅延部 (DLY) 104、 パ一スト検出部 (B D T) 1 0 5、 パケット検出部 (PDT) 106、 および増幅利得制御部 (AGCTL) 1 07により構成されている。
[00 1 2] このような構成を有する復調装置 10においては、 図示しないァ ンテナにより受信された OFDM受信信号 RSが、 自動利得制御増幅部 10 1に 入力される。
[00 1 3] 自動利得制御増幅部 1 01では、 受信信号 RSが自動利得制御さ れ、 最適な信号レベルとして AZDコンバータ 102に出力される。 なお、 自動 利得制御増幅部 10 1では、 増幅利得制御部 107による制御信号 S 107によ り自動利得制御を行う場合と制御利得を固定する場合が制御される。
[00 14] A/Dコンバータ 1 02においては、 入力された受信信号がアナ ログ信号からディジタル信号に変換されて、 ディジタル受信信号 S 1 0 2が OF DM復調部 1 0 3、 遅延部 1 04、 およびバースト検出部 1 0 5に出力される。
[00 1 5] OFD M復調部 1 0 3では、 ディジタル受信信号 S 1 0 2がパ一 スト検出部 1 0 5の出力に基づいて離散フーリエ変換されて OF DM信号が復調 され、 この復調信号 S 1 0 3がパケット検出部 1 0 6および次段の処理回路に出 力される。
[00 1 6] 遅延部 1 04では、 ディジタル受信信号 S 1 0 2がバースト周期 分遅延され、 信号 S 1 04としてバースト検出部 1 0 5に出力される。
[00 1 7] バースト検出部 1 0 5におていは、 ディジタル受信信号 S 1 0 2 とその遅延信号 S 1 04との相関がとられ、 通信システムの定めた周期のバース ト信号が検出され、 検出結果が信号 S 1 0 5として OFDM復調部 1 0 3および 増幅利得制御部 1 0 7に出力される。
[00 1 8] また、 パケット検出部 1 0 6では、 OF DM復調部 1 0 3による 復調信号 S 1 0 3からバケツト先頭のユニークワードが検出され、 バケツトが正 確に復調されたか否かが検出され、 また、 パケットの終了時刻の検出が行われ、 検出結果が信号 S 1 0 6として増幅利得制御部 1 0 Ίに出力される。
[00 1 9] 増幅利得制御部 1 07においては、 バースト検出部 1 0 5による 出力信号 S 1 0 5およびバケツト検出部 1 06の出力信号 S 1 0 6に基づいて、 自動利得制御増幅部 1 0 1の自動利得制御を固定にするか否かの判別が行われ、 判別結果が制御信号 S 1 0 7として自動利得制御増幅部 1 0 1に出力される。
[00 2 0] このように図 1の復調装置は、 バースト同期系においてバースト 同期が確立したか否かにより自動利得制御増幅部 1 0 1における制御利得を固定 または変動させるもので、 バ一スト同期のタイミングとデータ ·パケットのタイ ミングを時分割して通信するバースト同期通信システムに適している。
[00 2 1 ] ところで、 OF DM変調方式は、 一次変調 (QP SK, 1 6 AS AM等) を行った送信信号シンボルを、 2の n乗個まとめて逆フーリエ変換する ことで、 周波数軸上にそれぞれ直交する 2の n乗本のサブキヤリアを構成する変 言 力式でめる。
[0022] OF DM変調方式による OF DM変調信号は、 複数の変調波の合 成信号であることから、 平均振幅に対するピーク振幅の比が大きく振幅変動が大 さい。
[ 0023] したがって、 上述した従来の自動利得制御回路を、 OFDM受信 信号のようなデータの変化の激しい通信システムに適用する場合には、 個々のデ 一夕変化に追従した利得引き込みによる回路歪の発生を抑圧するために、 自動利 得制御回路の時定数を長くしている。
[0024] そのため、 従来の自動利得制御回路では、 バースト同期の期間が 短いと最適利得への引き込みが行えなくなる。
[ 0025] その結果として、 何回かのパケットにわたつて徐々に最適利得に 引き込んでいくようになり、 先頭パケットでの誤りが発生し、 データの再送等に よる通信効率の劣化を招くという不利益がある。
[0026] また、 無線 LANシステムのように、 多数の機器間での通信が行 われるシステムでは、 個別機器の送信出力および機器間の距離により、 受信信号 レベルが大きく異なるため、 長い時定数による自動利得制御回路では、 それぞれ のパケットに最適な利得ではなく、 全てのバケツトの最適利得の平均利得に引き 込まれてしまい、 システムが崩壌してしまう可能性がある。 発明の開示
[ 0027] 本発明は、 かかる事情に鑑みてなされたものであり、 その目的は 、 高速かつ正確なレベル捕捉を実現でき、 ひいては、 誤りの発生を防止でき、 シ ステムの崩壌を防止できる自動利得制御回路およびその方法、 並びにそれを用い た復調装置を提供することにある。
[ 0028] 上記目的を達成するため、 本発明の第 1の観点は、 データ信号の 先頭部に少なくともプリアンブル信号を含むバースト部が付加された受信信号の 増幅利得の制御を行う自動利得制御回路であって、 入力した受信信号レベルを利 得制御信号に応じた利得をもって増幅する自動利得制御増幅部と、 上記受信信号 の電力を検出する受信信号電力観測部と、 上記自動利得制御増幅部の出力を一定 時間遅延させる遅延部と、 上記自動利得制御増幅部の出力信号と上記遅延部の出 力信号の相関演算に基づいてバースト検出を行いバ一スト同期検出信号を出力す るバースト検出部と、 バースト検出開始を示すトリガ信号を受けると、 あらかじ め設定した第 1の利得をもって増幅するように上記利得制御信号を上記自動利得 制御増幅部に出力し、 上記受信信号電力観測部で受信信号電力が検出されると、 検出された受信信号電力値に基づいて第 2の利得を計算し、 当該第 2の利得をも つて増幅するように上記利得制御信号を上記自動利得制御増幅部に出力し、 第 2 の利得で増幅された上記自動利得制御増幅部の出力信号を受けて受信信号電力値 を求め、 上記バ一スト検出部によりバ一スト同期検出信号を受けると、 当該求め た受信信号電力値に基づいて第 3の利得を計算し、 当該第 3の利得をもって増幅 するように上記利得制御信号を上記自動利得制御増幅部に出力する増幅利得制御 部とを有する。
[ 0 0 2 9 ] また、 本発明の第 2の観点は、 データ信号の先頭部に少なくとも プリアンブル信号を含むバースト部が付加され、 かつ当該プリアンブル信号が前 半区間と後半区間の 2段階に分けられている受信信号の増幅利得の制御を行う自 動利得制御回路であって、 入力した受信信号レベルを利得制御信号に応じた利得 をもって増幅する自動利得制御増幅部と、 上記受信信号の電力を検出する受信信 号電力観測部と、 上記自動利得制御増幅部の出力を一定時間遅延させる遅延部と 、 上記自動利得制御増幅部の出力信号と上記遅延部の出力信号の相関演算に基づ いてバースト検出を行い、 上記プリアンブル信号の前半区間を検出すると第 1の バースト同期検出信号を出力し、 後半区間を検出する第 2のバースト同期検出信 号を出力するバースト検出部と、 バースト検出開始を示すトリガ信号を受けると 、 あらかじめ設定した第 1の利得をもつて増幅するように上記利得制御信号を上 記自動利得制御増幅部に出力し、 上記バースト検出部により第 1のバースト同期 検出信号を受けると、 上記受信信号電力観測部で検出された受信信号電力値に基 づいて第 2の利得を計算し、 当該第 2の利得をもって増幅するように上記利得制 御信号を上記自動利得制御増幅部に出力し、 第 2の利得で増幅された上記自動利 得制御増幅部の出力信号を受けて受信信号電力値を求め、 上記バースト検出部に より第 2のバ一スト同期検出信号を受けると、 当該求めた受信信号電力値に基づ いて第 3の利得を計算し、 当該第 3の利得をもって増幅するように上記利得制御 信号を上記自動利得制御増幅部に出力する増幅利得制御部とを有する。
[ 0 0 3 0 ] また、 本発明の第 1または第 2の観点では、 上記増幅利得制御部 は、 第 3の利得を設定後、 次のバースト検出開始まで、 上記自動利得制御増幅部 の利得を当該第 3の利得に固定する。
[ 0 0 3 1 ] また、 本発明の第 1または第 2の観点では、 上記バースト信号は 、 プリアンブル信号に後続するリファレンス信号を含み、 上記バースト検出部の 相関演算結果を受けて上記リファレンス信号を検出し、 上記第 2のバ一スト同期 検出信号または第 3のバースト同期検出信号を上記増幅利得制御部に出力する夕 イミング制御部をさらに有し、 上記増幅利得制御部は、 上記第 2のバ一スト同期 検出信号または第 3のバースト同期検出信号を受けると上記トリガ信号の待ち受 けモードに移行し、 次のトリガ信号の入力まで上記自動利得制御増幅部の利得を 当該第 3の利得に固定する。
[ 0 0 3 2 ] また、 本発明の第 1または第 2の観点では、 上記受信信号電力観 測部は、 バースト検出開始毎にリセットされ、 リセット後の受信信号電力を検出 する。
[ 0 0 3 3 ] また、 本発明の第 1または第 2の観点では、 上記受信信号電力観 測部は、 受信信号のピーク値を検出する。
[ 0 0 3 4 ] また、 本発明の第 1または第 2の観点では、 受信信号のバース卜 部に続くデータ信号区間に、 リファレンス信号が揷入されており、 上記増幅利得 制御部は、 リフアレンス信号区間中に上記第 3の利得の値の微調整を行う。
[ 0 0 3 5 ] また、 本発明の第 1または第 2の観点では、 上記増幅利得制御部 は、 リファレンス信号区間における受信信号電力値を求め、 前回のリファレンス 信号区間における受信信号電力値に基づいて上記第 3の利得の値を微調整する。
[ 0 0 3 6 ] また、 本発明の第 3の観点は、 データ信号の先頭部に少なくとも プリアンブル信号を含むバースト部が付加された受信信号の増幅利得の制御を行 う自動利得制御回路であって、 入力した受信信号レベルを利得制御信号に応じた 利得をもつて増幅する自動利得制御増幅部と、 上記自動利得制御増幅部の出力信 号をアナログ信号からディジタル信号に変換するアナログノディジタルコンバー 夕と、 上記受信信号の電力を検出する受信信号電力観測部と、 上記自動利得制御 増幅部の出力を一定時間遅延させる遅延部と、 上記アナログ/ディジタルコンパ 一夕のディジタル出力信号と上記遅延部の出力信号の相関演算に基づいてパ一ス ト検出を行いバースト同期検出信号を出力するバースト検出部と、 バースト検出 開始を示すトリガ信号を受けると、 あらかじめ設定した第 1の利得をもつて増幅 するように上記利得制御信号を上記自動利得制御増幅部に出力し、 上記受信信号 電力観測部で受信信号電力が検出されると、 少なくとも検出された受信信号電力 値に基づいて第 2の利得を計算し、 当該第 2の利得をもつて増幅するように上記 利得制御信号を上記自動利得制御増幅部に出力し、 第 2の利得で増幅された上記 アナログ Zディジタルコンバータのディジタル出力信号を受けて積分し受信信号 電力値を求め、 上記バ一スト検出部によりバースト同期検出信号を受けると、 当 該求めた受信信号電力値に基づいて第 3の利得を計算し、 当該第 3の利得をもつ て増幅するように上記利得制御信号を上記自動利得制御増幅部に出力する増幅利 得制御部とを有する。
[ 0 0 3 7 ] また、 本発明の第 4の観点は、 データ信号の先頭部に少なくとも プリアンブル信号を含むバースト部が付加され、 かつ当該プリアンブル信号が前 半区間と後半区間の 2段階に分けられている受信信号の増幅利得の制御を行う自 動利得制御回路であって、 入力した受信信号レベルを利得制御信号に応じた利得 をもって増幅する自動利得制御増幅部と、 上記自動利得制御増幅部の出力信号を アナログ信号からディジタル信号に変換するアナログ/ディジタルコンバータと 、 上記受信信号の電力を検出する受信信号電力観測部と、 上記自動利得制御増幅 部の出力を一定時間遅延させる遅延部と、 上記アナログ/ディジタルコンバータ のディジタル出力信号と上記遅延部の出力信号の相関演算に基づいてバースト検 出を行い、 上記プリアンブル信号の前半区間を検出すると第 1のバ一スト同期検 出信号を出力し、 後半区間を検出する第 2のバースト同期検出信号を出力するバ —スト検出部と、 バースト検出開始を示すトリガ信号を受けると、 あらかじめ設 定した第 1の利得をもつて増幅するように上記利得制御信号を上記自動利得制御 増幅部に出力し、 上記バースト検出部により第 1のバースト同期検出信号を受け ると、 上記受信信号電力観測部で検出された受信信号電力値に基づいて第 2の利 得を計算し、 当該第 2の利得をもって増幅するように上記利得制御信号を上記自 動利得制御増幅部に出力し、 第 2の利得で増幅された上記アナログ /ディジタル コンバータのディジタル出力信号を受けて積分し受信信号電力値を求め、 上記バ —スト検出部により第 2のバースト同期検出信号を受けると、 当該求めた受信信 号電力値に基づいて第 3の利得を計算し、 当該第 3の利得をもって増幅するよう に上記利得制御信号を上記自動利得制御増幅部に出力する増幅利得制御部とを有 する。
[ 0 0 3 8 ] また、 本発明の第 3または第 4の観点では、 上記増幅利得制御部 は、 第 2の利得を上記受信信号電力観測部による受信信号電力値に加えて上記ァ ナログ Zディジタルコンバータを歪ませない基準信号電力値に基づいて計算する
[ 0 0 3 9 ] また、 本発明の第 3または第 4の観点では、 上記増幅利得制御部 は、 第 3の利得を求めた受信信号電力値に加えて利得制御後受信信号電力を最適 化した基準信号電力値に基づいて計算する。
[ 0 0 4 0 ] また、 本発明の第 3または第 4の観点では、 上記増幅利得制御部 は、 第 2の利得を上記受信信号電力観測部による受信信号電力値に加えて上記ァ ナログ/ディジ夕ルコンバータを歪ませない第 1の基準信号電力値に基づいて計 算し、 第 3の利得を求めた受信信号電力値に加えて利得制御後受信信号電力を最 適化した第 2の基準信号電力値に基づいて計算する。
[ 0 0 4 1 ] また、 本発明の第 3または第 4の観点では、 上記増幅利得制御部 は、 第 3の利得を設定後、 次のバースト検出開始まで、 上記自動利得制御増幅部 の利得を当該第 3の利得に固定する。
[ 0 0 4 2 ] また、 本発明の第 3または第 4の観点では、 上記バースト信号は 、 プリアンブル信号に後続するリファレンス信号を含み、 上記バースト検出信号 の相関演算結果を受けて上記リファレンス信号を検出し、 第 2のバ一スト同期検 出信号または第 3の同期検出信号を上記増幅利得制御部に出力するタイミング制 御部をさらに有し、 上記増幅利得制御部は、 上記第 2のバースト同期検出信号ま たは第 3の同期検出信号を受けると上記トリガ信号の待ち受けモードに移行し、 次の卜リガ信号の入力まで上記自動利得制御増幅部の利得を当該第 3の利得に固 定する。
[ 0 0 4 3 ] また、 本発明の第 3または第 4の観点では、 上記受信信号電力観 測部は、 バースト検出開始毎にリセットされ、 リセット後の受信信号電力を検出 する。
[ 0 0 4 4 ] また、 本発明の第 3または第 4の観点では、 上記受信信号電力観 測部は、 受信信号のピーク値を検出する。
[ 0 0 4 5 ] また、 本発明の第 3または第 4の観点では、 受信信号のバースト 部に続くデータ信号区間に、 リファレンス信号が挿入されており、 上記増幅利得 制御部は、 リフアレンス信号区間中に上記第 3の利得の値の微調整を行う。
[ 0 0 4 6 ] また、 本発明の第 3または第 4の観点では、 上記増幅利得制御部 は、 リファレンス信号区間における受信信号電力値を求め、 前回のリファレンス 信号区間における受信信号電力値に基づいて上記第 3の利得の値を微調整する。
[ 0 0 4 7 ] また、 本発明の第 5の観点は、 データ信号の先頭部に少なくとも プリアンブル信号を含むパースト部が付加された受信信号の増幅利得の制御を行 う自動利得制御方法であって、 バースト検出を開始するに際して、 あらかじめ設 定した第 1の利得をもって増幅するように上記増幅利得を設定し、 バースト検出 が開始されると、 受信信号を第 1の利得をもって増幅し、 これと並行して上記受 信信号の電力を検出し、 検出した受信信号電力値に基づいて第 2の利得を計算し 、 当該第 2の利得をもって増幅するように上記増幅利得を設定し、 上記第 2の利 得で増幅された受信信号の電力値を求め、 上記第 2の利得で増幅された受信信号 および当該受信信号の遅延信号の相関演算に基づいてバースト検出を行い、 バー ストが検出されると上記求めた第 2の利得で増幅された受信信号電力値に基づい て第 3の利得を計算し、 当該第 3の利得をもって増幅するように上記増幅利得を 設定する。
[ 0 0 4 8 ] また、 本発明の第 6の観点は、 データ信号の先頭部に少なくとも プリアンプル信号を含むバースト部が付加され、 かつ当該プリアンブル信号が前 半区間と後半区間の 2段階に分けられている受信信号の増幅利得の制御を行う自 動利得制御方法であって、 バースト検出を開始するに際して、 あらかじめ設定し た第 1の利得をもって増幅するように上記増幅利得を設定し、 バースト検出が開 始されると、 受信信号を第 1の利得をもって増幅し、 これと並行して上記受信信 号の電力を検出し、 上記第 1の利得で増幅された受信信号および当該受信信号の 遅延信号の相関演算に基づいて上記プリアンブル信号の前半区間のバースト検出 を行い、 前半区間でのバース卜が検出されると検出した受信信号電力値に基づい て第 2の利得を計算し、 当該第 2の利得をもって増幅するように上記増幅利得を 設定し、 上記第 2の利得で増幅された受信信号の電力値を求め、 上記第 2の利得 で増幅された受信信号および当該受信信号の遅延信号の相関演算に基づいて上記 プリアンブル信号の後半区間のパースト検出を行い、 後半区間でのバーストが検 出されると上記求めた第 2の利得で増幅された受信信号電力値に基づいて第 3の 利得を計算し、 当該第 3の利得をもって増幅するように上記増幅利得を設定する
[ 0 0 4 9 ] また、 本発明の第 5または第 6の観点では、 上記第 3の利得を設 定後、 次のバースト検出開始まで、 上記増幅利得を当該第 3の利得に固定する。
[ 0 0 5 0 ] また、 本発明の第 5または第 6の観点では、 上記バースト信号は 、 プリアンブル信号に後続するリファレンス信号を含み、 上記バースト検出時の 相関演算結果を受けて上記リファレンス信号を検出し、 上記リファレンス信号が 検出されるとバースト検出開始指令の待ち受けモードに移行し、 次のバースト検 出開始指令を受けるまで上記増幅利得を上記第 3の利得に固定する。
[ 0 0 5 1 ] また、 本発明の第 5または第 6の観点では、 受信信号のバースト 部に続くデ一タ信号区間に、 リファレンス信号が揷入されており、 上記リファレ ンス信号区間中に上記第 3の利得の値の微調整を行う。
[ 0 0 5 2 ] また、 本発明の第 5または第 6の観点では、 上記リファレンス信 号区間における受信信号電力値を求め、 前回のリファレンス信号区間における受 信信号電力値に基づいて上記第 3の利得の値を微調整する。
