WO2003000709A9 - Sialinsäure-derivate als siglec-inhibitoren - Google Patents

Sialinsäure-derivate als siglec-inhibitoren

Info

Publication number
WO2003000709A9
WO2003000709A9 PCT/EP2002/006277 EP0206277W WO03000709A9 WO 2003000709 A9 WO2003000709 A9 WO 2003000709A9 EP 0206277 W EP0206277 W EP 0206277W WO 03000709 A9 WO03000709 A9 WO 03000709A9
Authority
WO
WIPO (PCT)
Prior art keywords
group
siglec
inhibitor according
atom
derivative
Prior art date
Application number
PCT/EP2002/006277
Other languages
English (en)
French (fr)
Other versions
WO2003000709A2 (de
WO2003000709A3 (de
Inventor
Sorge Kelm
Reinhard Brossmer
Original Assignee
Sorge Kelm
Reinhard Brossmer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2001129332 external-priority patent/DE10129332A1/de
Application filed by Sorge Kelm, Reinhard Brossmer filed Critical Sorge Kelm
Priority to CA2451051A priority Critical patent/CA2451051C/en
Priority to KR10-2003-7016631A priority patent/KR20040040408A/ko
Priority to EP02748751A priority patent/EP1397374A2/de
Priority to JP2003507112A priority patent/JP2004534085A/ja
Priority to AU2002319207A priority patent/AU2002319207B2/en
Priority to US10/481,529 priority patent/US7820714B2/en
Publication of WO2003000709A2 publication Critical patent/WO2003000709A2/de
Publication of WO2003000709A9 publication Critical patent/WO2003000709A9/de
Publication of WO2003000709A3 publication Critical patent/WO2003000709A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H7/00Compounds containing non-saccharide radicals linked to saccharide radicals by a carbon-to-carbon bond
    • C07H7/02Acyclic radicals
    • C07H7/027Keto-aldonic acids

