WO2002075812A1 - Procede de production de circuit integre semi-conducteur et dispositif de circuit integre semi-conducteur - Google Patents

Procede de production de circuit integre semi-conducteur et dispositif de circuit integre semi-conducteur Download PDF

Info

Publication number
WO2002075812A1
WO2002075812A1 PCT/JP2002/001003 JP0201003W WO02075812A1 WO 2002075812 A1 WO2002075812 A1 WO 2002075812A1 JP 0201003 W JP0201003 W JP 0201003W WO 02075812 A1 WO02075812 A1 WO 02075812A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
forming
film
integrated circuit
circuit device
Prior art date
Application number
PCT/JP2002/001003
Other languages
English (en)
French (fr)
Inventor
Satoru Yamada
Hiroyuki Enomoto
Nobuya Saito
Tsuyoshi Kawagoe
Original Assignee
Hitachi, Ltd.
Hitachi Ulsi Systems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Ulsi Systems Co., Ltd. filed Critical Hitachi, Ltd.
Priority to JP2002574127A priority Critical patent/JPWO2002075812A1/ja
Priority to KR1020037011553A priority patent/KR100863780B1/ko
Priority to US10/469,819 priority patent/US7141471B2/en
Publication of WO2002075812A1 publication Critical patent/WO2002075812A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/482Bit lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/09Manufacture or treatment with simultaneous manufacture of the peripheral circuit region and memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/485Bit line contacts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/488Word lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/50Peripheral circuit region structures

