WO2003000410A1 - Catalyseur pour hydrogenation de gas-oil, procede de preparation dudit catalyseur et procede d'hydrogenation de gas-oil - Google Patents

Catalyseur pour hydrogenation de gas-oil, procede de preparation dudit catalyseur et procede d'hydrogenation de gas-oil Download PDF

Info

Publication number
WO2003000410A1
WO2003000410A1 PCT/JP2002/006116 JP0206116W WO03000410A1 WO 2003000410 A1 WO2003000410 A1 WO 2003000410A1 JP 0206116 W JP0206116 W JP 0206116W WO 03000410 A1 WO03000410 A1 WO 03000410A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
group
mass
metal
metals
Prior art date
Application number
PCT/JP2002/006116
Other languages
English (en)
French (fr)
Inventor
Takashi Fujikawa
Takayuki Osaki
Hiroshi Kimura
Hirofumi Mizuguchi
Minoru Hashimoto
Hiroyasu Tagami
Masahiro Kato
Original Assignee
Cosmo Oil Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co., Ltd. filed Critical Cosmo Oil Co., Ltd.
Priority to DK02743648.4T priority Critical patent/DK1402948T3/da
Priority to US10/344,317 priority patent/US7361624B2/en
Priority to CA002419050A priority patent/CA2419050C/en
Priority to EP02743648A priority patent/EP1402948B1/en
Priority to KR1020037002362A priority patent/KR100664895B1/ko
Publication of WO2003000410A1 publication Critical patent/WO2003000410A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/48Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/50Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metal, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2234Beta-dicarbonyl ligands, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0202Polynuclearity
    • B01J2531/0205Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1059Gasoil having a boiling range of about 330 - 427 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil

Definitions

  • the present invention relates to a gas oil hydrotreating catalyst and a method for producing the same, and a gas oil hydrotreating method using the catalyst. More specifically, a catalyst having excellent activity capable of reducing the sulfur content and the nitrogen content in light oil when hydrotreating light oil as compared with the case of using this type of conventional catalyst, and a method for producing the same. And a hydrogenation treatment method using the catalyst.
  • the quality regulations for diesel oil have tended to be stricter worldwide in order to improve the air quality.
  • the sulfur content in light oil may affect the durability of post-treatment equipment such as oxidation catalysts, nitrogen oxide (NO x) reduction catalysts, and continuously regenerating diesel exhaust particulate removal filters, which are expected as measures against exhaust gas. Therefore, it is required to reduce the sulfur content of diesel oil.
  • Japanese Patent Application Laid-Open No. Sho 61-11414737 discloses that an alumina or silica carrier is impregnated with a solution comprising an organic compound having a nitrogen-containing ligand as a complexing agent and an active metal, A method for drying at 200 ° C. or lower is disclosed.
  • an alumina carrier includes a compound belonging to Group 8 of the periodic table (hereinafter, also simply referred to as “group 8 metal”) and a compound belonging to Group 6 of the periodic table.
  • Impregnating solution obtained by adding diol or ether to impregnating solution containing metal (hereinafter also simply referred to as “Group 6 metal”) and phosphoric acid, and then impregnating it at 200 ° C or less It is disclosed that the drying is performed by using
  • the carrier is impregnated with a solution comprising a Group 6 metal compound, a phosphorus component, a Group 8 metal compound, and citric acid as in the present invention, and then dried. Rather, an invention in which firing is performed is disclosed.
  • Japanese Patent Application Laid-Open No. H4-156948 discloses that an organic acid is specified as a carrier supporting a Group 6 metal compound, a phosphorus component, and a Group 8 metal compound.
  • a method of impregnating a solution containing a small amount and drying at a temperature of 200 ° C. or less is disclosed.
  • Japanese Patent Application Laid-Open No. 4-244,388 discloses that an oxide carrier supports a solution comprising a Group 6 metal compound, a Group 8 metal compound, and phosphoric acid, and is dried at 200 ° C. or less.
  • a method is disclosed in which a catalyst is obtained, a solution of an organic acid represented by a specific chemical formula is supported thereon, and the catalyst is dried at 200 ° C. or lower.
  • Japanese Patent Application Laid-Open No. 6-3396935 discloses that an oxide carrier is impregnated with a solution composed of a Group 6 metal compound, a Group 8 metal compound, an organic acid, and phosphoric acid, A method of obtaining a dried catalyst, impregnating with a solution of an organic acid, and drying at 200 ° C. or lower is disclosed below.
  • Japanese Patent Application Laid-Open No. 6-31176 discloses a technique for producing a catalyst by impregnating an inorganic oxide support with a Group 8 metal compound and a heteropolyacid of a Group 6 metal, followed by drying.
  • Japanese Patent Application Laid-Open No. Hei 11-228552 discloses a method for producing a catalyst in which an oxide carrier is impregnated with a solution comprising molybdenum, tungsten, a Group 8 metal compound, mercaptocarboxylic acid, and phosphoric acid.
  • the main purpose of this method is to form a coordination compound of mercaptocarboxylic acid with molybdenum, tungsten, and a group VIII metal compound, and to highly disperse the compound on a catalyst carrier.
  • molybdenum and tungsten are highly dispersed on the carrier, and it becomes difficult to laminate molybdenum disulfide as described below in the present invention, and a CoMo S phase particularly effective as a desulfurization active point is obtained.
  • NiMo S phase type II Co and Ni active sites in the molybdenum disulfide or more in the second layer or more, type I is the molybdenum disulfide in the first layer of the molybdenum disulfide. (It refers to the existing Co, Ni active site, which is lower in activity than type II).
  • mercaptocarboxylic acid contains sulfur, and when it exists near the group 8 metal (Co, Ni) or forms a coordination, the desulfurization active site (CoMo S phase, NiMo S Phase) and may be inert Co 9 S 8 species or Ni 3 S 2 species.
  • An object of the present invention is to provide a hydrotreating catalyst capable of performing ultra-deep desulfurization of sulfur in gas oil and reducing nitrogen at the same time by simple means and without requiring severe operating conditions. And a method for producing the same.
  • Another object of the present invention is to provide a method for hydrotreating a gas oil fraction with high efficiency using this catalyst.
  • At least one member selected from metals belonging to Group 6 of the Periodic Table, based on a catalyst and in terms of oxides, is 10 to 30% by mass and a metal selected from Group 8 metals of the Periodic Table on an inorganic oxide carrier. 1 to 15 mass of at least one kind. /. Containing 1.5 to 6% by mass of phosphorus, 2 to 14% by mass of carbon, specific surface area of 220 to 300m 2 / g, pore volume of 0.35 to 0.6 ml / g, average pore diameter
  • a gas oil hydrotreating catalyst characterized by having a pressure of about 65 to 95 A.
  • the present invention provides a method for producing an inorganic oxide carrier having a specific surface area of 270 to 500 m 2 / g, a pore volume of 0.55 to 0.9 m 1 / g, and an average pore diameter of 60 to 120 A.
  • / 0 1.5 to 6% by mass of phosphorus and 2 to 14% by mass of carbon, and drying at 200 ° C. or less.
  • the catalytic reaction of the gas oil fraction is carried out in the presence of the above catalyst under the conditions of a hydrogen partial pressure of 3 to 8 MPa, a temperature of 300 to 420 ° C, and a liquid hourly space velocity of 0.3 to 5 hr- 1. And a method for hydrotreating light oil.
  • FIG. 1 is a transmission electron micrograph of catalyst B of an example of the present invention.
  • FIG. 2 is a graph showing the results of a catalyst life test of Catalyst D of Example of the present invention and Comparative Catalyst a. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present inventors studied to achieve the above object, and found that an inorganic oxide carrier was impregnated with a solution containing a Group 6 metal compound, a Group 8 metal compound, an organic acid and phosphoric acid, and By carrying a predetermined amount of the components and drying at a temperature of 200 ° C or less, a highly active desulfurization active point (CoMoS phase, Ni M S phase) can be precisely controlled, and as a result, the desulfurization reaction and the denitrification reaction proceed efficiently, so that ultra-deep desulfurization reaction can be easily achieved without severe reaction conditions. We have learned that a high-performance desulfurization catalyst can be obtained.
  • gas oil fractions such as straight-run gas oil, catalytic cracked gas oil, pyrolyzed gas oil, hydrogenated gas oil, desulfurized gas oil, and vacuum gas oil (VGO) are suitable.
  • VGO vacuum gas oil
  • a typical example of the properties of these feedstocks is a boiling range of 150 to 450 ° C and a sulfur content of 5 mass. / 0 or less.
  • alumina can be used alone, but in order to further improve the desulfurization activity, it is preferable to use a composite oxide containing alumina as a main component.
  • alumina various aluminas such as a-alumina, ⁇ -alumina, y-alumina, ⁇ -alumina, and alumina hydrate can be used, and porous alumina having a high specific surface area is preferable.
  • —Alumina is suitable.
  • the purity of alumina is about 98% by mass or more, preferably about 99% by mass. / 0 or more is suitable.
  • the acid component to be complexed with alumina is preferably at least one selected from zeolite, polya, silica, and zirconia. By combining these, lamination of molybdenum disulfide becomes advantageous.
  • zeolite has an average particle size of about 2.5 to 6 im, preferably about 3 m, as measured by a coal counter method (1 wt% NaC1 aqueous solution, aperture: 30 mm, ultrasonic treatment: 3 minutes). 55 ⁇ , more preferably about 3-4 ⁇ m.
  • this zeolite has a particle size of 6 ⁇ or less, which accounts for about 70 to 98%, preferably about 75 to 98%, and more preferably about 80 to 98% of all the zeolite particles. is there.
  • Such properties of zeolites are desirable for precise control of the pore diameter in order to facilitate the diffusion of difficult-to-desulfurize substances into the pores.
  • the alumina hydrate (alumina precursor) during heating and sintering may differ during the preparation of the composite oxide carrier due to differences in the amount of water absorbed and the crystallinity of the alumina hydrate (alumina precursor) and zeolite.
  • zeolite have different shrinkage ratios, and relatively large meso or macropores tend to form as pores in the composite oxide support. These large pores not only reduce the surface area, but also facilitate the internal diffusion of metal components that are poisonous to the catalyst when processing residual oil, and eventually lead to desulfurization, denitrification and This tends to reduce the decomposition activity.
  • preferred zeolites to be complexed with alumina include faujasite X-type zeolite, faujasite ⁇ -type zeolite,] 3 zeolite, mordenite-type zeolite, ZSM-based zeolite (ZSM-4, 5, 8, 1). 1,
  • TS-1 and TS-2 can be used, especially Y-type zeolite and stabilized Y-zeolite. Olite; 8 zeolites are preferred. Further, the zeolite is preferably a proton type.
  • silica and zirconia those generally used as a carrier component of this type of catalyst can be used.
  • zeolite, polya, silica, and zirconia can be used alone or in combination of two or more.
  • the blending amount of these components is not particularly limited, but in the composite oxide carrier, the alumina is more than about 80% by mass and 99.5% by mass or less, but is about 0.5% by mass or more and less than 20% by mass.
  • the alumina is present in an amount of about 0.5 to 15% by weight, based on about 85 to 99.5% by weight, and more preferably, the alumina is present in an amount of about 0.5 to about 90 to 99.5% by weight. ⁇ 10% by mass.
  • the inorganic oxide support in the present invention is prepared by calcining at about 580 to 700 ° C for about 1.5 to 3 hours.
  • the catalyst of the present invention is prepared only by drying at 200 ° C. or less after the active component is supported on the inorganic oxide carrier, as described later.
  • Strength close-packed bulk density, etc.
  • firing the inorganic oxide carrier will not provide sufficient mechanical strength.
  • the specific surface area, pore volume and average pore diameter of the inorganic oxide carrier are preferably 270 to 50 Om 2 / g, preferably 300, in order to make the catalyst having a high hydrodesulfurization activity for hydrocarbon oils.
  • ⁇ 450m 2 Zg, pore volume is 0. 55 ⁇ 0. 9mlZ g, preferably 0.65 to 0.8 m 1 / g, average pore diameter of 60 to 120 A, preferably 65 to 9 OA.
  • the group 6 metal and the group 8 metal form a complex (the group 6 metal coordinates with phosphoric acid to form a heteropolyacid, and the group 8 metal coordinates with an organic acid to form an organometallic complex).
  • the carrier has a specific surface area of 27 If it is less than 1, the metal becomes difficult to highly disperse due to the bulk of the complex during the impregnation. As a result, even if the obtained catalyst is subjected to sulfidation, the above active sites (CoMo S phase, NiMo S It is presumed that precise control of formation becomes difficult.
  • the pore diameter becomes extremely small, so that the catalyst pore diameter also becomes small. If the pore diameter of the catalyst is small, the diffusion of sulfur compounds into the pores of the catalyst becomes insufficient, and the desulfurization activity decreases.
  • the pore volume is less than 0.55 m 1 / g, a small amount of solvent enters into the pore volume when preparing a catalyst by the usual impregnation method. If the solvent is used in a small amount, the solubility of the active metal compound is deteriorated, the dispersibility of the metal is reduced, and the catalyst has low activity.
  • the pore volume is more than 0.9 ml / g, the specific surface area becomes extremely small, the dispersibility of the active metal becomes poor, and the catalyst has a low desulfurization activity.
  • the catalyst supporting the active metal also has a small pore diameter. If the pore diameter of the catalyst is small, the diffusion of sulfur compounds into the pores of the catalyst becomes insufficient, and the desulfurization activity decreases.
  • the pore diameter is larger than 120A, the specific surface area of the catalyst becomes small. If the specific surface area of the catalyst is small, the dispersibility of the active metal becomes poor, resulting in a catalyst with low desulfurization activity.
  • the Group 6 metal to be contained in the catalyst of the present invention molybdenum and tungsten are preferred, and molybdenum is particularly preferred.
  • the content of the Group 6 metal is 10 to 30% by mass, preferably 16 to 28% by mass in terms of oxide on a catalyst basis.
  • the amount is less than 10% by mass, it is insufficient to exert the effect due to the Group 6 metal, and the amount is 30% by mass. If the ratio exceeds 0 , the group 6 metal compound is agglomerated in the impregnation (supporting) process of the group 6 metal, and the dispersibility of the group 6 metal deteriorates. The catalyst activity is not improved because the catalyst surface area is exceeded or the catalyst surface area is greatly reduced.
  • the group 8 metal is preferably cobalt or nickel.
  • the content of the Group 8 metal is 1 to 15% by mass, and preferably 3 to 8% by mass in terms of oxide on a catalyst basis. .
  • the amount is less than 1% by mass, the active sites belonging to the Group 8 metal cannot be sufficiently obtained.
  • the amount exceeds 15% by mass the Group 8 metal compound is aggregated in the step of containing (supporting) the Group 8 metal, In addition to the poor dispersibility of group metals, inert cobalt, nickel species Co 9 S 8 species, Nia S 2 precursors C O O species, N i O species, etc. However, it is considered that Co spinel species, Ni spinel species and the like incorporated in the lattice of the carrier are generated, and not only does the catalytic ability not improve, but rather the catalytic ability decreases.
  • the optimum mass ratio of the Group 8 metal to the Group 6 metal is preferably, in terms of oxide, [Group 8 metal] Z [Group 8 metal + Group 6 metal] The value of about 0.:! ⁇ 0.25.
  • this value is less than about 0.1, the formation of CoMo S phase, Ni Mo S phase, etc., which are considered active sites for desulfurization, is suppressed, and the degree of improvement in desulfurization activity does not increase so much.
  • the generation of the inactive cobalt and nickel species tends to be suppressed, and the catalyst activity tends to be suppressed.
  • the content of phosphorus is a catalyst basis, from 0.8 to 8% by weight, preferably from 1.5 to 6 mass 0/0, more preferably 2-5 wt 0/0.
  • the amount is less than 0.8% by mass, since the group 6 metal cannot form a hot polyacid on the surface of the catalyst, highly dispersed MoS 2 is not formed in the pre-sulfurization step, and the desulfurization active point described above is sufficient. It is presumed that it cannot be placed in minutes.
  • it is preferably 1.5% by mass or more.
  • the Group 6 metal sufficiently forms a heteropolyacid on the catalyst surface, so that the above high-quality desulfurization active sites are formed in the presulfurization step, but excess phosphorus is poisoned. It is presumed to be the main cause of activity reduction because it covers desulfurization active sites as a substance.
  • the carbon content is 2 to 14% by mass, preferably 2 to 10% by mass, and more preferably 2 to 4% by mass, based on the catalyst.
  • This carbon is derived from an organic acid, preferably citric acid. If it is less than 2% by mass, the Group 8 metal does not sufficiently form a complex compound with the organic acid on the catalyst surface. In the process, the uncomplexed Group 8 metal is sulfurized prior to the sulfuration of the Group 6 metal, so that the desulfurization active sites (CoMo S phase, NiMo S phase, etc.) are not sufficiently formed, and It is presumed that Co 9 S 8 species and Ni 3 S 2 species, which are cobalt and nickel species, and Co spinel species and Ni subinell species incorporated in the lattice of the carrier are formed.
  • the group 8 metal can sufficiently form a complex compound with the organic acid on the catalyst surface, but even the group 6 metal forms a complex compound with the organic acid, and the excess The carbon derived from the organic acid also remains on the catalyst surface.
  • the catalyst of the present invention needs to have the above composition and have the following specific surface area, pore volume, and average pore diameter: .
  • the specific surface area (specific surface area measured by the nitrogen adsorption method (BET method)) is about 220 to 300 m 2 / g, preferably about 240 to 28 Om 2 / g.
  • group 6 metals heteropolyacids coordinating with phosphoric acid
  • group 8 metals organic acids coordinating with organic acids
  • the complex is not sufficiently dispersed due to its bulkiness.
  • it is difficult to precisely control the formation of the active sites even if the sulfurating treatment is performed, and the catalyst becomes a catalyst with low desulfurization activity.
  • it is larger than about 300 m 2 Zg, the pore diameter becomes extremely small, so the catalyst pore diameter also becomes small, and the diffusion of sulfur compounds into the catalyst pores during hydrogenation becomes insufficient.
  • the desulfurization activity decreases.
