WO2002068169A1 - Kühlanlage zum kühlen von kautschukbahnen - Google Patents

Kühlanlage zum kühlen von kautschukbahnen Download PDF

Info

Publication number
WO2002068169A1
WO2002068169A1 PCT/DE2002/000557 DE0200557W WO02068169A1 WO 2002068169 A1 WO2002068169 A1 WO 2002068169A1 DE 0200557 W DE0200557 W DE 0200557W WO 02068169 A1 WO02068169 A1 WO 02068169A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
air
fan
cooling unit
housing
Prior art date
Application number
PCT/DE2002/000557
Other languages
English (en)
French (fr)
Inventor
Peter Barkowsky
Original Assignee
Berstorff Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Berstorff Gmbh filed Critical Berstorff Gmbh
Priority to SK1051-2003A priority Critical patent/SK286931B6/sk
Priority to BRPI0207587-3A priority patent/BR0207587B1/pt
Priority to DE10290677T priority patent/DE10290677B4/de
Publication of WO2002068169A1 publication Critical patent/WO2002068169A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/16Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/275Recovery or reuse of energy or materials
    • B29C48/276Recovery or reuse of energy or materials of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/9145Endless cooling belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/917Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means by applying pressurised gas to the surface of the flat article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/16Cooling
    • B29C2035/1658Cooling using gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to a cooling system for cooling one or more rubber webs, with a conveying device for continuously conveying the rubber webs and with an air distributor device, the cooling air conveyed by a blower device to at least one flat side of the
  • Rubber sheets can flow out.
  • Rubber sheets are intermediate products that are used to manufacture a wide variety of rubber end products such as Tires are processed further. Such rubber sheets can be produced in different ways. They can have smooth or profiled surfaces.
  • a conventional manufacturing plant for rubber webs has an extruder device which is provided with a slot die for extruding a flat rubber strand.
  • the slot die conveys directly into the nip of a calender formed, for example, from two rolls, which rolls the extrudate into the desired rubber web with a constant thickness.
  • the rubber web usually has a melt temperature of approx. 80 - 100 ° C at the exit from the calender. In order to ensure problem-free processing of the rubber sheet, it is desirable to cool this sheet down to approx. 35 - 40 ° C. For this purpose, cooling systems are often used today that work with air as the cooling medium.
  • Air cooling systems of this type essentially consist of a conveying device for the continuous conveying of the rubber web, above which an air distribution device is arranged which conveys cooling air by means of a blower device in the direction of a flat side of the rubber web in order to cool it.
  • the length of the conveying device for the continuous conveying of the rubber web, above which an air distribution device is arranged which conveys cooling air by means of a blower device in the direction of a flat side of the rubber web in order to cool it.
  • Conveyor equipment must be large enough that the rubber web at the end of the conveyor equipment has cooled to the desired end temperature.
  • the cooling air is sucked in either from the outside or from the factory shed in which the entire system is arranged by means of the blower device and is usually blown onto the material surface through a large number of nozzles. So that the conveyor does not have to must be long and the rubber sheet is cooled as quickly as possible, it is known to cool the cooling air down to a temperature of, for example, 20 ° C. with the aid of a heat exchanger which is connected to a cooling unit.
  • the object of the present invention is to further develop a cooling system of the generic type in such a way that, with the cooling success remaining the same, the investment costs and also the operating costs are reduced sustainably.
  • the present invention takes advantage of the idea of circulating the cooling air, which has been precooled with a high expenditure of energy, in order to cool down only the respective temperature rise in the cooling air which arises from contact with the respective rubber sheet, and a loss-making mixing with the ambient air if possible largely avoided.
  • the energy required for this is significantly lower than if new air from the environment had to be constantly cooled down.
  • the invention therefore goes well beyond the basic idea described above and provides for reducing the investment costs, only one
  • the air distribution device is divided into at least one first and at least one second air cooling unit arranged downstream of the first.
  • the blower device is also divided into at least one first and at least one second fan.
  • the first air cooling unit is supplied with cooling air by the first fan, which is drawn in from the environment and is not pre-cooled.
  • the overall energy expenditure for supplying this cooling air is therefore low.
  • the air intake of the second fan is arranged inside the housing.
  • the cooling unit which provides the cooling required to cool the circulating cooling air via a heat exchanger connected to the circuit line of the second fan, only has to apply comparatively little cooling capacity, since the temperature difference between freshly supplied cooling air and cooling air extracted from the housing only is relatively small.
  • the housing itself absorbs as little thermal energy as possible from the surroundings, it is advantageous to provide it with appropriate thermal insulation.
  • the heat exchanger for cooling the freshly supplied cooling air, it is advisable to provide it in the cooling air supply line leading back from the second fan into the housing.
  • the installation of only a first and a second air cooling unit is in most cases completely sufficient.
  • the first air cooling unit over a partial length of approximately 55-80%, preferably 60-70%, and the second air cooling unit over a partial length of 45-20%, preferably 40-30%. to extend the total length of the conveyor.
  • the entire production system including the cooling system, is expediently arranged within a factory hall and the cooling air for the first air cooling unit is drawn in from the interior of the factory hall.
  • the air intake for the first fan is arranged inside the workshop.
  • the conveyor is expediently designed as a circulating conveyor belt which passes through the housing for the second air cooling unit.
  • a rubber track designated 1 is continuously conveyed from left to right via a conveyor device 2, which is formed horizontally as a rotating conveyor belt.
  • the total length of the conveyor line is, for example, 30 m.
  • a first air cooling unit 3 a is arranged, which is supplied by a fan 4 a with cooling air drawn in from the environment and not pre-cooled.
  • the cooling air essentially flows in the vertical direction from top to bottom onto the surface of the wide side lying on the conveyor belt Rubber sheet.
  • the first air cooling unit 3 a extends over a length of approximately 20 m.
  • a second air cooling unit 3b follows, which is arranged within a housing 5 and extends over a partial length of approximately 10 m along the conveying device 2. Over the housing 5 is a fan 4 b in one
  • Circuit line 9 for the circulation of the cooling air is arranged, wherein the air intake 6 of the circuit line 9 is arranged within the housing 5.
  • the cooling air sucked out of the housing 5 is returned via the fan 4 b and a heat exchanger 8 connected downstream thereof in precooled form into the housing 5 in the direction of the surface of the rubber sheet 1.
  • the rubber web 1 was produced on a production plant which is arranged on the left side of the conveyor 2, but is not shown in the figure.
  • This production system consists, for example, of a twin-screw extruder with a slot die and a downstream calender with two calender rolls.
  • the rubber web 1 reaches the area of the first air cooling unit 3 a from the production system which is not in operation at a temperature of approximately 80-100 ° C.
  • the fan 4 a sucks from the surroundings of the cooling system in the factory hall
  • Ambient air that, for example, max. has a temperature of 35 ° C.
  • This ambient air is inflated via the air cooling unit 3 onto the upper broad side of the rubber web 1.
  • the temperature difference between the cooling air and the surface of the rubber sheet 1 is quite large, especially in the entrance area of the conveyor 2, so that effective cooling takes place.
  • the material cools down, for example, to about 50 ° C. If the cooling were continued with ambient air that was not pre-cooled, the effectiveness of the cooling would decrease and the required length of the cooling section would increase drastically. Therefore, pre-cooled cooling air is used in the second section of the cooling device. This has, for example, a temperature of approximately 10 ° C.
  • the second cooling section with pre-cooled cooling air has one essential shorter length on.
  • a temperature range of approximately 0-20 ° C. is expedient.
  • the actual cooling air temperature and the desired end temperature of the rubber sheet are the essential determining parameters for the required length of the second cooling section.
  • the cooling system according to the invention works considerably more effectively, i.e. with a significantly lower energy consumption.
  • a drive power of about 180 kW is required for the cooling unit to the entire cooling air from an adopted. Cool the temperature in the intake area from approx. 35 ° C to a temperature of approx. 20 ° C in the area of the cooling air outlet.
  • the length of the cooling section would be about 40m.
  • a cooling system according to the invention with which, with the same throughput, only pre-cooled cooling air is used in the second section of the cooling system, the cooling air heats up under the aforementioned conditions between the cooling air outlet and the air intake of the
  • the cooling from 50 ° C to the desired 35 ° C in the second cooling section only corresponds to a temperature difference of 15 K. Therefore, the refrigeration unit with a rubber throughput of 3,500 kg / h only needs one drive power of 56 kW.
  • the total length of the cooling section is about 30m. As a result, this means that the required length of the cooling system in a conventional cooling system is approximately 1/3 larger and, moreover, the required investment is almost 50% greater than that of a cooling system according to the invention.
  • the cooling system according to the invention requires just under 1/3 of the drive power for the cooling unit. The energy required to operate the fans is approximately the same in both cases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Structure Of Belt Conveyors (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