[ 0 0 5 3 ] また、 本発明の第 7の観点は、 データ信号の先頭部に少なくとも プリアンブル信号を含むバースト部が付加された受信信号の増幅利得の制御を行 い、 増幅後の受信信号を復調する復調装置であって、 入力した受信信号レベルを 利得制御信号に応じた利得をもって増幅する自動利得制御増幅部と、 上記受信信 号の電力を検出する受信信号電力観測部と、 上記自動利得制御増幅部の出力を一 定時間遅延させる遅延部と、 上記自動利得制御増幅部の出力信号と上記遅延部の 出力信号の相関演算に基づいてバースト検出を行いバースト同期検出信号を出力 するバースト検出部と、 バースト検出開始を示すトリガ信号を受けると、 あらか じめ設定した第 1の利得をもって増幅するように上記利得制御信号を上記自動利 得制御増幅部に出力し、 上記受信信号電力観測部で受信信号電力が検出されると
、 検出された受信信号電力値に基づいて第 2の利得を計算し、 当該第 2の利得を もって増幅するように上記利得制御信号を上記自動利得制御増幅部に出力し、 第 2の利得で増幅された上記自動利得制御増幅部の出力信号を受けて受信信号電力 値を求め、 上記バースト検出部によりバースト同期検出信号を受けると、 当該求 めた受信信号電力値に基づいて第 3の利得を計算し、 当該第 3の利得をもって増 幅するように上記利得制御信号を上記自動利得制御増幅部に出力する増幅利得制 御部とを有する自動利得制御回路を含む。
[ 0 0 5 4 ] また、 本発明の第 8の観点は、 データ信号の先頭部に少なくとも プリアンブル信号を含むバースト部が付加され、 かつ当該プリアンブル信号が前 半区間と後半区間の 2段階に分けられている受信信号の増幅利得の制御を行い、 増幅後の受信信号を復調する復調装置であって、 入力した受信信号レベルを利得 制御信号に応じた利得をもって増幅する自動利得制御増幅部と、 上記受信信号の 電力を検出する受信信号電力観測部と、 上記自動利得制御増幅部の出力を一定時 間遅延させる遅延部と、 上記自動利得制御増幅部の出力信号と上記遅延部の出力 信号の相関演算に基づいてバースト検出を行い、 上記プリアンブル信号の前半区 間を検出すると第 1のバースト同期検出信号を出力し、 後半区間を検出する第 2 のバースト同期検出信号を出力するバースト検出部と、 バースト検出開始を示す トリガ信号を受けると、 あらかじめ設定した第 1の利得をもって増幅するように 上記利得制御信号を上記自動利得制御増幅部に出力し、 上記バースト検出部によ り第 1のバースト同期検出信号を受けると、 上記受信信号電力観測部で検出され た受信信号電力値に基づいて第 2の利得を計算し、 当該第 2の利得をもつて増幅 するように上記利得制御信号を上記自動利得制御増幅部に出力し、 第 2の利得で 増幅された上記自動利得制御増幅部の出力信号を受けて受信信号電力値を求め、 上記バースト検出部により第 2のバースト同期検出信号を受けると、 当該求めた 受信信号電力値に基づいて第 3の利得を計算し、 当該第 3の利得をもつて増幅す るように上記利得制御信号を上記自動利得制御増幅部に出力する増幅利得制御部 とを有する自動利得制御回路を含む。
[ 0 0 5 5 ] また、 本発明の第 9の観点は、 データ信号の先頭部に少なくとも プリアンブル信号を含むバースト部が付加された受信信号の増幅利得の制御を行 レ 増幅後の受信信号を復調する復調装置であって、 入力した受信信号レベルを 利得制御信号に応じた利得をもって増幅する自動利得制御増幅部と、 上記自動利 得制御増幅部の出力信号をアナログ信号からディジタル信号に変換するアナログ Zディジタルコンバータと、 上記受信信号の電力を検出する受信信号電力観測部 と、 上記自動利得制御増幅部の出力を一定時間遅延させる遅延部と、 上記アナ口 グノディジタルコンバータのディジタル出力信号と上記遅延部の出力信号の相関 演算に基づいてバースト検出を行いバースト同期検出信号を出力するバースト検 出部と、 バースト検出開始を示すトリガ信号を受けると、 あらかじめ設定した第 1の利得をもって増幅するように上記利得制御信号を上記自動利得制御増幅部に 出力し、 上記受信信号電力観測部で受信信号電力が検出されると、 少なくとも検 出された受信信号電力値に基づいて第 2の利得を計算し、 当該第 2の利得をもつ て増幅するように上記利得制御信号を上記自動利得制御増幅部に出力し、 第 2の 利得で増幅された上記アナログ/ディジタルコンバータのディジ夕ル出力信号を 受けて積分し受信信号電力値を求め、 上記バースト検出部によりパースト同期検 出信号を受けると、 当該求めた受信信号電力値に基づいて第 3の利得を計算し、 当該第 3の利得をもって増幅するように上記利得制御信号を上記自動利得制御増 幅部に出力する増幅利得制御部とを有する自動利得制御回路を含む。
[ 0 0 5 6 ] 本発明の第 1 0の観点は、 データ信号の先頭部に少なくともプリ アンブル信号を含むバースト部が付加され、 かつ当該プリアンブル信号が前半区 間と後半区間の 2段階に分けられている受信信号の増幅利得の制御を行い、 増幅 後の受信信号を復調する復調装置であって、 入力した受信信号レベルを利得制御 信号に応じた利得をもって増幅する自動利得制御増幅部と、 上記自動利得制御増 幅部の出力信号をアナログ信号からディジタル信号に変換するアナログ Zデイジ タルコンバータと、 上記受信信号の電力を検出する受信信号電力観測部と、 上記 自動利得制御増幅部の出力を一定時間遅延させる遅延部と、 上記アナログ/ディ ジ夕ルコンバータのディジタル出力信号と上記遅延部の出力信号の相関演算に基 づいてバースト検出を行い、 上記プリアンブル信号の前半.区間を検出すると第 1 のバースト同期検出信号を出力し、 後半区間を検出する第 2のバ一スト同期検出 信号を出力するバースト検出部と、 バースト検出開始を示すトリガ信号を受ける と、 あらかじめ設定した第 1の利得をもつて増幅するように上記利得制御信号を 上記自動利得制御増幅部に出力し、 上記バース卜検出部により第 1のバースト同 期検出信号を受けると、 上記受信信号電力観測部で検出された受信信号電力値に 基づいて第 2の利得を計算し、 当該第 2の利得をもって増幅するように上記利得 制御信号を上記自動利得制御増幅部に出力し、 第 2の利得で増幅された上記アナ ログ Zディジタルコンバータのディジタル出力信号を受けて積分し受信信号電力 値を求め、 上記バースト検出部により第 2のバースト同期検出信号を受けると、 当該求めた受信信号電力値に基づいて第 3の利得を計算し、 当該第 3の利得をも つて増幅するように上記利得制御信号を上記自動利得制御増幅部に出力する増幅 利得制御部とを有する自動利得制御回路を含む。
[ 0 0 5 7 ] また、 本発明の第 7、 第 8、 第 9、 または第 1 0の観点では、 上 記受信信号は、 直交周波数分割多重変調方式に基づいて変調されている。
[ 0 0 5 8 ] 本発明によれば、 バースト検出を開始するに際して、 増幅利得制 御部より利得制御信号が自動利得制御増幅部に出力されて、 自動利得制御増幅部 の増幅利得があらかじめ設定した値、 たとえば最大値の第 1の利得に設定される
[ 0 0 5 9 ] この状態において、 受信信号の入力待ち状態となる。
[ 0 0 6 0 ] このような状態において、 まず、 受信信号の先頭のプリアンブル 信号が自動利得制御増幅部に入力される。 [ 0 0 6 1 ] 自動利得制御増幅部では、 たとえば受信信号のプリアンブル信号 の前半区間が第 1の利得 (最大利得) をもって増幅され、 たとえば A / Dコンパ —夕に出力される。
[ 0 0 6 2 1 これと並行して、 受信信号のプリアンブル信号が受信信号電力観 測部に入力される。 受信信号電力観測部において、 受信信号の電力が観測されて たとえばピーク電圧が測定され、 入力される受信信号レベルに応じた値をとる受 信信号電力値が増幅利得制御部に供給される。
[ 0 0 6 3 ] AZDコンパ一夕では、 受信信号のプリアンブル信号部分がアナ ログ信号からディジタル信号に変換され増幅利得制御部、 遅延部、 およびバース ト検出部に供給される。
[ 0 0 6 4 ] このとき、 A/Dコンパ一夕の出力信号は歪んでしまうが、 デー 夕信号では無いので受信信号品質の劣化は招かない。
[ 0 0 6 5 ] 遅延部では、 ディジタル受信信号が、 バースト検出のためにバー スト周期分遅延されてバースト検出部に出力される。
[ 0 0 6 6 ] バ一スト検出部では、 A/Dコンバータによるディジタル受信信 号と遅延部による遅延信号との相関 (自己相関および相互相関) 演算が行われる
[ 0 0 6 7 ] そして、 たとえば自己相関結果に基づいて、 通信システムの定め た周期のバースト信号の検出が行われ、 まず、 プリアンブル信号の前半 X区間を 検出したことを示す第 1の同期検出信号が生成されて、 増幅利得制御部に出力さ れる。
[ 0 0 6 8 ] なお、 プリアンブル信号が歪んでいても、 バ一スト検出部に自己 相関回路を用いていることから、 検出率を低下させることなくバースト検出が可 能である。
[ 0 0 6 9 ] 増幅利得制御部では、 バ一スト検出部による第 1のバースト同期 検出信号を受けて、 受信信号観測部で検出された受信信号電力値および AZDコ ンバ一夕を歪ませない適切な値に基づいて利得が計算されて、 利得制御信号が計 算値に設定される。 '
[ 0 0 7 0 ] この利得制御信号は、 自動利得制御増幅部に供給される。 自動利 得制御増幅部では、 利得制御信号を受けて、 利得が計算値である第 2の利得に設 定される。
[ 0 0 7 1 ] ただし、 このときに自動利得制御増幅部の利得は、 受信信号電力 の尖頭値の算出過程にアナログ信号処理を含んでおり、 若干のバラツキが含まれ ており、 荒い利得制御となっている。
[ 0 0 7 2 ] 自動利得制御増幅部では、 たとえば受信信号のプリアンブル信号 の残りの前半区間および後半区間が受信信号レベルに応じた利得をもって増幅さ れ、 A/Dコンバータに出力される。
[ 0 0 7 3 ] AZDコンバータでは、 受信信号のプリアンブル信号部分がアナ ログ信号からディジタル信号に変換され増幅利得制御部、 遅延部、 およびバース ト検出部に供給される。
[ 0 0 7 4 ] このとき、 A/Dコンバータの入力信号は AZDコンパ一夕を歪 ませない適切な値に基づいた利得で増幅されていることから、 AZDコンバ一夕 の出力信号には歪み発生しない。
[ 0 0 7 5 ] 遅延部では、 ディジタル受信信号が、 パ一スト検出のためにバー スト周期分遅延されてバースト検出部に出力される。
[ 0 0 7 6 ] バースト検出部では、 A/Dコンパ一夕によるディジタル受信信 号と遅延部による遅延信号との相関 (自己相関および相互相関) 演算が行われる
[ 0 0 7 7 ] そして、 たとえば自己相関結果に基づいて、 通信システムの定め た周期のバースト信号の検出が行われ、 プリアンブル信号の前半 X区間を検出し たことを示す第 2の同期検出信号が生成されて、 増幅利得制御部に出力される。 [ 0 0 7 8 ] 増幅利得制御部においては、 受信信号電力に基づく利得で A/D コンバータを無歪みで通した信号を受けて、 たとえば受信信号のディジ夕ル値が 積分されて正確な信号電力値が測定される。
[ 0 0 7 9 ] また、 増幅利得制御部では、 バースト検出部による第 2のバース ト同期検出信号を受けて、 A/ Dコンバータを無歪みで通した受信信号のディジ タル積分値および A/Dコンバータを歪ませない最適な値に基づいて利得が計算 されて、 利得制御信号が計算値に設定される。
[ 0 0 8 0 ] この利得制御信号は、 自動利得制御増幅部に供給される。 自動利 得制御増幅部では、 利得制御信号を受けて、 利得が最適な計算値である第 3の利 得に設定される。
[ 0 0 8 1 ] 自動利得制御増幅部では、 受信信号のプリアンブル信号の残りの 後半の Y区間およびリファレンス信号やデータ信号が受信信号レベルに応じた利 得をもって増幅され、 A/Dコンバータに出力される。
[ 0 0 8 2 ] A/Dコンバータでは、 受信信号のリファレンス信号やデータ部 分がアナログ信号からディジタル信号に変換され、 増幅利得制御部、 遅延部、 お よびバースト検出部に供給される。
[ 0 0 8 3 ] このとき、 A/ Dコンバータの入力信号は AZ Dコンバータを歪 ませない最適な値に基づいた利得で増幅されていることから、 A/Dコンバ一夕 の出力信号には歪み発生しない。
[ 0 0 8 4 ] 遅延部では、 ディジタル受信信号が、 バースト検出のためにバー スト周期分遅延されてパースト検出部に出力される。
[ 0 0 8 5 ] バ一スト検出部では、 A/Dコンバータによるディジタル受信信 号と遅延部による遅延信号との相関 (自己相関および相互相関) 演算が行われる
[ 0 0 8 6 ] そして、 たとえば相互相関結果である相互相関電力がタイミング 制御部に供給され、 これに基づきたとえばピークタイミングが観測され、 このピ 一クタイミングから所定時間後に第 3の同期検出信号が増幅利得制御部に出力さ れる。
[0087] 第 3の同期検出信号を受けた増幅利得制御部では、 初期モード、 すなわちトリガ信号の待ち受けモードに戻る。
[0088] 以降、 最適化された利得値はその後データ信号が終了し、 次のパ ースト検出開始まで固定される。 図面の簡単な説明
[0089 ] 図 1は、 バースト同期を用いた無線通信システムに適用可能な従 来の AG C回路を搭載した復調装置の構成例を示すブロック図である。
[0090] 図 2は、 本発明に係る自動利得制御回路を適用したバースト同期 復調装置の一実施形態を示すブロック構成図である。
[00 9 1 ] 図 3は、 I EEE 802. 1 1 aシステムの代表的なプリアンプ ル信号を含むバースト信号部を示す図である。
[0092] 図 4は、 BRANシステムの代表的なプリアンブル信号を含むバ —スト信号部を示す図である。
[00 93] 図 5は、 W i r e l e s s l 3 94システムの代表的なプリアン ブル信号を含むバースト信号部を示す図である。
[0094] 図 6は、 Wi r e l e s s l 3 94システムにおいて一定期間以 上のデータ信号区間にリファレンス信号 REFを揷入している信号形態を示す図 である。
[00 9 5] 図 7は、 図 2の自動利得制御増幅部の具体的な構成を示す回路図 である。
[00 96] 図 8は、 図 7の利得制御増幅器の利得制御特性例を示す図である [00 97] 図 9は、 受信信号の入力レベルに対する受信信号電力観測部の出 力特性を示す図である。
[0098] 図 1 0は、 図 2の受信信号処理部の具体的な構成例を示す回路図 である。
[0099] 図 1 1は、 図 2のバースト検出部およびタイミング制御部の具体 的な構成例を示す回路図である。
[0 1 00] 図 1 2は、 図 1 1の自己相関回路の構成例を示す回路図である。
[0 1 0 1] 図 1 3は、 図 1 1の相互相関回路の構成例を示す回路図である。
[01 02] 図 14A〜14 Gは、 バースト検出部の自己相関処理から同期検 出信号 X p u l s eおよび y p u l s eを出力するまでのタイミングチヤ一トを 示す図である。
[0 1 0 3] 図 1 5A〜1 5 Fは、 バースト検出部の相互相関処理から同期検 出信号 c u i s eおよび F FTタイミング信号 TF FTを出力するまでのタイ ミングチヤ一トを示す図である。
[0 1 04] 図 1 6は、 本発明に係る増幅利得制御部における利得制御動作の 第 1段階を説明するためのフローチヤ一トである。
[01 05] 図 1 7は、 本発明に係る増幅利得制御部における利得制御動作の 第 2段階を説明するためのフローチャートである。
[0 1 06] 図 1 8は、 本発明に係る増幅利得制御部における利得制御動作の 第 3段階を説明するためのフロ一チャートである。
[0 1 07] 図 1 9は、 図 2の増幅利得制御部の具体的な構成例を示す回路図 である。
[01 08] 図 20A〜20Hは、 図 19の増幅利得制御部の動作を説明する ための夕イミングチャートを示す図である。 発明を実施するための最良の形態
[0 1 09] 図 2は、 本発明に係る自動利得制御回路を適用したバースト同期 復調装置の一実施形態を示すブロック構成図である。
[0 1 10] 本バースト同期復調装置 20は、 図 2に示すように、 自動利得制 御増幅部 (AGCAMP) 20 1、 受信信号電力観測部 (POW) 202、 A/ Dコンバータ (ADC) 203、 ディジタル/アナログ (D/A) コンバータ ( DAC) 204、 A/Dコンバータ (ADC) 205、 受信信号処理部 (RXP RC) 206、 OF DM復調部 (DEMOD) 207、 遅延部 (DL Y) 208 、 バースト検出部 (BDT) 209、 タイミング制御部 (TMG) 2 1 0、 およ ぴ増幅利得制御部 (AGCTL) 2 1 1を主構成要素として有している。
[0 1 1 1] 以下、 本実施形態において採用するバ一スト同期通信システムに 本発明に係る自動利得制御回路が必要な理由、 送信 (受信) 信号、 および図 2の バースト復調装置 20の各構成要素の具体的な構成および機能について、 順を追 つて説明する。
[0 1 12] 本実施形態では、 バースト同期通信方式の例として、 5 GHz帯 無線 LANシステムのバースト同期復調装置の自動利得制御システムについて説 明する。
[0 1 1 3] 5 GH z帯無線 LANシステムは、 広帯域にわたって優れた通信 性能を実現するため、 OFDM変調方式が採用されている。 -
[0 1 14] OFDM変調方式は、 ゴーストおよびマルチパスに対する強度が 大きい反面、 回路のノンリニアリティ (非線形性) に対する強度が弱い。
[0 1 1 5] このため、 A/Dコンバータ等の歪が生じると、 受信信号品質の 著しい劣化を招いてしまう。
[0 1 1 6] このため、 5 GHz帯無線 LANシステムでは、 変調信号の先頭 にプリアンブル信号と呼ばれる 10〜20 X秒のバースト信号を挿入し、 この区 間内でタイミング同期をとる一方、 A/Dコンバータ 203に入力される信号の 電圧振幅を歪みの生じない信号許容範囲内にレベル捕そくする必要がある。
[01 1 7] また、 プリアンブル信号の後半の数 秒には、 レファレンス信号 と呼ばれる伝送路の周波数特性を観測し、 プリアンブル信号に続くデータ信号 ( 実際の通信データ) を補正するための基準信号が入っており、 レファレンス信号 とデ一夕信号では、 A/Dコンバータ 203から出力されたディジタル信号のレ ベルを変動することは許されず、 自動利得制御増幅部 20 1の利得を一定に保つ 必要がある。
[01 1 8] したがって、 5 GHz帯無線 LANシステムでは、 1 0 秒の時 間で、 歪みの生じない信号許容範囲内にレベル捕そくする高速かつ高性能の自動 利得増幅方式が必要となる。