  • the pore volume measured by the mercury intrusion method is about 0.35 to 0.6 mlZg, preferably about 0.36 to 0.55 ml / g. If it is less than about 0.35 m 1 / g, during hydrogenation, the diffusion of sulfur compounds in the pores of the catalyst will be insufficient, resulting in insufficient desulfurization activity. The specific surface area becomes extremely small, the dispersibility of the active metal decreases, and the catalyst has low desulfurization activity.
  • the average pore diameter in the pore distribution measured by the mercury intrusion method is about 65-95A, preferably about 70-95A. If the pressure is less than about 65A, the reactants do not easily diffuse into the pores, and the desulfurization reaction does not proceed efficiently. If the pressure exceeds about 95A, the diffusivity in the pores is good, but the surface area in the pores decreases Therefore, the effective specific surface area of the catalyst is reduced, and the activity is reduced.
  • the pore size distribution of the catalyst that is, the proportion of pores having a pore diameter of about 15 A, is about 75%. Above, preferably about 80% or more. Moreover, the pore distribution is preferably monomodal. If the pore size distribution of the catalyst is not steep, the pores not involved in the activity will increase and the desulfurization activity will decrease.
  • the catalyst of the present invention preferably has an average number of layers of molybdenum disulfide of 2.5 to 5 when observed by a transmission electron microscope after the sulfuration treatment.
  • this layer of molybdenum disulfide is formed on the inorganic oxide support, plays a role of increasing the contact area of the catalyst, and has active points such as CoMo S phase and Ni Mo S phase in the layer.
  • active points such as CoMo S phase and Ni Mo S phase in the layer.
  • the type I ratio of the low-activity CoMo S phase and NiMo S phase was increased, and high activity was not exhibited.
  • the active CoMo S phase or NiMo S phase type II is formed, but the absolute number of active sites is reduced, so that the catalyst does not exhibit high activity.
  • the average longitudinal force of the molybdenum disulfide layer in the in-plane direction when observed with a transmission electron microscope is l nm to 3.5 nm, preferably 2 to 3 nm.
  • the molybdenum disulfide molecule exists only as a single molecule, so that cobalt and nickel cannot form a five-coordinate sulfur structure of the star-air viramid type, and the active site CoMo S phase Or NiMoS phase. If it is larger than 3.5 nm, even if the average value of the number of layers is 2.5 to 5, the molybdenum disulfide crystal is large, so the absolute number of edges decreases, and the active point, CoMoS phase And the number of NiMoS phases cannot be secured sufficiently.
  • a compound comprising at least one of the above-mentioned Group 6 metals, a compound containing at least one of the above-mentioned Group 8 metals, an organic acid, and phosphorus
  • a solution containing acid, Group 6 metal, 8 The method is carried out by supporting the group metal, phosphorus and carbon so as to have the above-mentioned contents, followed by drying.
  • an inorganic oxide carrier is impregnated with a solution containing these compounds and the like. And drying.
  • Examples of the compound containing a Group 6 metal used in the above impregnating solution include molybdenum trioxide, molybdophosphoric acid, ammonium molybdate, molybdic acid, and the like, and preferably molybdenum trioxide and molybdolinic acid.
  • the amount of these compounds to be added to the above impregnating solution is such that the obtained catalyst contains a Group 6 metal within the above range.
  • Examples of the compound containing a Group 8 metal include cobalt carbonate, nickel carbonate, cobalt tartrate compound, nickel citrate compound, cobalt nitrate hexahydrate, nickel nitrate hexahydrate, and the like.
  • Particularly preferred are cobalt citrate compounds and nickel citrate compounds whose decomposition rates are lower than those of cobalt carbonate and nickel carbonate.
  • Examples of the ecquenate include nickel nickel citrate (Ni 3 (C 6 H 5 0 7 ) 2 ), hydrogen nickel (N i HC 6 H 5 ⁇ 7), Kuen acid Nikkeruokishi salt (N i 3 (C 6 H 5 0 7) 2 ⁇ N i O) and the like.
  • a method for producing these citrate compounds of cobalt and nickel is obtained, for example, by dissolving cobalt carbonate in an aqueous solution of citrate in the case of cobalt.
  • This The water of the citrate compound obtained by such a production method may be used as it is in the catalyst preparation without removing it.
  • the amount of these compounds to be added to the impregnation solution is set so that the obtained catalyst contains the Group 8 metal within the above-mentioned range.
  • Organic acids include citric acid monohydrate, citric anhydride, isocunic acid, malic acid, tartaric acid, oxalic acid, succinic acid, daltaric acid, adipic acid, benzoic acid, phthalic acid, isophthalic acid, salicylic acid, malonic acid And the like, and preferably citric acid monohydrate. It is important that these organic acids use compounds that are substantially free of sulfur.
  • citrate When citrate is used as the organic acid, citrate may be used alone, or a citrate compound with cobalt or nickel (group 8 metal) described above may be used.
  • the amount of the organic acid added is such that the amount of carbon remaining in the obtained catalyst is the same as that of the above-mentioned carbon content. It is suitable that the acid Z group metal is set to 0.2 to 1.2, preferably 0.6 to 1.0. If the molar ratio is less than 0.2, the active sites attributed to the Group 8 metal may not be sufficiently obtained. If the molar ratio exceeds 1.2, the impregnating liquid has a high viscosity, so that the supporting step requires time. It is possible that the active metal is not impregnated into the inside of the carrier pellet, and that the dispersion state of the active metal is deteriorated.
  • the molar ratio of the organic acid to the total amount of the group 6 metal and the group 8 metal is such that the organic acid Z [group 6 metal + group 8 metal] is 0.35 or less, preferably 0.28. Below, it is more preferable to set it to 0.26 or less. If it exceeds 0.35, excess organic acid that cannot be complexed with the metal remains on the catalyst surface, and the organic acid remaining on the catalyst surface may flow out together with the feed oil in the sulfurization process, which is not preferable.
  • the phosphoric acid examples include various phosphoric acids, specifically, orthophosphoric acid, metaphosphoric acid, pyrrolic acid, triphosphoric acid, tetraphosphoric acid, polyphosphoric acid, and the like, and orthophosphoric acid is particularly preferable.
  • the phosphoric acid molybdophosphoric acid, which is a compound with a Group 6 metal, can also be used. In this case, if the obtained catalyst does not contain phosphorus at the above content, phosphoric acid is further added.
  • an acid [nitric acid, organic acid (cunic acid, lingoic acid, tartaric acid, etc.) may be added together with these compounds. )] May be used.
  • an organic acid is used, and when an organic acid is used, carbon obtained by the organic acid may remain in the obtained catalyst. It is important that the amount be within the above range.
  • the solvent used to dissolve the above components is water. .
  • the amount of the solvent used is too small, the carrier cannot be sufficiently impregnated. If the amount is too large, the dissolved active metal does not impregnate on the carrier and adheres to the edge of the impregnation solution container. Since the desired amount of the carrier cannot be obtained, the amount is 50 to 90 g, preferably 60 to 85 g, per 100 g of the carrier.
  • the above components are dissolved in the above solvent to prepare an impregnation solution.
  • the temperature at this time may be more than 0 ° C and 10 ° C or less, and if the temperature is within this range, the above solvent is added to the above solvent.
  • Each component can be dissolved well.
  • the pH of the impregnating solution is preferably less than 5. If it is more than 5, hydroxyl ions increase, the coordination ability between the organic acid and the Group 8 metal is weakened, and the complex formation of the Group 8 metal is suppressed. As a result, the desulfurization active site (CoMoS phase , N i M O S phase) cannot be increased significantly.
  • the impregnating solution thus prepared is impregnated with the above-mentioned inorganic oxide carrier, and the above-mentioned components in these solutions are supported on the above-mentioned inorganic oxide carrier.
  • the impregnation temperature is preferably higher than 0 ° C and lower than 100 ° C, more preferably 10 to 50 ° C, and still more preferably. Is 15 to 30 ° C, and the impregnation time is preferably 15 minutes to 3 hours, more preferably 20 minutes to 2 hours, and still more preferably 30 minutes to 1 hour.
  • the drying when the drying is performed in a vacuum, it is preferable that the drying be performed within the above-mentioned temperature range in terms of a pressure of 76 OmmHg.
  • the range of the pressure during drying is 300 to 900 mmHg, preferably 700 to 850 mmHg, more preferably 730 to 800 mmHg, and further preferably atmospheric pressure. If the drying pressure is lower than 300 mm Hg, the boiling point will increase, and the organic acid complexed with the metal will be easily released, and the organic acid that is considered to be complexed with the metal will be released from the catalyst surface.
  • the shape of the catalyst is not particularly limited, and various shapes usually used for this type of catalyst, for example, a columnar shape, a three-leaf shape, a four-leaf shape and the like are adopted.
  • the size of the catalyst is usually about 1 ⁇ 2mm in diameter, about 2 ⁇ 5mm in length.
  • the mechanical strength of the catalyst is preferably about 21 bs / mm or more in side crush strength (SCS). If the value of SCS is smaller than this, the catalyst charged in the reactor is destroyed, and a differential pressure is generated in the reactor, making it impossible to continue the hydrotreating operation.
  • SCS side crush strength
  • the close packed bulk density (CBD) of the catalyst is preferably about 0.6 to 1.2 g / m1.
  • the distribution state of the active metal in the catalyst is preferably a uniform type in which the active metal is uniformly distributed in the catalyst.
  • Hydrotreating process of the present invention a hydrogen partial pressure of about 3 to 8 MP a, at about 3 0 0 to 4 2 0 ° C, and a liquid hourly space velocity from about 0. 3 of 5 hr 1 condition, or more catalysts and sulfur
  • This is a method for reducing sulfur compounds, including hard-to-desulfurize sulfur compounds, in a gas oil fraction by contacting with a gas oil fraction containing compounds.
  • the product oil obtained by the process of the present invention can have lower sulfur and nitrogen content than by the prior art.
  • a fixed bed, a moving bed, or a fluidized bed type catalyst layer of the catalyst of the present invention is formed in a reactor. If the hydrogenation reaction is carried out under the above conditions,
  • a fixed bed catalyst layer is formed in the reactor, feedstock is introduced into the top of the reactor, the fixed bed is passed from bottom to top, and the product flows out of the top of the reactor Things.
  • a single-stage hydrotreating method in which the catalyst of the present invention is charged into a single reactor and a multi-stage continuous hydrotreatment method in which the catalyst is charged into several reactors may be used. You may.
  • the catalyst of the present invention is activated by sulfidation in a reactor before use (that is, prior to performing the hydrotreating method of the present invention).
  • This sulfurization treatment Petroleum distillates containing sulfur compounds, dimethyl disulphide, carbon disulfide, etc. under a hydrogen atmosphere of about 200 to 400 ° C, preferably about 250 to 350 ° C, and a normal or higher hydrogen partial pressure This is performed by adding a sulfurizing agent or hydrogen sulfide.
  • the catalyst of the present invention forms a molybdenum disulfide layer having an average number of layers of 2.5 to 5 and an average plane direction length of 1 to 3.5 nm, as described above. Active sites of highly active CoMoS phase and NiMoS phase are formed at the edge of the rim of molybdenum sulfide.
  • the above zeolite-alumina composite carrier (30.0 g) was charged into an eggplant-shaped flask, and the entire amount of the above impregnating solution was added thereto by a pipette, followed by immersion at about 25 ° C for 3 hours.
  • Example 2 Into an eggplant type flask, 30.0 g of the same zeolite-alumina composite carrier as in Example 2 was charged, and the entire amount of the above impregnating solution was added thereto by a pipette. (: Immersed for 3 hours.
  • Example 2 The entire amount of the same impregnating solution as in Example 1 was added to this composite carrier with a pipette, and immersed at about 25 ° C for 3 hours.
  • the mixture is calcined at 600 for 2 hours and zeolite-alumina composite support of columnar molded product having a diameter of 1/16 inch (mass ratio of zeolite to alumina: 5 to 95, pore volume: 0.81 m 1 / g, a specific surface area of 383 m 2 / g and an average pore diameter of 81 A) were obtained.
  • a solution for impregnation was prepared by dissolving 3.31 g of conocarbonate, 1.41 g of molybdophosphoric acid, and 1.17 g of orthophosphoric acid in 21.6 of ion-exchanged water.
  • .gamma.-alumina support pore volume 0. 69 ml / g, specific surface area 364 ⁇ 2 ⁇ , average pore diameter 64 A
  • the whole amount was added with a pipe and immersed at about 25 for 1 hour.
  • ⁇ -Alumina carrier (pore volume 0.61 mlZg, specific surface area 240 m 2 / g, average pore diameter 72 A) 30.
  • O g is put into an eggplant-shaped flask, and the total amount of the above impregnating solution is put there. Was added by a pipe and immersed at about 25 for 1 hour. At this time, an excess impregnating solution that could not fit into the pores of the carrier was present in the eggplant-shaped flask.
  • Example 2 Into an eggplant-shaped flask, 30.0 g of the same zeolite-alumina composite carrier as in Example 2 was added, and the entire amount of the above impregnating solution was added thereto by a pipe, and immersed at about 25 for 3 hours. did.
  • Example 2 Into an eggplant-shaped flask, 30.0 g of the same zeolite-alumina composite carrier as in Example 2 was charged, and the entire amount of the above impregnating solution was added thereto with a pipette, followed by immersion at about 25 ° C for 3 hours. . Thereafter, it was air-dried in a nitrogen stream and dried in a Matsufur furnace in an air stream at atmospheric pressure at 120 ° C for about 16 hours to obtain a catalyst f.
  • Table 1 shows the elemental analysis values and physical properties of the catalysts obtained in the above Examples and Comparative Examples. The method and analytical equipment used for the analysis of the catalyst are shown below.
  • a surface area measurement device (Bellsoap 28) manufactured by Nippon Bell Co., Ltd. was used.
  • the measurement was performed on a sample at 400 ° C for 1 hour in a vacuum atmosphere after removing volatile components.
  • the sample was set on the measuring section of the TEM and measured at an accelerating voltage of 200 kV.
  • the direct magnification was 200,000, and 5 visual fields were measured. 6)
  • the photograph was stretched to 2 million times (size 16.8 cm x 16.8 cm), and the number of layers of molybdenum disulfide visible on the photograph and the length of the layer in the plane direction were measured.
  • the measurement of carbon was carried out using a Yanaco CHN Coder MT-5 (manufactured by Yanagimoto Seisakusho).
  • the measuring method was as follows.
  • the catalyst is powdered in an agate mortar.
  • the catalyst was filled in a high-pressure flow reactor to form a fixed-bed catalyst layer, which was pretreated under the following conditions.
  • Hydrogen and feedstock (Liquid space velocity 1.5 hr r-Hydrogen oil ratio 200m 3 (no rmal l) Zk 1) Temperature Introduce hydrogen and feedstock at room temperature of about 22 ° C, and heat up at 20 hr, 300 ° Maintain at 24 ° C for 24 hr, then raise the temperature to 350 ° C at 20 ° C / hr.
  • Oil type Middle eastern straight gas oil is Oil type Middle eastern straight gas oil
  • the ratio of the sulfur content that was lost from the feedstock was defined as the desulfurization rate.
  • Desulfurization rate (%) [(S f — S p) / S f] X 100
  • Fig. 1 shows a transmission electron micrograph of catalyst B.
  • the black line is a layer of molybdenum disulfide.
  • the desulfurization activity at ananiline point of 82 ° C was analyzed by the following method.
  • the reactor was operated at 360 ° C, and after 5 days had passed, the produced oil was collected and its properties [desulfurization rate (HDS) (%), desulfurization reaction rate (Ks), specific activity (%)]
  • the analysis was performed in the same manner as in the above [Hydrotreatment of straight-run gas oil].
  • the decomposition activity was analyzed by the following method.
  • the hydrogenolysis rate of the catalyst is measured by gas chromatography according to ASTM D 2887.
  • the constant of the reaction rate equation for obtaining the first-order reaction order with respect to the fraction is defined as the decomposition reaction rate constant (Kc).
  • the horizontal axis indicates the number of days of oil passing (days)
  • the vertical axis indicates the temperature (° C.) required for the sulfur concentration of the produced oil to reach 50 mass ppm.
  • the catalyst D of the present invention Approximately 345 ° C is sufficient even if oil is pumped for about two months, whereas the comparative catalyst a requires a temperature of 360 ° C or more already on the first day of oil pumping, Two months later, it turns out that a high temperature exceeding 365 ° C is required.
  • the catalyst according to the present invention can be used for the desulfurization reaction of gas oil in the ultra-deep desulfurization region under the same conditions of hydrogen partial pressure and reaction temperature as in the conventional gas oil hydrotreatment. It shows that it has extremely excellent activity and catalyst life for denitrification. Industrial applicability
  • a light oil base material having a low sulfur content and a low nitrogen content can be easily supplied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