Die Erfindung betrifft eine Kühlanlage zum Kühlen mindestens einer Kautschukbahn (1), mit einer Fördereinrichtung (2) zum kontinuierlichen Fördern der Kautschukbahn (1) und mit einer Luftverteilereinrichtung, die von einer Gebläseeinrichtung geförderte Kühlluft auf mindestens eine Flachseite der Kautschukbahn (1) ausströmen lässt. Dabei ist die Luftverteilereinrichtung in mindestens eine erste und mindestens eine zweite, der ersten nachgeordnete Luftkühleinheit (3 a, 3 b) und die Gebläseeinrichtung in mindestens einen ersten und mindestens einen zweiten Ventilator (4 a, 4 b) aufgeteilt, die erste Luftkühleinheit (3 a) wird von dem ersten Ventilator (4 a) mit aus der Umgebung angesaugter und nicht vorgekühlter Kühlluft versorgt, dass die zweite Luftkühleinheit (3 b) von dem zweiten Ventilator (4 b) mit Kühlluft versorgt wird, die zweite Luftkühleinheit (3 b) ist in einem weitgehend geschlossenen Gehäuse (5) angeordnet, durch die die Kautschukbahn (1) mittels der Fördereinrichtung (2) hindurchführbar, der zweite Ventilator (4 b) weist zur Kreislaufführung der Kühlluft einen innerhalb des Gehäuses (5) angeordneten Luftansaugstutzen (6) auf und zur Vorkühlung der in das Gehäuse (5) zurückgeführten Kühlluft ist ein an ein Kälteaggregat (7) angeschlossener Wärmetauscher vorgesehen.

