WO2002070430A1 - Procede pour produire un materiau contenant du soufre modifie - Google Patents

Procede pour produire un materiau contenant du soufre modifie Download PDF

Info

Publication number
WO2002070430A1
WO2002070430A1 PCT/JP2002/001783 JP0201783W WO02070430A1 WO 2002070430 A1 WO2002070430 A1 WO 2002070430A1 JP 0201783 W JP0201783 W JP 0201783W WO 02070430 A1 WO02070430 A1 WO 02070430A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
weight
modified sulfur
reaction
aggregate
Prior art date
Application number
PCT/JP2002/001783
Other languages
English (en)
French (fr)
Inventor
Yoshio Tajima
Hiroshi Hashimoto
Original Assignee
Nippon Oil Corporation
Idomco Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation, Idomco Corporation filed Critical Nippon Oil Corporation
Publication of WO2002070430A1 publication Critical patent/WO2002070430A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/36Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing sulfur, sulfides or selenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention provides a modified sulfur-containing material that can be efficiently and easily obtained as a material for civil engineering or construction, and that can use general and industrial waste as a raw material. Related to manufacturing method.
  • a pavement material U.S. Pat.No. 4,290,816
  • a binder for building materials Japanese Patent Publication No. 55-49024
  • a binding material for waste sealing Publication No. 62-15274.
  • sulfur is as a binder, and it has been mixed with various types of aggregates to produce molded products and used as civil engineering construction materials.
  • An object of the present invention is to provide a modified sulfur-containing material in a molten state with improved workability, even when general and industrial wastes are used as raw material aggregates, as well as surface conditions, mechanical strength, water barrier properties, and ignition.
  • a method for producing a modified sulfur-containing material that can efficiently obtain a solid-state modified sulfur-containing material having improved properties and resistance to sulfuric acid and germs, and that can easily control the reaction during production. Is to do.
  • a method for producing a modified sulfur-containing material comprising a step (B1) of adding and mixing an aggregate in a state in which 5 to 45% by weight is produced in a reaction system.
  • the present invention provides a method for producing a modified sulfur-containing material, which comprises a step (B2) of adding and mixing an aggregate to a reaction system having a viscosity of 20 to 200 mPa's at 140 ° C in which a product is formed.
  • Raw materials used in the production method of the present invention are mainly sulfur, a sulfur modifier, and aggregate.
  • the form of the modified sulfur-containing material obtained by the present invention is in a molten state or a solid state.
  • the modified sulfur-containing material contains an aggregate in addition to the modified sulfur. May contain sulfur.
  • the sulfur used in the present invention is ordinary sulfur alone, and commercially available sulfur can be used.
  • natural sulfur sulfur produced by desulfurization of petroleum or natural gas can be used.
  • the amount of sulfur used is usually 10 to 50% by weight, preferably 15 to 40% by weight, based on the total weight of the modified sulfur-containing material obtained.
  • the sulfur modifier used in the present invention means a simple substance of dicyclopentadiene or a mixture mainly composed of a cyclopentane dimer to tetramer.
  • the mixture is a dicyclo
  • the content of pentadiene is usually 70% by weight or more, preferably 85% by weight or more. Therefore, many commercial products called dicyclopentadiene can be used in the production method of the present invention.
  • the amount of the sulfur modifier used is 2 to 20 parts by weight based on 100 parts by weight of sulfur. If the amount of the sulfur modifier used is small, the viscosity increase due to the reaction with sulfur is slow, and if it is large, the viscosity increase due to the reaction with sulfur is rapid. Must be within range.
  • the amount of the sulfur modifier is more than 20 parts by weight, the viscoelasticity of the reaction system is remarkably increased.On the other hand, if the amount is less than 2 parts by weight, the strength of the obtained solid-state modified sulfur-containing material may be insufficient. is there.
  • the properties of the resulting modified sulfur-containing material are related to the amount of the sulfur modifier used. Is improved. However, when the amount of the sulfur modifier used is about 10 parts by weight with respect to 100 parts by weight of sulfur, the above-mentioned improvement effect is saturated. 2-10 parts by weight are preferred.
  • the aggregate used in the present invention is not particularly limited as long as it does not lower the performance of the obtained modified sulfur-containing material, and inorganic materials such as mainly industrial wastes can be preferably used.
  • Examples of the above industrial waste include incinerated ash, incinerated fly ash, molten fly ash generated and generated from high-temperature melting furnaces for municipal solid waste, coal ash discharged from the electric power business and general industries, and fluidized bed incinerators.
  • Examples of the by-products at the time of producing the various metals include iron copper slag, iron and steel dust, Hue nickel slag, alumidroth, copper slag, and a mixture thereof.
  • the incinerated ash is discharged from various combustion furnaces such as municipal solid waste incinerators or industrial waste incinerators. Incinerated ash, which has a high content of harmful metals such as arsenic and has been landfilled at a final disposal site that does not emit sewage, can be used.
  • coal ash As coal ash, coal ash discharged from various types of coal-fired combustion furnaces for power generation, calorie heating, etc. and used as concrete or as a mixture of civil engineering materials can be used.
  • steel slag examples include slag produced as a by-product from the steelmaking industry.
  • blast furnace slag, open hearth slag, and converter slag can be used.
  • the main components of steel slag are oxides such as silica, alumina, calcium oxide and iron oxide, and also include inorganic sulfides.
  • aggregates other aggregates other than the above, for example, clay mineral, activated carbon, Inorganic and organic materials that do not contain harmful substances such as carpon fiber, glass fiber, vinylon II, aramide fiber / fibre, polyester fiber, polyethylene fiber, sand and gravel can also be used.
  • an aggregate obtained by optionally combining these other aggregates and inorganic materials such as the above-mentioned industrial waste can also be used.
  • the amount of the aggregate used is usually 50 to 90% by weight, preferably 60 to 85% by weight, based on the total weight of the modified sulfur-containing material obtained.
  • Examples of other materials include heavy metal sequestration stabilizers such as sodium silicate, sodium sulfide, and chelating agents; asphalt, nickel sulfate, cobalt sulfate, silver sulfate, and various polymers. It is preferable that the other materials are used in an amount of 30% by weight or less based on the total weight of the modified sulfur-containing material obtained.
  • the step (A) of melting and reacting the above-mentioned specific ratio of sulfur with the sulfur modifier is performed, and the modified sulfur melt having a weight average molecular weight of 320 to 500 is identified by the reaction in the step (A).
  • the reaction system in which the modified sulfur melt with a weight average molecular weight of 320 to 500 is produced by the reaction in the step (A) has a specific viscosity
  • the step (B2) of adding and mixing the aggregate is performed.
  • step (A) in order to cause the sulfur to react with the sulfur modifier in a melting reaction, for example, first, sulfur is heated to 120 to: 155 ° C, preferably 135 to 145 ° C, and the sulfur is melted. After melting the sulfur, the temperature is maintained at preferably 135 to 150 ° C, particularly preferably 135 to 145 ° C, while measuring the viscosity with a suitable viscometer, for example, a B-type viscometer, while stirring the whole. Next, a method in which a predetermined amount of a sulfur modifying agent is added little by little and mixed is performed.