[0 1 1 9] 本実施形態では、 後述するように、 上記のプリアンブル区間内で 行う高速かつ高性能なレベル捕そくを実現するため、 3段階のレベル捕そくを行 う。
[0 1 20] 5 GH z帯無線 LANシステムとしては、 代表的なものに次の 3 つのシステムがある。
① I EEE 802. l l a、
② BRAN、
③ Wi r e l e s s 1394。
[0 1 2 1] 図 3は I EEE 802. 1 1 aシステムの代表的なプリアンブル 信号を含むバースト信号部を示す図、 図 4は B RANシステムの代表的なプリァ ンブル信号を含むバ一スト信号部を示す図、 図 5は W i r e 1 e s s 1 394シ ステムの代表的なプリアンブル信号を含むバースト信号部を示す図である。
[0 1 22] 図 3〜図 5に示す各システムのプリアンブル信号において、 A 1 6、 B 1 6等は、 パターンの識別とバースト周期を表し、 I A 16は、 A 1 6の 位相反転したパターンを表している。
[0 1 2 3] また、 C 64はリファレンス信号を表しており、 〇 1 6ぉょび〇 3 はこのガ一ドィン夕一バル部を示している。
[0124] I EEE 802. 1 1 aでは、 パターン B 1 6が 1 0回繰り返さ れているのに対して、 BRANでは最初の 5周期が異なる (A1 6, I A 1 6 , A 1 6 , I A 1 6 , I A 1 6) 。
[0 125] また、 、 W i r e l e s s l 394では 1 0周期全てが異なるパ ターンとなっている。 具体的には、 A 16, I A 1 6 , A 16 , I A 16, A 1 6, A 1 6 , I A 1 6, A 16 , I A 16, I A 1 6のパターンとなっている。
[0 126] また、 W i r e l e s s l 394システムでは、 同期転送モード をサボ一トしているため、 映像信号などの連続した信号を通信することができる
[0 127] しかしながら、 長期間におよぶデ一夕信号を通信しているとマル チパス環境下では受信信号先頭のプリアンブル信号でのリファレンス信号の受信 時の伝送特性から伝送特性が変化してしまい、 受信性能が劣化してしまう。
[0 128] このため、 一定期間以上のデータ信号区間には、 図 6に示すよう に、 リファレンス信号 RE Fを挿入している。 これにより、 このリフアレンス信 号ごとに伝送特性を測定し直し、 受信性能の劣化を防いでいる。
[0129] 以上のように変調信号の先頭にプリアンブル信号と呼ばれる 1 0 〜20 //秒の信号を含むバースト信号部が挿入されて受信信号を復調する復調装 置の各要素は、 以下のような構成および機能を有する。
[0 1 30] 自動利得制御増幅部 201は、 図示しないアンテナで受信された 受信信号 RSを DAC 204を介して供給される増幅利得制御部 2 1 1による利 得制御信号 Vagc のレベルに基づいて自動利得制御し、 所望レベルの信号 RXを として AZDコンバータ 203に出力する。 なお、 自動利得制御増幅部 20 1で は、 増幅利得制御部 21 1による利得制御信号 Vagc により自動利得制御を行う 場合と制御利得を固定する場合に制御される。
[0 13 1] 図 7は、 自動利得制御増幅部 20 1の具体的な構成を示す回路図 である。
[0 1 32] 自動利得制御増幅部 201は、 図 7に示すように、 利得制御増幅 器 (GCA) 20 1 1、 局部発振器 20 12、 乗算器 20 1 3、 増幅器 2014 、 および帯域幅が数十 MH zの帯域通過フィルタ (BPF) 20 1 5を有する。
[0 1 33] これらの構成要素のうち局部発振器 201 2および乗算器 20 1 3により周波数変換回路が構成されている。 局部発振器 20 1 2は、 たとえばキ ャリア周波数 icwの信号 e 〔 j 2 π f cw t ) を乗算器 201 3に出力する。 ただ し、 〔 〕 は eのべき乗を示している。
[0 1 34] 図 7の自動利得制御増幅部 201では、 受信信号 (I F入力信号 ) RSは、 利得制御増幅器 20 1 1により利得制御信号 Vagc により定まる利得 をもって増幅し、 局部発振器 20 12および乗算器 201 3からなる周波数変換 回路により周波数変換した後、 BPF 20 15で帯域制限して、 出力信号 (I F 出力) RXを得る。
[0 1 35] また、 図 8は、 図 7の利得制御増幅器 20 1 1の利得制御特性を 示す図である。
[0 1 36] 図 8において、 横軸が利得制御信号 Vagc を、 縦軸が利得をそれ ぞれ示している。
[0 1 37] この例では、 図 8に示すように、 利得制御増幅器 20 1 1は、 利 得制御信号 Vagc が 0 V〜 1 Vの範囲で利得は 0〜80 d Bまでリニア (線形) に変化している。 ,
[0 1 38] すなわち、 この例では、 制御利得範囲は 80 dBである。
[0 1 39] 受信信号電力観測部 202は、 図 7に示すように尖頭値検波回路 としてのピーク検出回路(Peak Det) 202 1を含み、 受信信号 RSのピーク電圧 を測定し、 入力される受信信号レベルに応じた値をとる電圧信号である電界強度 信号 R S S Iに変換して AZDコンバータ 205に出力する。 [0 140] ここでは、 急激な信号変化に対応するため、 平均値ではなく尖頭 値を検波する。 なお、 バースト検出開始時にリセット信号を与え、 ピーク検出回 路(Peak Det) 2021をリセットし、 それ以降の最大ピーク値を観測するように する。
[0 141] 図 9は、 受信信号の入力レベルに対する受信信号電力観測部 20 2の出力特性を示す図である。
[0 142] 図 9において、 横軸が入力レベルを、 縦軸が電界強度信号 RRS Iの電圧をそれぞれ示している。
[0 143] この例では、 図 9に示すように、 入力レベルが一 70 d B V〜一 20 d B Vの範囲で電界強度信号 R S S Iの電圧は 0 V~ 2 Vまでリニァ (線形 ) に変化している。
[0 144] A/Dコンバータ 203は、 自動利得制御増幅器 20 1から出力 されたアナログ受信信号 RXをディジタル信号に変換し、 ディジタル受信信号 R XDとして受信信号処理部 206に出力する。
[0 145] DZAコンバータ 204は、 増幅利得制御部 2 1 1で発生される 利得制御信号 Vagc をディジタル信号からアナログ信号に変換して自動制御利得 増幅部 20 1に出力する。
[0 146] AZDコンバータ 20 5は、 受信信号電力観測部 202から出力 された電界強度信号 RS S Iをアナログ信号からディジタル信号 RS S I Dに変 換して増幅利得制御部 21 1に出力する。
[0 147] 受信信号処理部 206は、 ディジタル受信信号 RXDをべ一スバ ンド信号 b b— r e (実部) および b b— im (虚部) に変換し、 ベースバンド 信号のサンプリング周波数を低い周波数に変換し (ダウンサンプリングを行い) 、 バースト検出部 209による誤差検出周波数 Δ f に基づいて複素乗算を行って 周波数オフセットの補正を行って、 信号 S 206 (s y— r eおよび s y— i m ) を生成し、 OF DM復調部 207、 遅延部 208、 バ一スト検出部 209、 お よび増幅利得制御部 2 1 1に出力する。
[0148] 図 1 0は、 図 2の受信信号処理部 206の具体的な構成例を示す 回路図である。
[0149] 本受信信号処理部 206は、 図 1 0に示すように、 ベースパンド 変換回路 206 1、 ディジタルローパスフィル夕 (LPF) 2062, 206 3 、 ダウンコンバート回路 2064, 2065、 および周波数オフセット補正回路 2066により構成されている。
[01 50] ベ一スパンド変換回路 206 1は、 局部発振器 206 1 1および 乗算器 2 06 1 2, 206 13により構成されている。
[01 5 1] ベースバンド変換回路 2061においては、 受信信号 RXD ( i f ) に乗算器 206 12, 206 13においてキャリア周波数 f cwを乗算するこ とで、 式 (1) に示すように、 入力受信信号 RXD ( i f ) がベースバンド信号 b b_r e, b b— i mに変換され、 それぞれ L P F 2062、 206 3に供給 される。
[01 52]
b b一 r e = i f X c o s ( 2 π f Cw t
b b_ i m= i f x s i n ( 2 C f cw t ) ··· (]_)
[01 5 3] LPF 2062および 2063は、 たとえば直線位相 F I R (Fi niie Impulse Response:有限インパルス応答) のトランスバ一サル型回路構成を 有する。
[0 1 54] LPF 2062は、 ベースバンド信号 b b— r eの入力ラインに 対して縦続接続されシフトレジスタを構成する (n_ 1) 個の遅延器 1 r e— 1 〜l r e— n- 1 と、 入力されたベースバンド信号 b b— r eおよび各遅延器 1 r e— l〜 l r e—n_l の出力信号に対してそれぞれフィルタ係数 h (0) 〜h ( n— 1) を乗算する n個の乗算器 2 r e _ l〜2 r e— nと、 n個の乗算器 2 r e— 1〜2 r e— nの出力信号を加算してダウンコンバート回路 2064に出力 する加算器 3 r eにより構成されている。
[0 1 5 5] LPF 2063は、 ベースパンド信号 b b— i mの入力ラインに 対して縦続接続されシフトレジスタを構成する (n_ l) 個の遅延器 1 im_ l 〜1 i m— n-1 と、 入力された'ベースバンド信号 b b— i mおよび各遅延器 1 i m— 1〜1 im— n-l の出力信号に対してそれぞれフィル夕係数 h (0) 〜!! ( n- 1) を乗算する n個の乗算器 2 i m— 1〜2 im— nと、 n個の乗算器 2 i m— 1〜2 im— nの出力信号を加算してダウンコンバート回路 2064に出力 する加算器 3 i mにより構成されている。
[0 1 56] これら LP F 2062, 2063、 およびダウンコンバート回路 2064, 2065によりべ一スバンド信号 b b— r e, b b— imのサンプリ ング周波数を、 たとえば 100 MHzから 25 MHzの信号 d c— r eに変換す る。
[0 1 57] このとき LP F 2062, 2063は、 ベースバンド信号 b b— r e, b b—i mの帯域を制限して隣接キャリアが折り返らないようにしている
[0 1 58] また、 ダウンコンバート回路 2064, 206 5におけるダウン サンプリングのタイミングは、 信号 E nの供給を受けてをクロックを間引いてい る。
[0 1 59] 周波数オフセット補正回路 2066は、 局部発振器 206 1、 乗 算器 2062〜20665、 および加算器 20666, 20667により構成さ れている。
[0 1 60] 周波数オフセット補正回路 2066は、 バースト検出部 209よ り与えられる誤差検出周波数 Δ f を局部発振器 206 1の発振出力に反映させ、 この発振出力と信号 d c_r eとを乗算器 20662, 20665で複素乗算し 、 発振出力と信号 d c— imとを乗算器 20663, 20664で複素乗算し、 加算器 2 0666で乗算器 20662と乗算器 20663の出力を加算し、 加算 器 206 6 7で乗算器 20664と乗算器 20665の出力を加算することによ り、 下記式 (2) , (3) に示すような、 信号 s y— r eおよび s y„ i mを生 成し、 OFDM復調部 207、 遅延部 208、 パ一スト検出部 209、 および増 幅利得制御部 2 1 1に出力する。
[0 1 6 1]
s y r e = d c一 r e x c o s ( 2 π f Cw t )
+ d c i m x s i n ( 27 I cw t) … (2)
[01 6 2]
s y i m=d c― i mx c o s ( 27t f Cw t )
-d e r e x s i n ( 2 7t f cwt) "- (3)
[0 1 6 3] OF DM復調部 207では、 受信信号処理部 206の出力信号 S
2 06、 すなわち信号 s y— r eおよび s y— i mをタイミング制御部 2 1 0に より供給される F FTタイミング信号 TF FTに同期して高速離散フ一リエ変換 して OFDM信号を復調し、 次段の処理回路に出力する。
[01 64] 遅延部 208は、 受信信号処理部 206の出力信号 S 206、 す なわち信号 s y_r eおよび s y_ i mを、 バースト検出のためにバースト周期 分遅延させ、 信号 S 208としてバースト検出部 209に出力する。
[0 1 6 5] なお、 I EEE 802. 1 1 aシステムのバースト検出では、 遅 延部 20 8の遅延量を 16クロックとして、 16クロック周期のパーストを検出 する。
[0 1 66] BRANシステムのバースト検出では、 遅延部 208の遅延量を
3 2クロックとして前半 5周期分のバ一スト検出を行い、 遅延部 208の遅延量 を 16クロック遅延とすることで後半 5周期分のバースト検出を行えるが、 遅延 暈の異なる遅延手段を 2つ必要とする。 [0 1 6 7] W i r e l e s s l 394システムのパースト検出では、 遅延部 208の遅延量を 32クロックとすることで前半 5周期分のバーストを検出でき る他、 同じ遅延量で後半の 5周期分のバースト検出も行うことができる。
[0 1 68] バースト検出部 209は、 受信信号処理部 206による信号 S 2 06 ( s y— r eおよび s y— i m) と遅延部 208による遅延信号 S 208と の相関をとり、 通信システムの定めた周期のパ一スト信号を検出し、 パケットお よびフレーム構造に関するパラメ一夕を検出し、 タイミング制御部 2 1 0による タイミング信号 TMNG (X, Y, C) に同期して同期タイミング窓信号として の第 1および第 2の同期検出信号 S 209W (x p u l s e, y pu l s e) を 生成し、 増幅利得制御部 2 1 1に出力する。
[0 1 6 9] また、 バースト検出部 209は、 所定の相関結果並びにタイミン グ信号出力の基準となるバリッド信号 S 209 Cをタイミング制御部 2 1 0に出 力する。
[0 1 70] また、 バースト検出部 209は、 相関結果に基づいて受信信号の 実部と虚部の位相差から誤差周波数を算出して誤差検出周波数△ f を生成し、 受 信信号処理部 206に出力する。
[0 1 7 1] タイミング制御部 21 0は、 トリガ信号 r xwn dwをトリガと してバースト検出部 209による第 1および第 2の同期検出信号 S 209 W (x p u l s e, y p u l s e) を生成するためのタイミング信号 TMNG (X, Y , C) をバースト検出部 209に出力する。
[0 1 72] また、 タイミング制御部 2 1 0は、 バースト検出部 209による 相関結果からピークタイミングを観測し、 このピークタイミングから所定時間後 に第 3の同期検出信号 S 2 10 (c p u l s e) を増幅利得制御部 2 1 1に出力 し、 F FTタイミング信号 TF FTを OF DM復調部 207に出力する。
[0 1 7 3] 図 1 1は、 図 2のバースト検出部 209およびタイミング制御部 2 10の具体的な構成例を示す回路図である。 [0 1 74] バースト検出部 209は、 自己相関回路 2090 1、 相互相関回 路 20902、 係数テ一ブル 20903、 遅延量が 32クロック分に設定された 遅延部 20904, 2090 5、 遅延量が 48クロック分に設定された遅延部 2 0906〜 20909、 移動平均回路 209 10~209 1 5、 絶対値計算回路 20 9 1 6〜 209 1 8、 しきい値回路 209 19, 20920、 比較回路 20 92 1, 20922、 タイミング窓 X回路 20923、 タイミング窓 Y回路 20 924、 タイミング窓 C回路 20925、 周波数誤差検出回路 20926、 およ びラッチ回路 20927を有している。
[0 1 75] また、 タイミング制御部 21 0は、 ピークサ一チ回路 21 001 、 およびタイミングカウン夕 2 1 002を有している。
[0 1 76] 受信信号処理回路 206から供給された信号 s y_r eおよび s y— i mは、 自己相関回路 2090 1、 相互相関回路 20902、 および絶対値 計算回路 209 16に入力される。
[0 1 77] また、 信号 s y— r eは遅延部 208 r eで 1 6クロック分だけ 遅延されて自己相関回路 20 901に入力される。 同様に、 信号 s y— imは遅 延部 2 08 i mで 1 6クロック分だけ遅延されて自己相関回路 20901に入力 される。
[0 1 78] 図 1 2は、 自己相関回路の構成例を示す回路図である。
[0 1 79] 自己相関回路 2090 1は、 図 12に示すように、 乗算器 1 1〜 14、 および加算器 1 5, 1 6により構成されている。
[0 1 80] 自己相関回路 2090 1は、 受信信号の先頭に付加されたブリア ンブル信号の前半の X区間および Y区間が 16クロックの周期関数であることを 利用して、 入力信号 s y_r eおよび s y— i mと 1 6クロックの遅延部 208 r e, 208 i mの出力 s y— r e * および s y_ i m* とを共役複素乗算して 自己相関出力 a c r eおよび a c i mを得、 遅延部 20904〜 20907およ び移動平均回路 20 9 10〜 209 1 3に出力する。 [0 1 8 1] 具体的には、 入力信号 s y_r eと遅延信号 s y_r e * とを乗 算器 1 1で複素乗算し、 入力信号 s y_r eと遅延信号 s y_ i m* とを乗算器 1 2で複素乗算し、 入力信号 s y— i mと遅延信号 s y_r e* とを乗算器 1 3 で複素乗算し、 入力信号 s y— imと遅延信号 s y— im* とを乗算器 14で複 素乗算し、 加算器 1 5で乗算器 1 1の出力と乗算器 1 5の出力とを加算すること により自己相関出力信号 a c r eを得、 加算器 16で乗算器 1 2の出力と乗算器 14の出力とを加算することにより自己相関出力信号 a c i mを得る。