Definitions

  • the invention relates to Siglec inhibitors and pharmaceutical compositions containing them. Furthermore, the invention relates to methods for increasing the binding selectivity of Siglec inhibitors and specifying medical indications of the Siglec inhibitors provided.
  • Siglecs are Ig-type lectins which are characterized by an N-terminal V-Set domain which mediates sialic acid binding. The Ig domain is followed by a different number of Ig domains from the C2 set.
  • the lectin family was originally founded on the basis of independent studies of sialoadhesin (Siglec-1 CD 169), a macrophage lectin-like adhesion molecule, and CD22 (Siglec-2), a B-cell restricted member of the Ig superfamily (IgSF) plays an important role in regulating B cell activation.
  • Table 1 gives an overview of the occurrence and the potential functions of the Siglecs described so far. Table 1: Occurrence and potential functions of the Siglecs described so far
  • Sialoadhesin (Sn, Siglec-1) macrophage subpopulations cellular interactions of macrophages m CD22 (Siglec-2) B lymphocyte modulation of B cell-dependent
  • OB-BP 1 Siglec-6 placenta (cytotoxic and syncytiotrophoblasts); Sia-independent high affinity leptin binding; B-lymphocyte function of Sia binding unknown p75 / AIRMl (Siglec-7) natural killer cells inhibitory receptor of natural killer cells
  • Siglec-1 1 dendritic cells, monocytes and cellular recognition; Signal transduction other leukocytes
  • the interactions mediated by Siglecs can be of two types.
  • signals in the cells that express the corresponding Siglec can be generated by binding the Siglec molecules (eg attenuation of the B-cell-dependent immune response, inhibition of the cytotoxic activity of natural killer cells (NK cells) by phosphorylation of ITIM motifs), or signals can be generated in the cell bound over the Siglec (eg regulation of the neurite growth of neurons by Siglec-4a, [MAG)] (1, 2).
  • the Siglecs' binding partners can work in two ways (3).
  • monovalent substances can prevent the biologically relevant cross-linking of the Siglec molecules with one another or with other molecules. This would lead to a lowering of the signal.
  • polyvalent substances can amplify the triggered signal. Regulation in both directions is thus possible. Suitable specific substances are required for these processes.
  • Sialic acid is a generic name for a large family of 9-carbon atom sugars, which are all derivatives of neuraminic acid (new) or keto-deoxy-nonulosonic acid (KDN). Typically, these are located on the exposed non-reducing ends of the oligosaccharide chains, which are linked to a large number of proteins and lipids.
  • the sialic acid binding site of the Siglecs lies in the N-terminal domain, which is a V-Set domain, and which contains structural features which are characteristic of Siglecs.
  • the position of the binding site and the amino acids involved in the binding were determined by X-ray structure analysis of cocrystals of Siglec-1 (sialoadhesin) and 2,3-sialyl lactose (4).
  • the contributions of the functional groups of sialic acid to the binding were determined from hapten inhibition experiments with synthetic sialic acid derivatives (5,6). In summary, these studies have shown that, inter alia, the hydroxyl group at C-9 of sialic acid makes a significant contribution as water material donor in a hydrogen bond and can be replaced by an amino group (5).
  • binding partners are required which occupy the binding sites with high affinity.
  • the object of the present invention is therefore to provide Siglec inhibitors with increased affinity.
  • a preferred task is to provide Siglec inhibitors with increased affinity that bind as specifically as possible to individual Siglec receptors.
  • X represents a negatively charged group such as a carboxy, phosphate or sulfate group, or a derivative thereof;
  • Y represents an H atom, an alkyl or aryl group, a hydroxy group, a glycan, a polymeric carrier molecule, or a derivative thereof;
  • Z is selected from O, N, C and S.
  • R1 represents an H atom, a hydroxyl group, or a derivative thereof
  • R2 represents a hydroxy or amino group, or a derivative thereof
  • R3 represents a hydroxy group or a derivative thereof
  • R4 represents a hydroxy group or a derivative thereof
  • R5 denotes a substituted or unsubstituted amino group, the substituent being selected from
  • R4 act as an H acceptor and R5 as an H donor
  • R6 represents an H atom or an alkyl group, a charged group, or a derivative thereof
  • R6 ' represents an H atom or an alkyl group, a charged group or a derivative thereof, at least one substituent being selected from R6 and R6' is a hydrophobic group, preferably an H atom or a methyl group;
  • R7 represents an H atom or any group, preferably a group for improving the pharmacological properties of the Siglec inhibitor.
  • Siglec encompasses all Siglec molecules.
  • Siglec-1 to Siglec-10 can be found, for example, in the references listed in (1, Table 1).
  • the amino acid sequence of Siclec-11 can be found in (7).
  • the amino acid sequences of the Siglec molecules are also available from the publicly accessible Entrez database (Internet address: www.ncbi.nlm.nih.qov./intrez).
  • the Siglec molecules can naturally occur in their natural environment. cells or in artificial environments.
  • Siglec inhibitor generally means the ability of a compound to inhibit a sialic acid molecule, particularly the natural ligand, from binding to the Siglec protein. Depending on its structure, a Siglec inhibitor according to the invention can activate or inactivate a given Siglec protein.
  • the reference compound of sialic acid is preferably methyl- ⁇ -5'-N-acetyl-neuraminic acid. The inhibition can preferably be determined by a hapten inhibition test.
  • the hapten inhibition test is based on the fact that Fc chimeras, which consist of N-terminal domains of Siglecs and the Fc part of human IgG, complex with radioactively labeled anti-Fc antibodies and incubate with different concentrations of the potential inhibitors to be investigated are added before suitable target cells, preferably human erythrocytes, are added. After an overnight incubation at 4 ° C., the unbound complexes are removed by washing the cells and the bound radioactivity is determined. From the data obtained in this way, the concentrations are determined which lead to 50% inhibition of binding (IC50 values) (5.6).
  • 10 .mu.l of the complex solution with an activity of 10 3 Bq 125 l are particularly preferably mixed with the same volume of a solution of the substance to be examined (triple concentration) and incubated at 4 ° C. for 1 hour.
  • 10 ⁇ l of a suspension of target cells, preferably 0.25 to 0.5% of human erythrocytes, are added, and an incubation takes place at 4 ° C. overnight.
  • the unbound radioactivity is removed by washing the cells five times with 200 ⁇ l washing buffer, preferably phosphate-buffered saline with 0.1% (w / v) bovine serum albumin, and the cell-bound activity is determined using a ⁇ counter.
  • the binding of sialidase-treated cells and of untreated cells without the substance to be examined is preferably measured.
  • the inhibition is determined by setting the value without inhibitor to 0% and that with sialidase-treated cells to 100%.
  • the term "derivative” generally means with respect to the residues X, Y, R1-R4 that the group occurring in neuraminic acid is replaced by a bioisosteric group which has essentially the same biological activity.
  • the concept of bioisosterie is known to the person skilled in the art.
  • the expression "a substituted formyl, alkanoyl, cycloalkanoyl, aryl-carbonyl, heteroaryl-carbonyl, alkyl, cycloalkyl or heteroaryl group” means that the groups in question have substituents which have essentially the same biological properties leave. These include, for example, lower alkyl substituents such as methyl, ethyl, propyl, butyl groups.
  • X means a negatively charged group. This negatively charged group presumably forms a salt bridge with an arginine residue of the Siglec receptor.
  • the naturally occurring substituent is a carboxy group. Suitable derivatives thereof are, for example, a phosphate or sulfate group. Phosphonate and sulfonate groups are also considered. Other suitable derivatives are a carboxymethylene or a carboxyethylene group.
  • Y denotes an H atom, an alkyl or aryl group, a hydroxyl group, a glycan, a polymeric carrier molecule, or a derivative thereof.
  • the naturally occurring substituent is a hydroxy group.
  • Suitable derivatives of the hydroxy group are an amino or thio group.
  • Suitable glycans are hexoses, hexosamines and / or pentoses or derivatives thereof, preferably glucose or galactose or derivatives thereof.
  • Other suitable glycans are oligo- and polysouharides, it being possible for the oligo- and polysouharides to be composed of one monomer or different monomers (mixed sugars).
  • Suitable polymeric carrier molecules are carrier molecules which improve the pharmacological properties, such as a longer residence time.
  • Polymeric carrier molecules with several bound Siglec inhibitor ligands enable cross-linking and thus activation of the Siglec receptor molecules. The use of such polymeric carrier molecules therefore enables fine regulation.
  • the carrier molecules preferably contain a core and different amounts of substances according to the invention which are bound to them via suitable spacers.
  • the desired pharmacological / cal effect can be controlled via the composition of the polymers comprising core and substances according to the invention.
  • the polymers (core) are preferably dendrimers, pofyacrylamide or polyfactide.
  • the substances according to the invention can e.g. B. either chemically or enzymatically the polymers are coupled.
  • Z means an atom selected from O, N, C or S.
  • R1 denotes an H atom, a hydroxyl group, or a derivative thereof. Suitable derivatives of the hydroxyl group are an amino or thio group, which can optionally be substituted.
  • R2 denotes a hydroxyl or amino group, or a derivative thereof.
  • the naturally occurring substituent is an amino acetyl group.
  • Suitable derivatives are, for example, those in which the amino group is substituted by an acetyl, propionyl, butyl or pentyl group.
  • the alkanoyl group can also be substituted by one or more halogen atoms. Further suitable derivatives can be found (reference 5; compounds 4 to 12).
  • the modification at position R2 can contribute to an increase in the specificity of the Siglec inhibitor for a given Siglec molecule.
  • R3 denotes a hydroxyl group or a derivative thereof. Suitable derivatives are, for example, an amino or thio group, which can optionally be substituted.
  • R4 means a hydroxyl group or a derivative thereof.
  • Suitable derivatives are groups that act as H acceptors.
  • Exemplary derivatives here are an amino or thio group, which can optionally be substituted, the H-acceptor property being retained.
  • R6 and R6 'independently of one another represent an H atom or an alkyl group, a charged group, or a derivative thereof, at least one substituent selected from R6 and R6' being a hydrophobic group, preferably an H atom or a methyl Group, is.
  • Suitable derivatives are lower alkyl substituents such as a methyl, ethyl, propyl or butyl group.
  • Suitable charged groups are, for example, carboxy, sulfate or phosphate groups.
  • R7 denotes an H atom or any group, preferably a group for improving the pharmacological properties of the Siglec inhibitor. Groups for improving the pharmacological properties can be polymeric carrier molecules.
  • the entire Siglec inhibitor should preferably have a hydrophilicity which leads to a uniform distribution of the inhibitor in a hydrophilic and hydrophobic phase.
  • Siglec inhibitors which specifically bind to certain Siglec proteins and inhibit them.
  • the alkanoyl group is selected from an ethanoyl, propanoyl, butanoyl, pentanoyl, hexanoyl, heptanoyl, octanoyl, nonanoyl and decanoyl group, preferably hexanoyl.
  • Branched alkanoyl groups are also considered according to the invention.
  • the cycloalkanoyl group selected from a C 3 to C 6 cycloalkanoyl group is preferably cyclohexanoyl.
  • the aryl-carbonyl group is selected from a C 4 to C 15 aryl-carbonyl group, preferably from a benzoyl group, naphthoyl group, anthracene-carbonyl group, this radical being decisive in the selectivity is involved.
  • the selectivity can hereby be controlled by suitable selection.
  • the heteroaryl carbonyl group is selected from a pyridyl carbonyl group, quinaldine carbonyl and thiophenyl carbonyl group.
  • the alkyl group is selected from a C 1 to C 20 alkyl group, preferably a methyl, ethyl, propyl, butyl, pentyl and hexyl group.
  • branched alkyl groups are also considered.
  • the cycloalkyl group is selected from a C 3 -C 6 alkyl group.
  • the aryl group is selected from a phenyl, naphthyl, biphenyl and anthracene group.
  • the aryl group can be selected from both condensed and uncondensed aryl groups.
  • the heteroaryl group is furthermore preferably selected from a pyridyl, quinaldine and thiophenyl group.
  • the heteroaryl group comprises both condensed and non-condensed heteroaromatic systems which are known to the person skilled in the art.
  • a particularly preferred compound is methyl- ⁇ -9-N- (naphthyl-2-carbonyl) -amino-9-deoxy-Neu5Ac.
  • This sialic acid derivative binds about 12 times more strongly to Siglec-1 than the reference compound 2-alpha-methyl-5-N-acetyl-neuraminic acid, even more strongly to Siglec-4a (about 236 times more).
  • Methyl- ⁇ -9-N- (biphenyl-4-carbonyl) -amino-9-deoxy-Neu5Ac is also particularly preferred. This compound binds to Siglec-2 approximately 150 times more than the reference compound 2-alpha-methyl-5-N-acetyl-neuraminic acid.
  • Methyl- ⁇ -9-N-benzoy! -Amino-9-deoxy-Neu5Ac is also particularly preferred.
  • This compound binds approximately 704 times more strongly to Siglec-4a (MAG) than the reference compound 2-alpha-methyl-5-N-acetyl-neuraminic acid.
  • a Siglec inhibitor is provided, wherein
  • X represents a carboxy group which should be in the axial position
  • Y is an H atom, an O-methyl, O-benzyl group or a derivative of one
  • Z represents an O atom
  • R1 represents a hydroxy group
  • R2 represents an aminoacetyl group
  • R3 represents a hydroxy group
  • R4 represents a hydroxy group
  • R6 represents an H atom
  • R6 ' represents an H atom
  • R7 represents an H atom.
  • the invention provides a method for producing Siglec inhibitors with increased affinity for a Siglec molecule, comprising the steps:
  • Siglec inhibitors with increased affinity for a Siglec molecule by introducing a hydrophobic substituent in position R5 of the Neuraminic acid or derivatives thereof can be obtained.
  • the affinity of the product for a given Siglec molecule can be determined by a binding assay or a hapten inhibitone assay.
  • the conditions for the hapten inhibition assay are as stated above, preferably as specified in (5, 6).
  • the affinity of the selected products for a given Siglec molecule can be further increased by introducing substituents in positions other than position R5, preferably position R2. Suitable substituents for R2 are the substituents specified for R5.
  • the invention further provides a method for increasing the binding selectivity of Siglec inhibitors, which comprises the step of introducing a substituent selected from the radicals for R5 according to one of claims 1 to 10 in position R5 of neuraminic acid or derivatives thereof.
  • 5-N-acetyl-neuraminic acid is preferably used as the starting product, from which the corresponding alkyl, aryl, alkyl-alpha-O or alpha-S-glycosides are first prepared in a multistage reaction sequence.
  • the next step consists in replacing the hydroxyl group at C9 (R5 according to the present invention) of the corresponding O- or S-glycoside of 5-N-acetyl-neuraminic acid by an amino group.
  • This transformation can be carried out via the corresponding 9-O-tosyl connection.
  • This reaction can preferably be carried out using a modified Mitsunobu reaction.
  • alkyl, aryl, aralkyl-alpha-O or alpha-S-glycosides of 9-amino-9-deoxy-5-N-acetyl-neuraminic acid thus obtained finally provide the corresponding alkyl, aryl, alkyl alpha-O- or alpha-S-glycosides of 5-N-acetyl-9- (biphenyl-4-carbonyl) -amino-9-deoxy-neuraminic acid and similar substances with varying acyl residues at C-9 (R5 according to present invention) permanent amino group.
  • This linkage of acid function with amino group can be carried out in different ways, for example using the corresponding acid chloride or anhydride or using the carbodiimide method or using the method of the corresponding one, for example using nitrophe
  • the present invention further provides pharmaceutical compositions comprising at least one Siglec inhibitor according to the invention and a pharmaceutically acceptable carrier.
  • the therapeutically usable Siglec inhibitors are as selective as possible for a Siglec molecule.
  • Pharmaceutically acceptable carriers are known to the person skilled in the art. Suitable diluents are also included.
  • any type of administration is generally, for. B. intravenously, intraperitoneally, subcutaneously, intradermally, orally or topically. Oral administration is preferred.
  • the amount of drug to be administered can be routinely determined by the doctor.
  • the present invention provides the use of the Siglec inhibitors according to the invention for the treatment of Siglec-mediated diseases, preferably diseases of the immune system.
  • Siglec-2 is involved in the regulation of the B cell-dependent immune response.
  • the present invention thus specifies the use of the Siglec inhibitors for regulating the B cell-dependent immune response.
  • u. a. Allergies, autoimmune diseases and chronic inflammation are indicated as targets for Siglec inhibitor treatment.
  • Siglec-4a has a neurite growth inhibitory effect.
  • the Siglec inhibitors according to the invention are thus suitable for abolishing the neurite growth-inhibiting action of Siglec-4a and therefore have the ability to improve the regenerative capacity of injured nerves, for example in the treatment of paraplegia.
  • Siglec-7 is involved in the regulation of the cytotoxic activity of NK cells.
  • the sialic acid derivatives according to the invention are therefore suitable for regulating the cytotoxic activity of these cells.
  • treatable diseases are, for example, cancer diseases and viral diseases, in particular AIDS.
  • Siglecs inhibitors according to the invention are therefore also suitable for controlling the immune system.
  • the preferred Siglec inhibitors according to the invention result in an increased B-cell-dependent immune response, which can be demonstrated in particular by an increased Ca + release.
  • This increased Ca 2+ release results from the use of the preferred Siglec inhibitors according to the invention, demonstrably, for example, in experiments with Daudi cells or B cells from mice.
  • This increased B-cell dependent immune response induced by the use of the preferred Siglec inhibitors of the present invention, opens up promising opportunities for the manufacture of medicaments for the treatment of diseases associated with immune defects.
  • a preferred compound in this connection is methyl- ⁇ -9-N- (biphenyl-4-carbonoyl) amino-9-deoxy-Neu5Ac (shown in the examples). This compound in particular also shows a very remarkable selective affinity for hCD22.
  • CVID Common Variable Immunodeficiency
  • IgA deficiency the "Common Variable Immunodeficiency”
  • the CVID patients have B cells, which cannot initiate a good immune response and are characterized by hypogam maglobulinemia. They suffer from severe infectious diseases and can currently only are treated with immunoglobulins, which is a problematic therapy due to the considerable risks and limited usability.Patients with IgA deficiency could also be treated with immunoglobulins, but this is often avoided due to the risks described above, also because these patients are often only minor Show symptoms.
  • Methyl- ⁇ -5-N-acetyl-9-amino-9-deoxy-neuraminic acid acylated substances here is the synthesis of methyl- ⁇ -5-N-acetyl-9-N- (biphenyl-4-carbonyl) -amino- 9-deoxy-neuraminic acid (3).
  • Tetramethylguanidine (0.19 g) is dissolved in a mixture of dry pyridine (0.25 ml) and DMF (1 ml), the solution is concentrated in vacuo and evaporated once or twice with dry DMF (B).
  • A is dissolved in DMF (0.8 ml), the solution is added to B and 98-100% formic acid (0.13 ml) is added.
  • the 9-azido compound (1) is hydrogenated with palladium oxide in H 2 0 at atmospheric pressure.
  • Methyl- ⁇ -5-N-acetyl-9-amino-9-deoxy-neuraminic acid (2) (30 mg) dissolved in dried DMF (0.6 ml) react smoothly with the in the presence of triethylamine (12.9 ml) the above-mentioned nitrophenyl ester (39 mg) at RT.
  • the purification is carried out by chromatography on silica gel (flash method).
  • the hapten inhibition assay is carried out under the conditions given in (5,6).
  • Siglec-4a (MAG) Slglec-1 (slaloadhesin) Siglec-2 (human CD22) Siglec-2 (murine CD22) structure IC50 rIP IC50 rIP IC50 rIP IC50 rIP IC50 rIP
  • Methyl- ⁇ -9- ⁇ / - (quinaldine-2-carbonyl) -amino-9-deoxy-Neu5Ac B7 54 >> 2.5mM (100%) «0.2 41 n.d. >> 10 mM n.d.
  • the IC50 value is the Siglec inhibitor concentration which leads to 50% inhibition of binding in the hapten inhibition assay.
  • the rIP value of each sialic acid derivative was determined by forming the quotient of the IC50 value of the comparison compound 5-N-acetyl-neuraminic acid and the IC50 value of the compound to be investigated. Sialic acid derivatives with an rIP value of> 1.0 therefore bind better than the reference compound and an rIP value of ⁇ 1 shows that the compound binds poorly to the receptor than the reference compound, n.d. means that the determination was not carried out.
  • the compound BPC-Neu5Ac (shown below) was used in a series of experiments to study selectivity and activity in accordance with known methods. Stimulation of Daudi cells with anti-IgM in the presence of BPC-Neu5Ac resulted in an increase in the Ca 2+ concentration. The use of this compound also resulted in a clearly increased Ca 2+ concentration in anti-IgM stimulated primary B lymphocytes from human blood. These data suggest that the increased Ca 2+ signal of the treated cells is caused by a specific inhibition of the ligand binding domain of CD22. This impairment in ligand binding leads to incomplete activation of the intracellular inhibitor domain of CD22.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Pulmonology (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Saccharide Compounds (AREA)