Description

Kühlanlage zum Kühlen von Kautschukbahπen
Beschreibung
Die Erfindung betrifft eine Kühlanlage zum Kühlen einer oder mehrerer Kautschukbahnen, mit einer Fördereinrichtung zum kontinuierlichen Fördern der Kautschukbahnen und mit einer Luftverteilereinrichtung, die von einer Gebläseeinrichtung geförderte Kühlluft auf mindestens eine Flachseite der
Kautschukbahnen ausströmen lässt.
Kautschukbahnen sind Zwischenprodukte, die zur Herstellung unterschiedlichster Gummiendprodukte wie z.B. Reifen weiterverarbeitet werden. Solche Kautschukbahnen lassen sich in unterschiedlicher Weise herstellen. Sie können glatte oder auch profilierte Oberflächen besitzen. Eine übliche Herstellanlage für Kautschukbahnen weist eine Extruderein richtung auf, die mit einer Breitschlitzdüse zur Extrusion eines flachen Kautschukstrangs versehen ist. Die Breitschlitzdüse fördert unmittelbar in den Walzenspalt eines beispielsweise aus zwei Walzen gebildeten Kalanders, der das Extrudat in die jeweils gewünschte Kautschukbahn mit gleichbleibender Dicke auswalzt. Die Kautschukbahn weist am Austritt aus dem Kalander üblicherweise eine Massetemperatur von ca. 80 - 100°C auf. Um ein problemloses Weiterverarbeiten der Kautschukbahn zu gewährleisten, ist es wünschenswert, diese Bahn auf ca. 35 - 40°C herunterzukühlen. Hierzu werden heute vielfach Kühfanlagen verwendet, die mit Luft als Kühlmedium arbeiten.
Im Wesentlichen bestehen derartige Luftkühlanlagen aus einer Fördereinrichtung zur kontinuierlichen Förderung der Kautschukbahn, über der eine Luftverteilereinrichtung angeordnet ist, die mittels einer Gebläseeinrichtuπg Kühlluft in Richtung einer Flachseite der Kautschukbahn fördert, um diese zu kühlen. Die Länge der
Fördereinrichtung muss so groß gewählt werden, dass die Kautschukbahn am Ende der Fördereinrichtung auf die gewünschte Endtemperatur abgekühlt ist. Die Kühlluft wird mittels der Gebläseeinrichtung wahlweise von außen oder aus der Werkshaile, in der die Gesamtanlage angeordnet ist, angesaugt und im Regelfall durch eine Vielzahl von Düsen auf die Materialoberfläche geblasen. Damit die Fördereinrichtung nicht zu lang sein muss und die Kautschukbahn möglichst schnell abgekühlt wird, ist es bekannt, die Kühlluft mit Hilfe eines Wärmetauschers, der an ein Kälteaggregat angeschlossen ist, auf eine Temperatur von z.B. 20°C herunter zu kühlen.
Bei einer solchen Verfahrensweise erwärmt sich die gekühlte Luft während ihres
Kontaktes mit der Oberfläche der jeweiligen Kautschukbahn nur relativ wenig. Nach dem Kühlvorgang mischt sich die relativ geringfügig erwärmte Kühlluft mit der Luft in der Werkshalle. Der Energieaufwand, der zum Kühlen der Kühlluft aufgewendet wird, geht daher weitgehend verloren. Hinzu kommt, dass die zu installierende Kühlleistung des Kühlaggregats und die Baugröße des Wärmetauschers beträchtlich sind. Somit entstehen bei dieser Art der Kühlung von Kautschukbahnen nicht nur erhebliche Investitionskosten, sondern darüber hinaus auch erhebliche laufende Betriebskosten, insbesondere in Form von Energiekosten.
Aufgabe der voriiegenden Erfindung ist es, eine Kühlanlage der gattungsgemäßen Art dahingehend weiterzubilden, dass bei gleichbleibendem Abkühlerfolg die Investitionskosten und auch die Betriebskosten nachhaltig gesenkt werden.
Gelöst wird diese Aufgabe erfindungsgemäß mit den im kennzeichnenden Teil des Schutzanspruchs 1 angegebenen Merkmalen. Vorteilhafte Weiterbildungen dieser Kühlanlage sind in den Unteransprüchen angegeben.
Die vorliegende Erfindung macht sich den Gedanken zunutze, die mit hohem Energieaufwand vorgekühlte Kühlluft im Kreislauf zu führen, um immer nur den jeweiligen Temperaturanstieg in der Kühlluft, der durch den Kontakt mit der jeweiligen Kautschukbahn entsteht, wieder herauszukühlen und eine verlustbringende Vermischung mit der Umgebungsluft möglichst weitgehend zu vermeiden. Die dafür aufzuwendende Energie ist deutlich geringer, als wenn stets neue Luft aus der Umgebung heruntergekühlt werden müsste.
Da die Kühlluft im wesentlichen frei aus der Luftverteilereinrichtuπg austritt, ist es praktisch nicht möglich, diese Kühlluft direkt zurückzugewinnen, um sie im Kreislauf zu führen. Für eine solche Kreislaufführung ist es erforderlich, die Kühlung in einem gegenüber der Umgebung abgeschlossenen Raum durchzuführen. Wegen der beträchtlichen Ausmaße der Fördereinrichtung würde ein derartiger geschlossener Raum sehr hohe Investitionskosten nach sich ziehen.
Die Erfindung geht daher über den vorstehend beschriebenen Grundgedanken deutlich hinaus und sieht zur Absenkung der Investitionskosten vor, lediglich einen
Teilstrom der insgesamt verwendeten Kühlluft vorzukühlen und im Kreislauf zu führen. Hierzu wird die Luftverteilereinrichtung in mindestens eine erste und mindestens eine der ersten nachgeordnete zweite Luftkuhleinheit aufgeteilt.