[0 1 82] 相互相関回路 20902は、 図 13に示すように、 信号 s y— r eの入力ラインに対して縦続接続されシフトレジスタを構成する (m— 1) 個の 遅延器 2 l r e _ l〜21 r e -m-1 と、 入力された信号 s y— r eおよび各遅 延器 2 1 r e—;!〜 2 1 r e -m-1 の出力信号に対してそれぞれ係数テーブル 2 090 3に設定されている係数を乗算する m個の乗算器 22 r e— l〜22 r e 一 mと、 m個の乗算器 22 r e— l〜22 r e— mの出力信号を加算して相互相 関出力信号 c c— r eを絶対値計算回路回路 2091 8に出力する加算器 23 r eとを有している。
[0 1 8 3] さらに相互相関回路 20902は、 図 13に示すように、 信号 s y_ i mの入力ラインに対して縦続接続されシフトレジスタを構成する (m_ 1 ) 個の遅延器 2 1 i m— 1〜2 1 i m-m-1 と、 入力された信号 s y_ i mおよ び各遅延器 2 1 im— 1〜2 1 i m-m-1 の出力信号に対してそれぞれ係数テー ブル 20903に設定されている係数を乗算する m個の乗算器 22 i m— 1〜2 2 i m— mと、 m個の乗算器 22 i m—:!〜 22 i m— mの出力信号を加算して 相互相関出力信号 c c— i mを絶対値計算回路回路 209 1 8に出力する加算器 23 i mとを有している。
[0 1 84] 相互相関回路 20902は、 入力信号 s y— r eおよび s y— i mをシフトレジスタに順次書き込んでおき、 各タップの値を係数テーブル 209 03の値と各乗算器 22 r e— l〜22 r e— m、 22 i m— l〜22 im_m で乗算して相互相関出力 c c— r eおよび c c— i mを得る。
[01 8 5] なお、 本実施形態では、 たとえばシフトレジス夕のタップ数を 3
2とし、 係数テ一ブルはプリアンブル信号の後半の C 64区間の前 32クロック のデータ値を格納している。
[01 8 6] 自己相関回路 2090 1の出力信号 a c r eは、 移動平均回路 2
09 1 2に直接および遅延部 20906を介して 48クロック分遅延されて入力 され、 平均化されて (積分されて) 、 絶対値計算回路 209 1 7に入力される。
[01 8 7] 同様に、 自己相関回路 2090 1の出力信号 a c imは、 移動平 均回路 209 1 3に直接および遅延部 20907を介して 48クロック分遅延さ れて入力され、 平均化されて (積分されて) 、 絶対値計算回路 209 1 7に入力 される。
[0 1 88] そして、 絶対計算回路 2091 7で実部 r eと虚部 i mを 2乗し て絶対値 (r e2 + i m2 ) を計算することにより、 自己相関電力 ACPが得ら れ、 比較回路 20 92 1に出力される。
[01 8 9] また、 自己相関回路 2090 1の出力信号 a c r eは、 移動平均 回路 20 9 10に直接および遅延部 20904を介して 32クロック分遅延され て入力され、 平均化されて (積分されて) 、 周波数誤差検出回路 20 926に入 力される。
[01 9 0] 同様に、 自己相関回路 2090 1の出力信号 a c i mは、 移動平 均回路 209 1 1に直接および遅延部 2090 5を介して 32クロック分遅延さ れて入力され、 平均化されて (積分されて) 、 周波数誤差検出回路 20 926に 入力される。
[0 1 9 1] 相互相関回路 20902の出力信号 c c_r eおよび c c— i m は、 絶対計算回路 209 18で実部 r eと虚部 i mを 2乗して絶対値 (r e2 + im2 ) を計算することにより、 自己相関電力 CCPが得られ、 比較回路 20 9 22およびタイミング制御部 210のピークサーチ回路 2100 1に出力される [0 1 92] また、 入力信号 s y_r eおよび s y— imは、 絶対計算回路 2 09 1 6で実部 r eと虚部 i mを 2乗して絶対値 (r e2 + i m2 ) が計算され 、 さらに、 移動平均回路 209 14に直接および遅延部 20908を介して 48 クロック分遅延されて入力され、 平均化されて (積分されて) 、 しきい値回路 2 09 1 9に入力される。
[0 1 93] また、 絶対値計算回路 2091 6の出力信号は、 移動平均回路 2 09 1 5に直接および遅延部 20909を介して 32クロック分遅延されて入力 され、 平均化されて (積分されて) 、 しきい値回路 20930に入力される。
[0 1 94] しきい値回路 209 1 9は、 自己相関のしきい値 t h— a cが規 定され、 比較回路 20921に供給される。
[0 1 9 5] また、 しきい値回路 20920は、 相互相関のしきい値 t h—c cが規定され、 比較回路 20922に供給される。
[0 1 96] 比較回路 20921においては、 自己相関電力 A C Pと自己相関 しきい値しきい値 t h_a cとが比較され、 その結果がタイミング窓 X回路 20 923およびタイミング窓 Y回路 20924に出力される。
[0 1 97] また、 タイミング制御部 210では、 ピークサーチ回路 2100 1によりバースト検出部 209による相互相関電力 C C Pのピークタイミングが 観測され、 そのタイミングがタイミングカウンタ 2 1 002に出力される。
[0 1 98] タイミングカウンタ 2 1002は、 トリガ信号 r xwn dwの入 力をトリガとしてカウンタをアップしていき、 所定のタイミングで夕イミング信 号 TX, TYTCがバ一スト検出部 209のタイミング窓 X回路 20923、 夕 イミング窓 Υ回路 20924、 タイミング窓 C回路 2092 5にそれぞれ出力さ れる。
[0 1 99] これにより、 比較回路 20923, 20924, 20925の比 較結果にタイミング窓を掛けて、 タイミング窓 X回路 20923から第 1の同期 検出信号 x p u 1 s eが、 タイミング窓 Y回路 20924から第 2の同期検出信 号 y p u 1 s eが増幅利得制御部 2 1 1に出力される。
[020 0] また、 タイミング制御部 2 10では、 ピークサーチ回路 2100 1により相互相関電力 C CPのピークタイミングを受けて、 タイミングカウンタ 2 100 2では、 ピ一クタイミングから一定時間後に第 3の同期検出信号 c p u 1 s eが増幅利得制御部 21 1に出力され、 FFTタイミング信号 T F F Tが O F DM復調部 207に出力される。
[ 020 1] 図 14A〜図 14Gは、 バースト検出部の自己相関処理から同期 検出信号 xp u 1 s eおよび y p u 1 s eを出力するまでのタイミングチヤ一ト を示す図である。
[0202] 図 14 A〜Gにおいて、 図 14 Aは入力信号 S 206 (s y一 r e, s y_ i m) のプリアンブルおよびリファレンスの部分を示し、 図 14Bは 遅延部 208により信号 S 206を遅延した遅延信号 S 208を示し、 図 14 C は自己相関電力 AC Pを示す、 図 14Dはタイミング窓 Xを示し、 図 14Eはタ イミング窓 Yを示し、 図 14 Fは第 1の同期検出信号 X p U 1 s eを示し、 図 1 4 Gが第 2の同期検出信号 y p u l s eを示している。
[020 3] W i r e l e s s l 394のプリアンブル信号は、 図 14 Aおよ び図 14 Bに示すように、 1 6クロック周期の X区間および Y区間がそれぞれ 5 周期あり、 図 14Cに示すように、 各 Xおよび Y区間にて自己相関電力 AC Pが 上昇する。
[0204] したがって、 図 14A, 14 B, 14 Dに示すように、 前半の X 区間にタイミング窓 Xを掛け、 図 14 A, 14 B, 14 Eに示すように、 後半の Y区間にタイミング窓 Yを掛けることで、 図 14F, 14Gに示すように、 各区 間の到来を検出して第 1の同期検出信号 X p u 1 s eおよび第 2の同期検出信号 y p u 1 s eを出力できる。
[020 5] 図 1 5A〜図 1 5 Fは、 バースト検出部の相互相関処理から第 3 の同期検出信号 c p u i s eおよび F FTタイミング信号 TF FTを出力するま での夕イミングチヤ一トを示す図である。
[0 2 0 6 ] 図 1 5 A〜Fにおいて、 図 1 5 Aは入力信号 S 2 06 ( s y_r e, s y__ i m) を示し、 図 1 5 Bは相互相関電力 C C Pを示す、 図 1 5 Cは夕 イミング窓 Cを示し、 図 1 5 Dはタイミング窓回路 2 0 92 5から出力されるバ リツド信号 c c V a 1 i dを示し、 図 1 5 Eは第 3の同期検出信号 c p u l s e を示し、 図 1 5 Fが F FTタイミング信号 TF FTを示している。
[0 2 0 7] 本実施形態では、 相互相関の係数テーブル 2 0 9 03として、 C 64区間の前 32クロック分のデータ値を用いるので、 図 1 5 Bに示すように、 C 64区間の 3 2クロック目に相互相関電力 C CPが最大となる。
[0 2 0 8] 図 1 5 Cに示すように、 相互相関電力 C CPが最大となるタイミ ングの前後にタイミング窓 Cを設定しておくことで、 より正確なピーク検出がで きる。 このようにして検出したピークタイミングより 32クロック後に、 図 1 5 Eおよび 1 5 Fに示すように、 第 3の同期検出信号 c u i s eおよび FFT タイミング信号 T F F Tを出力する。
[ 0 2 0 9] その後、 図 1 5 Fに示すように、 F FTタイミング信号 TF FT を 64クロック後に出力し、 その後は 7 2クロック周期で繰り返し出力する。 '
[02 1 0] 周波数誤差検出回路 2 0 9 2 6では、 自己相関出力信号の実部と 虚部から位相差を求め、 ここから次式 (4) に示すように、 誤差周波数 A ;f を算 出する。
[02 1 1]
△ f = t a n一1 ( a c i m/ a e r e) X (1/ 3 2 ) X 20 x 1 06 (Hz)
… (4)
[02 1 2] 増幅利得制御部 2 1 1は、 受信信号処理部 2 06からの自動利得 制御増幅部 2 0 1による利得制御後のディジタル受信信号 S 20 6、 A/Dコン バー夕 2 0 5による受信信号電力観測部 202の受信信号 RSのピ一クレベルを 示すディジタル電界強度信号 RS S I D、 バースト検出部 2 0 9からの同期タイ ミング窓信号としての第 1および第 2の同期検出信号 S 20 9 W (x p u 1 s e , y p u 1 s e) 、 並びにタイミング制御部 2 1 0による第 3の同期検出信号 S 2 1 0 (c p u 1 s e) に基づいて、 以下に詳述するように、 同期バースト検出 タイミングに合わせて、 自動利得制御増幅部 2 0 1の利得を制御するための制御 利得電圧 Vagc を変化させて利得制御を行つ受信信号が最適な信号レベルとなる よう制御して、 利得制御信号 Vagc を D/Aコンバータ 204を介して自動利得 制御増幅部 2 0 1に出力する。
[0 2 1 3] 以下、 増幅利得制御部 2 1 1の利得制御動作について、 図 1 6、 図 1 7、 および図 1 8のフローチャートに関連付けて詳述する。
[0 2 14] 本実施形態では、 受信信号のプリアンブル区間内で、 高速かつ高 性能なレベル捕そくを実現するため、 3段階のレベル捕そくを行う。
[0 2 1 5] 第 1段階として、 バースト検出開始時 (ST 1) には、 増幅利得 制御部 2 1 1より利得制御信号 Vagc を最大値で出力し (S T 2) 、 自動利得制 御増幅部 20 1の利得を最大 (第 1の利得) に設定し (ST 3) 、 遅延部 2 0 8 とバースト検出部 2 0 9の組み合わせによりパースト検出を行う。
[0 2 1 6] このとき、 AZDコンバータ 2 0 3の出力信号は歪んでしまうが 、 データ信号では無いので受信信号品質の劣化は招かない。
[0 2 1 7] また、 プリアンブル信号が歪んでいても、 バースト検出部 2 0 9 に自己相関回路 2 0 9 0 1を用いていることから、 検出率を低下させることなく バース卜検出が可能である。
[02 1 8] このようにして、 受信信号 RSの先頭のプリアンプル信号の到来 を待つ (ST4) 。
[0 2 1 9] これと並行して、 受信信号電力観測部 202にて受信信号電力を 観測し、 受信信号電力信号である電界強度信号 RS S Iを AZDコンバータ 2 0 5を介してディジタル信号 RS S I Dとして入力する (ST 5) 。
[022 0] ここでは、 前述したように、 急激な信号変化に対応するため、 平 均値ではなく尖頭値 (ピーク値) を検波する。 なお、 バースト検出開始時にリセ ット信号を与え、 尖頭値検波回路をリセットし、 それ以降の最大尖頭値を観測す る。
[022 1 ] 第 2段階として、 バースト検出時 (ST6) には、 バースト検出 部 209による第 1の同期検出信号 S 209W (x p u 1 s e) を受けて (S T 7) 、 ディジタル電界強度信号 RS S I Dのレベルに基づいて利得を計算し (S T8) 、 利得制御信号 Vagc を計算値 C V Iに設定し (ST9) 、 DZAコンパ 一夕 204を介して自動利得制御増幅部 20 1の利得を計算値 C V I (第 2の利 得) に設定する (ST 10) 。
[022 2] このときの制御利得 CG 1は、 '次式に基づいて計算される。
[022 3]
CG I 〔dB〕 = VR S S I 〔dBv〕 -Vrefl [d B v] … (5)
[0224] ここで VRS S Iは受信信号電力観測部 202で観測された受信 信号電力値を、 Vreflは A/Dコンバータ 203を歪ませない適切な値である第 1の基準信号電力値をそれぞれ示している。
[022 5] ただし、 このときに自動利得制御増幅部 20 1の利得は、 受信信 号電力の尖頭値の算出過程にアナログ信号処理を含んでおり、 若干のバラツキが 含まれており、 荒い利得制御となる。
[022 6] このため、 この利得で AZDコンバータ 203を無歪みで通した 後に、 増幅利得制御部 2 1 1にて受信信号のディジタル値を積分して正確な信号 電力を測定しておく (ST 1 1) 。
[022 7] 第 3段階として、 第 2段階にてある程度時間が経過した後、 パー スト検出部 20 9による第 2の同期検出信号 S 209W (y p u 1 s e) を受け て (S T 1 2) 、 A/Dコンバータ 203を無歪みで通した受信信号 S 206の ディジタル積分値に基づいて利得を計算し (ST 1 3) 、 利得制御信号 Vagc を 計算値 CV 2に設定し (ST 14) 、 DZAコンバータ 204を介して自動利得 制御増幅部 20 1の利得を計算値 CV 2 (第 3の利得) に設定し、 最適化する ( S T 1 5 ) 。
[0228] このときの制御利得 CG 2は、 次式に基づいて計算される。
[ 022 9 ]
C G 2 〔dB〕 =V I 〔dBv〕 -Vref2 〔dBv〕 … (6)
[0230] ここで V Iは増幅利得制御部 2 1 1にて積分した AZDコンパ一 夕 203を通過後の受信信号電力値を、 Vref2は第 2の基準信号電力値で、 利得 制御後の受信信号電力の最適値をそれぞれ示している。
[ 023 1 ] こうして、 最適化された利得値はその後データ信号が終了し、 次 のバースト検出開始まで固定する (ST 1 6) 。
[0232] そして、 タイミング制御部 2 1 0による第 3の同期検出信号 S 2 1 0 (c p u 1 s e) が入力されると、 上記ステップ ST 1の処理に移行する。
[ 0233] なお、 パースト検出を開始することになるため、 受信信号電力観 測部 202にリセット信号を与え、 ピーク検出回路 2021をリセットし、 それ 以降の最大ピーク値を観測する。
[0234] 以上により、 最適な利得値への高速かつ正確なレベル捕そくが実 現できる。
[ 023 5 ] 図 1 9は、 図 2の増幅利得制御部 2 1 1の具体的な構成例を示す 回路図である,
[ 0236] 増幅利得制御部 2 1 1は、 図 1 9に示すように、 初期利得テープ ル 2 1 1 0 1. RS S I調整テーブル 2 1 1 02、 乗算器 21 1 03, 2 1 1 0
4、 加算器 2 1 10 5〜 21 108、 遅延量が 48クロック分の遅延部 2 1 1 0 9、 遅延器 2 1 1 1 0、 対数変換部 21 1 1 1、 ステートマシーン回路 2 1 1 1 2、 利得選択回路 2 1 1 1 3、 および制御利得調整テーブル 2 1 1 14を有して いる。
[ 0237 ] この増幅利得制御部 2 1 1は、 同期検出のタイミングパルス、 す なわちトリガ信号 r xwn dw、 パースト検出部 20 9による第 1の同期検出信 号 x p u 1 s eおよび第 2の同期検出信号 yp u 1 s e、 並びにタイミング制御 部 21 0による第 3の同期検出信号 c u i s eに基づくステートマシン構成を とっており、 各ステート 0〜3において異なる自動利得制御増幅部 20 1のゲイ ン a g cが出力されるように制御している。
[0238] 図 2 OA〜図 20 Hは、 図 1 9の増幅利得制御部の動作を説明す るための夕イミングチャートを示す図である。
[ 0239] 図 20A〜Hにおいて、 図 20 Aは入力信号 S 206 ( s y_ r e , s y_ i m) を示し、 図 20 Bはトリガ信号 r x wn d wを示し、 図 20 C は第 1の同期検出信号 x P u 1 s eを示し、 図 20Dは第 2の同期検出信号 y p u 1 s eを示し、 図 20 Eは第 3の同期検出信号 c p u l s eを示し、 図 20 F はステートを示し、 図 20 Gは利得制御信号 Vagc を示し、 図 20Hは自動利得 制御増幅部 20 1から出力される受信信号 RXを示している。
[0240] 以下、 図 1 9の増幅利得制御部における各ステートにおける動作 を図 2 OA〜図 20Hに関連付けて説明する。
[0241] ステート 0 (初期モード、 rxwndw待ち受けモード)
[0242] フラグ信号 StationID に基づき初期利得テーブル 21 1 0 1から 適切な利得を選択する。 本実施形態では、 最大利得となるように初期利得テ一ブ ル 2 1 10 1が設定されている。
[0243] そして、 図 20 B, 20 F, 20 Gに示すように、 トリガ信号 r xwn dwの立ち上がりタイミングでこれを利得選択回路 21 1 13を通し、 制 御利得調整テーブル 2 1 1 14から利得制御信号 Vagc として出力し、 ステート 1に移行する。
[0244] ステート 1 (X p u 1 s e待ち受けモード)
[0245] 図 20 F, 20 Gに示すように、 利得制御信号 Vagc として、 初 期 F利得テーブル 2 1 1 0 1で定まる初期利得 (最大利得) を出力する。