Abstract

Die Erfindung betrifft Siglec-Inhibitoren mit erhöhter Affinität für das Rezeptormolekül. Vorzugsweise sind die bereitgestellten Siglec-Inhibitoren selektiv für ein gegebenes Siglec-Molekül. Die Erfindung stellt ferner Verfahren zum Herstellen der Siglec-Inhibitoren und Verfahren zum Erhöhen der Bindungsselektivität für ein gegebenes Siglec-Molekül bereit. Die Erfindung betrifft ferner pharmazeutische Zusammensetzungen, die die Siglec-Inhibitoren enthalten. Weiterhin werden medizinische Indikationen der Siglec-Inhibitoren angegeben.

Description

Sialinsäure-Derivate als Siglec-Inhibitoren
Die Erfindung betrifft Siglec-Inhibitoren und pharmazeutische Zusammensetzungen, die diese enthalten. Ferner betrifft die Erfindung Verfahren zum Erhöhen der Bindungsselektivität von Siglec-Inhibitoren und Angabe medizinischer Indikationen der bereitgestellten Siglec-Inhibitoren.
Siglecs (Sialinsäure-bindende Ig-artige Lektine) sind Ig-Typ-Lektine, die durch eine N- terminale V-Set-Domäne gekennzeichnet sind, die die Sialinsäurebindung vermittelt. Auf die Ig-Domäne folgt eine unterschiedliche Anzahl von Ig-Domänen des C2-Sets. Ursprünglich wurde die Lektinfamilie auf Grund voneinander unabhängiger Studien des Sialoadhäsins (Siglec-1 CD 169), eines Makrophagen Lektin-artigen Adhäsionsmoleküls, und CD22 (Siglec-2), eines B-Zell-restringierten Mitgliedes der Ig- Superfamilie (IgSF), das eine wichtige Rolle bei der Regulierung der B-Zellaktivierung spielt, gefunden. Es wurde ferner gefunden, dass beide Moleküle die Zell-Zell- Interaktionen in vitro durch die Erkennung sialylierter Glykokonjugate vermitteln. Die Klonierung von Sialoadhäsin zeigte hohe Sequenzähnlichkeiten zu CD22 und führte zu dem Schluß, dass zwei weitere, hierzu in Bezug stehende IgSF-Proteine, das Myelin-assoziierte Glykoprotein (MAG/Siglec-4) und CD33 (Siglec-3), deren Bindung an Sialinsäuren zuvor nicht bekannt war, ebenfalls Mitglieder der Siglec-Familie darstellen. Sechs weitere humane Siglec-Moleküle (Siglecs 5 - 10) wurden identifiziert und charakterisiert. Diese zuvor unbekannten Moleküle zeigen ein hohes Maß an Sequenzähnlichkeit zu CD33 in ihren extrazellulären und intrazellulären Domänen und werden kollektiv als "CD33 in Bezug stehende Siglecs" bezeichnet (1; Übersichtsartikel). Referenz (7) beschreibt die Klonierung und Charakterisierung von Siglec-11 , das von humanen dendritischen Zellen exprimiert wird.
Tabelle 1 gibt einen Überblick über das Vorkommen und die potentiellen Funktionen der bisher beschriebenen Siglecs. Tabelle 1: Vorkommen und potentielle Funktionen der bisher beschriebenen Siglecs
Name Vorkommen Potentielle Funktion
Sialoadhesin (Sn, Siglec-1) Makrophagen-Subpopulationen zelluläre Interaktionen von Makrophagen m CD22 (Siglec-2) B-Lymphozyten Modulation der B-Zell-abhängigen
30 Immunantwort; Homing in Knochenmark ä N CD33 (Siglec-4) myeloide Vorläuferzellen unbekannt G3 r~ Myelin-assoziiertes Glykoprotein (MAG, Siglec- myelinisierende Zellen des zentralen und des Erhalt der Myelin-Struktur und -Funktion; >. 4a) ; Sch ann' sehe Zellen Myelin-Protein (SMP, peripheren Nervensystems (Oligodendrozyten Regulation des Neuritenwachstums Siglec-4b) und Schwann'sche Zellen)
23 m o QB-BP2 (Siglec-5) neutrophile Granulozyten, Monozyten unbekannt; vermutlich Signaltransduktion m
OB-BP 1 (Siglec-6) Plazenta (Zyto- und Synzytiotrophoblasten); Sia-unabhängige hochaffine Leptin-Bindung; B-Lymphozyten Funktion der Sia-Bindung unbekannt p75/AIRMl (Siglec-7) natürliche Killer-Zellen inhibitorischer Rezeptor der natürlichen Killer-Zellen
Siglec-8 eosinophile Granulozyten unbekannt; vermutlich Signaltransduktion
Siglec-9 Monozyten; unbekannt; vermutlich Signaltransduktion neutrophile Granulozyten; CD16* CD56' Zellen
Siglec-10 B-Zellen, Monozyten und andere Leukozyten unbekannt; vermutlich Signaltransduktion
Siglec-1 1 Dendritische Zellen, Monozyten und zelluläre Erkennung; Signaltransduktion andere Leukozyten
Wie der Tabelle zu entnehmen ist, sind Siglecs u. a. an der Reduktion der Immunantwort, der Aufrechterhaltung der Organisation von Myelin im Nervensystem und an der Hämatopoese beteiligt.
Die durch Siglecs vermittelten Interaktionen können zweierlei Art sein. Zum einen können Signale in den Zellen, die das entsprechende Siglec exprimieren, durch Bindung der Siglec-Moleküle erzeugt werden (z. B. Dämpfung der B-Zell-abhängigen Immunantwort, Inhibition der zytotoxischen Aktivität von natürlichen Killerzellen (NK- Zellen) durch Phosphorylierung von ITIM-Motiven), oder es können Signale bei der über der Siglec gebundenen Zelle erzeugt werden (z. B. Regulation des Neuriten- wachstums von Neuronen durch Siglec-4a, [MAG)] (1, 2).
Die Wirkung von Bindungspartnern der Siglecs kann dabei in zweierlei Art erfolgen (3). Zum einen können monovalente Substanzen die biologisch relevante Vernetzung der Siglec-Moleküle untereinander oder mit anderen Molekülen verhindern. Dies würde zu einer Erniedrigung des Signals führen. Zum anderen können polyvalente Substanzen das ausgelöste Signal verstärken. Somit ist eine Regulation in beide Richtungen möglich. Für diese Vorgänge sind geeignete spezifische Substanzen erforderlich.
Sialinsäure ist eine generische Bezeichnung für eine große Familie von 9- Kohlenstoffatom-Zuckem, die sämtliche Derivate der Neuraminsäure (Neu) oder der Keto-desoxy-nonuloson-Säure (KDN) darstellen. Typischerweise befinden sich diese an den exponierten nicht-reduzierenden Enden der Oligosaccharidketten, die mit einer großen Anzahl von Proteinen und Lipiden verknüpft sind.
Die Sialinsäure-Bindungsstelle der Siglecs liegt in der N-terminalen Domäne, die eine V-Set-Domäne ist, und die für Siglecs charakteristische Strukturmerkmale enthält. Durch Röntgenstrukturanalyse von Cokristallen des Siglec-1 (Sialoadhäsin) und 2,3- Sialyl-Laktose wurde die Lage der Bindungsstelle und die an der Bindung beteiligten Aminosäuren ermittelt (4). Die Beiträge der funktionellen Gruppen der Sialinsäure zu der Bindung wurden aus Hapten-Inhibitionsversuchen mit synthetischen Sialinsäure- Derivaten bestimmt (5,6). Zusammenfassend haben diese Studien gezeigt, dass u. a. ie Hydroxylgruppe am C-9 der Sialinsäure einen wesentlichen Beitrag als Wasser- stoff-Donor in einer Wasserstoffbrücke zur Bindung leistet und durch eine Aminogrup- pe ersetzt werden kann (5).
Um die von Siglecs vermittelten biologischen Funktionen zu regulieren, werden Bindungspartner benötigt, die mit hoher Affinität die Bindungsstellen besetzen.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, Siglec-Inhibitoren mit erhöhter Affinität bereitzustellen. Eine bevorzugte Aufgabe besteht darin, Siglec- Inhibitoren mit erhöhter Affinität bereitzustellen, die möglichst spezifisch an einzelne Siglec-Rezeptoren binden.
Die der vorliegenden Erfindung zugrunde liegende Aufgabe wird gelöst durch die Bereitstellung von Siglec-Inhibitoren mit der Formel:
Figure imgf000005_0001
wobei
X eine negativ geladene Gruppe, wie eine Carboxy-, Phosphat- oder Sulfat- Gruppe, oder ein Derivat davon bedeutet;
Y ein H-Atom, eine Alkyl- oder Aryl-Gruppe, eine Hydroxy-Gruppe, ein Glykan, ein polymeres Trägermolekül, oder ein Derivat davon bedeutet;
Z ausgewählt ist aus O, N, C und S.
R1 ein H-Atom, eine Hydroxy-Gruppe, oder ein Derivat davon bedeutet,
R2 eine Hydroxy- oder Amino-Gruppe, oder ein Derivat davon bedeutet; R3 eine Hydroxy-Gruppe oder ein Derivat davon bedeutet,
R4 eine Hydroxy-Gruppe oder ein Derivat davon bedeutet,
R5 eine substituierte oder unsubstituierte Amino-Gruppe bedeutet, wobei der Sub- stituent ausgewählt wird aus
einer substituierten oder unsubstituierten Formyl-, Alkanoyl-, Cycloalkanoyl-, Aryl- carbonyl-, Heteroaryl-carbonyl-, Alkyl-, Aryl-, Cycloalkyl-, oder Heteroaryl-Gruppe, wobei diese Reste auch eine oder mehrere ungesättigte Bindungen enthalten können,
wobei R4 als H-Akzeptor und R5 als H-Donor wirken;
R6 ein H-Atom oder eine Alkyl-Gruppe, eine geladene Gruppe, oder ein Derivat davon bedeutet;
R6' ein H-Atom oder eine Alkyl-Gruppe, eine geladene Gruppe, oder ein Derivat davon bedeutet, wobei wenigstens ein Substituent ausgewählt ist aus R6 und R6' eine hydrophobe Gruppe, vorzugsweise ein H-Atom oder eine Methyl-Gruppe; und
R7 ein H-Atom oder ein beliebige Gruppe, vorzugsweise eine Gruppe zur Verbesserung der pharmakologischen Eigenschaften des Siglec-Inhibitors, bedeutet.
Nachfolgend werden einige Begriffe definiert, wie Sie im Zusammenhang mit der vorliegenden Anmeldung zu verstehen sind.