In entsprechender Weise wird auch die Gebläseeinrichtung in mindestens einen ersten und mindestens einen zweiten Ventilator aufgeteilt. Die erste Luftkuhleinheit wird dabei von dem ersten Ventilator mit Kühlluft versorgt, die aus der Umgebung angesaugt wird und nicht vorgekühlt ist. Der Energieaufwand für die Zuführung dieser Kühlluft ist somit insgesamt niedrig. Lediglich die mindestens eine zweite Luftkuhleinheit, die in Transportrichtung hinter der ersten Luftkuhleinheit angeordnet ist, wird von dem zweiten Ventilator mit vorgekühlter Kühlluft versorgt. Damit diese Kühlluft im Kreislauf geführt werden kann, ist die zweite Luftkuhleinheit in einem weitgehend geschlossenen Gehäuse angeordnet, durch das die jeweils zu kühlende Kautschukbahπ mittels der Fördereinrichtung hindurchführbar ist. Der Luftansaugstutzen des zweiten Ventilators ist hierzu innerhalb des Gehäuses angeordnet. Eine Vermischung mit der
Umgebungsluft wird weitestgehend vermieden. Daher muss das Kühlaggregat, das die zur Kühlung der im Kreislauf geführten Kühlluft erforderliche Kälte über einen in die Kreislaufleitung des zweiten Ventilators eingeschalteten Wärmetauscher zur Verfügung stellt, nur vergleichsweise wenig Kühlleistung aufbringen, da der Temperaturunterschied zwischen frisch zugeführter Kühlluft und aus dem Gehäuse abgesaugter Kühlluft nur relativ gering ist.
Damit das Gehäuse selbst möglichst wenig Wärmeenergie aus der Umgebung aufnimmt, ist es von Vorteil, dieses mit einer entsprechenden Wärmeisolierung zu versehen.
Im Hinblick auf die Anordnung des Wärmetauschers für die Herunterkühlung der frisch zuzuführenden Kühlluft empfiehlt es sich, diesen in der von dem zweiten Ventilator in das Gehäuse zurückführenden Kühlluftzuleituπg vorzusehen. Selbstverständlich ist es möglich, jeweils mehr als eine erste oder eine zweite Luftkuhleinheit in der Kühlanlage vorzusehen. Diese könnten im Bedarfsfall auch mit unterschiedlichen Kühllufttemperaturen betrieben werden, so dass auch eine kaskadenartige Zusammenschaltung der zweiten Luftkühleinheiten möglich wäre. Es hat sich jedoch herausgestellt, dass die Einrichtung lediglich einer ersten und einer zweiten Luftkuhleinheit in den meisten Fällen bereits völlig ausreichend ist. Im Hinblick auf die Länge der Förderstrecke der Fördereinrichtung empfiehlt es sich, die erste Luftkuhleinheit über eine Teillänge von etwa 55 - 80 %, vorzugsweise 60 - 70 %, und die zweite Luftkuhleinheit über eine Teillänge von 45 - 20 %, vorzugsweise 40 - 30 %, der Gesamtlänge der Fördereinrichtung zu erstrecken.
Es empfiehlt sich, die Luftkühleinherten jeweils mit einer Vielzahl von Luftaustrittsdüsen zu versehen, deren Ausströmrichtung auf die Oberfläche der jeweils zu kühlenden Kautschukbahn gerichtet ist.
Zweckmäßigerweise wird die gesamte Produktionsanlage einschließlich der Kühlanlage innerhalb einer Werkshalle angeordnet und die Kühlluft für die erste Luftkuhleinheit aus dem Inneren der Werkshalle angesaugt. Hierzu ist der Luftansaugstutzen für den ersten Ventilator innerhalb der Werkshalle angeordnet.
Die Fördereinrichtung ist zweckmäßigerweise als umlaufendes Transportband ausgebildet, das durch das Gehäuse für die zweite Luftkuhleinheit hindurchführt.
Nachfolgend wird die vorliegende Erfindung anhand des in der Figur 1 dargestellten schematischen Ausführungsbeispiels näher erläutert. In der Figur 2 ist ein
Vergleichsbeispiel dargestellt, bei der die gesamte Kühlluft in einem Wärmetauscher vorgekührt wird.
Eine mit 1 bezeichnete Kautschukbahπ wird über eine horizontal als umlaufendes Transportband ausgebildete Fördereinrichtung 2 kontinuierlich von links nach rechts gefördert. Die Gesamtlänge der Förderstrecke beträgt beispielsweise 30 m. Oberhalb der Fördereinrichtung 2 ist eine erste Luftkuhleinheit 3 a angeordnet, die über einen Ventilator 4 a mit aus der Umgebung angesaugter und nicht vorgekühlter Kühlluft versorgt wird. Die Kühlluft strömt im Wesentlichen in vertikaler Richtung von oben nach unten auf die Oberfläche der mit ihrer Breitseite auf dem Transportband aufliegenden Kautschukbahn. Die erste Luftkühleinhert 3 a erstreckt sich dabei über eine Länge vo etwa 20 m. In Traπsportrichtung unmittelbar hinter der ersten Luftkuhleinheit 3a schließt sich eine zweite Luftkuhleinheit 3 b an, die innerhalb eines Gehäuses 5 angeordnet ist und sich über eine Teillänge von etwa 10 m entlang der Fördereinrichtung 2 erstreckt. Über dem Gehäuse 5 ist ein Ventilator 4 b in einer
Kreislaufleitung 9 für die Kreislaufführung der Kühlluft angeordnet, wobei der Luftansaugstutzen 6 der Kreislaufleitung 9 innerhalb des Gehäuses 5 angeordnet ist. Die aus dem Gehäuse 5 angesaugte Kühlluft wird über den Ventilator 4 b und einen diesem nachgeschalteten Wärmetauscher 8 in vorgekühlter Form in das Gehäuse 5 in Richtung auf die Oberfläche der Kautschukbahn 1 zurückgeführt. Der Wärmetauscher
8 ist zur Vorkühlung der Kühlluft mit einem' Kälteaggregat 7 verbunden. Die Kautschukbahn 1 wurde auf einer Produktionsanlage hergestellt, die an der linken Seite der Fördereinrichtung 2 angeordnet ist, aber in der Figur nicht dargestellt ist. Diese Produktionsanlage besteht beispielsweise aus einem Doppelschneckenextruder mit Breitschlitzdüse und nachgeschaltetem Kalander mit zwei Kalanderwalzen.
