WO2002066944A1 - Verfahren und vorrichtung zur korrektur eines temperatursignals - Google Patents
Verfahren und vorrichtung zur korrektur eines temperatursignals Download PDFInfo
- Publication number
- WO2002066944A1 WO2002066944A1 PCT/DE2002/000444 DE0200444W WO02066944A1 WO 2002066944 A1 WO2002066944 A1 WO 2002066944A1 DE 0200444 W DE0200444 W DE 0200444W WO 02066944 A1 WO02066944 A1 WO 02066944A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- sensor
- internal combustion
- combustion engine
- correction
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K15/00—Testing or calibrating of thermometers
- G01K15/005—Calibration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/42—Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
Definitions
- the invention relates to a method and a device for correcting a temperature signal.
- One or more temperature sensors are provided in the exhaust line to control and / or monitor so-called exhaust gas aftertreatment systems. Due to their measuring principle, conventional sensors are wearable. In dynamic engine operation, the measured temperature profile therefore has a time delay compared to the actual temperature profile. Problems arise from the dynamic inertia of the sensor or the overall system, in particular when monitoring and / or regulating large quantities. It is particularly problematic in the case of monitoring that the inert temperature signal is compared with other variables that are detected with dynamically better sensors or calculated from their signals.
- the accuracy of the temperature signal can be significantly improved.
- the dynamic behavior of the signal when there is a change in an operating parameter is improved.
- correction value can be specified, which is used in particular to correct the response behavior of the sensor.
- This correction value is designed in such a way that deviations between the temperature signal and the actual temperature are minimized.
- This correction value can preferably be predefined as a function of an injected fuel mass, a temperature and / or as a function of an air quantity.
- the output signal of a temperature sensor and / or an air quantity sensor is used for this purpose.
- These variables have the greatest influence on the response behavior of the sensor.
- a variable that characterizes the amount of exhaust gas or, in a simplified embodiment, the speed of the internal combustion engine can be used.
- a correction value can be specified in such a way that the delay time of the sensor is corrected when the operating state (QK, ML) changes.
- FIG. 1 shows a block diagram of an exhaust gas aftertreatment system
- FIGS. 2 to 5 different embodiments of the procedure according to the invention
- FIG. 6 different signals.
- the internal combustion engine is designated 100. It is supplied with fresh air 105 via a fresh air line.
- the exhaust gases of the internal combustion engine 100 reach the surroundings via an exhaust pipe 110.
- An exhaust gas aftertreatment system 115 is arranged in the exhaust gas line. This can be a catalyst and / or a particle filter. Furthermore, it is possible that several catalysts are provided for different pollutants or combinations of at least one catalyst and a particle filter.
- a control unit 170 which comprises at least one engine control unit 175 and an exhaust gas aftertreatment control unit 172.
- the engine control unit 175 applies control signals to a fuel metering system 180.
- the exhaust gas aftertreatment control unit 172 applies control signals to the engine control unit 175 and, in one embodiment, an actuating element 182, which is arranged in the exhaust gas line upstream of the exhaust gas aftertreatment system or in the exhaust gas aftertreatment system.
- various sensors can be provided which supply the exhaust gas aftertreatment control unit and the engine control unit with signals. At least a first sensor 194 is provided, which provides signals that characterize the state of the air that is supplied to the internal combustion engine.
- a second sensor 177 provides signals that characterize the state of the fuel metering system 180.
- At least a third sensor 191 provides signals that characterize the state of the exhaust gas upstream of the exhaust aftertreatment system.
- At least a fourth sensor 193 provides signals that characterize the state of the exhaust gas aftertreatment system 115.
- at least one sensor 192 can provide signals that indicate the state of the exhaust gases after the
- the exhaust gas aftertreatment control unit 172 is preferably acted upon with the output signals of the first sensor 194, the third sensor 191, the fourth sensor 193 and the fifth sensor 192.
- the output signals of the second sensor 177 are preferably applied to the engine control unit 175. Further sensors, not shown, can also be provided, which characterize a signal relating to the driver's request or other environmental or engine operating states.
- the engine control unit and the exhaust gas aftertreatment control unit form a structural unit.