Der Ausdruck "Siglec" umfaßt sämtliche Siglec-Moleküle. Zur Definition eines Siglec- Moleküls wird auf (8) verwiesen. Die Aminosäuresequenzen der Siglec-Moleküle Siglec-1 bis Siglec-10 sind beispielsweise den in (1, Tabelle 1) aufgeführten Referenzen zu entnehmen. Die Aminosäuresequenz von Siclec-11 ist (7) zu entnehmen. Die Aminosäuresequenzen der Siglec-Moleküle sind ferner erhältlich aus der öffentlich zugänglichen Datenbank Entrez (Internetadresse: www.ncbi.nlm.nih.qov./intrez). Die Siglec-Moleküle können hierbei in ihrer natürlichen Umgebung auf natürlich vorkom- menden Zellen vorliegen oder in artifiziellen Umgebungen vorkommen.
Der Ausdruck "Siglec-Inhibitor" bedeutet generell die Fähigkeit einer Verbindung ein Sialinsäure-Molekül, insbesondere den natürlichen Liganden, an der Bindung an das Siglec-Protein zu hemmen. Ein erfindungsgemäßer Siglec-Inhibitor kann abhängig von seiner Struktur ein gegebenes Siglec-Protein aktivieren oder inaktivieren. Vorzugsweise ist die Referenzverbindung der Sialinsäure Methyl-α-5'-N-acetyl- neuraminsäure. Vorzugsweise kann die Hemmung durch einen Hapten-Inhibitionstest bestimmt werden. Der Hapten-Inhibitionstest beruht hierbei darauf, dass Fc- Chimären, die aus N-terminalen Domänen von Siglecs und dem Fc-Teil des humanen IgG's bestehen, mit radioaktiv markierten Anti-Fc-Antikörpem komplexiert und mit verschiedenen Konzentrationen der zu untersuchenden potenziellen Inhibitoren inkubiert werden, bevor geeignete Zielzellen, vorzugsweise humane Erythrozyten, hinzugegeben werden. Nach einer Inkubation übernacht bei 4°C werden die ungebundenen Komplexe durch Waschen der Zellen entfernt und die gebundene Radioaktivität bestimmt. Aus den so gewonnenen Daten werden die Konzentrationen ermittelt, die zu 50 % Inhibition der Bindung führen (IC50-Werte) (5,6). Besonders bevorzugt werden bei dem Hapten-Inhibitionsversuch 10 μl der Komplex-Lösung mit einer Aktivität von 103 Bq 125l mit dem gleichen Volumen einer Lösung der zu untersuchenden Substanz (dreifach konzentriert) gemischt und bei 4°C 1 Stunde inkubiert. Als nächstes erfolgt die Zugabe von 10 μl einer Suspension von Zielzellen, vorzugsweise 0,25 bis 0,5 % humanen Erythrozyten, und eine Inkubation übernacht bei 4°C. Die ungebundene Radioaktivität wird entfernt durch fünfmaliges Waschen der Zellen mit 200 μl Waschpuffer, vorzugsweise Phospat-gepufferte Saline mit 0,1 % (W/V) Rinderserumalbumin, und die Zeil-gebundene Aktivität wird mittels γ-Zähler bestimmt. Als Kontrolle wird vorzugsweise die Bindung von Sialidase-behandelten Zellen und von unbehandelten Zellen ohne die zu untersuchende Substanz gemessen. Die Inhibition wird bestimmt, indem der Wert ohne Inhibitor gleich 0 % und derjenige mit Sialidase-behandelten Zellen gleich 100 % gesetzt wird.
Der Ausdruck "Derivat" bedeutet generell in Bezug auf die Reste X, Y, R1 - R4, dass die in Neuraminsäure vorkommende Gruppe durch eine bioisostere Gruppe ersetzt wird, die im wesentlichen dieselbe biologische Aktivität aufweist. Das Konzept der Bioisosterie ist dem Fachmann bekannt. Der Ausdruck "eine substituierte Formyl-, Alkanoyl-, Cycloalkanoyl-, Aryl-carbonyl-, Heteroaryl-carbonyl-, Alkyl-, Cycloalkyl- oder Heteroaryl-Gruppe" bedeutet, dass die betreffenden Gruppen Substituenteπ aufweisen, die die biologische Eigenschaften im wesentlichen unverändert belassen. Hierzu gehören beispielsweise Niederalkyl- Substituenten wie beispielsweise Methyl-, Ethyl-, Propyl-, Butyl-Gruppen.
Erfindungsgemäß bedeutet X eine negativ geladene Gruppe. Diese negativ geladene Gruppe bildet mutmaßlich eine Salzbrücke mit einem Arginin-Rest des Siglec- Rezeptors. Der natürlich vorkommende Substituent ist eine Carboxy-Gruppe. Geeignete Derivate davon sind beispielsweise eine Phosphat- oder Sulfat-Gruppe. Ferner werden Phosphonat- und Sulfonat-Gruppen in Betracht gezogen. Weitere geeignete Derivate sind eine Carboxymethylen- oder eine Carboxyethylen-Gruppe.
Erfindungsgemäß bedeutet Y ein H-Atom, eine Alkyl- oder Aryl-Gruppe, eine Hydroxy- Gruppe, ein Glykan, ein polymeres Trägermolekül, oder ein Derivat davon. Der natürlich vorkommende Substituent ist eine Hydroxy-Gruppe. Geeignete Derivate der Hydroxy-Gruppe sind hierbei eine Amino- oder Thiogruppe. Geeignete Glykane sind hierbei Hexosen, Hexosamine und/oder Pentosen oder Derivate davon, vorzugsweise Glucose oder Galaktose oder Derivate davon. Ferner geeignete Glykane sind Oligo- und Polysouharide, wobei die Oligo- und Polysouharide aus einem Monomer oder verschiedenen Monomeren (gemischte Zucker) aufgebaut sein können. Als polymere Trägermoleküle sind hierbei Trägermoleküle geeignet, die die pharmakologischen Eigenschaften, wie längere Verweilzeit, verbessern. Polymere Trägermoleküle mit mehreren gebundenen Siglec-Inhibitor-Liganden ermöglichen die Quervernetzung und somit die Aktivierung der Siglec-Rezeptormoleküle. Die Verwendung solcher polyme- ren Trägermoleküle ermöglicht daher eine Feinregulierung.
Die Trägermoleküle enthalten vorzugsweise einen Core und unterschiedliche Mengen erfindungsgemäßer Substanzen, die über geeignete Spacer daran gebunden sind. Die gewünschte pharmakolog/sche Wirkung läßt sich über die Zusammensetzung der Polymere umfassend Core und erfindungsgemäße Substanzen steuern. Vorzugsweise sind die Polymere (Core) Dendrimere, Pofyacrylamid oder Polyfaktid. Die erfindungsgemäßen Substanzen können z. B. entweder chemisch oder enzymatisch an die Polymere gekoppelt werden.
Erfindungsgemäß bedeutet Z ein Atom ausgewählt aus O, N, C oder S.
Erfindungsgemäß bedeutet R1 ein H-Atom, eine Hydroxy-Gruppe, oder ein Derivat davon. Geeignete Derivate der Hydroxy-Gruppe sind hierbei eine Amino- oder Thio- Gruppe, die gegebenenfalls substituiert sein kann.
Erfindungsgemäß bedeutet R2 eine Hydroxy- oder Amino-Gruppe, oder ein Derivat davon. Der natürlich vorkommende Substituent ist eine Amino-acetyl-Gruppe. Geeignete Derivate sind beispielsweise solche, bei denen die Amino-Gruppe mit einer Acetyl-, Propionyl-, Butyl- oder Pentyl-Gruppe substituiert ist. Die Alkanoyl-Gruppe kann hierbei ferner durch ein oder mehrere Halogen-Atome substituiert sein. Weitere geeignete Derivate sind (Referenz 5; Verbindungen 4 bis 12) zu entnehmen. Die Modifikation an Position R2 kann zu einer Erhöhung der Spezifität des Siglec- Inhibitors für ein gegebenes Siglec-Molekul beitragen.
Erfindungsgemäß bedeutet R3 eine Hydroxy-Gruppe oder ein Derivat davon. Geeignete Derivate sind hierbei beispielsweise eine Amino- oder Thio-Gruppe, die gegebenenfalls substituiert sein kann.
Erfindungsgemäß bedeutet R4 eine Hydroxy-Gruppe oder ein Derivat davon. Geeignete Derivate sind hierbei Gruppen, die als H-Akzeptor wirken. Beispielhafte Derivate sind hierbei eine Amino- oder Thio-Gruppe, die gegebenenfalls substituiert sein kann, wobei die H-Akzeptor-Eigenschaft erhalten bleibt.
Erfindungsgemäß bedeuten R6 und R6' unabhängig voneinander ein H-Atom oder eine Alkyl-Gruppe, eine geladene Gruppe, oder ein Derivat davon, wobei wenigstens ein Substituent ausgewählt aus R6 und R6' eine hydrophobe Gruppe, vorzugsweise ein H-Atom oder eine Methyl-Gruppe, ist. Geeignete Derivate sind Niede- ralkyl-Substituenten wie eine Methyl-, Ethyl-, Propyl- oder Butyl-Gruppe. Geeignete geladene Gruppen sind beispielsweise Carboxy-, Sulfat- oder Phosphat-Gruppen. Erfindungsgemäß bedeutet R7 ein H-Atom oder ein beliebige Gruppe, vorzugsweise eine Gruppe zur Verbesserung der pharmakologischen Eigenschaften des Siglec- Inhibitors. Gruppen zur Verbesserung der pharmakologischen Eigenschaften können polymere Trägermoleküle sein. Der gesamte Siglec-Inhibitor sollte vorzugsweise eine solche Hydrophilie aufweisen, die zu einer gleichmäßigen Verteilung des Inhibitors in einer hydrophilen und hydrophoben Phase führt.
Ferner wird die kovalente oder nicht-kovalente Bindung der erfindungsgemäßen Siglec-Inhibitoren an natürliche Glykokonjugate und Glykoproteine in Betracht gezogen.
Überraschenderweise wurde gefunden, dass durch die Einführung von hydrophoben Substituenten an der Amino-Gruppe der 9-Amino-9-desoxy-Sialinsäure, insbesondere Neuraminsäure, Siglec-Inhibitoren mit erhöhter Affinität relativ zur Referenzverbindung 5'-Acetyl-Neuraminsäure erhalten wurden. Gemäß bevorzugten Ausführungsformen werden Siglec-Inhibitoren bereitgestellt, die spezifisch an bestimmte Siglec- Proteine binden und diese inhibieren.