Die Funktionsweise der vorstehend beschriebenen Kühlanlage ist wie folgt: Von der nicht angestellten Produktionsanlage gelangt die Kautschukbahn 1 mit einer Temperatur von etwa 80 - 100°C in den Bereich der ersten Luftkuhleinheit 3 a. Der Ventilator 4 a saugt aus der Umgebung der Kühlanlage in der Werkshalle
Umgeburigsluft an, die beispielsweise max. eine Temperatur von 35°C aufweist. Diese Umgebungsluft wird über die Luftkuhleinheit 3 auf die obere Breitseite der Kautschukbahπ 1 aufgeblasen. Der Temperaturunterschied zwischen der Kühlluft und der Oberfläche der Kautschukbahn 1 ist vor allem im Eingangsbereich der Fördereinrichtung 2 recht groß, so dass eine effektive Kühlung stattfindet. Bis zum Ende der Transportstrecke unterhalb der ersten Luftkuhleinheit 3 a kühlt sich das Material beispielsweise bis auf etwa 50°C ab. Wenn die Kühlung weiterhin mit nicht vorgekühlter Umgebungsluft vorgenommen würde, würde die Effektivität der Kühlung abnehmen und somit die erforderliche Länge der Kühlstrecke drastisch zunehmen. Daher wird im zweiten Abschnitt der Kühleinrichtung mit vorgekühlter Kühlluft gearbeitet. Diese weist beispielsweise eine Temperatur von etwa 10°C auf. Somit besteht auch im zweiten Kühlabschnitt eine relativ große Temperaturd.ifferenz, die eine schnelle Abkühlung der Kautschukbahn von etwa 50°C bis auf die gewünschte Endtemperatur von etwa 35 - 40°C gewährleistet. Im Vergleich zum ersten Kühlabschnitt weist der zweite Kühlabschnrtt mit vorgekühfter Kühlluft eine wesentlich kürzere Länge auf. Für die Temperatur der vorgekühlten Kühlluft kommt zweckmäßigerweise ein Temperaturbereich von etwa 0 - 20°C in Frage. Die tatsächliche Kühllufttemperatur und die gewünschte Endtemperatur der Kautschukbahn sind die wesentlichen Bestimmuπgsparameter für die erforderliche Länge der zweiten Kühlstrecke.
Bei der in Figur 2 zum Vergleich mit der vorliegenden Erfindung dargestellten Kühlanlage wird die gesamte zur Kühlung verwendete Luft, die der Kautschukbahn 1 über eine Luftverteilereinrichtung 3 zugeführt wird, durch einen an ein Kälteaggregat 7 angeschlossenen Wärmetauscher 8 gekühlt. Die Luftverteileinrichtung 3 erstreckt sich dabei über die gesamte Länge der Fördereinrichtung 2. Die Kühlluft wird jeweils aus der Umgebung der Anlage mittels eines einzigen Ventilators 4 angesaugt und gekühlt über die Luftaustrittsdüsen der Luftverteilereinrichtung 3 auf die flache Oberseite der Kautschukbahn 1 gerichtet und vermisch sich danach wieder mit der Luft in der Umgebung der Anlage.
Im Vergleich zur Kühlanlage gemäß Fig. 2, bei der die gesamte Kühlluft vorgekühlt wird, arbeitet die erfinduπgsgemäße Kühlanlage erheblich effektiver, d.h. mit einem deutlich geringeren Energieaufwand. Wenn man davon ausgeht, dass bei einem Kautschukdurchsatz von 3.500 kg/h eine Abkühlung einer Kautschukbahn von 90°C bis auf eine Temperatur von 35°C abgekühlt werden soll, ist für das Kälteaggregat eine Antriebsleistung von etwa 180 kW erforderlich, um die gesamte Kühlluft von einer angenommenen. Temperatur im Ansaugbereich von ca. 35°C auf eine Temperatur von etwa 20°C im Bereich des Kühlluftaustritts zu kühlen. Dabei würde die Länge der Kühlstrecke etwa 40m betragen.
Wenn man allerdings stattdessen eine erfindungsgemäße Kühlanlage verwendet, bei der bei gleicher Durchsatzleistung lediglich im zweiten Abschnitt der Kühlanlage mit vorgekühlter Kühlluft gearbeitet wird, erwärmt sich die Kühlluft unter den vorgenannten Bedingungen zwischen dem Kühlluftaustritt und dem Luftansaugstutzen der
Kreislaufleitung nur um etwa 2 - 5 K. Die im zweiten Kühlabschnitt zu leistende Abkühlung von 50°C bis auf die gewünschten 35°C entspricht lediglich einer Temperaturdiffereπz von 15 K. Daher benötigt das Kälteaggregat bei einem Kautschukdurchsatz von 3.500 kg/h lediglich eine Antriebsleistuπg von 56 kW. Die Gesamtlänge der Kühlstrecke beträgt etwa 30m. Im Ergebnis bedeutet dies, dass die erforderliche Länge der Kühlanlage bei einer konventionellen Kühlanlage um etwa 1/3 größer ist und außerdem die erforderliche Investitionssumme um fast 50 % über der einer erfinduπgsgemäßen Kühlanlage liegt. Dabei benötigt die erfindungsgemäße Kühlanlage nur knapp 1/3 der Antriebsleistung für das Kühlaggregat. Der zum Betreiben der Ventilatoren erforderliche Energieaufwand ist in beiden Fällen ungefähr gleich groß.
Bei der in Figur 2 zum Vergleich mit der vorliegenden Erfindung dargestellten Kühlanlage wird die gesamte zur Kühlung verwendete Luft, die der Kautschukbahn 1 über eine Luftverteilereinrichtung 3 zugeführt wird, durch einen an ein Kälteaggregat 7 angeschlossenen Wärmetauscher 8 gekühlt. Die Luftverteiieinrichtuπg 3 erstreckt sich dabei über die gesamte Länge der Fördereinrichtung 2. Die Kühlluft wird jeweils aus der Umgebung der Anlage mittels eines einzigen Ventilators 4 angesaugt und gekühlt über die Luftaustrittsdüsen der Luftverteilereinrichtung 3 auf die flache Oberseite der Kautschukbahπ 1 gerichtet.