Definitions

  • the present invention relates to a semiconductor integrated circuit device and a technology for manufacturing the same, and more particularly to a semiconductor integrated circuit device having a dynamic random access memory (DRAM) and a technology effective when applied to the manufacture thereof.
  • DRAM dynamic random access memory
  • a silicon nitride film is provided between an upper silicon oxide film and a lower silicon oxide film, and is used as a stopper for etching (for example, Japanese Patent Application Laid-Open No. H11-12626).
  • openings for connecting bit lines and capacitance elements to semiconductor substrates are formed in the space of miniaturized word lines.
  • the insulating film (cap insulating layer) covering the upper part of the word line and the insulating film (sidewall insulating film) covering the side wall are composed of a silicon nitride film, and an etching rate of the silicon oxide film and the silicon nitride film is formed.
  • a self-aligned contact (SAC) technique for forming the above-mentioned hole in a self-aligned manner with respect to the word line space by utilizing the difference in height is employed.
  • SAC self-aligned contact
  • Japanese Patent Application Laid-Open No. 2000-7007 relates to a DRAM in which a gate line cap insulating film and a side wall insulating film are formed of a silicon oxide film.
  • the above-mentioned interlayer insulating film is formed on the silicon nitride film and the silicon oxide film formed on the silicon nitride film. And a lower silicon nitride film.
  • a technique used as a stopper for toching is disclosed. Disclosure of the invention
  • the present inventor while advancing the development of 256 megabit (Mb it) DRAM and 1 gigabit (Gb) DRAM, intends to reduce the bit line capacity as a measure to increase the refresh time interval. I'm considering that.
  • bit line capacitance The components of bit line capacitance are divided into adjacent bit lines, substrate, storage electrodes, word lines, and plate electrodes.
  • a so-called capacitor in which an information storage capacitor is placed above the bit line
  • COB Capacitor Over Bit line
  • the distance between the bit line and the word line is short, so the capacitance component with respect to the word line is the largest component. Therefore, in order to reduce the bit line capacitance, the reduction of the line capacitance is the highest priority.
  • the top and side walls of word lines are covered with a silicon nitride film that has a high etching selectivity to silicon oxide.
  • a silicon nitride film that has a high etching selectivity to silicon oxide.
  • the relative dielectric constant of the silicon nitride film is about twice as large as that of the silicon oxide film, covering the upper part and the side wall of the word line with the silicon nitride film increases the bit line capacitance with respect to the word line. It will be done.
  • the bit line and the substrate are placed in the space of the word line.
  • the side wall insulating film or the cap insulating film of the lead line is made of silicon oxide film
  • the bit line and the substrate are placed in the space of the word line.
  • the side wall insulating film or the cap insulating film is cut deep, and the bottom of the opening comes close to the guide line. Is increased with respect to the word line capacitance.
  • An object of the present invention is to provide a technique capable of reducing the bit line capacity of a DRAM having a miniaturized memory cell size.
  • a semiconductor integrated circuit device includes a plurality of first conductor pieces formed on a semiconductor substrate so as to extend in parallel with each other, and a silicon oxide film formed on a side wall of the first conductor pieces.
  • a second insulating film made of a silicon oxide film formed on the first insulating film, wherein the first and second insulating films on each of the plurality of second conductor pieces have a second insulating film.
  • One opening is formed, and a third conductor piece electrically connected to the second conductor piece is formed inside the first opening.
  • a method for manufacturing a semiconductor integrated circuit device includes the following steps.
  • FIG. 1 is an overall plan view of a semiconductor chip on which a DRAM according to an embodiment of the present invention is formed.
  • FIG. 2 is a cross-sectional view of a main part of a semiconductor substrate showing a configuration of a DRAM according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a main part of a semiconductor substrate showing a configuration of a DRAM according to an embodiment of the present invention.
  • FIG. 4 is a plan view of a principal part of a semiconductor substrate showing a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 5 is a semiconductor substrate showing a DRAM manufacturing method according to an embodiment of the present invention. It is principal part sectional drawing.
  • FIG. 6 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 7 is a fragmentary cross-sectional view of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 8 is a fragmentary cross-sectional view of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 9 is a plan view of a main part of a semiconductor substrate showing a method of manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 10 is a fragmentary cross-sectional view of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 11 is a fragmentary cross-sectional view of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 12 is a fragmentary cross-sectional view of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to one embodiment of the present invention.
  • FIG. 13 is a fragmentary cross-sectional view of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 14 is a fragmentary cross-sectional view of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 15 is a cross-sectional view of a main part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of a main part of a semiconductor substrate showing a method of manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 17 is a cross-sectional view of a main part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 18 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 19 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing a DRAM according to one embodiment of the present invention.
  • FIG. 20 is a fragmentary cross-sectional view of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 21 is a fragmentary cross-sectional view of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 22 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing a DRAM according to one embodiment of the present invention.
  • FIG. 23 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing a DRAM according to one embodiment of the present invention.
  • FIG. 24 is a main-portion plan view of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 25 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 26 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 27 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 28 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 29 is a cross-sectional view of a main part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 30 is a cross-sectional view of a main part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 31 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 32 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method of manufacturing the DRAM according to one embodiment of the present invention.
  • FIG. 33 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing a DRAM according to one embodiment of the present invention.
  • FIG. 34 shows a semiconductor substrate illustrating a DRAM manufacturing method according to an embodiment of the present invention. It is principal part sectional drawing of.
  • FIG. 35 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing the DRAM according to one embodiment of the present invention.
  • FIG. 36 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 37 (a) is a schematic plan view of a contact hole formed using an etching resistant mask having a slit-shaped (groove-shaped) opening, and (b) and (c) are hole-shaped openings.
  • FIG. 4 is a schematic plan view of a contact hole formed by using an etching resistant mask having the following.
  • FIG. 38 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing a DRAM according to one embodiment of the present invention.
  • FIG. 39 is a cross-sectional view of a main part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 40 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing a DRAM according to one embodiment of the present invention.
  • FIG. 41 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 42 is a plan view of a principal part of a semiconductor substrate showing a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 43 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 44 is a cross-sectional view of a main part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 45 is a cross-sectional view illustrating a problem studied by the present inventors.
  • FIG. 46 is a cross-sectional view explaining a problem studied by the present inventors.
  • FIG. 47 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 48 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing a DRAM according to one embodiment of the present invention.
  • FIG. 49 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 50 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 51 is a plan view of a principal part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 52 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method of manufacturing a DRAM according to one embodiment of the present invention.
  • FIG. 53 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 54 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method of manufacturing the DRAM according to one embodiment of the present invention.
  • FIG. 55 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 56 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 57 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to an embodiment of the present invention.
  • FIG. 58 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to one embodiment of the present invention.
  • FIG. 59 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 60 is a cross-sectional view of a main part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 61 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 62 is a cross-sectional view of a main part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 63 is a semiconductor substrate illustrating a DRAM manufacturing method according to another embodiment of the present invention. It is principal part sectional drawing of a board.
  • FIG. 64 is a cross-sectional view of a main part of a semiconductor substrate, illustrating a method for manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 65 is a plan view of a main portion of a semiconductor substrate showing a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 66 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 67 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 68 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 69 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 70 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 71 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 72 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 73 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 74 is a cross-sectional view of a main part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 75 is a cross-sectional view of a main part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 76 is a plan view of a principal part of a semiconductor substrate showing a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 77 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 78 is a cross-sectional view of a principal part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 79 is a main-portion cross-sectional view of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 80 is a cross-sectional view of a main part of a semiconductor substrate, illustrating a method of manufacturing a DRAM according to another embodiment of the present invention.
  • FIG. 1 is an overall plan view of a semiconductor chip 1A on which a DRAM (Dynamic Random Access Memory) of the present embodiment is formed.
  • DRAM Dynamic Random Access Memory
  • a DRAM having a storage capacity of, for example, 256 Mb (megabit) is formed on the main surface of the rectangular semiconductor chip 1A.
  • This DRAM has a storage section composed of a plurality of memory arrays (MARY) and a peripheral circuit section PC arranged around them.
  • MARY memory arrays
  • PC peripheral circuit section
  • FIG. 2 is a cross-sectional view of a semiconductor substrate (hereinafter, referred to as a substrate) showing one end of a memory array (MARY).
  • a substrate a semiconductor substrate showing one end of a memory array (MARY).
  • a p-type well 2 is formed on a main surface of a substrate 1 made of P-type single crystal silicon, and an element isolation groove 4 is formed on the p-type well 2.
  • a plurality of memory cells are formed in the active region of the p-type well 2 whose periphery is defined by the element isolation groove 4.
  • Each of the memory cells is an n-channel type MISFET (Metal
  • the MIS FETQt for memory cell selection mainly comprises the gate insulating film 6 and the lead line WL in the area other than the active area. And a pair of n-type semiconductor regions (source and drain regions) 8.
  • the gate electrode 7 (word line WL) is, for example, a three-layer conductive film in which an n-type polycrystalline silicon film with P (phosphorus) doped, a WN (tungsten nitride) film, and a W (tungsten) film are laminated. It is comprised by.
  • FIG. 3 is a sectional view of the substrate 1 showing a part of the peripheral circuit section (PC).
  • a p-type well 2 and an n-type well 3 are formed on a substrate 1 of the peripheral circuit section (PC).
  • An n-channel MISFETQn is formed in the active region of the p-type well, and a p-channel MISFETQp is formed in the active region of the n-type well 3.
  • the n-channel type MISFETQn is mainly composed of the gate insulating film 6, the gate electrode 7 and a pair of n + type semiconductor regions (source and drain regions) 17, and the p-channel type MISFETQ p is mainly composed of the gate insulating film 6, It is composed of a gate electrode 7 and a pair of P + type semiconductor regions (source and drain regions) 18.
  • the peripheral circuit section (PC) is composed of a complementary MISFET Qn combining an n-channel MISFETQn and a p-channel MISFETQp.
  • two side wall insulating films 10 and 11 are formed on the side wall of the gate electrode 7 (lead line WL) of the MIS FET Qt for memory cell selection.
  • the outer sidewall insulating film 11 is made of, for example, a silicon oxide film having a thickness of about 30 nm, and the inner sidewall insulating film 10 is thinner than the first sidewall insulating film 11 (for example, 10 nm). (about 15 nm to 15 nm).
  • the height of the sidewall insulating film 11 composed of the silicon oxide film is higher than the upper surface of the gate electrode 7 (word line WL) and covers the upper portion of the gate electrode 7 (word line WL). It is also lower than the upper end of 9.
  • a two-layer insulating film (a silicon nitride film 19 and a silicon oxide film 31 in order from the bottom) is formed above the memory cell selection MIS FETQ t.
  • a bit line BL for writing and reading data to and from a memory cell is formed.
  • the bit line BL is made of, for example, a metal film such as W (tungsten).
  • the bit line BL is connected to the n-type semiconductor region (source, drain) of the MISFETQt for memory cell selection through the through hole 32 formed in the silicon oxide film 31 and the silicon nitride film 19 and the contact hole 12 thereunder. 8 is electrically connected to one of them.
  • a plug 33 composed of a metal film in which a W film is laminated on a TiN film is embedded.
  • a silicon oxide film 34 and a silicon nitride film 35 are formed above the bit line BL, and an information storage capacitor C is formed above the silicon nitride film 35.
  • the information storage capacitor C has a lower electrode 41 formed inside a deep groove 40 formed by etching a thick silicon oxide film 39 on the silicon nitride film 35, and a lower electrode 41 formed on the lower electrode 41. It is composed of the formed capacitor insulating film 42 and the upper electrode 43.
  • the lower electrode 41 of the information storage capacitor C is made of, for example, a Ru (ruthenium) film, and is connected to the n-type semiconductor region (source) of the MISFETQt for memory cell selection through the through hole 36 and the contact hole 13 thereunder. , Drain) 8 are electrically connected to the other.
  • Capacitive insulating film 42 is, for example BST.; Constituted by (Ba x S ri "X T i ⁇ 3 Barium Strontium Titanate) film, the upper electrode 43 is composed of Ru film.
  • an AI alloy wiring 52 is formed via a silicon oxide film 51.
  • the outer sidewall insulating film 21 is made of, for example, a silicon oxide film having a thickness of about 0 nm, and the inner sidewall insulating film 10 is formed of the above-described sidewall insulating film 10 of the MI SFET Qt for memory cell selection. It is composed of the same silicon nitride film.
  • First layer wirings 44 and 45 are formed above the ⁇ channel type MIS FE TQn, and first layer wirings 46 and 47 are formed above the p channel type Ml 3 ⁇ 3. You. These first layer wirings 44 to 47 are formed of the same metal film as the bit line B described above, and are formed simultaneously in the step of forming the bit line BL.
  • the first layer wirings 44 and 45 are formed through the contact holes 48 formed in the insulating films (the silicon oxide film 31, the silicon nitride film 19 and the silicon oxide film 22) under the n-type MIS FET Qn. It is electrically connected to the type semiconductor region (source / drain region) 17. Further, first layer wiring 46, 47, absolute Enmaku thereunder p + -type p-channel type MIS FETQp through a contact hole 49 formed in the (silicon oxide film 31, the silicon film 19 and the silicon oxide film 22 nitride) It is electrically connected to the semiconductor region (source, drain region) 18.
  • a plug 33 composed of a metal film in which a W film is laminated on a TiN film is embedded.
  • a silicon oxide film 34, a silicon nitride film 35, a thick silicon oxide film 39 and a silicon oxide film 51 are formed on the first layer wirings 44 to 47 in order from the lower layer.
  • AI alloy wirings 53 and 54 as the second layer wiring are formed.
  • the AI alloy wiring 53 is connected to the first layer wiring 44 through through holes 55 formed in the underlying insulating film (the silicon oxide film 51, the silicon oxide film 39, the silicon nitride film 35, and the silicon oxide film 34). It is electrically connected.
  • a plug 56 composed of a metal film in which a W film is laminated on a TiN film is buried. ;
  • FIG. 4 (a plan view showing one end of the memory array), FIG. 5 (a cross-sectional view taken along line AA in FIG. 4), and FIG. 6 (a cross-sectional view showing a part of a peripheral circuit portion)
  • the element isolation groove 4 is formed in the element isolation region on the main surface of the substrate 1.
  • the element isolation groove 4 is formed by etching the main surface of the substrate 1 to form a groove having a depth of about 300 to 400 nm, and then oxidizing the substrate 1 including the inside of the groove by a CVD method to a thickness of about 6 OO nm. After depositing the silicon film 5, the unnecessary silicon oxide film 5 outside the trench is removed by chemical mechanical polishing (Chemical
  • CMP mechanical polling
  • B boron
  • P phosphorus
  • the substrate 1 is thermally oxidized to a thickness of about 6 to 7 nm on each surface of the p-type well 2 and the n-type well 3.
  • a gate insulating film 6 made of silicon oxide is formed, and then a gate electrode 7 for each of the MISFETQt for memory cell selection, n-channel type MISFETQn, and p-channel type MISF ETQp is formed on the gate insulating film 6. I do.
  • an n-type polycrystalline silicon film doped with P (phosphorus) and having a thickness of about 70 nm is deposited on the gate insulating film 6 by a CVD method, and then a film thickness is formed thereon.
  • a WN (tungsten nitride) film with a thickness of about 5 nm and a W (tungsten) film with a thickness of about 60 nm are deposited by sputtering, and a cap insulating film 9 with a thickness of about 200 nm is deposited on top of it. These films are dry-etched using the resist films as masks.
  • the cap insulating film 9 is composed of a silicon nitride film (or a laminated film of a silicon oxide film and a silicon nitride film).
  • the gate electrode 7 may be formed of a polycide film (a laminated film of a polycrystalline silicon film and a refractory metal silicide film).
  • the gate electrode 7 of the MIS FET Qt for memory cell selection forms a lead line WL in an area other than the active area L, and obliquely intersects the long side of the active area L. Extending in the direction.
  • the gate length of the gate electrode 7 of the memory cell selecting MIS FETQt is, for example, about 0.13C] m to 1.4 Dm, and the space between the adjacent gate electrode 7 (word line WL) is, for example, 0.1. It is about 2 Dm.
  • Form 5 Also, B (boron) is ion-implanted into the n-type well 3 in the peripheral circuit section. As a result, a p-type semiconductor region 16 is formed. By the above steps, the MIS FETQt for memory cell selection is almost completed.
  • a thin silicon nitride film 1OA with a thickness of about 1 nm to 15 nm is deposited on the substrate 1 by CVD, and By depositing a silicon oxide film 21 A having a thickness of about 70 nm, the space of the gate electrode 7 (with a lead line W) is buried with the silicon oxide film 21 A.
  • the silicon oxide film 21A is deposited with a thickness larger than one half of the space of the gate electrode 7 (for the word line W) so that no void is formed in this space.
  • the silicon oxide film 5 inside the element isolation groove 4 is removed. Used as an etching stopper to prevent Therefore, when the amount of shaving of the silicon oxide film 5 does not matter, the silicon nitride film 1OA may be omitted.
  • the silicon oxide film 21 A and the silicon nitride ⁇ 1OA in the peripheral circuit portion are anisotropically etched to form a two-layer sidewall insulating film 21 on the sidewall of the gate electrode 7.
  • Form 10 the p-type
  • n + type semiconductor region (source, drain region) 17 is formed by ion-implanting P (phosphorus) into 2, and a B + type semiconductor region is formed by ion-implanting B (boron) into the n-type well 3.
  • Source, drain region 18: is formed.
  • a thick silicon oxide film 22 having a thickness of about 600 n'm is deposited on the substrate 1 by a CVD method, and the silicon oxide film 22 is formed by a chemical mechanical polishing method. By polishing and flattening, the height of the surface of the silicon oxide film 22 is made uniform between the memory array and the peripheral circuit portion.
  • a silicon nitride film forming a part of the cap insulating film 9 may be used as a polishing stopper, and the height of the surface of the silicon oxide film 22 may be reduced to the upper surface of the cap insulating film 9.
  • a thin silicon oxide film having a thickness of about 10 nm is formed on the silicon oxide film 22 by a CVD method.
  • a polycrystalline silicon film 24 A having a thickness of about 70 nm is deposited on the silicon oxide film 23 by a CVD method, and then a film thickness is formed on the polycrystalline silicon film 24 A.
  • An antireflection film 25 of about 60 nm and a photoresist film 26 of about 400 nm thickness are spin-coated.
  • the silicon oxide film 23 is deposited to repair fine scratches on the surface of the lower silicon oxide film 22 generated during polishing by the chemical mechanical polishing method.
  • FIG. 24 is a plan view showing a pattern (a portion colored gray) of the etching resistant mask 24 made of the polycrystalline silicon film 24A.
  • the etching resistant mask 24 has an elongated slit-like or groove-like opening 27 extending in the long side direction of the active region L across the memory array. Regarding the reason why such a slit-shaped (groove-shaped) opening 27 is provided in the etching resistant mask 24 for forming the contact holes (opening) 12 and 13 in the space of the gate electrode 7 Will be described later.
  • the oxidation in the opening 27 is performed using the etching resistant mask 24 as a mask.
  • a contact hole (opening) 1 is formed in the upper part of the n-type semiconductor region (source and drain regions) 8, that is, in the space of the gate electrode 7.
  • contact hole 12 is used to connect one of the n-type semiconductor regions (source and drain regions) '8 to the bit line BL, and the other (contact hole 1 3) is used to connect the other of the n-type semiconductor regions (source and drain regions) 8 to the lower electrode 41 of the information storage capacitor C.
  • the dry etching of the silicon oxide films 23, 22 and 21A is performed using the silicon nitride film and the silicon nitride film 10A constituting a part of the cap insulating film 9 as etching stoppers.
  • the silicon oxide films 21A, 22 and 23 are dry-etched, the silicon oxide film 5 inside the element isolation groove 4 is scraped.
  • a sidewall insulating film 10 composed of a silicon nitride film 1OA is formed on the sidewall of the gate electrode 7 (word line WL).
  • a silicon oxide film 11 A having a thickness of about 30 nm is deposited on the substrate 1 by a CVD method, and then, as shown in FIG. 29, the silicon oxide film 11 A is formed. Is etched anisotropically to form a side wall insulating film 11 composed of the silicon oxide film 11 A on the side wall of the gate electrode 7 (word line WL). At this time, as shown in FIG. 30, the silicon oxide film 11A is also formed on the side walls of the silicon oxide films 22 and 21A along the extending direction of the slit-shaped (groove-shaped) opening 27. The side wall insulating film 11 is formed.
  • the anisotropic etching of the silicon oxide film 11 A is performed by etching the silicon nitride film which is a part of the side wall insulating film 10 and the cap insulating film 9 made of silicon nitride.
  • the height of the side wall insulating film 11 formed on the side wall of the gate electrode 7 (word line WL) becomes lower than the upper surface of the cap insulating film 9 (FIG. 29).