Gemäß einer bevorzugten Ausführungsform ist die Alkanoylgruppe ausgewählt aus einer Ethanoyl-, Propanoyl-, Butanoyl-, Pentanoyl-, Hexanoyl-, Heptanoyl-, Octanoyl-, Nonanoyl- und Dekanoyl-Gruppe, vorzugsweise Hexanoyl. Erfindungsgeπiäß werden ebenfalls verzweigte Alkanoyl-Gruppen in Betracht gezogen.
In einer weiteren bevorzugten Ausführungsform ist die Cycloalkanoyl-Gruppe, ausgewählt aus einer C3 bis C6 Cycloalkanoyl-Gruppe, vorzugsweise Cyclohexanoyl.
In einer ferner bevorzugten Ausführungsform ist die Aryl-carbonyl-Gruppe ausgewählt aus einer C4 bis C15 Aryl-carbonyl-Gruppe, vorzugsweise aus einer Benzoyl-Gruppe, Naphthoyl-Gruppe, Anthracen-carbonyl-Gruppe, wobei dieser Rest maßgeblich an der Selektivität beteiligt ist. Hiermit läßt sich durch geeignete Auswahl die Selektivität steuern.
In einer weiteren bevorzugten Ausführungsform ist die Heteroaryl-carbonyl-Gruppe ausgewählt aus einer Pyridyl-carbonyl-Gruppe, Chinaldin-carbonyl und Thiophenyl- carbonyl-Gruppe.
In einer weiteren Ausführungsform ist die Alkyl-Gruppe ausgewählt aus einer Ci bis C20 Alkyl-Gruppe, vorzugsweise einer Methyl-, Ethyl-, Propyl-, Butyl-, Pentyl- und Hexyl-Gruppe.
Erfindungsgemäß werden ferner verzweigte Alkylgruppen in Betracht gezogen.
In einer weiteren bevorzugten Ausführungsform ist die Cycloalkyl-Gruppe ausgewählt aus einer C3-C6-Alkyl-Gruppe.
In einer ferner bevorzugten Ausführungsform ist die Aryl-Gruppe ausgewählt aus einer Phenyl-, Naphthyl-, Biphenyl- und Anthracen-Gruppe. Erfindungsgemäß, kann die Aryl-Gruppe . sowohl aus kondensierten als auch aus nicht-kondensierten Aryl- Gruppen ausgewählt werden.
Ferner bevorzugt ist die Heteroaryl-Gruppe ausgewählt aus einer Pyridyl-, Chinaldin- und Thiophenyl-Gruppe.
Die Heteroaryl-Gruppe umfaßt erfindungsgemäß sowohl kondensierte als auch nichtkondensierte heteroaromatische Systeme, die dem Fachmann bekannt sind.
Eine besonders bevorzugte Verbindung ist Methyl-α-9-N-(naphthyl-2-carbonyl)-amino- 9-desoxy-Neu5Ac. Dieses Sialinsäure-Derivat bindet ungefähr 12-fach stärker an Siglec-1 als die Referenzverbindung 2-Alpha-methyl-5-N-acetyl-neuraminsäure, noch stärker an Siglec-4a (ca. 236-fach stärker).
Ferner besonders bevorzugt ist Methyl-α-9-N-(biphenyl-4-carbonyl)-amino-9-desoxy- Neu5Ac. Diese Verbindung bindet ungefähr 150-fach stärker an Siglec-2 als die Referenzverbindung 2-Alpha-methyl-5-N-acetyl-neuraminsäure.
Weiterhin besonders bevorzugt ist Methyl-α-9-N-benzoy!-amino-9-desoxy-Neu5Ac. Diese Verbindung bindet ungefähr 704-fach stärker an Siglec-4a (MAG) als die Referenzverbindung 2-Alpha-methyl-5-N-acetyl-neuraminsäure. Gemäß einer bevorzugten Ausführungsform der Erfindung wird ein Siglec-Inhibitor bereitgestellt, wobei
X eine Carboxy-Gruppe bedeutet, die in axialer Position vorliegen sollte;
Y ein H-Atom, eine O-Methyl-, O-Benzyl-Gruppe oder ein Derivat einer
Hydroxy-Gruppe bedeutet;
Z ein O-Atom bedeutet;
R1 eine Hydroxy-Gruppe bedeutet;
R2 eine Aminoacetyl-Gruppe bedeutet;
R3 eine Hydroxy-Gruppe bedeutet;
R4 eine Hydroxy-Gruppe bedeutet,
R6 ein H-Atom bedeutet;
R6' ein H-Atom bedeutet; und
R7 ein H-Atom bedeutet.
Die angegebenen Substituenten stimmen hierbei mit Ausnahme von Y mit den natürlich vorkommenden Substituenten der Sialinsäure überein.
Die Erfindung stellt fe er ein Verfahren zum Herstellen von Siglec-Inhibitoren mit erhöhter Affinität für ein Siglec-Molekül bereit, das die Schritte umfasst:
a) Einführen eines Substituenten ausgewählt aus den erfindungsgemäßen Resten in die Position R5 von Neuraminsäure oder Derivaten davon;
b) Bestimmen der Affinität des Produktes nach a) für ein Siglec-Molekül;
c) Auswählen der Produkte mit erhöhter Affinität;
d) gegebenenfalls weiteres Substituieren des ausgewählten Produktes nach c) in von Position R5 verschiedenen Positionen, vorzugsweise in Position R2.
Erfindungsgemäß wurde gefunden, dass Siglec-Inhibitoren mit erhöhter Affinität für ein Siglec-Molekül durch Einführen eines hydrophoben Substituenten in Position R5 der Neuraminsäure oder Derivaten davon erhalten werden können. Das Bestimmen der Affinität des Produktes für ein gegebenes Siglec-Molekül kann hierbei durch einen Bindungsassay oder einen Hapten-Inhibitons-Assay erfolgen. Die Bedingungen für den Hapten-Inhibitions-Assay sind hierbei wie vorstehend ausgeführt, vorzugsweise wie in (5, 6) angegeben. Die Affinität der ausgewählten Produkte für ein gegebenes Siglec- Molekül kann weiter erhöht werden durch Einführen von Substituenten in von Position R5 verschiedenen Positionen, vorzugsweise Position R2. Geeignete Substituenten für R2 sind hierbei die für R5 angebenen Substituenten.
Die Erfindung stellt ferner ein Verfahren zum Erhöhen der Bindungsselektivität von Siglec-Inhibitoren bereit, das den Schritt des Einführens eines Substituenten ausgewählt aus den Resten für R5 gemäß einem der Ansprüche 1 bis 10 in Position R5 von Neuraminsäure oder Derivaten davon umfasst.
Die Synthese der erfindungsgemäßen Verbindungen ist dem Fachmann grundsätzlich auf Grund seines allgemeinen Fachwissens möglich. Bevorzugt dient als Ausgangsprodukt 5-N-Acetyl-neuraminsäure, aus der zunächst in einer mehrstufigen Reaktionssequenz die entsprechende Alkyl-, Aryl-, Alkyl-alpha-O- bzw. alpha-S-Glykoside hergestellt werden.
Der nächste Schritt besteht in einem Austausch der Hydroxylgruppe an C9 (R5 gemäß der vorliegenden Erfindung) des entsprechenden O- bzw. S-Glykosids der 5-N- Acetyl-Neuraminsäure durch eine Aminogruppe. Diese Transformation läßt sich über die entsprechende 9-O-Tosyl-Verbindung durchführen. Vorzugsweise kann diese Reaktion unter Verwendung einer modifizierten Mitsunobu-Reaktion durchgeführt werden. Die so erhaltenen Alkyl-, Aryl-, Aralkyl-alpha-O- bzw. alpha-S-Glycoside der 9-Amino-9-desoxy-5-N-acetyl-neuraminsäure liefern schließlich die entsprechenden Alkyl-, Aryl-, Alkyl-alpha-O- bzw. alpha-S-Glycoside der 5-N-acetyl-9-(biphenyl-4- carbonyl)-amino-9-desoxy-neuraminsäure und ähnliche Substanzen mit variierendem Acylrest an der C-9 (R5 gemäß der vorliegenden Erfindung) ständigen Aminogruppe. Die Durchführung dieser Verknüpfung von Säurefunktion mit Aminogruppe kann auf unterschiedliche Weise durchgeführt werden, beispielsweise unter Verwendung des entsprechenden Säurechlorids bzw. Anhydrids oder mit Hilfe der Carbodiimid- Methode oder über das Verfahren der entsprechenden, beispielsweise mit Nitrophe-
EnSATZBLATT (REGEL 26) nol, Pentafluorphenol, etc. aktivierten Säurefunktion.
Die vorliegende Erfindung stellt ferner pharmazeutische Zusammensetzungen umfassend wenigstens einen erfindungsgemäßen Siglec-Inhibitor und einen pharmazeutisch verträglichen Träger bereit. Gemäß einer bevorzugten Ausführungsform sind die therapeutisch verwendbaren Siglec-Inhibitoren möglichst selektiv für ein Siglec- Molekül. Pharmazeutisch verträgliche Träger sind dem Fachmann bekannt. Hierunter fallen ebenfalls geeignete Verdünnungsmittel. Zur Verabreichung ist generell jede Art der Verabreichung, z. B. intravenös, intraperitoneal, subkutan, intradermal, oral oder topisch geeignet. Die orale Verabreichung ist hierbei bevorzugt.
Die zu verabreichende Menge an Arzneistoff kann routinemäßig durch den Arzt bestimmt werden.
Weiterhin stellt die vorliegende Erfindung die Verwendung der erfindungsgemäßen Siglec-Inhibitoren zur Behandlung von Siglec-vermittelten Erkrankungen, vorzugsweise Erkrankungen des Immunsystems, bereit. Siglec-2 ist an der Regulation der B-Zell- abhängigen Immunantwort beteiligt. Die vorliegende Erfindung gibt somit die Verwendung der Siglec-Inhibitoren zur Regulation der B-Zell-abhängigen Immunantwort an. Hierbei werden erfindungsgemäß u. a. Allergien, Autoimmunerkrankungen und chronische Entzündungen als Ziel einer Siglec-Inhibitor-Behandlung angegeben.
Siglec-4a weist eine Neuriten-wachstumshemmende Wirkung auf. Die erfindungsgemäßen Siglec-Inhibitoren sind somit zur Aufhebung der Neuriten- wachstumshemmenden Wirkung von Siglec-4a geeignet und besitzen daher die Fähigkeit zur Verbesserung der Regenerationsfähigkeit verletzter Nerven, beispielsweise bei der Behandlung von Querschnittslähmung. Siglec-7 ist beispielsweise an der Regulation der cytotoxischen Aktivität von NK-Zellen beteiligt. Die erfindungsgemäßen Sialinsäure-Derivate sind daher geeignet zur Regulation der cytotoxischen Aktivität dieser Zellen. Beispielsweise behandelbare Erkrankungen sind in diesem Zusammenhang Krebserkrankungen, sowie Viruserkrankungen, insbesondere AIDS.
Es gibt Hinweise für die Beteiligung von weiteren Siglecs an der Steuerung des Immunsystems; vgl. Tabelle 1. Die erfindungsgemäßen Siglecs-Inhibitoren sind daher ebenfalls zur Steuerung des Immunsystems geeignet.