明 細 書 軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法 技術分野
本発明は、 軽油の水素化処理触媒及びその製造方法と、 この触媒を用いた軽 油の水素化処理方法とに関する。 詳しくは、 軽油を水素化処理する際に、 軽油 中の硫黄分及び窒素分を従来のこの種の触媒を使用する場合よりも低減するこ とができる優れた活性を有する触媒及びその製造方法と、 この触媒を用いる水 素化処理方法とに関する。 背景技術
近年、 大気環境改善のために、 軽油の品質規制値が世界的に厳しくなる傾向 にある。 特に軽油中の硫黄分は、 排ガス対策として期待されている酸化触媒、 窒素酸化物 (N O x ) 還元触媒、 連続再生式ディーゼル排気微粒子除去フィル ター等の後処理装置の耐久性に影響を及ぼす懸念があるため、 軽油の低硫黄化 が要請されている。
このような状況下で、 軽油中の硫黄分を大幅に除去する超深度脱硫技術の開 発が重要視されつつある。 軽油中の硫黄分の低減化技術として、 通常、 水素化 脱硫の運転条件、 例えば、 反応温度、 液空間速度等を苛酷にすることが考えら れる。
しかし、 反応温度を上げると、 触媒上に炭素質が析出して触媒の活性が急速 に低下し、 また液空間速度を下げると、 脱硫能は向上するものの、 精製処理能 力が低下するため設備の規模を拡張する必要が生じる。
従って、 運転条件を苛酷にしないで、 軽油の超深度脱硫を達成し得る最も良 い方法は、 優れた脱硫活性を有する触媒を開発することである。 近年、 活性金属の種類、 活性金属の含浸方法、 触媒担体の改良、 触媒の細孔 構造制御、 活性化法等について多くの検討が多方面において進められており、 新規深度脱硫触媒の開発成果が報告されている。
例えば、 特開昭 6 1 - 1 1 4 7 3 7号公報には、 アルミナやシリカ担体に、 錯化剤として含窒素配位子を有する有機化合物と、 活性金属とからなる溶液を 含浸し、 2 0 0 °C以下で乾燥する方法が開示されている。
また、 日本特許第 2 9 0 0 7 7 1号公報には、 Ί一アルミナ担体に、 周期律 表第 8族金属 (以下、 単に 「8族金属」 とも記す) 化合物と周期律表第 6族金 属 (以下、 単に 「6族金属」 とも記す) 化合物と、 リン酸を含む含浸溶液に、 さらにジオールまたはエーテルを添加して得られた含浸溶液を含浸し、 これを 2 0 0 °C以下で乾燥させることを特徴とすることが開示されている。
また、 日本特許第 2 8 3 2 0 3 3号公報には、 本発明と同様に担体に 6族金 属化合物、 リン成分、 8族金属化合物、 クェン酸からなる溶液を含浸するが、 その後乾燥ではなく、 焼成を行う発明が開示されており、 特開平 4— 1 5 6 9 4 8号公報には、 6族金属化合物、 リン成分、 8族金属化合物を担持した担体 に、 有機酸を特定量で含む溶液を含浸し、 2 0 0 °C以下の温度で乾燥する方法 が開示されている。
更に、 特開平 4 _ 2 4 4 2 3 8号公報には、 酸化物担体に、 6族金属化合物、 8族金属化合物、 リン酸からなる溶液を担持し、 2 0 0 °C以下で乾燥させた触 媒を得、 それに特定の化学式で示される有機酸の溶液を担持し、 2 0 0 °C以下 で乾燥する方法が開示されている。
一方、 有機酸を二度用いて含浸させる触媒の製造方法についても提案されて いる。
例えば、 特開平 6— 3 3 9 6 3 5号公報には、 酸化物担体に、 6族金属化合 物、 8族金属化合物、 有機酸、 リン酸からなる溶液を含浸し、 2 0 0 °C以下で 乾燥させた触媒を得、 さらに有機酸の溶液を含浸し、 2 0 0 °C以下で乾燥する 方法が開示されている。 カロえて、 特開平 6— 31 1 76号公報では、 8族金属化合物と、 6族金属の ヘテロポリ酸を無機酸化物支持体に含浸させ、 乾燥させて触媒を製造する技術 を開示している。
また、 特開平 1一 228552号公報には、 酸化物担体に、 モリブデン、 タ ングステン、 8族金属化合物、 メルカプトカルボン酸、 リン酸からなる溶液を 含浸させる触媒の製造方法が開示されている。
この方法は、 メルカプトカルボン酸と、 モリブデン、 タングステン、 8族金 属化合物との配位化合物を形成させて、 触媒担体上に高分散させることを主目 的としている。
し力 し、 この方法では、 モリブデン、 タングステンが担体上で高分散化され てしまい、 後述する本発明のような二硫化モリブデンの積層化が困難となり、 脱硫活性点として特に有効な C oMo S相や N iMo S相のタイプ I I (ニ硫 化モリブデンの 2層目以上のェッジ部に存在する C o , N i活性点を指し、 タ ィプ Iは二硫化モリブデンの 1層目のエツジ部に存在する C o, N i活性点を 指し、 タイプ I Iよりも活性が低い) の形成はないと推測される。
しかも、 メルカプトカルボン酸は、 硫黄を含んでおり、 8族金属 (C o, N i ) の近傍に存在したり、 配位化を形成したりすると、 脱硫活性点 (CoMo S相, N iMo S相) とならずに、 不活性な Co9S8種や N i 3S2種となる可 能性がある。
そして、 以上の触媒の製造方法は工程が複雑であったり、 また得られる触媒 が軽油の超深度脱硫を行うのに適さないもの、 あるいは超深度脱硫域での効率 の低いものや触媒寿命の短いもの等もある。 このようなことから、 現在、 より 簡便な方法で、 しかも運転条件を苛酷にせずに軽油の超深度脱硫を実現するこ とができる従来よりも脱硫活性の高い、 かつ触媒寿命の長い触媒を得る技術の 開発が要求されている。 発明の開示
本発明の目的は、 簡便な手段で、 かつ苛酷な運転条件を必要とせずに、 軽油 中の硫黄分を超深度脱硫することができ、 同時に窒素分を減少させることがで きる水素化処理触媒及びその製造方法を提供することである。
また、 本発明の他の目的は、 この触媒を使用して軽油留分を高効率で水素化 処理する方法を提供することである。
本発明は、 無機酸化物担体上に触媒基準、 酸化物換算で、 周期律表第 6族金 属から選ばれた少なくとも 1種を 10〜30質量%、 周期律表第 8族金属から 選ばれた少なくとも 1種を 1〜15質量。/。、 リンを 1. 5〜 6質量%、 炭素を 2〜 14質量%含み、 比表面積が 220〜300m2/g、 細孔容積が 0. 3 5〜0. 6ml/g、 平均細孔直径が約 65〜95 Aであることを特徴とする 軽油の水素化処理触媒を提供する。
また、 本発明は、 比表面積 270〜500m2/g、 細孔容積 0. 55〜0. 9 m 1 / g、 平均細孔直径 60〜 1 20 Aである無機酸化物担体上に、 周期律 表第 8族金属から選ばれた少なくとも 1種を含む化合物、 周期律表第 6族金属 から選ばれた少なくとも 1種を含む化合物、 有機酸及びリン酸を含有する溶液 を用い、 触媒基準、 酸化物換算で周期律第 6族金属を 10〜 30質量%、 周期 律表第 8族金属を 1〜15質量。 /0、 リンを 1. 5〜6質量%、 炭素を 2〜14 質量%となるように担持させ、 200°C以下で乾燥させることを特徴とする上 記触媒の製造方法を提供する。
さらに、 本発明は、 上記触媒の存在下、 水素分圧 3〜8MP a、 温度 300 〜 420 °C、 液空間速度 0. 3〜 5 h r - 1の条件で、 軽油留分の接触反応を行 うことを特徴とする軽油の水素化処理方法を提供する。 図面の簡単な説明
第 1図は、 本発明の実施例の触媒 Bの透過型電子顕微鏡写真である。 第 2図は、 本発明の実施例の触媒 Dと比較触媒 aとの触媒寿命試験結果を示 すグラフである。 発明を実施するための最良の形態
本発明者らは、 上記目的を達成するために検討を行ったところ、 無機酸化物 担体に、 6族金属化合物、 8族金属化合物、 有機酸およびリン酸を含む溶液を 含浸させて、 これらの成分の所定量を担持し、 2 0 0 °C以下の温度で乾燥する ことによって、 不活性なコパルト、 ニッケル種を形成せずに高活性な脱硫活性 点 (C o M o S相、 N i M o S相等) を精密に制御でき、 これらの結果として、 脱硫反応及ぴ脱窒素反応が効率的に進行するため、 反応条件を苛酷にせずに超 深度脱硫反応を容易に達成することができる高性能脱硫触媒を得ることができ るとの知見を得た。
本発明の対象油は、 例えば、 直留軽油、 接触分解軽油、 熱分解軽油、 水素化 処理軽油、 脱硫処理軽油、 減圧蒸留軽油 (V G O ) 等の軽油留分が適している。 これら原料油の代表的な性状例として、 沸点範囲が 1 5 0〜4 5 0 °C、 硫黄 分が 5質量。 /0以下のものが挙げられる。
本発明の触媒に用いる無機酸化物担体は、 アルミナを単独で用いることもで きるが、 脱硫活性をより向上させるためにはアルミナを主成分とする複合酸化 物を用いることが好ましい。
アルミナは、 a一アルミナ、 β一アルミナ、 y一アルミナ、 δ—アルミナ、 アルミナ水和物等の種々のアルミナを使用することができるが、 多孔質で高比 表面積であるアルミナが好ましく、 中でも y—アルミナが適している。 アルミ ナの純度は、 約 9 8質量%以上、 好ましくは約 9 9質量。 /0以上のものが適して いる。
アルミナ中の不純物としては、 S 0 4 2一、 C 1 -、 F e 23、 N a 2 0等が挙 げられるが、 これらの不純物はできるだけ少ないことが望ましく、 不純物全量 で 2質量%以下、 好ましくは 1質量%以下で、 成分毎では S〇4 2_く 1. 5質 量0 /0、 C I—、 F e 23、 Na 20く 0. 1質量0 /0であることが好ましい。
アルミナに複合化させる酸ィヒ物成分としては、 ゼォライト、 ポリア、 シリカ、 及びジルコニァから選ばれる一種以上が好ましい。 これらを複合化させること により、 二硫化モリブデンの積層化が有利になる。
このうちゼォライトは、 コールカウンタ一法 (1 w t %N a C 1水溶液、 ァ パーチヤー 30 ΠΙ、 超音波処理 3分) での測定による平均粒子径が約 2. 5 〜6 i m、 好ましくは約 3〜5 μΐη、 より好ましくは約 3〜 4 μ mのものであ る。 また、 このゼォライトは、 粒子径 6 μηι以下のものがゼォライト全粒子に 対して占める割合が、 約 70〜 98 %、 好ましくは約 75〜 98 %、 より好ま しくは約 80〜 98%のものである。
ゼォライトのこのような特性は、 難脱硫性物質の細孔内拡散を容易にするた めに細孔直径を精密に制御する上で好ましく、 例えば、 平均粒子径が大きすぎ たり、 大きな粒子径の含有量が多かつたりすると、 複合酸化物担体を調製する 過程で、 アルミナ水和物 (アルミナ前駆体) とゼオライトの吸着水量や結晶性 の違いから、 加熱焼成時のアルミナ水和物 (アルミナ前駆体) とゼオライトの 収縮率が異なり、 複合酸化物担体の細孔として比較的大きなメゾあるいはマク 口ポア一が生じる傾向がある。 また、 これらの大きな細孔は、 表面積を低下さ せるばかりでなく、 残油を処理するような場合には触媒毒となるメタル成分の 内部拡散を容易ならしめ、 延いては脱硫、 脱窒素及び分解活性を低下させる傾 向を生じさせる。
本発明で、 アルミナに複合化させる好ましいゼォライトとしては、 フォージ ャサイト X型ゼォライト、 フォージャサイト Υ型ゼォライト、 ]3ゼォライト、 モルデナィト型ゼォライト、 Z SM系ゼオライト (Z SM-4, 5, 8, 1 1 ,
12, 20, 21, 23, 34, 35, 38, 46等がある) 、 MCM— 41, MCM- 22, MCM-48, S SZ— 33, UTD— 1, C I T—5, VP
1—5, TS- 1, TS— 2等が使用でき、 特に Y型ゼオライ ト、 安定化 Yゼ オライト、 ;8ゼォライトが好ましい。 また、 ゼォライトは、 プロトン型が好ま しい。
上記のポリア、 シリカ、 ジルコユアは、 一般に、 この種の触媒の担体成分と して使用されるものを使用することができる。
上記のゼォライト、 ポリア、 シリカ、 及ぴジルコニァは、 それぞれ単独で、 あるいは 2種以上を組合せて使用することができる。
これらの成分の配合量は、 特に制限されないが、 複合酸化物担体中、 アルミ ナが約 80質量%より多く 99. 5質量%以下に対し、 約 0. 5質量%以上 2 0質量%未満であり、 好ましくはアルミナが約 85〜 99. 5質量%に対し、 約 0. 5〜15質量%でぁり、 より好ましくはアルミナが約 90〜99. 5質 量%に対し、 約 0. 5〜10質量%でぁる。
これらの成分は、 少なすぎても多すぎても細孔直径の制御はしづらくなり、 また少なすぎるとプレンステツド酸点やルイス酸点の付与が不十分となり、 多 すぎると 6族金属、 特にモリブデンが高分散化しにくい傾向になる。
本発明における無機酸化物担体は、 約 580〜 700 °Cで、 約 1. 5〜 3時 間焼成して調製される。
本発明の触媒は、 後述するように、 無機酸化物担体に活性成分を担持させた 後は、 200°C以下で乾燥するだけで調製するため、 後述する触媒の機械的特 性 (側面破壌強度ゃ最密充填かさ密度等) は無機酸化物担体の焼成で得ること となり、 約 580°C未満で約 1. 5時間未満の焼成では、 十分な機械的強度を 得ることができず、 約 700 °Cを超える高温度下で約 3時間を超える長時間の 焼成を行っても、 この効果が飽和するばかりでなく、 焼き締めにより、 無機酸 化物担体の比表面積、 細孔容積、 平均細孔径と言った特性が却って低下してし まう。
無機酸化物担体の比表面積、 細孔容積、 平均細孔直径は、 炭化水素油に対す る水素化脱硫活性の高い触媒にするために、 比表面積が 270〜50 Om2/ g、 好ましくは 300〜450m2Zg、 細孔容積が 0. 55〜0. 9mlZ g、 好ましくは 0. 65〜0. 8m 1 /g、 平均細孔径が 60〜 120 A、 好 ましくは 65〜9 OAである必要がある。
この理由は次の通りである。
含浸溶液中で 6族金属と 8族金属は錯体 ( 6族金属はリン酸と配位してへテ 口ポリ酸、 8族金属は有機酸と配位して有機金属錯体) を形成していると考え られるため、 担体の比表面積が 27
Figure imgf000010_0001
未満では、 含浸の際、 錯体の嵩 高さのために金属の高分散化が困難となり、 その結果、 得られる触媒を硫化処 理しても、 上記の活性点 (CoMo S相、 N iMo S相等) 形成の精密な制御 が困難になると推測される。
比表面積が 500m2/gより大きいと、 細孔直径が極端に小さくなるため、 触媒の細孔直径も小さくなる。 触媒の細孔直径が小さいと、 硫黄化合物の触媒 細孔内への拡散が不十分となり、 脱硫活性が低下する。
細孔容積が 0. 55 m 1 / g未満では、 通常の含浸法で触媒を調製する場合、 細孔容積内に入り込む溶媒が少量となる。 溶媒が少量であると、 活性金属化合 物の溶解性が悪くなり、 金属の分散性が低下し、 低活性の触媒となる。 活性金 属化合物の溶解性を上げるためには、 硝酸等の酸を多量に加える方法がある力 余り加えすぎると担体の低表面積化が起こり、 脱硫性能低下の主原因となる。 細孔容積が 0. 9ml/gより大きいと、 比表面積が極端に小さくなつて、 活性金属の分散性が悪くなり、 脱硫活性の低い触媒となる。
細孔直径が 6 OA未満では、 活性金属を担持した触媒の細孔直径も小さくな る。 触媒の細孔直径が小さいと、 硫黄化合物の触媒細孔内への拡散が不十分と なり、 脱硫活性が低下する。
細孔直径が 120Aより大きいと、 触媒の比表面積が小さくなる。 触媒の比 表面積が小さいと、 活性金属の分散性が悪くなり、 脱硫活性の低い触媒となる。 本発明の触媒に含有させる 6族金属は、 モリブデン、 タングステンが好まし く、 モリブデンが特に好ましい。 6族金属の含有量は、 触媒基準、 酸化物換算で、 10〜30質量%、 好まし くは 16〜 28質量%である。
10質量%未満では、 6族金属に起因する効果を発現させるには不十分であ り、 30質量。 /0を超えると、 6族金属の含浸 (担持) 工程で 6族金属化合物の 凝集が生じ、 6族金属の分散性が悪くなるばかり力 \ 効率的に分散する 6族金 属含有量の限度を超えたり、 触媒表面積が大幅に低下する等により、 触媒活性 の向上がみられない。
8族金属は、 コバルト、 ニッケルが好ましい。
8族金属の含有量は、 触媒基準、 酸化物換算で、 1〜15質量%、 好ましく は 3〜8質量%である。 .
1質量%未満では、 8族金属に帰属する活性点が十分に得られず、 1 5質 量%を超えると、 8族金属の含有 (担持) 工程で 8族金属化合物の凝集が生じ、 8族金属の分散性が悪くなることに加え、 不活性なコバルト、 ニッケル種であ る C o 9 S 8種、 N i a S 2種の前駆体である C o O種、 N i O種等や、 担体の格 子内に取り込まれた C oスピネル種、 N iスピネル種等が生成すると考えられ、 触媒能の向上がみられないばかりか、 却って触媒能が低下する。
8族金属、 6族金属の上記した含有量において、 8族金属と 6族金属の最適 質量比は、 好ましくは、 酸化物換算で、 [8族金属] Z[8族金属 +6族金属] の値で、 約 0. :!〜 0. 25である。
この値が約 0. 1未満では、 脱硫の活性点と考えられる CoMo S相、 N i Mo S相等の生成が抑制され、 脱硫活性向上の度合いがあまり高くならず、 約 0. 25より大きいと、 上記の不活性なコバルト、 ニッケル種 (Co9S8種、 N i 3S2種) の生成が助長され、 触媒活性向上を抑制する傾向がある。
リンの含有量は、 触媒基準で、 0. 8〜8質量%、 好ましくは 1. 5〜6質 量0 /0、 より好ましくは 2〜 5質量0 /0である。
0. 8質量%未満では、 触媒表面上で 6族金属がへテ口ポリ酸を形成できな いため、 予備硫化工程で高分散な Mo S2が形成せず、 上記の脱硫活性点を十 分に配置できないと推測される。 特に、 前述した予備硫化後の触媒に二硫化モ リブデンの層を、 平均積層数で 2. 5〜5となるように形成するためには、 1. 5質量%以上とすることが好ましい。
一方、 8質量%より多いと、 触媒表面上で 6族金属が十分にヘテロポリ酸を 形成するため、 予備硫化工程で高品質な上記の脱硫活性点が形成されるものの、 過剰なリンが被毒物質として脱硫活性点を被覆するため、 活性低下の主な原因 になると推測される。
炭素の含有量は、 触媒基準で、 2〜 14質量%、 好ましくは 2〜 10質量%、 より好ましくは 2〜 4質量%である。
この炭素は、 有機酸、 好ましくはクェン酸由来の炭素であって、 2質量%未 満では、 触媒表面上で 8族金属が有機酸と錯体化合物を十分に形成せず、 この 場合、 予備硫化工程において錯体化されていない 8族金属が 6族金属の硫化に 先立って硫化されることにより、 脱硫活性点 (C oMo S相、 N iMo S相 等) が十分に形成されず、 不活性なコバルト、 ニッケル種である C o9S8種、 N i 3 S 2種、 および担体の格子内に取り込まれた C oスピネル種、 N iスビネ ル種等が形成されると推測される。
14質量%より多いと、 触媒表面上で 8族金属が有機酸と十分に錯体化合物 を形成することができるが、 更に 6族金属までもが有機酸と錯体化合物を形成 してしまうし、 余剰の有機酸由来の炭素も触媒表面上に残る。
6族金属が有機酸と錯体化した場合は、 活性ィヒ (硫化) の際に、 6族金属の 硫化が 8族金属の硫化と同時に起こり、 脱硫活性点 (C oMo S相、 N iMo S相等) が効率的に形成されず、 延いては不活性なコバルト、 ニッケル種であ る C o9S8種、 N i 3S2種が形成されると推定される。