  • the amount of etching of the anisotropic etching performed on the side wall insulating film 11 is determined by the chemical mechanical polishing performed later using the silicon nitride film of the cap insulating film 9 as a stopper.
  • the upper end of the side wall insulating film 11 and the upper surface of the cap insulating film 9 are so arranged that the upper end of the side wall insulating film 11 made of silicon oxide is certainly lower than the upper surface of the cap insulating film 9. It is advisable to secure a difference in height from the height.
  • the side wall insulating film 11 formed on the side walls of the silicon oxide films 22 and 21 A has a higher upper end portion than the side wall insulating film 11 formed on the side wall of the gate electrode 7 (word line WL). ( Figure 30).
  • a thin silicon nitride film (1 OA) and a thicker silicon oxide film (1 OA) are formed on the side wall of the gate electrode 7 (word line WL) of the MISF ETQ t for memory cell selection.
  • the side wall insulating film 11 composed of the silicon oxide film (11 A) has a lower height on the side wall of the gate electrode 7 (word line WL) than the upper surface of the cap insulating film 9, so that the gate electrode 7 (Word line WL)
  • the cross section of the formed contact holes 12 and 13 along the gate length direction is such that the diameter at the top (a) is larger than the diameter at the bottom (b) (a> b) .
  • the thin and thick silicon nitride film 10A remaining at the bottom of the contact holes 12 and 13 is removed by dry etching to remove the n-type semiconductor.
  • the surface of the region (source, drain region) 8 is exposed.
  • the surface of the n-type semiconductor region (source / drain region) 8 damaged by the dry etching is thinly dry-etched to remove the damage, and the surface is washed with hydrofluoric acid.
  • an n-type polycrystalline silicon film 14 A of about 100 nm thickness doped with P (phosphorus) is deposited by a CVD method to form a contact.
  • the insides of the holes 12 and 13 are filled with an n-type polycrystalline silicon film 14A. If there is a contact hole larger in diameter than the contact holes 12 and 13 in the peripheral circuit part, the thickness of the n-type polycrystalline silicon film 14A inside the contact hole will be insufficient, and in the next step When the n-type polycrystalline silicon film 14A is polished, the substrate 1 at the bottom of the contact hole may be shaved.
  • a silicon oxide film of about 0 nm may be further deposited.
  • an n-type polycrystalline silicon film 14 A, an etching-resistant mask 24 made of polycrystalline silicon, and a silicon oxide film 21 A, 2 The n-type polycrystalline silicon film 14A outside the contact holes 12 and 13 is removed by polishing 2, 23 by a chemical mechanical polishing method, and the n-type inside the contact holes 1 2 and 13 is removed. A plug 14 composed of the polycrystalline silicon film 14 A is formed. This chemical mechanical polishing is performed using the silicon nitride film constituting a part of the cap insulating film 9 as a stopper.
  • the silicon oxide film 21 is formed by using the etching resistant mask 24 having the slit-shaped (groove-shaped) holes 27 extending in the long side direction of the active region L.
  • Contact holes (opening portions) 12 and 13 are formed in the space of the gate electrode 7 by dry-etching A, 22 and 23.
  • the side wall of the gate electrode 7 constituting the wall of the contact holes 12 and 13 and the silicon oxide film
  • the plugs 14 are formed inside the contact holes 12 and 13.
  • the cap insulating film 9 has a laminated structure in which a part of the silicon nitride film is formed, and when the n-type polycrystalline silicon film 14A is subjected to chemical mechanical polishing, the silicon nitride film is formed. Since this can be used as a stopper, it is easy to control the thickness of the cap insulating film 9.
  • the cap insulating film 9 of the present embodiment has a laminated structure in which a silicon oxide film is provided below a silicon nitride film used as a stopper during the chemical mechanical polishing, the gate electrode 7 is processed.
  • the thickness of the cap insulating film 9 at the end of the chemical mechanical polishing can be ensured while suppressing the thickness of the silicon nitride film, which is not preferable from the viewpoint of the resist selectivity and the tantalum selectivity. .
  • FIG. 37 (a) is a schematic plan view of a contact hole 12 formed using an etching resistant mask 24 having the above-mentioned slit-shaped (groove-shaped) opening 27. Since a sidewall insulating film 11 composed of a silicon oxide film is formed on the side wall of the contact hole 12, the area inside the sidewall insulating film 11 (the area colored in gray) is the contact hole 1. This is a region where the n-type semiconductor region 8 exposed at the bottom of 2 and the plug 14 are in contact.
  • FIG. 37 (b) is a schematic plan view of a contact hole: 12 formed by using an etching resistant mask having a hole-shaped opening 30 in the contact hole opening region.
  • the side wall insulating film 11 is formed on the side wall of the contact hole 12, so that the area inside the side wall insulating film 11 (the area colored gray) is the bottom of the contact hole 12.
  • This is a region where the n-type semiconductor region 8 exposed to the outside and the plug 14 come into contact.
  • the contact hole 12 formed using an etching resistant mask having such a hole-shaped opening 30 has a problem that the position of the opening 30 is shifted in the long side direction of the active region L due to misalignment of the photomask. If it is deviated, as shown in Fig. 37 (c)
  • the photomask is Due to misalignment, the position of aperture 27 is not in the long side direction of active area L. In this case, the contact area between the n-type semiconductor region 8 and the plug 14 does not become small.
  • the plug 14 embedded in the contact hole 12 and ⁇ Since the contact area with the type semiconductor region 8 can be ensured to the maximum, an increase in contact resistance between the plug 14 and the ⁇ type semiconductor region 8 can be suppressed.
  • a contact hole is formed in a space of a gate electrode after forming a side wall insulating film on a side wall of an electrode, and a contact hole is formed in a space of a gate electrode as in this embodiment. It differs depending on the case where the side wall insulating film is formed.
  • a silicon nitride film 19 having a thickness of about 20 nm is deposited on the substrate 1 by a CVD method, and then a CVD method is formed on the silicon nitride film 19.
  • a silicon oxide film 31 having a thickness of about 300 nm by using the above method the surface thereof is flattened by polishing the silicon oxide film 31 to a thickness of about 100 nm by a chemical mechanical polishing method.
  • the planarization of the silicon oxide film 31 is performed in order to increase the precision of the through holes (32, 36) formed above the memory cell selection MISFETQt in a later step.
  • the silicon oxide film 31 on the contact hole 12 is dry-etched using the photoresist film 28 as a mask.
  • the dry etching of the silicon oxide film 31 is performed by using the underlying silicon nitride film 19 as a etching stop. That is, this dry etching is performed under the condition that the etching selectivity of the silicon oxide film 31 to the silicon nitride film 19 becomes large, and the silicon nitride film 19 above the contact hole 12 is not completely removed. To do.
  • the silicon nitride film 19 above the contact hole 12 is dry-etched using the photoresist Form through hole 3 2 on top of hole 1 2 I do.
  • the dry etching of the silicon nitride film 19 is performed under conditions that increase the etching selectivity to the silicon oxide film.
  • FIG. Fig. 45 is a cross-sectional view along the line A-A (long side of the active area L) in Fig. 42
  • Fig. 46 is a cross-sectional view along the line BB (the direction in which the word line W extends).
  • 3A and 3B are cross-sectional views in which no silicon nitride film 19 is provided below the silicon oxide film 31.
  • the upper part of the gate electrode 7 (lead line WL) is covered with a cap insulating film 9 containing a silicon nitride film. Therefore, when the silicon oxide film 31 above the contact hole 12 is dry-etched using the photoresist film 28 as a mask, the position of the through-hole 32 and the contact hole 12 therebelow is slightly shifted. In this case, since the cap insulating film 9 serves as an etching stopper, the amount by which the bottom of the through hole 32 recedes below the upper surface of the cap insulating film 9 is small.
  • the silicon oxide film at the bottom of the through hole 32 is formed. Since only a small amount of 2 2 and sidewall insulating film 1 1 need to be scraped, the distance between the plug 3 3 buried in the through hole 3 2 and the gate electrode 7 (word line W) can be secured, and the bit Formed between line B1 and gate electrode 7 (word line WL) This can prevent an increase in the required capacity.
  • the silicon oxide film 31 and the silicon nitride film 1 in the peripheral circuit portion are used.
  • a contact hole 48 is formed above the n + type semiconductor region (source, drain region) 17 of the n channel type MIS FETQn, and the p + type semiconductor of the p channel type MIS FETQp A contact hole 49 is formed above the region (source and drain regions) 18.
  • plugs 33 are formed in the through holes 32 and the contact holes 48 and 49.
  • a barrier metal film made of TiN or the like is deposited on the silicon oxide film 31 by a CVD method, and then a W film is deposited on the barrier metal film by a CVD method. After these films are embedded in the through holes 32 and the contact holes 48 and 49, the films outside the through holes 32 and the contact holes 48 and 49 are removed by a chemical mechanical polishing method.
  • bit line BL is formed on the silicon oxide film 31.
  • first layer wirings 44 to 47 are formed above the silicon oxide film 31 in the peripheral circuit portion.
  • a sputtered iN film or WN film
  • WN film a sputtered iN film having a thickness of about 10 ⁇ and a thickness of 50 nm are formed on the silicon oxide film 31 by sputtering. After depositing about W films, these films are dry-etched using the photoresist film as a mask.
  • the bit line BL is connected to the n-type semiconductor region (source, drain region) of the MIS FETQt for memory cell selection through the plug 33 embedded in the through hole 32 and the plug 14 embedded in the contact hole 12. It is electrically connected to one of 8).
  • the DRAM according to the present embodiment includes a sidewall insulating film 10 composed of a silicon nitride film and a sidewall insulating film 1 composed of a silicon oxide film on the sidewall of the gate electrode 7 of the MISF ETQt for memory cell selection. 1 and these sidewall insulating films
  • a conventional self-aligned line consisting of a silicon nitride film with a high electrical conductivity and a sidewall insulating film
  • the effective relative dielectric constant of the sidewall dielectric can be reduced compared to contact (SAC) technology, thereby reducing the main component of bit line capacitance, word line capacitance.
  • the cap insulating film 9 above the gate electrode 7 is formed of a laminated film of a silicon oxide film and a silicon nitride film.
  • the effective relative dielectric constant of the cap insulating film is lower than that of the conventional self-aligned contact (SAC) technology, in which the cap insulating film is composed of only a silicon nitride film having a higher relative dielectric constant than the silicon oxide film. Therefore, the bit line capacitance to the word line capacitance component can be further reduced.
  • the silicon nitride film 1 serving as an etching stopper is formed below the silicon oxide film 31 in advance. 9 is formed to prevent the silicon oxide film 22 and the sidewall insulating film 11 at the bottom of the through hole 32 from being scraped. As a result, the distance between the plug 33 embedded in the through hole 32 and the gate electrode 7 (word line WL) can be secured, so that the bit line capacity and the word line capacity component are further reduced. can do.
  • a silicon oxide film 34 having a thickness of about 300 nm is deposited on the bit line BL by a CVD method, and the surface is flattened by a chemical mechanical polishing method.
  • a silicon nitride film 35 having a thickness of about 50 nm is deposited on the silicon oxide film 34 by a CVD method, and then the silicon nitride film 35, the silicon oxide films 35, 31 and the nitride film are formed.
  • the silicon film 19 is sequentially dry-etched to form a through hole 36 above the contact hole 13 in which the plug 14 is embedded.
  • the silicon nitride film 19 is formed under the silicon oxide film 31, even if the position between the through hole 36 and the contact hole 13 is slightly shifted due to misalignment of the photomask, etc. Since the silicon film 19 serves as an etching stopper, the silicon oxide film 22 at the bottom of the through hole 36 can be prevented from being scraped. As a result, the distance between the plug 37 embedded in the through hole 36 in the next step and the gate electrode 7 (word line WL) can be secured. Therefore, an increase in capacitance formed between the information storage capacitor C formed above the through hole 36 and the gate electrode 7 (word line WL) in a later step is prevented, and the gate electrode 7 (Word line WL) delay can be suppressed.
  • a plug 37 is formed inside the through hole 36, and a barrier metal B38 is formed on the surface of the plug 37.
  • a P-doped n-type polycrystalline silicon film is deposited on the silicon nitride film 35 by CVD to form the through hole 36.
  • the n-type polycrystalline silicon film outside the through hole 36 is removed by dry etching.
  • the n-type polycrystalline silicon film inside the through hole 36 is over-etched, and the surface of the plug 37 is receded below the surface of the silicon nitride film 35, thereby forming a barrier above the plug 37.
  • a space for embedding the metal film 38 is secured.
  • a TaN (tantalum nitride) film is buried above the plug 37 in the through hole 36 by depositing a TiN film on the silicon nitride film 35 by sputtering.
  • the TaN film outside the through hole 36 is removed by a chemical mechanical polishing method.
  • the barrier metal film 38 interposed between the lower electrode of the information storage capacitor C and the plug 37 formed in the upper part of the through-hole 36 in a later step forms a capacitor insulation of the information storage capacitor C.
  • the barrier metal film 38 is formed to suppress the occurrence of undesired reactions. .
  • the outer side wall insulating film 11 has a cap insulating height on the side wall of the gate electrode 7. Since it is lower than the upper surface of the film 9, the cross section of the contact holes 12 and 13 along the gate length direction has a larger diameter at the top than at the bottom (see FIG. 29). That is, the diameter of the plug 14 embedded in the contact holes 12 and 13 is larger at the upper portion than at the bottom of the contact holes 12 and 13.
  • an information storage capacitor C composed of a lower electrode 41, a capacitor insulating film 42, and an upper electrode 43 is formed above the through hole 36, and embedded in the through hole 36.
  • the information storage capacitor C is formed by the following method. First, a thick silicon oxide film 39 having a thickness of about 1 Dm is deposited on the silicon nitride layer 35 by a CVD method, and then the silicon oxide film 39 is dry-etched using a photoresist film (not shown) as a mask. A groove 40 is formed above the through hole 36. The etching of the silicon oxide film 39 is performed using the silicon nitride film 35 as an etching stopper so that the underlying silicon oxide film 34 is not removed.
  • a Ru film having a thickness of about 70 nm to 80 nm is deposited on the silicon oxide film 39 including the inside of the groove 40 by a CVD method.
  • a photo resist film is buried inside the groove 40 to prevent the Ru film inside the groove 40 from being removed, the Ru film outside the groove 40 which is not covered with the photoresist film is formed.
  • the film is removed by dry etching, and the photoresist film embedded in the groove 40 is removed by asking to form a lower electrode 41 made of a Ru film on the side wall and the bottom surface of the groove 40.
  • a capacitance insulating film 42 is formed on the silicon oxide film 39 including the inside of the groove 40 in which the lower electrode 41 is formed.
  • the capacitive insulating film 42 is formed of, for example, a BST film having a thickness of about 20 nm deposited by a CVD method.
  • an upper electrode 43 is formed on the upper part of the capacitance insulation pordia 42.
  • the upper electrode 43 is composed of, for example, a Ru film having a thickness of about 200 nm deposited by a CVD method or a sputtering method.
  • the lower electrode 4 composed of the Ru film 1.
  • the information storage capacitor C including the capacitor insulating film 42 composed of the BST film and the upper electrode 43 composed of the Ru film is completed.
  • a silicon oxide film 51 is deposited on the information storage capacitor C by the CVD method, and then, as shown in FIG. 58, the silicon oxide films 51, 39, After a silicon nitride film 35 and a silicon oxide film 34 are sequentially etched to form a through hole 55 above the first layer wiring 44, a plug 56 is formed inside the through hole 55.
  • the plug 56 is made of, for example, a laminated film of a ⁇ ⁇ film and a W film.
  • AI alloy film formed by sputtering on the silicon oxide film 51 is patterned to form AI alloy wirings 52 to 54, whereby the DRAM shown in FIGS. 2 and 3 is substantially completed.
  • an MIS FETQt for selecting a memory cell is formed in a memory array in the same manner as in the first embodiment, and an n-channel MIS FETQn and a p-channel MIS FETQp are formed in a peripheral circuit portion.
  • silicon oxide films 22 and 23 are formed thereon, and an etching resistant mask 24 made of a polycrystalline silicon film is formed on the silicon oxide film 23.
  • the steps so far are the same as the steps shown in FIGS. 4 to 24 of the first embodiment.
  • the silicon oxide films 21A, 22 and 23 are dry-etched using the etching-resistant mask 24 as a mask to form contact holes (openings) 12 and 12 in the space of the gate electrode 7.
  • Form 1 3 At this time, in the present embodiment, the silicon nitride film 1 OA covering the upper part of the n-type semiconductor region (source / drain region) 8 is also etched, and the n-type semiconductor is formed on the bottom of the contact holes 12 and 13. The surface of the semiconductor region (source, drain region) 8 is exposed.
  • a sidewall insulating film 10 composed of the silicon nitride film 1OA is formed on the sidewall of the gate electrode 7 (word line WL) by the steps up to here.
  • the surface of the n-type semiconductor region (source / drain region) 8 damaged by the dry etching is thinly dry-etched and then subjected to hydrofluoric acid cleaning.
  • a silicon oxide film 11 A having a thickness of about 30 nm is deposited on the substrate 1 by the CVD method, and then, as shown in FIG. 62, the silicon oxide film 11 A is anisotropically deposited.
  • a sidewall insulating film 11 composed of a silicon oxide film 11A having a thickness of about 30 nm is formed on the sidewall of the gate electrode 7 (word line WL). Subsequent steps are the same as in the first embodiment.
  • the side wall insulating film 11 is formed on the side wall of the gate electrode 7 (word line WL). As a result, the silicon nitride film 1OA does not remain at the bottom of the sidewall insulating film 11 (FIG. 62).
  • the side wall insulating film 11 is formed on the side wall of the gate electrode 7 (the lead line WL), and then the silicon nitride film 1 OA at the bottom of the contact holes 12 and 13 is removed.
  • the silicon nitride film 1OA remains at the bottom of the sidewall insulating film 11 (FIG. 31).
  • word line WL the interface between the silicon nitride film 1 OA and the underlying gate insulating film 6 is charged, and the memory cell This causes the leakage current to fluctuate.
  • the manufacturing method of the present embodiment in which the silicon nitride film 1 OA is not left at the end of the side wall of the gate electrode 7 (word line WL), it is possible to prevent such a problem and suppress the characteristic variation of the memory cell. Can be.
  • a MIS FETQt for selecting a memory cell is formed in a memory array in the same manner as in the first embodiment, and n-channel type MISF ETQs n and p are formed in a peripheral circuit portion.
  • the silicon oxide film 22 deposited thereon is polished and flattened by a chemical mechanical polishing method.
  • the steps so far are the same as the steps shown in FIGS. 4 to 19 of the first embodiment.
  • a silicon nitride film constituting a part of the cap insulating film 9 is used as a polishing stopper, and the height of the surface of the silicon oxide film 22 is set to
  • the upper part of the silicon oxide film 22 is After depositing the silicon oxide film 23, the silicon oxide films 23, 22 and 21A are dry-etched using the photoresist film 60 formed on the silicon oxide film 23 as a mask to obtain n. Round hole-shaped contact holes (openings) 61 and 62 are formed in the upper part of the semiconductor region (source and drain regions) 8, that is, in the space of the gate electrode 7.
  • the dry etching of the silicon oxide films 23, 22 and 21A is performed using the silicon nitride film and the silicon nitride film 10A constituting a part of the cap insulating film 9 as an etching stopper.
  • a round hole-shaped contact hole (opening) 6 1 is formed in the space of the gate electrode 7 by dry etching using the photo resist film 60 formed on the silicon oxide film 23 as a mask. , Forming 62.
  • the contact holes (opening) 12 and 13 are formed in the space of the gate electrode 7 by dry etching using the etching resistant mask 24 made of a polycrystalline silicon film as a mask. The process can be shortened as compared with.
  • the silicon oxide film deposited on the substrate 1 is anisotropically etched to form a side wall insulating film on the side wall of the gate electrode 7 (word line WL).
  • Form 1 1 As described above, in this embodiment, when the silicon oxide film 22 is polished and flattened, the height of the surface is set back to the upper surface of the cap insulating film 9 (see FIG. 63). The height of 11 is equal in the long side direction (A-A line direction) of the active region and the extending direction (B-B line direction) of the gate electrode 7 (word line WL) crossing it. The upper end of the side wall insulating film 11 is lower than the upper surface of the cap insulating film 9.
  • the thin silicon nitride film 10 A remaining at the bottoms of the contact holes 61 and 62 is removed by dry etching to remove the n-type semiconductor region ( After exposing the surface of the source and drain regions (8), for example, P (phosphorus) A plug 14 is formed by embedding an n-type polycrystalline silicon film doped with P into the contact holes 61 and 62.
  • the upper end of the side wall insulating film 11 is lower than the upper surface of the cap insulating film 9 in all directions, so that it is embedded in the contact holes 61 and 62.
  • the surface of the plug 14 has a larger area than that of the first embodiment. That is, the contact area between the contact hole 61 and the through hole 32 formed on the contact hole 61 and the contact area between the contact hole 62 and the through hole 36 formed on the contact hole 61 are all the same as those in the above-described embodiment. It is larger than that of 1.
  • a silicon nitride film 19 having a thickness of about 20 nm is deposited on the substrate 1 by a CVD method, and then a CVD method is formed on the silicon nitride film 19.
  • a silicon oxide film 31 having a thickness of about 300 nm is deposited by using the above method, the silicon oxide film 31 is polished by a chemical mechanical polishing method to a thickness of about 100 nm, thereby planarizing the surface.
  • the silicon oxide film 31 on the contact hole 61 is dry-etched using the photoresist film 28 as a mask. Dry etching of the silicon oxide film 31 is performed using the underlying silicon nitride film 19 as an etching stop. That is, this dry etching is performed under the condition that the etching selectivity of the silicon oxide film 31 to the silicon nitride film 19 becomes large, and the silicon nitride film 19 above the contact hole 61 is completely removed. Ensure that they are not removed.
  • the silicon nitride film 19 on the contact hole 61 is dry-etched by using the photoresist film 28 as a mask.
  • a through hole 32 is formed above the contact hole 61.
  • the dry etching of the silicon nitride film 19 is performed under conditions that increase the etching selectivity to the silicon oxide film.
  • the silicon oxide film 22 and the sidewall insulating film 11 at the bottom of the through hole 32 can be slightly removed.
  • the distance between the plug 33 embedded in the through hole 32 and the gate electrode 7 (word line WL) can be ensured.
  • a plug 33 is formed inside the through hole 32 by the method described above. Subsequent steps are the same as those in the first embodiment, and a description thereof will not be repeated.
  • the present invention is not limited to this. That is, according to the present invention, when at least a part of the side wall insulating film of the gate electrode is made of an oxygen silicon film, the silicon oxide film covering the upper part of the gate electrode is etched to form a contact hole (opening) in the space of the gate electrode. Hole) can be applied to a semiconductor integrated circuit device having a process of forming a hole. Industrial applicability
  • the capacity of the bit line can be reduced. This makes it possible to increase the signal voltage when reading out the charge (information) stored in the information storage capacitor, thereby increasing the signal noise margin, extending the refresh cycle, and reducing power consumption. can do.
  • the number of memory cells connected to one bit line can be increased, the number of sense amplifiers can be reduced, and the chip area can be reduced accordingly. Increasing the number can improve the production yield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