- these are designed as two control units that are spatially separated from one another.
- the procedure according to the invention is preferably used to control internal combustion engines, in particular in internal combustion engines with an exhaust gas aftertreatment system.
- it can be used in exhaust gas aftertreatment systems in which a catalytic converter and a particle filter are combined. It can also be used in systems that are only equipped with a catalytic converter.
- the engine control 175 calculates control signals to act upon the fuel metering system 180. This then measures the corresponding amount of fuel to the internal combustion engine 100. Particles can form in the exhaust gas during combustion. These are from the particle filter in the
- Exhaust aftertreatment system 115 added. In the course of the operation, corresponding amounts of particles accumulate in the particle filter 115. This leads to an impairment of the functioning of the particle filter and / or the internal combustion engine. It is therefore provided that a regeneration process is initiated at certain intervals or when the particle filter has reached a certain loading state. This regeneration can also be called a special operation.
- the loading state is recognized, for example, on the basis of various sensor signals.
- the differential pressure between the inlet and the outlet of the particle filter 115 can be evaluated. Furthermore, it is favorable to determine the loading condition depending on different temperature and / or different pressure values. Additional variables can be used to calculate or simulate the loading condition. A corresponding procedure is known, for example, from DE 199 06 287. If the exhaust gas aftertreatment control unit detects that the particle filter has reached a certain loading state, the regeneration is initialized. There are various options available for regenerating the particle filter. On the one hand, it can be provided that certain substances are supplied to the exhaust gas via the control element 182, which then cause a corresponding reaction in the exhaust gas aftertreatment system 115. These additionally metered substances cause, among other things, an increase in temperature and / or an oxidation of the particles in the particle filter. For example, provision can be made for fuel and / or oxidizing agent to be supplied by means of the control element 182.
- a corresponding signal is transmitted to the engine control unit 175 and the latter carries out a so-called post-injection.
- the post-injection makes it possible to introduce hydrocarbons into the exhaust gas in a targeted manner, which contribute to the regeneration of the exhaust gas aftertreatment system 115 by increasing the temperature.
- the loading condition is determined on the basis of different sizes.
- the different states are recognized by comparison with a threshold value and the regeneration is initiated depending on the recognized loading state.
- the senor 191 is designed as a temperature sensor. This sensor supplies a voltage signal, which is converted into the corresponding temperature value using a calibration curve. This temperature value is then used to control the Internal combustion engine and / or the exhaust gas aftertreatment system used.
- this value is modified by determining a correction value K from dynamically fast variables.
- the injected fuel quantity QK, the air mass ML or sizes that characterize these sizes are used in particular. Essentially two effects are taken into account. On the one hand, this is the delay behavior of the sensor itself and / or the delay behavior of the overall system.
- the sensor behavior itself is determined, among other things, by the heat transfer coefficient, i. H. by exchanging energy with the environment. This behavior depends largely on the flow rate of the exhaust gases, which is approximated by the air mass flow. A sudden change in the air mass signal only occurs with a delay or dead time on the exhaust gas temperature sensor. This delay or dead time is preferably dependent on the engine speed. This effect is taken into account by a dead time and / or delay element. Furthermore, the sensor behavior depends on the current temperature level, since the response behavior of the sensor depends on the temperature.
- the stationary end value of the temperature is essentially determined by the operating point.
- the operating point is preferably determined by the injection quantity QK and the speed of the internal combustion engine N.
- temperature correction values are determined which correct the current signal from the temperature sensor.
- the inertia and duration of the changes are also taken into account by filtering. This filtering essentially also consists of a delay element and / or a dead time element.
- correction factors are calculated which take into account both influences.
- the calculated correction values are limited to a reasonable amount.
- FIG 6 different sizes are plotted against time t.
- a figure that characterizes the operating state of the internal combustion engine is plotted in sub-figure 6a. At time tl, this changes in a step-like manner.
- the injected fuel quantity QK is plotted as an example.
- This sudden increase in the amount of fuel causes an increase in the actual temperature in the exhaust line 110.