[ 0246] A/Dコンバータ 20 5を介して電界強度信号 RS S Iを受けて 受信信号電力に基づく: R S S I利得 gain— rssiを加算器 2 1 1 08において式 ( 6) のように算出する。 そして、 図 20 C, 20 F, 20 Gに示すように、 第 1 の同期検出信号 xpu 1 s eの入力タイミングで、 利得選択回路 21 1 1 3の選 択利得を初期利得から加算器 2 1 1 08による RS S I利得 gain一 rssiに切り替 えて、 制御利得調整テ一ブル 21 1 14から利得制御信号 Vagc として出力し、 ステ一ト 2に移行する。
[0247]
gain _rssi = rssiref - rssi + 40 … (6)
[ 0248] ここで、 rssiref は R S S I基準値でビット幅を 8ビットにする 関係上あらかじめ 40減算した値としており、 ゲイン計算時に 40を加算して補 正している。
[ 02493 ステート 2 (y p u 1 s e待ち受けモード)
[ 02 50 ] 図 20 F, 20 Gに示すように、 利得制御信号 Vagc として、 R S S I利得 gain— rssiを出力する。
[025 1 ] 乗算器 2 1 103で入力信号 s y_r eを二乗し、 乗算器 2 1 1 04で入力信号 s y— i mを二乗し、 これらを加算器 2 1 105で加算すること により入力受信信号の振幅を求め、 さらに、 加算器 2 1 106、 遅延部 2 1 10 9、 および遅延器 2 1 1 0を通してディジタル積分値を求め、 対数変換部 2 1 1 1 1において受信信号レベル a d s s iを式 (7) のように算出する。 [0 2 5 2]
a d s s i =4 x i 0 1 o g ( r e 2 + i m2 ) - (7)
[ 0 2 5 3] そして、 受信信号レベル a d s s iと利得制御後の受信信号電力 の最適値 adssiref、 および今選択している R S S I利得 gain_rssiを用いて、 a d s s i利得 gain— rssiを式 (8) のように算出する。 そして、 図 2 0 D, 2 0 F, 2 0 Gに示すように、 第 2の同期検出信号 y p u 1 s eの入力タイミングで 、 利得選択回路 2 1 1 1 2の選択利得を RS S I利得 gain— rssiから加算器 2 1 1 0 7による a d s s i利得 gain_rss iに切り替えて、 制御利得調整テーブル 2 1 1 1 4から利得制御電圧信号 Vagc として出力し、 ステート 3に移行する。
[0 2 54]
gain ― adssi - adssiref adssi + gain rssi … ( 8 )
[ 0 2 5 5] ステート 3 (c p u 1 s e待ち受けモ一ド)
[ 0 2 5 6] 図 2 0 F, 20 Gに示すように、 利得制御信号 Vagc として、 a d s s i利得 gain— rssiを出力する。
[ 0 2 5 7] そして、 図 20 E, 2 0 Fに示すように、 第 3の同期検出信号 c p u l s eの入力タイミングでステート 0に移行する。
[0 2 5 8] ただし, 得制御電圧信号 Vagc は、 a d s s i利得 gain— rss iを 保持する。
[ 0 2 5 9] 次に、 図 2の構成による動作を説明する。
[ 0 2 6 0] まず、 バースト検出を開始するに際して、 増幅利得制御部 2 1 1 よりトリガ信号 rxwndwをトリガとして利得制御信号 Vagc が最大値に設定されて 出力される。 この利得制御信号 Vagc は、 D/Aコンバータ 2 04でアナログ信 号に変換されて自動利得制御増幅部 2 0 1に供給される。
[0 2 6 1] 自動利得制御増幅部 2 0 1では、 アナログ信号である利得制御信 号 Vagc を受けて、 利得が最大の第 1の利得に設定される。
[0262] この状態において、 受信信号 RSの入力待ち状態となる。
[ 0263] このような状態において、 まず、 受信信号 RSの先頭のプリアン ブル信号が自動利得制御増幅部 201に入力される。
[0264] 自動利得制御増幅部 201においては、 受信信号 RSのプリアン ブル信号の前半の略 X区間が最大利得をもって増幅され、 信号 RXとして AZD コンパ一夕 20 3に出力される。
[ 0265] これと並行して、 受信信号 RSのプリアンブル信号が受信信号竃 力観測部 202に入力される。 受信信号電力観測部 202において、 受信信号 R
Sの電力が観測されてピーク電圧が測定され、 入力される受信信号レベルに応じ た値をとる電圧信号である電界強度信号 RS S Iに変換されて A/Dコンバータ
205に出力される。
[0266] この受信信号電力信号である電界強度信号 RS S Iは、 A/Dコ ンバータ 20 5を介してディジタル信号 RS S I Dとして増幅利得制御部 2 1 1 に入力される。
[0267] A/Dコンバータ 203においては、 受信信号 RSのプリアンプ ル信号部分がアナログ信号からディジタル信号に変換され信号 RXDとして受信 信号処理部 20 6に供給される。
[0268] このとき、 A/Dコンバータ 203の出力信号は歪んでしまうが 、 データ信号ではないので受信信号品質の劣化は招かない。
[0269] 受信信号処理部 206においては、 入力したディジタル受信信号 RXDがべ一スバンド信号 b b_r e (実部) および b b— i m (虚部) に変換 され、 ベースバンド信号のサンプリング周波数が低い周波数に変換される。
[ 0270] そして、 このときはバ一スト検出部 209による誤差検出周波数 Δ f が供給されていないことから、 周波数オフセットの補正は行われず、 信号 S 206 ( s y_r eおよび s y_ i m) が生成され、 OF DM復調部 207、 遅 延部 208、 およびバースト検出部 209に出力される。
[027 1] 遅延部 208では、 受信信号処理部 206の出力信号 S 206、 すなわち信号 s y_r eおよび s y— imが、 バースト検出のためにバースト周 期分遅延されて、 信号 S 208としてバースト検出部 209に出力される。
[0272] バースト検出部 209では、 受信信号処理部 206による信号 S 206 ( s y— r eおよび s y— i m) と遅延部 208による遅延信号 S 208 との自己相関および相互相関がとられる。
[0273] そして、 自己相関結果に基づいて、 通信システムの定めた周期の パースト信号の検出が行われ、 まず、 プリアンブル信号の前半 X区間を検出した ことを示す第 1の同期検出信号 S 209W (x p u 1 s e) が生成されて、 増幅 利得制御部 2 1 1に出力される。
[0274] なお、 プリアンブル信号が歪んでいても、 バースト検出部 20 9 に自己相関回路を用いていることから、 検出率を低下させることなくバースト検 出が可能である。
[ 027 5] また、 バースト検出部 209では、 自己相関結果に基づいて受信 信号の実部と虚部の位相差から誤差周波数が算出され誤差検出周波数 Δ f が生成 されて、 受信信号処理部 206に出力される。
[ 0276] 増幅利得制御部 2 1 1では、 バースト検出部 209によるバース ト同期検出信号 S 209W (x p u l s e) を受けて、 ディジタル電界強度信号 RS S I Dのレベルに基づいて利得が計算されて、 利得制御信号 Vagc が計算値 C V 1に設定される。
[ 027 7 ] この利得制御信号 Vagc は、 DZ Aコンバータ 204でアナログ 信号に変換されて自動利得制御増幅部 201に供給される。
[0278] 自動利得制御増幅部 201では、 アナログ信号である利得制御信 号 Vagc を受けて、 利得が計算値の第 2の利得に設定される。
[ 027 9] ただし、 このときに自動利得制御増幅部 201の利得は、 受信信 号電力の尖頭値の算出過程にアナログ信号処理を含んでおり、 若干のバラツキが 含まれており、 荒い利得制御となっている。
[ 028 0] 自動利得制御増幅部 201では、 受信信号 RSのプリアンブル信 号の残りの X区間および後半の Y区間が受信信号レベルに応じた第 2の利得をも つて増幅され、 信号 RXとして A/Dコンパ一夕 203に出力される。
[028 1 ] AZDコンバータ 203では、 受信信号 R Sのプリアンブル信号 部分がアナログ信号からディジタル信号に変換され信号 RXDとして受信信号処 理部 206に供給される。
[0282] このとさ、 A/Dコンバータ 203の入力信号は A/Dコンバー 夕 203を歪ませない適切な値に基づいた利得で増幅されていることから、 AZ Dコンバータ 203の出力信号には歪み発生しない。
[ 028 3 ] 受信信号処理部 206においては、 入力したディジタル受信信号 RXDがベースバンド信号 b b— r e (実部) および b b— i m (虚部) に変換 され、 ベースバンド信号のサンプリング周波数が低い周波数に変換される。
[0284] そして、 バースト検出部 209による誤差検出周波数△ f に基づ いて周波数オフセットの補正が行わて、 信号 S 206 (s y_r eおよび s y_ im) が生成され、 OFDM復調部 207、 遅延部 208、 およびバースト検出 部 209に出力される。
[028 5] 遅延部 208では、 受信信号処理部 206の出力信号 S 206、 すなわち信号 s y_r eおよび s y— i mが、 バースト検出のためにバースト周 期分遅延されて、 信号 S 208としてバースト検出部 209に出力される。
[0286] バースト検出部 209では、 受信信号処理部 206による信号 S 206 ( s y__r eおよび s y— i m) と遅延部 208による遅延信号 S 2◦ 8 との自己相関および相互相関がとられる。
[ 0287] そして、 自己相関結果に基づいて、 通信システムの定めた周期の バ一スト信号の検出が行われ、 プリアンブル信号の後半 Y区間を検出したことを 示す同期検出信号 S 2 0 9W (y p u 1 s e) が生成されて、 増幅利得制御部 2 1 1に出力される。
[0 2 8 8] また、 バースト検出部 20 9では、 自己相関結果に基づいて受信 信号の実部と虚部の位相差から誤差周波数が算出され誤差検出周波数△ f が生成 されて、 受信信号処理部 20 6に出力される。
[0 28 9] 増幅利得制御部 2 1 1においては、 受信信号電力に基づく利得で AZDコンバータ 2 0 3を無歪みで通したの信号 S 2 0 6を受けて、 受信信号の ディジタル値が積分されて正確な信号電力が測定される。
[ 0 2 9 0] また、 増幅利得制御部 2 1 1では、 ノ ースト検出部 2 0 9による 第 2の同期検出信号 S 2 0 9W (y p u l s e) を受けて、 A/Dコンバータ 2 03を無歪みで通した受信信号 S 20 6のディジ夕ル積分値に基づいて利得が計 算されて、 利得制御信号 Vagc が計算値 CV 2に設定される。
[02 9 1 ] この利得制御信号 Vagc は、 DZAコンバータ 2 04でアナログ 信号に変換されて自動利得制御増幅部 20 1に供給される。
[02 9 2] 自動利得制御増幅部 20 1では、 アナログ信号である利得制御信 号 Vagc を受けて、 利得が最適な計算値の第 3の利得に設定される。
[02 9 3] 自動利得制御増幅部 20 1では、 受信信号 RSのプリアンブル信 号の残りの Y区間および C 1 6以降のリファレンス C 64やデータが受信信号レ ベルに応じた第 3の利得をもって増幅され、 信号 RXとして AZDコンバータ 2 03に出力される。
[02 94] AZDコンバータ 20 3では、 受信信号 R Sのリファレンス C 6 4やデータ部分がアナログ信号からディジタル信号に変換され信号 RXDとして 受信信号処理部 2 0 6に供給される。
[0 2 9 5 ] このとき、 AZDコンバータ 2 03の入力信号は A/Dコンバー タ 20 3を歪ませない最適な値に基づいた利得で増幅されていることから、 AZ Dコンバータ 2 0 3の出力信号には歪み発生しない。 [ 029 6] 受信信号処理部 206においては、 入力したディジタル受信信号 RXDがべ一スバンド信号 b b— r e (実部) および b b— i m (虚部) に変換 され、 ベースバンド信号のサンプリング周波数が低い周波数に変換される。
[ 029 7] そして、 バ一スト検出部 209による誤差検出周波数△ f に基づ いて周波数オフセットの補正が行わて、 信号 S 206 (s y— r eおよび s y—
1 m) が生成され、 OFDM復調部 207、 遅延部 208、 およびバースト検出 部 209に出力される。
[ 0298] 遅延部 208においては、 受信信号処理部 206の出力信号 S 2 0 6、 すなわち信号 s y— r eおよび s y— imが、 ノ ースト検出のためにバ一 スト周期分遅延されて、 信号 S 208としてバースト検出部 20 9に出力される
[029 9] バースト検出部 209においては、 受信信号処理部 206による 信号 S 206 (s y— r eおよび s y— im) と遅延部 208による遅延信号 S
2 08との自己相関および相互相関がとられる。
[ 0300] そして、 相互相関結果である相互相関電力がタイミング制御部 2 1 0に供給され、 これに基づきピークタイミングが観測され、 このピ一クタイミ ングから所定時間後に第 3の同期検出信号 S 210 (c p u 1 s e) が増幅利得 制御部 2 1 1に出力され、 FFTタイミング信号 T F F Tが O F D M復調部 20 7に出力される。
[ 030 1 ] 第 3の同期検出信号 S 2 1 0 (c p u 1 s e) を受けた増幅利得 制御部 2 1 1では、 初期モード、 すなわちトリガ信号 r xwn dwの待ち受けモ 一ドに戻る。
[ 0302] 以降、 最適化された利得値はその後データ信号が終了し、 次のバ ースト検出開始まで固定される。
[ 0303] OF DM復調部 207においては、 受信信号処理部 206の出力 信号 S 206、 すなわち信号 s y_r eおよび s y__ i mがタイミング制御部 2 1 0により供給される F F Tタイミング信号 T F F Tに同期して高速離散フーリ ェ変換されて 0 F D M信号が復調される。
[ 0 3 0 4 ] 以上説明したように、 本実施形態によれば、 入力した受信信号レ ベルを利得制御信号に応じた利得をもって増幅する自動利得制御増幅部 2 0 1と 、 自動利得制御増幅部 2 0 1の出力信号をアナログ信号からディジタル信号に変 換する AZDコンバータ 2 0 3と、 受信信号の電力を検出する受信信号電力観測 部 2 0 2と、 自動利得制御増幅部の出力を一定時間遅延させる遅延部 2 0 8と、 ディジタル受信信号と遅延部の出力信号の相関演算に基づいてバースト検出を行 レ プリアンブル信号の前半区間を検出すると第 1のバ一スト同期検出信号を出 力し、 後半区間を検出する第 2のバースト同期検出信号を出力するバースト検出 部 2 0 9と、 バースト検出開始を示すトリガ信号を受けると、 最大値もって増幅 するように利得制御信号を自動利得制御増幅部に出力し、 バースト検出部により 第 1のバースト同期検出信号を受けると、 受信信号電力観測部で検出された受信 信号電力値に基づいて第 2の利得を計算し、 当該第 2の利得をもって増幅するよ うに利得制御信号を自動利得制御増幅部に出力し、 第 2の利得で増幅されたディ ジタル受信信号を受けて積分し受信信号電力値を求め、 バースト検出部により第 2のバースト同期検出信号を受けると、 求めた受信信号電力値に基づいて第 3の 利得を計算し、 当該第 3の利得をもって増幅するように利得制御信号を自動利得 制御増幅部に出力する増幅利得制御部 2 1 1とを設けたので、 以下の効果を得る ことできる。
[ 0 3 0 5 ] 高速かつ正確なレベル捕そくを行うことが可能となる。 その結果 、 無線 L A N等のバースト同期型通信システムにおいて、 高性能な受信品質を実 現できる利点がある。
[ 0 3 0 6 ] また、 プリアンブル信号が 2段階に分けてバース卜検出できる場 合には、 最初のバースト検出時に荒い利得制御を、 次のバースト検出時に精密な 利得制御を行うことで、 最初のパースト検出のタイミングを誤った場合のリカバ リーを行うことができる。
[0307] また、 ディジタル積分される信号のパターンを特定でき、 より正 確なレベル捕そくができる。
[0308] また、 最初のバースト検出が誤りであった場合でも、 2回目のバ ースト検出ができるか否かで判別ができ、 誤ったタイミングでのレベル捕そくを 回避できる。
[ 03093 なお、 1回目のバースト検出の後、 一定時間たつても 2回目のバ 一スト検出がなされなかった場合には、 レベル捕そくをリセットして、 レベル捕 そくの第 1段階に戻るようにすることで、 次に来るバースト信号をより高確率で 検出可能とすることができる。
[03 1 0] また、 W i r e l e s s l 3 94システムでは、 同期転送モード をサポートするために、 一定間隔でデータ信号中にリファレンス信号が揷入され ている。
[03 1 1] このリファレンス信号のタイミングで、 増幅利得制御部 2 1 1か らの利得制御信号を変化させることでレベル捕そくの微調整ができ、 同期転送モ ードでの受信性能を高品質に保つことが可能となる。
[03 12] なお、 リファレンス信号のタイミングで増幅利得制御部 21 1か らの出力する利得制御信号は、 前回のリファレンス信号の C 64区間でのディジ タル積分値を元に上記 (6) を用いて計算することができる。
[03 1 3] このように、 同期転送モードをサポートしていて、 データ信号中 に一定期間ごとにリファレンス信号を挿入してある場合には、 リファレンス信号 ごとにレベル捕そくの微調整を行うことで、 マルチパス環境下でのレベル捕そく をより正確に実現できることができる利点がある。 産業上の利用可能性
[03 1 ] 本発明の自動利得制御回路およびその方法、 並びに復調装置は、 高速かつ正確なレベル捕そくを行うことが可能であることから、 無線 L A N等の バースト同期型通信システムに適用可能である。
[ 0 3 1 5 ] また、 本発明の自動利得制御回路およびその方法、 並びに復調装 置は、 リファレンス信号ごとにレベル捕そくの微調整を行うことで、 マルチパス 環境下でのレベル捕そくをより正確に実現できることができることから、 W i r e 1 e s s 1 3 9 4システムのように、 同期転送モードをサポートしていて、 デ —夕信号中に一定期間ごとにリファレンス信号を挿入してあるシステムに適用可 能である。