  • a suitable viscometer for example, a B-type viscometer
  • step (A) when the temperature of the reaction system exceeds 150 ° C., the addition reaction proceeds, and usually the temperature of the system is 160 due to the heat of formation of the addition reaction. C is more than C, and rubber-like sulfur may be generated, which is not preferable.
  • the temperature of the system when the temperature of the system is 130 ° C, the addition reaction proceeds, and the temperature of the system becomes about 140 ° C due to the heat of formation. It is not preferable because time is not shortened. Therefore, it is preferable that the holding temperature of the molten sulfur when the sulfur modifier is added to the molten sulfur be set to 135 to 150 ° C. In this case, if the proportion of the sulfur modifier increases, the heat generation during the addition reaction increases, so that the holding temperature needs to be lowered. Absent. On the other hand, if the holding temperature exceeds 150 ° C., the production rate of the desired modified sulfur melt is increased, control is difficult, and the range of production conditions is undesirably narrow.
  • the temperature rise after the start of the melting reaction between sulfur and the sulfur modifier is, for example, when 5 parts by weight of the sulfur modifier is added to 100 parts by weight of the sulfur, about 5% from the addition of the sulfur modifier. A temperature rise of about 10 ° C is observed in 10 minutes.
  • the measurement of the molecular weight of the modified sulfur melt having a weight average molecular weight of 320 to 500 produced by the reaction in the step (A) is performed by converting the modified sulfur into carbon disulfide or toluene. Etc., and can be carried out by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the measurement can be performed by using a calibration curve obtained by measuring a carbon disulfide lmassZvol% concentration sample solution with a polystyrene using a UV254 nm detector at a flow rate of 1 mlZ at room temperature using a chloroform solvent at room temperature.
  • the modified sulfur melt having the specific molecular weight is generated by an addition reaction to sulfur forming an 8-membered ring by a sulfur modifier.
  • the temperature rises due to the formation of the modified sulfur melt, and the viscosity of the system is generally 10 to 20 mPa's, which is almost the same as the viscosity of sulfur itself. Thereafter, the temperature rise ends in about 5 to 30 minutes, and when the viscosity starts to rise, it can be considered that the production of the modified sulfur melt has been completed.
  • the time for adding the aggregate is in a state where the specific modified sulfur melt is produced in the reaction system in an amount of 5 to 45% by weight, preferably 10 to 40% by weight.
  • the conditions for such a state can be determined by preliminary experiments confirming the conditions under which the specific modified sulfur melt is actually produced in the above range.
  • the state in which the specific modified sulfur melt is generated in an amount of 5 to 45% by weight is a state in which the specific modified sulfur melt is present in the unreacted molten sulfur and the modified sulfur melt in the above ratio, Unreacted molten sulfur, unreacted molten sulfur modifier, and modified sulfur melt in a state where the above-mentioned specific modified sulfur melt is present in the above ratio, modified sulfur in the modified sulfur melt, May be the V ⁇ deviation in the state where the above-mentioned ratio exists, and other components may be contained in these reaction systems.
  • step (B2) the aggregate is added at a time when the viscosity of the reaction system at 140 ° C. becomes 20 to 200 mPa's, preferably 20 to: L00 mPa's, and particularly preferably 20 to 90 mPa's.
  • the fact that the reaction system is in the above-mentioned viscosity range can be confirmed with a B-type viscometer or the like, and the timing for adding the aggregate can be easily determined. In this way, the timing of adding the aggregate is not based on the generation rate of the specific modified sulfur melt in step (B1) but on the phenomenon of the melt viscosity of the system. In that case, the actual work becomes easier.
  • the melt viscosity slightly fluctuates depending on the melting temperature, it can be appropriately determined by experiments.
  • the specific viscosity range at 140 ° C is 150 ° C
  • the range corresponds to 15 to 200 mPa's
  • the preferable range corresponds to 15 to: 100 mPa's.
  • the lower limit would be lower than 25mPa-s, which would be slightly higher than 20mPa's, and the upper limit would be 200mPa's.
  • the temperature is between these, the viscosity can be easily determined by proportional calculation.
  • the sulfur polymerization reaction proceeds, and it becomes difficult to sufficiently mix the aggregate with the aggregate.
  • the viscosity is less than the above range, if the aggregate is added, the generation of the specific modified sulfur melt may not be sufficient and the polymerization of sulfur may not proceed promptly.
  • the addition of the aggregate is preferably performed using an aggregate preheated and dried at 130 to 160 ° C.
  • the mixer used for mixing may be any mixer capable of sufficiently mixing, and for example, is preferably used for solid-liquid stirring.
  • an internal / remixer, a roll mill, a drum mixer, a screw extruder, a pug mill, a pony mixer, a ribbon mixer and the like can be used.
  • the temperature at which the aggregate is added and mixed is preferably 135 to 155 ° C, and the mixing time after the addition of the aggregate is usually about 5 to 60 minutes, preferably Is 10 to 30 minutes.
  • the mixing time can be further extended, but mixing for a long time increases the strength of the molded product, but the workability is poor. If the temperature at which the aggregate is added and mixed exceeds 155 ° C, the viscosity rises rapidly and the mixing between the aggregate and sulfur deteriorates during mixing, which is not preferable. On the other hand, when the temperature is lower than 135 ° C., the reaction of sulfur during mixing is delayed, and the production time is undesirably long.
  • the end of the mixing after the addition of the aggregate can be appropriately determined based on the weight average molecular weight of the modified sulfur.
  • the molecular weight which is a measure of the end of mixing, is more than 500 as a weight average molecular weight by GPC, and is preferably 2000 or less, more preferably 600 to 1500. If the molecular weight is less than 500, the compressive strength of the solid of the resulting modified sulfur-containing material may decrease, which is not preferable.
  • the molecular weight exceeds 2,000, workability deteriorates, and there is a possibility that bubbles may be mixed in molding the obtained modified sulfur-containing material in a molten state, further deteriorating the surface condition of the obtained solid. Not preferred.
  • the measurement of the molecular weight can be performed in the same manner as the measurement of the specific modified sulfur melt described above. Can be.
  • the order of adding the aggregate is not limited to the production method of the present invention.
  • sulfur, a sulfur modifier, and an aggregate And (2) reacting a mixture of sulfur and aggregate with a sulfur modifier.
  • the sulfur modifier is adsorbed on the aggregate, the reaction with sulfur is delayed, and the production time is lengthened. Further, since the sulfur modifier is adsorbed on the aggregate, the amount of use thereof is required to be a predetermined amount or more, which is not preferable.
  • the sulfur modifier is adsorbed on silica, alumina, etc., which are the main components of the aggregate, and the reaction with sulfur is extremely delayed. Peroxide is generated by contact with the agent, which is not preferable because it causes safety problems.
  • a method may be considered in which a binder having a viscosity of 100 mPa's is usually prepared by reacting two components of a sulfur modifier and sulfur in advance, and then the binder and the aggregate are mixed.