- This actual temperature Tl is plotted in sub-figure 6b. Changes in the operating state only have an effect on the temperature T1 with a delay and / or a dead time. This means that the actual temperature T1 only rises with a first delay after a first dead time.
- FIG. 2 shows a first embodiment of the procedure according to the invention. Elements already described in FIG. 1 are identified by corresponding reference symbols.
- the sensor 191 supplies a signal T which characterizes the temperature of the exhaust gas in the exhaust line 110. This signal reaches a first characteristic curve 200 and a connection point 220.
- the output signal of the first characteristic curve 200 reaches a connection point 210 via a connection point 205.
- the output signal of connection point 210 reaches the second input of the connection point 220 via a limitation 215
- the corrected temperature signal TK is present at the output of the node 220, which can then be further processed by the controller 172.
- the output signal ML of the sensor 194 which characterizes the air mass supplied to the internal combustion engine, reaches a second characteristic diagram 230 and a differentiator 240.
- the output signal of the second characteristic diagram 230 reaches the second input of the node 205 via a delay 235.
- the output signal of the differentiator 240 arrives at a third map 245.
- the output signal of the third map 245 arrives at a node 260.
- a signal relating to the injected fuel quantity QK which is provided by controller 175, reaches a fourth characteristic line 255 via a differentiator 250 and from there to the second input of node 260.
- the output signal of node 260 reaches the second input via a delay 265 of node 210.
- the delay elements 235 and 265 are preferably designed as delay elements and / or dead time elements whose Delay time is preferably dependent on the speed N of the internal combustion engine.
- connection points 205 and 210 preferably effect a multiplicative connection of the signals and the connection points 220 and 260 preferably an additive connection.
- the first characteristic curve 200 takes into account the temperature-dependent response behavior of the sensor 191 and its non-linearities. This characteristic curve 200 provides a correction signal that compensates for these effects. These are preferably correction values specified by the sensor manufacturer.
- the second characteristic curve 230 takes into account the heat transfer from the exhaust gas to the sensor. This characteristic curve takes into account that an increased air mass flow cools or heats the sensor more than a lower air mass flow. Furthermore, the delay 235 takes into account that changes in the air mass, which are measured on the input side of the internal combustion engine, only take effect with a certain delay time and / or dead time in the exhaust system. These are preferably correction values that are determined on a test bench.
- the signal present at the output of the delay element 235 takes into account the heat transfer from the exhaust gas to the sensor.
- a correction takes place together with the characteristic curve 200, which takes into account the non-linear behavior of the sensor.
- the differentiator 240 determines a signal that characterizes the change in the air mass ML. Accordingly, differentiator 250 determines a signal that is the change the injected fuel quantity QK.
- the third and fourth characteristic curves 245 and 255 each calculate a correction value from this change. This correction value compensates for the temporal
- Delay behavior of the internal combustion engine and / or the associated components such as the exhaust gas aftertreatment system are preferably correction values that are determined on a test bench.
- This correction value formed in this way is then adapted by delay 265 to the temporal behavior of the internal combustion engine or the associated components.
- FIG. 1 A further embodiment of the correction is shown in FIG. Elements already described in FIGS. 1 and 2 are identified by corresponding reference symbols.
- the output signal of the sensor 191 and the sensor 194 arrive at a first characteristic diagram 300. Its output signal reaches a connection point 310 via a delay 335.
- the output signal of the differentiators 240 and 250 reaches a second characteristic diagram 305, the output signal of which passes through a delay and / or dead time element 365 to the second input of the connection point 310.
- the output 215 of the connection point 310 is applied to the limitation 215.
- This embodiment differs essentially from the embodiment of FIG. 2 in that the characteristic curves 200 and 230 are combined to form the map 300, the delay 335 essentially corresponding to the delay 235.
- the characteristic curves 245 and 255 are combined to form the characteristic diagram 305.
- The corresponds to Delay 365 of delay 265.
- the node 310 corresponds to the node 210 in FIG. 2.
- the correction values that characterize the behavior of the temperature sensor 191 are stored in the first map 300, furthermore the first map takes into account the heat transfer from the exhaust gas to the sensor and vice versa, as well as non-linearities.
- the delay element 335 takes into account the temporal behavior.
- the second map 305 takes into account the changes in quantity and air that lead to a change in the stationary value of the temperature signal.
- the delay 365 corresponds to the time behavior of the internal combustion engine or the associated components.
- FIG. 4 represents a simplified implementation of the embodiment according to FIG. 2. This embodiment differs from the embodiment according to FIG. 2 essentially in that the differentiating element 240 and the third characteristic curve 245 are saved, and in that the delay elements 235 and 265 are combined to form a delay element 420 which is arranged immediately before the limitation and delays the correction signal as a whole.
- This embodiment is simplified in that the influence of the air mass is only taken into account with the effect on the heat transfer from the exhaust gas to the sensor.
- FIG. Elements already described in earlier figures are identified by corresponding reference numerals.
- a signal relating to the injected fuel quantity QK and a signal relating to the engine speed are fed to a third map 500 and a fourth map 510. These two maps apply a signal to a node 520, which in turn applies to a node 530.
- the signal T of the sensor is present at the second input of the node 530.
- the output signal of the connection point 530 reaches the connection point 220 via a DTI element and a delay / dead time element 215, at whose first input the signal T of the sensor is present.
- the stationary target temperature is stored in the given operating states, which are defined by the speed N and the injected fuel quantity QK.
- This stationary setpoint temperature characterizes the temperature that is reached in the stationary state when the operating parameters are available.
- the loss factor which indicates the temperature loss due to various influences, is stored in the second characteristic diagram 510. These values are also stored depending on the operating point.
- the node temperature 520 is used to calculate the expected steady-state temperature ST on the basis of the two values which are read from the characteristic diagrams.
- the linking point compares this temperature ST with the measured temperature T.
- the resulting deviation is processed dynamically. This is preferably done by the DTI element 540 and the delay element 215.
- the time constants of the delay elements 540 and 215 are from Exhaust gas mass flow can be specified.
- the speed N of the internal combustion engine and / or the air quantity ML- can also be used.
- a replacement value is available in the event of a sensor 191 defect.
- the temperature value ST is used as a substitute value.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Exhaust Gas After Treatment (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/258,102 US20040013165A1 (en) | 2001-02-21 | 2002-02-07 | Method and device for correcting a temperature signal |
KR1020027014057A KR20020089507A (ko) | 2001-02-21 | 2002-02-07 | 온도 신호의 보정을 위한 방법 및 장치 |
JP2002566619A JP2004518857A (ja) | 2001-02-21 | 2002-02-07 | 温度信号の補正方法および温度信号の補正装置 |
EP02706678A EP1409976A1 (de) | 2001-02-21 | 2002-02-07 | Verfahren und vorrichtung zur korrektur eines temperatursignals |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10108181A DE10108181A1 (de) | 2001-02-21 | 2001-02-21 | Verfahren und Vorrichtung zur Korrektur eines Temperatursignals |
DE10108181.2 | 2001-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002066944A1 true WO2002066944A1 (de) | 2002-08-29 |
Family
ID=7674886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2002/000444 WO2002066944A1 (de) | 2001-02-21 | 2002-02-07 | Verfahren und vorrichtung zur korrektur eines temperatursignals |
Country Status (6)
Country | Link |
---|---|
US (1) | US20040013165A1 (de) |
EP (1) | EP1409976A1 (de) |
JP (1) | JP2004518857A (de) |
KR (1) | KR20020089507A (de) |
DE (1) | DE10108181A1 (de) |
WO (1) | WO2002066944A1 (de) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005003832B4 (de) * | 2004-02-08 | 2007-06-28 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Vorrichtung zum Messen der Temperatur von strömenden Fluiden |
JP4373909B2 (ja) * | 2004-12-28 | 2009-11-25 | 本田技研工業株式会社 | プラントの温度制御装置 |
JP2006242021A (ja) * | 2005-03-01 | 2006-09-14 | Fujitsu Ten Ltd | 異常診断装置 |
US7546761B2 (en) * | 2005-04-12 | 2009-06-16 | Gm Global Technology Operations, Inc. | Diesel oxidation catalyst (DOC) temperature sensor rationality diagnostic |
JP4483715B2 (ja) * | 2005-06-10 | 2010-06-16 | トヨタ自動車株式会社 | 排気ガスセンサの故障検出装置 |
US7771113B2 (en) * | 2007-06-29 | 2010-08-10 | Cummins Filtration Ip, Inc | Sensor rationality diagnostic |
DE102009028873B4 (de) * | 2009-08-26 | 2021-04-22 | Robert Bosch Gmbh | Verfahren zur Sensor- und Rechenmodell-gestützten Bestimmung der NOx-Rohemissionen eines Verbrennungsmotors |
EP2458167A4 (de) * | 2009-10-22 | 2014-10-01 | Toyota Motor Co Ltd | Abgastemperatur-messvorrichtung und abgastemperatur-messverfahren |
DE102011005128B4 (de) | 2011-03-04 | 2021-11-25 | Endress + Hauser Wetzer Gmbh + Co. Kg | Messeinrichtung mit Kompensation eines verzörgerten Ansprechverhaltens |
JP5898118B2 (ja) * | 2013-03-27 | 2016-04-06 | 日本特殊陶業株式会社 | センサ制御装置、センサ制御システムおよびセンサ制御方法 |
JP6344017B2 (ja) * | 2014-03-31 | 2018-06-20 | 株式会社デンソー | 温度測定装置 |
JP6344016B2 (ja) * | 2014-03-31 | 2018-06-20 | 株式会社デンソー | 温度測定装置 |
DE102017113009B4 (de) | 2017-06-13 | 2024-01-11 | Volkswagen Aktiengesellschaft | Verfahren und Vorrichtung zur Korrektur eines Sensorsignals in einem Abgaskanal eines Verbrennungsmotors |
DE102017125119A1 (de) | 2017-10-26 | 2019-05-02 | Volkswagen Aktiengesellschaft | Verfahren und Vorrichtung zur Berechnung einer Abgastemperatur im Abgaskanal eines Verbrennungsmotors stromaufwärts einer Turbine eines Abgasturboladers |
CN108507707B (zh) * | 2018-06-22 | 2023-12-22 | 上海雁文智能科技有限公司 | 快速校准高精度温度传感器的装置及校准和验证方法 |
DE102019211803B4 (de) * | 2019-08-06 | 2024-07-25 | Vitesco Technologies GmbH | Verfahren und Vorrichtung zur Regelung einer Temperatur eines Bauteils in einem Abgastrakt einer Brennkraftmaschine mittels eines Prädiktors |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4424811A1 (de) * | 1994-07-14 | 1996-01-18 | Bosch Gmbh Robert | Verfahren zur Bildung eines simulierten Signals bezüglich einer Temperatur im Abgassystem einer Brennkraftmaschine |
DE4433631A1 (de) * | 1994-09-21 | 1996-03-28 | Bosch Gmbh Robert | Verfahren zur Bildung eines Signals bezüglich einer Temperatur im Abgassystem einer Brennkraftmaschine |
US5544639A (en) * | 1993-08-31 | 1996-08-13 | Nippondenso Co., Ltd. | Temperature predicting system for internal combustion engine and temperature control system including same |
DE19932079C1 (de) * | 1999-07-12 | 2001-01-11 | Heraeus Electro Nite Int | Verfahren zur Verkürzung der Ansprechzeit eines Temperatursensors |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE426163B (sv) * | 1973-11-09 | 1982-12-13 | Quimco Gmbh | Sett att medelst joniserande stralar sterilisera avloppsslam och avloppsvatten |
JPS55137361A (en) * | 1979-04-16 | 1980-10-27 | Nissan Motor Co Ltd | Ignition timing controller |
US4306529A (en) * | 1980-04-21 | 1981-12-22 | General Motors Corporation | Adaptive air/fuel ratio controller for internal combustion engine |
JPS5746037A (en) * | 1980-09-03 | 1982-03-16 | Nippon Denso Co Ltd | Air fuel ratio feedback controller |
US4408484A (en) * | 1981-06-04 | 1983-10-11 | Gas Service Energy Corporation | Temperature compensated gauge for pressurized gas such as natural gas fuel for vehicles |
JPS6293445A (ja) * | 1985-10-18 | 1987-04-28 | Honda Motor Co Ltd | 内燃エンジンの始動時の燃料供給制御方法 |
US4753204A (en) * | 1986-09-30 | 1988-06-28 | Mitsubishi Denki Kabushiki Kaisha | Air-fuel ratio control system for internal combustion engines |
JPH07113355B2 (ja) * | 1987-05-22 | 1995-12-06 | 日産自動車株式会社 | 内燃機関の点火時期制御装置 |
JP2680391B2 (ja) * | 1988-12-28 | 1997-11-19 | 日産自動車株式会社 | 自動車用空気調和装置のヒータユニット |
JPH03179147A (ja) * | 1989-12-06 | 1991-08-05 | Japan Electron Control Syst Co Ltd | 内燃機関の空燃比学習制御装置 |
JP2518717B2 (ja) * | 1990-04-24 | 1996-07-31 | 株式会社ユニシアジェックス | 内燃機関の冷却装置 |
JP2936809B2 (ja) * | 1990-07-24 | 1999-08-23 | 株式会社デンソー | 酸素センサーの劣化検出装置 |
JP2846735B2 (ja) * | 1990-11-30 | 1999-01-13 | 日本碍子株式会社 | 空燃比センサの出力補正方法 |
JP2841921B2 (ja) * | 1991-05-30 | 1998-12-24 | トヨタ自動車株式会社 | 内燃機関の電子制御燃料噴射装置 |
JP3651007B2 (ja) * | 1991-09-24 | 2005-05-25 | 株式会社デンソー | 内燃機関の空燃比制御装置 |
JPH0626431A (ja) * | 1992-05-07 | 1994-02-01 | Nissan Motor Co Ltd | 内燃機関の点火時期制御装置 |
US5219228A (en) * | 1992-05-11 | 1993-06-15 | General Motors Corporation | Exhaust gas temperature measuring system utilizing existing oxygen sensor |
US5379587A (en) * | 1992-08-31 | 1995-01-10 | Suzuki Motor Corporation | Apparatus for judging deterioration of catalyst of internal combustion engine |
JP3266699B2 (ja) * | 1993-06-22 | 2002-03-18 | 株式会社日立製作所 | 触媒の評価方法及び触媒効率制御方法ならびにNOx浄化触媒評価装置 |
US5539638A (en) * | 1993-08-05 | 1996-07-23 | Pavilion Technologies, Inc. | Virtual emissions monitor for automobile |
US5600296A (en) * | 1993-10-14 | 1997-02-04 | Nippondenso Co., Ltd. | Thermistor having temperature detecting sections of substantially the same composition and dimensions for detecting subtantially identical temperature ranges |
FR2711734B1 (fr) * | 1993-10-29 | 1995-11-24 | Renault | Procédé de commande d'une pompe à carburant de moteur à combustion interne. |
DE4404538C1 (de) * | 1994-02-12 | 1995-04-27 | Rieter Ingolstadt Spinnerei | Verfahren und Vorrichtung zum Anspinnen einer Offenend-Spinnvorrichtung |
JPH0821283A (ja) * | 1994-07-08 | 1996-01-23 | Unisia Jecs Corp | 内燃機関の空燃比制御装置 |
SE508337C2 (sv) * | 1996-08-23 | 1998-09-28 | Volvo Lastvagnar Ab | Givare som mäter varvtal och temperatur |
US5857777A (en) * | 1996-09-25 | 1999-01-12 | Claud S. Gordon Company | Smart temperature sensing device |
US6519546B1 (en) * | 1996-11-07 | 2003-02-11 | Rosemount Inc. | Auto correcting temperature transmitter with resistance based sensor |
JP3366818B2 (ja) * | 1997-01-16 | 2003-01-14 | 株式会社日立製作所 | 熱式空気流量計 |
US5804703A (en) * | 1997-06-09 | 1998-09-08 | General Motors Corporation | Circuit for a combustible gas sensor |
US6067959A (en) * | 1997-10-31 | 2000-05-30 | Navistar International Transportation Corp. | Electronic engine control for regulating engine coolant temperature at cold ambient air temperatures by control of engine idle speed |
JP3587073B2 (ja) * | 1998-05-27 | 2004-11-10 | トヨタ自動車株式会社 | 空燃比センサの制御装置 |
DE19832842C1 (de) * | 1998-07-21 | 2000-02-17 | Bosch Gmbh Robert | Kraftstoff-Fördersystem zur Kraftstoffversorgung einer Brennkraftmaschine |
US6283628B1 (en) * | 1998-09-11 | 2001-09-04 | Airpax Corporation, Llc | Intelligent input/output temperature sensor and calibration method therefor |
JP3621280B2 (ja) * | 1998-12-16 | 2005-02-16 | 株式会社日立ユニシアオートモティブ | 空燃比センサの活性診断装置 |
JP2000257479A (ja) * | 1999-03-09 | 2000-09-19 | Mitsubishi Electric Corp | 内燃機関の触媒昇温制御装置 |
JP3618598B2 (ja) * | 1999-06-03 | 2005-02-09 | 本田技研工業株式会社 | 内燃機関の排気浄化装置 |
JP3813044B2 (ja) * | 2000-01-05 | 2006-08-23 | 本田技研工業株式会社 | 内燃機関の空燃比制御装置 |
US6432287B1 (en) * | 2000-03-01 | 2002-08-13 | Daimlerchrysler Corporation | Exhaust gas temperature sensing on the outside surface of the oxygen sensor |
US6712054B2 (en) * | 2000-05-17 | 2004-03-30 | Unisia Jecs Corporation | Device and method for measuring element temperature of air-fuel ratio sensor, and device and method for controlling heater of air-fuel ratio sensor |
JP2001349245A (ja) * | 2000-06-07 | 2001-12-21 | Honda Motor Co Ltd | 内燃機関の冷却系故障検知装置 |
JP2002004932A (ja) * | 2000-06-21 | 2002-01-09 | Toyota Motor Corp | エンジンシステムの異常診断装置 |
JP4430270B2 (ja) * | 2001-08-06 | 2010-03-10 | 本田技研工業株式会社 | プラントの制御装置及び内燃機関の空燃比制御装置 |
JP3860981B2 (ja) * | 2001-08-28 | 2006-12-20 | 本田技研工業株式会社 | 内燃機関の排気浄化装置 |
US6752128B2 (en) * | 2002-06-12 | 2004-06-22 | Denso Corporation | Intake system failure detecting device and method for engines |
US7182048B2 (en) * | 2002-10-02 | 2007-02-27 | Denso Corporation | Internal combustion engine cooling system |
US7036982B2 (en) * | 2002-10-31 | 2006-05-02 | Delphi Technologies, Inc. | Method and apparatus to control an exhaust gas sensor to a predetermined termperature |
US6974251B2 (en) * | 2003-03-18 | 2005-12-13 | General Motors Corporation | Ambient air temperature prediction |
JP4434038B2 (ja) * | 2004-04-05 | 2010-03-17 | 株式会社デンソー | 内燃機関の排気浄化装置 |
-
2001
- 2001-02-21 DE DE10108181A patent/DE10108181A1/de not_active Withdrawn
-
2002
- 2002-02-07 US US10/258,102 patent/US20040013165A1/en not_active Abandoned
- 2002-02-07 KR KR1020027014057A patent/KR20020089507A/ko not_active Application Discontinuation
- 2002-02-07 EP EP02706678A patent/EP1409976A1/de not_active Withdrawn
- 2002-02-07 JP JP2002566619A patent/JP2004518857A/ja active Pending
- 2002-02-07 WO PCT/DE2002/000444 patent/WO2002066944A1/de active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5544639A (en) * | 1993-08-31 | 1996-08-13 | Nippondenso Co., Ltd. | Temperature predicting system for internal combustion engine and temperature control system including same |
DE4424811A1 (de) * | 1994-07-14 | 1996-01-18 | Bosch Gmbh Robert | Verfahren zur Bildung eines simulierten Signals bezüglich einer Temperatur im Abgassystem einer Brennkraftmaschine |
DE4433631A1 (de) * | 1994-09-21 | 1996-03-28 | Bosch Gmbh Robert | Verfahren zur Bildung eines Signals bezüglich einer Temperatur im Abgassystem einer Brennkraftmaschine |
DE19932079C1 (de) * | 1999-07-12 | 2001-01-11 | Heraeus Electro Nite Int | Verfahren zur Verkürzung der Ansprechzeit eines Temperatursensors |
Also Published As
Publication number | Publication date |
---|---|
EP1409976A1 (de) | 2004-04-21 |
JP2004518857A (ja) | 2004-06-24 |
DE10108181A1 (de) | 2002-08-29 |
KR20020089507A (ko) | 2002-11-29 |
US20040013165A1 (en) | 2004-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1336039B1 (de) | Verfahren und vorrichtung zur steuerung eines abgasnachbehandlungssystems | |
EP2791493B1 (de) | Verfahren und vorrichtung zur dynamiküberwachung von gas-sensoren | |
EP1352160B1 (de) | Verfahren und vorrichtung zur steuerung eines abgasnachbehandlungssystems | |
WO2002066944A1 (de) | Verfahren und vorrichtung zur korrektur eines temperatursignals | |
DE19903439A1 (de) | Verfahren und Vorrichtung zur Steuerung eines Abgasnachbehandlungssystem | |
DE102011085115A1 (de) | Verfahren und Vorrichtung zur Adaption einer Lambdaregelung | |
DE10056015A1 (de) | Verfahren und Vorrichtung zur Steuerung eines Abgasnachbehandlungssystems | |
DE102008000691A1 (de) | Verfahren und Vorrichtung zur Überwachung eines Zuluftsystems einer Brennkraftmaschine | |
EP2464849A1 (de) | Verfahren und vorrichtung zur dynamik-diagnose einer abgas-sonde | |
DE102016211575A1 (de) | Fehlererkennung in einem SCR-System mittels eines Ammoniak-Füllstands | |
EP1637707B1 (de) | Verfahren zum Betreiben einer Abgasbehandlungsvorrichtung einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens | |
EP1352159B1 (de) | Verfahren und vorrichtung zur steuerung eines abgasnachbehandlungssystems | |
DE102007003547A1 (de) | Verfahren zur Diagnose eines eine Abgasbehandlungsvorrichtung enthaltenden Abgasbereichs einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens | |
EP1364111B1 (de) | Verfahren und vorrichtung zur ermittlung einer temperaturgrösse | |
EP1180210B2 (de) | Verfahren und vorrichtung zur steuerung einer brennkraftmaschine mit einem abgasnachbehandlungssystem | |
DE102014202035A1 (de) | Verfahren und Vorrichtung zur Überwachung eines Stickoxid-Speicher-Katalysators | |
DE10145863A1 (de) | Verfahren/Vorrichtung zur Überwachung eines Drucksignals | |
DE102018220729A1 (de) | Verfahren und Vorrichtung zur Bestimmung einer Partikelbeladung eines Partikelfilters | |
DE10010005B4 (de) | Brennkraftmaschine und Verfahren zur Steuerung einer Brennkraftmaschine | |
DE102012200032A1 (de) | Verfahren und Vorrichtung zur Dynamik-Diagnose von Sensoren | |
EP1316707B1 (de) | Verfahren zum Betrieb eines elektronischen Steuergerätes eines Kraftfahrzeuges | |
DE102012201597A1 (de) | Verfahren und Vorrichtung zur Dynamik-Diagnose eines Gas-Sensors | |
EP1296032B1 (de) | Verfahren und Vorrichtung zur Steuerung eines Abgasnachbehandlungssystems | |
DE102007009841A1 (de) | Verfahren und Vorrichtung zur Ermittlung eines Beladungszustandes eines Partikelfilters | |
WO2009040293A1 (de) | Verfahren und vorrichtung zum bestimmen einer dynamischen eigenschaft eines abgassensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2002706678 Country of ref document: EP |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2002 566619 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020027014057 Country of ref document: KR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWP | Wipo information: published in national office |
Ref document number: 1020027014057 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10258102 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2002706678 Country of ref document: EP |