Claims

言青求の範囲
1 . データ信号の先頭部に少なくともプリアンブル信号を含むバースト部が付 加された受信信号の増幅利得の制御を行う自動利得制御回路であって、
入力した受信信号レベルを利得制御信号に応じた利得をもって増幅する自 動利得制御増幅部と、
上記受信信号の電力を検出する受信信号電力観測部と、
上記自動利得制御増幅部の出力を一定時間遅延させる遅延部と、 上記自動利得制御増幅部の出力信号と上記遅延部の出力信号の相関演算に 基づいてバースト検出を行いバースト同期検出信号を出力するバースト検出部と バースト検出開始を示すトリガ信号を受けると、 あらかじめ設定した第 1 の利得をもつて増幅するように上記利得制御信号を上記自動利得制御増幅部に出 力し、 上記受信信号電力観測部で受信信号電力が検出されると、 検出された受信 信号電力値に基づいて第 2の利得を計算し、 当該第 2の利得をもって増幅するよ うに上記利得制御信号を上記自動利得制御増幅部に出力し、 第 2の利得で増幅さ れた上記自動利得制御増幅部の出力信号を受けて受信信号電力値を求め、 上記パ —スト検出部によりバースト同期検出信号を受けると、 当該求めた受信信号電力 値に基づいて第 3の利得を計算し、 当該第 3の利得をもって増幅するように上記 利得制御信号を上記自動利得制御増幅部に出力する増幅利得制御部と
を有する自動利得制御回路。
2 . 上記増幅利得制御部は、 第 3の利得を設定後、 次のバース卜検出開始まで 、 上記自動利得制御増幅部の利得を当該第 3の利得に固定する
請求項 1記載の自動利得制御回路。
3 . 上記バースト信号は、 プリアンブル信号に後続するリファレンス信号を含 み、 上記パースト検出部の相関演算結果を受けて上記リファレンス信号を検出 し、 第 2のバースト同期検出信号を上記増幅利得制御部に出力するタイミング制 御部をさらに有し、
上記増幅利得制御部は、 上記第 2のパースト同期検出信号を受けると上記 トリガ信号の待ち受けモードに移行し、 次のトリガ信号の入力まで上記自動利得 制御増幅部の利得を当該第 3の利得に固定する
請求項 1記載の自動利得制御.回路。
4 . 上記受信信号電力観測部は、 バースト検出開始毎にリセットされ、 リセッ ト後の受信信号電力を検出する
請求項 1記載の自動利得制御回路。
5 . 上記受信信号電力観測部は、 受信信号のピーク値を検出する
請求項 1記載の自動利得制御回路。
6 . 上記受信信号電力観測部は、 受信信号のピーク値を検出する
請求項 4記載の自動利得制御回路。
7 . 受信信号のバースト部に続くデータ信号区間に、 リファレンス信号が揷入 されており、
上記増幅利得制御部は、 リファレンス信号区間中に上記第 3の利得の値の 微調整を行う
請求項 1記載の自動利得制御回路。
8 . 上記増幅利得制御部は、 リファレンス信号区間における受信信号電力値を 求め、 前回のリファレンス信号区間における受信信号電力値に基づいて上記第 3 の利得の値を微調整する
請求項 7記載の自動利得制御回路。
9 . データ信号の先頭部に少なくともプリアンブル信号を含むバースト部が付 加され、 かつ当該プリアンブル信号が前半区間と後半区間の 2段階に分けられて いる受信信号の増幅利得の制御を行う自動利得制御回路であって、 入力した受信信号レベルを利得制御信号に応じた利得をもって増幅する自 動利得制御増幅部と、
上記受信信号の電力を検出する受信信号電力観測部と、
上記自動利得制御増幅部の出力を一定時間遅延させる遅延部と、 上記自動利得制御増幅部の出力信号と上記遅延部の出力信号の相関演算に 基づいてバースト検出を行い、 上記プリアンブル信号の前半区間を検出すると第
1のバースト同期検出信号を出力し、 後半区間を検出する第 2のバースト同期検 出信号を出力するバースト検出部と、
バースト検出開始を示すトリガ信号を受けると、 あらかじめ設定した第 1 の利得をもって増幅するように上記利得制御信号を上記自動利得制御増幅部に出 力し、 上記バースト検出部により第 1のバースト同期検出信号を受けると、 上記 受信信号電力観測部で検出された受信信号電力値に基づいて第 2の利得を計算し 、 当該第 2の利得をもつて増幅するように上記利得制御信号を上記自動利得制御 増幅部に出力し、 第 2の利得で増幅された上記自動利得制御増幅部の出力信号を 受けて受信信号電力値を求め、 上記バースト検出部により第 2のバースト同期検 出信号を受けると、 当該求めた受信信号電力値に基づいて第 3の利得を計算し、 当該第 3の利得をもって増幅するように上記利得制御信号を上記自動利得制御増 幅部に出力する増幅利得制御部と
を有する自動利得制御回路。
1 0 . 上記増幅利得制御部は、 第 3の利得を設定後、 次のバースト検出開始まで 、 上記自動利得制御増幅部の利得を当該第 3の利得に固定する
請求項 9記載の自動利得制御回路。
1 1 . 上記バ一スト信号は、 プリアンブル信号に後続するリファレンス信号を含 み、
上記バースト検出部の相関演算結果を受けて上記リファレンス信号を検出 し、 第 3のバースト同期検出信号を上記増幅利得制御部に出力する夕イミング制 御部をさらに有し、
上記増幅利得制御部は、 上記第 3のバースト同期検出信号を受けると上記 トリガ信号の待ち受けモードに移行し、 次のトリガ信号の入力まで上記自動利得 制御増幅部の利得を当該第 3の利得に固定する
請求項 9記載の自動利得制御回路。
1 2 . 上記受信信号電力観測部は、 バ一スト検出開始毎にリセットされ、 リセッ ト後の受信信号電力を検出する
請求項 9記載の自動利得制御回路。
1 3 . 上記受信信号電力観測部は、 受信信号のピーク値を検出する
請求項 9記載の自動利得制御回路。
1 4 . 上記受信信号電力観測部は、 受信信号のピーク値を検出する
請求項 1 2記載の自動利得制御回路。
1 5 . 受信信号のバースト部に続くデータ信号区間に、 リファレンス信号が揷入 されており、
上記増幅利得制御部は、 リフアレンス信号区間中に上記第 3の利得の値の 微調整を行う
請求項 9記載の自動利得制御回路。
1 6 . 上記増幅利得制御部は、 リファレンス信号区間における受信信号電力値を 求め、 前回のリファレンス信号区間における受信信号電力値に基づいて上記第 3 の利得の値を微調整する
請求項 1 5記載の自動利得制御回路。
1 7 . データ信号の先頭部に少なくともプリアンブル信号を含むバースト部が付 加された受信信号の増幅利得の制御を行う自動利得制御回路であって、
入力した受信信号レベルを利得制御信号に応じた利得をもって増幅する自 動利得制御増幅部と、
上記自動利得制御増幅部の出力信号をアナログ信号からディジタル信号に 変換するアナログ ディジタルコンバ一夕と、
上記受信信号の電力を検出する受信信号電力観測部と、
上記自動利得制御増幅部の出力を一定時間遅延させる遅延部と、 上記アナログ/ディジ夕ルコンパ一夕のディジ夕ル出力信号と上記遅延部 の出力信号の相関演算に基づいてバースト検出を行いバースト同期検出信号を出 力するバースト検出部と、
バースト検出開始を示すトリガ信号を受けると、 あらかじめ設定した第 1 の利得をもつて増幅するように上記利得制御信号を上記自動利得制御増幅部に出 力し、 上記受信信号電力観測部で受信信号電力が検出されると、 少なくとも検出 された受信信号電力値に基づいて第 2の利得を計算し、 当該第 2の利得をもって 増幅するように上記利得制御信号を上記自動利得制御増幅部に出力し、 第 2の利 得で増幅された上記アナログ/ディジタルコンバータのディジタル出力信号を受 けて積分し受信信号電力値を求め、 上記バースト検出部によりバースト同期検出 信号を受けると、 当該求めた受信信号電力値に基づいて第 3の利得を計算し、 当 該第 3の利得をもって増幅するように上記利得制御信号を上記自動利得制御増幅 部に出力する増幅利得制御部と
を有する自動利得制御回路。
1 8 . 上記増幅利得制御部は、 第 2の利得を上記受信信号電力観測部による受信 信号電力値に加えて上記アナログ/ディジタルコンバータを歪ませない基準信号 電力値に基づいて計算する
請求項 1 7記載の自動利得制御回路。
1 9 . 上記増幅利得制御部は、 第 3の利得を求めた受信信号電力値に加えて利得 制御後受信信号電力を最適化した基準信号電力値に基づいて計算する
請求項 1 7記載の自動利得制御回路。
2 0 . 上記増幅利得制御部は、 第 2の利得を上記受信信号電力観測部による受信 信号電力値に加えて上記アナログ/ディジタルコンバータを歪ませない第 1の基 準信号電力値に基づいて計算し、 第 3の利得を求めた受信信号電力値に加えて利 得制御後受信信号電力を最適化した第 2の基準信号電力値に基づいて計算する 請求項 1 7記載の自動利得制御回路。
2 1 . 上記増幅利得制御部は、 第 3の利得を設定後、 次のバースト検出開始まで 、 上記自動利得制御増幅部の利得を当該第 3の利得に固定する
請求項 1 7記載の自動利得制御回路。
2 2 . 上記バースト信号は、 プリアンブル信号に後続するリファレンス信号を含 み、
上記バース卜検出部の相関演算結果を受けて上記リファレンス信号を検出 し、 第 2のバースト同期検出信号を上記増幅利得制御部に出力するタイミング制 御部をさらに有し、
上記増幅利得制御部は、 上記第 2のパ一スト同期検出信号を受けると上記 トリガ信号の待ち受けモ一ドに移行し、 次のトリガ信号の入力まで上記自動利得 制御増幅部の利得を当該第 3の利得に固定する
請求項 1 7記載の自動利得制御回路。
2 3 . 上記受信信号電力観測部は、 バースト検出開始毎にリセットされ、 リセッ ト後の受信信号電力を検出する
請求項 1 7記載の自動利得制御回路。
2 4 . 上記受信信号電力観測部は、 受信信号のピーク値を検出する
請求項 1 7記載の自動利得制御回路。
2 5 . 上記受信信号電力観測部は、 受信信号のピーク値を検出する
請求項 2 3記載の自動利得制御回路。
2 6 . 受信信号のバースト部に続くデータ信号区間に、 リファレンス信号が揷入 されており、
上記増幅利得制御部は、 リファレンス信号区間中に上記第 3の利得の値の 微調整を行う 請求項 1 7記載の自動利得制御回路。
2 7 . 上記増幅利得制御部は、 リファレンス信号区間における受信信号電力値を 求め、 前回のリファレンス信号区間における受信信号電力値に基づいて上記第 3 の利得の値を微調整する
請求項 2 6記載の自動利得制御回路。
2 8 . データ信号の先頭部に少なくともプリアンブル信号を含むバースト部が付 加され、 かつ当該プリアンブル信号が前半区間と後半区間の 2段階に分けられて いる受信信号の増幅利得の制御を行う自動利得制御回路であって、
入力した受信信号レベルを利得制御信号に応じた利得をもって増幅する自 動利得制御増幅部と、
上記自動利得制御増幅部の出力信号をアナログ信号からディジタル信号に 変換するアナログ Zディジタルコンバ一夕と、
上記受信信号の電力を検出する受信信号電力観測部と、
上記自動利得制御増幅部の出力を一定時間遅延させる遅延部と、 上記アナログ/ディジタルコンバータのディジタル出力信号と上記遅延部 の出力信号の相関演算に基づいてバースト検出を行い、 上記プリアンブル信号の 前半区間を検出すると第 1のバースト同期検出信号を出力し、 後半区間を検出す る第 2のバースト同期検出信号を出力するバースト検出部と、
バースト検出開始を示すトリガ信号を受けると、 あらかじめ設定した第 1 の利得をもって増幅するように上記利得制御信号を上記自動利得制御増幅部に出 力し、 上記バースト検出部により第 1のバースト同期検出信号を受けると、 上記 受信信号電力観測部で検出された受信信号電力値に基づいて第 2の利得を計算し 、 当該第 2の利得をもつて増幅するように上記利得制御信号を上記自動利得制御 増幅部に出力し、 第 2の利得で増幅された上記アナログ Zディジタルコンパ一夕 のディジ夕ル出力信号を受けて積分し受信信号電力値を求め、 上記バースト検出 部により第 2のバースト同期検出信号を受けると、 当該求めた受信信号電力値に 基づいて第 3の利得を計算し、 当該第 3の利得をもつて増幅するように上記利得 制御信号を上記自動利得制御増幅部に出力する増幅利得制御部と
を有する自動利得制御回路。
2 9 . 上記増幅利得制御部は、 第 2の利得を上記受信信号電力観測部による受信 信号電力値に加えて上記アナログノディジタルコンバータを歪ませない基準信号 電力値に基づいて計算する
請求項 2 8記載の自動利得制御回路。
3 0 . 上記増幅利得制御部は、 第 3の利得を求めた受信信号電力値に加えて利得 制御後受信信号電力を最適化した基準信号電力値に基づいて計算する
請求項 2 8記載の自動利得制御回路。
3 1 . 上記増幅利得制御部は、 第 2の利得を上記受信信号電力観測部による受信 信号電力値に加えて上記アナログ/ディジタルコンバータを歪ませない第 1の基 準信号電力値に基づいて計算し、 第 3の利得を求めた受信信号電力値に加えて利 得制御後受信信号電力を最適化した第 2の基準信号電力値に基づいて計算する 請求項 2 8記載の自動利得制御回路。
3 2 . 上記増幅利得制御部は、 第 3の利得を設定後、 次のバースト検出開始まで 、 上記自動利得制御増幅部の利得を当該第 3の利得に固定する
請求項 2 8記載の自動利得制御回路。
3 3 . 上記バースト信号は、 プリアンブル信号に後続するリファレンス信号を含 み、
上記バースト検出信号の相関演算結果を受けて上記リファレンス信号を検 出し、 第 3のバースト同期検出信号を上記増幅利得制御部に出力するタイミング 制御部をさらに有し、
上記増幅利得制御部は、 上記第 3のバースト同期検出信号を受けると上記 トリガ信号の待ち受けモードに移行し、 次のトリガ信号の入力まで上記自動利得 制御増幅部の利得を当該第 3の利得に固定する 請求項 2 8記載の自動利得制御回路。
3 4 . 上記受信信号電力観測部は、 バースト検出開始毎にリセットされ、 リセッ ト後の受信信号電力を検出する