明 細 書 半導体集積回路装置の製造方法および半導体集積回路装置 技術分野
本発明は、 半導体集積回路装置およびその製造技術に関し、 特に、 D R AM ( Dynam ic Random Access Memory) を有する半導体集積回路装置およびその製造に 適用して有効な技術に関する。 背景技術
半導体集積回路装置の製造プロセスでは、 半導体基板上に堆積した酸化シリコ ン膜をエッチングして開孔を形成する際、 開孔の底部に露出する下層の酸化シリ コン膜が過剰にエッチングされるのを防ぐため、 上層の酸化シリコン膜と下層の 酸化シリコン膜との間に窒化シリコン膜を設け、 これをェツチングのストツバと して利用することが行われている (例えば特開平 1 1一 2 6 5 7 4号公報など) また、 近年の大容量 D R AMなどの製造プロセスでは、 微細化されたワード線 のスペースにビット線および容量素子と半導体基板とを接続するための開孔を形 成する際、 ワード線の上部を覆う絶縁膜 (キャップ絶縁臈) と側壁を覆う絶縁膜 (側壁絶縁膜) とを窒化シリコン膜で構成し、 酸化シリコン膜と窒化シリコン膜 とのエッチングレート差を利用することによって、 上記開孔をワード線のスぺー スに対して自己整合的に形成するセルファライン■ コンタク ト (Se l f Al i gn' Contact; S A C) 技術が採用されている。 (例えば特開平 9一 2 5 2 0 9 8号公 報など)。
また、 特開 2 0 0 0— 7フ 6 2 2号公報は、 ヮ一ド線のキヤップ絶縁膜と側壁 絶縁膜とを酸化シリコン膜で構成した D R A Mに関するものであるが、 ヮ一ド線 の上部の層間絶縁膜をエッチングして開孔を形成する際に酸化シリコン膜からな る側壁絶縁膜がエッチングされるのを防ぐため、 上記層間絶縁膜を窒化シリコン 膜とその上部に形成した酸化シリコン膜とで構成し、 下層の窒化シリコン膜をェ ツチングのストッパとして利用する技術を開示している。 発明の開示
本発明者は、 2 5 6メガビット(Mb it) D R AMおよび 1ギガビット(Gbは) D R AMの開発を進めるなかで、 リフレッシュ時間間隔を長くするための一対策 として、 ビット線容量の低減を図ることを検討している。
ビッ卜線容量の成分は、 対隣接ビット線、 対基板、 対蓄積電極、 対ワード線お よび対プレート電極に分けられるが、 ビット線の上方に情報蓄積用容量素子を配 置する、いわゆるキャパシタ 'オーバー'ビットライン(Capac itor Over Bit l ine ; C O B) 構造のメモリセルの場合は、 ビット線とワード線との距離が近くなる ために、 対ワード線容量成分が最大の成分となる。 従って、 ビット線容量を低減 するためには、 対ヮード線容量を低減することが最優先課題となる。
前述したように、 セルファライン,コンタクト (S A C) 技術を採用する従来 の製造プロセスでは、 ワード線の上部と側壁とを酸化シリコン膜に対するエッチ ング選択比が大きい窒化シリコン膜で覆っている。 しかし、 窒化シリコン膜の比 誘電率は、 酸化シリコン膜のそれよりも約 2倍程度大きいため、 ワード線の上部 と側壁とを窒化シリコン膜で覆うと、 ビッ卜線の対ワード線容量が大きくなつて しまう。
—方、 ビッ卜線の対ヮード線容量を低減するために、:ヮード線の側壁絶縁膜あ るいはキャップ絶縁膜を酸化シリコン膜で構成した場合は、 ワード線のスペース にビット線と基板とを接続する開孔 (コンタクトホール) を形成する際に側壁絶 縁膜あるいはキャップ絶縁膜が深く削られ、 開孔の底部がヮ一ド線に近接してし まうため、 この場合も、 ビット線の対ワード線容量が大きくなつてしまう。
本発明の目的は、 メモリセルサイズが微細化された D R AMのビット線容量を 低減することのできる技術を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、 本明細書の記述および添 付図面から明らかになるであろう。
本願において開示される発明のうち、 代表的なものの概要を簡単に説明すれば 、 次のとおりである。 本発明の半導体集積回路装置は、 半導体基板上に、 互いに並行して延在するよ うに形成された複数の第 1導体片と、 前記第 1導体片の側壁に形成された酸化シ リコン膜からなる第 1側壁絶縁膜と、 前記第 1導体片の間に形成された第 2導体 片と、 前記複数の第 1および第 2導体片の上部に形成された窒化シリコン膜から なる第 1絶縁膜と、 前記第 1絶縁膜の上部に形成された酸化シリコン膜からなる 第 2絶縁膜とを有し、 前記複数の第 2導体片のそれぞれの上部の前記第 1および 第 2絶縁膜には第 1開孔が形成され、 前記第 1開孔の内部には、 前記第 2導体片 に電気的に接続された第 3導体片が形成されているものである。
本発明の半導体集積回路装置の製造方法は、 以下の工程を有している。
半導体基板上に第 1導体片を形成し、 第 1導体片および半導体基板の上部に第 1絶縁膜を形成する工程と、 前記第 1導体片の間に位置するように、 前記第 1絶 縁膜に第 1開孔を形成した後、 前記第 1開孔の側壁に酸化シリコン膜からなる第 1側壁絶縁膜を形成する工程と、 前記第 1開孔の内部に第 2導体片を形成するェ 程と、 前記第 1および第 2導体片の上部に窒化シリコン膜からなる第 2絶縁膜を 形成し、 前記第 2絶縁膜の上部に酸化シリコン膜からなる第 3絶縁膜を形成する 工程と、 前記第 1開孔の上部の前記第 3絶縁膜および前記第 2絶縁膜に第 2開孔 を形成し、 前記第 2開孔の底部に前記第 2導体片を露出させた後、 前記第 2開孔 の内部に、 前記第 2導体片に電気的に接続された第 3導体片を形成する工程。 図面の簡単な説明
図 1は、 本発明の一実施の形態である D R A Mを形成した半導体チップの全体 平面図である。 ' 図 2は、 本発明の一実施の形態である D R A Mの構成を示す半導体基板の要部 断面図である。
図 3は、 本発明の一実施の形態である D R A Mの構成を示す半導体基板の要部 断面図である。
図 4は、 本発明の一実施の形態である D R A Mの製造方法を示す半導体基板の 要部平面図である。
図 5は、 本発明の一実施の形態である D R A Mの製造方法を示す半導体基板の 要部断面図である。
図 6は、 本発明の一実施の形態である D R AMの製造方法を示す半導体基板の 要部断面図である。
図 7は、 本発明の一実施の形態である D R AMの製造方法を示す半導体基板の 要部断面図である。
図 8は、 本発明の一実施の形態である D R AMの製造方法を示す半導体基板の 要部断面図である。
図 9は、 本発明の一実施の形態である D R AMの製造方法を示す半導体基板の 要部平面図である。
図 1 0は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 1 1は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 1 2は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 1 3は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 14は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 1 5は、 本発明の一実施の形態である D RAMの製造方法を示す半導体基板 の要部断面図である。
図 1 6は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板' の要部断面図である。
図 1 7は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 1 8は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 1 9は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。 図 20は、 本発明の一実施の形態である D R AMの製造方法を示す半導体基板 の要部断面図である。
図 21は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 22は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 23は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 24は、 本発明の一実施の形態である D R AMの製造方法を示す半導体基板 の要部平面図である。
図 25は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 26は、 本発明の一実施の形態である D RAMの製造方法を示す半導体基板 の要部断面図である。
図 27は、 本発明の一実施の形態である D RAMの製造方法を示す半導体基板 の要部断面図である。
図 28は、 本発明の一実施の形態である D R AMの製造方法を示す半導体基板 の要部断面図である。
図 29は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 30は、 本発明の一実施の形態である D RAMの製造方法を示す半導体基板 の要部断面図である。
図 31は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 32は、 本発明の一実施の形態である D RAMの製造方法を示す半導体基板 の要部断面図である。
図 33は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 34は、 本発明の一実施の形態である D R AMの製造方法を示す半導体基板 の要部断面図である。
図 35は、 本発明の一実施の形態である D RAMの製造方法を示す半導体基板 の要部断面図である。
図 36は、 本発明の一実施の形態である D R AMの製造方法を示す半導体基板 の要部断面図である。
図 37 (a) は、 スリット状 (溝状) の開孔部を有する耐エッチングマスクを 使って形成したコンタク卜ホールの概略平面図、 (b) および(c) は、穴状の開 孔部を有する耐エッチングマスクを使って形成したコンタク卜ホールの概略平面 図である。
図 38は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 39は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 40は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 41は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 42は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部平面図である。
図 43は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 44は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板' の要部断面図である。
図 45は、 本発明者が検討した問題点を説明する断面図である。
図 46は、 本発明者が検討した問題点を説明する断面図である。
図 47は、 本発明の一実施の形態である D RAMの製造方法を示す半導体基板 の要部断面図である。
図 48は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。 図 49は、 本発明の一実施の形態である D RAMの製造方法を示す半導体基板 の要部断面図である。
図 50は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 51は、 本発明の一実施の形態である D RAMの製造方法を示す半導体基板 の要部平面図である。
図 52は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 53は、 本発明の一実施の形態である D RAMの製造方法を示す半導体基板 の要部断面図である。
図 54は、 本発明の一実施の形態である D RAMの製造方法を示す半導体基板 の要部断面図である。
図 55は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 56は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 57は、 本発明の一実施の形態である DRAMの製造方法を示す半導体基板 の要部断面図である。
図 58は、 本発明の一実施の形態である D RAMの製造方法を示す半導体基板 の要部断面図である。
図 59は、 本発明の他の実施の形態である D RAMの製造方法を示す半導体基 板の要部断面図である。 ' 図 60は、 本発明の他の実施の形態である DRAMの製造方法を示す半導体基 板の要部断面図である。
図 61は、 本発明の他の実施の形態である D RAMの製造方法を示す半導体基 板の要部断面図である。
図 62は、 本発明の他の実施の形態である DRAMの製造方法を示す半導体基 板の要部断面図である。
図 63は、 本発明の他の実施の形態である D RAMの製造方法を示す半導体基 板の要部断面図である。
図 64は、 本発明の他の実施の形態である DRAMの製造方法を示す半導体基 板の要部断面図である。
図 65は、 本発明の他の実施の形態である DRAMの製造方法を示す半導体基 板の要部平面図である。
図 66は、 本発明の他の実施の形態である DRAMの製造方法を示す半導体基 板の要部断面図である。
図 67は、 本発明の他の実施の形態である DRAMの製造方法を示す半導体基 板の要部断面図である。
図 68は、 本発明の他の実施の形態である DRAMの製造方法を示す半導体基 板の要部断面図である。
図 69は、 本発明の他の実施の形態である DRAMの製造方法を示す半導体基 板の要部断面図である。
図 70は、 本発明の他の実施の形態である DRAMの製造方法を示す半導体基 板の要部断面図である。
図 71は、 本発明の他の実施の形態である DRAMの製造方法を示す半導体基 板の要部断面図である。
図 72は、 本発明の他の実施の形態である DRAMの製造方法を示す半導体基 板の要部断面図である。
図 73は、 本発明の他の実施の形態である D RAMの製造方法を示す半導体基 板の要部断面図である。
図 74は、 本発明の他の実施の形態である DRAMの製造方法を示す半導体基' 板の要部断面図である。
図 75は、 本発明の他の実施の形態である DRAMの製造方法を示す半導体基 板の要部断面図である。
図 76は、 本発明の他の実施の形態である DRAMの製造方法を示す半導体基 板の要部平面図である。
図 77は、 本発明の他の実施の形態である D RAMの製造方法を示す半導体基 板の要部断面図である。 図 78は、 本発明の他の実施の形態である DRAMの製造方法を示す半導体基 板の要部断面図である。
図 79は、 本発明の他の実施の形態である DRAMの製造方法を示す半導体基 板の要部断面図である。
図 80は、 本発明の他の実施の形態である DRAMの製造方法を示す半導体基 板の要部断面図である。 発明を実施するための最良の形態
以下、 本発明の実施形態を図面に基づいて詳細に説明する。 なお、 実施形態を 説明するための全図において、 同一の機能を有するものには同一の符号を付し、 その繰り返しの説明は省略する。
(実施の形態 1 )
図 1は、 本実施形態の DRAM (Dynamic Random Access Memory) が形成され た半導体チップ 1 Aの全体平面図である。
長方形の半導体チップ 1 Aの主面には、例えば 256 Mb (メガビット)の記憶 容量を有する DRAMが形成されている。 この DRAMは、 複数のメモリアレイ (MARY) からなる記憶部とそれらの周囲に配置された周辺回路部 PCとを有 している。 また、 半導体チップ 1 Aの中央部には、 ワイヤやバンプ電極などが接 続される複数のボンディングパッド BPが 1列に配置されている。
図 2は、 メモリアレイ (MARY) の一端部を示す半導体基板 (以下、 基板と いう) の断面図である。
例えば P型の単結晶シリコンからなる基板 1の主面には p型ゥエル 2が形成さ' れており、 p型ゥエル 2には素子分離溝 4が形成されている。 この素子分離溝 4 によって周囲を規定された p型ゥエル 2のアクティブ領域には、 複数のメモリセ ルが形成されている。メモリセルのそれぞれは、 nチャネル型 M I S F ET (Metal