  • a modified sulfur-containing material having high compressive strength can be obtained, but the binder needs to be melted again at the time of mixing with the aggregate, the operation becomes complicated, and the production time after mixing the aggregate is reduced by the present invention. Method is longer.
  • the aggregate is added to the melt in which a specific amount of the modified sulfur melt has been formed, the high molecular weight of sulfur proceeds at the same time as mixing with the aggregate, and the desired modification can be performed in a short time. A sulfur-containing material is obtained.
  • a step of forming the modified sulfur-containing material in a molten state into a molded article having an arbitrary shape is performed to obtain a modified sulfur-containing material in a solid state.
  • the step of obtaining the solid-state modified sulfur-containing material can be performed, for example, by cooling using a granulator or a desired mold.
  • the shape can be a desired shape, and examples thereof include, but are not limited to, a granular shape, a plate shape, a rectangular parallelepiped, and a rectangular parallelepiped.
  • the method for converting the modified sulfur-containing material in the molten state into a granular material is not particularly limited.
  • a granulation method in which the molten material is cooled and solidified to form granules, or the molten material is cooled and solidified.
  • a method of pulverizing the obtained molded product into a granular material may be used.
  • the granulation method include a rolling granulation method and a vibration granulation method using a rolling stand or a vibrating granulator equipped with a usual drum, horizontal plate or inclined plate.
  • the particle diameter of the granular material can be adjusted by the above-mentioned tumbling granulation method by controlling the inclination angle, the rotation speed and the like of the rotating plate or the drum. At this time, there is no particular need to consider the size of the rotating plate or the drum.
  • the desired particle size can be obtained by changing the inclination angle of the same rotating plate.
  • the tilt angle can generally be adjusted in the range of 0-70 °.
  • the particle size of the granular material can be adjusted by the vibration granulation method by appropriately controlling the frequency, amplitude, and inclination angle.
  • a condition in which the modified sulfur-containing material in the molten state is not scattered can be selected from a condition range in which the frequency is about 3000 times for Z minutes, the amplitude is 0.3 mm or more, and the vibration time is 30 minutes to 3 hours.
  • the tilt angle can usually be adjusted in the range of 0-60 °.
  • the vibration system a reciprocating system, a rotating system, or a combination thereof can be adopted.
  • the modified sulfur-containing material in the molten state is formed and then crushed, it is difficult to adjust the particle size of the granular material. Therefore, when the granular material having a desired particle size is obtained, the granulation method is preferably used. ,. However, even the granular material obtained by the crushing method can be sieved or the like to obtain a desired particle size distribution.
  • a method of dropping the modified sulfur-containing material in the molten state into water is also conceivable.However, this method dissolves heavy metals into water and generates ⁇ on the surface of the granulated material.
  • the coating of the aggregate may not be perfect, which is not preferable.
  • the conditions for preparing the granular material can be appropriately determined depending on the types and the proportions of the raw material sulfur, the sulfur modifier, and the aggregate, the application, and the like.
  • the particle size of the granular material can be appropriately selected according to the application.For example, when the particle size is suitable for aggregate for concrete or mortar, it is usually preferably 2 to 44.4 mm based on JIS standard sieve. .
  • the compressive strength of the solid-state modified sulfur-containing material obtained by the production method of the present invention is usually 10 to so-called ⁇ Zm 2 , preferably 20 to 100 MN / m 2 , more preferably 30 to LOOMN / m 2 .
  • the density of the obtained modified sulfur-containing material in a solid state affects the strength, particularly the compressive strength. The higher the density, the less air bubbles are mixed into the modified sulfur-containing material, the more the modified sulfur and the aggregate are sufficiently mixed, and a perfect continuous phase is obtained, and the smoother the surface becomes. If the surface of the modified sulfur-containing material is smooth, fine irregularities on the surface can be prevented from starting cracks. As a result, the resulting molded article has excellent mechanical strength and harmful substances. It has excellent performance in shielding the elution of water and excellent aesthetics of power products.
  • the density of the solid-state modified sulfur-containing material obtained according to the present invention may be, for example, When coal ash is used, the range is usually 2.40 to 2.51 gZcm 3 , preferably 2.45 to 2.51 gZcm 3 . If the density is less than 2.40 g / cm 3 , the compressive strength is reduced due to the inclusion of air bubbles. Conversely, the higher the density, the less the air bubbles are mixed.
  • the modified sulfur-containing material obtained by the production method of the present invention can be used, for example, in the form of granules, mixed with cement, concrete, gypsum and the like.
  • it can be preferably used for civil engineering and construction materials.
  • it can be formed into any structure and used for panel materials, floor materials, wall materials, roof tiles, underwater structures, and as granular materials, and used as landfill materials, roadbed materials, embankment materials, aggregates such as concrete, etc. Can also.
  • the modified sulfur-containing material in the molten state obtained as described above is stiffened to prepare granules, 10 g of the granules are put into a Soxhlet extraction tube, and 100 ml of carbon disulfide is used for Soxhlet. One extraction was performed for 6 hours. The obtained extract was diluted with carbon disulfide to lmass / vol%, and the molecular weight of modified sulfur composed of an adduct of sulfur and cyclopentadiene and a sulfur polymer was determined by GPC analysis. As a result, the weight average molecular weight was 790.
  • the distillate was rejected seven times to obtain a dicyclopentadiene-modified sulfur binder.
  • the weight average molecular weight of the above-mentioned pinda-1 measured by GPC was 2,050.
  • the above binder (725 g) was put into a Dalton kneader and melted at 120 ° C. Dalton kneader
  • the temperature of the mixing tank was raised to 150 ° C, 2880 g of aggregate dried at 150 ° C was added, and kneading was performed at 150 ° C for 20 minutes. After kneading, a molded article was produced in the same manner as in Example 1.
  • Compressive strength of the molded body is 65.8 ⁇ / ⁇ 1 2
  • density was 2.46 g / cm 3.
  • the surface condition of the molded product was rough, and the density was lower than that of Example 1.
  • the curing time of the molded body also required 1 hour and 20 minutes longer than in Example 1.
  • the viscosity at this time was measured by a B-type viscometer, it was 25 mPa ⁇ s.
  • a part of the system was collected and its molecular weight was measured by GPC, it was modified sulfur having a weight average molecular weight of 412.
  • the content of the modified sulfur melt having a weight average molecular weight of 422 in the reaction system was about 27% by weight, and the remainder did not include a modified sulfur melt having a weight average molecular weight of 320 to 500.
  • Moldings and granules were prepared in the same manner as in Example 1 except that the amount of solid sulfur used was changed to 562 g.
  • the compressive strength of the obtained molded product was 60.3 MN / m 2 , and the density was 2.47 gZcm 3 .
  • the weight average molecular weight of the obtained granules was 780 when determined by Soxhlet extraction in the same manner as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