請求項 2 8記載の自動利得制御回路。
3 5 . 上記受信信号電力観測部は、 受信信号のピーク値を検出する
請求項 2 8記載の自動利得制御回路。
3 6 . 上記受信信号電力観測部は、 受信信号のピーク値を検出する
請求項 3 4記載の自動利得制御回路。
3 7 . 受信信号のバースト部に続くデ一夕信号区間に、 リファレンス信号が揷入 されており、
上記増幅利得制御部は、 リフアレンス信号区間中に上記第 3の利得の値の 微調整を行う
請求項 2 8記載の自動利得制御回路。
3 8 . 上記増幅利得制御部は、 リファレンス信号区間における受信信号電力値を 求め、 前回の,リファレンス信号区間における受信信号電力値に基づいて上記第 3 の利得の値を微調整する
請求項 3 7記載の自動利得制御回路。
3 9 . データ信号の先頭部に少なくともプリアンブル信号を含むバースト部が付 加された受信信号の増幅利得の制御を行う自動利得制御方法であって、
バースト検出を開始するに際して、 あらかじめ設定した第 1の利得をもつ て増幅するように上記増幅利得を設定し、
バースト検出が開始されると、 受信信号を第 1の利得をもって増幅し、 こ れと並行して上記受信信号の電力を検出し、
検出した受信信号電力値に基づいて第 2の利得を計算し、 当該第 2の利得 をもつて増幅するように上記増幅利得を設定し、
上記第 2の利得で増幅された受信信号の電力値を求め、 上記第 2の利得で増幅された受信信号および当該受信信号の遅延信号の相 関演算に基づいてバースト検出を行い、
バーストが検出されると上記求めた第 2の利得で増幅された受信信号電力 値に基づいて第 3の利得を計算し、 当該第 3の利得をもつて増幅するように上記 増幅利得を設定する
自動利得制御方法。
4 0 . 上記第 3の利得を設定後、 次のバースト検出開始まで、 上記増幅利得を当 該第 3の利得に固定する
請求項 3 9記載の自動利得制御方法。
4 1 . 上記バースト信号は、 プリアンブル信号に後続するリファレンス信号を含 み、
上記バースト検出時の相関演算結果を受けて上記リファレンス信号を検出 し、
上記リファレンス信号が検出されるとバースト検出開始指令の待ち受けモ 一ドに移行し、 次のバースト検出開始指令を受けるまで上記増幅利得を上記第 3 の利得に固定する
請求項 4 0記載の自動利得制御方法。
4 2 . 受信信号のバースト部に続くデータ信号区間に、 リファレンス信号が挿入 されており、
上記リファレンス信号区間中に上記第 3の利得の値の微調整を行う 請求項 4 0記載の自動利得制御方法。
4 3 . 上記リファレンス信号区間における受信信号電力値を求め、 前回のリファ レンス信号区間における受信信号電力値に基づいて上記第 3の利得の値を微調整 する
請求項 4 2記載の自動利得制御方法。
4 4 . データ信号の先頭部に少なくともプリアンブル信号を含むバースト部が付 加され、 かつ当該プリアンブル信号が前半区間と後半区間の 2段階に分けられて いる受信信号の増幅利得の制御を行う自動利得制御方法であって、
バースト検出を開始するに際して、 あらかじめ設定した第 1の利得をもつ て増幅するように上記増幅利得を設定し、
バースト検出が開始されると、 受信信号を第 1の利得をもって増幅し、 こ れと並行して上記受信信号の電力を検出し、
上記第 1の利得で増幅された受信信号および当該受信信号の遅延信号の相 関演算に基づいて上記プリアンブル信号の前半区間のバースト検出を行い、 前半区間でのバース卜が検出されると検出した受信信号電力値に基づいて 第 2の利得を計算し、 当該第 2の利得をもって増幅するように上記増幅利得を設 定し、
上記第 2の利得で増幅された受信信号の電力値を求め、
上記第 2の利得で増幅された受信信号および当該受信信号の遅延信号の相 関演算に基づいて上記プリアンブル信号の後半区間のバース卜検出を行い、 後半区間でのバーストが検出されると上記求めた第 2の利得で増幅された 受信信号電力値に基づいて第 3の利得を計算し、 当該第 3の利得をもって増幅す るように上記増幅利得を設定する
自動利得制御方法。
4 5 . 上記第 3の利得を設定後、 次のバースト検出開始まで、 上記増幅利得を当 該第 3の利得に固定する
請求項 4 4記載の自動利得制御方法。
4 6 . 上記バースト信号は、 プリアンブル信号に後続するリファレンス信号を含 み、
上記バースト検出時の相関演算結果を受けて上記リファレンス信号を検出 し、
上記リファレンス信号が検出されるとパースト検出開始指令の待ち受けモ —ドに移行し、 次のバースト検出開始指令を受けるまで上記増幅利得を上記第 3 の利得に固定する
請求項 4 4記載の自動利得制御方法。
4 7 . 受信信号のバースト部に続くデータ信号区間に、 リファレンス信号が挿入 されており、
上記リファレンス信号区間中に上記第 3の利得の値の微調整を行う 請求項 4 4記載の自動利得制御方法。
4 8 . 上記リファレンス信号区間における受信信号電力値を求め、 前回のリファ レンス信号区間における受信信号電力値に基づいて上記第 3の利得の値を微調整 する
請求項 4 7記載の自動利得制御方法。
4 9 . デ一夕信号の先頭部に少なくともプリアンブル信号を含むバースト部が付 加された受信信号の増幅利得の制御を行い、 増幅後の受信信号を復調する復調装 置であって、
入力した受信信号レベルを利得制御信号に応じた利得をもって増幅する自 動利得制御増幅部と、
上記受信信号の電力を検出する受信信号電力観測部と、
上記自動利得制御増幅部の出力を一定時間遅延させる遅延部と、 上記自動利得制御増幅部の出力信号と上記遅延部の出力信号の相関演算に 基づいてパースト検出を行いバースト同期検出信号を出力するバースト検出部と バースト検出開始を示すトリガ信号を受けると、 あらかじめ設定した第 1 の利得をもつて増幅するように上記利得制御信号を上記自動利得制御増幅部に出 力し、 上記受信信号電力観測部で受信信号電力が検出されると、 検出された受信 信号電力値に基づいて第 2の利得を計算し、 当該第 2の利得をもって増幅するよ うに上記利得制御信号を上記自動利得制御増幅部に出力し、 第 2の利得で増幅さ れた上記自動利得制御増幅部の出力信号を受けて受信信号電力値を求め、 上記バ ースト検出部によりバースト同期検出信号を受けると、 当該求めた受信信号電力 値に基づいて第 3の利得を計算し、 当該第 3の利得をもって増幅するように上記 利得制御信号を上記自動利得制御増幅部に出力する増幅利得制御部と
を有する自動利得制御回路
を含む復調装置。
5 0 . 上記受信信号は、 直交周波数分割多重変調方式に基づいて変調されている 請求項 4 9記載の復調装置。
5 1 . デ一夕信号の先頭部に少なくともプリアンブル信号を含むバースト部が付 加され、 かつ当該プリアンブル信号が前半区間と後半区間の 2段階に分けられて いる受信信号の増幅利得の制御を行い、 増幅後の受信信号を復調する復調装置で あって、
入力した受信信号レベルを利得制御信号に応じた利得をもって増幅する自 動利得制御増幅部と、
上記受信信号の電力を検出する受信信号電力観測部と、
上記自動利得制御増幅部の出力を一定時間遅延させる遅延部と、 上記自動利得制御増幅部の出力信号と上記遅延部の出力信号の相関演算に 基づいてバースト検出を行い、 上記プリアンブル信号の前半区間を検出すると第 1のバースト同期検出信号を出力し、 後半区間を検出する第 2のバースト同期検 出信号を出力するバースト検出部と、
バースト検出開始を示すトリガ信号を受けると、 あらかじめ設定した第 1 の利得をもつて増幅するように上記利得制御信号を上記自動利得制御増幅部に出 力し、 、上記バースト検出部により第 1のバースト同期検出信号を受けると、 上記 受信信号電力観測部で検出された受信信号電力値に基づいて第 2の利得を計算し 、 当該第 2の利得をもつて増幅するように上記利得制御信号を上記自動利得制御 増幅部に出力し、 第 2の利得で増幅された上記自動利得制御増幅部の出力信号を 受けて受信信号電力値を求め、 上記バースト検出部により第 2のバースト同期検 出信号を受けると、 当該求めた受信信号電力値に基づいて第 3の利得を計算し、 当該第 3の利得をもつて増幅するように上記利得制御信号を上記自動利得制御増 幅部に出力する増幅利得制御部と
を有する自動利得制御回路
を含む復調装置。
5 2 . 上記受信信号は、 直交周波数分割多重変調方式に基づいて変調されている 請求項 5 1記載の復調装置。
5 3 . データ信号の先頭部に少なくともプリアンブル信号を含むバースト部が付 加された受信信号の増幅利得の制御を行い、 増幅後の受信信号を復調する復調装 置であって、
入力した受信信号レベルを利得制御信号に応じた利得をもって増幅する自 動利得制御増幅部と、
上記自動利得制御増幅部の出力信号をアナ口グ信号からデイジ夕ル信号に 変換するアナログ/ディジタルコンバータと、
上記受信信号の電力を検出する受信信号電力観測部と、
上記自動利得制御増幅部の出力を一定時間遅延させる遅延部と、 上記アナログ/ディジ夕ルコンパ一夕のディジタル出力信号と上記遅延部 の出力信号の相関演算に基づいてバースト検出を行いバースト同期検出信号を出 力するバースト検出部と、
バースト検出開始を示すトリガ信号を受けると、 あらかじめ設定した第 1 の利得をもって増幅するように上記利得制御信号を上記自動利得制御増幅部に出 力し、 上記受信信号電力観測部で受信信号電力が検出されると、 少なくとも検出 された受信信号電力値に基づいて第 2の利得を計算し、 当該第 2の利得をもって 増幅するように上記利得制御信号を上記自動利得制御増幅部に出力し、 第 2の利 得で増幅された上記アナログ/ディジタルコンバータのディジタル出力信号を受 けて積分し受信信号電力値を求め、 上記バースト検出部によりバースト同期検出 信号を受けると、 当該求めた受信信号電力値に基づいて第 3の利得を計算し、 当 該第 3の利得をもつて増幅するように上記利得制御信号を上記自動利得制御増幅 部に出力する増幅利得制御部と
を有する自動利得制御回路
を含む復調装置。
5 4 . 上記受信信号は、 直交周波数分割多重変調方式に基づいて変調されている 請求項 5 3記載の復調装置。
5 5 . データ信号の先頭部に少なくともプリアンブル信号を含むバースト部が付 加され、 かつ当該プリアンブル信号が前半区間と後半区間の 2段階に分けられて いる受信信号の増幅利得の制御を行い、 増幅後の受信信号を復調する復調装置で あって、
入力した受信信号レベルを利得制御信号に応じた利得をもつて増幅する自 動利得制御増幅部と、
上記自動利得制御増幅部の出力信号をアナログ信号からディジタル信号に 変換するアナログ Zディジ夕ルコンパ一夕と、
上記受信信号の電力を検出する受信信号電力観測部と、
上記自動利得制御増幅部の出力を一定時間遅延させる遅延部と、 上記アナログ/ディジタルコンバータのディジ夕ル出力信号と上記遅延部 の出力信号の相関演算に基づいてバースト検出を行い、 上記プリアンブル信号の 前半区間を検出すると第 1のバ一スト同期検出信号を出力し、 後半区間を検出す る第 2のバースト同期検出信号を出力するバースト検出部と、
バースト検出開始を示すトリガ信号を受けると、 あらかじめ設定した第 1 の利得をもって増幅するように上記利得制御信号を上記自動利得制御増幅部に出 力し、 上記バースト検出部により第 1のバースト同期検出信号を受けると、 上記 受信信号電力観測部で検出された受信信号電力値に基づいて第 2の利得を計算し 、 当該第 2の利得をもつて増幅するように上記利得制御信号を上記自動利得制御 増幅部に出力し、 第 2の利得で増幅された上記アナログ/ディジタルコンバータ のディジタル出力信号を受けて積分し受信信号電力値を求め、 上記バースト検出 部により第 2のバースト同期検出信号を受けると、 当該求めた受信信号電力値に 基づいて第 3の利得を計算し、 当該第 3の利得をもって増幅するように上記利得 制御信号を上記自動利得制御増幅部に出力する増幅利得制御部と
を有する自動利得制御回路
を含む復調装置。
5 6 . 上記受信信号は、 直交周波数分割多重変調方式に基づいて変調されている 請求項 5 5記載の復調装置。
PCT/JP2002/006364 2001-06-25 2002-06-25 Circuit de commande de gain automatique et procede correspondant, ainsi que dispositif de demodulation faisant intervenir leur utilisation WO2003001714A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE60221526T DE60221526T2 (de) 2001-06-25 2002-06-25 Regelverstärkung und Verfahren und Demodulationsvorrichtung
US10/362,295 US7397872B2 (en) 2001-06-25 2002-06-25 Automatic gain control circuit and method thereof and demodulation apparatus using the same
EP02741298A EP1401134B1 (en) 2001-06-25 2002-06-25 Automatic gain control circuit and method and demodulation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001190994A JP3599001B2 (ja) 2001-06-25 2001-06-25 自動利得制御回路およびその方法、並びにそれらを用いた復調装置
JP2001-190994 2001-06-25