Claims

Patentansprüche
1. Kühlanlage zum Kühlen mindestens einer Kautschukbahn (1), mit einer
Fördereinrichtung (2) zum kontinuierlichen Fördern der Kautschukbahn (1 ) und mit einer Luftverteilereinrichtung, die von einer Gebläseeinrichtung geförderte
Kühlluft auf mindestens eine Flachseite der Kautschukbahn (1 ) ausströmen lässt, dadurch gekennzeichnet,
- dass die Luftverteilereinrichtung in mindestens eine erste und mindestens eine zweite, der ersten nachgeordnete Luftkühleiπhert (3 a, 3 b) und die Gebläseeinrichtung in mindestens einen ersten und mindestens einen zweiten Ventilator (4 a, 4 b) aufgeteilt ist,
- dass die erste Luftkuhleinheit (3 a) von dem ersten Ventilator (4 a) mit aus der Umgebung angesaugter und nicht vorgekühlter Kühlluft versorgt wird,
dass die zweite Luftkuhleinheit (3 b) von dem zweiten Ventilator (4 b) mit Kühlluft versorgt wird,
dass die zweite Luftkuhleinheit (3 b) in einem weitgehend geschlossenen Gehäuse (5) angeordnet ist, durch die die Kautschukbahn (1) mittels der Fördereinrichtung (2) hiπdurchführbar ist,
dass der zweite Ventilator (4 b) zur Kreislaufführung der Kühlluft einen innerhalb des Gehäuses (5) angeordneten Luftansaugstutzen (6) aufweist und
- dass zur Vorkühlung der in das Gehäuse (5) zurückgeführten Kühlluft ein an ein Kälteaggregat (7) angeschlossener Wärmetauscher vorgesehen ist.
2. Kühlanlage nach Anspruch 1 , dadurch gekennzeichnet, dass das Gehäuse (5) mit einer Wärmeisolierung versehen ist.
3. Kühlanlage nach einem der Ansprüche 1 -2, dadurch gekennzeichnet, dass der Wärmetauscher (8) in einer von dem zweiten Ventilator (4 b) in das Gehäuse (5) führenden Kühlluftleituπg angeordnet ist.
4. Kühlanlage nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, dass genau eine erste (3 a) und genau eine zweite Luftkuhleinheit (3 b) vorgesehen sind.
5. Kühlanlage nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, dass die Luftkühleinheiten (3 a, 3 b) jeweils mit einer Vielzahl von Luftaustrittsdüsen versehen sind.
6. Kühlanlage nach einem der Ansprüche 1 - 5. dadurch gekennzeichnet, dass die Kühlanlage innerhalb einer Werkshalle angeordnet ist und die Kühlluft für die erste Luftkuhleinheit mittels eines in der Werkshalie angeordneten
Luftansaugstutzens aus dem Inneren der Werkshalle ansaugbar ist.
7. Kühlanlage nach einem der Ansprüche 1 - 6, dadurch gekennzeichnet, dass die Fördereinrichtung (2) als umlaufendes Transportband ausgebildet ist.
8. Kühlanlage nach einem der Ansprüche 1 - 7, dadurch gekennzeichnet, dass die erste Luftkuhleinheit (3 a) sich über eine Teillänge von 55 - 80 %, vorzugsweise 60 - 70 %, und die zweite Luftkuhleinheit (3 b) sich über eine
Teillänge von 45 - 20 %, vorzugsweise 40 - 30 %, der Gesamtlänge der Fördereinrichtung (2) erstreckt.
PCT/DE2002/000557 2001-02-26 2002-02-12 Kühlanlage zum kühlen von kautschukbahnen WO2002068169A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SK1051-2003A SK286931B6 (sk) 2001-02-26 2002-02-12 Chladiace zariadenie na chladenie aspoň jedného kaučukového pásu
BRPI0207587-3A BR0207587B1 (pt) 2001-02-26 2002-02-12 instalação de refrigeração para a refrigeração de cintas de borracha.
DE10290677T DE10290677B4 (de) 2001-02-26 2002-02-12 Kühlanlage zum Kühlen von Kautschukbahnen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE20103680U DE20103680U1 (de) 2001-02-26 2001-02-26 Kühlanlage zum Kühlen von Kautschukbahnen
DE20103680.0 2001-02-26

Publications (1)

Publication Number Publication Date
WO2002068169A1 true WO2002068169A1 (de) 2002-09-06

Family

ID=7953761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/000557 WO2002068169A1 (de) 2001-02-26 2002-02-12 Kühlanlage zum kühlen von kautschukbahnen

Country Status (7)