また、 過剰な炭素は、 触媒の被毒物質として硫化段階で脱硫活性点を被覆す るため、 活ナ生低下の原因となる。 本発明の触媒は、 軽油に対する水素化脱硫及び脱硫活性を高めるために、 上 記の組成を有すると共に、 その比表面積、 細孔容積及び平均細孔径が、 以下の 値であることが必要である。
比表面積 (窒素吸着法 (BET法) で測定した比表面積) は、 約 220〜 3 00m2/g、 好ましくは約 240〜28 Om2/gとする。
約 220m2/g未満では、 触媒表面上で、 錯体を形成していると考えられ る 6族金属 (リン酸と配位してヘテロポリ酸) と 8族金属 (有機酸と配位して 有機金属錯体) 力 錯体の嵩高さのために、 十分に高分散化しておらず、 その 結果、 硫化処理しても、 上記の活性点形成の精密制御が困難となって低脱硫活 性の触媒となり、 約 300m2Zgより大きいと、 細孔直径が極端に小さくな るため、 触媒の細孔直径も小さくなつて、 水素化処理の際、 硫黄化合物の触媒 細孔内への拡散が不十分となり、 脱硫活性が低下する。
水銀圧入法で測定した細孔容積は、 約 0. 35〜0. 6mlZg、 好ましく は約 0. 36〜0. 55ml/gとする。 約 0. 35 m 1 / g未満では、 水素 化処理の際、 硫黄化合物の触媒細孔内での拡散が不十分となって脱硫活性が不 十分となり、 約 0. 6mlZgより大きいと、 触媒の比表面積が極端に小さく なって、 活性金属の分散性が低下し、 低脱硫活性の触媒となる。
水銀圧入法で測定した細孔分布での平均細孔直径は、 約 65〜95A、 好ま しくは約 70〜95 Aとする。 約 65A未満では、 反応物質が細孔内に拡散し 難くなるため、 脱硫反応が効率的に進行せず、 約 95Aより大きいと、 細孔内 の拡散性は良いものの、 細孔内表面積が減少するため、 触媒の有効比表面積が 減少し、 活†生が低くなる。
また、 上記の細孔条件を満たす細孔の有効数を多くするために、 触媒の細孔 径分布、 すなわち平均細孔径士約 15 Aの細孔径を有する細孔の割合は、 約 7 5 %以上、 好ましくは約 80 %以上とする。 しかも、 細孔分布は、 モノモーダルであることが好ましい。 触媒の細孔径分 布がスティープなものでないと、 活性に関与しない細孔が増大し、 脱硫活性が 減少する。
また、 本発明の触媒は、 硫化処理した後に、 透過型電子顕微鏡で観察した場 合における二硫化モリブデンの層の積層数の平均値が 2. 5〜 5であるものが 好ましい。
すなわち、 この二硫化モリブデンの層は、 無機酸化物担体上に形成されて、 触媒の接触面積を大きくする役割をなすと共に、 該層内に C oMo S相、 N i Mo S相等の活性点が形成されるが、 積層数の平均値が 2. 5未満の触媒では、 低活性な C oMo S相や N i Mo S相のタイプ Iの割合が多くなって高活性を 発現せず、 5より多い触媒では、 髙活性な C oMo S相や N i Mo S相のタイ プ I Iは形成されるものの、 活性点の絶対数が少なくなるため、 やはり高活性 を発現しない。
更に、 透過型電子顕微鏡で観察した場合における二硫化モリブデンの層の面 方向の長さ力 平均値で l nm〜3. 5 nm、 好ましくは 2〜 3 n mであるも のが適している。
1 nmより小さいと、 二硫化モリブデン分子が単分子でしか存在しないため、 コバルトおよぴニッケルはスタエアビラミツド型の 5配位硫黄構造を形成でき ず、 活性点である C oMo S相や N i Mo S相となることができない。 3. 5 nmより大きいと、 たとえ積層数の平均値が 2. 5〜 5であっても二硫化モリ ブデン結晶が大きいため、 エッジ部分の絶対数が減少し、 活性点である CoM o S相や N i Mo S相の数を十分に確保することができない。
以上の特性を有する本発明の触媒を得るには、 以下に説明する本発明の方法 によることが好ましい。
すなわち、 前記した成分からなり、 前記した物性を有する無機酸化物担体に、 前記した 6族金属の少なくとも 1種を含む化合物、 前記した 8族金属の少なく とも 1種を含む化合物、 有機酸、 リン酸を含有する溶液を用い、 6族金属、 8 族金属、 リン、 炭素を上記した含有量となるように担持し、 乾燥する方法によ るが、 具体的には、 例えば、 無機酸化物担体を、 これらの化合物等を含有する 溶液に含浸し、 乾燥する方法により行う。
上記の含浸溶液中に使用する 6族金属を含む化合物としては、 三酸化モリブ デン、 モリブドリン酸、 モリプデン酸アンモニゥム、 モリブデン酸等が挙げら れ、 好ましくは三酸化モリブデン、 モリブドリン酸である。
これらの化合物の上記含浸溶液中への添加量は、 得られる触媒中に上記した 範囲内で 6族金属が含有される量とする。
8族金属を含む化合物としては、 炭酸コバルト、 炭酸ニッケル、 タエン酸コ バルト化合物、 クェン酸ニッケル化合物、 硝酸コバルト 6水和物、 硝酸ニッケ ル 6水和物等が挙げられ、 好ましくは炭酸コバルト、 炭酸ニッケル、 クェン酸 コバルト化合物、 クェン酸ニッケルィ匕合物である。 特に好ましくは、 炭酸コバ ルト、 炭酸ニッケルに比べて分解速度が遅いクェン酸コバルト化合物、 クェン 酸ニッケルィヒ合物である。
すなわち、 分解速度が速いと、 二硫化モリブデンの層とは別に、 コバルトや ニッケルが独自の層を形成してしまい、 高活性な C o Mo S相や N iMo S相 の形成が不十分となるのに対し、 分解速度が遅いと、 二硫化モリブデンのリム —エツジ部分に、 高活性なこれらの相を十分に形成することができる。
上記のクェン酸コバルトとしては、 クェン酸第一コバルト (C o 3 (C6H5 07) 2) 、 クェン酸水素コバルト (C oHC6H507) 、 クェン酸コバルトォ キシ塩 (C o 3 (C6H507) 2 · C o O) 等が挙げられ、 クェン酸エッケルと しては、 クェン酸第一ニッケル (N i 3 (C6H507) 2) 、 クェン酸水素ニッ ケル (N i HC6H57) 、 クェン酸ニッケルォキシ塩 (N i 3 (C6H507) 2 · N i O) 等が挙げられる。
これらコバルトとニッケルのクェン酸化合物の製法は、 例えば、 コバルトの 場合、 クェン酸の水溶液に炭酸コバルトを溶かすことにより得られる。 このよ うな製法で得られたクェン酸化合物の水分を、 除去しないで、 そのまま、 触媒 調製に用いてもかまわない。
これらの化合物の上記含浸溶液中への添加量は、 得られる触媒中に上記した 範囲内で 8族金属が含有される量とする。
有機酸としては、 クェン酸 1水和物、 無水クェン酸、 イソクェン酸、 リンゴ 酸、 酒石酸、 シユウ酸、 コハク酸、 ダルタル酸、 アジピン酸、 安息香酸、 フタ ル酸、 イソフタル酸、 サリチル酸、 マロン酸等が挙げられ、 好ましくはクェン 酸 1水和物である。 これらの有機酸は、 硫黄を実質的に含まない化合物を使用 することが重要である。
有機酸としてクェン酸を使用する場合は、 クェン酸単独でもよいし、 上記し たコバルトやニッケル (8族金属) とのクェン酸化合物であってもよい。
有機酸の添加量は、 得られる触媒中に前記の炭素含有量で炭素が残る量とす ることが重要であり、 また 8族金属に対して有機酸の添加量を、 モル比で、 有 機酸 Z 8族金属 = 0 . 2〜1 . 2、 好ましくは 0 . 6〜1 . 0とすることが適 している。 このモル比が 0 . 2未満では、 8族金属に帰属する活性点が十分に 得られない場合があり、 1 . 2を超えると、 含浸液が高粘度となるため、 担持 工程に時間を要するばかり力 活性金属が担体ペレツ トの内部まで含浸されな い等、 活性金属の分散状態の悪化が考えられる。 更に、 6族金属と 8族金属の 総量に対して有機酸の添加量は、 モル比で、 有機酸 Z[ 6族金属 + 8族金属] が 0 . 3 5以下、 好ましくは 0 . 2 8以下、 より好ましくは 0 . 2 6以下とす ることが適している。 0 . 3 5を超えると、 金属と錯体ィ匕しきれない余剰の有 機酸が触媒表面上に残り、 触媒表面上に残った有機酸は硫化過程において原料 油とともに流れ出る場合があり好ましくない。
リン酸は、 種々のリン酸、 具体的には、 オルトリン酸、 メタリン酸、 ピロリ ン酸、 三リン酸、 四リン酸、 ポリリン酸等が挙げられ、 特にオルトリン酸が好 ましい。 リン酸は、 6族金属との化合物であるモリプドリン酸を用いることもできる。 この場合、 得られる触媒中に前記含有量でリンが含有されない場合には、 リン 酸をさらに添加する。
なお、 上記の 6族金属の化合物や、 8族金属の化合物が含浸溶液に十分に溶 解しない場合には、 これらの化合物と共に、 酸 [硝酸、 有機酸 (クェン酸、 リ ンゴ酸、 酒石酸等) ] を使用してもよく、 好ましくは有機酸の使用であり、 有 機酸を用いる場合は、 得られる触媒中に、 この有機酸による炭素が残存するこ ともあるため、 触媒中の炭素含有量が上記範囲内となるようにすることが重要 である。
上記の含浸溶液において、 上記の各成分を溶解させるために用いる溶媒は、 水である。 .
溶媒の使用量は、 少なすぎれば、 担体を充分に含浸することができず、 多す ぎれば、 溶解した活性金属が担体上に含浸せず、 含浸溶液容器のへりなどに付 着してしまい、 所望の担持量が得られないため、 担体 1 0 0 gに対して、 5 0 〜9 0 gであり、 好ましくは 6 0〜8 5 gである。
上記溶媒に上記各成分を溶解させて含浸溶液を調製するが、 このときの温度 は、 0 °Cを超え 1 0 o °c以下でよく、 この範囲内の温度であれば、 上記溶媒に 上記各成分を良好に溶解させることができる。
上記含浸溶液の p Hは 5未満が好ましい。 5以上だと水酸ィオンが増え、 有 機酸と 8族金属との間の配位能力が弱まり、 8族金属の錯体形成が抑制され、 その結果、 脱硫活性点 (C o M o S相、 N i M o S相) の数を大幅に増加させ ることができない。
このようにして調製した含浸溶液に、 上記の無機酸化物担体を含浸させて、 これら溶液中の上記の各成分を上記の無機酸化物担体に担持させる。
含浸条件は、 種々の条件を採ることができるが、 通常、 含浸温度は、 好まし くは 0 °Cを超え 1 0 0 °C未満、 より好ましくは 1 0〜5 0 °C、 さらに好ましく は 1 5〜 30 °Cであり、 含浸時間は、 好ましくは 15分〜 3時間、 より好まし くは 20分〜 2時間、 さらに好ましくは 30分〜 1時間である。
なお、 温度が高すぎると、 含浸中に乾燥が起こり、 分散度が偏ってしまう。 また、 含浸中は、 攪拌することが好ましい。
溶液含浸担持後、 常温〜約 80°C、 窒素気流中、 空気気流中、 あるいは真空 中で、 水分をある程度 [LO I (Loss on ignition) 約 50%以下となるよう に] 除去し、 この後、 空気気流中、 窒素気流中、 あるいは真空中で、 200°C 以下、 好ましくは約 80〜 200 °Cで約 10分〜 24時間、 より好ましくは約 100〜 150 °Cで約 5〜 20時間の乾燥を行う。
乾燥を、 200°Cより高い温度で行うと、 金属と錯体化していると思われる 有機酸が触媒表面から離脱し、 その結果、 得られる触媒を硫化処理しても上記 の活性点 (C oMo S相、 N iMo S相等) 形成の精密制御が困難となり、 不 活性なコバルト、 ニッケル種である C o 9S8種、 N i 3S2種等が形成され、 ま た二硫化モリブデンの平均積層数が 2. 5よりも少なくなると考えられ、 低脱 硫活性の触媒となる。
ただし、 真空中で乾燥を行う場合は、 圧力 76 OmmHg換算で上記の温度 範囲になるように乾燥することが好ましい。 乾燥時の圧力の範囲は、 300〜 900 mmH g、 好ましくは 700〜 850 mmH g、 より好ましくは 730 〜800mmHg、 さらに好ましくは大気圧である。 乾燥時の圧力が 300m m H gより低いと沸点が高くなり、 金属と錯体化している有機酸が容易に離脱 し、 金属と錯体ィヒしていると思われる有機酸が触媒表面から脱離し、 その結果、 得られる触媒を硫化処理しても上記の活性点 (C oMo S相、 N iMo S相 等) 形成の精密制御が困難となり、 不活性なコバルト、 ニッケル種である C o 9 S 8種、 N i 3 S 2種等が形成され、 低脱硫活性の触媒となる。
なお、 本発明において、 触媒の形状は、 特に限定されず、 通常、 この種の触 媒に用いられている種々の形状、 例えば、 円柱状、 三葉型、 四葉型等を採用す ることができる。 触媒の大きさは、 通常、 直径が約 l〜2 mm、 長さ約 2〜5 mm力 S好ましレ、。
触媒の機械的強度は、 側面破壊強度 (S C S : Side crush strength) で約 2 1 b s /mm以上が好ましい。 S C Sが、 これより小さいと、 反応装置に充 填した触媒が破壊され、 反応装置内で差圧が発生し、 水素化処理運転の続行が 不可能となる。
触媒の最密充填かさ密度 (C B D: Compacted Bulk Density) は、 約 0 . 6 〜1 . 2 g /m 1が好ましい。
また、 触媒中の活性金属の分布状態は、 触媒中で活性金属が均一に分布して いるユニフォーム型が好ましい。
本発明の水素化処理方法は、 水素分圧約 3〜8 MP a、 約 3 0 0〜4 2 0 °C、 及び液空間速度約 0 . 3〜 5 h r 1の条件で、 以上の触媒と硫黄化合物を含む 軽油留分とを接触させて脱硫を行い、 軽油留分中の難脱硫性硫黄化合物を含む 硫黄化合物を減少する方法である。
本発明の方法で得られる生成油は、 従来技術によるよりもより硫黄分及び窒 素分を少なくすることができる。
本発明の水素化処理方法を商業規模で行うには、 本発明の触媒の固定床、 移 動床、 あるいは流動床式の触媒層を反応装置内に形成し、 この反応装置内に原 料油を導入し、 上記の条件下で水素化反応を行えばょレ、。
最も一般的には、 固定床式触媒層を反応装置内に形成し、 原料油を反応装置 の上部に導入し、 固定床を下から上に通過させ、 反応装置の上部から生成物を 流出させるものである。
また、 本発明の触媒を、 単独の反応装置に充填して行う一段の水素化処理方 法であってもよいし、 幾つかの反応装置に充填して行う多段連続水素化処理方 法であってもよい。
なお、 本発明の触媒は、 使用前に (すなわち、 本発明の水素化処理方法を行 うのに先立って) 、 反応装置中で硫化処理して活性化する。 この硫化処理は、 約 200〜400°C、 好ましくは約 2 5 0〜3 50°C、 常圧あるいはそれ以上 の水素分圧の水素雰囲気下で、 硫黄化合物を含む石油蒸留物、 それにジメチル ジスルフアイドゃ二硫化炭素等の硫化剤を加えたもの、 あるいは硫化水素を用 いて行う。
この硫化処理により、 本発明の触媒は、 前述したように、 平均積層数で 2. 5〜5、 平均面方向長が 1〜3. 5 nmの二硫化モリブデンの層を形成し、 こ の二硫化モリブデンのリム一エッジ部分に、 高活性な C oMo S相や N i Mo S相の活性点を形成することとなる。 実施例 1
シリカとアルミナ水和物とを混練し、 押出成形後、 6 00 °Cで 2時間焼成し て直径 1 / 1 6ィンチの柱状成形物のシリカーアルミナ複合担体 (シリカ /了 ルミナ質量比 = 1/9 9、 細孔容積 0. 70mlZg、 比表面積 3 5 9 m2/ g、 平均細孔直径 70 A) を得た。
イオン交換水 20. 3 gに、 クェン酸第一コバルト 7. 48 gとリン酸 (8 5%水溶液) 1. 1 7 gを投入し、 8 0°Cに加温して 1 0分間攪拌した。 次い で、 モリブドリン酸 1 1. 4 l gを投入し溶解させ、 同温度で 1 5分間攪拌し て含浸用の溶液を調製した。 この時、 含浸溶液の pHは 0. 5 2であった。 ナス型フラスコ中に、 上記のシリカ一アルミナ複合担体 30. 0 gを投入し、 そこへ上記の含浸溶液の全量をピぺットで添加し、 約 25°Cで 3時間浸漬した。 この後、 窒素気流中で風乾し、 マツフル炉中、 空気気流中 ·大気圧 · 1 2 0°Cで約 1 6時間乾燥させ、 触媒 Aを得た。 実施例 2
S i 02/A 1 2O3モル比 6の SHYゼォライト粉末 (平均粒子径 3. 5 μ m、 粒子径 6 μ m以下のものがゼォライト全粒子の 8 7%) と、 アルミナ水和 物を混練し、 押出成形後、 600°Cで 2時間焼成して直径 1ノ1 6インチの柱 状成形物のゼォライト—アルミナ複合担体 (ゼォライト /アルミナ質量比: 7 / 93、 細孔容積 0. 69 m 1 / g、 比表面積 374 m2/ g、 平均細孔直径 67 A) を得た。
イオン交換水 20. 3 gに、 クェン酸第一コバルト 7. 48 gとリン酸 (8 5%水溶液) 1. 17 gを投入し、 80°Cに加温して 10分間攪拌した。 次い で、 モリプドリン酸 11. 4 l gを投入し溶解させ、 同温度で 15分間攪拌し て含浸用の溶液を調製した。 この時、 含浸溶液の p Hは 0. 52であった。 ナス型フラスコ中に、 上記のゼォライト一アルミナ複合担体 30. 0 gを投 入し、 そこへ上記の含浸溶液の全量をピペットで添加し、 約 25°Cで 3時間浸 漬した。
この後、 窒素気流中で風乾し、 マツフル炉中、 空気気流中 ·大気圧 · 12 0°Cで約 16時間乾燥させ、 触媒 Bを得た。 実施例 3
イオン交換水 20. 2 gに、 クェン酸第一コバルト 7. 9 l gとリン酸 (8 5%水溶液) 1. 12 gを投入し、 80°Cに加温して 10分間攪拌した。 次い で、 モリプドリン酸 14. 50 gを投入し溶解させ、 同温度で 15分間攪拌し て含浸用の溶液を調製した。 この時、 含浸溶液の pHは 0. 54であった。 ナス型フラスコ中に、 実施例 2と同一のゼォライトーアルミナ複合担体 30. 0 gを投入し、 そこへ上記の含浸溶液の全量をピペットで添加し、 約 25°Cで 3時間浸漬した。
この後、 窒素気流中で風乾し、 マツフル炉中、 空気気流中 ·大気圧 · 12 0 °Cで約 16時間乾燥させ、 触媒 Cを得た。 実施例 4
イオン交換水 22. 2 gに、 炭酸コバルト 3. 40 gとクェン酸 1水和物 4. 00 gとリン酸 (85 %水溶液) 1. 46 gを投入し、 80°Cに加温して 10 分間攪拌した。 次いで、 モリブドリン酸 12. 9 l gを投入し溶解させ、 同温 度で 30分間攪拌して含浸用の溶液を調製した。 この時、 含浸溶液の pHは 0. 53であった。
ナス型フラスコ中に、 実施例 2と同一のゼォライトーアルミナ複合担体 30. 0 gを投入し、 そこへ上記の含浸溶液の全量をピぺットで添加し、 約 25。(:で 3時間浸漬した。
この後、 窒素気流中で風乾し、 マツフル炉中、 空気気流中 ·大気圧 · 12 0°Cで約 16時間乾燥させ、 触媒 Dを得た。 実施例 5
イオン交換水 21. 6 gに、 炭酸コバルト 3. 40 gとクェン酸 1水和物 4. 01 gと三酸化モリブデン 9. 43 gとリン酸 (85 %水溶液) 2. 09 gを 投入し、 80°Cに加温して 30分間攪拌して含浸用の溶液を調製した。 この時、 含浸溶液の p Hは 0. 54であった。
ナス型フラスコ中に、 実施例 2と同一のゼォライトーアルミナ複合担体 30. 0 gを投入し、 そこへ上記の含浸溶液の全量をピぺットで添加し、 約 25 で 3時間浸漬した。