Die bevorzugten erfindungsgemäßen Siglec-Inhibitoren ergeben eine erhöhte B-Zell- abhängige Immunantwort, was sich insbesondere durch eine erhöhte Ca + Ausschüttung nachweisen lässt. Diese erhöhte Ca2+ Ausschüttung ergibt sich durch Anwendung der bevorzugten erfindungsgemäßen Siglec-Inhibitoren, nachweisbar beispielsweise in Versuchen mit Daudi-Zellen oder B-Zellen aus Mäusen. Diese erhöhte B-Zell-abhängige Immunantwort, induziert durch die Anwendung der bevorzugten Siglec-Inhibitoren der vorliegenden Erfindung, eröffnet viel versprechende Möglichkeiten für die Herstellung von Medikamenten zur Behandlung von Krankheiten, assoziiert mit Immundefekten. Eine in diesem Zusammenhang bevorzugte Verbindung ist Methyl-α-9-N-(Biphenyl-4-carbonoyl)-amino-9-deoxy-Neu5Ac (in den Beispielen gezeigt). Diese Verbindung zeigt insbesondere auch eine sehr bemerkenswerte selektive Affinität für hCD22. Medizinische Indikationen für die die bevorzugten Inhibitoren besonderes Potential zeigen sind Krankheiten, bei denen die Immunantwort im Rahmen der B-Zellaktivierung gestört sind. Beispiele dafür sind die "Common Variable Immunodeficiency (CVID) und die IgA-Defizienz. Die CVID Patienten haben B-Zellen, die aber keine gute Immunantwort einleiten können und sind durch eine Hypogam- maglobulinämie gekennzeichnet. Sie leiden unter schweren Infektionskrankheiten und können derzeit nur mit Immunglobulinen behandelt werden, was allerdings auf Grund der erheblichen Risiken und beschränkten Einsetzbarkeit eine problematische Therapie ist. Patienten mit IgA-Defizienz könnten auch mit Immunglobulinen behandelt werden, was aber auf Grund der oben geschilderten Risiken häufig unterbleibt, auch da diese Patienten häufig nur geringe Symptome zeigen.
Nachfolgend werden Beispiele beschrieben, die die Erfindung erläutern, jedoch nicht einschränken sollen. Dem Fachmann erschließen sich bei Ausführung der Erfindung weitere Anwendungen, die ebenfalls erfindungsgemäß in Betracht gezogen werden.
Material und Methoden
Svthese von Siαlec-Inhibitoren
Als Beispiel für die Herstellung der oben angegebenen, an der Aminogruppe der Methyl-α-5-N-acetyl-9-amino-9-desoxy-neuraminsäure acylierten Substanzen ist hier die Synthese der Methyl-α-5-N-acetyl-9-N-(Biphenyl-4-carbonyl)-amino-9-desoxy- neuraminsäure (3) beschrieben.
Methyl- -5-N-acetyl-9-azido-9-desoxy-neuraminsäure (1 )
a) Aus Methyl-α-5-N-acetyl-9— O-tosyl-neuraminsäure-methylester nach Literatur bekannter Methode über das entsprechende 9-Azid und Verseifung der Estergruppe.
b) Direkt aus bekannter Methyl-α-N-acetyl-neuraminsäure durch eine auf der Mitsunobu-Reaktion basierenden Umsetzung.
Eine Lösung des Triethyl-ammonium-salzes der Methyl-α-5-N-acetyl-neuramiπsäure (0,1 g) in trockenem Pyridin (0,4 ml) und N,N-Dimethy!-formamid (DMF) (1 ml) engt man in Vacuo ein und dampft mit getrocknetem DMF 1 - 2 mal nach (A). Tetra- methylguanidin (0,19 g) wird in einer Mischung von trockenem Pyridin (0,25 ml) und DMF (1 ml) gelöst, die Lösung in Vacuo eingeengt und mit trockenem DMF 1 - 2 mal nachgedampft (B). Man löst A in DMF (0,8 ml), gibt die Lösung zu B und fügt 98 - 100- prozentige Ameisensäure (0,13 ml) hinzu. Die Lösung aus A + B wird zu einer Mi¬ schung von Triphenylphosphin (0,17 g) und Diisopropylazodicarboxylat (0.125 ml) in getrocknetem Tetrahydrofuran (1 ,2 ml) gegeben, die vorher bei 0°C ca 15 Minuten gestanden war. Nach ca. 24 Stunden bei 0°C → 20°C ist die Reaktion beendet, und man gibt noch ca. 0,5 ml Methanol zu. Die Lösung wird in Vacuo eingedampft, mit Ethylacetat/H O oder Methylenchlorid/ H2O ausgeschüttelt und an Kieselgel (Flash- Verfahren) chrpmatographiert.
Elution: zuerst Methanol/Etylacetat/Essigsäure (20 %) 1/6/1 , dann 1/4/1.
Ausbeute: 70 - 80 % der Theorie
Methyl-α-5-N-acetyl-9-amino-9-desoxy-neuraminsäure (2)
Die 9-Azidoverbindung (1) wird mit Palladiumoxid in H20 bei Normaldruck hydriert.
Ausbeute: 95 % Methyl-α-5-N-acetyl-9-N-(Biphenyl-4-carbonyl)-amino-9-desoxy-neuraminsäure (3)
Umsetzung von Biphenyl-4-carbonsäure (0,4 g) mit 4-Nitrophenol (0,28 g) in Ethyl- acetat liefert in Gegenwart von N.N'-Dicyclohexyl-carbodiimid (0,416 g) bei RT dem- entsprechenden Biphenyl (4)-carbonsäure-4-nitrophenylester, der aus Ethylace- tat/Diethylester/Hexan kristallisiert.
Methyl-α-5-N-acetyl-9-amino-9-desoxy-neuraminsäure (2) (30 mg) gelöst in getrocknetem DMF (0,6 ml) reagieren in Gegenwart von Triethylamin (12,9 ml) glatt mit dem oben genannten Nitrophenylester (39 mg) bei RT. Die Reinigung erfolgt durch Chromatographie an Kieselgel (Flash-Methode).
Elution: zunächst Methanol/Ethylacetat Essigsäure (20 %) 1/6/1, dann 1/5/1, zum Schluß 1/4/1.
Ausbeute an (3): 93 %:
Hochaufgelöste NMR-Spektroskopie und FAB-MS beweisen die Struktur der Syntheseprodukte.
Hapten-Inhibitionsassay
Der Hapten-Inhibitionsassay wird unter den in (5,6) angegebenen Bedingungen durchgeführt.
Resultate
Tabelle 2
Figure imgf000018_0001
Figure imgf000019_0001
Siglec-4a (MAG) Slglec-1 (Slaloadhesin) Siglec-2 (human CD22) Siglec-2 (murine CD22) structure IC50 rIP IC50 rIP IC50 rIP IC50 rIP
Met yl-σ-9-W-(biphenyl-4-carbonyl)-amTno-9-desoxy-Neu5Ac 22 218 52 13 4 150 1220 5.0
Methyl-α-9-Λ-(biρhenyl-4-acetyl)-amino-9-desoxy-Neu5Ac π.d. n.d. 3000 0.3 35 29 123 48
Methyl-α-9-Λ/-(blphenyl-2-carbony))-amino-9-desoxy-Neu5Ac n.d. n.d. 2600 0.3 97 10 647 9.5 m Methyl-α-9-Λ -(phenoxy-3-benzoyl)-amino-9-desoxy-Neu5Ac n.d. n.d. 540 1.5 10 111 887 6.7
33
Melhyl-α-9-W-(diphenylacetyl)-amino-9-desoxy-Neu5Ac 150 31 4400 0.2 35 n.d. 103 n.d. ä N G3 Methyl- -9-Λ-(πaphthyl-2-carbonyl)-amino-9-desoxy-Neu5Ac 20 236 78 12 6 167 270 18 r~ >. Methyl-α-9-W-(naphthyl-1-carbonyl)-amino-9-desoxy-Neu5Ac 56 84 3000 0.3 37 27 92 64 Methyl-α-9-Λ/-(naphthyl-2-acetyl)-amino-9-desoxy-Neu5Ac 367 13 1750 0.5 8 131 71 83
13 m O 162 28 750 0.5 338 4.9 647 7.4 m Methyl-α-9-Λ'-(aπthracen-5-carbonyl)-amiπo-9-desoxy-Neu5Ac
Methyl-α-9-Λ-(cyclobuteπdion)-amino-9-desoxy-Neu5Ac n.d. n.d. n.d. n.d. 180 5.7 620 7.4
Methyl-α-9-Λ/-(chinaldin-2-carbonyl)-amino-9-desoxy-Neu5Ac B7 54 >>2.5mM (100%) «0.2 41 n.d. >>10 mM n.d.
(100%)
Met yl-α-9-Λ-dansyl-arnino-9-desoxy-Neu5Ac 317 19 260 2.6 n.d. π.d. n.d. n.d.
Methyl-α-9-Λ/-fluoresceinyl-amino-9-desoxy-Neu5Ac 106 41 >>1.5 mM (121%) «0.5 77 28 100 48
gly = Glycin
Der IC50-Wert ist die Siglec-Inhibitor-Konzentration, die im Hapten-Inhibitionsassay zu 50 % Inhibition der Bindung führt. Der rlP-Wert jedes Sialinsäure-Derivates wurde bestimmt durch Quotientenbildung des IC50-Wertes der Vergleichsverbindung 5-N- acetyl-neuraminsäure und des IC50-Wertes der zu untersuchenden Verbindung. Sialinsäure-Derivate mit einem rlP-Wert von > 1 ,0 binden daher besser als die Referenzverbindung und ein rlP-Wert von < 1 zeigt, dass die Verbindung schlechter an den Rezeptor bindet als die Referenzverbindung, n.d. bedeutet, dass die Bestimmung nicht durchgeführt wurde.
Die Verbindung BPC-Neu5Ac (unten gezeigt) wurde in Übereinstimmung mit bekannten Verfahren in Versuchsreihen zur Untersuchung der Selektivität und der Aktivität eingesetzt. Die Stimulierung von Daudi-Zellen mit anti-lgM in der Gegenwart von BPC-Neu5Ac ergab einen Anstieg der Ca2+ Konzentration. Die Anwendung dieser Verbindung führte auch zu einer klar erhöhten Ca2+ Konzentration in anti-lgM stimulierten primären B-Lymphozyten aus menschlichem Blut. Diese Daten legen nahe, dass das erhöhte Ca2+ Signal der behandelten Zellen hervorgerufen wird durch eine spezifische Inhibierung der Liganden Bindungsdomäne von CD22. Diese Beeinträchtigung im Hinblick auf das Binden von Liganden führt zu einer unvollständigen Aktivierung der intrazellulären Inhibitordomäne von CD22.
Figure imgf000021_0001
Methyl-α-9-Λ/-(biphenyl-4-carbonyl)-amino-9-deoxy-Neu5Ac
(BPC-Neu5Ac) Referenzen
1) Crocker et al., Immunology 102 (2001), 1 - 14
2) Crocker et al., (2000) The siglec family of l-type lectins in Carbohydrates in Chemistry and Biology, Vol. 4, B. Ernst et al., Herausgeber, Wiley-VCH, p. 579 - 595
3) Keim, S. (2001), Ligands for siglecs. In Mammalian Carbohydrate Recogniti- on Systems, P.R. Crocker, Herausgeber (Berlin, Springer), S. 153 - 176
4) May et al., Mol. Cell 1 (1998), 719 - 728
5) Keim et al., Eur. J. Biochem. 255 (1998), 663 - 672
6) Strenge et al., Eur. J. Biochem. 258 (1998), 677 - 685
7) Li, N. et al., Cloning and Characterization of Siglec-11 , a novel sialic acid binding member of the Ig Superfamily from human dendritic cells; J. Biol. Chemistry 2001 (im Druck)
8) Crocker et al., Glycobiology 8 (1998), v