Country Link
BR (1) BR0207587B1 (de)
CZ (1) CZ303223B6 (de)
DE (2) DE20103680U1 (de)
IT (1) ITMI20020364A1 (de)
RU (1) RU2256557C2 (de)
SK (1) SK286931B6 (de)
WO (1) WO2002068169A1 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004009836A1 (de) * 2004-02-28 2005-09-15 Thyssenkrupp Elastomertechnik Gmbh Verfahren und Vorrichtung zum Kühlen von Extrudaten
WO2011141668A1 (fr) * 2010-05-11 2011-11-17 Societe De Technologie Michelin Procede de fabrication d'une bande de gomme pour pneumatique comprenant des moyens de refroidissement a eau
CN102528983A (zh) * 2012-01-16 2012-07-04 芜湖市宏达汽配橡塑密封件有限公司 一种橡胶流水线冲切设备的辅冷却机构
CN104943037A (zh) * 2015-06-30 2015-09-30 福耀集团(上海)汽车玻璃有限公司 一种玻璃膜片拉膜冷却系统
CN105014844A (zh) * 2015-06-27 2015-11-04 芜湖集拓橡胶技术有限公司 环形胶片冷却机
CN105014845A (zh) * 2015-08-13 2015-11-04 湖州贝斯特包装科技有限公司 包装带生产用冷却系统及冷却方法
CN105034212A (zh) * 2015-06-27 2015-11-11 芜湖集拓橡胶技术有限公司 胶片冷却装置
CN105775586A (zh) * 2016-05-30 2016-07-20 宋晓玲 食品运输设备的冷却装置
CN108481633A (zh) * 2018-05-16 2018-09-04 杨建怀 一种用于橡胶制品加工过程的环保冷却装置
CN112277183A (zh) * 2020-09-29 2021-01-29 广东瑞博新材料有限公司 橡胶混炼生产系统
CN112919000A (zh) * 2021-02-02 2021-06-08 河南工业职业技术学院 一种热处理炉的上料设备
CN113635531A (zh) * 2021-08-03 2021-11-12 青岛英诺包装科技有限公司 一种bopp包装膜的制备及其生产工艺
DE202023103531U1 (de) 2023-06-26 2023-09-18 KraussMaffei Extrusion GmbH Kühlvorrichtung zum Kühlen eines frisch hergestellten Bandes aus elastischem Material
DE102015207946B4 (de) 2015-04-29 2024-01-25 Continental Reifen Deutschland Gmbh Verfahren zur Aufbereitung einer für die Fahrzeugreifenherstellung geeigneten Kautschukmischung

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016102694B4 (de) * 2016-02-16 2017-11-16 Kraussmaffei Berstorff Gmbh Gummistrang-Herstellanlage
DE102016204552A1 (de) * 2016-03-18 2017-09-21 Continental Reifen Deutschland Gmbh Elastomer-Kühlvorrichtung und Verfahren
CN107415111A (zh) * 2017-09-08 2017-12-01 濮阳市恒信橡塑有限公司 橡胶输送冷却机
CN110654008A (zh) * 2019-10-22 2020-01-07 广州华新科智造技术有限公司 塑料线材生产线及冷却成型装置
CN110834880A (zh) * 2019-11-27 2020-02-25 艾春 一种加速食品冷却的输送带结构
CN114773859B (zh) * 2022-04-24 2023-07-07 深圳市汉华热管理科技有限公司 导热硅凝胶复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819793A (en) * 1970-04-10 1974-06-25 H Elliott Method and apparatus for casting thermoplastic materials,e.g.sulphur and bitumens
US4133861A (en) * 1973-01-18 1979-01-09 Mitsubishi Rayon Co., Ltd. Process for continuous manufacture of methyl methacrylate polymer plate
GB1537888A (en) * 1976-04-29 1979-01-10 Elliott H Method of solidifying molten material
EP0789210A1 (de) * 1995-10-23 1997-08-13 Peter Helmut Dipl.-Ing. Ebner Kühlanlage für auf einer Transporteinrichtung kontinuierlich bewegtes Glühgut
DE19752501A1 (de) * 1997-11-27 1999-06-10 Adolf Dipl Ing Seide Kühlvorrichtung für Bahnen oder Platten aus Kunststoff

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3015672A1 (de) * 1980-04-23 1981-10-29 Drabert Söhne Minden (Westf.), 4950 Minden Verfahren und vorrichtung zum verbessern der qualitaet von bahnfoermigen materialien

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819793A (en) * 1970-04-10 1974-06-25 H Elliott Method and apparatus for casting thermoplastic materials,e.g.sulphur and bitumens
US4133861A (en) * 1973-01-18 1979-01-09 Mitsubishi Rayon Co., Ltd. Process for continuous manufacture of methyl methacrylate polymer plate
GB1537888A (en) * 1976-04-29 1979-01-10 Elliott H Method of solidifying molten material
EP0789210A1 (de) * 1995-10-23 1997-08-13 Peter Helmut Dipl.-Ing. Ebner Kühlanlage für auf einer Transporteinrichtung kontinuierlich bewegtes Glühgut
DE19752501A1 (de) * 1997-11-27 1999-06-10 Adolf Dipl Ing Seide Kühlvorrichtung für Bahnen oder Platten aus Kunststoff

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004009836A1 (de) * 2004-02-28 2005-09-15 Thyssenkrupp Elastomertechnik Gmbh Verfahren und Vorrichtung zum Kühlen von Extrudaten
CN102858525B (zh) * 2010-05-11 2016-04-20 米其林集团总公司 包括水冷却过程的用于轮胎的橡胶带制造方法
WO2011141668A1 (fr) * 2010-05-11 2011-11-17 Societe De Technologie Michelin Procede de fabrication d'une bande de gomme pour pneumatique comprenant des moyens de refroidissement a eau
FR2959958A1 (fr) * 2010-05-11 2011-11-18 Michelin Soc Tech Procede de fabrication d'une bande de gomme pour pneumatique comprenant des moyens de refroidissement a eau
US9446549B2 (en) 2010-05-11 2016-09-20 Compagnie Generale Des Etablissements Michelin Process for manufacturing a rubber strip for a tire, comprising water-cooling means
CN102858525A (zh) * 2010-05-11 2013-01-02 米其林集团总公司 包括水冷却过程的用于轮胎的橡胶带制造方法
CN102528983A (zh) * 2012-01-16 2012-07-04 芜湖市宏达汽配橡塑密封件有限公司 一种橡胶流水线冲切设备的辅冷却机构
DE102015207946B4 (de) 2015-04-29 2024-01-25 Continental Reifen Deutschland Gmbh Verfahren zur Aufbereitung einer für die Fahrzeugreifenherstellung geeigneten Kautschukmischung
CN105034212A (zh) * 2015-06-27 2015-11-11 芜湖集拓橡胶技术有限公司 胶片冷却装置
CN105014844A (zh) * 2015-06-27 2015-11-04 芜湖集拓橡胶技术有限公司 环形胶片冷却机
CN104943037A (zh) * 2015-06-30 2015-09-30 福耀集团(上海)汽车玻璃有限公司 一种玻璃膜片拉膜冷却系统
CN104943037B (zh) * 2015-06-30 2017-09-22 福耀集团(上海)汽车玻璃有限公司 一种玻璃膜片拉膜冷却系统
CN105014845A (zh) * 2015-08-13 2015-11-04 湖州贝斯特包装科技有限公司 包装带生产用冷却系统及冷却方法
CN105775586A (zh) * 2016-05-30 2016-07-20 宋晓玲 食品运输设备的冷却装置
CN108481633A (zh) * 2018-05-16 2018-09-04 杨建怀 一种用于橡胶制品加工过程的环保冷却装置
CN112277183A (zh) * 2020-09-29 2021-01-29 广东瑞博新材料有限公司 橡胶混炼生产系统
CN112919000A (zh) * 2021-02-02 2021-06-08 河南工业职业技术学院 一种热处理炉的上料设备
CN112919000B (zh) * 2021-02-02 2022-05-13 河南工业职业技术学院 一种热处理炉的上料设备
CN113635531A (zh) * 2021-08-03 2021-11-12 青岛英诺包装科技有限公司 一种bopp包装膜的制备及其生产工艺
DE202023103531U1 (de) 2023-06-26 2023-09-18 KraussMaffei Extrusion GmbH Kühlvorrichtung zum Kühlen eines frisch hergestellten Bandes aus elastischem Material

Also Published As

Publication number Publication date
DE20103680U1 (de) 2001-05-23
BR0207587A (pt) 2004-03-09
ITMI20020364A0 (it) 2002-02-22
DE10290677B4 (de) 2011-04-21
SK286931B6 (sk) 2009-07-06
DE10290677D2 (de) 2004-01-22
CZ303223B6 (cs) 2012-05-30
BR0207587B1 (pt) 2011-05-17
ITMI20020364A1 (it) 2003-08-22
RU2003128882A (ru) 2005-03-10
CZ20032220A3 (en) 2004-06-16
SK10512003A3 (sk) 2004-06-08
RU2256557C2 (ru) 2005-07-20

Similar Documents

Publication Publication Date Title
WO2002068169A1 (de) Kühlanlage zum kühlen von kautschukbahnen
EP0448983B1 (de) Vorrichtung zur beidseitigen Beblasung eines bahnförmigen Materials
AT411275B (de) Verfahren und vorrichtung zum trocknen einer von einem stützfilz gestützen bahn
EP0192169A2 (de) Vorrichtung zum berührungsfreien Führen von Warenbahnen, insbesondere Metallbändern, mittels eines Gasmediums
EP2318251B1 (de) Schienenfahrzeug mit umschaltung zwischen winter- und sommerbetrieb
DE3890457C2 (de) Verfahren zum berührungsfreien Trocknen einer Papier- oder Kartonbahn
DE69815867T2 (de) Schwebetrocknereinheit
EP1430263A1 (de) Anlage zum trocknen von durchlaufenden gipskartonplatten
WO1998023397A2 (de) Vorrichtung zur abkühlung von strangpressprofilen
EP2194329B1 (de) Raumlufftechnisches Geräts sowie Verfahren zum Betreiben des raumlufttechnischen Geräts
EP1678452A1 (de) Furniertrockner
DE19858839A1 (de) Verfahren und Vorrichtung zum Wärmebehandeln einer durchlaufenden Warenbahn durch Aufblasen von Dampf
EP3271133A1 (de) Behandlungsfluidführung in einer folienreckanlage
DE2033195C3 (de) Luftaustrittseinrichtung für Klimaanlagen
WO2012016814A1 (de) Vorrichtung zur wärmebehandlung einer textilen warenbahn
DE60122769T2 (de) Anordnung in einem yankee-zylinder oder dergleichen und einem aufroller einer papiermaschine
EP0586784A1 (de) Vorrichtung zur Erzeugung eines Luftstromsystems für die Behandlung von durchlaufendem bahnförmigem Gut
EP0063642B1 (de) Vorrichtung zur Heissluft-Trocknung von Textilgut
EP0657702B1 (de) Anordnung zur Erzeugung zweier gegenläufiger Luftschleier
EP1070927A2 (de) Durchlauftrockner für Platten oder Bahnen
EP1035385B1 (de) Verfahren zur Temperierung einer Halle und Einrichtung zur Durchführung des Verfahrens
DE10053026A1 (de) Raumlufttechnische Einrichtung, insbesondere zur Klimatisierung großer Hallen
CH658119A5 (de) Lueftungsvorrichtung fuer einen raum mit zwei getrennten stroemungswegen zur be- und entlueftung.
DE2446983A1 (de) Vorrichtung zur beidseitigen beblasung eines bahnfoermigen materials
DE19834270A1 (de) Ventilatorkonvektor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PV2003-2220

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 10512003

Country of ref document: SK

REF Corresponds to

Ref document number: 10290677

Country of ref document: DE

Date of ref document: 20040122

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10290677

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: PV2003-2220

Country of ref document: CZ

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607