この後、 窒素気流中で風乾し、 マツフル炉中、 空気気流中 ·大気圧 · 12 0°Cで約 16時間乾燥させ、 触媒 Eを得た。 実施例 6
イオン交換水 20. 0 gに、 クェン酸第一コバルト 7. 80 gとリン酸 (8 5%水溶液) 2. 19 gを投入し、 80°Cに加温して 10分間攪拌した。 次い で、 モリブドリン酸 13. 10 gを投入し溶解させ、 同温度で 15分間攪拌し て含浸用の溶液を調製した。 この時、 含浸溶液の pHは 0. 51であった。 ナス型フラスコ中に、 実施例 2と同一のゼォライトーアルミナ複合担体 30. 0 gを投入し、 そこへ上記の含浸溶液の全量をピペットで添加し、 約 25°Cで 3時間浸漬した。
この後、 窒素気流中で風乾し、 マツフル炉中、 空気気流中 ·大気圧 · 12 0°Cで約 16時間乾燥させ、 触媒 Fを得た。 実施例 7
イオン交換水 19. 8 gに、 クェン酸第一コバルト 7. 92 gとリン酸 (8 5%水溶液) 3. 68 gを投入し、 80°Cに加温して 10分間攪拌した。 次い で、 モリブドリン酸 12. 08 gを投入し溶解させ、 同温度で 15分間攪拌し て含浸用の溶液を調製した。 この時、 含浸溶液の p Hは 0. 48であった。 ナス型フラスコ中に、 実施例 2と同一のゼォライトーアルミナ複合担体 30· 0 gを投入し、 そこへ上記の含浸溶液の全量をピぺットで添加し、 約 25 で 3時間浸漬した。
この後、 窒素気流中で風乾し、 マツフル炉中、 空気気流中 ·大気圧 * 12 0°Cで約 16時間乾燥させ、 触媒 Gを得た。 実施例 β
シリカに代えてホウ酸含有水溶液を使用する以外は、 実施例 1と同様にして、 直径 1 / 16ィンチの柱状成形物のボリア一アルミナ複合担体 (ポリァ Ζアル ミナ質量比 =2Ζ98、 細孔容積 0. 7 lml/g, 比表面積 363m2Zg、 平均細孔直径 72 A) を得た。
この複合担体に、 実施例 1と同一の含浸溶液の全量をピペットで添加し、 約 25 °Cで 3時間浸漬した。
この後、 窒素気流中で風乾し、 マツフル炉中、 空気気流中 ·大気圧 · 12 0°Cで約 16時間乾燥させ、 触媒 Hを得た。 実施例 9
S i O2/A 12O3モル比 6の SHYゼォライト粉末 (平均粒子径 3. 5 μ m、 粒子径 6 μηι以下のものがゼォライト全粒子の 87%) と、 アルミナ水和 物を混練し、 押出成形後、 600でで 2時間焼成して直径 1/16ィンチの柱 状成形物のゼォライトーアルミナ複合担体 (ゼォライト Ζアルミナ質量比: 5 Ζ 95、 細孔容積 0. 8 1 m 1 / g、 比表面積 383 m2/ g、 平均細孔直径 81 A) を得た。
イオン交換水 23. 5 gに、 クェン酸第一コバルト 1 0. 26 gとリン酸 ( 85 %水溶液) 2. 24 gを投入し、 80 °Cに加温して 1◦分間攪拌した。 次いで、 モリプドリン酸 1 7. 6 1 gを投入し溶解させ、 同温度で 15分間攪 拌して含浸用の溶液を調製した。 この時、 含浸溶液の pHは 0. 51であった。 ナス型フラスコ中に、 上記のゼオライト一アルミナ複合担体 30. 0 gを投 入し、 そこへ上記の含浸溶液の全量をピぺットで添加し、 約 25。 で 3時間浸 漬した。
この後、 窒素気流中で風乾し、 マツフル炉中、 空気気流中 ·大気圧 · 1 2 0°Cで約 16時間乾燥させ、 触媒 Iを得た。 比較例 1
イオン交換水 21. 6 に、 炭酸コノ ルト 3. 31 gと、 モリブドリン酸 1 1. 41 gと、 オルトリン酸 1. 17 gを溶解させた含浸用の溶液を調製した。 ナス型フラスコ中に、 γ—アルミナ担体 (細孔容積 0. 69ml/g、 比表 面積364 2 ^、 平均細孔直径 64 A) 30. 0 gを投入し、 そこへ上記 の含浸溶液の全量をピぺットで添カ卩し、 約 25 で 1時間浸漬した。
この後、 窒素気流中で風乾し、 マツフル炉中、 空気気流中 ·大気圧 · 1 2 0 °Cで約 1時間乾燥させ、 500 °Cで 4時間焼成し、 触媒 aを得た。 比較例 2
イオン交換水 20. 2 gに、 クェン酸第一コバルト 7. 45 gとリン酸 (8 5%水溶液) 1. 17 gを投入し、 80°Cに加温して 10分間攪拌した。 次い で、 モリプドリン酸 11. 41 gを投入し溶解させ、 同温度で 15分間攪拌し て含浸用の溶液を調製した。
ナス型フラスコ中に、 実施例 2と同一のゼォライト一アルミナ複合担体 30. 0 gを投入し、 そこへ上記の含浸溶液の全量をピぺットで添加し、 約 25でで 3時間浸潰した。
この後、 窒素気流中で風乾し、 マツフル炉中、 空気気流中 ·大気圧 · 12 0°Cで約 1時間乾燥させ、 500°Cで 4時間焼成し、 触媒 bを得た。 比較例 3
イオン交換水 30. O gに、 炭酸コノ レト 2. 61 gとクェン酸 1水和物 6. 14 gと三酸化モリブデン 6. 41 gとリン酸 (85 %水溶液) 2. 77 gを 投入し、 80°Cに加温して 30分間攪拌して含浸用の溶液を調製した。 この時、 含浸溶液の p Hは 0. 82であった。
ナス型フラスコ中に、 γ—アルミナ担体 (細孔容積 0. 61m lZg、 比表 面積 240m2/g、 平均細孔直径 72 A) 30. O gを投入し、 そこへ上記 の含浸溶液の全量をピぺットで添加し、 約 25でで 1時間浸漬した。 この際、 担体の細孔内に入りきれなかった余剰の含浸溶液がナス型フラスコ中に存在し ていた。
この後、 窒素気流中で風乾し、 マツフル炉中、 空気気流中 ·大気圧 · 12 0 °Cで約 16時間乾燥させ、 触媒 cを得た。 比較例 4
イオン交換水 19. 3 gに、 クェン酸第一コバルト 8. 28 gとリン酸 (8 5%水溶液) 5. 76 gを投入し、 80°Cに加温して 10分間攪拌した。 次い で、 モリプドリン酸 12. 64 gを投入し溶解させ、 同温度で 15分間攪拌し て含浸用の溶液を調製した。 この時、 含浸溶液の p Hは 0. 46であった。 ナス型フラスコ中に、 実施例 2と同一のゼォライトーアルミナ複合担体 30.
0 gを投入し、 そこへ上記の含浸溶液の全量をピぺットで添加し、 約 25でで
3時間浸漬した。
この後、 窒素気流中で風乾し、 マツフル炉中、 空気気流中 ·大気圧 · 12 0°Cで約 16時間乾燥させ、 触媒 dを得た。 比較例 5
ィオン交換水 22. 6 gに、 炭酸コパルト 3. 31 gとリン酸 (.85 %水溶 液) 1. 17 gを投入し、 80°Cに加温して 10分間攪拌した。 次いで、 モリ プドリン酸 11. 4 l gを投入し溶解させ、 同温度で 15分間攪拌して含浸用 の溶液を調製した。 この時、 含浸溶液の p Hは 0. 54であった。
ナス型フラスコ中に、 実施例 2と同一のゼォライトーアルミナ複合担体 30. 0 gを投入し、 そこへ上記の含浸溶液の全量をピぺットで添加し、 約 25でで 3時間浸漬した。
この後、 窒素気流中で風乾し、 マツフル炉中、 空気気流中 ·大気圧 · 12 0 °Cで約 16時間乾燥させ、 触媒 eを得た。 比較例 6
イオン交換水 20. 5 gに、 クェン酸第一コバルト 7. 27 gを投入し、 8 0 °Cに加温して 10分間攪拌した。 次いで、 モリプドリン酸 11. 10 を投 入し溶解させ、 同温度で 15分間攪拌して含浸用の溶液を調製した。 この時、 含浸溶液の p Hは 0. 78であった。
ナス型フラスコ中に、 実施例 2と同一のゼォライトーアルミナ複合担体 30. 0 gを投入し、 そこへ上記の含浸溶液の全量をピペットで添加し、 約 25°Cで 3時間浸潰した。 この後、 窒素気流中で風乾し、 マツフル炉中、 空気気流中 ·大気圧 · 1 2 0 °Cで約 16時間乾燥させ、 触媒 f を得た。
以上の実施例及び比較例で得た触媒の元素分析値と物性値を表 1に示す。 なお、 触媒の分析に用いた方法及び分析機器を以下に示す。
[1] 物理性状の分析
•比表面積は、 窒素吸着による B E T法により測定した。
窒素吸着装置は、 日本ベル (株) 製の表面積測定装置 (ベルソープ 28) を使用した。
*細孔容積、 平均細孔直径、 及び細孔分布は、 水銀圧入法により測定した。 水銀圧入装置は、 ポロシメーター (M I CROMER I T I C S AUTO
-PORE 9200 :島津製作所製) を使用した。
測定は、 試料を真空雰囲気下、 400°Cにて 1時間、 揮発分を除去して行 つ 7こ。
•二硫化モリブデンの層の積層数は、 透過型電子顕微鏡 (TEM) (日本電 子社製商品名 "J EM—2010" ) を用いて、 次の要領で測定した。
1) 触媒を流通式反応管に詰め、 室温で窒素気流中に 5分間保持し、 雰囲気 ガスを H2S (5容量%) ZH2に切替え、 速度 5°CZm i nで昇温し、 40 0°Cに達した後、 1時間保持した。 その後、 同雰囲気下で 200°Cまで降温し、 雰囲気ガスを窒素に切替え、 常温まで降温し、 硫化処理を終了した。
2) この硫ィヒ処理後の触媒をメノウ乳鉢で粉石卒した。
3) 粉枠した触媒の少量をアセトン中に分散させた。
4) 得られた懸濁液をマイクログリッド上に滴下し、 室温で乾燥して試料と した。
5) 試料を TEMの測定部にセットし、 加速電圧 200 k Vで測定した。
直接倍率は 20万倍で、 5視野を測定した。 6) 写真を 200万倍になるように引き延ばし (サイズ 16. 8 cmX 16. 8 cm) 、 写真上で目視できる二硫化モリブデンの積層数と、 層の面方向の長 さを測り取った。
[2] 触媒中の炭素の分析
炭素の測定は、 ャナコ CHNコーダ一 MT— 5 (柳本製作所製) を用い て実施した。
測定方法以下の通りとした。
(1) 触媒をメノウ乳鉢で粉体ィ匕する。
(2) 粉体ィヒした触媒 7 m gを白金ポードに乗せて焼成炉に入れる。
(3) 950°Cにて燃焼する。
(4) 燃焼生成ガスを差動熱伝導度計に導き、 触媒中の炭素量を定量する。
化学組成(質量%) ' 物理性状
二硫化モリブデン 触媒
CoO Mo03 比表面積 細孔面積 平均細孔直径
P2O5 C 他(含担体)
(mug) 面方向平均長さ 平均積層数 (nm)
A 5.0 20.0 2.8 3.8 残り 260 0.40 74 2.9 2.9
B 5.3 20.0 2.5 3.7 残り 274 0.40 73 3.2
C 5.3 24.0 2.5 3.7 残り 266 0.38 74 3.1
D 4.6 22.3 2.5 2.1 残り 255 0.40 76 3.1 2.8
E 4.8 21.5 2.5 2.1 残り 267 0.40 74 3.2 2.8
F 5.7 22.1 3.9 3.4 残り 264 0.35 73 3.1 2.9
G 5.5 18.9 5.4 3.4 残り 246 0.33 71 3.1
H 5.1 20.3 2.7 3.8 残り 261 0.41 75 3.1
I 6.0 25.1 3.8 3.9 残り 251 0.37 91 3.3 2.9 a 5.0 20.0 2.7 0 250 0.48 75 1.9 3.6 b 5.4 21.0 2.5 0 残り 255 0.44 84 2.2 3.5 c 3.8 15.1 4.7 4.9 残り 165 0.32 79
d 5.1 19.0 7.6 3.5 221 0.30 70 3.1 2.9 e 5.0 20.5 2.4 0 残り 244 0.41 82 2.7
f 5.3 21.0 0.9 3.2 268 0.42 72 1.9
[直留軽油の水素化処理反応]
上記の実施例及び比較例で調製した触媒 A〜 I、 a〜f を用い、 以下の要領 にて、 下記性状の直留軽油の水素化処理を行った。
先ず、 触媒を高圧流通式反応装置に充填して固定床式触媒層を形成し、 下記 の条件で前処理した。
次に、 反応温度に加熱した原料油と水素含有ガスとの混合流体を、 反応装置 の上部より導入して、 下記の条件で水素化反応を進行させ、 生成油とガスの混 合流体を、 反応装置の下部より流出させ、 気液分離器で生成油を分離した。 触媒の硫ィ匕:原料油による液硫化を行った。
圧力 (水素分圧) ; 4. 9 MP a
水素及び原料油 (液空間速度 1. 5h r— 水素 オイル比 200m3 (n o rma l ) Zk 1 ) 温度 常温約 22 °Cで水素及び原料油を導入し、 20 h rで昇温し、 300°Cにて 24 h r維持、 次いで 反応温度である 350°Cまで 20°C/h rで昇温 水素化反応条件:
反応温度 350°C
圧力 (水素分圧) 4. 9MP a
1. 5 h r— 1
水素 Zオイル比 200m3 (n o rma 1 ) /k 1 原料油の性状:
油種 中東系直留軽油
密度 (15/4°C) 0. 8609
蒸留性状 初留点が 211. 5 °C、 50 %点が 314. 0 °C、 90 %点が 365. 0 °C、 終点が 383. 5 °C 硫黄成分 1. 37質量%
210質量 p p m
動粘度 (at 30 °C) 6. 570 c S t
流動点 5. 0°C
くもり点 6. 0°C
セタン指数 54. 5
セィポノレトカラ一 反応結果については、 以下の方法で解析した。
350°Cで反応装置を運転し、 6日経過した時点で生成油を採取し、 その性 状を分析した。 これらの結果は、 表 4に示す。
[1] 脱硫率 (HDS) (%) :
原料中の硫黄分を脱硫反応によって硫化水素に転換することにより、 原料油 から消失した硫黄分の割合を脱硫率と定義し、 原料油及ぴ生成油の硫黄分析値 から以下の式により算出した。
[2] 脱硫反応速度定数 (K s) :
生成油の硫黄分 (S p) の減少量に対して、 1. 3次の反応次数を得る反応 速度式の定数を脱硫反応速度定数 ( s) とする。
なお、 反応速度定数が高い程、 触媒活性が優れていることを示している。 脱硫率 (%) =[ (S f — S p) /S f ] X 100
脱硫反応速度定数
= [1/ (S p) 1. 3- 1-1/ (S f ) 1. 3-1] X (LHS V) 式中、 S f :原料油中の硫黄分 (質量%)
S p :反応生成油中の硫黄分 (質量%) L H S V:液空間速度 (h r一1)
比活性 (%)
=各脱硫反応速度定数/比較触媒 aの脱硫反応速度定数 X 1 0 0 表 2
Figure imgf000032_0001
表 2から明らかなように、 本発明の製造法による触媒 A〜I を用いれば、 1 0 0質量 p p m以下もの超深度脱硫領域を容易に達成できることが判る。
また、 触媒 Bの透過型電子顕微鏡写真を第 1図に示す。 第 1図中、 黒い線状 のものが、 二硫化モリブデンの層である。
[減圧軽油の水素化処理反応]
上記の実施例 1と比較例 1で調製した触媒 A, a用い、 以下の要領にて、 下 記性状の減圧軽油の水素化処理を行った。 先ず、 触媒を高圧流通式反応装置に充填して固定床式触媒層を形成し、 下記 の条件で前処理した。
次に、 反応温度に加熱した原料油と水素含有ガスとの混合流体を、 反応装置 の上部より導入して、 下記の条件で脱硫反応と分解反応の水素化反応を進行さ せ (脱硫運転モードで反応を行った後、 マイルド 'ハイド口クラッキング運転 モードで反応を行った) 、 生成油とガスの混合流体を、 反応装置の下部より流 出させ、 気液分離器で生成油を分離した。 触媒の前処理条件:
圧力 (水素分圧) ; 4. 9MP a
硫化剤; ;上記の [直留軽油の水素化処理反応] における原料 油 (中東系直留軽油)
温度 ; 2 90°Cで 1. 5 h r維持、 次いで 3 20°Cで 1 5 h r維持のステップ昇温 (昇温速度は 25 °C/ h r) 脱硫反応 (脱硫運転モード) 条件
反応温度 360°C
圧力 (水素分圧) 4. 9MP a
液空間速度 0. り 6 h r— 1
水素/オイル比 5 60m" {n o r m a 1 ) /K 1 分解反応 運転モード) 条件:
反応温度 400°C
圧力 (水素分圧) 4. 9MP a
0. 6 6 h r一1
水素 Zオイル比 5 60m3 (n o rma 1 ) /K 1 原料油の性状:
油種 ト減圧軽油
比重 (15/4°C) 0. 9185
蒸留性状 初留点が 349. 0°C, 50 %点が 449. 0 °C、
90 %点が 529. 0 °C、 終点が 566. 0 °C 硫黄成分 2. 45質量%
窒素成分 0. 065質量%
流動点 35 °Cァスフアルテン:く 100 p pm
ァニリン点 82°C 脱硫活性については、 以下の方法で解析した。
360°Cで反応装置を運転し、 5日経過した時点で生成油を採取し、 その性 状 [脱硫率 (HDS) (%)、 脱硫反応速度 (Ks)、 比活性 (%)] を、 上記の [直留軽油の水素化処理反応] の場合と同様に分析した。
分解活性については、 以下の方法で解析した。
脱硫活性評価終了後、 反応温度を 400°Cまで昇温し、 同温度で反応装置を 運転し、 3日経過した時点で生成油を採取し、 その性状を分析した。 これらの 結果は、 表 3に示す。
[1] 分解率 (HYC) (%) :
触媒の水素化分解率を、 ASTM D 2887準拠のガスクロマ
一蒸留で得られる生成油全留分中の 343°C以下の留分が占める割合で示した 触媒の分解活性が高い程、 343 °C以下の軽質留分の得率が高くなる。 [2] 分解反応速度定数 (Kc) :
分 ^率に対して、 1次の反応次数を得る反応速度式の定数を分解反応速度定 数 (Kc) とする。
反応速度定数が高い程、 触媒活性が優れていることを示している。
分解率 (0/0)
= (生成油中 343 °C以下の留分量 Z生成油全留分量) X 100 分解反応速度定数 =ー (LHSV) · 1 n[ (1一分解率) ,100] 比活性 (%)
= (各分解反応速度定数 Z比較触媒 aの分解反応速度定数) X I 00
表 3
Figure imgf000035_0001
更に、 触媒 Dと触媒 aを用い、 次の反応条件で触媒寿命試験を行った。 この 結果を、 第 2図に示す。 第 2図中、 大きい黒四角が触媒 Dの結果であり、 小さ い黒菱形が触媒 aの結果である。 反応条件:
反応温度 50質量 p pm要求温度
圧力 (水素分圧) 4. 9MP a
液空間速度 1. 3 h r— 1
水素 Zオイル比 200m3 (n o rma l) /K 1 図 2において、 横軸が通油日数 (日) 、 縦軸が生成油の硫黄分濃度が 5 0質 量 p p mとなるのに要する温度 (°C) を示しており、 本発明の触媒 Dでは、 約 2力月間の通油を行っても 3 4 5 °C前後で十分あるのに対し、 比較の触媒 aで は、 通油初日で既に 3 6 0 °C以上の温度を必要とし、 約 2力月後には、 3 6 5 °Cを超える高温を必要とするのが判る。
以上の結果から明らかなように、 本発明による触媒は、 従来の軽油水素化処 理の場合とほぼ同じ水素分圧や反応温度等の条件下で、 超深度脱硫領域での軽 油の脱硫反応及び脱窒素反応に対して、 極めて優れた活性及ぴ触媒寿命を有す ることが判る。 産業上の利用可能性
以上詳述したように、 本発明によれば、 次のような効果を奏することができ る
( 1 ) 高い脱硫及び脱窒素活性を有するため、 軽油中の硫黄分及び窒素分の含 有率を、 大幅に低減させることができる。
( 2 ) 反応条件を従来の水素化処理の際の反応条件とほぼ同じとすることがで きるため、 従来の装置を大幅改造することなく転用できる。
( 3 ) 硫黄含有量及び窒素含有量の少ない軽油基材を、 容易に供給することが できる。