Claims

Patentansprüche
Siglec-Inhibitor mit der Formel:
Figure imgf000023_0001
wobei
X eine negativ geladene Gruppe, wie eine Carboxy-, Phosphat- oder Sulfat- Gruppe, oder ein Derivat davon bedeutet;
Y ein H-Atom, eine Alkyl- oder Aryl-Gruppe, eine Hydroxy-Gruppe, ein Glykan, ein polymeres Trägermolekül, oder ein Derivat davon bedeutet;
Z ausgewählt ist aus O, N, C und S.
R1 ein H-Atom, eine Hydroxy-Gruppe, oder ein Derivat davon bedeutet,
R2 eine Hydroxy- oder Amino-Gruppe, oder ein Derivat davon bedeutet;
R3 eine Hydroxy-Gruppe oder ein Derivat davon bedeutet,
R4 eine Hydroxy-Gruppe oder ein Derivat davon bedeutet,
R5 eine substituierte oder unsubstituierte Amino-Gruppe bedeutet, wobei der Substituent ausgewählt wird aus
einer substituierten oder unsubstituierten Formyl-, Alkanoyl-, Cycloalkanoyl-, Aryl- carbonyl-, Heteroaryl-carbonyl-, Alkyl-, Aryl-, Cycloalkyl-, oder Heteroaryl-Gruppe, wobei diese Reste auch eine oder mehrere ungesättigte Bindungen enthalten können,
wobei R4 als H-Akzeptor und R5 als H-Donor wirken;
R6 ein H-Atom oder eine Alkyl-Gruppe, eine geladene Gruppe, oder ein Derivat davon bedeutet;
R6' ein H-Atom oder eine Alkyl-Gruppe, eine geladene Gruppe, oder ein Derivat davon bedeutet, wobei wenigstens ein Substituent ausgewählt aus R6 und R6' eine hydrophobe Gruppe, vorzugsweise ein H-Atom oder eine Methyl-Gruppe, ist; und
R7 ein H-Atom oder ein beliebige Gruppe, vorzugsweise eine Gruppe zur Verbesserung der pharmakologischen Eigenschaften des Siglec-Inhibitors, bedeutet.
2. Siglec-Inhibitor gemäß Anspruch 1 , wobei die Alkanoyl-Gruppe ausgewählt ist aus einer Ethanoyl-, Propanoyl-, Butanoyl-, Pentanoyl-, Hexanoyl-, Heptanoyl-, Oktanoyl-, Nonanoyl- und Dekanoyl-Gruppe, vorzugsweise Hexanoyl.
3. Siglec-Inhibitor gemäß Anspruch 1 , wobei die Cycloalkanoyl-Gruppe ausgewählt ist aus einer C3 bis C6 Cycloalkanoyl-Gruppe, vorzugsweise Cyclohexanoyl.
4. Siglec-Inhibitor gemäß Anspruch 1 , wobei die Aryl-carbonyl-Gruppe ausgewählt ist aus einer C4 bis C15 Aryl-carbonyl-Gruppe, vorzugsweise eine Benzoyl- Gruppe, Naphthoyl-Gruppe oder Anthracen-carbonyl-Gruppe.
5. Siglec-Inhibitor gemäß Anspruch 1 , wobei die Heteroaryl-carbonyl-Gruppe ausgewählt ist aus einer Pyridyl-carbonyl-, Chinaldin-carbonyl- und Thiophenyl- carbonyl-Gruppe.
6. Siglec-Inhibitor gemäß Anspruchl , wobei die Alkyl-Gruppe ausgewählt ist aus einer C1-C20 Alkyl-Gruppe, vorzugsweise einer Methyl-, Ethyl-, Propyl-, Butyl-, Pentyl- und Hexyl-Gruppe.
7. Siglec-Inhibitor gemäß Anspruch 1 , wobei die Cycloalkyl-Gruppe ausgewählt ist aus einer C3-C6 Cycloalkyl-Gruppe.
8. Siglec-Inhibitor gemäß Anspruch 1 , wobei die Aryl-Gruppe ausgewählt ist aus einer Phenyl-, Naphthyl-, Anthracen-Gruppe.
9. Siglec-Inhibitor gemäß Anspruch 1 , wobei die Heteroaryl-Gruppe ausgewählt ist aus einer Pyridyl- und Thiophenyl-Gruppe.
10. Siglec-Inhibitor gemäß Anspruch 1 , wobei
X eine Carboxy-Gruppe bedeutet, die in axialer Position vorliegen sollte; Y ein H-Atom, eine O-Methyl-, O-Benzyl-Gruppe oder ein Derivat einer
Hydroxy-Gruppe bedeutet; Z ein O-Atom bedeutet; R1 eine Hydroxy-Gruppe bedeutet; R2 eine Aminoacetyl-Gruppe. bedeutet; R3 eine Hydroxy-Gruppe bedeutet; R4 eine Hydroxy-Gruppe bedeutet, R6 ein H-Atom bedeutet; R6' ein H-Atom bedeutet; und R7 ein H-Atom bedeutet.
11. Verfahren zum Erhöhen der Bindungsselektivität von Siglec-Inhibitoren um- fassend das Einführen eines Substituenten ausgewählt aus den Resten für R5 gemäß einem der Ansprüche 1 bis 10 in Position R5 von Neuraminsäure oder Derivaten davon.
12. Verfahren zum Herstellen von Siglec-Inhibitoren mit erhöhter Affinität für ein Siglec-Molekül umfassend:
a) Einführen eines Substituenten ausgewählt aus den Resten für R5 gemäß einem der Ansprüche 1 bis 10 in Position R5 von Neuraminsäure oder Derivaten davon; b) Bestimmen der Affinität des Produktes nach a) für ein Siglec-Molekül;
c) Auswählen der Produkte mit erhöhter Affinität;
d) gegebenenfalls weiteres Substituieren des ausgewählten Produktes nach c) in von Position R5 verschiedenen Positionen, vorzugsweise in Position R2.
13. Pharmazeutische Zusammensetzung umfassend einen Siglec-Inhibitor gemäß einem der Ansprüche 1 bis 10 und einen pharmakologisch verträglichen Träger.
14. Verwendung eines Siglec-Inhibitors gemäß einem der Ansprüche 1 bis 10 zur Behandlung von Siglec-vermittelten Erkrankungen.
15. Verwendung eines Siglec-Inhibitors gemäß einem der Ansprüche 1 bis 10 zur Regulation der B-Zell-abhängigen Immunantwort.
16. Verwendung eines Siglec-Inhibitors gemäß Anspruch 15 zur Behandlung von Allergien, Autoimmunerkrankungen und chronischen Entzündungen.
17. Verwendung eines Siglec-Inhibitors gemäß einem der Ansprüche 1 bis 10 zur Verbesserung der Regenerationsfähigkeit verletzter Nerven.
18. Verwendung eines Siglec-Inhibitors gemäß Anspruch 17 zur Behandlung von Querschnittslähmung und Multipler Sklerose.
19. Verwendung eines Siglec-Inhibitors gemäß einem der Ansprüche 1 bis 10 zur Regulation der zytotoxischen Aktivität von NK-Zellen.
20. Verwendung eines Siglec-Inhibitors gemäß Anspruch 19 zur Behandlung von Krebserkrankungen.
21. Verwendung eines Siglec-Inhibitors gemäß Anspruch 19 zur Behandlung von Viruserkrankungen.
22. Verwendung nach Anspruch 15 zur Verstärkung der B-Zell-Antwort, insbesondere in immungeschwächten Patienten.
PCT/EP2002/006277 2001-06-19 2002-06-07 Sialinsäure-derivate als siglec-inhibitoren WO2003000709A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2451051A CA2451051C (en) 2001-06-19 2002-06-07 Siglec inhibitors
KR10-2003-7016631A KR20040040408A (ko) 2001-06-19 2002-06-07 시글렉 억제제
EP02748751A EP1397374A2 (de) 2001-06-19 2002-06-07 Siglec-inhibitoren
JP2003507112A JP2004534085A (ja) 2001-06-19 2002-06-07 シグレック阻害剤
AU2002319207A AU2002319207B2 (en) 2001-06-19 2002-06-07 Sialic acid derivatives for use as siglec inhibitors
US10/481,529 US7820714B2 (en) 2001-06-19 2002-06-07 Siglec inhibitors

