WO2002070474A1 - Process for producing lactam - Google Patents

Process for producing lactam Download PDF

Info

Publication number
WO2002070474A1
WO2002070474A1 PCT/JP2001/002321 JP0102321W WO02070474A1 WO 2002070474 A1 WO2002070474 A1 WO 2002070474A1 JP 0102321 W JP0102321 W JP 0102321W WO 02070474 A1 WO02070474 A1 WO 02070474A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
reaction
oxime
pressure
lactam
Prior art date
Application number
PCT/JP2001/002321
Other languages
English (en)
French (fr)
Inventor
Kiyotaka Hatakeda
Osamu Sato
Yutaka Ikushima
Kazuo Torii
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to EP01914201A priority Critical patent/EP1369413A4/en
Priority to US10/469,533 priority patent/US7045622B2/en
Publication of WO2002070474A1 publication Critical patent/WO2002070474A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/02Preparation of lactams
    • C07D201/04Preparation of lactams from or via oximes by Beckmann rearrangement
    • C07D201/06Preparation of lactams from or via oximes by Beckmann rearrangement from ketones by simultaneous oxime formation and rearrangement
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/02Preparation of lactams
    • C07D201/04Preparation of lactams from or via oximes by Beckmann rearrangement
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/02Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D223/06Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D223/08Oxygen atoms
    • C07D223/10Oxygen atoms attached in position 2