Insulator Semiconductor Field Effect Transistor)によって構成された一個の メモリセル選択用 M I S FETQ tとその上部に形成された一個の情報蓄積用容 量素子 Cとによって構成されている。 メモリセル選択用 M I S FETQ tは、 主 としてゲー卜絶縁膜 6、 アクティブ領域以外の領域においてヮ一ド線 WLを構成 するゲート電極 7および一対の n型半導体領域 (ソース、 ドレイン領域) 8によ つて構成されている。 ゲート電極 7 (ワード線 WL) は、 例えば P (リン) がド ープされた n型多結晶シリコン膜、 WN (窒化タングステン) 膜および W (タン ダステン) 膜を積層した 3層の導電体膜によつて構成されている。
図 3は、 周辺回路部 (PC) の一部を示す基板 1の断面図である。 周辺回路部 (PC) の基板 1には p型ゥエル 2および n型ゥエル 3が形成されている。 p型 ゥエルのアクティブ領域には nチャネル型 M I S FETQnが形成され、 n型ゥ エル 3のアクティブ領域には pチャネル型 M I S F ETQ pが形成されている。 nチャネル型 M I S FETQnは、 主としてゲート絶縁膜 6、 ゲート電極 7およ び一対の n+型半導体領域 (ソース、 ドレイン領域) 17によって構成され、 pチ ャネル型 M I S F E T Q pは、 主としてゲート絶縁膜 6、 ゲート電極 7および一 対の P+型半導体領域 (ソース、 ドレイン領域) 18によって構成されている。 す なわち、 周辺回路部 (PC) は、 nチャネル型 M I SFETQnと pチャネル型 M I S F E T Q pとを組み合わせた相補型 M I S F E Tによって構成されている 。
図 2に示すように、 メモリセル選択用 M I S FETQ tのゲート電極 7 (ヮー ド線 WL) の側壁には、 2層の側壁絶縁膜 1 0、 1 1が形成されている。 外側の 側壁絶縁膜 1 1は、 例えば 30 nm程度の膜厚を有する酸化シリコン膜によって 構成され、 内側の側壁絶縁膜 10は、 第 1の側壁絶縁膜 1 1よりも薄い膜厚 (例 えば 10 nm〜1 5 n m程度) の窒化シリコン膜によって構成されている。 酸化 シリコン膜によって構成された側壁絶縁膜 1 1の高さは、 ゲート電極 7 (ワード 線 WL) の上面よりも高く、 かつゲート電極 7 (ワード線 WL) の上部を覆って' いるキヤップ絶縁膜 9の上端部よリも低くなつている。
ゲート電極 7、 7のスペースには、 上記 2層の側壁絶縁膜 10、 1 1によって 周囲を囲まれたコンタクトホール (開孔) 1 2、 1 3が形成されており、 コンタ ク卜ホール 1 2、 1 3の内部には、 例えば P (リン) がドープされた n型多結晶 シリコン膜によって構成されたプラグ (導体層) 14が埋め込まれている。
メモリセル選択用 M I S FETQ tの上部には 2層の絶縁膜 (下層から順に窒 化シリコン膜 1 9および酸化シリコン膜 31) が形成されており、 酸化シリコン 膜 31の上部にはメモリセルに対してデータの書き込みおよび読み出しを行うビ ット線 BLが形成されている。 ビット線 BLは、 例えば W (タングステン) のよ うなメタル膜によって構成されている。 ビット線 BLは、 酸化シリコン膜 31お よび窒化シリコン膜 1 9に形成されたスルーホール 32とその下部の前記コンタ クトホール 1 2とを通じてメモリセル選択用 M I S F E T Q tの n型半導体領域 (ソース、 ドレイン) 8の一方と電気的に接続されている。 スルーホール 32の 内部には、 例えば T i N膜の上部に W膜を積層したメタル膜によって構成される プラグ 33が埋め込まれている。
ビット線 B Lの上部には酸化シリコン膜 34および窒化シリコン膜 35が形成 されており、 窒化シリコン膜 35の上部には情報蓄積用容量素子 Cが形成されて いる。 情報蓄積用容量素子 Cは、 窒化シリコン膜 35の上部の厚い膜厚の酸化シ リコン膜 39をエッチングして形成した深い溝 40の内部に形成された下部電極 41と、 下部電極 41の上部に形成された容量絶縁膜 42および上部電極 43と によって構成されている。
情報蓄積用容量素子 Cの下部電極 41は、 例えば Ru (ルテニウム) 膜によつ て構成され、 スルーホール 36およびその下部のコンタクトホール 1 3を通じて メモリセル選択用 M I S F E T Q tの n型半導体領域 (ソース、 ドレイン) 8の 他方と電気的に接続されている。 容量絶縁膜 42は、 例えば BST (BaxS r iXT i θ3; Barium Strontium Titanate) 膜によって構成され、 上部電極 43は例 えば Ru膜によって構成されている。 この情報蓄積用容量素子 Cの上部には、 酸 化シリコン膜 51を介して A I合金配線 52が形成されている。
図 3に示すように、 周辺回路部 (PC) の nチャネル型 M I S FETQnおよ' び Pチャネル型 M I S F E TQ pのそれぞれの側壁には、 2層の側壁絶縁膜 10 、 2 が形成されている。 外側の側壁絶縁膜 21は、 例えぱフ 0 nm程度の膜厚 を有する酸化シリコン膜によって構成され、 内側の側壁絶縁膜 1 0は、 前述した メモリセル選択用 M I SFETQ tの側壁絶縁膜 10と同じ窒化シリコン膜によ つて構成されている。
πチャネル型 M I S FE TQnの上部には第 1層配線 44、 45が形成され、 pチャネル型 M l 3 丁<3 の上部には第1層配線46、 47が形成されてい る。 これらの第 1層配線 44〜47は、 前述したビット線 Bしと同じメタル膜に よって構成され、 ビッ卜線 BLを形成する工程で同時に形成される。
第 1層配線 44、 45は、 その下部の絶縁膜 (酸化シリコン膜 31、 窒化シリ コン膜 1 9および酸化シリコン膜 22) に形成されたコンタクトホール 48を通 じて nチャネル型 M I S FETQnの n+型半導体領域 (ソース、 ドレイン領域) 17と電気的に接続されている。 また、 第 1層配線 46、 47は、 その下部の絶 縁膜 (酸化シリコン膜 31、 窒化シリコン膜 19および酸化シリコン膜 22) に 形成されたコンタクトホール 49を通じて pチャネル型 M I S FETQpの p + 型半導体領域 (ソース、 ドレイン領域) 18と電気的に接続されている。 コンタ クトホール 48、 49の内部には、 例えば T i N膜の上部に W膜を積層したメタ ル膜によって構成されるプラグ 33が埋め込まれている。
第 1層配線 44~47の上部には、 下層から順に酸化シリコン膜 34、 窒化シ リコン膜 35、 厚い膜厚の酸化シリコン膜 39および酸化シリコン膜 51が形成 され、 酸化シリコン膜 51の上部には第 2層配線である A I合金配線 53、 54 が形成されている。 A I合金配線 53は、 その下部の絶縁膜 (酸ィ匕シリコン膜 5 1、 酸化シリコン膜 39、 窒化シリコン膜 35および酸化シリコン膜 34) に形 成されたスルーホール 55を通じて第 1層配線 44と電気的に接続されている。 スルーホール 55の内部には、 例えば T i N膜の上部に W膜を積層したメタル膜 によって構成されるプラグ 56が埋め込まれている。 ;
次に、 上記のように構成された本実施形態の DRAMの製造方法を図 4〜図 5 8を用いて工程順に説明する。
まず、図 4 (メモリアレイの一端部を示す平面図)、図 5 (図 4の A— A線に沿' つた断面図) および図 6 (周辺回路部の一部を示す断面図) に示すように、 基板 1の主面の素子分離領域に素子分離溝 4を形成する。 素子分離溝 4は、 基板 1の 主面をエッチングして深さ 300〜400 nm程度の溝を形成し、 続いてこの溝 の内部を含む基板 1上に C V D法で膜厚 6 OO n m程度酸化シリコン膜 5を堆積 した後、 溝の外部の不要な酸化シリコン膜 5を化学機械研磨(Chemical
Mechanical Pol ishing; CM P)法で研磨、 除去することによって形成する。 図 4 に示すように、 素子分離溝 4を形成することにより、 メモリアレイには、 周囲が 素子分離溝 4で囲まれた細長い島状のパターンを有する多数のアクティブ領域 L が形成される。
次に、 図 7 (メモリアレイの一端部を示す断面図) および図 8 (周辺回路部の 一部を示す断面図) に示すように、 基板 1の一部に B (ホウ素) をイオン注入し 、 他の一部に P (リン) をイオン注入した後、 基板 1を熱処理してこれらの不純 物を基板 1内に拡散させることにより、 p型ゥエル 2および n型ゥエル 3を形成 する。
次に、 図 9、 図 1 0および図 1 1に示すように、 基板 1を熱酸化して p型ゥェ ル 2および n型ゥエル 3のそれぞれの表面に膜厚 6 nm~7 nm程度の酸化シリ コンからなるゲート絶縁膜 6を形成し、 続いてゲート絶縁膜 6の上部にメモリセ ル選択用 M I S FETQ t、 nチャネル型 M I S F E T Q nおよび pチャネル型 M I S F ETQ pのそれぞれのゲート電極 7を形成する。 ゲート電極 7を形成す るには、 例えば P (リン) をドープした膜厚 70 nm程度の n型多結晶シリコン 膜をゲート絶縁膜 6上に CVD法で堆積し、 続いてその上部に膜厚 5 nm程度の WN (窒化タングズテン) 膜および膜厚 60 nm程度の W (タングステン) 膜を スパッタリング法で堆積し、 さらにその上部に膜厚 200 nm程度のキャップ絶 縁膜 9を堆積した後、 フォトレジスト膜をマスクにしてこれらの膜をドライエツ チングする。 キャップ絶縁膜 9は、 窒化シリコン膜 (または酸化シリコン膜と窒 化シリコン膜との積層膜) で構成する。 ゲート電極 7は、 ポリサイド膜 (多結晶 シリコン膜と高融点金属シリサイド膜との積層膜) で構成してもよい。
図 9に示すように、 メモリ.セル選択用 M I S FETQ tのゲート電極 7は、 ァ クティブ領域 L以外の領域でヮ一ド線 W Lを構成し、 ァクティブ領域 Lの長辺と' 斜めに交差する方向に延在する。 メモリセル選択用 M I S FETQ tのゲート電 極 7のゲート長は、例えば 0. 1 3C]m~1. 4 Dm程度、隣接するゲート電極 7 (ワード線 WL) とのスペースは、 例えば 0. 1 2 Dm程度である。
次に、 図 1 2および図 1 3に示すように、 p型ゥエル 2に As (ヒ素) をィォ ン注入することによって、 メモリアレイの p型ゥエル 2に n型半導体領域 (ソー ス、 ドレイン領域) 8を形成し、周辺回路部の p型ゥエル 2に n—型半導体領域 1
5を形成する。 また、 周辺回路部の n型ゥエル 3に B (ホウ素) をイオン注入す ることによって、 p—型半導体領域 1 6を形成する。 ここまでの工程により、 メモ リセル選択用 M I S FETQ tが略完成する。
次に、 図 1 4および図 1 5に示すように、 基板 1上に CVD法で膜厚 1 O nm 〜1 5 nm程度の薄い窒化シリコン膜 1 OAを堆積した後、 その上部に CVD法 で膜厚 70 nm程度の酸化シリコン膜 21 Aを堆積することにより、 ゲート電極 7 (ヮード線 Wし) のスペースを酸化シリコン膜 21 Aで埋め込む。 酸化シリコ ン膜 21 Aは、 ゲート電極 7 (ワード線 Wし) のスペースの 2分の 1より大きい 膜厚で堆積し、 このスペースに空隙ができないようにする。 窒化シリコン膜 10 Aは、 後の工程でゲート電極 7のスペースにコンタクトホール (開孔) を形成す るためのドライエッチングを行う際、 素子分離溝 4の内部の酸化シリコン膜 5が 削られるのを防ぐエッチングストッパとして使用される。 従って、 酸化シリコン 膜 5の削れ量が問題とならないような場合は、 窒化シリコン膜 1 OAを省略して もよい。
次に、 図 1 6に示すように、 周辺回路部の酸化シリコン膜 21 Aおよび窒化シ リコン β莫 1 OAを異方的にエッチングしてゲート電極 7の側壁に 2層の側壁絶縁 膜 21、 10を形成する。 次に、 図 1 7に示すように、 周辺回路部の p型ゥエル
2に P (リン) をイオン注入することによって、 n+型半導体領域 (ソース、 ドレ イン領域) 17を形成し、 n型ゥエル 3に B (ホウ素) をイオン注入することに よって、 p+型半導体領域 (ソース、 ドレイン領域) 1 8:を形成する。 ここまでの 工程により、 周辺回路部の nチャネル型 M I S FETQnおよび pチャネル型 M
I S FETQpが略完成する。
次に、 図 18および図 1 9に示すように、 基板 1上に CVD法で膜厚 600 n' m程度の厚い酸化シリコン膜 22を堆積した後、 この酸化シリコン膜 22を化学 機械研磨法で研磨、 平坦化することにより、 酸化シリコン膜 22の表面の高さを メモリアレイと周辺回路部とで均一にする。 このとき、 キャップ絶縁膜 9の一部 を構成する窒化シリコン膜を研磨のストツパに用い、 酸化シリコン膜 22の表面 の高さをキヤップ絶縁膜 9の上面まで後退させてもよい。
次に、 図 20および図 21 (図 9の B— B線に沿った断面図) に示すように、 酸化シリコン膜 22の上部に C V D法で膜厚 10 n m程度の薄い酸化シリコン膜 2 3を堆積し、 続いて酸化シリコン膜 2 3の上部に C V D法で膜厚 7 0 n m程度 の多結晶シリコン膜 2 4 Aを堆積した後、 多結晶シリコン膜 2 4 Aの上部に膜厚 6 0 n m程度の反射防止膜 2 5および膜厚 4 0 0 n m程度のフォトレジス卜膜 2 6をスピン塗布する。 酸化シリコン膜 2 3は、 化学機械研磨法で研磨されたとき に生じた下層の酸化シリコン膜 2 2の表面の微細な傷を補修するために堆積する 次に、 図 2 2および図 2 3に示すように、 フォトレジスト膜 2 6をマスクにし て反射防止膜 2 5および多結晶シリコン膜 2 4 Aのそれぞれの一部をドライエツ チングすることにより、 耐エッチングマスク 2 4を形成する。 図 2 4は、 多結晶 シリコン膜 2 4 Aによって構成された上記耐エッチングマスク 2 4のパターン ( グレイの着色を施した部分) を示す平面図である。 図示のように、 耐エッチング マスク 2 4は、 メモリアレイを横切つてァクティブ領域 Lの長辺方向に延在する 細長いスリット状または溝状の開孔 2 7を有している。 ゲ一ト電極 7のスペース にコンタクトホール (開孔) 1 2、 1 3を形成するための耐エッチングマスク 2 4にこのようなスリット状 (溝状) の開孔部 2 7を設けた理由については後述す る。
次に、 フォトレジスト膜 2 6および反射防止膜 2 5を除去した後、 図 2 5およ び図 2 6に示すように、 耐エッチングマスク 2 4をマスクにして開孔 2 7内の酸 化シリコン膜 2 3、 2 2、 2 1 Aをドライエッチングす:ることにより、 n型半導 体領域 (ソース、 ドレイン領域) 8の上部、 すなわちゲート電極 7のスペースに コンタクトホール (開孔) 1 2、 1 3を形成する。 コンタクトホール 1 2、 1 3 の一方 (コンタクトホール 1 2 ) は、 n型半導体領域 (ソース、 ドレイン領域) ' 8の一方とビット線 B Lとを接続するために使用され、 他方 (コンタク卜ホール 1 3 ) は、 n型半導体領域 (ソース、 ドレイン領域) 8の他方と情報蓄積用容量 素子 Cの下部電極 4 1とを接続するために使用される。
上記酸化シリコン膜 2 3、 2 2、 2 1 Aのドライエッチングは、 キャップ絶縁 膜 9の一部を構成する窒化シリコン膜および窒化シリコン膜 1 0 Aをエッチング ストッノ にして行う。 これにより、 酸化シリコン膜 2 1 A、 2 2、 2 3をドライ ェツチングする際に素子分離溝 4の内部の酸化シリコン膜 5が削られる不具合を 防止することができると共に、 キャップ絶縁膜 9が削られてゲート電極 7 (ヮー ド線 WL) の上面が露出する不具合を防止することができる。 また、 このドライ エッチングを行うことにより、 ゲート電極 7 (ワード線 WL) の側壁に窒化シリ コン膜 1 OAによって構成される側壁絶縁膜 10が形成される。
次に、 図 27および図 28に示すように、 基板 1上に CVD法で膜厚 30 nm 程度の酸化シリコン膜 1 1 Aを堆積した後、 図 29に示すように、 酸化シリコン 膜 1 1 Aを異方的にエッチングすることにより、 ゲート電極 7 (ワード線 WL) の側壁に酸化シリコン膜 1 1 Aによって構成される側壁絶縁膜 1 1を形成する。 このとき、 図 30に示すように、 スリット状 (溝状) の開孔 27の延在方向に沿 つた酸化シリコン膜 22、 21 Aの側壁にも、 酸化シリコン膜 1 1 Aによって構 成される側壁絶縁膜 1 1が形成される。
上記酸化シリコン膜 1 1 Aの異方性エッチングは、 窒化シリコンからなる側壁 絶縁膜 10およびキヤップ絶縁膜 9の一部である窒化シリコン膜をェツチングス トツパ【こして行う。 これにより、 ゲート電極 7 (ワード線 WL) の側壁に形成さ れる側壁絶縁膜 1 1の高さがキャップ絶縁膜 9の上面よりも低くなる (図 29) 。 また、 側壁絶縁膜 1 1に対して施される異方性エッチングのエツ.チング量は、 後にキヤップ絶縁膜 9の窒化シリコン膜をス卜ツバにして行われる化学機械研磨 によるキヤップ絶縁膜 9の膜減リを考慮しても、 酸化シリコンからなる側壁絶縁 膜 1 1の上端がキャップ絶縁膜 9の上面よりも確実に低くなるように、 側壁絶縁 膜 1 1の上端とキャップ絶縁膜 9の上面との高さの差を確保しておくことが望ま しい。 一方、 酸化シリコン膜 22、 21 Aの側壁に形成される側壁絶縁膜 1 1は 、 ゲート電極 7 (ワード線 WL) の側壁に形成される側壁絶縁膜 1 1よりも上端' 部の位置が高くなる (図 30)。
ここまでの工程により、 メモリセル選択用 M I S F ETQ tのゲート電極 7 ( ワード線 WL) の側壁には、 薄い膜厚の窒化シリコン膜 (1 OA) とそれよりも 厚い膜厚の酸化シリコン膜 (1 1 A) とによって構成される 2層の側壁絶縁膜 1
0、 1 1が形成される。 また、 酸化シリコン膜 (1 1 A) によって構成される側 壁絶縁膜 1 1は、 ゲート電極 7 (ワード線 WL) の側壁における高さがキャップ 絶縁膜 9の上面よりも低いため、 ゲート電極 7 (ワード線 WL) のスペースに形 成されたコンタクトホール 1 2、 1 3のゲート長方向に沿った断面は、 図 2 9に 示すように、 上部の径 (a ) が底部の径 (b ) よりも大きくなる (a > b )。 次に、 図 3 1および図 3 2に示すように、 コンタクトホール 1 2、 1 3の底部 に残つた薄し、膜厚の窒化シリコン膜 1 0 Aをドライエッチングで除去して n型半 導体領域 (ソース、 ドレイン領域) 8の表面を露出させる。 続いて、 このドライ エッチングでダメージを受けた n型半導体領域 (ソース、 ドレイン領域) 8の表 面を薄く ドライエッチングしてダメージを除去した後、 この表面をフッ酸で洗浄 する。
次に、 図 3 3および図 3 4に示すように、 例えば P (リン) をドープした膜厚 1 0 0 n m程度の n型多結晶シリコン膜 1 4 Aを C V D法で堆積することにより 、 コンタクトホール 1 2、 1 3の内部を n型多結晶シリコン膜 1 4 Aで埋め込む 。 なお、 周辺回路部にコンタクトホール 1 2、 1 3よりも径の大きいコンタク卜 ホールがある場合は、 コンタクトホール内部の n型多結晶シリコン膜 1 4 Aの膜 厚が不足し、 次の工程で n型多結晶シリコン膜 1 4 Aを研磨したときにコンタク トホールの底部の基板 1が削れる虞れがあるので、 n型多結晶シリコン膜 1 4 A の上部に、 例えば C V D法で膜厚 2 0 0 n m程度の酸化シリコン膜をさらに堆積 しておいてもよい。
次に、 図 3 5および図 3 6に示すように、 n型多結晶シリコン膜 1 4 A、 多結 晶シリコンからなる耐ェッチングマスク 2 4およびその; 層の酸化シリコン膜 2 1 A、 2 2、 2 3を化学機械研磨法で研磨することにより、 コンタクトホール 1 2、 1 3の外部の n型多結晶シリコン膜 1 4 Aを除去し、 コンタクトホール 1 2 、 1 3の内部に n型多結晶シリコン膜 1 4 Aによって構成されるプラグ 1 4を形' 成する。 この化学機械研磨は、 キャップ絶縁膜 9の一部を構成する窒化シリコン 膜をストッパにして行う。- このように、 本実施形態では、 まずアクティブ領域 Lの長辺方向に延在するス リット状 (溝状) の開孔 2 7を有する耐エッチングマスク 2 4を使って酸化シリ コン膜 2 1 A、 2 2、 2 3をドライエッチングすることにより、 ゲート電極 7の スペースにコンタク卜ホール (開孔部) 1 2、 1 3を形成する。 次に、 コンタク トホール 1 2、 1 3の壁面を構成するゲート電極 7の側壁および酸化シリコン膜 2 2、 2 1 Aの側壁に酸化シリコン膜 1 1 Aによって構成される側壁絶縁膜 1 1 を形成した後、 コンタクトホール 1 2、 1 3の内部にプラグ 1 4を形成する。 また、 本実施形態では、 キャップ絶縁膜 9の一部を窒化シリコン膜で構成する 積層構造とすることにより、 前記 n型多結晶シリコン膜 1 4 Aに化学機械研磨を 施す際に前記窒化シリコン膜をストツバとして使用することができるので、 キヤ ップ絶縁膜 9の膜厚の制御が容易になる。
さらに、 本実施形態のキャップ絶縁膜 9は、 前記化学機械研磨の際にストツバ として使用される窒化シリコン膜の下層に酸化シリコン膜を設けた積層構造とな つているので、 前記ゲート電極 7の加工の際に対レジス卜選択比や対タンダステ ン選択比の観点からは好ましくない窒化シリコン膜の膜厚を抑えつつ、 化学機械 研磨終了時点でのキヤップ絶縁膜 9の膜厚を確保することができる。
図 3 7 ( a ) は、 上記したスリット状 (溝状) の開孔 2 7を有する耐エツチン グマスク 2 4を使って形成したコンタクトホール 1 2の概略平面図である。 この コンタクトホール 1 2の側壁には酸化シリコン膜によって構成される側壁絶縁膜 1 1が形成されるので、 この側壁絶縁膜 1 1の内側の領域 (グレイの着色を施し た領域) がコンタクトホール 1 2の底部に露出した n型半導体領域 8とプラグ 1 4とが接触する領域になる。
一方、 図 3 7 ( b ) は、 コンタクトホール開孔領域に穴状の開孔 3 0を有する 耐エッチングマスクを使って形成したコンタクトホール: 1 2の概略平面図である 。 この場合もコンタクトホール 1 2の側壁に側壁絶縁膜 1 1が形成されるので、 この側壁絶縁膜 1 1の内側の領域(グレイの着色を施した領域))がコンタクトホ ール 1 2の底部に露出した n型半導体領域 8とプラグ 1 4とが接触する領域にな' る。 ところが、 このような穴状の開孔 3 0を有する耐エッチングマスクを使って 形成したコンタク卜ホール 1 2は、 フォトマスクの合わせずれによって開孔 3 0 の位置がアクティブ領域 Lの長辺方向にずれた場合、 図 3 7 ( c ) に示すように
、 n型半導体領域 8とプラグ 1 4とが接触する領域が小さくなる。 これに対し、 アクティブ領域しの長辺方向に延在するスリット状 (溝状) の開孔部 2 7を有す る耐エッチングマスクを使って形成したコンタクトホール 1 2の場合は、 フォト マスクの合わせずれによって開孔 2 7の位置がァクティブ領域 Lの長辺方向にず れた場合でも、 n型半導体領域 8とプラグ 1 4とが接触する領域が小さくなるこ とはない。 すなわち、 スリット状 (溝状) の開孔 2 7を有する耐エッチングマス クを使ってコンタクトホール 1 2を形成する本実施形態によれば、 コンタクトホ ール 1 2に埋め込んだプラグ 1 4と η型半導体領域 8との接触面積を最大限に確 保することができるので、 プラグ 1 4と η型半導体領域 8との間の接触抵抗の増 大を抑制することができる。
耐エッチングマスクに形成された開孔の形状によるプラグ 1 4と η型半導体領 域 8とのコンタクト面積の差は、 従来のセルファライン ·コンタク卜 (S A C ) 技術で行われているように、 ゲート電極の側壁に側壁絶縁膜を形成した後、 ゲー 卜電極のスペースにコンタクトホールを形成する場合と、 本実施形態のように、 ゲート電極のスペースにコンタクトホールを形成した後、 ゲート電極の側壁に側 壁絶縁膜を形成する場合とで異なってくる。
次に、 図 3 8および図 3 9に示すように、 基板 1上に C V D法で膜厚 2 0 n m 程度の窒化シリコン膜 1 9を堆積し、 続いて窒化シリコン膜 1 9の上部に C V D 法で膜厚 3 0 0 n m程度の酸化シリコン膜 3 1を堆積した後、 化学機械研磨法で 酸化シリコン膜 3 1を 1 0 0 n m程度研磨することによって、 その表面を平坦化 する。 酸化シリコン膜 3 1の平坦化は、 後の工程でメモリセル選択用 M I S F E T Q tの上部に形成されるスルーホール (3 2、 3 6 ) の開孔精度を高くするた めに行う。
次に、 図 4 0および図 4 1に示すように、 フォトレジスト膜 2 8をマスクにし てコンタクトホール 1 2の上部の酸化シリコン膜 3 1をドライエッチングする。 酸化シリコン膜 3 1のドライエッチングは、 その下層の窒化シリコン膜 1 9をェ' ツチングストツバに用いて行う。 すなわち、 このドライエッチングは、 窒化シリ コン膜 1 9に対する酸化シリコン膜 3 1のエッチング選択比が大きくなるような 条件で行い、 コンタクトホール 1 2の上部の窒化シリコン膜 1 9が完全には除去 されないようにする。
次に、 図 4 2、 図 4 3および図 4 4に示すように、 上記フォトレジスト膜 2 8 をマスクにしてコンタク卜ホール 1 2の上部の窒化シリコン膜 1 9をドライエツ チングすることにより、 コンタクトホール 1 2の上部にスルーホール 3 2を形成 する。 窒化シリコン膜 1 9のドライエッチングは、 酸化シリコン膜に対するエツ チング選択比が大きくなるような条件で行う。
ここで、 酸化シリコン膜 3 1の下層に窒化シリコン膜 1 9を設けた理由を図 4 5および図 4 6を用いて説明する。 図 4 5は、 図 4 2の A— A線 (アクティブ領 域 Lの長辺方向) に沿った断面図、 図 4 6は、 同じく B— B線 (ワード線 Wの延 在方向) に沿った断面図であり、 いずれも酸化シリコン膜 3 1の下層に窒化シリ コン膜 1 9を設けない場合の図である。
アクティブ領域しの長辺方向に沿った断面 (図 4 5 ) を見ると、 ゲート電極 7 (ヮード線 W L ) の上部は窒化シリコン膜を含んだキヤップ絶縁膜 9で覆われて いる。 そのため、 フォトレジスト膜 2 8をマスクにしてコンタクトホール 1 2の 上部の酸化シリコン膜 3 1をドライエッチングする際に、 スルーホール 3 2とそ の下部のコンタク卜ホール 1 2との位置が多少ずれた場合でも、 キャップ絶縁膜 9がエッチングストッパとなるため、 スル一ホール 3 2の底部がキャップ絶縁膜 9の上面よリも下方に後退する量は僅かで済む。
ところが、 ワード線 Wの延在方向に沿った断面 (図 4 6 ) を見ると、 コンタク トホール 1 2の下方には、 エッチングストツバとなる窒化シリコン膜 (1 9 ) が 存在しない。 そのため、 酸化シリコン膜 3 1をエッチングすると、 その下層の酸 化シリコン膜 2 2や、 酸化シリコンからなる側壁絶縁膜 1 1までもがエッチング されてしまい、 スルーホール 3 2の底部がキャップ絶縁膜 9の上面よりも大幅に 後退する (図の矢印で示す箇所)。その結果、後述する工程でスルーホール 3 2の 内部にメタルのプラグ 3 3を埋め込み、 さらにプラグ 3 3の上部にビット線 B L を形成した場合、 プラグ 3 3とゲート電極 7 (ワード線 W L ) との距離が短くな' るために、 ビット線 B Lとゲート電極 7 (ワード線 W L ) との間に形成される容 量が大きくなつてしまう。
これに対し、 本実施形態のように、 酸化シリコン膜 3 1の下層に窒化シリコン 膜 1 9を設けた場合は、 前記図 4 4に示すように、 スルーホール 3 2の底部の酸 化シリコン膜 2 2や側壁絶縁膜 1 1の削れが僅かで済むため、 スルーホール 3 2 の内部に埋め込まれるプラグ 3 3とゲート電極 7 (ワード線 Wし) との距離を確 保することができ、 ビット線 B1とゲート電極 7 (ワード線 W L ) との間に形成 される容量の増加を防止することができる。
次に、 図 47に示すように、 酸化シリコン膜 31の上部に形成したフォトレジ スト膜 29をマスクにして周辺回路部の酸化シリコン膜 31、 窒化シリコン膜 1
9、 酸化シリコン膜 22を順次エッチングすることにより、 nチャネル型 M I S FETQnの n+型半導体領域 (ソース、 ドレイン領域) 1 7の上部にコンタクト ホール 48を形成し、 pチャネル型 M I S FETQpの p+型半導体領域(ソース 、 ドレイン領域) 1 8の上部にコンタクトホール 49を形成する。
次に、 図 48〜図 50に示すように、 スルーホール 32およびコンタクトホー ル 48、 49の内部にプラグ 33を形成する。 プラグ 33を形成するには、 例え ば CVD法で酸化シリコン膜 31の上部に T i Nなどからなるバリアメタル膜を 堆積し、 続いてバリァメタル膜の上部に C V D法で W膜を堆積することによって スルーホール 32およびコンタク卜ホール 48、 49の内部にこれらの膜を埋め 込んだ後、 スルーホール 32およぴコンタク卜ホール 48、 49の外部のこれら の膜を化学機械研磨法で除去する。
次に、 図 51〜図 53に示すように、 酸化シリコン膜 31の上部にビット線 B Lを形成する。 また、 図 54に示すように、 周辺回路部の酸化シリコン膜 31の 上部に第 1層配線 44~47を形成する。 ビッ卜線 BLおよび第 1層配線 44〜 47を形成するには、 例えば酸化シリコン膜 31の上部にスパッタリング法で膜 厚 1 0 ^ 程度の丁 i N膜 (または WN膜) および膜厚 50 nm程度の W膜を堆 積した後、 フォトレジスト膜をマスクにしてこれらの膜をドライエッチングする 。 ビット線 BLは、 スルーホール 32の内部に埋め込まれたプラグ 33およびコ ンタクトホール 1 2の内部に埋め込まれたプラグ 14を介してメモリセル選択用 M I S FETQ tの n型半導体領域 (ソース、 ドレイン領域) 8の一方と電気的 に接続される。
このように、 本実施形態の DRAMは、 メモリセル選択用 M I S F ETQ tの ゲー卜電極 7の側壁に窒化シリコン膜によって構成される側壁絶縁膜 1 0と酸化 シリコン膜によって構成される側壁絶縁膜 1 1とを形成し、 これらの側壁絶縁膜
1 0、 1 1によって周囲を囲まれたゲート電極 7のスペース (コンタクトホール
1 2、 1 3) にプラグ 14を埋め込む。 これにより、 酸化シリコン膜よりも比誘 電率が大きい窒化シリコン膜だけで側壁絶縁膜を構成する従来のセルファライン
"コンタクト (S A C) 技術に比べて側壁絶縁膜の実効的な比誘電率を小さくす ることができるため、 ビット線容量の主要な成分である対ワード線容量成分を小 さくすることができる。
また、 本実施形態の D R A Mは、 ゲート電極 7の上部のキャップ絶縁膜 9を酸 化シリコン膜と窒化シリコン膜との積層膜で構成する。 これにより、 酸化シリコ ン膜よリも比誘電率が大きい窒化シリコン膜だけでキヤップ絶縁膜を構成する従 来のセルファライン■コンタクト (S A C) 技術に比べてキャップ絶縁膜の実効 的な比誘電率を小さくすることができるため、 ビット線容量の対ワード線容量成 分をさらに小さくすることができる。
また、 本実施形態の D R A Mは、 ビット線 B Lの下部の酸化シリコン膜 3 1を エッチングしてスルーホール 3 2を形成する際、 あらかじめ酸化シリコン膜 3 1 の下層にエッチングストッパとなる窒化シリコン膜 1 9を形成しておき、 スルー ホール 3 2の底部の酸化シリコン膜 2 2や側壁絶縁膜 1 1の削れを抑制する。 こ れにより、 スルーホール 3 2の内部に埋め込まれるプラグ 3 3とゲート電極 7 ( ワード線 W L ) との距離を確保することができるので、 ビット線容.量の対ワード 線容量成分をさらに小さくすることができる。
次に、 図 5 5に示すように、 ビット線 B Lの上部に C V D法で膜厚 3 0 0 n m 程度の酸化シリコン膜 3 4を堆積した後、 その表面を化学機械研磨法で平坦化す る。 次に、 酸化シリコン膜 3 4の上部に C V D法で膜厚 5 0 n m程度の窒化シリ コン膜 3 5を堆積した後、 窒化シリコン膜 3 5、 酸化シリコン膜 3 5、 3 1およ び窒化シリコン膜 1 9を順次ドライエッチングすることによって、 プラグ 1 4が' 埋め込まれたコンタクトホール 1 3の上部にスルーホール 3 6を形成する。
この場合も、 酸化シリコン膜 3 1の下層に窒化シリコン膜 1 9を形成したこと により、 フォトマスクの合わせずれなどによってスルーホール 3 6とコンタクト ホール 1 3との位置が多少ずれた場合でも、 窒化シリコン膜 1 9がエッチングス 卜ッパとなるため、 スルーホール 3 6の底部の酸化シリコン膜 2 2の削れを抑制 することができる。 これにより、 次の工程でスルーホール 3 6の内部に埋め込ま れるプラグ 3 7とゲート電極 7 (ワード線 W L ) との距離を確保することができ るので、 後の工程でスルーホール 3 6の上部に形成される情報蓄積用容量素子 C とゲート電極 7 (ワード線 W L ) との間に形成される容量の増加を防止し、 ゲー ト電極 7 (ワード線 W L ) の遅延を抑制することができる。