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2001129332 DE10129332A1 (de) 2001-06-19 2001-06-19 Sialinsäure-Derivate als Siglec-Inhibitoren
DE10129332.1 2001-06-19
DE10216310 2002-04-12
DE10216310.3 2002-04-12

Publications (3)

Publication Number Publication Date
WO2003000709A2 WO2003000709A2 (de) 2003-01-03
WO2003000709A9 true WO2003000709A9 (de) 2003-04-10
WO2003000709A3 WO2003000709A3 (de) 2003-09-25

Family

ID=26009544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/006277 WO2003000709A2 (de) 2001-06-19 2002-06-07 Sialinsäure-derivate als siglec-inhibitoren

Country Status (8)

Country Link
US (1) US7820714B2 (de)
EP (1) EP1397374A2 (de)
JP (1) JP2004534085A (de)
KR (1) KR20040040408A (de)
CN (1) CN100491389C (de)
AU (1) AU2002319207B2 (de)
CA (1) CA2451051C (de)
WO (1) WO2003000709A2 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060058830A (ko) 2004-11-26 2006-06-01 한국표준과학연구원 개별시료 주입구가 없는 다중채널 전기영동장치에 의한분리방법
WO2007105094A1 (en) * 2006-03-14 2007-09-20 Universität Basel Method for the identification of new leads for drug candidates
WO2007120815A2 (en) * 2006-04-12 2007-10-25 The Regents Of The University Of California Methods for treating lymphocyte-associated disorders by modulation of siglec activity
US9018245B2 (en) 2006-12-26 2015-04-28 Japan Science And Technology Method for promoting immune response comprising inhibiting CD22 function in B cells
DE102007046388A1 (de) * 2007-09-21 2009-09-10 Universität Hamburg Entwicklung eines Bindungsassays und Darstellung neuartiger Inhibitoren des Myelin Assoziierten Glycoproteins
RU2013119983A (ru) * 2010-10-05 2014-11-20 Дайити Санкио Компани, Лимитед Антитело, направленное на связанный с остеокластами белок сиглек-15
EP2610263A1 (de) 2011-12-30 2013-07-03 Brossmer, Reinhard Sialinsäure-Dimere
US9539336B2 (en) 2012-06-21 2017-01-10 Reinhard Brossmer Sialic acid derivatives
JP6403062B2 (ja) * 2012-12-21 2018-10-10 国立大学法人徳島大学 組織修復活性組成物及びその利用
WO2014160871A2 (en) * 2013-03-27 2014-10-02 The General Hospital Corporation Methods and agents for treating alzheimer's disease
WO2014177771A1 (en) 2013-05-02 2014-11-06 Glykos Finland Oy Conjugates of a glycoprotein or a glycan with a toxic payload
EP2910561A1 (de) 2014-02-25 2015-08-26 Reinhard Brossmer Sialinsäurederivate
WO2016001485A1 (en) 2014-06-30 2016-01-07 Glykos Finland Oy Saccharide derivative of a toxic payload and antibody conjugates thereof
CN105017340B (zh) * 2015-08-05 2017-11-14 厦门大学 一种抗原连接的唾液酸及其应用
CN116003596A (zh) * 2015-10-29 2023-04-25 艾利妥 抗siglec-9抗体及其使用方法
EP3481374A1 (de) 2016-07-08 2019-05-15 The Scripps Research Institute Desensibilisierung von mastzellen durch co-präsentation von antigenen mit hochaffinen mastzellen-siglec-liganden
WO2018098342A1 (en) * 2016-11-23 2018-05-31 The Regents Of The University Of California N-acetylated sialic acids and related sialosides
CN107501291B (zh) 2017-10-14 2020-01-21 厦门诺康得生物科技有限公司 一种cd169高亲和力抗肿瘤化合物及其制备方法和应用
CN108047282B (zh) * 2017-12-19 2020-06-09 厦门诺康得生物科技有限公司 一种唾液酸衍生物及其制备方法和应用
CN108676044B (zh) * 2018-05-16 2021-03-30 厦门诺康得生物科技有限公司 一种cd33亲和的唾液酸衍生物及其应用
CN108728412B (zh) * 2018-06-08 2021-11-09 厦门诺康得生物科技有限公司 一种nk细胞表面修改的免疫检查点抑制剂及其应用
CN108743595B (zh) * 2018-06-08 2020-11-27 厦门诺康得生物科技有限公司 一种nk细胞免疫检查点抑制剂及其制备方法
CN111973608B (zh) * 2020-09-17 2023-05-23 准邑科技(厦门)有限公司 一种唾液酸衍生物的用途
CN116003486B (zh) * 2023-03-27 2023-08-01 北京天之泰生物科技有限公司 一种先导化合物、其制备方法、以及其在制备抗流感病毒药物方面的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588852A1 (de) 1991-06-10 1994-03-30 Glycomed Incorporated Immonosuppressive und tolerogene oligosaccharidderivate

Also Published As

Publication number Publication date
US20040176309A1 (en) 2004-09-09
KR20040040408A (ko) 2004-05-12
CN100491389C (zh) 2009-05-27
WO2003000709A2 (de) 2003-01-03
JP2004534085A (ja) 2004-11-11
CN1656113A (zh) 2005-08-17
CA2451051C (en) 2012-11-27
US7820714B2 (en) 2010-10-26
CA2451051A1 (en) 2003-01-03
AU2002319207B2 (en) 2007-03-01
EP1397374A2 (de) 2004-03-17
WO2003000709A3 (de) 2003-09-25

Similar Documents

Publication Publication Date Title
WO2003000709A9 (de) Sialinsäure-derivate als siglec-inhibitoren
DE3854297T2 (de) Nucleoside und nucleotide mit antiviraler, antitumoraler, antimetastatischer sowie immunstimulierender wirkung.
DE69631376T2 (de) Substituierte liposaccaride, nützlich in der behandlung und vorbeugung von endotoxemie
EP0841949B1 (de) Verwendung von saccharid-konjugaten
DE3609052C2 (de) Anthracyclinglykoside, Verfahren zu ihrer Herstellung und sie enthaltende Zubereitungen
EP1131422A1 (de) Rekombinante glycoproteine, verfahren zu ihrer herstellung, sie enthaltende arzneimittel und ihre verwendung
DE60215530T2 (de) Neues glykolipid, und heilmittel für autoimmunerkrankungen, das dieses als wirkstoff enthält
JP6707548B2 (ja) ガレクチンの新規なガラクトシド阻害剤
EP0845475B1 (de) Inositolglykane mit insulinartiger Wirkung
DE602004011515T2 (de) Furazanobenzimidazole
DE19512484A1 (de) Kohlenhydratmodifizierte Cytostatika
DE3444051C2 (de) Neue Retinoide, deren Herstellung und Verwendung
DE60011568T2 (de) Derivate von Monosacchariden als Zelladhäsionsinhibitoren
DE69218222T2 (de) Neue ganglioside-derivaten
TW293013B (de)
EP0771795A1 (de) Neuartige Glycomimetika als Selektin-Antagonisten und entzündungshemmend wirkende Arzneimittel
DE3787437T2 (de) Sialosylcholesterol, verfahren zu dessen herstellung und arzneimittel zur behandlung von krankheiten des nervensystems.
DE3219209C2 (de)
DE3888066T2 (de) Saccharid-Derivate.
DE69031448T2 (de) Halbsynthetische Gangliosidanaloge
DE10129332A1 (de) Sialinsäure-Derivate als Siglec-Inhibitoren
DE2817923C2 (de) Septacidinverbindungen und diese enthaltende Arzneimittel
DE68911049T2 (de) Therapeutische Verwendung des Isopropylesterderivates von Monosialogangliosiden bei Erkrankungen des Nervensystems, begleitet von Entzündungen.
DE3709699C2 (de) 5-Fluoruracil-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung
DE3317702C2 (de)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
COP Corrected version of pamphlet

Free format text: PAGES 1-3, 5-19, DESCRIPTION, REPLACED BY NEW PAGES 1-3, 5-19; PAGES 24 AND 25, CLAIMS, REPLACED BY NEW PAGES 24 AND 25; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002748751

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2451051

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 028121708

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003507112

Country of ref document: JP

Ref document number: 1020037016631

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002319207

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10481529

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002748751

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002319207

Country of ref document: AU