Definitions

  • the present invention relates to a method for continuously producing lactam from oxime under high-temperature and high-pressure water conditions, and more particularly, to continuously producing lactam by performing a rearrangement reaction of oxime under high-temperature and high-pressure water conditions without a catalyst. And a novel catalyst-free continuous production method. More specifically, it enables the production of lactam which does not require the neutralization treatment of a large amount of waste sulfuric acid used as in the conventional production method using concentrated sulfuric acid as a catalyst. It provides a suitable and useful method.
  • Background art
  • lactams such as ⁇ -force prolactam, which is a raw material of nylon 6, are industrially produced by the Beckmann rearrangement method from oxime of a force-luponyl compound such as cyclohexanone oxime.
  • an acid catalyst is used in this rearrangement reaction, even when the amount of water in the system is very small, even if the amount of water in the system is very small, oxime hydrolyzes and lowers the lactam yield. In order to prevent this, it is common to use fuming sulfuric acid as the acid catalyst and boil the reaction.
  • a method in which the reaction is carried out under high-temperature and high-pressure water without using any acid catalyst such as sulfuric acid is as follows: (1) Batch synthesis (0. Sato, Y. Ikushima and T. Yokoyama, Journal of Organic Chemistry 1998, 63, 9100-9102) and (2) flow-through synthesis method (Y. Ikushima,. Hat akeda, 0. Sato, T. Yokoyama and M. Arai, Journal of American Chemical Society 2000, 122, 1908-1918) have been proposed.
  • cyclohexanone oxime is sealed in a stainless steel tube with an internal volume of 10 m1 and placed in a salt bath at 200 to 400 ° C within 30 seconds. Temperature, and reacted for 3 minutes to obtain the product.
  • this method is considered to be unsuitable for mass production processes, it is attracting attention as a synthesis method that does not use an acid catalyst such as fuming sulfuric acid.
  • the operation is intermittent because the reaction is terminated each time, and it takes about 20 to 30 seconds to raise the temperature to the set temperature.
  • the flow-through synthesis method (2) is considered to be suitable for mass production due to continuous operation.However, since the xanone oxime aqueous solution is heated to the mouth of the room at room temperature to produce high-temperature and high-pressure carrier water, the set reaction is performed. It is thought that it takes time to raise the temperature. Therefore, at 350 ° C and 22.1 M An experiment in which the reaction was carried out for 113 seconds under the Pa condition showed that only cyclohexanone was obtained as a product and no ⁇ -force prolactam was formed at all. Also at 374.5 ° C, it was reported that ⁇ -force prolactam and cyclohexanone were formed.
  • An object of the present invention is to provide a method for continuously producing a lactam under high-temperature and high-pressure water.
  • the present invention provides a method for producing a lactam, which comprises selecting and synthesizing a lactam without causing a hydrolysis reaction by introducing the oxime into high-temperature and high-pressure water in circulation.
  • the present invention relates to a method for producing a lactam, characterized in that a lactam is rapidly and continuously synthesized from oxime under a high-temperature and high-pressure water condition in a temperature range of C or more and a pressure range of 12 MPa or more. Disclosure of the invention
  • the present invention provides a method for introducing cycloxane into high-temperature and high-pressure water and reacting it by shortening the heating time of a substrate substance to produce cyclohexanone. It is intended to provide a method for selectively producing lactam without the use of lactam.
  • the synthesis method of the present invention developed by the present inventors through various experiments is, for example, that the oxime aqueous solution or oxime is continuously introduced directly into the reaction field under the conditions of high temperature and high pressure water, and the reaction is set up in a short time. By reaching the temperature: This is a method for suppressing the hydrolysis reaction of oxime and producing heptaprolactam selectively and more efficiently in a shorter time than the conventional method.
  • the present invention for solving the above problems is constituted by the following technical means.
  • a method for producing a lactam characterized by introducing oxime into high-temperature, high-pressure water and raising the temperature to a predetermined high-temperature, high-pressure condition in a short time to react.
  • the oxime is cyclohexanone oxime (1) or ( 6) A method for producing the lactam according to the above. Next, the present invention will be described in more detail.
  • an aqueous solution of oxime is introduced into high-temperature, high-pressure water to reach a reaction temperature of 250 to 450 ° C. in a short time of 3 seconds or less.
  • a reaction pressure condition of 2 to 40 MPa will be described in detail as an example.
  • the production method of the present invention developed by the present inventors through various experiments includes, for example, continuously introducing an aqueous cyclohexanone oxime solution into a reaction field under high-temperature and high-pressure water conditions in circulation, for 3 seconds or less.
  • ⁇ -force prolactam is synthesized by a cyclohexanone oxime rearrangement without causing a hydrolysis reaction by reaching the reaction set temperature in a short time.
  • high-temperature and high-pressure water is used as a reaction field or a reaction solvent, and no organic solvent or a catalyst such as sulfuric acid is used, and no particular use is required.
  • this method does not emit waste such as waste solvents, spent catalysts or ammonium sulfate that must be treated.
  • Cyclohexanone is not produced by the hydrolysis reaction of cyclohexanone oxime. Unreacted feed can be reused in the reaction of the present invention.
  • the method of the present invention is considered to be the most suitable method for lactam production, since products can be produced continuously at high yield in good yield. The method for producing a lactam of the present invention will be described below.
  • an oxime aqueous solution or oxime is continuously introduced directly into a reaction field under high-temperature and high-pressure water conditions to reach the reaction set temperature in a short time, thereby suppressing the oxime hydrolysis reaction and facilitating the reaction.
  • the tom can be produced selectively and efficiently with a shorter reaction time than the conventional method.
  • the alkyl group any of those having 1 to 20 carbon atoms such as a methyl group, an ethyl group, a propyl group and a butyl group can be used.
  • An example of oxime is cyclohexanone oxime, but the present invention is not limited to this. 1
  • the alkyl group any of those having 1 to 20 carbon atoms such as a methyl group, an ethyl group, a propyl group and a butyl group can be used.
  • the lactam obtained in the present invention is a multi-membered lactam having five or more rings such as a five-membered lactam, a six-membered lactam, and a seven-membered lactam.
  • Examples include ⁇ -prolactam, r-butyl lactam, avalerolactam, ⁇ -valerolactam and the like, but the present invention is not limited to these.
  • Nonoxim It is known that the synthesis of lactam by the Beckmann rearrangement reaction of oxime proceeds in the presence of an acid catalyst. It is an interesting fact that lactam is synthesized by the Beckmann rearrangement reaction of oxime in the high-temperature and high-pressure water of the present invention. In high-temperature and high-pressure water, it is possible that the acid catalyst function may be developed due to the formation of protons or polarization of the water molecule structure, etc. .