明細書
変性硫黄含有材料の製造法
按術分野
本発明は、 土木用又は建設用の資材に利用できる、 変性硫黄含有材料を、 効率良く 容易に得ることができ、 原料として一般及ぴ産業廃棄物を利用することも可能な変性 硫黄含有材料の製造法に関する。
背景技術
硫黄は、 119°Cを越えると溶融し、 常温では固体である性質を利用して、 土木用及 ぴ建設用の資材の一つとしての利用が古くから試みられている。例えば、舗装材料 (米 国特許第 4290816号明細書)、建築材料用結合材 (特公昭 55-49024号公報)又は廃棄物 封鎖用結合材 (待公昭 62-15274号公報)としての使用が検討されている。これまで硫黄 はその用途の一つに結合材があり、 各種の骨材と混合して成形物が製造され、 土木建 設資材として使用されている。
ところで、一般及ぴ産業廃棄物は、埋め立て、焼却等の方法で処分される。 し力 し、 処分場所は近年益々少なくなっており、 その再利用が極力求められている。 例えば、 焼却灰等の産業廃棄物を、土木埋立材又は建設資材とするには、圧縮強度、 曲げ強度、 引張り強度及び耐衝撃性等の機械的強度が十分であり、 産業廃棄物中に含まれる重金 属化合物の溶出を防ぐための遮水性、 裸火で着火しない難燃性が必要である。 更に、 土中、 海中で使用する場合には、 表面硫黄を腐食する硫黄酸ィ匕細菌に対する耐久性も 必要とされる。
そこで、硫黄単独を結合材として産業廃棄物と混合した成形物が提案されているが、 該成形物は物性上の多くの課題があり、 使用方法が限定されている。 従って、 硫黄を 利用して産業廃棄物を完全封鎖し、 土木建設資材として使用可能な変性硫黄含有材料 を製造する改良技術が求められている。
改良方法の一つとして、 ジシクロペンタジェンの添加による硫黄の改善が検討され ている。 ジシクロペンタジェンと硫黄との反応は、 一種の重合反応といわれており、 最初ジシクロペンタジェンと硫黄とが反応し、 環状 S8が開環して硫黄とシクロペン タジェンとが結合した変性硫黄が生成すると考えられている。 該反応においては、 変 性硫黄生成時の発熱により硫黄がラジカノ!^鎖反応により高分子ィ匕するため、 大きな 発熟を伴い粘度の急上昇が起きる。従って、ジシクロペンタジェンと硫黄との反応は、 急激な温度上昇及び粘度上昇のため、 反応が制御できず、 急激に固化して所望形状に 成形できないという P題がある。
これまで硫黄にジシクロペンタジェンを添加する場合の製造条件については十分検 討されておらず、 ジシクロペンタジェン濃度、 温度等の反応条件と、 製造される材料 の望ましい性状との関係も十分に判っていないのが実状である。
発明の開示
本発明の目的は、 一般及び産業廃棄物を原料骨材として利用した場合であっても、 作業性を改善した溶融状態の変性硫黄含有材料、 並びに表面状態、 機械的強度、 遮水 性、 着火性、 耐硫黄酸ィ匕細菌性等が改善された固形状態の変性硫黄含有材料を、 効率 良く得ることができ、 しかも製造時における反応を容易に制御できる変性硫黄含有材 料の製造法を提供することにある。
本発明によれば、硫黄 100重量部と硫黄変性剤 2〜20重量部とを溶融反応させるェ 程 (A)、 及ぴ工程 (A)における反応により重量平均分子量 320〜500の変性硫黄溶融物 が反応系内に 5〜45重量%生成した状態において骨材を添加 ·混合する工程 (B1)を含 む変性硫黄含有材料の製造法が提供される。
また本発明によれば、硫黄 100重量部と硫黄変性剤 2〜20重量部とを溶融反応させ る工程 (A)、 及び工程 (A)における反応により重量平均分子量 320〜500の変性硫黄溶 融物が生成した、 140°Cにおける粘度が 20〜200mPa'sの反応系に、 骨材を添加 ·混 合する工程 (B2)を含む変性硫黄含有材料の製造法が提供される。
発明の好ましい実施の態様
本発明の製造法に用いる原料は、 主に硫黄、 硫黄変性剤及ぴ骨材である。 本発明に より得られる変性硫黄含有材料の形態は、 溶融状態又は固形状態であり、 該変性硫黄 含有材料は、 変性硫黄の他に骨材を含み、 また、 硫黄変性剤及び Z又は未反応の硫黄 を含んでいても良い。
本発明に用いる硫黄は、通常の硫黄単体であり、市販の硫黄が使用できる。例えば、 天然硫黄、 石油又は天然ガスの脱硫によって生成した硫黄が使用できる。 硫黄の使用 量は、 得られる変性硫黄含有材料の全重量に対して、 通常 10〜50重量%、 好ましく は 15〜40重量%である。
本発明に用いる硫黄変性剤は、 ジシクロペンタジェンの単体、 若しくはシクロペン タジェンの 1〜4量体を主体に構成される混合物を意味する。 該混合物は、 ジシクロ ペンタジェンの含有量が通常 70重量%以上、好ましくは 85重量%以上含む。従って、 本突明の製造法には、 ジシクロペンタジェンと称する市販品の多くが使用できる。 硫黄変性剤の使用量は、硫黄 100重量部に対して 2〜20重量部である。硫黄変性剤 の使用量が少ないと硫黄との反応による粘度上昇が遅く、 逆に多いと硫黄との反応に よる粘度上昇が急激であるから、 作業上の点から硫黄変性剤の使用量を上記範囲とす る必要がある。 また、 硫黄変性剤の使用量が 20重量部を超えると反応系の粘弾性が 顕著に高くなり、 一方、 2重量部未満では得られる固形状態の変性硫黄含有材料の強 度が不足する恐れがある。 得られる変性硫黄含有材料の難燃性、 遮水性、 耐硫黄酸ィ匕 細菌性、 機械的強度等の性質は、 硫黄変性剤の使用量に関係し、 通常は使用量が多い ほどそれぞれの性能が改善される。 し力 し、硫黄変性剤の使用量は、硫黄 100重量部 に対して約 10重量部で前記改善効果が飽和し、 それ以上使用しても改善が少ないの で、 硫黄 100重量部に対して 2〜10重量部が好ましい。
本発明に用いる骨材は、 得られる変性硫黄含有材料の性能を低下させないものであ れば特に限定されず、 主に産業廃棄物等の無機系資材が好ましく使用できる。
上記産業廃棄物としては、 例えば、 焼却灰、 焼却飛灰、 都市ごみ高温溶融炉から発, 生する溶融飛灰、 電力事業及ぴ一般産業から排出される石炭灰、 流動床焼却装置で使 用した流動砂、 研磨屑、 各種金属製造時の副生物又はこれらの混合物からなる無機系 資材が挙げられる。 前記各種金属製造時の副生物としては、 例えば、 鉄銅スラグ、 鉄 鋼ダスト、 フエ口ニッケルスラグ、 アルミドロス、 銅スラグ又はこれらの混合物が挙 げられる。
焼却灰としては、 都市ごみ焼却炉又は産業廃棄物焼却炉等の各種燃焼炉から排出さ れ、 主成分が、 シリカ、 ァノレミナ、 酸化カルシウム、 酸化鉄等の酸ィ匕物であり、 鉛、 カドミウム、 砒素等の有害金属の含有量も多い、 従来、 汚水を出さない最終処分場で 埋め立て処理されてきた焼却灰が使用できる。