次に、 スルーホール 3 6の内部にプラグ 3 7を形成し、 さらにプラグ 3 7の表 面にバリアメタル B莫 3 8を形成する。 プラグ 3 7およびバリアメタル膜 3 8を形 成するには、 例えぱ窒化シリコン膜 3 5の上部に Pをドープした n型多結晶シリ コン膜を C V D法で堆積することによってスルーホール 3 6の内部に n型多結晶 シリコン膜を埋め込んだ後、 スルーホール 3 6の外部の n型多結晶シリコン膜を ドライエッチングで除去する。 このとき、 スルーホール 3 6の内部の n型多結晶 シリコン膜をオーバーエッチングし、 プラグ 3 7の表面を窒化シリコン膜 3 5の 表面よりも下方に後退させることによって、 プラグ 3 7の上部にバリアメタル膜 3 8を埋め込むためのスペースを確保する。 次に、 窒化シリコン膜 3 5の上部に スパッタリング法で T i N膜を堆積することにより、 スルーホール 3 6内のブラ グ 3 7の上部に T a N (窒化タンタル) 膜を埋め込んだ後、 スルーホール 3 6の 外部の T a N膜を化学機械研磨法で除去する。
後の工程でスルーホール 3 6の上部に形成される情報蓄積用容量素子 Cの下部 電極とプラグ 3 7との間に介在する上記バリアメタル膜 3 8は、 情報蓄積容量素 子 Cの容量絶縁膜形成工程で行われる高温熱処理の際に、 下部電極を構成する R Li膜とプラグ 3 7を構成する多結晶シリコン膜との界面:で所望しない反応が生じ るのを抑制するために形成する。
前述したように、 ゲート電極 7の側壁に形成された 2層の側壁絶縁膜 1 0、 1 1のうち、 外側の側壁絶縁膜 1 1は、 ゲート電極 7の側壁における高さがキヤッ' プ絶縁膜 9の上面よりも低いため、 ゲート長方向に沿ったコンタクトホール 1 2 、 1 3の断面は、上部の径が底部の径よりも大きい (図 2 9参照)。すなわち、 コ ンタクトホール 1 2、 1 3の内部に埋め込まれたプラグ 1 4の径は、 コンタクト ホール 1 2、 1 3の底部よリも上部の方が大きい。
これにより、 コンタクトホール 1 3の上部にスルーホール 3 6を形成した際、 フォ卜マスクの合わせずれなどによってスルーホール 3 6の中心がコンタクトホ ール 1 3の中心からずれたとしても、 コンタク卜ホール 1 3の表面積が大きいた めに、 両者の接触面積を十分に確保することができる。
次に、 図 56に示すように、 スルーホール 36の上部に下部電極 41、 容量絶 縁膜 42および上部電極 43によって構成される情報蓄積用容量素子 Cを形成し 、 スルーホール 36の内部に埋め込まれたプラグ 37およびコンタク卜ホール 1 3の内部に埋め込まれたプラグ 1 4を介して情報蓄積用容量素子 Cの下部電極 4 1とメモリセル選択用 M I S F E T Q tの n型半導体領域 (ソース、 ドレイン領 域) 8の他方とを電気的に接続することにより、 メモリセルが略完成する。 情報蓄積用容量素子 Cは、 次のような方法で形成する。 まず、 窒化シリコン莫 35の上部に C V D法で膜厚 1 Dm程度の厚い酸化シリコン膜 39を堆積し、 続 いてフォトレジスト膜 (図示せず) をマスクにして酸化シリコン膜 39ドライエ ツチングすることにより、 スルーホール 36の上部に溝 40を形成する。 酸化シ リコン膜 39のエッチングは、 窒化シリコン膜 35をエッチングストッパにして 行い、 下層の酸化シリコン膜 34が削られないようにする。
次に、 溝 40の内部を含む酸化シリコン膜 39の上部に CVD法で膜厚 70 n m〜80 nm程度の Ru膜を堆積する。 次に、 溝 40の内部の R u膜が除去され るのを防ぐために溝 40の内部にフォ卜レジス卜膜を埋め込んだ後.、 このフォト レジスト膜で覆われていない溝 40の外部の Ru膜をドライエッチングによって 除去し、 溝 40の内部に埋め込んだフォトレジスト膜をアツシングで除去するこ とにより、 溝 40の側壁および底面に Ru膜によって構成される下部電極 41を 形成する。
次に、 下部電極 41が形成された溝 40の内部を含む酸化シリコン膜 39上に 容量絶縁膜 42を形成する。 容量絶縁膜 42は、 例えば CVD法で堆積した膜厚 は 20 nm程度の BST膜によって構成する。 容量絶縁膜 42は、 BST膜の他 、 例えば Ba T i 03 (チタン酸バリウム)、 P b T i 03 (チタン酸鉛)、 PZT 、 P LT、 P LZTなどのぺロブスカイト型金属酸化物からなる高 (強) 誘電体 膜によって構成することもできる。
次に、 容量絶縁奠 42の上部に上部電極 43を形成する。 上部電極 43は、 例 えば CVD法またはスパッタリング法で堆積した膜厚 200 nm程度の Ru膜に よって構成する。 ここまでの工程により、 Ru膜によって構成される下部電極 4 1、 BST膜によって構成される容量絶縁膜 42および Ru膜によって構成され る上部電極 43からなる情報蓄積用容量素子 Cが完成する。
次に、 図 57に示すように、 情報蓄積用容量素子 Cの上部に CVD法で酸化シ リコン膜 51を堆積した後、 図 58に示すように、 周辺回路部の酸化シリコン膜 51、 39、 窒化シリコン膜 35および酸化シリコン膜 34を順次ェッチングし て第 1層配線 44の上部にスルーホール 55を形成した後、 スルーホール 55の 内部にプラグ 56を形成する。 プラグ 56は、 例えば Τ ί Ν膜と W膜との積層膜 で構成する。
その後、 酸化シリコン膜 51の上部にスパッタリング法で形成した A I合金膜 をパターニングして A I合金配線 52〜54を形成することにより、 前記図 2お よび図 3に示す D R A Mが略完成する。
(実施の形態 2)
本実施形態の DRAMの製造方法を図 59〜図 62を用いて工程順に説明する 。 まず、 図 59に示すように、 前記実施の形態 1と同様の方法でメモリアレイに メモリセル選択用 M I S FETQ tを形成し、 周辺回路部に nチャネル型 M I S FETQn、 pチャネル型 M I S FETQ pを形成した後、 それらの上部に酸化 シリコン膜 22、 23を形成し、 酸化シリコン膜 23の上部に多結晶シリコン膜 からなる耐エッチングマスク 24を形成する。 ここまでの工程は、 前記実施の形 態 1の図 4〜図 24に示した工程と同じである。
次に、 図 60に示すように、 耐エッチングマスク 24をマスクにして酸化シリ コン膜 21 A、 22、 23をドライエッチングすることにより、 ゲート電極 7の スペースにコンタクトホール (開孔) 1 2、 1 3を形成する。 このとき、 本実施 形態では、 n型半導体領域 (ソース、 ドレイン領域) 8の上部を覆っている窒化 シリコン膜 1 OAもエッチングし、 コンタクトホール (開孔) 1 2、 1 3の底部 に n型半導体領域 (ソース、 ドレイン領域) 8の表面を露出させる。 前記実施の 形態 1と同様、 ここまでの工程により、 ゲート電極 7 (ワード線 WL) の側壁に 窒化シリコン膜 1 OAによって構成される側壁絶縁膜 10が形成される。
次に、 上記ドライエッチングでダメージを受けた n型半導体領域 (ソース、 ド レイン領域) 8の表面を薄く ドライエッチングし、 次いでフッ酸洗浄を行った後 、 図 61に示すように、 基板 1上に CVD法で膜厚 30 nm程度の酸化シリコン 膜 1 1 Aを堆積し、 続いて図 62に示すように、 酸化シリコン膜 1 1 Aを異方的 にエッチングすることにより、 ゲート電極 7 (ワード線 WL) の側壁に膜厚 30 nm程度の酸化シリコン膜 1 1 Aによって構成される側壁絶縁膜 1 1を形成する 。 その後の工程は、 前記実施の形態 1と同じである。
このように、 本実施形態の製造方法は、 コンタクトホール 1 2、 1 3の底部の 窒化シリコン膜 1 OAを除去した後、 ゲート電極 7 (ワード線 WL) の側壁に側 壁絶縁膜 1 1を形成するので、 側壁絶縁膜 1 1の底部には窒化シリコン膜 1 OA が残らない (図 62)。
一方、 ゲート電極 7 (ヮード線 W L ) の側壁に側壁絶縁膜 1 1を形成した後に コンタクトホール 1 2、 1 3の底部の窒化シリコン膜 1 OAを除去する前記実施 の形態 1の製造方法では、 側壁絶縁膜 1 1の底部に窒化シリコン膜 1 OAが残る (図 31 )。 このように、ゲート電極 7 (ワード線 WL)の側壁端部に窒化シリコ ン膜 1 OAが残ると、 この窒化シリコン膜 1 OAとその下層のゲート絶縁膜 6と の界面が帯電し、 メモリセルのリーク電流を変動させる要因となる。
従って、 ゲート電極 7 (ワード線 WL) の側壁端部に窒化シリコン膜 1 OAを 残さない本実施形態の製造方法によれば、 このような不具合を防止してメモリセ ルの特性変動を抑制することができる。
(実施の形態 3)
本実施形態の DRAMの製造方法を図 63〜図 80を用いて工程順に説明する 。 まず、 図 63および図 64に示すように、 前記実施の形態 1と同様の方法でメ モリアレイにメモリセル選択用 M I S FETQ tを形成し、 周辺回路部に nチヤ' ネル型 M I S F ETQ nおよび pチャネル型 M I S F E T Q pを形成した後、 そ れらの上部に堆積した酸化シリコン膜 22を化学機械研磨法で研磨、 平坦化する 。 ここまでの工程は、 前記実施の形態 1の図 4〜図 1 9に示した工程と同じであ る。 ただし、 本実施形態では、 キャップ絶縁膜 9の一部を構成する窒化シリコン 膜を研磨のストツバに用い、 酸化シリコン膜 22の表面の高さをキヤップ絶縁膜
9の上面まで後退させる。
次に、 図 65〜図 67に示すように、 酸化シリコン膜 22の上部に CVD法で 酸化シリコン膜 2 3を堆積した後、 酸化シリコン膜 2 3の上部に形成したフォ卜 レジスト膜 6 0をマスクにして酸化シリコン膜 2 3、 2 2、 2 1 Aをドライエツ チングすることにより、 n型半導体領域 (ソース、 ドレイン領域) 8の上部、 す なわちゲー卜電極 7のスペースに丸穴状のコンタク卜ホール (開孔) 6 1、 6 2 を形成する。 酸化シリコン膜 2 3、 2 2、 2 1 Aのドライエッチングは、 キヤッ プ絶縁膜 9の一部を構成する窒化シリコン膜および窒化シリコン膜 1 0 Aをエツ チングストツバにして行う。 これにより、 酸化シリコン膜 2 1 A、 2 2、 2 3を ドライエッチングする際に素子分離溝 4の内部の酸化シリコン膜 5が削られる不 具合を防止することができると共に、 キヤップ絶縁膜 9が削られてゲート電極 7 (ワード線 W L ) の上面が露出する不具合を防止することができる。 また、 この ドライエッチングを行うことにより、 ゲート電極 7 (ワード線 W L ) の側壁に窒 化シリコン膜 1 O Aによって構成される側壁絶縁膜 1 0が形成される。
このように、 本実施形態では、 酸化シリコン膜 2 3の上部に形成したフオトレ ジス卜膜 6 0をマスクにしたドライエッチングでゲート電極 7のスペースに丸穴 状のコンタクトホール (開孔) 6 1、 6 2を形成する。 これにより、 多結晶シリ コン膜からなる耐エッチングマスク 2 4をマスクにしたドライエッチングでゲー ト電極 7のスペースにコンタクトホール (開孔) 1 2、 1 3を形成する前記実施 の形態 1の方法に比べて工程を短縮することができる。
次に、 図 6 8および図 6 9に示すように、 基板 1上に堆積した酸化シリコン膜 を異方的にエッチングすることにより、 ゲ一卜電極 7 (ワード線 W L ) の側壁に 側壁絶縁膜 1 1を形成する。 前述したように、 本実施形態では、 酸化シリコン膜 2 2を研磨、 平坦化する際、 その表面の高さをキャップ絶縁膜 9の上面まで後退' させるため(図 6 3参照)、側壁絶縁膜 1 1の高さは、ァクティブ領域の長辺方向 ( A— A線方向) とこれに交差するゲート電極 7 (ワード線 W L ) の延在方向 ( B— B線方向) とで等しくなる。 また、 側壁絶縁膜 1 1の上端は、 キャップ絶縁 膜 9の上面よりも低くしておく。
次に、 図 7 0および図 7 1に示すように、 コンタクトホール 6 1、 6 2の底部 に残った薄い膜厚の窒化シリコン膜 1 0 Aをドライエツチングで除去して n型半 導体領域 (ソース、 ドレイン領域) 8の表面を露出させた後、 例えば P (リン) をドープした n型多結晶シリコン膜をコンタクトホール 6 1、 6 2の内部に埋め 込むことによって、 プラグ 1 4を形成する。
本実施形態の製造方法では、 側壁絶縁膜 1 1の上端は、 すべての方向でキヤッ プ絶縁膜 9の上面よリも低くなるため、 コンタクトホール 6 1、 6 2の内部に埋 め込まれたプラグ 1 4の表面は、 前記実施の形態 1のそれに比べて面積が広くな る。 すなわち、 コンタク卜ホール 6 1とその上部に形成されるスルーホール 3 2 との接触面積およびコンタクトホール 6 2とその上部に形成されるスルーホール 3 6との接触面積は、 いずれも前記実施の形態 1のそれに比べて大きくなる。 次に、 図 7 2および図 7 3に示すように、 基板 1上に C V D法で膜厚 2 0 n m 程度の窒化シリコン膜 1 9を堆積し、 続いて窒化シリコン膜 1 9の上部に C V D 法で膜厚 3 0 0 n m程度の酸化シリコン膜 3 1を堆積した後、 化学機械研磨法で 酸化シリコン膜 3 1を 1 0 0 n m程度研磨することによって、 その表面を平坦化 する。
次に、 図 7 4およぴ図 7 5に示すように、 フォトレジスト膜 2 8をマスクにし てコンタクトホール 6 1の上部の酸化シリコン膜 3 1をドライエッチングする。 酸化シリコン膜 3 1のドライエッチングは、 その下層の窒化シリコン膜 1 9をェ ツチングストツバに用いて行う。 すなわち、 このドライエッチングは、 窒化シリ コン膜 1 9に対する酸化シリコン膜 3 1のエッチング選択比が大きくなるような 条件で行い、 コンタクトホール 6 1の上部の窒化シリコ:ン膜 1 9が完全には除去 されないようにする。
次に、 図 7 6、 図 7 7および図 7 8に示すように、 上記フォトレジスト膜 2 8 をマスクにしてコンタク卜ホール 6 1の上部の窒化シリコン膜 1 9をドライエツ' チングすることにより、 コンタクトホール 6 1の上部にスルーホール 3 2を形成 する。 窒化シリコン膜 1 9のドライエッチングは、 酸化シリコン膜に対するエツ チング選択比が大きくなるような条件で行う。
このように、 酸化シリコン膜 3 1の下層に窒化シリコン膜 1 9を設けることに よリ、 スルーホール 3 2の底部の酸化シリコン膜 2 2や側壁絶縁膜 1 1の削れが 僅かで済むため、 前記実施の形態 1と同様、 スルーホール 3 2の内部に埋め込ま れるプラグ 3 3とゲート電極 7 (ワード線 W L ) との距離を確保することができ 、 ピット線 B Lとゲート電極 7 (ワード線 W L ) との間に形成される容量の増加 を防止することができる。
次に、 図 7 9および図 8 0に示すように、 スルーホール 3 2の内部に前述した 方法でプラグ 3 3を形成する。 その後の工程は、 前記実施の形態 1と同様である ため、 その説明は省略する。
以上、 本発明者によってなされた発明を発明の実施の形態に基づき具体的に説 明したが、 本発明は前記実施の形態に限定されるものではなく、 その要旨を逸脱 しない範囲で種々変更可能であることは言うまでもない。
前記実施の形態では、 D R A Mに適用した場合について説明したが、 これに限 定されるものではない。 すなわち本発明は、 ゲート電極の側壁絶縁膜の少なくと も一部を酸ィヒシリコン膜で構成した場合において、 ゲート電極の上部を覆う酸化 シリコン膜をエッチングしてゲート電極のスペースにコンタク卜ホール (開孔) を形成するプロセスを有する半導体集積回路装置に適用することができる。 産業上の利用可能性
本発明によれば、 ビット線の容量を低減することができる。 これにより、 情報 蓄積用容量素子に蓄積された電荷 (情報) を読み出すときの信号電圧を大きくす ることができるので、 信号のノイズマージンが大きくなリ、 リフレッシュサイク ルを延ばし、 消費電力を低減することができる。
また、 一本のビット線に接続するメモリセルの数を増やすことができるので、 センスアンプの数を減らすことができ、 その分、 チップ面積を縮小することがで きるので、 ウェハ当たりのチップ取得数を増やして製造歩留まりを向上させるこ' とができる。