Claims

請 求 の 範 囲
1. 無機酸化物担体上に触媒基準、 酸化物換算で
周期律表第 6族金属から選ばれた少なくとも 1種を 10〜30質量%、 周期律表第 8族金属から選ばれた少なくとも 1種を 1〜1 5質量%、 リンを 1. 5〜6質量%、
炭素を 2〜14質量%含み、
比表面積が 220〜300m2Zg、 細孔容積が◦. 35〜0. 6mlZg、 平均細孔直径が約 65〜 95 Aであることを特徴とする軽油の水素化処理触媒。
2. 第 6族金属から選ばれた少なくとも 1種がモリプデンまたはタンダス テンである、 請求の範囲 1記載の触媒。
3. 第 6族金属から選ばれた少なくとも 1種がモリブデンである、 請求の 範囲 1記載の触媒。
4. 予備硫化後において、 透過型電子顕微鏡により観察される二硫化モリ ブデンの層が、 平均値 2. 5〜 5の積層数を有する、 請求の範囲 3記載の触媒。
5. 予備硫化後において、 透過型電子顕微鏡により観察される二硫化モリ ブデンの層が、 平均値 1〜3. 5 nmの面方向の長さを有する、 請求の範囲 3 または 4記載の触媒。
6. 第 8族金属から選ばれた少なくとも 1種がコバルトまたはニッケルで ある、 請求の範囲 1記載の触媒。
7. 比表面積 270〜50
Figure imgf000038_0001
、 細孔容積 0. 55〜0. 9ml/ g、 平均細孔直径 60〜12 OAである無機酸化物担体上に、 周期律表第 8族 金属から選ばれた少なくとも 1種を含む化合物、 周期律表第 6族金属から選ば れた少なくとも 1種を含む化合物、 有機酸及びリン酸を含有する溶液を用い、 触媒基準、 酸化物換算で周期律第 6族金属を 10〜 30質量%、 周期律表第 8 族金属を 1〜 15質量%、 リンを 1. 5〜 6質量%、 炭素を 2〜 14質量%と なるように担持させ、 200°C以下で乾燥させることを特徴とする請求の範囲 1〜 6の何れか 1項に記載の触媒の製造方法。
8. 請求の範囲 1〜6の何れか 1項に記載の触媒の存在下、 水素分圧 3〜 8 MP a、 温度 300〜 420 °C、 液空間速度 0. 3〜 5 h r 1の条件で、 軽 油留分の接触反応を行うことを特徴とする軽油の水素化処理方法。
PCT/JP2002/006116 2001-06-20 2002-06-19 Catalyseur pour hydrogenation de gas-oil, procede de preparation dudit catalyseur et procede d'hydrogenation de gas-oil WO2003000410A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK02743648.4T DK1402948T3 (da) 2001-06-20 2002-06-19 Katalysator til hydrogeneringsbehandling af gasolie og fremgangsmåde til fremstilling deraf, og proces til hydrogeneringsbehandling af gasolie.
US10/344,317 US7361624B2 (en) 2001-06-20 2002-06-19 Catalyst for hydrotreating gas oil, process for producing the same, and method for hydrotreating gas oil
CA002419050A CA2419050C (en) 2001-06-20 2002-06-19 Catalyst for hydrotreating gas oil, process for producing the same, and method for hydrotreating gas oil
EP02743648A EP1402948B1 (en) 2001-06-20 2002-06-19 Catalyst for hydrogenation treatment of gas oil and method for preparation thereof; and process for hydrogenation treatment of gas oil
KR1020037002362A KR100664895B1 (ko) 2001-06-20 2002-06-19 경유의 수소화 처리 촉매, 이의 제조방법 및 경유의수소화 처리방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001-186505 2001-06-20
JP2001186505 2001-06-20
JP2002031408 2002-02-07
JP2002-31408 2002-02-07
JP2002-113109 2002-04-16
JP2002113109A JP4156859B2 (ja) 2001-06-20 2002-04-16 軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法

Publications (1)

Publication Number Publication Date
WO2003000410A1 true WO2003000410A1 (fr) 2003-01-03

Family

ID=27346985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006116 WO2003000410A1 (fr) 2001-06-20 2002-06-19 Catalyseur pour hydrogenation de gas-oil, procede de preparation dudit catalyseur et procede d'hydrogenation de gas-oil

Country Status (9)

Country Link
US (1) US7361624B2 (ja)
EP (1) EP1402948B1 (ja)
JP (1) JP4156859B2 (ja)
KR (1) KR100664895B1 (ja)
CN (1) CN1265879C (ja)
CA (1) CA2419050C (ja)
DK (1) DK1402948T3 (ja)
TW (1) TW592803B (ja)
WO (1) WO2003000410A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082456A1 (en) 2005-02-03 2006-08-10 Richter Gedeon Vegyészeti Gyár Rt. Cyclohexylamides as dopamine d3 , d2 and 5ht1a antagonists
WO2008032686A1 (fr) 2006-09-14 2008-03-20 Cosmo Oil Co., Ltd. Catalyseur d'hydrodésulfuration/déparaffinage pour un hydrocarbure liquide, procédé servant à produire celui-ci et procédé d'hydrotraitement d'un hydrocarbure liquide avec le catalyseur
EP1577007A4 (en) * 2002-12-18 2009-06-10 Cosmo Oil Co Ltd HYDROGEN TREATMENT CATALYST FOR GAS OIL, MANUFACTURING METHOD AND METHOD FOR HYDROGEN TREATMENT OF GAS OIL
EP1733787A4 (en) * 2004-03-26 2009-06-10 Cosmo Oil Co Ltd CATALYST FOR HYDRATING TREATMENT OF HYDROCARBON OIL AND PRODUCTION METHOD AND METHOD FOR HYDRATING TREATMENT OF HYDROCARBON OIL
WO2012112190A1 (en) 2011-02-17 2012-08-23 Conocophillips Company MoS2 CATALYST FOR THE CONVERSION OF SUGAR ALCOHOL TO HYDROCARBONS