石炭灰としては、 発電用、 カロ熱用等の各種石炭焚燃焼炉から排出され、 コンクリー ト又は土木資材混合材として利用されている石炭灰が使用できる。
鉄鋼スラグとしては、 製鉄業から副生するスラグ等が挙げられ、 例えば、 高炉スラ グ、 平炉スラグ、 転炉スラグが使用できる。 鉄鋼スラグの主成分は、 シリカ、 アルミ ナ、 酸化カルシウム、 酸ィヒ鉄等の酸化物であり、 その他無機硫化物も含まれる。
本発明に用いる骨材としては、 上記以外の他の骨材、 例えば、 粘土鉱物、 活性炭、 カーポンファィパー、 グラスファイバー、 ビニロン 锥、 ァラミド繊 /維、 ポリエステ ル繊維、 ポリエチレン繊維、 砂、 砂利等の有害物質を含有しない無機系資材及び有機 系資材も使用できる。 また、 これら他の骨材と前記産業廃棄物等の無機系資材とを任 意に組合わせた骨材も使用できる。
本発明において、 前記骨材の使用量は、 得られる変性硫黄含有材料の全重量に対し て、 通常 50〜90重量%、 好ましくは 60〜85重量%である。
本発明においては、本発明の目的を損なわない範囲において、原料として上記硫黄、 硫黄変性剤及び骨材に加えて、 他の材料を使用することもできる。
他の材料としては、 例えば、 珪酸ソーダ、 硫化ソーダ、 キレート剤等の重金属封鎖 安定剤;アスファルト、 硫酸ニッケル、 硫酸コバルト、 硫酸銀、 各種ポリマーが挙げ られる。他の材料の使用量は、得られる変性硫黄含有材料の全重量に対して、 30重量% 以下となるように配合することが好ましい。
本発明の製造法では、 上述の特定割合の硫黄と硫黄変性剤とを溶融反応させる工程 (A)を行い、 該工程 (A)における反応により重量平均分子量 320〜500 の変性硫黄溶融 物が特定量生成した状態において骨材を添加'混合する工程 (Bl)、 若しくは該工程 (A) における反応により重量平均分子量 320〜500の変性硫黄溶融物が生成した反応系が 特定粘度となっている状態に骨材を添加'混合する工程 (B2)を行う。
前記工程 (A)において、硫黄と硫黄変性剤とを溶融反応させるには、例えば、まず、 硫黄を通常 120〜: 155°C、好ましくは 135〜; 145°Cに力 B熱して溶融する。硫黄溶融後、 全体を攪拌しつつ適当な粘度計、 例えば、 B型粘度計で粘度を測定しながら好ましく は 135〜: 150°C、特に好ましくは 135〜145°Cに温度を維持する。 次いで、 所定量の硫 黄変性剤を少しずつ添加して混合する方法により行うことができる。
工程 (A)において、反応系の温度が 150°Cを越える場合、付加反応が進行し、通常、 該付加反応の生成熱により系の温度が 160。C以上となりゴム状硫黄が生成する恐れが 生じ好ましくない。 一方、 系の温度が 130°Cである場合には、 付加反応が進行し、 生 成熱により系の温度が 140°C程度となるが、 所望の変性硫黄溶融物の生成速度が遅く なり製造時間短縮にならないので好ましくない。 従って、 上記溶融硫黄に硫黄変性剤 を添加する際の溶融硫黄の保持温度は 135〜: 150°Cに設定することが好ましい。 この 場合、 硫黄変性剤の割合が多くなれば付加反応時の発熱が大きくなるため、 前記保持 温度を低くする必要があるが、 135°C未満では付加反応開始が遅くなるので好ましく ない。 一方、 前記保持温度が 150°Cを超えると所望の変性硫黄溶融物の生成速度が速 くなり制御が難しく製造条件範囲が狭くなるので好ましくない。
工程 (A)において、硫黄と硫黄変性剤との溶融反応開始後の温度上昇は、例えば、硫 黄 100重量部に対して硫黄変性剤 5重量部添加したときは、硫黄変性剤の添加から約 10分間で約 10°Cの温度上昇が認められる。
工程 (B1)及ぴ (B2)において、前記工程 (A)における反応により生成する重量平均分子 量 320〜500の変性硫黄溶融物の該分子量の測定は、 変性硫黄を二硫化炭素又はトル ェン等に溶かし、 ゲルパーミエイシヨンクロマトグラフィ一 (GPC)により行うことが できる。 その測定は、 例えば、 クロ口ホルム溶媒を使用し室温において lmlZ分の流 速で、 二硫化炭素 lmassZvol%濃度試料溶液を UV254nm検出器を用いポリスチレ ンで測定した検量線により求めることができる。
前記特定分子量の変性硫黄溶融物は、 硫黄変性剤によって、 8員環を形成している 硫黄への付加反応により生成すると考えられている。 前記変性硫黄溶融物の生成によ つて温度上昇し、 系の粘度は通常 10〜20mPa'sで硫黄そのものの粘度と変わらずほ ぼ一定となる。 その後、 5〜 30分程度で温度上昇が終了し、 粘度が上昇を開始した時 に前記変性硫黄溶融物の生成が完了したとみなすことができる。
工程 (B1)において、 骨材の添力卩時期は、 反応系に前記特定の変性硫黄溶融物が 5〜 45重量%、好ましくは 10〜40重量%生成している状態の時である。 このような状態 となる条件は、 予備実験により、 実際に前記特定の変性硫黄溶融物が上記範囲で生成 する条件を確認して決定できる。前記特定の変性硫黄溶融物が 5〜45重量%生成して いる状態は、 未反応の溶融硫黄及ぴ変性硫黄溶融物中に前記特定の変性硫黄溶融物が 上記割合で存在している状態、 未反応の溶融硫黄、 未反応の溶融硫黄変性剤及び変性 硫黄溶融物中に前記特定の変性硫黄溶融物が上記割合で存在している状態、 変性硫黄 溶融物中に前記特定の変性硫黄溶融物が上記割合で存在している状態の Vヽずれであつ ても良く、 またこれらの反応系中にその他の成分が含まれていても良い。
工程 (B2)において、 骨材の添加時期は、 反応系の 140°Cにおける粘度が 20〜 200mPa's、 好ましくは 20〜: L00mPa's、 特に好ましくは 20〜90mPa'sになった時 である。 該反応系が上記粘度範囲となっていることは、 B型粘度計等で確認でき、 容 易に骨材の添加時期が決定できる。 このように骨材の添加時期を工程 (B1)における特 定の変性硫黄溶融物の生成割合ではなく、 系の溶融粘度という現象面からとらえた場 合には、 実際の作業が容易になる。
前記溶融粘度は、 その溶融温度により若干上下するので適宜実験により定めること ができる。 例えば、 上記 140°Cにおける特定の粘度範囲は、 150°Cのときであれば、 その範囲が 15〜200mPa's、好ましい範囲が 15〜: lOOmPa'sに相当する。また、 135°C のときであれば、 下限値が 20mPa' sよりやや大きくなるであろう力 25mPa-sより は低いであろうし、 上限値は 200mPa'sである。 更に、 これらの間の温度であれば、 比例計算すれば容易に当該粘度が決定できる。