Claims

請 求 の 範 囲
1 . 以下の工程を有する半導体集積回路装置の製造方法;
( a ) 半導体基板上に第 1導体層を形成した後、 前記第 1導体層を所定の形状に 加工することにより、 前記半導体基板の第 1領域に第 1導体片を形成する工程、
( b ) 前記第 1導体片および前記半導体基板の上部に第 1絶縁膜を形成する工程
( c ) 前記第 1導体片の間に位置するように、 前記第 1絶縁膜に第 1開孔を形成 する工程、
( d ) 前記第 1開孔の側壁に酸化シリコン膜からなる第 1側壁絶縁膜を形成する 工程、
( e ) 前記第 1側壁絶縁膜が形成された前記第 1開孔の内部を第 2導体層で埋め 込むことにより、 前記第 1開孔の内部に第 2導体片を形成する工程、
( f ) 前記第 1および第 2導体片の上部に窒化シリコン膜からなる第 2絶縁膜を 形成する工程、
( g ) 前記第 2絶縁膜の上部に酸化シリコン膜からなる第 3絶縁膜を形成するェ 程、
( h ) 前記第 1開孔の上部の前記第 3絶縁膜および前記第 2絶縁膜に第 2開孔を 形成することにより、 前記第 2開孔の底部に前記第 2導体片を露出させる工程、 ( i ) 前記第 2開孔の内部を第 3導体層で埋め込むことにより、 前記第 2開孔の 内部に、 前記第 2導体片に電気的に接続された第 3導体片を形成する工程。
2 . 請求項 1記載の半導体集積回路装置の製造方法において、 前記工程 (a ) と' 前記工程 (b ) との間に、
( j ) 前記第 1導体片および前記半導体基板の上部に窒化シリコン膜からなる第 4絶縁膜を形成する工程、
をさらに有し、 前記工程 (c ) における前記第 1開孔の形成は、 前記第 4絶縁膜 に対する前記第 1絶縁膜のエッチング選択比を大きくしたドライエッチングによ つて行うことを特徴とする半導体集積回路装置の製造方法。
3 . 請求項 2記載の半導体集積回路装置の製造方法において、 前記工程 (d ) は ( d— 1 ) 前記第 1絶縁膜の上部および前記開孔の内部に前記酸化シリコン膜を 形成する工程、
( d— 2 ) 前記酸化シリコン膜を異方的にエッチングすることにより、 前記第 1 開孔の側壁に前記酸化シリコン膜からなる前記第 1側壁絶縁膜を形成する工程、 を含むことを特徴とする半導体集積回路装置の製造方法。
4 . 請求項 3記載の半導体集積回路装置の製造方法において、 前記工程 (d ) と 前記工程 (e ) との間に、
( k ) 前記第 1側壁絶縁膜で覆われていない部分の前記第 4絶縁膜を除去するこ とにより、 前記半導体基板の一部を露出させる工程、
をさらに有することを特徴とする半導体集積回路装置の製造方法。
5 . 請求項 1記載の半導体集積回路装置の製造方法において、 前記工程 (a ) は
( a - 1 ) 前記半導体基板上に前記第 1導体層を形成した後、 前記第 1導体層の 上部に窒化シリコン膜からなる第 5絶縁膜を形成する工程、
( a— 2 ) 前記第 5絶縁膜および前記第 1導体層を所定の形状に加工することに よリ、 前記半導体基板の第 1領域に、 その上部が前記第 5絶縁膜で覆われた前記 第 1導体片を形成する工程、
を含むことを特徴とする半導体集積回路装置の製造方法:。
6 . 請求項 1記載の半導体集積回路装置の製造方法において、 前記工程 ( の 後に、
( I ) 前記第 3絶縁膜の上部に、 前記第 3導体片に電気的に接続された第 4導体' 層を形成する工程、
をさらに有することを特徴とする半導体集積回路装置の製造方法。
7 . 請求項 6記載の半導体集積回路装置の製造方法において、 前記工程 ( I ) の 後に、
(m) 前記第 4導体層の上部に誘電体膜を形成し、 前記誘電体膜の上部に第 5導 体層を形成することにより、 前記第 4導体層、 前記誘電体膜および前記第 5導体 層からなる容量素子を形成する工程、 をさらに有することを特徴とする半導体集積回路装置の製造方法。
8. 請求項 1記載の半導体集積回路装置の製造方法において、 前記工程 (a) は
(a -3) 前記半導体基板上に前記第 1導体層を形成した後、 前記第 1導体層を 所定の形状に加工することにより、.前記半導体基板の第 2領域に第 3導体片を形 成する工程、
を含むことを特徴とする半導体集積回路装置の製造方法。
9. 請求項 8記載の半導体集積回路装置の製造方法において、 前記第 1絶縁膜は 、 第 6絶縁膜とその上部に形成された第 7絶縁膜とを含み、 前記工程 (b) は、 ( b— 1 ) 前記第 1導体片、 前記第 3導体片および前記半導体基板の上部に前記 第 6絶縁膜を形成する工程、
(b— 2) 前記第 6絶縁膜を異方的にエッチングすることにより、 前記第 3導体 片の側壁に前記第 6 $色縁膜からなる前記第 2側壁絶縁膜を形成する工程、
(b-3) 俞記第 6絶縁膜の上部に前記第 7絶縁膜を形成した後、 前記第 7絶縁 膜の上面を平坦化する工程、
を含むことを特徴とする半導体集積回路装置の製造方法。
1 0. 請求項 9記載の半導体集積回路装置の製造方法において、 前記第 6絶縁膜 の膜厚は、 前記第 1導体片同士のスペースの 2分の 1より大きいことを特徴とす る半導体集積回路装置の製造方法。
1 1. 以下の工程を有する半導体集積回路装置の製造方法;
(a) 半導体基板上に、 互いに並行して延在する複数の第 1導体層を形成するェ 程、
( b ) 前記複数の第 1導体層および前記半導体基板の上部に酸化シリコン膜から なる第 1絶縁膜を形成する工程、
(c) 前記複数の第 1導体層のそれぞれの間に位置するように、 前記第 1絶縁膜 に複数の第 1開孔を形成する工程、
( d ) 前記複数の第 1開孔のそれぞれの側壁に第 1側壁絶縁膜を形成する工程、 ( e ) 前記第 1側壁絶縁膜が形成された前記複数の第 1開孔の内部を第 2導体層 で埋め込む工程、 ( f ) 前記複数の第 1および第 2導体層の上部に窒化シリコン膜からなる第 2絶 縁膜を形成する工程、
( g ) 前記第 2絶縁膜の上部に酸化シリコン膜からなる第 3絶縁膜を形成するェ 程、
( h ) 前記複数の第 1開孔のそれぞれの上部に位置するように、 前記第 3絶縁膜 および前記第 2絶縁膜に複数の第 2開孔を形成することにより、 前記複数の第 2 開孔の底部に前記第 2導体層を露出させる工程、
(に) 前記複数の第 2開孔の内部に第 3導体層を形成する工程。
1 2. 請求項 1 1記載の半導体集積回路装置の製造方法において、 前記工程 (a ) と前記工程 (b) との間に、
( j ) 前記複数の第 1導体層および前記半導体基板の上部に窒化シリコン膜から なる第 4絶縁膜を形成する工程、
をさらに有し、 前記工程 (c) における前記第 1開孔の形成は、 前記第 4絶縁膜 に対する前記第 1絶縁膜のエッチング選択比を大きくしたドライエッチングによ つて行うことを特徴とする半導体集積回路装置の製造方法。
1 3. 請求項 1 2記載の半導体集積回路装置の製造方法において、 前記第 1側壁 絶縁膜は、 酸化シリコン膜からなり、 前記工程 (d) は、
(d- 1 ) 前記第 1絶縁膜の上部および前記開孔の内部に前記酸化シリコン膜を 形成する工程、
(d-2) 前記酸化シリコン膜を異方的にエッチングすることにより、 前記第 1 開孔の側壁に前記酸化シリコン膜からなる前記第 1側壁絶縁膜を形成する工程、
(d-3) 前記第 1側壁絶縁膜で覆われていない部分の前記第 4絶縁膜を除去す ることにより、 前記半導体基板の一部を露出させる工程、
をさらに有することを特徴とする半導体集積回路装置の製造方法。
1 4. 請求項 1 1記載の半導体集積回路装置の製造方法において、 前記工程 (a ) は、
( a— 1 ) 前記半導体基板上に第 1導体膜を形成した後、 前記第 1導体膜の上部 に窒化シリコン膜からなる第 5絶縁膜を形成する工程、
(a -2) 前記第 5絶縁膜および前記第 1導体膜を所定の形状に加工することに より、 前記半導体基板上に、 それぞれの上部が前記第 5絶縁膜で覆われた前記複 数の第 1導体層を形成する工程、
を含むことを特徴とする半導体集積回路装置の製造方法。
1 5 . 請求項 1 1記載の半導体集積回路装置の製造方法において、 前記工程 ( i ) の後に、
( k ) 前記第 3絶縁膜の上部に、 前記第 2導体層に電気的に接続された第 4導体 層を形成する工程、
( I ) 前記第 4導体層の上部に誘電体膜を形成し、 前記誘電体膜の上部に第 5導 体層を形成することにより、 前記第 4導体層、 前記誘電体膜および前記第 5導体 層からなる容量素子を形成する工程、
をさらに有することを特徴とする半導体集積回路装置の製造方法。
1 6 . 以下の工程を有する半導体集積回路装置の製造方法;
( a ) 半導体基板上に第 1導電体膜を形成した後、 前記第 1導電体膜の上部に窒 化シリコン膜、 または酸化シリコン膜と窒化シリコン膜との積層膜からなる第 1 絶縁膜を形成する工程、
( b ) 前記第 1導電体膜および前記第 1絶縁膜をエッチングすることにより、 前 記半導体基板の第 1領域に第 1ゲート電極を形成し、 第 2領域に第 2ゲー卜電極 を形成する工程、
( c ) 前記半導体基板の第 1領域に前記第 1ゲート電極..を有する第 1 M I S F E Tを形成する工程、
( d ) 前記第 1、 第 2ゲート電極および前記半導体基板の上部に窒化シリコン膜 力、らなる第 2絶縁膜を形成し、 前記第 2絶縁膜の上部に酸化シリコン膜からなる' 第 3絶縁膜を形成する工程、
( e ) 前記第 2ゲート電極の側壁に前記第 2、 第 3絶縁膜からなる第 1側壁絶縁 膜を形成した後、 前記半導体基板の第 2領域に前記第 2ゲート電極を有する第 2
M I S F E Tを形成する工程、
( f ) 前記第 3絶縁膜の上部に酸化シリコン膜からなる第 4絶縁膜を形成した後
、 前記第 4絶縁膜の上面を平坦化する工程、
( g ) 前記半導体基板の第 1領域の前記第 4、 第 3および第 2絶縁膜をエツチン グすることにより、 前記第 1 M I S FETのソース、 ドレインの上部に第 1開孔 を形成する工程、
(h) 前記第 1開孔の側壁に酸化シリコン膜からなる第 2側壁絶縁膜を形成した 後、 前記第 1開孔の内部を第 2導体層で埋め込む工程、
( i ) 前記第 1および第 2M I S FETの上部に窒化シリコン膜からなる第 5絶 縁膜を形成し、 前記第 5絶縁膜の上部に酸化シリコン膜からなる第 6絶縁膜を形 成する工程、
( j ) 前記第 1 M I S FETのソース、 ドレインの一方の上部に位置するように 、 前記第 6および第 5絶縁膜に第 2開孔を形成することにより、 前記第 2開孔の 底部に前記第 2導体層を露出させる工程、
(k) 前記第 2開孔の内部を第 3導体層で埋め込むことにより、 前記第 2開孔の 内部に、 前記第 2導体層に電気的に接続された第 3導体層を形成する工程。
1 7. 請求項 1 6記載の半導体集積回路装置の製造方法において、 前記工程 ( j ) で前記第 2開孔を形成する際、 前記第 2M I S FETのソース、 ドレインの上 部に第 3開孔を形成し、 前記工程 (k) で前記第 2開孔の内部を第 3導体層で埋 め込む際、 前記第 3開孔の内部を第 4導体層で埋め込むことを特徴.とする半導体 集積回路装置の製造方法。
18. 請求項 1 7記載の半導体集積回路装置の製造方法において、 前記工程 (k ) の後に、
( I ) 前記第 6絶縁膜の上部に、 前記第 2開孔の内部の前記第 3導体層に電気的 に接続される第 1配線、 および前記第 3開孔の内部の前記第 4導体層に電気的に 接続される第 2配線を形成する工程、 ' をさらに有することを特徴とする半導体集積回路装置の製造方法。
1 9. 請求項 1 8記載の半導体集積回路装置の製造方法において、 前記工程 ( I ) の後に、
(m) 前記第 6絶縁膜の上部に第 7絶縁膜を形成した後、 前記第 1 M I S FET のソース、 ドレインの他方の上部に位置するように、 前記第 7、 第 6および第 5 絶縁膜に第 4開孔を形成することによリ、 前記第 4開孔の底部に前記第 2導体層 を露出させる工程、 ( n ) 前記第 4開孔の内部を第 5導体層で埋め込む工程、
( o ) 前記第 7絶縁膜の上部に第 8絶縁膜を形成した後、 前記第 4開孔の上部の 前記第 8絶縁膜に第 5開孔を形成することにより、 前記第 5開孔の底部に前記第 4導体層を露出させる工程、
( p ) 前記第 5開孔の内部に、 前記 4導体層に電気的に接続される第 1電極を形 成し、 前記第 1電極の上部に誘電体膜および第 2電極を順次形成することにより 、 前記第 1電極、 前記誘電体膜および前記第 2電極からなる容量素子を形成する 工程、
をさらに有することを特徴とする半導体集積回路装置の製造方法。
2 0 . 請求項 1 6記載の半導体集積回路装置の製造方法において、 前記第 1開孔 は、 前記第 1 M I S F E Tの上部を跨ぐように形成されることを特徴とする半導 体集積回路装置の製造方法。
2 1 . 請求項 1 6記載の半導体集積回路装置の製造方法において、 前記窒化シリ コン膜からなる第 2絶縁膜の膜厚は、 前記酸化シリコン膜からなる第 2側壁絶縁 膜の膜厚よリも薄いことを特徴とする半導体集積回路装置の製造方法。
2 2 . 半導体基板上に、 互いに並行して延在するように形成された.複数の第 1導 体片と、
前記複数の第 1導体片のそれぞれの側壁に形成された酸化シリコン膜からなる 第 1側壁絶縁膜と、
前記第 1側壁絶縁膜が形成された前記複数の第 1導体片のそれぞれの間に形成 された第 2導体片と、
前記複数の第 1および第 2導体片の上部に形成された窒化シリコン膜からなる' 第 1絶縁膜と、
前記第 1絶縁膜の上部に形成された酸化シリコン膜からなる第 2絶縁膜と、 前記複数の第 2導体片のそれぞれの上部の前記第 1および第 2絶縁膜に形成さ れた第 1開孔と、
前記複数の第 1開孔の内部に形成され、 前記第 2導体片に電気的に接続された 第 3導体片とを有することを特徴とする半導体集積回路装置。
2 3 . 請求項 2 2記載の半導体集積回路装置において、 前記複数の第 1導体片の それぞれの側壁と前記第 1側壁絶縁膜との間には、 前記第 1側壁絶縁膜よリも膜 厚が薄い窒化シリコン膜が介在していることを特徴とする半導体集積回路装置。
2 4. 請求項 2 2記載の半導体集積回路装置において、 前記複数の第 1導体片の それぞれの上面は、 窒化シリコン膜、 または酸化シリコン膜と窒化シリコン膜と の積層膜からなる第 3絶縁膜で覆われていることを特徴とする半導体集積回路装 置。
2 5 . 請求項 2 2記載の半導体集積回路装置において、 前記第 2絶縁膜の上部に は、 前記第 3導体片に電気的に接続された第 4導体層からなる第 1電極と、 前記 第 4導体層の上部に形成された誘電体膜と、 前記誘電体膜の上部に形成された第 5導体層からなる第 2電極とによって構成される容量素子が形成されていること を特徴とする半導体集積回路装置。
2 6 . 請求項 2 4記載の半導体集積回路装置において、 前記第 1側壁絶縁膜の上 端部は、 前記第 1導体片の上面よりも高く、 かつ前記第 3絶縁膜の上面よりも低 いことを特徴とする半導体集積回路装置。
2 7 . 半導体基板上に、 互いに並行して延在するように形成された複数の第 1導 体層と、
前記複数の第 1導体層のそれぞれの間に、 所定の間隔で配置された第 2導体層 と、
前記複数の第 2導体層のそれぞれの間に形成された酸化シリコン膜からなる第 1絶縁膜と、
前記第 1導体層と前記第 2導体層との間、 および前記第 1導体層と前記第 1絶 縁膜との間にそれぞれ形成された側壁絶縁膜と、 ' 前記第 2導体層および前記第 1絶縁膜の上部に形成された窒化シリコン膜から なる第 2絶縁膜と、
前記第 2絶縁膜の上部に形成された酸化シリコン膜からなる第 3絶縁膜と、 前記第 3絶縁膜と前記第 2絶縁膜とに形成された開孔内に形成され、 前記第 2 導体層に接触する第 3導体層とを有することを特徴とする半導体集積回路装置。
2 8 . 請求項 2 7記載の半導体集積回路装置において、 前記側壁絶縁膜は、 酸化 シリコン膜からなることを特徴とする半導体集積回路装置。
2 9 . 請求項 2 8記載の半導体集積回路装置において、 前記第 1導体層の側壁と 前記側壁絶縁膜との間には、 窒化シリコン膜からなる第 2の側壁絶縁膜が形成さ れていることを特徴とする半導体集積回路装置。
PCT/JP2002/001003 2001-03-08 2002-02-07 Procede de production de circuit integre semi-conducteur et dispositif de circuit integre semi-conducteur WO2002075812A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002574127A JPWO2002075812A1 (ja) 2001-03-08 2002-02-07 半導体集積回路装置の製造方法および半導体集積回路装置
KR1020037011553A KR100863780B1 (ko) 2001-03-08 2002-02-07 반도체집적회로장치의 제조방법 및 반도체집적회로장치
US10/469,819 US7141471B2 (en) 2001-03-08 2002-02-07 Method of producing semiconductor integrated circuit device and semiconductor integrated circuit device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-64932 2001-03-08
JP2001064932 2001-03-08

Publications (1)

Publication Number Publication Date
WO2002075812A1 true WO2002075812A1 (fr) 2002-09-26

Family

ID=18923682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001003 WO2002075812A1 (fr) 2001-03-08 2002-02-07 Procede de production de circuit integre semi-conducteur et dispositif de circuit integre semi-conducteur

Country Status (5)

Country Link
US (1) US7141471B2 (ja)
JP (1) JPWO2002075812A1 (ja)
KR (1) KR100863780B1 (ja)
TW (1) TW548832B (ja)
WO (1) WO2002075812A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2769736C (en) * 1997-07-09 2013-05-14 Advanced Audio Devices, Llc Device for editing and non-volatile optical storage of digital audio
JP4627977B2 (ja) * 2003-10-14 2011-02-09 ルネサスエレクトロニクス株式会社 半導体装置
KR100568790B1 (ko) * 2003-12-30 2006-04-07 주식회사 하이닉스반도체 반도체 소자의 콘택 플러그 및 그 형성 방법
JP4364226B2 (ja) * 2006-09-21 2009-11-11 株式会社東芝 半導体集積回路
JP2008311457A (ja) * 2007-06-15 2008-12-25 Renesas Technology Corp 半導体装置の製造方法
KR101615654B1 (ko) * 2010-05-14 2016-05-12 삼성전자주식회사 반도체 소자의 형성방법
JP2012089744A (ja) * 2010-10-21 2012-05-10 Elpida Memory Inc 半導体装置の製造方法
JP6006921B2 (ja) * 2011-07-22 2016-10-12 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体装置およびその製造方法
US10998228B2 (en) * 2014-06-12 2021-05-04 Taiwan Semiconductor Manufacturing Company, Ltd. Self-aligned interconnect with protection layer
US10163719B2 (en) * 2015-12-15 2018-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming self-alignment contact
US9972633B2 (en) * 2016-01-27 2018-05-15 United Microelectronics Corp. Semiconductor device and method for fabricating the same
KR20180063755A (ko) 2016-12-02 2018-06-12 삼성전자주식회사 반도체 소자
KR102618309B1 (ko) * 2018-07-25 2023-12-27 에스케이하이닉스 주식회사 반도체 장치 및 그 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260957A (ja) * 1999-03-12 2000-09-22 Hitachi Ltd 半導体装置の製造方法
JP2000277711A (ja) * 1999-01-22 2000-10-06 Fujitsu Ltd 半導体装置及びその製造方法
JP2001036038A (ja) * 1999-07-22 2001-02-09 Mitsubishi Electric Corp 半導体装置の製造方法及び半導体装置
JP2001044138A (ja) * 1999-07-28 2001-02-16 Hitachi Ltd 半導体集積回路装置の製造方法および半導体集積回路装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956615A (en) * 1994-05-31 1999-09-21 Stmicroelectronics, Inc. Method of forming a metal contact to landing pad structure in an integrated circuit
JPH09252098A (ja) 1996-01-12 1997-09-22 Hitachi Ltd 半導体集積回路装置およびその製造方法
US6395613B1 (en) * 2000-08-30 2002-05-28 Micron Technology, Inc. Semiconductor processing methods of forming a plurality of capacitors on a substrate, bit line contacts and method of forming bit line contacts
JP3127955B2 (ja) 1997-06-30 2001-01-29 日本電気株式会社 半導体装置及びその製造方法
US6010935A (en) * 1997-08-21 2000-01-04 Micron Technology, Inc. Self aligned contacts
JP2000077622A (ja) 1998-08-31 2000-03-14 Texas Instr Inc <Ti> 半導体記憶装置及びその製造方法
US5893734A (en) * 1998-09-14 1999-04-13 Vanguard International Semiconductor Corporation Method for fabricating capacitor-under-bit line (CUB) dynamic random access memory (DRAM) using tungsten landing plug contacts
TW444395B (en) * 1999-07-27 2001-07-01 Taiwan Semiconductor Mfg Processing method to planarize the crown capacitor device
JP3957945B2 (ja) * 2000-03-31 2007-08-15 富士通株式会社 半導体装置及びその製造方法
US6251719B1 (en) * 2000-11-16 2001-06-26 Taiwan Semiconductor Manufacturing Company Poly gate process that provides a novel solution to fix poly-2 residue under poly-1 oxide for charge coupled devices
US6300191B1 (en) * 2001-02-15 2001-10-09 Taiwan Semiconductor Manufacturing Company Method of fabricating a capacitor under bit line structure for a dynamic random access memory device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277711A (ja) * 1999-01-22 2000-10-06 Fujitsu Ltd 半導体装置及びその製造方法
JP2000260957A (ja) * 1999-03-12 2000-09-22 Hitachi Ltd 半導体装置の製造方法
JP2001036038A (ja) * 1999-07-22 2001-02-09 Mitsubishi Electric Corp 半導体装置の製造方法及び半導体装置
JP2001044138A (ja) * 1999-07-28 2001-02-16 Hitachi Ltd 半導体集積回路装置の製造方法および半導体集積回路装置

Also Published As

Publication number Publication date
US7141471B2 (en) 2006-11-28
US20040076068A1 (en) 2004-04-22
KR20030088446A (ko) 2003-11-19
JPWO2002075812A1 (ja) 2004-07-08
KR100863780B1 (ko) 2008-10-16
TW548832B (en) 2003-08-21

Similar Documents

Publication Publication Date Title
KR100704244B1 (ko) 반도체기억장치및그제조방법
KR100375428B1 (ko) 반도체기억장치 및 그 제조방법
US9012967B2 (en) 1T MIM memory for embedded RAM application in soc
TW508798B (en) Semiconductor integrated circuit device and its manufacturing method
US6770527B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP3869128B2 (ja) 半導体集積回路装置の製造方法
US20040173836A1 (en) Semiconductor device and method of manufacturing the same
KR20000022861A (ko) 반도체집적회로장치 및 그 제조방법
US7141471B2 (en) Method of producing semiconductor integrated circuit device and semiconductor integrated circuit device
US6184079B1 (en) Method for fabricating a semiconductor device
KR20010021337A (ko) 반도체 집적 회로 장치 및 그 제조 방법
JP3645463B2 (ja) 半導体集積回路装置
JP3752795B2 (ja) 半導体記憶装置の製造方法
KR100415537B1 (ko) 반도체 소자 제조 방법
US6365928B1 (en) Semiconductor memory storage electrode and method of making
US6964899B2 (en) Semiconductor device and method of manufacturing the same
JP2002217383A (ja) 半導体集積回路装置の製造方法および半導体集積回路装置
JP4215711B2 (ja) 半導体集積回路装置およびその製造方法
JPH11297951A (ja) 半導体集積回路装置およびその製造方法
JP4357510B2 (ja) 半導体集積回路装置の製造方法
JP4357511B2 (ja) 半導体集積回路装置の製造方法
JPH1117116A (ja) 半導体装置およびその製造方法
JP2001217407A (ja) 半導体集積回路装置およびその製造方法
KR20010083349A (ko) 광범위하게 평탄화된 반도체 소자의 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002574127

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037011553

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10469819

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020037011553

Country of ref document: KR

122 Ep: pct application non-entry in european phase