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4954095B2 (ja) * 2001-06-20 2012-06-13 コスモ石油株式会社 軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法
US6815570B1 (en) * 2002-05-07 2004-11-09 Uop Llc Shaped catalysts for transalkylation of aromatics for enhanced xylenes production
GB0214383D0 (en) * 2002-06-21 2002-07-31 Isis Innovation Catalyst
CN100428995C (zh) * 2004-03-03 2008-10-29 国际壳牌研究有限公司 催化剂载体和催化剂组合物、其制备方法和用途
JP2005262063A (ja) * 2004-03-17 2005-09-29 National Institute Of Advanced Industrial & Technology 水素化処理触媒
JP4503327B2 (ja) * 2004-03-26 2010-07-14 財団法人石油産業活性化センター 炭化水素油の水素化処理触媒及びその製造方法並びに炭化水素油の水素化処理方法
JP4864106B2 (ja) * 2004-03-26 2012-02-01 コスモ石油株式会社 炭化水素油の水素化処理触媒の製造方法
JP2006306974A (ja) * 2005-04-27 2006-11-09 Petroleum Energy Center 炭化水素油の水素化処理触媒及びその製造方法並びに炭化水素油の水素化処理方法
CN100425676C (zh) * 2005-04-29 2008-10-15 中国石油化工股份有限公司 一种加氢裂化催化剂组合物
US8883669B2 (en) * 2005-04-29 2014-11-11 China Petroleum & Chemical Corporation Hydrocracking catalyst, a process for producing the same, and the use of the same
CN100371496C (zh) * 2005-07-07 2008-02-27 浙江大学 一种自润滑多层复合涂层及其制备方法
EP2915868B1 (en) * 2006-01-17 2016-12-21 ExxonMobil Research and Engineering Company Selective catalysts for naphtha hydrodesulfurization
EP2656911A1 (en) * 2006-01-17 2013-10-30 ExxonMobil Research and Engineering Company Process for the catalyitic hydrodesulfurization of naphtha
CA2636156C (en) * 2006-01-17 2015-08-18 Chuansheng Bai Selective catalysts for naphtha hydrodesulfurization
WO2007084439A1 (en) * 2006-01-17 2007-07-26 Exxonmobil Research And Engineering Company Selective catalysts having silica supports for naphtha hydrodesulfurization
CN101516500A (zh) 2006-08-03 2009-08-26 国际壳牌研究有限公司 含有钼和第ⅷ族金属的催化剂及其用于加氢脱硫氢馏分油的用途
FR2917647B1 (fr) * 2007-06-25 2011-05-06 Inst Francais Du Petrole Procede de preparation de catalyseur d'hydrotraitement par impregnation d'un compose phosphore
US8178468B2 (en) * 2008-04-10 2012-05-15 Shell Oil Company Catalysts, preparation of such catalysts, methods of using such catalysts, products obtained in such methods and uses of products obtained
DK2421645T3 (en) 2009-04-21 2016-02-15 Albemarle Europe Sprl Hydrotreating catalyst containing phosphorus and BOR
WO2011005476A2 (en) * 2009-06-22 2011-01-13 Saudi Arabian Oil Company Alternative process for the treatment of heavy crudes in a coking refinery
US9187702B2 (en) 2009-07-01 2015-11-17 Chevron U.S.A. Inc. Hydroprocessing catalyst and method of making the same
WO2011023668A2 (en) 2009-08-24 2011-03-03 Albemarle Europe Sprl Solutions and catalysts comprising group vi metal, group viii metal, and phosphorus
PL2475457T3 (pl) 2009-09-10 2021-12-20 Albemarle Europe Sprl. Sposób wytwarzania stężonych roztworów zawierających metal grupy vi, metal grupy viii i fosfor
DK2484745T3 (da) 2009-09-30 2021-01-25 Jx Nippon Oil & Energy Corp Hydroafsvovlingskatalysator for en carbonhydridolie, fremgangsmåde til fremstilling heraf og fremgangsmåde til hydroraffinering
JP5610874B2 (ja) * 2010-06-25 2014-10-22 Jx日鉱日石エネルギー株式会社 炭化水素油の水素化脱硫触媒及びその製造方法
EP2586529A4 (en) * 2010-06-25 2014-06-11 Jx Nippon Oil & Energy Corp HYDROESULFURIZATION CATALYST FOR A HYDROCARBON OIL, PROCESS FOR PRODUCING THE SAME, AND HYDROREFINING PROCESS FOR HYDROCARBON OIL
KR101816318B1 (ko) * 2010-12-09 2018-01-12 에스케이이노베이션 주식회사 수소 처리 촉매 및 이의 제조방법
JP5773644B2 (ja) * 2010-12-28 2015-09-02 日揮触媒化成株式会社 水素化処理触媒の再生方法
JP5660672B2 (ja) * 2011-01-17 2015-01-28 コスモ石油株式会社 炭化水素油の水素化処理触媒の再生方法
FR2972648B1 (fr) * 2011-03-18 2013-04-26 Ifp Energies Now Catalyseur utilisable en hydrotraitement comprenant des metaux des groupes viii et vib et preparation avec de l'acide citrique et du succinate de dialkyle c1-c4
KR102125298B1 (ko) 2013-03-25 2020-06-23 코스모세키유 가부시키가이샤 경유의 수소화 탈황 촉매 및 경유의 수소화 처리 방법
CN104437576B (zh) * 2013-09-24 2017-07-14 中国石油化工股份有限公司 铁系尖晶石复合氧化物催化剂及用途
CN104437577B (zh) * 2013-09-24 2017-02-08 中国石油化工股份有限公司 铁系尖晶石复合氧化物催化剂及其用途
WO2015053087A1 (ja) * 2013-10-11 2015-04-16 コスモ石油株式会社 重質炭化水素油の水素化処理触媒、重質炭化水素油の水素化処理触媒の製造方法、及び重質炭化水素油の水素化処理方法
US20150159095A1 (en) * 2013-12-09 2015-06-11 Bi-Zeng Zhan Method for making a middle distillate
JP6251107B2 (ja) * 2014-04-01 2017-12-20 Jxtgエネルギー株式会社 炭化水素油の水素化脱硫触媒
CN105013497B (zh) * 2014-04-24 2017-12-22 中国石油化工股份有限公司 一种加氢催化剂及其应用
CN105435824B (zh) * 2014-09-25 2018-05-18 中国石油化工股份有限公司 一种加氢催化剂组合物及其应用
CN105498849B (zh) * 2014-09-25 2017-12-22 中国石油化工股份有限公司 一种加氢催化剂及其应用
CN105498816B (zh) * 2014-09-25 2017-12-22 中国石油化工股份有限公司 一种加氢催化剂及其应用
CN105498791B (zh) * 2014-09-25 2018-05-18 中国石油化工股份有限公司 一种加氢催化剂组合物及其应用
CN105498792B (zh) * 2014-09-25 2018-06-19 中国石油化工股份有限公司 一种用于加氢处理的催化剂组合及其应用
CN106031881B (zh) * 2015-03-12 2018-07-31 中国石油化工股份有限公司 一种加氢催化剂及其应用
CN106031877B (zh) * 2015-03-12 2018-07-31 中国石油化工股份有限公司 一种加氢催化剂及其应用
CN106031878B (zh) * 2015-03-12 2018-07-31 中国石油化工股份有限公司 一种加氢催化剂及其应用
FR3035600B1 (fr) 2015-04-30 2017-04-21 Ifp Energies Now Catalyseur a base d'acide y-cetovalerique et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
FR3035601B1 (fr) 2015-04-30 2017-04-21 Ifp Energies Now Catalyseur a base de y-valerolactone et/ou de ses produits d’hydrolyse et son utilisation dans un procede d’hydrotraitement et/ou d’hydrocraquage
CN106669786B (zh) * 2015-11-11 2019-04-12 中国石油化工股份有限公司 一种催化柴油加氢裂化催化剂及其制备方法
FR3049475B1 (fr) 2016-03-30 2018-04-06 IFP Energies Nouvelles Catalyseur a base de catecholamine et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
FR3035008B1 (fr) 2016-07-28 2021-08-27 Ifp Energies Now Catalyseur a base d'un compose organique et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
FR3054554B1 (fr) 2016-07-28 2018-07-27 IFP Energies Nouvelles Catalyseur a base de 2-acetylbutyrolactone et/ou de ses produits d'hydrolyse et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
RU2753526C2 (ru) * 2016-08-23 2021-08-17 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Катализатор гидроочистки, содержащий полярную добавку, способ его изготовления и применения
FR3056597A1 (fr) 2016-09-28 2018-03-30 IFP Energies Nouvelles Procede d'hydrotraitement utilisant un catalyseur a base d'un metal du groupe viiib et un metal du groupe vib prepare en milieu fluide supercritique
FR3065888B1 (fr) 2017-05-04 2020-05-29 IFP Energies Nouvelles Procede d'addition indirecte d'un compose organique a un solide poreux.
FR3065887B1 (fr) 2017-05-04 2020-05-15 IFP Energies Nouvelles Procede d'addition d'un compose organique a un solide poreux en phase gazeuse
FR3073753B1 (fr) 2017-11-22 2022-03-11 Ifp Energies Now Catalyseur a base d'un compose furanique et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
FR3074496B1 (fr) 2017-12-05 2019-12-13 IFP Energies Nouvelles Hydrotraitement de charges hydrocarbonees avec un catalyseur comprenant un materiau aluminique comprenant du carbone
WO2019194975A1 (en) * 2018-04-06 2019-10-10 Exxonmobil Research And Engineering Company Catalysts and methods for distillate end point reduction
FR3083137A1 (fr) 2018-06-27 2020-01-03 IFP Energies Nouvelles Catalyseur a base d'un ester beta-substitue et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
FR3083133A1 (fr) 2018-06-27 2020-01-03 IFP Energies Nouvelles Catalyseur a base d'un ester beta-oxygene et son utilisation dans un procede d’hydrotraitement et/ou d’hydrocraquage
FR3083138A1 (fr) 2018-06-27 2020-01-03 IFP Energies Nouvelles Catalyseur a base de derives d'acide ascorbique et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
FR3083143A1 (fr) 2018-06-27 2020-01-03 IFP Energies Nouvelles Catalyseur a base de derives amines et son utilisation dans un procede d’hydrotraitement et/ou d’hydrocraquage
FR3083130B1 (fr) 2018-06-27 2022-11-04 Ifp Energies Now Catalyseur a base d'un lactate d'alkyle et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
FR3083140B1 (fr) 2018-06-27 2020-06-05 IFP Energies Nouvelles Catalyseur a base d’un ester d’acide en c5 ou c6 et son utilisation dans un procede d’hydrotraitement et/ou d’hydrocraquage
CN111196934B (zh) * 2018-11-16 2022-02-01 中国石油天然气股份有限公司 一种重油加氢处理催化剂的级配方法
FR3105931A1 (fr) 2020-01-06 2021-07-09 IFP Energies Nouvelles Catalyseur a base d'esters d’acide 2-hydroxy-butanedioique ou d’acide 2, 3-hydroxy-butanedioique et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
RU2745703C1 (ru) * 2020-02-27 2021-03-30 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ загрузки каталитической системы гидрооблагораживания вакуумного газойля и алюмокобальтмолибденового и алюмоникельмолибденового катализаторов (варианты)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214745A (ja) * 1988-05-10 1990-01-18 Union Oil Co Calif 窒素または硫黄含有炭化水素油の接触ハイドロプロセシング方法
JPH06226108A (ja) * 1992-11-18 1994-08-16 Sumitomo Metal Mining Co Ltd 炭化水素油の水素化処理触媒とその製造方法
JPH06339635A (ja) * 1993-06-01 1994-12-13 Japan Energy Corp 水素化処理触媒の製造方法
JP2000000470A (ja) * 1998-06-15 2000-01-07 Idemitsu Kosan Co Ltd 水素化処理触媒及び重質油の水素化処理方法
JP2000079343A (ja) * 1998-06-24 2000-03-21 Cosmo Sogo Kenkyusho:Kk 軽油の水素化処理触媒及び軽油の水素化処理方法
WO2000062924A1 (fr) * 1999-04-20 2000-10-26 Japan Energy Corporation Procede de production de catalyseur d'hydrodesulfuration

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176049A (en) * 1978-04-03 1979-11-27 Exxon Research & Engineering Co. Catalytic cracking process
US4743359A (en) * 1982-08-19 1988-05-10 Union Oil Company Of California Reforming and related processes
US4478954A (en) * 1983-05-23 1984-10-23 Standard Oil Company (Indiana) Synthesis gas reaction
US5037791A (en) * 1988-07-28 1991-08-06 Hri, Inc. Porous metal oxide supported carbon-coated catalysts and method for producing same
JP3244692B2 (ja) * 1990-10-17 2002-01-07 住友金属鉱山株式会社 炭化水素油の水素化処理用触媒の製造方法
US5198100A (en) * 1990-12-24 1993-03-30 Exxon Research And Engineering Company Hydrotreating using novel hydrotreating catalyst
JPH04243547A (ja) * 1991-01-22 1992-08-31 Sumitomo Metal Mining Co Ltd 炭化水素油の水素化処理用触媒を製造する方法
US5435907A (en) * 1992-04-20 1995-07-25 Texaco Inc. Hydrodearomatization of middle distillate hydrocarbons
US5928499A (en) * 1993-10-01 1999-07-27 Texaco Inc Hydroconversion process employing catalyst with specified pore size distribution, median pore diameter by surface area, and pore mode by volume
SG87095A1 (en) * 1999-04-02 2002-03-19 Akzo Nobel Nv Process for effecting ultra-deep hds of hydrocarbon feedstocks
EP1202801A1 (en) * 1999-07-05 2002-05-08 Akzo Nobel N.V. Process for regenerating and rejuvenating additive containing catalysts
FR2797594B1 (fr) * 1999-08-17 2001-09-21 Eurecat Europ Retrait Catalys Precarbonation de catalyseur d'hydrotraitement
JP2001062301A (ja) * 1999-08-31 2001-03-13 Cosmo Research Inst 深度脱硫軽油の製造方法
WO2004054712A1 (ja) * 2002-12-18 2004-07-01 Cosmo Oil Co., Ltd. 軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法
JP4472556B2 (ja) * 2004-03-26 2010-06-02 コスモ石油株式会社 炭化水素油の水素化処理触媒及びその製造方法並びに炭化水素油の水素化処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214745A (ja) * 1988-05-10 1990-01-18 Union Oil Co Calif 窒素または硫黄含有炭化水素油の接触ハイドロプロセシング方法
JPH06226108A (ja) * 1992-11-18 1994-08-16 Sumitomo Metal Mining Co Ltd 炭化水素油の水素化処理触媒とその製造方法
JPH06339635A (ja) * 1993-06-01 1994-12-13 Japan Energy Corp 水素化処理触媒の製造方法
JP2000000470A (ja) * 1998-06-15 2000-01-07 Idemitsu Kosan Co Ltd 水素化処理触媒及び重質油の水素化処理方法
JP2000079343A (ja) * 1998-06-24 2000-03-21 Cosmo Sogo Kenkyusho:Kk 軽油の水素化処理触媒及び軽油の水素化処理方法
WO2000062924A1 (fr) * 1999-04-20 2000-10-26 Japan Energy Corporation Procede de production de catalyseur d'hydrodesulfuration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1402948A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1577007A4 (en) * 2002-12-18 2009-06-10 Cosmo Oil Co Ltd HYDROGEN TREATMENT CATALYST FOR GAS OIL, MANUFACTURING METHOD AND METHOD FOR HYDROGEN TREATMENT OF GAS OIL
EP1733787A4 (en) * 2004-03-26 2009-06-10 Cosmo Oil Co Ltd CATALYST FOR HYDRATING TREATMENT OF HYDROCARBON OIL AND PRODUCTION METHOD AND METHOD FOR HYDRATING TREATMENT OF HYDROCARBON OIL
US7737071B2 (en) * 2004-03-26 2010-06-15 Cosmo Oil Co., Ltd. Catalyst for hydrotreating hydrocarbon oil, process for producing the same, and method for hydrotreating hydrocarbon oil
WO2006082456A1 (en) 2005-02-03 2006-08-10 Richter Gedeon Vegyészeti Gyár Rt. Cyclohexylamides as dopamine d3 , d2 and 5ht1a antagonists
WO2008032686A1 (fr) 2006-09-14 2008-03-20 Cosmo Oil Co., Ltd. Catalyseur d'hydrodésulfuration/déparaffinage pour un hydrocarbure liquide, procédé servant à produire celui-ci et procédé d'hydrotraitement d'un hydrocarbure liquide avec le catalyseur
US8252709B2 (en) 2006-09-14 2012-08-28 Cosmo Oil Co., Ltd. Catalyst for hydrodesulfurization/dewaxing of hydrocarbon oil, process for producing the same, and method of hydrotreating hydrocarbon oil with the catalyst
JP5217034B2 (ja) * 2006-09-14 2013-06-19 コスモ石油株式会社 炭化水素油の水素化脱硫・脱ろう触媒及びその製造方法、並びに該触媒を用いた炭化水素油の水素化処理方法
WO2012112190A1 (en) 2011-02-17 2012-08-23 Conocophillips Company MoS2 CATALYST FOR THE CONVERSION OF SUGAR ALCOHOL TO HYDROCARBONS

Also Published As

Publication number Publication date
KR20030027039A (ko) 2003-04-03
CN1265879C (zh) 2006-07-26
JP2003299960A (ja) 2003-10-21
CA2419050A1 (en) 2003-02-07
CN1463204A (zh) 2003-12-24
US7361624B2 (en) 2008-04-22
CA2419050C (en) 2009-10-06
KR100664895B1 (ko) 2007-01-09
TW592803B (en) 2004-06-21
DK1402948T3 (da) 2013-03-04
EP1402948A1 (en) 2004-03-31
EP1402948B1 (en) 2013-01-09
US20030173256A1 (en) 2003-09-18
EP1402948A4 (en) 2009-06-10
JP4156859B2 (ja) 2008-09-24

Similar Documents

Publication Publication Date Title
JP4156859B2 (ja) 軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法
KR100755194B1 (ko) 경유의 수소화 처리 촉매, 이의 제조방법 및 경유의 수소화처리방법
JP4472556B2 (ja) 炭化水素油の水素化処理触媒及びその製造方法並びに炭化水素油の水素化処理方法
JP4864106B2 (ja) 炭化水素油の水素化処理触媒の製造方法
JP4545328B2 (ja) 炭化水素油用水素化処理触媒の製造方法及び炭化水素油の水素化処理方法
JP4689198B2 (ja) 炭化水素油の水素化処理触媒及びその製造方法、並びに炭化水素油の水素化処理方法
JP2013027847A (ja) 炭化水素油の水素化処理触媒、炭化水素油の水素化処理触媒の製造方法及び炭化水素油の水素化処理方法
JP4954095B2 (ja) 軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法
JP3553429B2 (ja) 軽油の水素化処理触媒及び軽油の水素化処理方法
JP4916370B2 (ja) 軽油の水素化処理方法
JP2006306974A (ja) 炭化水素油の水素化処理触媒及びその製造方法並びに炭化水素油の水素化処理方法
CN100435954C (zh) 轻油加氢处理催化剂、其制备方法及轻油加氢处理的方法
JP2004290728A (ja) 軽油の水素化処理触媒の製造方法及び軽油の水素化処理方法
JP2001062304A (ja) 軽油の水素化脱硫触媒の製造方法及び軽油の水素化処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2002743648

Country of ref document: EP

Ref document number: 2419050

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10344317

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 028021002

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020037002362

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020037002362

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2004101228

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2002743648

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642