粘度が当該範囲の上限を超えてから骨材を添加すると、 硫黄重合反応が進行し、 骨 材と十分に混合することが困難になる。 一方、 粘度が当該範囲未満において骨材を添 加すると、 前記特定の変性硫黄溶融物の生成が十分でなく硫黄の重合が速やかに進行 しない恐れがある。
工程 (B1)及び (B2)において、骨材の添加は、 130〜; 160°Cにて予備加熱乾燥した骨材 を用いて行うのが好ましい。 混合に使用する混合機は、 混合が十分に行えるものであ れば良く、 例えば、 固液攪拌用の使用が好ましい。 例えば、 インターナ/レミキサー、 ロールミル、 ドラムミキサー、 スクリュー押出し機、 パグミル、 ポニーミキサー、 リ ボンミキサ一等が使用できる。
工程 (B1)及ぴ (B2)において、 骨材を添加'混合する際の温度は、 135〜155°Cが好ま しく、 骨材添加後の混合時間は、 通常、 約 5〜60分間、 好ましくは 10〜30分間であ る。 該混合時間は更に延長できるが長時間混合することにより成形品強度が高くなる ものの作業性が悪ィ匕する。骨材を添加'混合する際の温度が 155°Cを超えると粘度上昇 が急激で混合時に骨材と硫黄との馴染みが悪くなるので好ましくない。 一方、 該温度 が 135°C未満では混合時の硫黄の反応が遅延し製造時間が長時間となり好ましくない。 工程 (B1)及び (B2)において、 骨材添加後の混合終了は、 変性された硫黄の重量平均 分子量によって適宜決定できる。 例えば、 混合終了の目安となる該分子量としては、 GPCによる重量平均分子量として 500を超え、 2000以下、 好ましくは 600〜1500 の範囲が好ましい。前記分子量が 500以下では得られる変性硫黄含有材料の固形物の 圧縮強度が低下する恐れがあり好ましくない。 一方、 前記分子量が 2000を越えると 作業性が悪くなり、 しかも得られる溶融状態の変性硫黄含有材料を成形する際に気泡 の混入が生じる恐れがあり、 更に得られる固形物の表面状態が悪化するので好ましく ない。 該分子量の測定は、 上述の特定の変性硫黄溶融物の測定と同様な方法で行うこ とができる。
ところで、硫黄、硫黄変性剤及び骨材を用いる変性硫黄含有材料の製造法において、 骨材の添加順序は、本発明の製造法以外に、例えば、 (1)硫黄と硫黄変性剤と骨材との 混合物を同時に反応させる方法、(2)硫黄と骨材との混合物に硫黄変性剤を反応させる 方法が考えられる。
しカゝし、 上記 (1)の方法では、硫黄変性剤が骨材に吸着され、硫黄との反応が遅延し 製造時間が長くなる。 また、 硫黄変性剤が骨材に吸着するために、 その使用量は所定 量以上の量が必要となり好ましくない。 一方、 上記 (2)の方法では、 骨材の主成分であ るシリカ、 アルミナ等に硫黄変性剤が吸着し、 硫黄との反応が極端に遅延し、 かつ加 熱乾燥した骨材と硫黄変性剤とが接触することによりパーォキサイドが生成するため 安全上の問題が生じ好ましくない。
また、 予め硫黄変性剤と硫黄との 2成分を反応させて、通常、粘度 lOOmPa'sのパ インダーを調製した後に、 該バインダーと骨材とを混合する方法も考えられる。 この 方法では、 圧縮強度が高い変性硫黄含有材料が得られるが、 骨材との混合時にバイン ダーを再度溶融する必要があり、 作業が煩雑化し、 更に、 骨材混合後の製造時間が本 発明の方法よりも長くなる。
本発明の製造法では、 特定量の変性硫黄溶融物が生成した溶融物中に骨材を添加す るので、 骨材と混合すると同時に硫黄の高分子量化が進行し、 短時間で所望の変性硫 黄含有材料が得られる。
本発明の製造法では、 前記工程 (B1)又は (B2)の後、 溶融状態の変性硫黄含有材料を 任意な形状の成形体とする工程を行うことによって、 固形状態の変性硫黄含有材料を 得ることができる。 固形状態の変性硫黄含有材料を得る工程は、 例えば、 造粒装置又 は所望の型枠を用いて冷却することにより行うことができる。 形状は、 所望形状とす ることができ、 例えば、 粒状、 板状、 直方体、 正方体が挙げられるがこれらに限定さ れない。
溶融状態の変性硫黄含有材料を粒状物にする方法としては、 特に限定されず、 例え ば、 溶融物を冷却固化しながら造粒して粒状物とする造粒法、 溶融物を冷却固化して 得た成形物を粉碎して粒状物とする方法が挙げられる。 造粒法としては、 例えば、 通 常のドラム、水平板又は傾斜板を具備した、転動 立機若しくは振動造粒機を用いる、 転動造粒法又は振動造粒法が挙げられる。 前記転動造粒法によって粒状物の粒径を調整するには、 回転板又はドラムの傾斜角 度、 回転速度等を制御することにより行うことができる。 この際、 回転板又はドラム のサイズを考慮する必要は特になく、 例えば、 同一回転板の傾斜角度を変えることに よつて所望粒径とすることができる。傾斜角度は一般に 0〜70° の範囲で調整できる。 前記振動造粒法によって粒状物の粒径を調整するには、 振動数、 振幅及び傾斜角度 を適宜制御することによって行うことができる。 例えば、 振動数 3000回 Z分程度、 振幅 0.3mm以上、 振動時間 30分間〜 3時間の条件範囲から、 溶融状態の変性硫黄含 有材料が飛散しない条件が選定できる。傾斜角度は通常 0〜60° の範囲で調整できる。 振動方式は、 往復式、 回転式又はこれらの組合せ方式が採用できる。 尚、 回転ドラム を使用し、 実質的に振動を与えて造粒することも可能である。
前記溶融状態の変性硫黄含有材料を成形した後に破砕する方法では、 粒状物の粒径 の調整が困難なため、所望粒径の粒状物を得る場合には前記造粒法の採用が好ましレ、。 但し、 前記破砕する方法により得られた粒状物であっても、 篩い分け等を行って、 所 望の粒径分布とすることは可能である。
上述の造粒法の他に、 溶融状態の変性硫黄含有材料を水中に落下させる方法も考え られるが、 この方法では、 水中に重金属が溶出すること、 造粒物表面に鲭が発生する ことから骨材の被覆が完全でない場合が生じ好ましくない。
前記粒状物を調製する条件は、 原料である硫黄、 硫黄変性剤及ぴ骨材の種類及ぴ配 合割合、 用途等に応じて適宜決定できる。 また、 粒状物の粒径は、 用途に応じて適宜 選択でき、 例えば、 コンクリート又はモルタル用の骨材として適した粒径とする場合 には、 JIS標準篩に基づき、 通常 2〜44.4mmが好ましい。