  • substrate can be set to predetermined high temperature and pressure conditions in a short time, a hydrolysis reaction can be suppressed and a lactam can be selectively manufactured.
  • This reaction produces a small amount of amino acids.
  • ⁇ -caprolactam 6-Aminocaproic acid was obtained in a yield of 0.3% with respect to 41.4%.
  • the conversion of 6-aminocaproic acid to ⁇ -caprolactam is relatively easy, and this reaction proceeds even in high-temperature and high-pressure water. In this reaction, cyclohexanone, a hydrolyzate, was not detected at all.
  • the water used as the raw material of the high-temperature and high-pressure water in the present invention distilled water, ion exchange water, tap water, groundwater, and the like can be suitably used.
  • the dissolved oxygen is used as high-temperature and high-pressure water, especially as supercritical water, which may oxidize and decompose organic substances. It is desirable to use it after removing it.
  • high-temperature and high-pressure water is used in a subcritical state, it is not necessary to remove dissolved oxygen from the raw water, but it may be used after removal.
  • the temperature of the high-temperature high-pressure water used in the present invention can be controlled from outside the reactor using a heater, a molten salt, or the like. Alternatively, it is also possible to control the temperature by an internal heating method in the reactor. In addition, high-temperature and high-pressure water is manufactured in advance, and injected into the reactor using a water pump from outside to react. You can also. It is also possible to control the reaction conditions by supplying two or more types of high-temperature and high-pressure water with different temperature and pressure conditions to the reaction system. The pressure in the reaction vessel can be controlled by a pressure regulating valve if it is a flow type. In addition, pressure can be controlled by injecting other gases, such as nitrogen gas. Generally, the pressure used should be higher than the autogenous pressure at the operating temperature.
  • the present invention is achieved under high-temperature and high-pressure water conditions of a temperature of 250 ° C. or more and a pressure of 12 MPa or more.
  • the present invention can be more suitably achieved under high-temperature and high-pressure water conditions of a temperature of 300 ° C. or more and a pressure of 15 MPa or more.
  • the present invention is most preferably achieved by selecting high-temperature and high-pressure water conditions that are a temperature range of 350 ° C. or more and a pressure range of 15 to 40 MPa.
  • a temperature range of 300 ° C. to 450 ° C. can be suitably selected.
  • appropriate temperature and pressure conditions can be adopted depending on the throughput and the reactor. In the present invention, the higher the temperature, the more the reaction proceeds, and the higher the pressure, the more the reaction tends to be accelerated.
  • a high-temperature and high-pressure reactor is used as the reactor.
  • the type of the reactor is not limited to this, as long as it can set a reaction system under high-temperature and high-pressure water conditions.
  • suitable reactors include the flow-type high-temperature and high-pressure reactor used in the present invention and the molten oxide-introduced flow-type high-temperature and high-pressure reactor.
  • an aqueous solution of oxime at room temperature or oxime is directly introduced into the flowing high-temperature and high-pressure water, so that the temperature after mixing decreases.
  • the rate of temperature decrease after mixing depends on the initial temperature of the carrier water, the reaction pressure, the flow rate of the carrier water, the flow rate of the oxime aqueous solution or oxime, the amount of oxime introduced, the reactor configuration, the reactor volume, etc. Change.
  • the initial temperature of the carrier water can be adjusted empirically by appropriately selecting and using a temperature about 5 to 300 ° C higher than the set temperature.
  • the most distinctive feature of the present invention is that the temperature
  • the temperature rise time of the oxime is shortened to 3 seconds or less.
  • the oxime hydrolysis reaction can be suppressed, and as a result, lactam selectivity and yield can be improved.
  • the heating time of the oxime is preferably 1 second or less, more preferably, the heating time of the oxime is 0.5 second or less, and most preferably, the heating time of the oxime is 0.3. It is preferably less than seconds.
  • the reaction conditions vary depending on the type and concentration of the oxime used, the volume of the reaction tube, high-temperature high-pressure water conditions, and the like.
  • the oxime used in the reaction is not limited to one type, and the reaction suitably proceeds even when a mixture of two or more types is used.
  • Oxime can be melted and introduced into high-temperature, high-pressure water for dissolution, but it is also possible to directly introduce oxime powder into high-temperature, high-pressure water. Further, an aqueous substrate solution in which oxime is dissolved at room temperature in advance can be introduced into high-temperature and high-pressure water.
  • the concentration of oxime introduced into the reactor can be controlled by controlling the flow rate of high-temperature and high-pressure water used as the carrier water in the flow system and the flow rate of oxime as the reaction substrate.
  • concentration of oxime to be introduced into the reactor can be selected from the range of ImM to 10M.
  • an appropriate concentration value between 2 mM and 5 M can be selected, and most preferably, an appropriate concentration value between 2 mM and 2 M is selected. It is not limited to the density value.
  • the reaction yield of lactam is controlled by adjusting the reaction system temperature, pressure, reactor inner diameter, reactor volume, reactor volume, flow rate, reaction substrate concentration, reaction time, etc. according to the type of oxime. can do.
  • the oxime of the reaction substrate is present in high-temperature and high-pressure water at a temperature of 250 ° C. or more and a pressure of 12 MPa or more.
  • a water-soluble catalyst such as a base or the like, a metal-supported catalyst, a solid catalyst such as a solid acid or a solid base, an enzyme or the like need not be particularly added, and there is no need to use an organic solvent.
  • the main feature of the present invention is that the above reaction substrate is basically present in high-temperature and high-pressure water to synthesize lactam from oxime under non-catalytic conditions or without involving an organic solvent in the reaction.
  • organic solvents such as methanol, ethanol, and ethylene glycol
  • water-soluble catalysts such as metal ions, acids, and bases
  • metal-supported catalysts such as solid acids, and solid bases
  • solid bases such as solid bases
  • a lactam is synthesized from oxime in a short reaction time, for example, from 0.01 to 60 seconds by the above reaction system.
  • the reaction time controls the reaction temperature, reaction pressure, high-temperature high-pressure water flow rate, reaction substrate introduction flow rate, reactor shape, reactor inner diameter, reactor flow path length, etc. This allows control of the reaction time. More preferably, the reaction time can be selected from a value in the range of 0.01 to 30 seconds, and most preferably, a value in the range of 0.05 to 10 seconds can be selected.
  • the present inventors are not limited to the value of the formula.
  • LC-MS high-performance liquid chromatography-mass spectrometry
  • NMR measurement apparatus nuclear magnetic resonance spectroscopy Apparatus
  • FTIR measurement apparatus Fleier-infrared spectrophotometer
  • the lactam obtained continuously is separated and purified by an ion-exchange resin column, the infrared absorption spectrum is measured by an FTIR measuring device, and the lactam species can be accurately determined by comparing it with that of a special-grade reagent product with high purity. Can be identified.
  • the type and purity of the lactam can be confirmed by NMR spectrum measurement. Their structures can be confirmed with a gas chromatography mass spectrometer (GC-MS device), LC-MS device, NMR measurement device or FTIR device.
  • the reaction yield of the lactam produced in the present invention is determined by the reaction conditions such as temperature and pressure, the type of oxime, the concentration of oxime, the type of the reactor, the size of the reactor, the flow rate of the carrier water, the rate of oxime introduction, It fluctuates with time.
  • the reaction yield for ⁇ -caprolactam ranged from 5.5% to 76.3%.
  • various lactams are recovered together with the raw material substrate from various oximes or a mixture thereof.
  • the lactam and the raw material substrate oxime can be separated by a cation exchange resin, anion exchange resin, or a combination thereof. Lactam can be purified and concentrated for each type. Oxim recovered at the same time can be reused as a raw material.
  • a lactam can be synthesized by a rearrangement reaction of oxime under high-temperature and high-pressure water conditions, and the lactam can be separated and purified from the obtained reaction solution using an ion-exchange resin, whereby a high-purity lactam can be suitably produced.
  • a predetermined concentration of oxime is introduced as a reaction substrate into high-temperature hot water under high-temperature, high-pressure water conditions, the temperature of the reaction substrate is raised in a short time, and the reaction is performed under predetermined high-temperature, high-pressure water conditions.
  • cyclohexyl ⁇ -Caprolactam is synthesized from sanonoxime.
  • various lacquers corresponding to the respective oximes can be continuously synthesized.
  • the present invention provides a novel continuous lactam capable of continuously producing lactam in a short time by adjusting the reaction conditions, the type of oxime of the reaction substrate, and the concentration of oxime in the above reaction system.
  • This is a lactam production method, and is useful as a lactam production method.
  • FIG. 1 shows a flow sheet of a flow-type high-temperature and high-pressure reactor attached to two water pumps used in the present invention.
  • FIG. 2 shows a flow-type high-temperature high-pressure reactor equipped with a molten oxime and attached to two water pumps used in the present invention.
  • the material of the reactor is alloy C-276, the inner diameter of the reactor: 0.325 mm and the length of the reactor: 120 cm, thus the reactor volume is 0.0995 cm Calculated as 3 .
  • Each introduced preparation was injected by a high-pressure pump. Distilled water from which dissolved oxygen was expelled by bubbling with nitrogen gas was added to produce a carrier water of 46 O and 30 MPa to produce 3.8 m. Water was passed at a flow rate of Zmin. Similarly, a substrate solution containing 21.9 mM cyclohexanone oxime was prepared using distilled water that had been deoxygenated.
  • a substrate solution at room temperature and 30 MPa was introduced into Carrier-water at the inlet of the reactor at a flow rate of 1.3 m 1 Zmin, and mixed.
  • the reaction temperature of the mixed solution measured with a thermocouple (1) placed 1 cm from the inlet of the reactor was 375 ° C, which coincided with the temperature measured with the thermocouple (2) at the reactor outlet.
  • the temperature inside is constant, and it is considered that the carrier water and the substrate solution are homogeneously mixed.
  • the substrate concentration after mixing was 5.58 mM.
  • the reaction time was 0.667 seconds. Therefore, it is considered that the mixing is completely performed within a short time within 0.006 seconds.
  • the substrate concentration after mixing was 5.58 mM.
  • Example 2-A reaction was carried out in the same manner as in Example 1 to continuously produce ⁇ -caprolactam by a rearrangement reaction of hexanoxanoxime. However, the reaction was carried out with the reaction conditions changed as follows.
  • the substrate concentration of cyclohexanone oxime when mixed was 5.69 mM.
  • the reaction time was 0.747 seconds, and since the temperature in the reactor was constant, it was inferred that mixing was performed in a short time within 0.006 seconds.
  • ⁇ -caprolactam and the by-product 6-aminocaproic acid were formed as main products. .
  • only unreacted cyclohexanone oxime was detected, and no cyclohexanone, a hydrolysis reaction product of the raw material, was observed at all. ⁇ —cuff.
  • the concentration of lolactam was 1.61 mM, and the reaction yield was 28.3%.
  • the content of 6-aminocaproic acid was 0.21 mM, and the reaction yield was 0.2%.
  • Reaction high pressure water pressure 15MPa Density of reaction high-temperature high-pressure water: 0.72 5 9 g / cm 3
  • the substrate concentration of cyclohexanone oxime when mixed was 9.20 mM.
  • the reaction time is 0.867 seconds, and the temperature inside the reactor is constant, so it is considered that the carrier water and the substrate solution are mixed in a short time within 0.007 seconds. .
  • ⁇ -force prolactam was produced as a product.
  • the concentration of ⁇ -caprolactam was 0.51 mM, and the reaction yield was 5.5%. Comparative Example 1
  • the substrate concentration of cyclohexanone oxime when mixed was 6.26 mM.
  • the reaction time is 1.066 seconds and the temperature inside the reactor is constant, so the carrier water and the substrate can be dissolved in a short time within 0.009 seconds. It is considered that the liquid was mixed.
  • the aqueous solution after the reaction was examined using a high-performance liquid chromatography-mass spectrometer, no production of ⁇ -force prolactam was observed. Comparative Example 2
  • the reaction was carried out in the same manner as in Example 1, and continuous production of ⁇ -force prolactam was attempted by a transfer reaction of cyclohexanone oxime. However, the reaction was carried out with the reaction conditions changed as follows.
  • the substrate concentration of cyclohexanone oxime when mixed was 7.45 mM.
  • the reaction time is 0.852 seconds and the temperature inside the reactor is constant, so it is considered that the carrier water and the substrate solution are mixed within a short time of 0.007 seconds or less. .
  • the aqueous solution after the reaction was examined using a high-performance liquid chromatography-mass spectrometer, no production of ⁇ -force prolactam was observed.
  • the substrate concentration of cyclohexanone oxime when mixed was 2.15 mM.
  • the reaction time is 0.195 seconds, and the temperature inside the reactor is constant, so it is considered that mixing is performed in a short time within 0.02 seconds ⁇ ).
  • ⁇ -force prolactam and 6-aminocaproic acid, a by-product were formed as main products. .
  • only unreacted cyclohexanone oxime was detected, and no cyclohexanone, a hydrolysis reaction product of the raw material, was observed at all.
  • the concentration of ⁇ -force prolactam was 0.19 mM, and the reaction yield was 8.8%.
  • the content of 6-aminocaproic acid was 0.02 mM, and the reaction yield was 0.1%.
  • the reaction was carried out in the same manner as in Example 1, and continuous production of ⁇ -force prolactam was attempted by a transfer reaction of cyclohexanone oxime. However, the reaction was carried out with the reaction conditions changed as follows.
  • the substrate concentration of cyclohexanone oxime when mixed was 5.69 mM.
  • the reaction time was 0.625 seconds, and since the temperature inside the reactor was constant, it is considered that mixing was performed in a short time of less than 0.05 seconds.
  • ⁇ -force prolactam and 6-aminocaproic acid, a by-product were formed as main products.
  • only unreacted cyclohexanone oxime was detected, and no cyclohexanone, a hydrolysis reaction product of the raw material, was observed at all.
  • the concentration of ⁇ -cabrolactam was 3.78 mM, and the reaction yield was 66.4%.
  • the content of 6-aminocaproic acid was 0.078 mM, and the reaction yield was 1-4%.
  • Reaction high temperature high pressure water temperature 420 ° C
  • Reaction high pressure water pressure 4 OMPa
  • the substrate concentration of cyclohexanone oxime when mixed was 3.50 mM.
  • the reaction time was 0.506 seconds, and since the temperature inside the reactor was constant, it is considered that mixing was performed in a short time within 0.004 seconds.
  • ⁇ -force prolactam and 6-aminocaproic acid, a by-product were formed as main products.
  • only unreacted cyclohexanone oxime was detected, and no cyclohexanone, a hydrolysis reaction product of the raw material, was observed at all.
  • the concentration of ⁇ -force prolactam was 1.58 mM, and the reaction yield was 45.1%.
  • the content of 6-aminocaproic acid was 0.028 mM, and the reaction yield was 0.8%.
  • the reaction was carried out in the same manner as in Example 1, and continuous production of ⁇ -force prolactam was attempted by a transfer reaction of cyclohexanone oxime. However, the reaction was carried out with the reaction conditions changed as follows.
  • the substrate concentration of cyclohexanone oxime when mixed was 4.82 mM.
  • the reaction time was 1.820 seconds, and the temperature inside the reactor was constant, so it was estimated that mixing was performed within a short time of less than 0.015 seconds. Is done.
  • ⁇ -force prolactam and 6-aminocaproic acid, a by-product were formed as main products. .
  • only unreacted cyclohexanone oxime was detected, and no cyclohexanone, a hydrolysis reaction product of the raw material, was observed at all.
  • the concentration of ⁇ -force prolactam was 3.68 mM, and the reaction yield was 76.3%.
  • the content of 6-aminocaproic acid was 0.132 mM, and the reaction yield was 2.7%.
  • the reactor materials are alloy C _ 2 7 6, the reactor internal diameter: 4. 6 8 mm and reactor length: In 2 0 0 mm, therefore the reactor volume and 3. 4 4 0 cm 3 was calculated.
  • Each introduced preparation was injected with a high-pressure pump. Distilled water from which dissolved oxygen was expelled by bubbling with nitrogen gas was heated to prepare carrier water of 357 ⁇ ⁇ and 301 01? &, Which was passed at a flow rate of 24.6 ml / min. Cyclohexanone oxime was heated at 95 ° C to prepare a substrate melt.
  • the substrate melt was pressurized with pressurized water at 30 MPa and introduced into the carrier water at the inlet of the reactor at a flow rate of 0.4 ml / min and mixed.
  • the reaction temperature of the mixed solution measured with a thermocouple (1) placed 1 cm from the reactor inlet was 350 ° C, which was consistent with the temperature measured with the thermocouple (2) at the reactor outlet.
  • the temperature inside the vessel is constant, and it is considered that the carrier water and the substrate melt are homogeneously mixed.
  • the substrate concentration after mixing was 141.6 mM.
  • the reaction time was 5.165 seconds. Therefore, mixing and dissolving in a short time within 0.2 The solution is considered to be complete.
  • the substrate concentration after mixing was 141.6 mM.
  • thermocouple was connected to a SUS316 tube reactor (internal volume: 10.Icm3) with an inner diameter of 8.7 mm and a length of 170 mm, and a rapid temperature increase was attempted in a molten salt bath.
  • An experiment was conducted to synthesize ⁇ - force prolactam from cyclohexanone oxime by a batch-type reaction method at 375 ° C. for 3 minutes.
  • the reactor was charged with 3.5 g of distilled water and 0.5 g of cyclohexanone oxime, and sealed in a nitrogen stream.
  • the reactor is heated to the set temperature by putting the reactor into a molten salt bath that has been set to 375 ° C in advance.
  • the pressure at the reaction temperature was calculated from the internal pressure, the amount of water used, and the temperature from the vapor pressure curve of water. After reacting at 375 ° C for 3 minutes, the reactor was placed in a cold water bath to stop the reaction. The reaction pressure was 25 MPa, and the heating time up to 375 ° C. was 29 seconds.
  • the present invention provides a continuous production of lactam characterized by continuously synthesizing lactam without causing a hydrolysis reaction by introducing oxam into flowing high-temperature and high-pressure water.
  • the present invention relates to a continuous lactam production method characterized in that lactam is selectively produced from oxime under high temperature and high pressure water conditions.
  • lactams can be selectively produced from oximes by the following processes: 2) lactams can be produced in a short time by reacting oximes under high temperature and pressure; and 3) lactam production methods that do not use any catalyst. It can be provided.
  • It has a special effect that it is an environmentally friendly chemical substance production system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明細書 ラクタムの製造方法 技術分野
本発明は、 高温高圧水条件下でォキシムからラクタムを連続的に 製造する方法に関するものであり、 更に詳しくは、 高温高圧水条件 下でォキシムの転位反応を無触媒で行ないラクタムを連続的に製造 する新規な無触媒連続製造方法に関するものである。 更に詳しくい えば 来の濃硫酸を触媒とした製造方法に見られるような、 使用し た多量の廃硫酸の中和処理を必要としないラクタムの製造を可能と するものであり、 産業技術としては好適かつ有用な方法を提供する ものである。 背景技術
従来、 ナイロン 6の原料となる ε—力プロラクタムのようなラク タムを工業的に生産するにはシクロへキサノンォキシムといった力 ルポニル化合物のォキシムからベックマン転位法によって製造され ている。 この転位反応には酸触媒が使用されているが、 煮沸して反 応させるため系内における水の存在は微量であつてもォキシムが加 水分解を起こし、 ラクタムの収率を低下させる。 これを防ぐため、 酸触媒として発煙硫酸を使用し、 煮沸して反応させる方法が一般的 となっている。 この方法は苛酷な条件下で反応させるため装置材料 の腐食、 あるいは製造工程の危険性と共に副生成物である硫酸アン モニゥムの処理に問題があることが知られている。 ラクタムを回収 する際に使用した硫酸はアンモニアで中和処理する必要があり、 硫 安 (硫酸アンモニゥム) が、 ラクタム 1 k g当たり 2 k g以上副生 する。 硫安は商品価値が低いため、 利用が困難となってきており、 その処理が必要とされている。 近年、 地球環境の悪化の懸念が高まりつつあり、 化学工業分野に おいて有害物質を使用しない、 あるいは排出しないで且つ簡単で効 率的な、 更には短時間で反応が終了するような環境調和型の化学プ 口セスの開発が求められている。 ラクタムの製造プロセスにおいて は、 装置材料腐食、 操作上の安全性や環境面で問題がある濃硫酸を 使用しない、 あるいは副生成物を伴わない、 効率的な新たな製造プ 口セスの開発が要望されてきている。
上記課題を解決する方法として、 硫酸等の酸触媒を全く使用せず 高温高圧水下で反応させる方法として、 ( 1 ) バッチ式合成法 (0. Sato, Y. Ikushima and T. Yokoyama, Journal of Organic Chemi stry 1998, 63, 9100-9102) と ( 2 ) 流通式合成法(Y. Ikushima, . Hat akeda, 0. Sato, T. Yokoyama and M. Arai, Journal of Am erican Chemical Society 2000, 122, 1908-1918) の 2つの方法が 提案されている。
( 1 ) のバッチ式合成法では内容積 1 0 m 1 のステンレス管にシ クロへキサノンォキシムを封入し、 塩浴中に入れて 3 0秒以内の時 間で 2 0 0〜 4 0 0 °Cに昇温し、 3分間反応させて生成物を得てい る。 この方法は、 大量生産プロセスとしては不向きであると考えら れるが、 発煙硫酸などの酸触媒を使用しない合成法として着目され ている。 一回ごとに反応を終結させるため操作が断続的で、 設定温 度への上昇に 2 0 - 3 0秒程度の時間を要する。 従って昇温時に加 水分解生成物であるシクロへキサノンが多量に生成し、 目的の ε— 力プロラクタムの収率が低くなる欠点がある。 またシクロへキサノ ンはシクロへキサノンォキシムの原料なので、 反応が逆方向になり 、 工業プロセスとしては致命的な反応といえる。
( 2 ) の流通式合成法は操作が連続的で大量生産するには好適で あると考えられるが、 室温のシク口へキサノンォキシム水溶液を加 熱して高温高圧のキヤリャ一水としているため、 設定反応温度への 上昇に時間を要すると考えられる。 従って 3 5 0 °C及び 2 2. 1 M P a条件下で 1 1 3秒、 反応させた実験では生成物としてシクロへ キサノンだけが得られ、 ε—力プロラクタムは全く生成していない 結果が示されている。 また、 3 7 4 . 5 °Cの結果でも、 ε—力プロ ラクタムとシクロへキサノンが生成していることが報告されている 。 従って ( 1 ) のバッチ式合成法と同様に昇温に時間がかかり、 溶 媒である水が例えば 1 0 0— 3 0 0 °Cの水熱状態を経る間にシクロ へキサノンォキシムの加水分解反応によるシクロへキサノンが生成 して、 目的の ε—力プロラクタムの収率が低くなる欠点を有すると 考えられる。 発明の要約
本発明は、 高温高圧水下でのラクタムの連続製造方法を提供する ことを目的とするものである。
本発明は、 .流通させている高温高圧水にォキシムを導入すること によって加水分解反応をおこすことなく、 ラクタムを選択てきに合 成することを特徴とするラクタムの製造方法で、 2 5 0 °C以上の温 度範囲及び 1 2 M P a以上の圧力範囲である高温高圧水条件下でォ キシムからラクタムを高速で連続てきに合成することを特徴とする ラクタムの製造方法に関する。 発明の開示
このような状況の中で、 本発明者らは、 上記、 従来技術に鑑みて 、 高温高圧水下でォキシムからのラクタムの製造方法について種々 研究を進める過程で、 高温高圧水条件下で、 ォキシムからラクタム を連続的に効率よく製造するためには、 ォキシムを短時間で設定反 応温度に上昇させることが重要であることを見出し、 かかる知見に 基づいて更に研究を重ねて、 本発明を完成させるに至った。
即ち、 本発明は、 高温高圧水中にォキシムを導入して、 基質物質 の昇温時間を短縮して反応させ、 シクロへキサノンを生成すること なく ラクタムを選択的に製造する方法を提供することを目的として なされたものである。
本発明者らが、 種々の実験を経て開発した本発明の合成法は、 例 えば、 ォキシム水溶液或いはォキシムを直接高温高圧水条件下の反 応場に連続的に導入させ、 短時間で反応設定温度に到達させること により: キシムの加水分解反応を抑制して、 力プロラクタムを選択 的に且つ従来法より短時間で効率的に製造する方法である。 上記課題を解決するための本発明は、 以下の技術的手段から構成 される。
( 1 ) 高温高圧水中にォキシムを導入して、 所定の高温高圧条件に 短時間で昇温して反応させることを特徴とするラクタムの製造方法
( 2 ) 連続的に流通させている高温高圧水にォキシムを溶解した基 質水溶液を導入して所定の高温高圧条件下で反応させることを特徴 とする ( 1 ) 記載のラクタムの製造方法。
( 3 ) 連続的に流通させている高温高圧水に溶融したォキシムを導 入して所定の高温高圧条件下で反応させることを特徴とする ( 1 ) 記載のラクタムの製造方法。
( 4 ) 2 5 0 °C以上の温度範囲及び 1 2 MP a以上の圧力範囲であ る高温高圧水条件下でォキシムを反応させることを特徴とする ( 1 ) ないし ( 3) 記載のラクタムの製造方法。
( 5 ) ォキシムを所定の高温高圧条件に 3秒以内の短時間で昇温さ せて反応させることを特徵とする ( 1 ) ないし ( 4) 記載のラクタ ムの製造方法。
( 6 ) ォキシムを所定の高温高圧条件で 6 0秒以内の時間で反応さ せることを特徴とする ( 1 ) ないし ( 5〉 記載のラクタムの製造方 法。
( 7 ) ォキシムがシクロへキサノンォキシムである ( 1 ) ないし ( 6 ) 記載のラクタムの製造方法。 次に、 本発明について更に詳細に説明する。
本発明の説明を容易にするために、 以下、 ォキシム水溶液を、 高 温高圧水に導入することにより 3秒以内の短時間で 2 5 0〜 4 5 0 °Cの反応温度に到達させ、 1 2〜 4 0 M P aの反応圧力条件下で、 ラクタムを製造する場合を例にとって詳細に説明する。
本発明者らが、 種々の実験を経て開発した本発明の製造方法は、 例えば、 流通させている高温高圧水条件下の反応場にシクロへキサ ノンォキシム水溶液を連続的に導入し、 3秒以下の短時間で反応設 定温度に到達させることにより加水分解反応をおこすことなく、 シ クロへキサノンォキシムの転位反応によって ε—力プロラクタムを 合成する方法である。 本発明では高温高圧水を反応場あるいは反応 溶媒として用い、 有機溶媒や硫酸等の触媒は使用しないし、 また、 特に使用する必要はない。 従って、 この方法を用いれば、 処理しな ければならない廃溶媒や廃触媒あるいは硫安といった類の廃棄物は 排出されない。 また、 シクロへキサノンォキシムの加水分解反応に よるシクロへキサノンは生成しない。 未反応の供給原料は本発明の 反応に再使用することが可能である。 更に、 本発明の方法は、 製品 を収率よく連続的に高速で製造できることから、 ラクタムの製造方 法の手段として最も好適な方法であると考えられる。 本発明のラクタムの製造方法について、 以下に説明する。
本発明では、 例えば、 ォキシム水溶液或いはォキシムを直接、 高 温高圧水条件下の反応場に連続的に導入させることにより短時間で 反応設定温度に到達させ、 ォキシムの加水分解反応を抑制してラク タムを選択的に且つ従来法より短い反応時間で効率的に製造するこ とができる。
本発明において基質原料として使用されるォキシムとしては 〔化 1〕 の一般式 ( 1 ) で表され、 n = l〜 9および R = Hあるいはあ るいはアルキル基である。 アルキル基としてはメチル基、 ェチル基 、 プロピル基、 ブチル基等炭素数 1〜 2 0のものはいずれも使用で きる。 ォキシムを例示すれば、 例えばシクロへキサノンォキシムを 挙げることができるが、 本発明はこれに限定されるものではない。 化 1
Figure imgf000007_0001
本発明で得られるラクタムとしては 〔化 2〕 の一般式 ( 2 ) で表 され、 n = 1〜 9および R=Hあるいはあるいはアルキル基である 。 アルキル基としてはメチル基、 ェチル基、 プロピル基、 ブチル基 等炭素数 1〜 2 0のものはいずれも使用できる。
化 2
Hつ C C =0
(CH 2)n N R
H2
本発明で得られるラクタムは五員環ラクタム、 六員環ラクタム、 七員環ラクタム等の五員環以上の多員環ラクタムである。 例えば ε 一力プロラクタム、 rーブチルラクタム、 ァーバレロラクタム、 δ ーバレロラクタム等が挙げられるが、 本発明はこれらに限定される ものではない。
本発明によるラクタムの製造の具体例として、 例えば七員環ラク タムの製造例として、 シクロへキサノンォキシムからの ε —力プロ ラクタム合成の反応式を 〔化 3〕 の一般式 ( 3 ) に示す。
化 3
Figure imgf000008_0001
シクロへキサノ
ε -力プロラクタム
ンォキシム ォキシムのベックマン転移反応によるラクタムの合成は酸触媒の 存在下で進行することが知られている。 本発明の高温高圧水でォキ シムのベックマン転移反応によるラクタムが合成されることは興味 深い事実である。 高温高圧水中ではプロ トンの生成あるいは水分子 構造の分極などによって酸触媒機能が発現している可能性が推察さ れうるが、 高温高圧水に関する今後の物理化学的研究の展開による 検証を期待したい。
本発明によれば、 基質であるォキシムを短時間で所定の高温高圧 条件に設定できるため加水分解反応を抑制でき、 ラクタムを選択的 に製造することができる。 なお、 本反応では少量のアミノ酸が生成 する。 例えば、 シクロへキサノンォキシムからの ε —力プロラクタ ム合成を温度 3 7 5 °C、 圧力 3 O M P aの高温高圧条件下で 0 . 6 6 7秒間反応させた場合、 ε —力プロラクタムの収率 4 1 . 4 %に 対して 6 —アミノカプロン酸が収率 0 . 3 %で得られた。 6 —アミ ノカプロン酸からの ε —力プロラクタムへの変換は比較的容易であ り、 高温高圧水中においてもこの反応は進行する。 この反応では加 水分解反応物であるシクロへキサノンは全く検出されなかった。
本発明における高温高圧水の原料に用いる水は蒸留水、 イオン交 換水、 水道水、 地下水等を好適に用いることができる。 これらの原 料水を高温高圧水として使用する際、 溶存酸素は高温高圧水、 特に 超臨界水として使用する.場合は有機物質を酸化分解する可能性があ るため、 予め窒素ガス等でパブリ ングして除去してから用いるのが 望ましい。 亜臨界状態で高温高圧水を使用する場合は、 原料水から 溶存酸素を特に除去する必要はないが、 除去して使用してもよい。
本発明で用いられる高温高圧水は反応器の外からヒータ一や溶融 塩等を用いて温度を制御できる。 あるいは反応器内で内熱方式で温 度制御することも可能である。 また、 予め高温高圧水を製造してお き、 外部から送水ポンプ等を用いて反応器内に注入して反応させる こともできる。 温度圧力条件の異なる 2種類以上の高温高圧水を反 応系に供給して反応条件を制御することも可能である。 反応容器内 での圧力は流通式であれば圧力調整弁で制御することができる。 更 に、 窒素ガスなど他の気体を注入することによって圧力をコント口 —ルすることもできる。 一般的には使用する圧力は使用温度におけ る自生圧力以上であればよい。
基本的には、 温度 2 5 0 °C以上及び圧力 1 2 M P a以上の高温高 圧水条件下であれば本発明は達成される。 温度 3 0 0 °C以上及び圧 力 1 5 M P a以上の高温高圧水条件下では、 より好適に本発明を達 成できる。 更に、 3 5 0 °C以上の温度範囲及び 1 5 M P a〜 4 0 M P aの圧力範囲である高温高圧水条件を選択すれば、 最も好適に本 発明は達成される。 最適の温度条件は処理時間によっても変化する が、 一般に、 3 0 0 °Cから 4 5 0 °Cの温度範囲を好適に選択できる 。 また、 処理量や反応装置によって適宜の温度及び圧力条件を採用 することができる。 本発明では温度が高い程反応が進行し、 また圧 力が高い程やや反応が促進される傾向が認められる。
反応装置としては、 例えば、 高温 · 高圧反応装置が使用されるが 、 これに限らず、 高温高圧水条件下の反応系を設定できる装置であ れば、 その種類は制限されない。 ここで、 好適な反応装置として、 例えば、 本発明で使用した流通式高温高圧反応装置及び溶融ォキシ ム導入型流通式高温高圧反応装置が例示される。
本発明では流通させている高温高圧水中に、 例えば室温のォキシ ム水溶液あるいはォキシムを直接導入しているため、 混合後の温度 が低下する。 混合後の温度低下の割合はキヤリャ一水の最初の温度 、 反応圧力、 キヤリャ一水の流速、 ォキシム水溶液あるいはォキシ ムの導入流速、 ォキシムの導入量、 反応器の形態、 反応器容量等に よって変化する。 通常、 キヤリャ一水の最初の温度は設定温度より 5〜 3 0 0 °C程度高い温度を適宜選択して使用することによって経 験的に設定温度を調節できる。 本発明の最も特徴的なことは上記に記述したように設定温度より
5〜 3 0 0 °C程度高い温度の高温高圧水中にォキシムを直接導入す ることによってォキシムの昇温時間が 3秒以下の短時間になること である。 このことにより、 ォキシム加水分解反応を抑制でき、 その 結果ラクタムの選択性や収率を向上することができる。 より好適な ォキシムの昇温時間は 1秒以下であることが好ましく、 更に好適な ォキシムの昇温時間は 0 . 5秒以下であることが好ましく及び最も 好適なォキシムの昇温時間は 0 . 3秒以下であることが好ましい。 特に超臨界状態のキヤリャ一水を使用した場合は、 液体のキヤリ ャ一水に比べて流体の粘度が低下し、 拡散係数が大きくなるため、 混合速度が急激に速くなつていると考えられる。 また、 超臨界点に 近い亜臨界水条件以上の高温高圧水では誘電率が低下して有機物溶 解度が急激に大きくなっていく ことが知られており、 同様にォキシ ムの溶解度も大きくなり、 転移反応に好適な条件を与えると考えら れる。
反応条件は使用するォキシムの種類及び濃度、 反応管体積、 高温 高圧水条件等によって変化する。 本発明では反応に用いるォキシム は 1種類に限定される物でなく、 2種類以上の混合物を用いても反 応は好適に進行する。 ォキシムを溶融して高温高圧水中に導入して 溶解できるが、 直接ォキシムの粉末を高温高圧水中に導入してもよ レ 。 また予め室温でォキシムを溶解させた基質水溶液を高温高圧水 中に導入することもできる。
流通方式のキヤリャ一水として用いる高温高圧水の流速及び反応 基質であるォキシムの導入流速を制御することによって反応器に導 入するォキシムの濃度をコントロールできる。 通常、 反応器に導入 するォキシムの濃度としては I m Mから 1 0 Mの濃度範囲で選択で きる。 好適には 2 m Mから 5 Mの間の適宜な濃度の値を選択でき、 最も好適には 2 m Mから 2 Mの間の適宜な濃度の値が選択されるが 、 本発明はこれらの濃度の値に限定されるものではない。 本発明では、 ォキシムの種類に応じて、 反応系の温度、 圧力、 反 応器内径、 反応器体積、 流速、 反応基質の濃度、 反応時間等を調節 することによって、 ラクタムの反応収率を操作することができる。 本発明の反応系は、 温度 2 5 0 °C以上、 及び圧力 1 2 M P a以上 の高温高圧水中に上記反応基質のォキシムを存在させればよく、 そ の際'、 例えば、 金属イオン、 酸、 あるいは塩基等のような水溶性の 触媒、 金属担持触媒、 固体酸、 固体塩基等の固体触媒あるいは酵素 等は特に添加する必要がなく、 また、 有機溶媒を使用する必要もな い。
本発明は、 基本的には、 高温高圧水中に上記反応基質を存在させ て、 無触媒条件下で、 あるいは有機溶媒を反応に関与させることな く、 ォキシムよりラクタムを合成することを最大の特徴としている が、 必要に応じて、 メタノール、 エタノール、 エチレングリコ一ル 等の有機溶媒、 金属イオン、 酸、 あるいは塩基等のような水溶性の 触媒、 金属担持触媒、 固体酸、 固体塩基等の固体触媒あるいは酵素 を添加して反応させても一向にさしつかえない。
本発明では、 上記反応系により、 例えば、 反応時間 0 . 0 0 1秒 から 6 0秒の短時間でォキシムからラクタムが合成される。 流通式 反応装置を用いる場合、 反応時間は反応温度、 反応圧力、 高温高圧 水の流速、 反応基質の導入流速、 反応器の形状、 反応器内径、 反応 器の流通経路の長さ等を制御することによって反応時間をコント口 ールできる。 より好適には反応時間として 0 . 0 1秒から 3 0秒の 範囲の値を選択でき、 最も好適には 0 . 0 5秒から 1 0秒の範囲の 値を選択できるが、 本発明はこれらの値に限定されるものではない 本発明者らは、 後記する実施例に示されるように、 高温高圧水条 件下では、 短時間 (例えば、 反応時間 1秒前後) でォキシムからラ クタムへの転換反応が可能であることを、 高速液体ク口マトグラフ ィ一質量分析装置 (L C 一 M S装置)、 核磁気共鳴スペク トル測定 装置 (N M R測定装置) ゃフリエ一赤外分光光度測定装置 (F T I R測定装置) を用いて確認している。 更に、 L C— M S装置を用い ることにより、 ォキシムゃラクタム及び副生成物のアミノ酸の種類 を同定でき、 それらの含有量を正確に定量できる。 また連続的に得 られるラクタムをイオン交換樹脂カラムによって分離精製して、 F T I R測定装置により赤外線吸収スぺク トルを計測し、 純度の高い 特級試薬製品のそれと比較する事により、 ラクタム種を正確に同定 できる。 同様に N M Rスペク トル測定によってもラクタムの種類や 純度を確認できる。 それらの構造はガスクロマトグラフィー質量分 析装置 (G C—M S装置)、 L C—M S装置、 N M R測定装置や F T I R装置で確認できる。
本発明で生成したラクタムの反応収率は温度、 圧力等の反応条件 、 ォキシムの種類、 ォキシムの濃度、 反応装置の形態、 反応器の大 きさ、 キヤリャ一水の流速、 ォキシム導入速度、 反応時間等によつ て変動する。 例えば ε —力プロラクタムの場合の反応収率は 5 . 5 %から 7 6 . 3 %であった。 これらの ε —力プロラクタムは原料の シクロへキサノンォキシムと混合して回収される。 同様に本発明に よって種々のォキシムあるいはそれらの混合物から多種のラクタム が原料基質とともに回収されるが、 例えば陽イオン交換樹脂ゃ陰ィ オン交換樹脂あるいはそれらの併用によってラクタムと原料基質の ォキシムを分離でき、 更にラクタム同士の分離も可能なので、 ラク タムはその種類毎に精製濃縮できる。 また、 同時に回収されたォキ シムは再度原料として用いることができる。
従って高温高圧水条件下でォキシムを転移反応させラクタムを合 成し、 得られた反応溶液に対してイオン交換樹脂を用いてラクタム を分離精製して、 高純度のラクタムを好適に製造できる。
本発明では、 高温高圧水条件下の高温熱水中に、 反応基質として 所定の濃度のォキシムを導入し、 反応基質を短時間で昇温し、 所定 の高温高圧水条件下で反応させることにより、 例えば、 シクロへキ サノンォキシムから ε —力プロラクタムが合成される。 また、 これ らのォキシム等を流通させている高温高圧水に連続的に導入するこ とにより、 連続的にそれぞれのォキシムに対応した種々のラク夕ム を合成することができる。
これらのことから、 本発明は、 上記反応系において、 反応条件、 反応基質のォキシムの種類、 ォキシムの濃度を調節することにより ラクタムを短時間で連続的に製造することを可能とする新規の連続 ラクタム製造方法であり、 ラクタム製造方法として有用である。 図面の簡単な説明
図 1 は、 本発明に用いた送水ポンプ 2台付属の流通式高温高圧反 応装置のフローシートを示す。
図 2は、 本発明に用いた送水ポンプ 2台付属の溶融ォキシム導入 型流通式高温高圧反応装置を示す。 発明を実施するための最良の形態
次に実施例に基づいて本発明を具体的に説明するが、 本発明は以 下の実施例によって何ら限定されるものではない。
実施例 1
図 1 に示す連続式高温高圧反応装置を用い、 温度 3 7 5 、 圧力 3 0 M P a及び密度 0. S S S S gZ c m3 の高温高圧水条件下で Aldric Chemical Company, Inc.社製品であるシクロへキサノンォ キシム試薬 (純度 9 7 % ) を用い、 転移反応による ε —力プロラク タムの連続製造を試みた。
反応器の材料は合金 C一 2 7 6であり、 反応器の内径 : 0. 3 2 5mm及ぴ反応器の長さ : 1 2 0 c mで、 従って反応器容積は 0. 0 9 9 5 c m3 と算出された。 各導入調製液は高圧ポンプで注入し た。 窒素ガスでバブリングして溶存酸素を追い出した蒸留水を加赛 して 4 6 O 及び 3 0 M P aのキヤリャ一水を作.製し、 3. 8 m Zm i nの流速で通水した。 同様に脱酸素処理した蒸留水を用いて 2 1. 9 mMシクロへキサノンォキシム含有基質溶液を調製した。 室温及び 3 0 M P aの基質溶液を 1. 3 m 1 Zm i nの流速で反応 器入り口のキヤリャ一水中に導入し、 混合した。 反応器入り口から 1 c mに設置した熱電対 ( 1 ) で計測した混合溶液の反応温度は 3 7 5 °Cであり、 反応器出口の熱電対 ( 2 ) で計測した温度と一致し 、 反応器内の温度は一定であり、 キヤリャ一水と基質溶液は均質に 混合していると考えられる。 混合後の基質濃度は 5. 5 8 mMであ つた。 反応時間は 0. 6 6 7秒であった。 従って、 0. 0 0 6秒以 内の短時間で混合は完全に行われていると考えられる。 混合後の基 質濃度は 5. 5 8 mMであった。 反応後に回収した水溶液を高速液 体クロマトグラフィ一質量分析装置で調べた所、 主生成物として ε 一力プロラクタムと副生成物である 6—アミノカプロン酸が生成し ているのが確認された。 その他には未反応のシクロへキサノンォキ シムのみが検出され、 原料の加水分解反応物であるシクロへキサノ ンは全く認められなかった。 ε —力プロラクタムの含有濃度は 2. 3 1 m Μであり、 その反応収率は 4 1. 4 %であった。 6—ァミノ カブロン酸の含有量は 0. 0 1 7 mMであり、 反応収率は 0. 3 % であった。 実施例 2 - 実施例 1 と同様な操作で反応させて、 シク口へキサノンォキシム の転移反応による ε —力プロラクタムの連続製造を試みた。 ただし 、 反応条件を下記の様に変更して実施した。
反応条件
キヤリャ一水の温度及び圧力及び : 4 0 4 °C及び 2 5 M P a キヤリャ一水の流速: 3. 7 m 1 /m i n
2 1. 9 mM基質溶液の温度及び圧力:
2 5 °C及び 2 5 MP a 2 1. 9 mM基質溶液の流速 : 1. 3 m l /m i n
反応高温高圧水の温度 : 3 5 0 °C
反応高温高圧水の圧力 : 2 5 MP a
反応高温高圧水の密度 : 0. 6 2 5 7 g/ c m3
反応高温高圧水の流速: 5. 0 m 1 / i n
混合した時のシクロへキサノンォキシムの基質濃度は 5. 6 9 m Mであった。 反応時間は 0. 7 4 7秒であり、 反応器内の温度が一 定であるため、 0. 0 0 6秒以内の短時間で混合されて'いると推察 された。 反応後の水溶液を高速液体クロマトグラフィ一質量分析装 置で調べた所、 主生成物として ε —力プロラクタムと副生成物であ る 6—ァミノ力プロン酸が生成しているのが確認された。 その他未 反応のシクロへキサノンォキシムのみが検出され、 原料の加水分解 反応物であるシクロへキサノンは全く認められなかった。 ε —カフ。 ロラクタムの含有濃度は 1. 6 1 mMであり、 反応収率は 2 8. 3 %であった。 6—アミノカプロン酸の含有量は 0. O l l mMであ り、 反応収率は 0. 2 %であった。 実施例 3
実施例 1 と同様な操作で反応させて、 シクロへキサノンォキシム の転移反応による ε —力プロラクタムの連続製造を試みた。 ただし 、 反応条件を下記の様に変更して実施した。
反応条件
キヤリャ一水の温度及び圧力及び : 3 5 2 °C及び 1 5 M P a キヤリャ一水の流速: 2. 9 m 1 /m i n
2 1. 9 mM基質溶液の温度及び圧力: '
2 5 °〇及び 1 5 ? & 2 1. 9 mM基質溶液の流速 : 2. 1 m l Z.m i n
反応高温高圧水の温度 : 3 0 0 °C '
反応高温高圧水の圧力 : 1 5 MP a 反応高温高圧水の密度 : 0. 7 2 5 9 g/ c m3
反応高温高圧水の流速: 5. Om l /m i n
混合した時のシクロへキサノンォキシムの基質濃度は 9. 2 0 m Mであった。 反応時間は 0. 8 6 7秒であり、 反応器内の温度が一 定であるため、 0. 0 0 7秒以内の短時間でキヤリャ一水と基質溶 液が混合されていると考えられる。 反応後の水溶液を高速液体ク口 マトグラフィ一質量分析装置で調べた所、 生成物として ε _力プロ ラクタムが生成しているのが確認された。 その他は未反応のシク口 へキサノンォキシムだけが検出され、 原料の加水分解反応物である シクロへキサノンは全く認められなかった。 ε—力プロラクタムの 含有濃度は 0. 5 1 mMであり、 反応収率は 5. 5 %であった。 比較例 1
実施例 1 と同様な操作で反応させて、 シクロへキサノンォキシム の転移反応による ε —力プロラクタムの連続製造を試みた。 ただし 、 反応条件を下記の様に変更して実施した。
反応条件
キヤリャ一水の温度及び圧力及び : 3 1 4 °C及び 1 5 M P a キヤリャ一水の流速: 3. 5 m 1 /m i n
2 1. 9 mM基質溶液の温度及び圧力:
2 5 及び1 5 ? & 2 1. 9mM基質溶液の流速 : 1. 4m l Zm i n
反応高温高圧水の温度 : 2 0 0 °C
反応高温高圧水の圧力 : 1 5 MP a
反応高温高圧水の密度 : 0. 8 7 46 Ζ (: πι3
反応高温高圧水の流速: 4. 9 m I Zm i n
混合した時のシクロへキサノンォキシムの基質濃度は 6. 2 6m Mであった。 反応時間は 1. 0 6 6秒であり、 反応器内の温度が一 定であるため、 0. 0 0 9秒以内の短時間でキヤリャ一水と基質溶 液が混合されていると考えられる。 反応後の水溶液を高速液体ク口 マトグラフィ一質量分析装置で調べた所、 ε—力プロラクタムの生 成は全く認められなかった。 比較例 2
実施例 1 と同様な操作で反応させて、 シクロへキサノンォキシム の転移反応による ε—力プロラクタムの連続製造を試みた。 ただし 、 反応条件を下記の様に変更して実施した。
反応条件
キヤリャ一水の温度及び圧力及び : 3 4 5 °C及び 9 M P a キヤリャ一水の流速 : 3. 3 m 1 / i n
2 1. 9 mM基質溶液の温度及び圧力: 2 5 °C及び 9 MP a 2 1. 9 mM基質溶液の流速: 1. 7 m l / i n
反応高温高圧水の温度 3 0 0。C
反応高温高圧水の圧力 9 M P a
反応高温高圧水の密度 0. 7 1 3 4 g / c m3
反応高温高圧水の流速 5. 0 m l / m i n
混合した時のシクロへキサノンォキシムの基質濃度は 7. 4 5 m Mであった。 反応時間は 0. 8 5 2秒であり、 反応器内の温度が一 定であるため、 0. 0 0 7秒以内の短時間でキヤリャ一水と基質溶 液が混合されていると考えられる。 反応後の水溶液を高速液体ク口 マトグラフィ一質量分析装置で調べた所、 ε—力プロラクタムの生 成は全く認められなかった。 実施例 4
実施例 1 と同様な操作で反応させて、 シクロへキサノンォキシム の転移反応による ε —力プロラクタムの連続製造を試みた。 ただし 、 反応条件を下記の様に変更して実施した。
反応条件 キヤリャ一水の温度及び圧力及び: 5 5 及び 2 5 MP a キヤリャ一水の流速: 4. 6 m 1 /m i n
2 1. 9 mM基質溶液の温度及び圧力:
2 5 及び 2 5 M P a
2 1. 9 mM基質溶液の流速 : 0. 5 m l Zm i n
反応高温高圧水の温度 : 4 0 0 °C
反応高温高圧水の圧力 : 2 5 MP a
反応高温高圧水の密度 : 0. 1 6 6 6 g Z c m3
反応高温高圧水の流速 : 5. l m l /m i n
混合した時のシクロへキサノンォキシムの基質濃度は 2. 1 5 m Mであった。 反応時間は 0. 1 9 5秒であり、 反応器内の温度が一 定であるため、 0. 0 0 2秒以内の短時間で混合されていると考え られ^)。 反応後の水溶液を高速液体ク口マトグラフィ一質量分析装 置で調べた所、 主生成物として ε —力プロラクタムと副生成物であ る 6—アミノカプロン酸が生成しているのが確認された。 その他未 反応のシクロへキサノンォキシムのみが検出され、 原料の加水分解 反応物であるシクロへキサノンは全く認められなかった。 ε—力プ ロラクタムの含有濃度は 0. 1 9 mMであり、 反応収率は 8. 8 % であった。 6 _アミノカプロン酸の含有量は 0. 0 0 2 mMであり 、 反応収率は 0. 1 %であった。 実施例 5
実施例 1 と同様な操作で反応させて、 シクロへキサノンォキシム の転移反応による ε—力プロラクタムの連続製造を試みた。 ただし 、 反応条件を下記の様に変更して実施した。
反応条件 ' キヤリャ一水の温度及び圧力及び : 5 5 0 °C及び 4 O MP a キヤリャ一水の流速: 3. 7 m 1 /m i n
2 1. 9 mM基質溶液の温度及び圧力: 2 5 °C及び 4 O MP a 2 1. 9 mM基質溶液の流速: 1. 3 m l Zm i n 反応高温高圧水の温度 : 4 0 0 °C
反応高温高圧水の圧力 : 4 O MP a
反応高温高圧水の密度 : 0. 5 2 3 7 g / c m3
反応高温高圧水の流速 : 5. 0 m 1 /m i n
混合した時のシクロへキサノンォキシムの基質濃度は 5. 6 9 m Mであった。 反応時間は 0. 6 2 5秒であり、 反応器内の温度が一 定であるため、 0. 0 0 5秒以内の短時間で混合されていると考え られる。 応後の水溶液を高速液体クロマトグラフィ一質量分析装 置で調べた所、 主生成物として ε —力プロラクタムと副生成物であ る 6—アミノカプロン酸が生成しているのが確認された。 その他未 反応のシクロへキサノンォキシムのみが検出され、 原料の加水分解 反応物であるシクロへキサノンは全く認められなかった。 ε —カブ ロラクタムの含有濃度は 3. 7 8 mMであり、 反応収率は 6 6. 4 %であった。 6—アミノカプロン酸の含有量は 0. 0 7 8 mMであ り、 反応収率は 1 - 4 %であった。 実施例 6 '
実施例 1 と同欉な操作で反応させて、 シクロへキサノンォキシム の転移反応による ε —力プロラクタムの連続製造を試みた。 ただし 、 反応条件を下記の様に変更して実施した。
反応条件
キヤリヤー水の温度及び圧力及び : 5 5 0 °C及び 4 0 MP a キヤリャ一水の流速: 4. 2 m 1 /m i n
2 1. 9 mM基質溶液の温度及び圧力:
2 5 °C及び 4 O MP a 2 1. 9 mM基質溶液の流速 : 0. 8 m l Zm i n
反応高温高圧水の温度 : 4 2 0 °C 反応高温高圧水の圧力 : 4 O MP a
反応高温高圧水の密度 : 0. 4 2 3 8 gZ c m3
反応高温高圧水の流速 : 5. O m l /m i n
混合した時のシクロへキサノンォキシムの基質濃度は 3. 5 0 m Mであった。 反応時間は 0. 5 0 6秒であり、 反応器内の温度が一 定であるため、 0. 0 0 4秒以内の短時間で混合されていると考え られる。 反応後の水溶液を高速液体クロマトグラフィ一質量分析装 置で調べた所、 主生成物として ε —力プロラクタムと副生成物であ る 6—アミノカプロン酸が生成しているのが確認された。 その他未 反応のシクロへキサノンォキシムのみが検出され、 原料の加水分解 反応物であるシクロへキサノンは全く認められなかった。 ε—力プ ロラクタムの含有濃度は 1. 5 8 mMであり、 反応収率は 4 5. 1 %であった。 6—アミノカプロン酸の含有量は 0. 0 2 8 mMであ り、 反応収率は 0. 8 %であった。 実施例 7
実施例 1 と同様な操作で反応させて、 シクロへキサノンォキシム の転移反応による ε—力プロラクタムの連続製造を試みた。 ただし 、 反応条件を下記の様に変更して実施した。
反応条件
キヤリヤー水の温度及び圧力及び : 4 7 5 °C及び 4 0 MP a キヤリャ一水の流速 : 1 5. 6 m 1 / i n
2 1. 9 mM基質溶液の温度及び圧力:
2 5 °C及び 4 0 M P a 2 1. 9 mM基質溶液の流速: 4. 4 m 1 / i n
反応高温高圧水の温度 : 3 7 5 °C
反応高温高圧水の圧力 : 4 0 M P a
反応高温高圧水の密度 : 0. 6 0 9 6 gZ c m3
反応高温高圧水の流速 : 2 0. 0 m 1 /m i n 混合した時のシクロへキサノンォキシムの基質濃度は 4. 8 2 m Mであった。 反応時間は 0. 1 8 2秒であり、 反応器内の温度が一 定であるため、 0. 0 0 2秒以内の短時間で混合されていると推察 される。 反応後の水溶液を高速液体クロマトグラフィ一質量分析装 置で調べた所、 主生成物として ε—力プロラクタムと副生成物であ る 6 —アミノカプロン酸が生成しているのが確認された。 その他未 反応のシクロへキサノンォキシムのみが検出され、 原料の加水分解 反応物であるシクロへキサノンは全く認められなかった。 ε—力プ ロラクタムの含有濃度は 1. 3 1 mMであり、 反応収率は 2 7. 2 %であった。 6—アミノカプロン酸の含有量は 0. 0 2 3 mMであ り、 反応収率は 0. 5 %であった。 実施例 8
実施例 1 と同様な操作で反応させて、 シク口へキサノンォキシム の転移反応による ε _力プロラクタムの連続製造を試みた。 ただし 、 反応条件を下記の様に変更して実施した。
反応条件
キヤリャ一水の温度及び圧力及び: 4 7 5 °C及び 4 0 M P a キヤリャ一水の流速 : 1. m 1 /m i n
2 1. 9 mM基質溶液の温度及び圧力:
2 5 °C及び4 0 M P a 2 1. 9 mM基質溶液の流速: 0. 6 m l Zm i n
反応高温高圧水の温度 3 7 5。C
反応高温高圧水の圧力 4 0 M P a
反応高温高圧水の密度 0. 6 0 9 6 g/ c m3
反応高温高圧水の流速 2. 0 m 1 "m i n
混合した時のシクロへキサノンォキシムの基質濃度は 4. 8 2 m Mであった。 反応時間は 1. 8 2 0秒であり、 反応器内の温度が一 定であるため、 0. 0 1 5秒以内の短時間で混合されていると推察 される。 反応後の水溶液を高速液体ク口マトグラフィ一質量分析装 置で調べた所、 主生成物として ε —力プロラクタムと副生成物であ る 6 —アミノカプロン酸が生成しているのが確認された。 その他未 反応のシクロへキサノンォキシムのみが検出され、 原料の加水分解 反応物であるシクロへキサノンは全く認められなかった。 ε —力プ ロラクタムの含有濃度は 3. 6 8 mMであり、 反応収率は 7 6. 3 %であった。 6—アミノカプロン酸の含有量は 0. 1 3 2 mMであ り、 反応収率は 2. 7 %であった。 実施例 9
図 2に示す連続式反応装置を用い、 温度 3 5 0 ° (:、 圧力 3 0 MP a及び密度 0. 6 4 4 3 ^ノ(: 1113 の高温高圧水条件下で 1(11^(11 Chemical Company, Inc.社製品であるシクロへキサノンォキシム ( 純度 9 7 %) の溶融液を導入して用い、 転移反応による ε —力プロ ラクタムの連続製造を試みた。
反応器の材料は合金 C _ 2 7 6であり、 反応器の内径 : 4. 6 8 mm及び反応器の長さ : 2 0 0 mmで、 従って反応器容積は 3. 4 4 0 c m3 と算出された。 各導入調製液は高圧ポンプで注入した。 窒素ガスでバブリングして溶存酸素を追い出した蒸留水を加熱して 3 5 7で及び3 01^ ? &のキャリャー水を作製し、 2 4. 6 m l / m i nの流速で通水した。 シクロへキサノンォキシ.ムを 9 5 °Cで加 温して基質溶融液を調製した。 基質溶融液を加圧水で 3 0 MP aで 加圧して 0. 4 m l /m i nの流速で反応器入り 口のキヤリャ一水 中に導入して混合した。 反応器入り口から 1 c mに設置した熱電対 ( 1 ) で計測した混合溶液の反応温度は 3 5 0 °Cであり、 反応器出 口の熱電対 ( 2 ) で計測した温度と一致し、 反応器内の温度は一定 であり、 キヤリャ一水と基質溶融液は均質に混合していると考えら れる。 混合後の基質濃度は 1 4 1. 6 mMであった。 反応時間は 5 . 1 6 5秒であった。 従って、 0. 2 5 8秒以内の短時間で混合溶 解は完全に行われていると考えられる。 混合後の基質濃度は 1 4 1 . 6 mMであった。 反応後の水溶液を高速液体クロマトグラフィー 質量分析装置で調べた所、 主生成物として ε —力プロラクタムと副 生成物である 6 _アミノカプロン酸が生成しているのが確認された 。 その他には未反応のシクロへキサノンォキシムのみが検出され、 原料の加水分解反応物であるシク口へキサノンは全く認められなか つた。 ε—力プロラクタムの含有濃度は 9 6. 8 mMであり、 その 反応収率は 6 8. 4 %であった。 6—アミノカプロン酸の含有量は 2. 1 m Mであり、 反応収率は 1. 5 %であった。 比較例 3
内径 8. 7 mm、 長さ 1 7 0 mmの S U S 3 1 6製管式反応器 ( 内容積 1 0. I c m3 ) に熱電対を接続し、 溶融塩浴で急速昇温を 試みることで、 3 7 5 °Cに設定して 3分間のバッチ式反応法による シクロへキサノンォキシムから ε 一力プロラクタムの合成実験を行 つた。 反応器に蒸留水 3. 5 gとシクロへキサノンォキシム 0. 5 gを仕込み、 窒素気流中で封管した。 予め 3 7 5 °Cに設定しておい た溶融塩浴中にこの反応器を投入することによって、 反応器は設定 温度に昇温される。 反応温度における圧力は内容積、 使用した水の 量及び温度より、 水の蒸気圧曲線から計算して求めた。 反応器は 3 7 5 °Cで 3分間反応後、 反応器を冷水浴に入れて反応を停止させた 。 反応圧力は 2 5 MP aで、 3 7 5 °Cまでの昇温時間は 2 9秒であ つた。
冷却後、 反応器内の生成物を水とクロ口ホルムを用いて回収し、 有機溶媒層を分離した後、 有機溶媒を留去した。 質量スペク トル測 定、 核磁気共鳴スぺク トル測定及びガスク口マトグラフィ一分析に より生成物を調べた。 分析の結果、 ε —力プロラクタムの収率 : 1 4. 7 %およびシクロへキサノンの収率 : 4 5. 8 %であった。 本 バッチ式合成法ではシク口へキサノンォキシムの加水分解生成物で あるシクロへキサノンが大量に生成するため、 工業プロセスとして は不適と考えられる。 産業上の利用可能性
以上詳述した通り、 本発明は、 流通させている高温高圧水にォキ シムを導入することによつて加水分解反応をおこすことなく、 ラク タムを連続合成することを特徴とするラクタム連続製造方法、 高温 高圧水条件下でォキシムからラクタムを選択的に製造することを特 徴とする連続ラクタム製造方法に係り、 本発明により、 1 ) 高温高 圧水下でのォキシムの加水分解反応を抑制することによってォキシ ムからラクタムを選択的に製造することができる、 2 ) ォキシムを 高温高圧下で反応させてラクタムを短時間で製造することができる 、 3 ) 触媒を一切使用しないラクタム製造方法を提供することがで きる、 4 ) 環境に優しい化学物質生産システムであるという格別の 効果が奏される。

Claims

請求の範囲
1 . 高温高圧水中にォキシムを導入して、 所定の高温高圧 条件に短時間で昇温して反応させることを特徴とするラクタムの製 造方法。
2 . 連続的に流通させている高温高圧水にォキシムを溶解 した基質水溶液を導入して所定の高温高圧条件下で反応させること を特徴とする請求項 1記載のラクタムの製造方法。
3 . 連続的に流通させている高温高圧水に溶融したォキシ ムを導入して所定の高温高圧条件下で反応させることを特徴とする 請求項 1記載のラクタムの製造方法。
4 . 2 5 0 °C以上の温度範囲及び 1 2 M P a以上の圧力範 囲である高温高圧水条件下でォキシムを反応させることを特徴とす る請求項 1ないし 3記載のラクタムの製造方法。
5 . ォキシムを所定の高温高圧条件に 3秒以内の短時間で 昇温させて反応させることを特徴とする請求項 1ないし 4記載のラ クタムの製造方法。
6 . ォキシムを所定の高温高圧条件で 6 0秒以内の時間で 反応させることを特徴とする請求項 1ないし 5記載のラクタムの製 造方法。
7 . ォキシムがシクロへキサノンォキシムである請求項 1 ないし 6記載のラクタムの製造方法。
PCT/JP2001/002321 2001-03-07 2001-03-23 Process for producing lactam WO2002070474A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01914201A EP1369413A4 (en) 2001-03-07 2001-03-23 PROCESS FOR PRODUCING LACTAM
US10/469,533 US7045622B2 (en) 2001-03-07 2001-03-23 Process for producing lactam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001063358A JP3837467B2 (ja) 2001-03-07 2001-03-07 ラクタムの製造方法
JP2001-63358 2001-03-07

Publications (1)

Publication Number Publication Date
WO2002070474A1 true WO2002070474A1 (en) 2002-09-12

Family

ID=18922367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002321 WO2002070474A1 (en) 2001-03-07 2001-03-23 Process for producing lactam

Country Status (5)

Country Link
US (1) US7045622B2 (ja)
EP (1) EP1369413A4 (ja)
JP (1) JP3837467B2 (ja)
TW (1) TWI229072B (ja)
WO (1) WO2002070474A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1312604A1 (en) * 2001-11-02 2003-05-21 National Institute of Advanced Industrial Science and Technology Method of production of lactams

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204407A (ja) * 2006-01-31 2007-08-16 National Institute Of Advanced Industrial & Technology 含窒素化合物の製造方法及びその装置
CN102603633B (zh) * 2012-01-20 2013-12-11 中国天辰工程有限公司 一种贝克曼气相重排制己内酰胺中环己酮肟的气化系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10287644A (ja) * 1997-02-13 1998-10-27 Agency Of Ind Science & Technol 高温熱水中におけるラクタムの製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10287644A (ja) * 1997-02-13 1998-10-27 Agency Of Ind Science & Technol 高温熱水中におけるラクタムの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. AM. CHEM. SOC., vol. 122, no. 9, 2000, pages 1908 - 1918, XP002942015 *
J. ORG. CHEM., vol. 63, no. 24, 1998, pages 9100 - 9102, XP002942016 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1312604A1 (en) * 2001-11-02 2003-05-21 National Institute of Advanced Industrial Science and Technology Method of production of lactams

Also Published As

Publication number Publication date
EP1369413A4 (en) 2005-07-20
US20040097726A1 (en) 2004-05-20
EP1369413A1 (en) 2003-12-10
JP3837467B2 (ja) 2006-10-25
US7045622B2 (en) 2006-05-16
TWI229072B (en) 2005-03-11
JP2002265438A (ja) 2002-09-18

Similar Documents

Publication Publication Date Title
EP2738162B1 (en) Method for producing amide compound
KR102499747B1 (ko) 신규한 라우로락탐 제조 방법 및 합성 장치
BR112020023769B1 (pt) Processo de preparação de compostos de ciclopropano usando compostos diazo
WO2002070474A1 (en) Process for producing lactam
US6197999B1 (en) Photonitrosation of cyclododecane in chloroform in quasi-anhydrous medium
KR102500501B1 (ko) 라우로락탐의 제조 방법 및 이의 합성 장치
JP2007204407A (ja) 含窒素化合物の製造方法及びその装置
JP4195929B2 (ja) ラクタムの製造法
WO2002076942A1 (en) Process for producing lactam
US6750336B2 (en) Method of production of lactam
JP2002356477A (ja) ラクタム製造方法
JP4238348B2 (ja) ラクタム製造法
JP4324667B2 (ja) ラクタム合成方法
JP2929003B2 (ja) 高温熱水中におけるラクタムの製造方法
JP4418109B2 (ja) ヒドラジン水和物の調製方法
JP2002193927A (ja) ラクタムの合成方法
KR101106848B1 (ko) 락탐의 제조
JPS62263149A (ja) アルキルアミドの製造方法
JPS62129242A (ja) 含フツ素α,β−不飽和カルボン酸の製造方法
TW200415145A (en) Process for the preparation of ε-caprolactam from a mixture comprising 6-aminocaproamide and/or oligomers
JPH0477470A (ja) 2―メトキシ―6―メチルアミノピリジンの製造法
KR20040043639A (ko) 피롤리돈 유도체의 제조방법
JP2002193926A (ja) β―ラクタムの合成方法
JP2002234870A (ja) アミド化合物の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001914201

Country of ref document: EP

Ref document number: 10469533

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001914201

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001914201

Country of ref document: EP