Publications (1)

Publication Number Publication Date
WO2003001714A1 true WO2003001714A1 (fr) 2003-01-03

Family

ID=19029684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006364 WO2003001714A1 (fr) 2001-06-25 2002-06-25 Circuit de commande de gain automatique et procede correspondant, ainsi que dispositif de demodulation faisant intervenir leur utilisation

Country Status (6)

Country Link
US (1) US7397872B2 (ja)
EP (1) EP1401134B1 (ja)
JP (1) JP3599001B2 (ja)
CN (1) CN100512070C (ja)
DE (1) DE60221526T2 (ja)
WO (1) WO2003001714A1 (ja)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092561A (ja) * 2001-09-18 2003-03-28 Sony Corp 受信装置及び受信方法
US7916803B2 (en) 2003-04-10 2011-03-29 Qualcomm Incorporated Modified preamble structure for IEEE 802.11a extensions to allow for coexistence and interoperability between 802.11a devices and higher data rate, MIMO or otherwise extended devices
US8743837B2 (en) 2003-04-10 2014-06-03 Qualcomm Incorporated Modified preamble structure for IEEE 802.11A extensions to allow for coexistence and interoperability between 802.11A devices and higher data rate, MIMO or otherwise extended devices
JP4656836B2 (ja) * 2003-12-19 2011-03-23 パナソニック株式会社 同期クロック生成装置及び同期クロック生成方法
JP4212548B2 (ja) 2003-12-26 2009-01-21 株式会社東芝 無線送信装置、無線受信装置、無線送信方法及び無線受信方法
US8433005B2 (en) * 2004-01-28 2013-04-30 Qualcomm Incorporated Frame synchronization and initial symbol timing acquisition system and method
US8724447B2 (en) 2004-01-28 2014-05-13 Qualcomm Incorporated Timing estimation in an OFDM receiver
JP2007520168A (ja) * 2004-01-28 2007-07-19 クゥアルコム・インコーポレイテッド Ofdm受信器におけるタイミング推定
US7483499B2 (en) * 2004-01-30 2009-01-27 Infineon Technologies Ag Receiver circuit and a method for its operation
US7773702B2 (en) * 2004-05-03 2010-08-10 Qualcomm Incorporated Gain control for a receiver in a multi-carrier communication system
PL1751890T3 (pl) 2004-05-27 2017-08-31 Qualcomm Incorporated ZMODYFIKOWANA STRUKTURA PREAMBUŁY DLA ROZSZERZEŃ IEEE 802.11a DLA UMOŻLIWIENIA WSPÓŁISTNIENIA I WSPÓŁDZIAŁANIA MIĘDZY URZĄDZENIAMI 802.11a A URZĄDZENIAMI O SZYBSZEJ TRANSMISJI DANYCH, MIMO LUB INACZEJ ROZSZERZONYMI
US7327803B2 (en) 2004-10-22 2008-02-05 Parkervision, Inc. Systems and methods for vector power amplification
US7355470B2 (en) 2006-04-24 2008-04-08 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for amplifier class transitioning
KR100749446B1 (ko) 2004-11-30 2007-08-14 한국전자통신연구원 직교주파수 분할다중화 시스템에서 초기 동기 이전의 자동이득조절 방법 및 장치
US7656975B2 (en) * 2005-02-10 2010-02-02 Via Telecom Co., Ltd. Gain control in signal processing with feed-forward gain correction
JP4549218B2 (ja) * 2005-04-08 2010-09-22 株式会社リコー Rssi整形処理方法および無線lan装置
US20130078934A1 (en) 2011-04-08 2013-03-28 Gregory Rawlins Systems and Methods of RF Power Transmission, Modulation, and Amplification
US7911272B2 (en) 2007-06-19 2011-03-22 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including blended control embodiments
US8334722B2 (en) 2007-06-28 2012-12-18 Parkervision, Inc. Systems and methods of RF power transmission, modulation and amplification
KR100812607B1 (ko) 2005-12-01 2008-03-13 에스케이텔레시스 주식회사 알에프 파워를 이용하여 동기를 획득하는 티디디방식에서의 증폭모듈 및 증폭모듈에서 알에프 파워를이용하여 동기를 획득하는 방법
JP4644823B2 (ja) * 2007-03-26 2011-03-09 日本電信電話株式会社 自動利得制御回路
US8693592B2 (en) 2007-04-27 2014-04-08 Panasonic Corporation Receiving device and receiving method
WO2008144017A1 (en) 2007-05-18 2008-11-27 Parkervision, Inc. Systems and methods of rf power transmission, modulation, and amplification
US20090040107A1 (en) * 2007-06-12 2009-02-12 Hmicro, Inc. Smart antenna subsystem
US20090042527A1 (en) * 2007-06-12 2009-02-12 Hmicro Inc. Dynamic low power receiver
WO2008156800A1 (en) 2007-06-19 2008-12-24 Parkervision, Inc. Combiner-less multiple input single output (miso) amplification with blended control
EP2210352B1 (en) * 2007-10-24 2020-05-06 LifeSignals, Inc. Systems and networks for half and full duplex wireless communication using multiple radios
EP2073473A1 (en) * 2007-12-21 2009-06-24 Telefonaktiebolaget LM Ericsson (publ) A Method and Device for Automatic Gain Control
BRPI0821882B1 (pt) 2008-01-16 2020-04-22 Interdigital Madison Patent Holdings circuito de controle de ganho automático e método de controle de ganho automático com feedback de controlador de estado de máquina
WO2009093154A1 (en) * 2008-01-22 2009-07-30 Nxp B.V. Automatic gain control in a radio receiver circuit, and related interface
US8879983B2 (en) * 2008-02-06 2014-11-04 Hmicro, Inc. Wireless communications systems using multiple radios
JP4911088B2 (ja) * 2008-03-21 2012-04-04 富士通株式会社 無線通信装置および無線通信方法
DE602008001789D1 (de) 2008-05-14 2010-08-26 Ericsson Telefon Ab L M Verfahren zur Steuerung einer Empfängerverstärkung
WO2009145887A1 (en) * 2008-05-27 2009-12-03 Parkervision, Inc. Systems and methods of rf power transmission, modulation, and amplification
JP2011188268A (ja) * 2010-03-09 2011-09-22 Mitsubishi Electric Corp 受信装置
JP5445361B2 (ja) * 2010-07-07 2014-03-19 日本電気株式会社 無線通信装置およびその通信方法ならびに無線通信システム
CN101895507A (zh) * 2010-08-09 2010-11-24 复旦大学 一种正交频分复用接收机系统及其自动增益控制方法
DE102011081245A1 (de) 2011-03-31 2012-10-04 Rohde & Schwarz Gmbh & Co. Kg Vorrichtung und Verfahren zum Fixieren eines Verstärkungs- bzw. Dämpfungsfaktors
JP5699758B2 (ja) * 2011-04-01 2015-04-15 ソニー株式会社 受信装置、受信方法、およびプログラム
KR20140034895A (ko) 2011-06-02 2014-03-20 파커비전, 인크. 안테나 제어
JP5410478B2 (ja) * 2011-07-07 2014-02-05 クゥアルコム・インコーポレイテッド 1またはそれ以上の受信器を備えた無線通信システムにおける統合パケット検出
US8629718B2 (en) * 2011-11-07 2014-01-14 Telefonaktiebolaget L M Ericsson (Publ) Signal splitting apparatus suitable for use in a power amplifier
CN103296986B (zh) * 2012-02-29 2016-06-22 中兴通讯股份有限公司 一种自动增益控制方法及装置
EP3047348A4 (en) 2013-09-17 2016-09-07 Parkervision Inc METHOD, DEVICE AND SYSTEM FOR THE PRESENTATION OF A MEDIA TIME FUNCTION
US9813038B2 (en) * 2013-10-17 2017-11-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for automatic gain control
CN104639266B (zh) * 2015-02-06 2017-02-22 深圳市极致汇仪科技有限公司 一种快速准确的自动增益控制方法
EP3226425B1 (en) * 2016-03-31 2019-12-04 Nxp B.V. Method and system for processing a radio frequency (rf) signal
WO2021032009A1 (en) * 2019-08-16 2021-02-25 Mediatek Inc. Automatic gain control for serving cell activation based on two different reference signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629942A (ja) * 1992-07-07 1994-02-04 Nec Corp 自動利得制御回路
JPH11205278A (ja) * 1998-01-08 1999-07-30 Nippon Telegr & Teleph Corp <Ntt> Ofdm復調器用自動利得制御回路および自動利得制御方法
JPH11341091A (ja) * 1998-05-21 1999-12-10 Nec Corp 自動利得制御回路
JP2002176411A (ja) * 2000-12-06 2002-06-21 Nec Corp Ofdmバースト信号受信装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305109A (en) * 1992-09-08 1994-04-19 Samsung Electronics Co., Ltd. Parallel untuned video if amplifiers supplied signals from TV 1st detector via respective input filters
AU673390B2 (en) * 1993-01-20 1996-11-07 Nec Corporation An AGC circuit for burst signal
US5727004A (en) * 1995-03-14 1998-03-10 Adaptive Networks, Inc. Method and apparatus for data encoding and communication over noisy media
CN1201566A (zh) * 1996-09-05 1998-12-09 三菱电机株式会社 增益控制方法及收信装置
JPH10126282A (ja) * 1996-10-16 1998-05-15 Nec Corp バースト信号送信装置
US5940446A (en) * 1997-04-28 1999-08-17 Stanford Telecommunications, Inc. Maximum likelihood detection of MPSK bursts with inserted reference symbols
US6188277B1 (en) * 1998-08-19 2001-02-13 Harris Corporation Power amplifier having monitoring and circuit protection
FI109321B (fi) * 1999-06-10 2002-06-28 Nokia Corp Menetelmä ja järjestely nopean solunvaihdon toteuttamiseksi pakettikytkentäisessä solukkoradiojärjestelmässä
US6307443B1 (en) * 1999-09-24 2001-10-23 Agere Systems Guardian Corp. Bandpass filters with automatic tuning adjustment
US7068987B2 (en) * 2000-10-02 2006-06-27 Conexant, Inc. Packet acquisition and channel tracking for a wireless communication device configured in a zero intermediate frequency architecture
US6843597B1 (en) * 2001-05-15 2005-01-18 Golden Bridge Technology Inc. Method and apparatus of a fast two-loop automatic gain control circuit
US20030043947A1 (en) * 2001-05-17 2003-03-06 Ephi Zehavi GFSK receiver
JP4899271B2 (ja) * 2001-08-10 2012-03-21 富士通セミコンダクター株式会社 アナログ制御方法、アナログ制御装置、agc、及びagcの制御方法
JP2003101427A (ja) * 2001-09-21 2003-04-04 Sanyo Electric Co Ltd 無線装置および利得制御方法
US6795490B2 (en) * 2002-04-17 2004-09-21 Thomson Licensing S.A. Signal detection in a direct-sequence spread spectrum transmission system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629942A (ja) * 1992-07-07 1994-02-04 Nec Corp 自動利得制御回路
JPH11205278A (ja) * 1998-01-08 1999-07-30 Nippon Telegr & Teleph Corp <Ntt> Ofdm復調器用自動利得制御回路および自動利得制御方法
JPH11341091A (ja) * 1998-05-21 1999-12-10 Nec Corp 自動利得制御回路
JP2002176411A (ja) * 2000-12-06 2002-06-21 Nec Corp Ofdmバースト信号受信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1401134A4 *

Also Published As

Publication number Publication date
DE60221526D1 (de) 2007-09-13
EP1401134B1 (en) 2007-08-01
DE60221526T2 (de) 2008-05-15
US7397872B2 (en) 2008-07-08
JP2003008676A (ja) 2003-01-10
CN1465151A (zh) 2003-12-31
EP1401134A1 (en) 2004-03-24
EP1401134A4 (en) 2006-01-04
US20040037378A1 (en) 2004-02-26
JP3599001B2 (ja) 2004-12-08
CN100512070C (zh) 2009-07-08

Similar Documents

Publication Publication Date Title
WO2003001714A1 (fr) Circuit de commande de gain automatique et procede correspondant, ainsi que dispositif de demodulation faisant intervenir leur utilisation
JP3636145B2 (ja) 復調タイミング生成回路および復調装置
CA2051982C (en) Automatic gain control apparatus and method
US20080293370A1 (en) Receiver Gain Control
WO2003012984A2 (en) Adaptive automatic gain control
JP3476662B2 (ja) ディジタル移動無線通信装置
JP3519291B2 (ja) Ofdm通信装置及び方法
US20120281791A1 (en) Frequency correction circuit, radio receiving apparatus, and frequency correction method
JP3715606B2 (ja) 無線通信機及びその制御方法
US6853837B1 (en) CDMA receiver and DCMA demodulator with AGC circuit
JP4078883B2 (ja) 受信装置、および端末装置
JP2000183847A (ja) 無線周波数信号受信装置、周波数調整方法、電力制御方法及びシンボルタイミング制御方法
JP2003018119A (ja) 受信装置
JP2003018116A (ja) 周波数オフセット検出回路および復調装置
AU2006269678B2 (en) RF receiver, wireless communication terminal and method of operation
CN1750432B (zh) 天线方向调整方法和ofdm接收装置
JP4126005B2 (ja) 無線通信システムの自動利得制御回路
JP4876062B2 (ja) 無線受信装置
JP2001156743A (ja) 通信システム及びその受信装置
JP2009089061A (ja) 受信機及び周波数ホッピング同期方法
JP2002368715A (ja) 自動利得調整装置
JP3552100B2 (ja) Ofdmバースト信号受信装置
JP2005277563A (ja) 信号検出方法および装置ならびにそれを利用した送信装置および受信装置
KR101600908B1 (ko) 고속 패킷 억세스 시스템에서 잔류 이득 제어를 통한 신호대잡음비 측정 방법 및 이를 위한 장치
JP2004064525A (ja) フィードバック利得制御回路及び無線通信装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2002741298

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 028025423

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10362295

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002741298

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002741298

Country of ref document: EP