本発明の製造法により得られる固形状態の変性硫黄含有材料の圧縮強度は、通常 10 〜謂丽 Zm2、 好ましくは 20〜100MN/m2、 より好ましくは 30〜: LOOMN/m2で ある。 また、 得られる固形状態の変性硫黄含有材料の密度は、 強度、 特に圧縮強度に 影響する。 該密度が高いほど変性硫黄含有材料中に気泡の混入が少なく、 変性硫黄と 骨材とが十分混合された状態となつて完全な連続相が得られく 表面も滑らかになる。 変性硫黄含有材料の表面が滑らかであれば、 表面の微細な凹凸が、 クラック発生の起 点となることが防止でき、 結果的に、 得られる成形体は、機械的強度に優れ、 有害物 質の溶出を遮蔽する性能に優れ、 力 製品の美観にも優れる。
本発明により得られる固形状態の変性硫黄含有材料の密度は、 例えば、 原料の骨材 として石炭灰を使用した場合、通常 2.40〜2.51gZcm3、好ましくは 2.45〜2.51gZcm3 の範囲となる。 密度が 2.40g/cm3未満では気泡が混入するため圧縮強度が低下し、 逆に密度が高いほど気泡の混入が少ない。
本発明の製造法により得られる変性硫黄含有材料は、 例えば、 造粒物にしてセメン ト、 コンクリート、石膏等と混合して使用することができる。 また、土木'建築用資材 にも好ましく使用できる。 例えば、任意の構造に成形し、 パネル材、床材、壁材、 瓦、 水中構造物に利用できる他、 粒状物として、 埋立材、 路盤材、 盛土材、 コンクリート 等の骨材として利用することもできる。
実施例
以下、 本発明を実施例及び比較例により具体的に説明するが、 本発明はこれらに限 定されない。
実施例 1
5Lのダルトン製混練機に固体硫黄 686gを入れ、 120°Cで溶融後、 140°Cに保持し た。この際の粘度を B型粘度計で測定したところ 18mPa' sであった。続いて、約 90°C に力 [I熱溶融したジシク口ペンタジェン 39g (固体硫黄 100重量部に対して約 5.7重量部) をゆつくり添加し、 150rpmの回転数で撹拌した。 反応が始まり発熱反応により 12 分後、反応温度が 10°C上昇し系の温度が 150°Cとなった。 その後、 温度上昇が終了し たことを確認し、 その際の反応系の粘度を測定したところ 20mPa'sであった。 系の 一部を採取し GPCにより分子量を測定したところ、 重量平均分子量 390の変性硫黄 であった。 この際、反応系内の重量平均分子量 390の変性硫黄溶融物の含有割合は約 20重量%程度であり、残りに重量平均分子量 320〜500の変性硫黄溶融物は含まれて いなかった。
次に上記状態において、 150°Cにて加熱乾燥した、 高炉スラグ 2400g及ぴ石炭灰 480gからなる骨材を投入し混合を開始した。 混合物の温度を 150°Cに制御し 20分間 混合した。 混合終了後、 得られた溶融状態の変性硫黄含有材料を型枠に流し込んで冷 却し、 直径 5cm、 高さ 10cmの円柱型の成形体を作製した。 この際の硬化時間は 3 2 分間であった。 得られた成形体の圧縮強度は 75.70MNZm2であり、 密度は 2.51gZ cm3であった。 また、 成形体の表面は滑らかであった。
また、 上記で得られた溶融状態の変性硫黄含有材料を硬ィ匕させて粒状物を調製し、 該粒状物 10gをソックスレー抽出管に入れ、 二硫化炭素 100mlを用いてソックスレ 一抽出を 6時間行った。 得られた抽出液を二硫化炭素で lmass/vol%に希釈し GPC 分析により硫黄とシクロペンタジェンとの付加体及ぴ硫黄重合物等からなる変性硫黄 の分子量を求めた。 その結果、 重量平均分子量は 790であった。
比較例 1
攪拌混合槽に固体硫黄 950gを入れ、 120°Cで溶融後、 140°Cに保持した。 この際の 粘度を B型粘度計で測定したところ 18mPa · sであった。 続いて、 約 90°Cに加熱溶 融したジシクロペンタジェン 50g をゆつくりと添加し、 約 5分間静かに攪拌した後 145。Cまで温度を上げた。 反応が始まり、 次第に反応温度及び粘度が上昇していき、 その後温度上昇が終了したことを確認後、 反応温度を 150°Cに制御した。 約 1時間で 粘度は lOOmPa . sに達した。 次いで、 7令却しジシクロペンタジェン変性硫黄バイン ダーを得た。 GPCにより測定した上記パインダ一の重量平均分子量は 2050であった。 ダルトン混練機に上記パインダー 725gを投入し 120°Cで溶融した。ダルトン混練機 混合槽の温度を 150°Cに上げ、 150°Cにて乾燥した骨材 2880gを添加し、 150°Cに制 御しながら混練を 20分間実施した。 混練り後、 実施例 1と同様に成形体を作製した。 成形体の圧縮強度は 65.8ΜΝ/Π12であり、 密度は 2.46g/cm3であった。 成形体の表 面状態は荒れが認められ、密度も実施例 1に比較し低い結果であった。 成形体の硬化 時間も実施例 1より長い 1時間 20分を要した。
実施例 2
5Lのダルトン製混練機に固体硫黄 686gを入れ、 120°Cで溶融後、 140°Cに保持し た。 この際の粘度を B型粘度計で測定したところ 18mPa ' sであった。 続いて、 約 90°Cに加熱溶融したジシクロペンタジェン 39gをゆつくりと添加し、 150rpmの回転 数で撹拌した。 反応が始まり発熱反応により 12分後、 反応温度が 10°C上昇し系の温 度が 150°Cとなった。 その後、 更に 3分間撹拌した。 この際の粘度を B型粘度計で測 定したところ 25mPa . sであった。 系の一部を採取し GPCにより分子量を測定した ところ、 重量平均分子量 412の変性硫黄であった。 この際、反応系内の重量平均分子 量 422の変性硫黄溶融物の含有割合は約 27重量%程度であり、 残りに重量平均分子 量 320〜500の変性硫黄溶融物は含まれていなかった。
続いて、 160°Cに加熱乾燥した、 高炉スラグ 2500g及ぴ石炭灰 480gからなる骨材 を投入し混練を開始した。 混練物温度を 155°Cに制御し 20分間混練した。 混練終了 後、 得られた溶融物を用いて実施例 1と同様に成形体及び粒状物を作製した。 成型体 の圧縮強度は 64.4ΜΝ/Π12であり、 密度は 2.48gZcm3であった。 また粒状物の重量 平均分子量を実施例 1と同様にソックスレー抽出により求めたところ 1100であつた。
実讓 3
固体硫黄の使用量を 562gとした以外は実施例 1と同様に成型体及び粒状物を調製 した。 得られた成形物の圧縮強度は 60.3MN/m2であり、 密度は 2.47gZcm3であつ た。 また、 得られた粒状物の重量平均分子量を実施例 1と同様にソックスレー抽出に より求めたところ 780であった。

Claims

請求の範囲
1 . 硫黄 100重量部と硫黄変性剤 2〜20重量部とを溶融反応させる工程 (A)、 及ぴェ 程 (A)における反応により重量平均分子量 320〜500の変性硫黄溶融物が反応系内に 5 〜45重量%生成した状態において骨材を添加 ·混合する工程 (B1)を含む変性硫黄含有 材料の製造法。
2 . 工程 (A)の溶融反応を、 135〜150°Cの溶融硫黄に硫黄変性剤を添加'混合し、 135 〜150。Cに保持して行う請求の範囲 1の製造法。
3 . 工程 (B1)の後、 所望形状に冷却固化する工程を含む請求の範囲 1の製造法。
4 . 硫黄 100重量部と硫黄変性剤 2〜20重量部とを溶融反応させる工程 (A)、 及びェ 程 (A)における反応により重量平均分子量 320〜500 の変性硫黄溶融物が生成した、 140°Cにおける粘度が 20〜200mPa'sの反応系に、 骨材を添加 ·混合する工程 (B2)を 含む変性硫黄含有材料の製造法。
5 . 工程 (A)の溶融反応を、 135〜: 150°Cの溶融硫黄に硫黄変性剤を添加'混合し、 135 〜150°Cに保持して行う請求の範囲 4の製造法。
6 . 工程 (B2)の後、 所望形状に冷却固化する工程を含む請求の範囲 4の製造法。
PCT/JP2002/001783 2001-03-01 2002-02-27 Procede pour produire un materiau contenant du soufre modifie WO2002070430A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-56546 2001-03-01
JP2001056546A JP3852675B2 (ja) 2001-03-01 2001-03-01 土木・建設用資材の製造方法

Publications (1)

Publication Number Publication Date
WO2002070430A1 true WO2002070430A1 (fr) 2002-09-12

Family

ID=18916558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001783 WO2002070430A1 (fr) 2001-03-01 2002-02-27 Procede pour produire un materiau contenant du soufre modifie

Country Status (2)

Country Link
JP (1) JP3852675B2 (ja)
WO (1) WO2002070430A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225615A1 (en) * 2022-05-19 2023-11-23 Outside The Box Materials, Llc Methods for continuous production of sulfur polymer cement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026719A (en) * 1974-12-03 1977-05-31 Chevron Research Company Sulfur composition with mica
US4129453A (en) * 1974-10-29 1978-12-12 Chevron Research Company Sulfur composition
EP0027644A2 (en) * 1979-10-16 1981-04-29 THE UNITED STATES OF AMERICA as represented by the Secretary United States Department of Commerce Modified sulfur cement and concrete and process for their preparation
US4414385A (en) * 1982-03-11 1983-11-08 Gha Lock Joint, Inc. Concrete comprising sulfur, cyclopentadiene oligomers, aggregate and glass fibers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129453A (en) * 1974-10-29 1978-12-12 Chevron Research Company Sulfur composition
US4026719A (en) * 1974-12-03 1977-05-31 Chevron Research Company Sulfur composition with mica
EP0027644A2 (en) * 1979-10-16 1981-04-29 THE UNITED STATES OF AMERICA as represented by the Secretary United States Department of Commerce Modified sulfur cement and concrete and process for their preparation
US4414385A (en) * 1982-03-11 1983-11-08 Gha Lock Joint, Inc. Concrete comprising sulfur, cyclopentadiene oligomers, aggregate and glass fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225615A1 (en) * 2022-05-19 2023-11-23 Outside The Box Materials, Llc Methods for continuous production of sulfur polymer cement

Also Published As

Publication number Publication date
JP3852675B2 (ja) 2006-12-06
JP2002255625A (ja) 2002-09-11

Similar Documents

Publication Publication Date Title
US8535435B2 (en) Method of fabrication of construction materials from industrial solid waste
JP4040000B2 (ja) 硫黄中間資材、硫黄資材及びその製造方法
JP4033894B2 (ja) 変性硫黄含有結合材及び変性硫黄含有資材の製造法
JP3188200B2 (ja) 人工軽量骨材の製造方法
JP4421803B2 (ja) 変性硫黄含有結合材の製造方法及び変性硫黄含有材料の製造方法
AU2004281885A1 (en) Method for the production of a hydraulic binding agent, a structural component, use thereof and device therefor
JP2002060491A (ja) 硫黄結合材の製造方法、硫黄結合材及び硫黄組成物の製造方法
JP4166701B2 (ja) 変性硫黄含有材料の製造法
WO2002070430A1 (fr) Procede pour produire un materiau contenant du soufre modifie
JP2004002113A (ja) 改質硫黄含有資材の製造法及び改質硫黄含有資材
JP2004002112A (ja) 改質硫黄含有資材の製造法及び改質硫黄含有資材
JP3777295B2 (ja) 土木・建設用資材の製造方法
JP4166702B2 (ja) 変性硫黄含有結合材の製造法及び変性硫黄含有材料の製造法
JPH11292611A (ja) 下水汚泥・都市ゴミを有効利用した煉瓦製造方法
JP2002097059A (ja) 硫黄結合材及び硫黄土木建築資材
JP2002097060A (ja) 硫黄資材の製造方法
JP2005179114A (ja) 硫黄コンクリートの製造方法
WO2003072522A1 (fr) Procede de production d'un agent de liaison contenant du soufre modifie, et procede de production d'une matiere contenant du soufre modifie
JP2005032683A (ja) 電磁波加熱性組成物
JP3443653B2 (ja) 土木・建築用資材
JP2004535926A (ja) フィルターアッシュおよびフライアッシュを不活性化する方法
JP2007302557A (ja) 硫黄中間資材およびその製造方法
JP2010006630A (ja) 変性硫黄含有材料及びその製造法
WO2003076361A1 (fr) Materiau soufre et procede de production de celui-ci
JP2002293658A (ja) アスベスト含有建材廃棄物と下水汚泥焼却灰とを用いた多孔質セラミックの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase