WO2002065041A1 - Systeme de sechage - Google Patents

Systeme de sechage Download PDF

Info

Publication number
WO2002065041A1
WO2002065041A1 PCT/JP2002/001308 JP0201308W WO02065041A1 WO 2002065041 A1 WO2002065041 A1 WO 2002065041A1 JP 0201308 W JP0201308 W JP 0201308W WO 02065041 A1 WO02065041 A1 WO 02065041A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
air
infrared
temperature
painted surface
Prior art date
Application number
PCT/JP2002/001308
Other languages
English (en)
French (fr)
Inventor
Makoto Ueno
Original Assignee
Uegaki, Tateo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uegaki, Tateo filed Critical Uegaki, Tateo
Priority to US10/467,748 priority Critical patent/US6895689B2/en
Priority to CA002438578A priority patent/CA2438578A1/en
Priority to EP02712392A priority patent/EP1367348A1/en
Priority to KR10-2003-7010737A priority patent/KR20030090643A/ko
Publication of WO2002065041A1 publication Critical patent/WO2002065041A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/04Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour circulating over or surrounding the materials or objects to be dried
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/283Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun in combination with convection

Definitions

  • the present invention relates to a drying device, and more particularly, to a drying device suitably used for drying a paint applied to a vehicle body.
  • the first condition is that the solvent contained in the paint is quickly volatilized from the inside.
  • the solvent volatilized from the paint must be quickly diffused from the surface of the painted surface.
  • the drying time can be greatly reduced by satisfying various conditions such as promptly polymerizing the pigment, which is the main component of the paint. It was also found that by satisfying these various conditions, it is possible to obtain a good painted surface without drying defects at the same time.
  • examples of poor drying include defects such as pinholes and pristers caused by insufficient bleeding of the solvent.
  • a pinhole is defined as a phenomenon in which when a paint film is formed on a painted surface with insufficient degassing of the solvent, the solvent remaining in the paint breaks the paint film and volatilizes. Voids formed on the surface of the painted surface.
  • Plister refers to a phenomenon in which the solvent remaining in the coating film and the moisture in the air combine after drying the coating surface, causing the coating surface to expand locally.
  • the conventional drying apparatus did not sufficiently satisfy the above-described various conditions.
  • drying is started from the inside of the painted surface by infrared rays emitted from the device, but the solvent volatilized from the paint stays on the painted surface in a windless state. Therefore, the evaporation of the next solvent is inhibited by the retained solvent.
  • drying starts from the surface side of the coating surface by the hot air sent from the device. For this reason, a paint film (dry film) is formed on the painted surface prior to the volatilization of the solvent contained in the paint. Therefore, the solvent in the paint is prevented from being volatilized by a coating film (dry film) formed prior to the volatilization of the solvent.
  • An object of the present invention is to provide a drying apparatus capable of greatly reducing the time required for drying a painted surface and obtaining a high-quality painted surface.
  • a drying device includes: a housing having an opening on one end surface; an infrared radiation device provided in the housing and emitting infrared light from the opening to a painted surface; and air in the housing.
  • the casing wraps the entire coating surface to be dried, and the infrared rays emitted from the infrared ray Mr device are irregularly reflected between the inner wall surface of the casing and the coating surface. While radiating and absorbing with uniform intensity over the entire painted surface Will be collected.
  • the infrared rays act on the inside of the painted surface to heat the painted surface from its side.
  • the polymerization of the pigment contained in the paint is promoted, and at the same time, the volatilization of the solvent contained in the paint is promoted while suppressing the formation of an unnecessary coating film (dry film) that inhibits the volatilization of the solvent. It is possible to do.
  • the drying device of the present invention is provided with a circulation path and a blower for creating a circulation flow, the solvent volatilized from the paint is quickly diffused by the circulation flow.
  • the air circulating in the case gradually absorbs radiant heat from the painted surface, and gradually rises in temperature.However, if the air circulation rate is reduced by the flow rate adjustment mechanism, the air will flow from the outside air inlet The flow rate of the air led to the air decreases, and the temperature inside the housing decreases. Therefore, unnecessary heating of the painted surface due to the circulating flow is suppressed, and ideal drying conditions are obtained.
  • the flow rate adjusting mechanism according to the present invention may adjust the flow rate of the air flowing in the circulation path by expanding and contracting the cross section of the circulation path.
  • the housing according to the present invention comprises: an inner housing that forms an infrared radiating portion with the infrared radiating device inward; and a predetermined gap between the inner housing surface and the inner housing.
  • An external housing that encloses the housing from the outer side thereof; and a communication path that allows the predetermined gap and the space formed in the inner housing to communicate with each other. You may make it comprise a part of circulation circuit.
  • In the housing configured as described above, a part of the circulation path is secured in the housing. Therefore, the length of the circulation path can be minimized, and the size and weight of the device can be reduced. In addition, the temperature change in the circulation path due to the change of the outside air temperature is reduced, and the ⁇ management in the housing by the flow control mechanism becomes easy. ⁇
  • the present invention also relates to a flow rate adjusting mechanism, comprising, in the present invention, an extendable adjuster that connects the inner casing and the outer casing to each other, and by changing the overall length of the adjuster, the cross section of the circulation path can be reduced. It can be configured to expand and contract.
  • a flow rate adjusting mechanism configured as described above, by changing the overall length of the adjuster as desired, the passage cross-sectional area of the circulation path formed between the inner housing and the outer housing is changed. . That is, when the adjuster is extended, the passage cross section of the circulation path is enlarged, and when the adjuster is contracted, the passage cross section of the circulation path is contracted. This makes it possible to arbitrarily adjust the circulation rate of the air circulating in the housing.
  • the outside air introduction port can be provided in a path of the circulation path.
  • the flow rate adjusting mechanism may be configured to adjust the flow rate of the air that flows back into the housing via the circulation path by expanding and contracting the opening area of the outside air inlet.
  • outside air new air
  • the air that re-enters the housing does not indicate the total amount of air that flows into the housing through the circulation path. Later, it is defined by the amount of air that re-enters the housing through the circuit.
  • a temperature detection sensor for detecting a temperature of the air blown to the painted surface, and an air volume adjustment of the blower based on the temperature of the air detected by the temperature detection sensor
  • a controller that increases the output of the transmission JIB when a temperature detected by the temperature sensor is higher than a target air temperature, and controls the temperature detected by the temperature sensor to a target. When the temperature is lower than the air temperature, the output of the blower may be reduced.
  • the temperature of the air blown to the painted surface is monitored by a temperature detection sensor, and the output value is fed-packed to the air volume control of the blower to accurately control the temperature of the air blown to the painted surface.
  • the flow rate of the air that flows again into the housing through the circulation path is limited by the flow rate adjusting mechanism as described above. Therefore, when the output of the blower is increased, the flow rate of the air taken in from the outside air inlet increases, and the temperature of the air circulating in the housing decreases.
  • the air volume of the blower is reduced, the flow rate of the air taken in from the outside air inlet decreases, and the temperature of the air circulating in the housing (2) increases. Therefore, by performing the air volume adjustment in this way, it is possible to maintain the air temperature in the housing at a substantially constant value.
  • the infrared radiation emitted by the infrared radiation device is 2.5 ⁇ ! It is desirable to use infrared rays in a wavelength range including up to 14.0 IX m. Furthermore, the infrared radiation emitted by the infrared radiation device is 3. ⁇ ⁇ ! ⁇ 4. Have a peak of radiant energy in the wavelength range of O / m. In addition, the infrared radiation emitted by the infrared radiation device is radiated to a wavelength range of 5.5 ⁇ m to 10.0 m. It may have a peak of lugi.
  • the peak of the radiant energy is defined as the area where the radiant energy (emissivity) of the infrared ray when the infrared ray is emitted at a predetermined output exceeds 50%, more preferably the area where the output exceeds 70%. It is desirable.
  • the wavelength range including 2.5 m to 14.0 ⁇ m refers to paints (pigments) widely used in ordinary painting work, such as methyl methacrylate resin, epoxy resin, phenol resin, Urea resin, melamine resin, etc. correspond to the wavelengths that are most preferably absorbed. That is, when the infrared rays of the wavelengths preferred by these various resins are actively radiated by the infrared radiating device, the heating time of the paint, that is, the drying time, is greatly reduced.
  • the pigments exemplified above have a wavelength range of 3.0 / m to 4.0 ⁇ m, and 5.5! It has an absorption spectrum peak in a wavelength range of 10.0 m. Therefore, if a peak of radiant energy is set in this wavelength range, the infrared radiation emitted by the infrared radiation device is absorbed more efficiently, and the paint can be dried (heated) in a shorter time.
  • infrared light having a wavelength other than 2.5 ⁇ ⁇ 14, 0 ⁇ m is emitted from the infrared H radiation device, the infrared light is hardly absorbed by various resins, and thus unnecessary red light is emitted.
  • the radiation time (heating time) of outer II will be prolonged.
  • the above-mentioned various pigments are only specific examples, and pigments suitable for a wavelength of 2.5 / zm to 14.0 m are not limited to the above-mentioned pigments.
  • the drying device includes a support rack that supports the housing, the support rack includes a vertical frame, and a horizontal frame slidably held on the vertical frame. It may be configured to be movably held by the horizontal frame. With this configuration, it is possible to easily support the casing constituting the main part of the drying device at a desired position.
  • FIG. 1 is a side view of a vehicle drying apparatus according to an embodiment of the present invention.
  • FIG. 2 is a front view of the vehicle drying device according to the embodiment of the present invention.
  • FIG. 3 is a plan view of the vehicle drying device according to the embodiment of the present invention.
  • FIG. 4 is a perspective view of the vehicle drying device according to the embodiment of the present invention as viewed from the opening side.
  • FIG. 5 is a cross-sectional view taken along line AA ′ in FIG.
  • FIG. 6 is a diagram for explaining the flow of air in the housing.
  • FIG. 7 is a plan view of the housing according to the embodiment of the present invention as viewed from the top plate side.
  • FIG. 8 is a partial cross-sectional view of the adjuster according to the embodiment of the present invention.
  • FIG. 9 is a diagram showing a use state of the vehicle drying device according to the embodiment of the present invention.
  • FIG. 10 is a flowchart for explaining sequence control performed by the control system of the vehicle drying device according to the embodiment of the present invention.
  • FIG. 11 is a flowchart for explaining a feed pack control performed in accordance with the air volume adjustment of the electric fan according to the embodiment of the present invention.
  • FIG. 12 is a diagram showing a correlation between the radiation spectrum of the infrared lamp according to the embodiment of the present invention and the absorption spectrum of a typical paint.
  • a drying unit ft (hereinafter, referred to as a vehicle drying unit) 1 shown in the present embodiment includes an infrared lamp 2, an electric fan 3, etc., and forms a main part of the vehicle drying unit 1.
  • a body 8 a control system for controlling the infrared / infrared lamp 2, the electric fan 3, and the like, and a support rack 1 B for movably supporting the housing 8.
  • the housing 8 has a double structure composed of an inner housing 20 and an outer housing 40, and an infrared lamp 2 that radiates infrared rays to the painted surface P inside the inner housing 20; An electric fan 3 that circulates the air inside and promotes drying of the painted surface P is provided. That is, the housing 8 has a function as an infrared drying device for drying the painted surface P mainly by emitting infrared radiation.
  • the housing 8 is provided with an air circulation path 4 and a flow rate adjusting mechanism.
  • the air circulation path 4 circulates a circulating flow formed by the operation of the electric fan 3 in the housing 8. It is intended to be able to be repeatedly reproduced.
  • the flow rate adjusting mechanism is a mechanism for limiting the flow rate of the air circulating in the housing 8 and preventing an excessive rise in the temperature of the air that rises in proportion to the infrared radiation time.
  • the complete set including the infrared lamp 2, the electric fan 3, and the like may be abbreviated to the drying apparatus main body 1A.
  • the housing 8 has a predetermined gap between the inner housing 20 in which the main components related to drying such as the infrared lamp 2 and the electric fan 3 are incorporated, as described above, and a surface of the inner housing 20.
  • An outer housing 40 that wraps the inner housing 20 from the outside, and a part of the air circulation path 4 described above includes the inner housing 20 and the outer housing 40. It is formed by the gap formed between them (see Figs. 5 and 6).
  • the inner housing 20 has a top plate 21 having a rectangular shape as shown in FIG. 5, and a side wall plate 22 extending from the periphery of the top plate 21. It is shaped like a box. Inside, three infrared lamps 2 are arranged in parallel and at equal intervals in the same plane as the top plate 21 and the TO.
  • each infrared lamp 2 is provided with a reflection plate 23 integrally with the infrared lamp 2 so as to surround the rear and side of the infrared lamp 2, and the infrared rays emitted from the infrared lamp 2 are transmitted through the inner casing 2.
  • the light is efficiently reflected on the opening side at 0 (the direction of arrow A in Fig. 5). Both ends of each reflecting plate 23 are fixed to the side wall plate 22, and the positioning of the infrared lamp 2 in the housing 8 is performed by the reflecting plate 23.
  • Infrared lamp 2 is 2.5 ⁇ ! 1 # Infrared lamp 2 that actively emits infrared light including the wavelength range of 4.0 ⁇ m; More preferably, as shown by the dotted line in FIG. ⁇ 4. and 5.5 ⁇ ⁇ ! An infrared lamp having a radiant energy peak in the wavelength range of ⁇ 10.0 m is used, and at that peak, the output of the infrared lamp 2 exceeds 50%, more preferably 70%. Infrared I lamp 2 should be used.
  • FIG. 12 is a graph showing a correlation between the infrared absorption spectrum (solid line in the figure) corresponding to each resin and the 3 ⁇ 4 ⁇ spectrum of the infrared lamp 2 (dashed line in the figure). Also, regarding the infrared absorption spectrum, the vertical axis of the graph corresponds to the infrared absorption rate.
  • the vertical axis of the graph corresponds to the radiation energy (radiation amount) of infrared radiation.
  • various paints have a thickness of 3. ⁇ ! It absorbs infrared rays of up to 4.0 ⁇ (between arrows in Figure 12) and 5.5 m to 101 ⁇ (between arrows in Figure 12) most efficiently.
  • the emission spectrum of the various paints described above is preferably in the wavelength range of 3.0 / zm to 4.00 / xm and in the wavelength range of 5.5 ⁇ to 10.0 ⁇ m. By setting peaks, the drying time is further reduced.
  • the top plate 21 of the inner housing 20 is provided with an air inlet 25 (communication passage) for introducing air outside the inner housing 20 into the inside. Further, the electric fan 3 (blower) described above is attached to each air inlet 25.
  • An electric motor (not shown) and a rectifying plate 27 that is moved by the electric motor are mounted between the above-described reflectors 23. '
  • the outer housing 40 has a box shape formed by the top plate 41 and the side wall plate 42, similarly to the inner housing 20, and one end surface thereof is formed in the inner housing 20. It has a large opening in the same direction as the opening 24 (see Fig. 4).
  • the side wall plate 42 is formed to be sufficiently longer than the side wall plate 22 of the inner housing 20, and as shown in FIG.
  • the opening 4 slightly opens in the depth direction with respect to the opening 43 formed in the outer housing 40.
  • the top plate 41 has an outside air inlet 44.
  • the outside air inlet 4 4 is an opening for taking in air (outside air) outside the housing 8 into the housing 8 as necessary. Also, the outside air inlet 4 4 has a dust collecting filter for removing dust and dirt from the inflowing air.
  • a flow control plate 46 for adjusting the flow rate of the outside air flowing into the filter 45 and the outside air inlet 44 is provided.
  • the flow control plate 46 is provided so as to be slidable toward the inside of the outside air inlet 44, and the outside air inlet 4 is to slide the flow control plate 46 toward the inside. Thereby, the opening area can be arbitrarily adjusted.
  • the adjuster 70 has a function as a connecting member for positioning the outer housing 40 and the inner housing 20 and is formed by the inner housing 20 and the outer housing 40 described above. It also has a function to vary the passage width T (passage cross section) of the circulation path 4. That is, the adjuster 70 has a role as a flow rate adjusting mechanism according to the present invention.
  • the flow rate adjusting mechanism (adjuster 70) will be described with reference to FIGS.
  • the adjuster 70 has a boss 71 welded to the top plate 41 of the outer housing 40 via a stay 75, and a bolt screwed into the boss 71. 7 and an operation handle 73 for rotating the bolt 72.A tip of the bolt 72 is rotatably connected to the top plate 21 of the internal housing 20. .
  • a guide rail 74 having an L-shaped cross section supported by a side wall plate 42 of the outer housing 40 is provided at each corner of the inner housing 20, a guide rail 74 having an L-shaped cross section supported by a side wall plate 42 of the outer housing 40 is provided at each corner of the inner housing 20, a guide rail 74 having an L-shaped cross section supported by a side wall plate 42 of the outer housing 40 is provided.
  • the adjuster 70 When the adjuster 70 is operated, the inner casing 2 moves in the depth direction along the guide rail 74.
  • the relative positional relationship between the inner housing 20 and the outer housing 40 is determined according to the rotation direction of the operation handle 73. That is, in FIG. 8, when the operation knob 73 is rotated in the direction of arrow R, the inner casing 20 separates from the outer casing 40 (the direction of arrow R1 in FIG. 8). On the other hand, in FIG. 8, when the operation handle 73 is rotated in the direction of arrow L, the inner casing 20 approaches the outer casing 40 side (direction of arrow R1 in the figure) (direction of arrow L1 in the figure).
  • the extendable adjuster 70 between the outer housing 40 and the inner housing 20 in this manner, the circulation formed between the outer housing 40 and the inner housing 20 is achieved. It is possible to arbitrarily change the passage width T (passage cross section) of the passage 4.
  • the control system includes an inverter (D CZA C converter), timer, CPU (microphone processor), ROM (read 'only' memory), RAM (random 'access' memory), temperature sensor 6 (thermocouple thermometer), etc.
  • the sequence control of the infrared lamp 2 and the electric fan 3 based on the passage of time, and the feed pack control relating to the air flow control of the electric fan 3 are implemented.
  • Various components such as an inverter, a timer, and a CPU constituting the control system are accommodated in a control box 10 fixed to the support rack 1B. Further, the temperature sensor 6 is attached to an opening 43 (upper part) of the external housing 40.
  • FIG. 10 is a flowchart of sequence control performed in the control system.
  • the vehicle drying apparatus 1 is used in a state where the opening 43 formed in the housing 8 is close to the painted surface P as shown in FIG.
  • the first thing to do is to operate the flow control plate 46 provided at the outside air inlet 44 to take it into the housing 8 from the outside air inlet 44. Adjust the air flow.
  • the opening area of the outside air inlet 44 is determined in consideration of the room temperature. That is, when the indoor temperature is high such as in summer, the flow control plate 46 for increasing the inflow of outside air is opened, and when the indoor temperature is low such as in winter, the flow control plate 46 for reducing the amount of outside air is closed. Then, the temperature inside the housing 8 is adjusted.
  • the adjuster 70 is operated to adjust the passage width T of the circulation path 4. That is, in this step, the adjuster 70 is operated to set the air circulation rate in the housing 8 # to a desired value.
  • the circulation rate is set in consideration of the properties of the paint applied to the painted surface P. For example, in the case of a paint having a low solvent content and in which the solvent in the coating material can work in a relatively short time, the passage width T is increased and the temperature of the circulation flow is set higher. In addition, when a paint containing a large amount of solvent and taking a long time to evaporate the solvent is applied, the Set the circulation rate according to the characteristics of each paint, such as setting the path width T narrow and setting the ⁇ of the circulating flow low.
  • the optimal circulation rate for paint can be roughly grasped by various preliminary experiments. Therefore, if the operator sets the passage width ⁇ based on the results of the preliminary experiment, an appropriate circulation rate can be obtained even for an operator who is unfamiliar with the operation of the vehicle drying device 1 shown in the present embodiment. .
  • Step 101 the operation of the drying unit 1 ⁇ .
  • step 101 the emission time of the infrared ray to the painted surface P is determined by the timer.
  • Step 102 the counting of the timer is started.
  • the emitted infrared light V is emitted to the painted surface P through the opening 24.
  • the infrared rays radiated from the infrared lamp 2 are irregularly reflected in the inner casing 20 and are applied with substantially uniform intensity over the entire painted surface P.
  • the painted surface P that has received the infrared radiation absorbs the radiant energy of the infrared light, and first, the calo heat starts from the inside of the painted surface P.
  • the control system determines whether or not the radiation intensity of the infrared lamp 2 has reached a predetermined intensity based on the elapsed time from the time of infrared radiation (when the infrared lamp is turned on) (step 104). That is, the CPU receives the fact that the count of the timer has reached the predetermined time, considers that the infrared lamp 2 has reached the predetermined intensity, and shifts to step 105 to operate the electric fan 3. Also, in step 104, when the predetermined time has not yet been reached, it is considered that the radiation intensity of the infrared lamp 2 has not reached the predetermined intensity, and the infrared lamp 2 continues to be preheated (warmed).
  • step 105 electric power is supplied to the electric fan 3, and the air behind the internal housing 20 is blown to the painted surface P through the air inlet 25.
  • step 105 the airflow of the electric fan 3 is adjusted based on the output value of the temperature sensor 6 supported near the painted surface P. The feedback control accompanying the air flow adjustment of the electric fan 3 will be described later in detail.
  • the painted surface P absorbs infrared II radiant energy and evaporates.
  • the solvent is immediately diffused from the painted surface P by the wind generated by the electric fan 3. As a result, the following solvent is volatilized on the painted surface P.
  • step 106 power is supplied to the electric motor to swing (rotate) the current plate 27 almost simultaneously with the operation of the electric fan 3, and the current plate 27 is swung. Therefore, the air blown to the painted surface P by the electric fan 3 is almost uniformly blown to the entire painted surface P.
  • the air blown to the painted surface P moves along the painted surface P, passes between the painted surface P and the housing 8, and is discharged to the outside of the housing 8, but as described above, A circulation path 4 (predetermined gap) is formed between 40 and the inner casing 20. Therefore, part of the air in the internal housing 20 that is about to be discharged to the outside of the housing 8 flows into the circulation path 4 and is guided behind the internal housing 20.
  • this air is sucked again into the electric fan 3 together with the air flowing from the outside air inlet 44 described above, and is sent to the painted surface P side. That is, with the operation of the electric fan 3, the electric fan 3 ⁇ the painted surface P—circulation path 4 ⁇ behind the inner casing 20 ⁇ the electric fan 3 ⁇ the circulating flow passing through the painted surface P is formed in the casing 8. Will be done.
  • the circulating flow formed in the casing 2 absorbs the radiant heat from the painted surface P and the heat energy radiated from the infrared lamp and gradually increases the temperature s .
  • the air blown to the surface P mixes with the air (outside air) sucked in from the outside air inlet 44 and its temperature decreases.
  • the temperature of the air re-blasted to the painted surface P is maintained at approximately the same temperature as the temperature of the previously blown air, and unnecessary paint due to the excessive temperature rise of the painted surface P
  • the formation of a film can be avoided. More specifically, the flow rate of air flowing down the circulation path 4 and supplied to the electric fan 3 is limited by the adjustment of the adjuster 70 as described above.
  • the adjuster 70 when the adjuster 70 is contracted, the amount of air supplied through the outside air inlet 44 increases, and the temperature of the air blown to the painted surface P naturally decreases.
  • the temperature inside the housing 8 can be maintained substantially constant by operating the adjuster 70 to adjust the air circulation rate.
  • the adjuster 70 is extended to increase the passage width T, the air circulation rate of the housing 2 ⁇ increases, and as a result, the amount of air supplied to the electric fan 3 through the circulation path 4 is reduced. More. Therefore, the ratio of the amount of air supplied to the electric fan 3 through the circulation path 4 to the amount of air supplied through the outside air inlet 44 changes, and the temperature of the air blown to the painted surface P decreases. Get higher.
  • the CPU determines whether or not the elapsed time counted by the timer has reached a predetermined time (step 107).
  • the painted surface P is determined. Assuming that it is dry, turn off the infrared lamp 2 (step 108). If it is determined in step 107 that the predetermined time has not yet been reached, infrared rays are continuously emitted to the painted surface P. That is, in step 107, the drying state of the painted surface P is grasped using the count of the timer as a trigger.
  • the CPU continues to operate the electric fan 3 for a predetermined time to cool the infrared lamp 2 (step 109), and then the power supplied to the electric fan 3 is reduced. Disconnect (step 110).
  • the infrared rays emitted from the infrared lamp 2 uniformly act on the entire painted surface P while being irregularly reflected in the housing 8.
  • the infrared rays heat the painted surface P from the inside thereof, and as a result, the binding of the pigment is promoted inside the painted surface P, and at the same time, the solvent contained in the paint is also quickly removed from the painted surface P Volatilizes to
  • the solvent that volatilizes vigorously from the paint is quickly diffused by the circulation flow created by the electric fan 3.
  • the air circulating in the casing 8 absorbs radiant heat from the painted surface and gradually rises in temperature.
  • the adjuster 70 the air circulation rate in the casing 2 is adjusted to an appropriate value. By adjusting, an excessive temperature rise of the air blown to the painted surface P is avoided. Thus, unnecessary heating (drying) of the painted surface is prevented, and ideal drying conditions are obtained.
  • the circulation rate is adjusted mainly by operating the adjuster 70, but the air flowing in through the outside air inlet 44 is adjusted.
  • the circulation rate can also be adjusted by actively adjusting the flow rate of the water. That is, the ratio of the air supplied to the electric fan 3 may be changed by increasing or decreasing the opening area of the outside air inlet 44. More specifically, when the amount of air blown to the painted surface is high, the opening area of the outside air inlet 4 and 4 is increased to increase the amount of outside air supplied to the electric fan 3, and the amount of air blown to the painted surface is increased.
  • the flow control plate 46 provided at the outside air inlet 44 also has a function as a flow control mechanism according to the present invention.
  • FIG. 11 is a flow chart of the feed pack control relating to the air volume adjustment of the electric fan 3, and this processing routine is continuously performed until the processing of step 105 is completed. .
  • the temperature detected by the temperature sensor 6 is the temperature of the air blown to the painted surface P, but the surface temperature of the painted surface P is the output value of the temperature sensor 6. Fluctuates substantially in proportion to. Therefore, if the output value of the temperature sensor 6 is kept substantially constant, the surface temperature of the painted surface P will naturally be kept substantially constant.
  • the feed pack control accompanying the air volume adjustment of the electric fan 3 will be described.
  • the CPU reads the output value of the temperature sensor 6 into the RAM (step 201). Subsequently, the target air temperature previously recorded on the ROM is read (step 202), and the output value of the temperature sensor 6 recorded on the RAM is compared with the target air temperature, and the temperature sensor 6 is read. It is determined whether the output value is higher than the target air temperature (Step 203). Note that the target air temperature is a value that is sufficiently smaller than the surface temperature of the painted surface P and can be set arbitrarily in advance. 'Then, in step 203, when it is determined that the output value of the temperature sensor 6 is higher than the target air temperature, the output frequency of the impeller for increasing the air volume of the electric fan 3 is increased (step 204). ). On the other hand, when it is determined that the output value of the temperature sensor 6 is lower than the target air temperature, the output frequency of the inverter is lowered to reduce the air volume of the electric fan 3 (step 205).
  • the temperature adjustment of the air in the housing 8 # is determined by the operation of the adjuster 70 described above, and this feedback control is one control for performing more accurate temperature management.
  • the temperature of the air blown to the painted surface P is monitored by the temperature sensor 6, and the output value is used to adjust the air volume of the electric fan 3. By controlling this, the temperature of the painted surface P can be controlled more accurately.
  • sequence control and feedback control are an example, and details thereof can be arbitrarily changed.
  • the support rack 1B facilitates the emission of infrared rays to the painted surface P, and supports the housing 8 (drying apparatus main body 1A) at any height and direction.
  • the support rack 1B includes a vertical frame 101, a bracket 102 slidably provided in an upward and downward direction of the vertical frame 101, and a slidable horizontal direction of the bracket 102. It comprises a held horizontal frame 103, and a support arm 106 extending from the horizontal frame 103 and supporting the housing 8 in a swingable manner.
  • a balance weight 107 is provided inside the vertical frame 101 to reduce the force required to move the housing 8 up and down. More specifically, as shown in Fig. 1, a chain 108 having one end fixed to the top of the vertical frame 101 and the other end connected to the bracket 102, and ascending and descending within the vertical frame 101 A freely-moving balance 8 107, a movable pulley 107 a attached to the balance weight 107, and a fixed pulley 101 a provided at the top of the vertical frame 101.
  • the chain 108 is mounted on the top of the vertical frame 101 from the bracket 102 via the movable pulley 107a and the fixed pulley 101a as shown in FIG. It is stretched.
  • the balance weight 107 and the horizontal frame 103 including the complete housing a boosting action is generated by the arrangement of the pulleys 107a and 101a. For this reason If the weight of the lance weight is set to 1 to 2 with respect to the total weight of the horizontal frame including the case 8-formula, then the balance weight 1 07 and the horizontal frame including the case 8-formula 103 force S weight A balanced state is provided, and the housing 8 can be easily moved up and down.
  • a bottom frame 109 is connected to the lower end of the vertical frame 101, and casters 110 are provided at four corners of the bottom frame 109. Therefore, the device 1 can be freely moved in the repair shop.
  • the present invention has been described as a drying device for a vehicle.
  • the drying device of the present invention is, of course, useful in other applications.
  • the structure of the drying device main body 1A and the structure of the support rack 1B are merely examples of the present invention, and details thereof may be arbitrarily changed.
  • the air circulation rate in the housing 8 is set using the adjuster 70, but it is detachable between the inner housing 20 and the outer housing 40.
  • the air circulation rate in the housing 8 can also be changed by interposing a spacer and changing the thickness of the spacer as needed.
  • a strip-shaped valve body is provided in the gap formed between the inner housing 20 and the outer housing 40, and the flow rate of the air flowing through the circulation path 4 is adjusted by operating this valve body. You may be allowed to do so.
  • the infrared lamp 2 is employed as an infrared radiation device, but an infrared heater or the like may be used instead of the infrared lamp 2.
  • the infrared lamp 2 is, as described above, a force disposed in a plane different from the top plate 21.
  • a planar infrared heater or the like is disposed on the inner wall surface of the inner casing 20 to emit infrared light.
  • a radiating section may be formed.
  • the inner wall surface of the inner housing 20 may be embossed to increase the infrared ray reflection efficiency.
  • the present invention is not limited to the contents of the above-described embodiments, and can be variously modified by those skilled in the art without departing from the gist described in the claims. Hikogyo's availability
  • the drying device of the present invention is particularly suitable as a device for drying paint or the like applied to a vehicle body when repairing the vehicle.
  • the drying apparatus of the present invention can be used not only for vehicles but also for various purposes such as drying of painted surfaces of furniture and painted surfaces of building walls.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)
  • Coating Apparatus (AREA)

Description

技術分野 本発明は乾燥装置に関し、 より詳細には、 車体に塗布された塗料を乾燥させる 際に好適に使用される乾燥装置に関する。 明
景技術 書
車体を修理する際の塗装作業において、 その車体に塗布された塗料を乾燥させ る工程がある。 通常、 この工程では、 塗装面に赤外線を放射して塗装面を乾燥さ せる赤外線式乾燥装置、 あるいは、 塗装面に温風を送風して塗装面を乾燥させる 温風式乾燥装置などが使用され、 塗装面を強制的に乾燥させることにより作業時 間の短縮を図っている。
ところで、 本発明者等の研究によれば、 塗科面を効率良く乾燥させるには、 以 下の条件が必要とされることが判明した。 すなわち、 第 1の条件として、 塗料內 に含まれる溶剤を速やかにその内部から揮発させること。 また、 第 2の条件とし て、 塗料内から揮発した溶剤をその塗装面表面上から速やかに拡散させること。 第 3の条件として、 塗料の主成分たる顔料を速やかに重合させること、 などの各 種条件を満たすことによって乾燥時間の大幅な短縮を図れることが見いだされ た。 また、 これら各種条件を満たすことによって、 乾燥不良のない良好な塗装面 をも同時に得られることが判明した。
なお、 乾燥不良としては、 溶剤の不十分な抜気にて生じるピンホール及ぴプリ スターなどの不良を例示できる。 尚、 ピンホールとは、 ί容剤の抜気が不十分な状 態において塗装面上に塗膜が形成されたとき、 その塗料内に残留した溶剤がその 塗膜を破って揮発することにより塗装面表面上に形成される空孔を意味する。 ま' た、 プリスターとは、 塗膜内に残留した溶剤と空気中の水分とが塗装面乾燥後に おいて結合することにより、 塗装面が局所的に膨張する現象をいう。 しかしながら、 従来の乾燥装置は、 上記した各種条件を十分に満たすものでは なかった。 即ち、 赤外線式乾燥装置においては、 その装置から発せられる赤外線 によって塗装面内部側から乾燥 (加熱) が開始されるものの、 塗料内から揮発し た溶剤は無風状態の塗装面表面上に滞留する。 従って、 次なる溶剤の揮発がこの 滞留した溶剤によって阻害される。
また、 温風式乾燥装置においては、 その装置から送風される温風によって、 塗 装面表面側から乾燥 (硬化) が始まる。 このため、 塗料内に含まれる溶剤の揮発 に先立ち塗装面上には塗膜 (乾燥膜) が形成される。 従って、 塗料内の溶剤は、 その溶剤の揮発に先立ち形成された塗膜 (乾燥膜) によって、 その揮発を阻害さ れる。
なお、 温風式乾燥装置において、 温風を作り出す際に赤外線を発するものもあ る力 その赤外線が塗装面の乾燥に寄与する割合は、 温風に対して微々たるもの である。 従って、 赤外線による塗装面内部側からの乾燥は期待できるものではな かった。 発明の開示 本発明は、 塗装面の乾燥に掛かる時間を大幅に短縮でき、 しかも品質の良い塗 装面が得られる乾燥装置を提供することを目的とする。
本発明に係る乾燥装置は、 一端面に開口部を有する筐体と、 この筐体内に設け られ前記開口部より塗装面に対して赤外線を放射する赤外線放射装置と、 前記筐 体内の空気を、 前記開口部を介して塗装面に送風する送 ® と、 前記送 ja によ つて塗装面に送風された空気のうち、 その少なくとも一部を、 再度、 筐体内に流 入させる循環路と、 前記筐体内に外気を導く外気導入口と、 前記循環路を経て筐 体内に再流入する空気の流量を調節する流量調節機構と、 を備えることを特徴と する。
このように構成された本発明の乾燥装置によれば、 乾燥対象となる塗装面全体 を筐体が包み込み、 赤外線 Mr装置から放射された赤外線は、 筐体内壁面及び塗 装面との間で乱反射を操り返しながら塗装面全体に対して均一な強度で放射 ·吸 収される。 また、 その赤外線は、 塗装面内部に作用して塗装面をその內部側から 加熱させる。 その結果、 塗料内に含まれる顔料の重合が促進され、 また同時に、 溶剤の揮発を阻害する不必要な塗膜 (乾燥膜) の形成を抑制しながら塗料内に含 まれる溶剤の揮発を促進させることが可能となる。
また、本発明の乾燥装置は、循環流を作り出す循環路及ぴ送風機を備えるため、 塗料内から揮発した溶剤は、 この循環流によって速やかに拡散される。 また、 筐 体内にて循環する空気は、塗装面からの輻射熱などを吸収して次第に昇温するが、 流量調節機構によってその空気の循環率を低下せしめると、 その分、 外気導入口 から筐体內へと導かれる空気の流量が增し、 筐体内の温度は低下する。 よって、 循環流による塗装面の不必要な加熱が抑制され理想的な乾燥条件が得られる。 なお、 本発明に係る流量調節機構は、 前記循環路の通路断面を拡大及び収縮さ せて、 この循環路内を流れる空気の流量調節を行うようにしてもよい。
また、 本発明に係る筐体は、 前記赤外線放射装置を内方して赤外線の放射部を 形成する内部筐体と、 この内部筐体表面との間に所定の隙間を保ちつつ、 その内 部筐体をその外方側から包み込む外部筐体と、 前記所定の隙間および前記内部筐 体內方に形成される空間とを互いに連通させる連通路と、 を備え、 前記所定の隙 間は、 前記循環路の一部を構成するようにしてもよい。
このように構成された筐体では、 循環路の一部が筐体内に確保される。 従って 循環路の通路長を必要最小限に構成することができ、 装置の小型 ·軽量化を図れ る。 また、 外気温の変化による循環路内の温度変化が少なくなり、 流量調節機構 による筐体内の^^管理が容易になる。 ·
また、 流量調節機構に関し、 本発明では、 前記内部筐体と前記外部筐体とを互 いに連結する伸縮自在のアジヤスタを備え、 このアジヤスタの全長を可変させる ことにより前記循環路の通路断面を拡大及ぴ収縮させるように構成してもよレ、。 このように構成された流量調節機構では、 アジヤスタの全長を所望に応じて可 変させることにより、 前記内部筐体と外部筐体との間に形成される循環路の通路 断面積が変更される。 即ち、 アジヤスタを伸張させると循環路の通路断面が拡大 し、 アジヤスタを収縮させると循環路の通路断面が収縮する。 以て、 筐体内にて 循環する空気の循環率を任意に調節することが可能となる。 また、 前記流量調節機構に関し、 本発明では、 前記外気導入口を、 前記循環路 の経路中に設けることができる。 そして、 前記流量調節機構は、 その外気導入口 の開口面積を拡大及び収縮させることにより、 前記循環路を経て前記筐体内に再 流入する空気の流量調節を行う構成としてもよい。
このように構成された流量調節機構では、 循環路中に外気 (新たな空気) を導 入し、 筐体内にて循環する空気の総量を減らしている。 すなわち、 本発明で筐体 内に再流入する空気とは、 循環路を経て筐体内に流入する空気の総量を示すもの ではなく、 その空気中に含まれる既存の空気すなわち塗装面に送風された後に循 環路を経て筐体内に再流入する空気量によつて定義付けされるものである。 さらに、 本発明に係る乾燥装置では、 前記塗装面に送風される空気の温度を検 出する温度検出センサと、 この温度検出センサにて検出される空気の温度に基づ き前記送風機の風量調節を行う制御装置と、 を備え、 前記制御装置は、 前記温度 センサにて検出される温度が目標空気温度より高いとき前記送 JIBの出力を増大 させ、 前記温度センサにて検出される温度が目標空気温度より低いとき前記送風 機の出力を低下させるようにしてもよい。
この構成では、 塗装面に送風される空気の温度を温度検出センサにて監視する と共に、 その出力値を送風機の風量調節にフィードパックして、 塗装面に送風さ れる空気の温度を正確に管理する。 尚、 循環路を経て筐体内に再流入する空気の 流量は、 上記の如く前記流量調節機構によってその流量を制限されている。 従つ て、 送風機の出力を増大させると外気導入口から取り込まれる空気の流量が増加 し、 筐体内にて循環する空気の温度は低下する。 一方、 送風機の風量を低下せし めると外気導入口から取り込まれる空気の流量が減少し、 以て、 筐体內にて循環 する空気の温度は上昇する。 従って、 このように風量調節を実施すると、 筐体内 の空気温度を略一定の値に維持することが可能となる。
また、 本発明に係る赤外線放射装置に関し、 その赤外線放射装置にて放射する 赤外線は、 2 . 5 μ π!〜 1 4 . 0 IX mを含む波長域の赤外線とすることが望まし レヽ。 さらに、 赤外線放射装置にて放射される赤外線は、 3 . Ο μ π!〜 4 . O / m の波長域に放射エネルギーのピークを有するようにするとよレ、。 また、 赤外線放 射装置にて放射される赤外線を、 5 . 5 ^ m〜1 0 . 0 mの波長域に放射エネ ルギ一のピークを有するようにしてもよい。 尚、 放射エネルギーのピークとは、 所定出力で赤外線を放射したとき、 その赤外線の放射エネルギー (放射率) が出 力 5 0 %を越える領域、 より好ましくは出力 7 0 %を超える領域で定義するのが 望ましい。
ここで、 2 . 5 m〜 1 4 . 0 μ mを含む波長域とは、 通常の塗装作業におい て広く採用される塗料 (顔料)、 例えば、 メタクリル酸メチル樹脂、 エポキシ樹 脂、 フエノール樹脂、 尿素樹脂、 メラミン樹脂などが、 最も好んで吸収する波長 に相当する。 即ち、 これら各種樹脂が好む波長の赤外線を赤外線放射装置にて積 極的に放射すると塗料の加熱時間すなわち乾燥時間が大幅に短縮される。
また、 上記に例示した顔料は、 3 . 0 / m〜 4 . 0 μ mの波長域、 及ぴ 5 . 5 !〜 1 0 . 0 mの波長域に吸収スペクトルのピークを有する。 このため、 こ の波長域に放射エネルギーのピークを設定すると、 赤外線放射装置にて放射され た赤外線は、 さらに効率良く吸収され、 より短時間に塗料の乾燥 (加熱) が行え る。 なお、 赤外 H放射装置にて 2 . 5 μ πι〜1 4 , 0 μ m以外の波長を有する赤 外線を放射した場合には、 その赤外線が各種樹脂にほとんど吸収されず、 不必要 に赤外 IIの放射時間 (加熱時間) を延ばすこととなる。 また、 上記した各種顔料 は、 あくまでも具体例であり、 2 . 5 /z m〜1 4 . 0 mの波長に好適な顔料は 上記した顔料に限られることはない。
また、 本発明に係る乾燥装置は、 前記筐体を支持する支持ラックを備え、 前記 支持ラックは縦フレームと、 縦フレームにスライド可能に保持された横フレーム と、 を有し、 前記筐体は前記横フレームに摇動自在に保持される構成としてもよ い。 この構成では、 乾燥装置の主たる部分を構成する筐体を所望の位置にて容易 に支持することが可能となる。 図面の簡単な説明 図 1は、 本発明の実施形態に係る車両用乾燥装置の側面図。
図 2は、 本発明の実施形態に係る車両用乾燥装置の正面図。
図 3は、 本発明の実施形態に係る車両用乾燥装置の平面図。 図 4は、 本発明の実施形態に係る車両用乾燥装置を開口部側から見た斜視図。 図 5は、 図 3における A— A' 断面図。
図 6は、 筐体内における空気の流れを説明するための図。
図 7は、 本究明の実施形態に係る筐体を天板側から見た平面図。
図 8は、 本発明の実施形態に係るアジヤスタの一部断面図。
図 9は、 本発明の実施形態に係る車両用乾燥装置の使用状態を示す図。
図 1 0は、 本発明の実施形態に係る車両用乾燥装置の制御系にて実施されるシー ケンス制御を説明するためのフローチャート。
図 1 1は、 本発明の実施形態に係る電動ファンの風量調節に伴い実施されるフィ 一ドパック制御を説明するためのフロ一チヤ一ト。
図 1 2は、 本発明の実施形態に係る赤外線ランプの放射スぺクトルと代表的な塗 料の吸収スぺクトルとの相関関係を示した図。 発明を実施するための最良の形態 以下、 本発明に係る乾燥装置を車両用乾燥装置として適用した例について図面 を参照して説明する。
まず初めに、 乾燥装置の概略構成について説明する。
本実施の形態に示される乾燥装 ft (以下、 車両用乾燥装置と称す) 1は、 赤外 線ランプ 2及び電動フアン 3等を内包して車両用乾燥装置 1の主要部分を構成す る筐体 8と、 この赤外 /锒ランプ 2及び電動ファン 3等の制御を司る制御系と、 こ の筐体 8を移動自在に支持する支持ラック 1 Bと、 を備える。
筐体 8は、 内部筐体 2 0及び外部筐体 4 0からなる 2重構造をなし、 内部筐体 2 0内には塗装面 Pに対して赤外線を放射する赤外線ランプ 2、 及び筐体 8内の 空気を循環させて塗装面 Pの乾燥を促進させる電動ファン 3などが設けられてい る。 即ち、 筐体 8は赤外線の放射を主体として塗装面 Pを乾燥させる赤外線式乾 燥装置としての機能を備えている。
さらに、 前記筐体 8には、 空気の循環路 4、 及び流量調節機構が設けられてい る。 空気の循環路 4は、 電動ファン 3の作動に伴い形成される循環流を筐体 8内 に反復して再現できるようするためのものである。 また、 流量調節機構は、 筐体 8内にて循環する空気の流量を制限し、 赤外線の放射時間に比例して昇温する空 気の過剰な温度上昇を防止するための機構である。 以下、 各構成要素について詳 細に説明する。
尚、 以下の説明では、 赤外線ランプ 2、 電動ファン 3等を含む筐体一式を略し て乾燥装置本体 1 Aと称することもある。
筐体 8は、 上記したように赤外線ランプ 2や電動ファン 3など乾燥に係る主要 構成部品が組み込まれる内部筐体 2 0と、 この内部筐体 2 0表面との間に所定の 隙間を保ちつつ内部筐体 2 0をその外方側から包み込む外部筐体 4 0と、を有し、 先に記載した空気の循環路 4の一部は、 この内部筐体 2 0と外部筐体 4 0との間 に形成された隙間によつて形成されている (図 5及び図 6参照)。
また、 内部筐体 2 0は、 図 5に示されるように長方形をなす天板 2 1と、 この 天板 2 1の周縁から延出された側壁板 2 2とを有し、 一端面が開口した箱状をな している。 また、 その内方には、 天板 2 1と TOな同一面内において 3本の赤外 線ランプ 2が平行且つ等間隔に配置されている。
また、 各赤外線ランプ 2には、 赤外線ランプ 2の後方及び側方を囲むように反 射板 2 3が赤外線ランプ 2と一体的に設けられ、 赤外線ランプ 2にて発せられる 赤外線は内部筐体 2 0における開口側 (図 5中矢印 A方向) に効率良く反射され るようになっている。 なお、 各反射板 2 3の両端は、 側壁板 2 2に固定されてお り、 筐体 8内における赤外線ランプ 2の位置決めはこの反射板 2 3によりなされ ている。
また、 赤外線ランプ 2は、 2 . 5 μ π!〜 1 4. 0 μ mの波長域を含む赤外線を 積極的を; ¾#する赤外線ランプ 2を使用している。 より好ましくは、 図 1 2の点 線に示されるように 3 . Ο μ π!〜 4 . 、 及び 5. 5 ^ π!〜 1 0. 0 mの 波長域に放射エネルギーのピークを有する赤外線ランプを採用し、 そのピーク時 には、 その赤外線ランプ 2の出力が出力 5 0 %、 より好ましくは出力 7 0 %を超 える赤外Iランプ 2を使用するとよい。
また、 ここで 2. 5 μ π!〜 1 4. O mの波長とは、 通常の塗装作業において 広く採用される塗料(顔料)、例えば、 メタクリル酸メチル樹脂、 エポキシ樹脂、 フエノール樹脂、 尿素樹脂、 メラミン樹脂などの吸収スぺクトルに一致し、 この 範囲にて赤外線を積極的に放射すると、 赤外線の吸収が効率よく行われる。 なお、 図 1 2は、 各樹脂に対応した赤外線吸収スぺクトル (図中実線) と、 赤 外線ランプ 2の ¾†スペクトル (図中波線) との相関関係を示すグラフを示す図 である。 また、 赤外線吸収スペクトルに関し、 グラフ縦軸は赤外線の吸収率に相 当する。 また、 赤外線; Wスペクトルに関し、 グラフ縦軸は赤外線の放射ェネル ギー (放射量) に相当する。 即ち、 図中点線と図中実線との差 (開き) が大きく なるほど、 塗料における赤外線の吸収量が増えるといえる。
また、 各種塗料 (顔料) は、 図 1 2に示されるように 3 . Ο μ π!〜 4 . 0 μ τα の赤外線 (図 1 2中矢印 Α間)、 及ぴ 5 . 5 m〜1 0 . Ο μ πι (図 1 2中矢印 Β間) の赤外線を最も効率良く吸収するということが各種実験において把握され ている。 そこで本実施の形態においては、 上記した各種塗料が好む 3 . 0 /z m〜 4 . O /x mの波長域、 及ぴ 5 . 5 μ πι〜1 0 . 0 μ mの波長域に放射スペクトル のピークを設定することによって、 さらなる乾燥時間の短縮を図っている。 また、 内部筐体 2 0の天板 2 1には、 内部筐体 2 0外方の空気をその内方側に 導き入れる空気導入口 2 5 (連通路) が形成されている。 さらに、 各空気導入口 2 5には、 先に記載した電動ファン 3 (送風機) が取り付けられている。 また、 上記した各反射板 2 3の間には、 電動モータ (図示略) 及ぴこの電動モータにて 可動される整流板 2 7が取り付けられている。 '
—方、 外部筐体 4 0は、 内部筐体 2 0と同様に天板 4 1及び側壁板 4 2にて形 成される箱状をなし、 その一端面は内部筐体 2 0に形成された開口部 2 4と同一 方向において大きく開口している (図 4参照)。
なお、 その側壁板 4 2は、 内部筐体 2 0の側壁板 2 2よりも十分に長く形成さ れており、 図 5に示されるように、 内部筐体 2 0に形成される開口部 2 4は、 外 部筐体 4 0に形成された開口部 4 3に対して若干その奥行き方向に下がって開口 することとなる。
また、 天板 4 1には、 外気導入口 4 4が形成されている。 外気導入口 4 4は、 必要に応じて筐体 8外部の空気 (外気) を筐体 8内に取り入れるための開口であ る。 また、 外気導入口 4 4には、 流入空気中の塵や埃を除去するための集麈フィ ルタ 4 5、 及び外気導入口 4 4に流入する外気の流量を調節せしめる流量調節板 4 6が取り付けられている。
なお、 流 調節板 4 6は、 外気導入口 4 4の内方に向かってスライド自在に設 けられており、 外気導入口 4 は、 その流量調節板 4 6をその内方側にスライド させることにより、 開口面積を任意に調節できる構造となっている。
また、 内部筐体 2 0と前記外部筐体 4 0とは、 伸縮自在なアジヤスタ 7 0によ つて連結されている。 このアジヤスタ 7 0は、 外部筐体 4 0と内部筐体 2 0との 位置決めをなす連結部材としての機能を備える他、 上記した内部筐体 2 0及び外 部筐体 4 0にて形成される循環路 4の通路幅 T (通路断面) を可変させる機能を も備えている。 すなわち、 アジヤスタ 7 0は、 本発明に係る流量調節機構として の役割を備える。 以下、 図 7及び図 8を参照してこの流量調節機構 (アジヤスタ 7 0 ) について説明する。
アジヤスタ 7 0は、 図 8に示されるように、 外部筐体 4 0の天板 4 1上にステ 一 7 5を介して溶接されたボス 7 1と、そのボス 7 1に螺入されたボルト 7 2と、 このボルト 7 2を回転させるための操作ハンドル 7 3と、 を有し、 ボルト 7 2の 先端部分は、 前記内部筐体 2 0の天板 2 1に回転自在に連結されている。
また、 内部筐体 2 0の各角部には、 外部筐体 4 0の側壁板 4 2にて支持された 断面 L字型のガイドレール 7 4が設けられている。 そして、 アジヤスタ 7 0の操 作時には、 このガイドレール 7 4に沿って内部筐体 2がその奥行き方向に移動す る機構となっている。
なお、 内部筐体 2 0と外部筐体 4 0との相対的な位置関係は、 操作ハンドル 7 3の回転方向に応じて決定される。 即ち、 図 8中、 矢印 R方向に操作ノ、ンドル 7 3を回転させると内部筐体 2 0が外部筐体 4 0から離反する (図 8中矢印 R 1方 向)。 一方、 図 8中、 矢印 L方向に操作ハンドル 7 3を回転させると内部筐体 2 0が外部筐体 4 0側 (図中矢印 R 1方向) に接近 (図中矢印 L 1方向) する。 こ のように外部筐体 4 0と内部筐体 2 0との間に伸縮自在なアジヤスタ 7 0を設け ることによって、 外部筐体 4 0と内部筐体 2 0との間に形成される循環路 4の通 路幅 T (通路断面) を任意に変更することが可能となる。
続いて、 制御系について説明する。 制御系は、 インパータ (D CZA Cコンバータ)、 タイマー、 C P U (マイク 口プロセッサ)、 ROM (リード 'オンリ 'メモリ)、 RAM (ランダム 'ァクセ ス 'メモリ)、 温度センサ 6 (熱電対温度計) などを備え、 時間経過に基づく赤 外線ランプ 2及ぴ電動ファン 3のシーケンス制御、 並びに電動フアン 3の風量調 節に係るフィードパック制御を実施している。 なお、 制御系を構成するインパー タ、 タイマー、 C P U等の各種部品は、 支持ラック 1 Bに固定された制御ボック ス 1 0内に収容されている。また、温度センサ 6は外部筐体 4 0の開口部 4 3 (緣 部) に取り付けられている。
以下、 乾燥装置本体 1 A (筐体 8 ) の使用方法を踏まえつつ、 制御系にて実施 されるシーケンス制御 (自動制御)、 並びに、 筐体 8内に形成される空気の流れ について詳細に説明する。 尚、 電動ファン 3のフィードパック制御については後 に詳述する。 また、 図 1 0は、 制御系にて実施されるシーケンス制御のフローチ ヤートである。
本実施の形態に示す車両用乾燥装置 1は、 図 9に示されるように筐体 8に形成 された開口 4 3を塗装面 Pに対して近接させた状態にて使用する。 そして、 塗装 面 Pを乾燥させるに際して、 まず初めに行うこととしては、 外気導入口 4 4に設 けられた流量調節板 4 6を操作して、 外気導入口 4 4から筐体 8内に取り込まれ る空気の流量調節を行う。 , なお、 流量調節板 4 6の操作においては、 室内温度を考慮して外気導入口 4 4 の開口面積を定める。 すなわち、 夏季など室内温度が高い時には外気の流入量を 増大させるベく流量調節板 4 6を開き、 冬季など室内温度が低い時には外気の流 入量を減少させるベく流量調節板 4 6を閉じて、 筐体 8内の温度調節を行う。 続いて、 上記したアジヤスタ 7 0を操作して循環路 4の通路幅 Tを調節する。 即ち、 この工程では、 アジヤスタ 7 0を操作して筐体 8內における空気の循環率 を所望の値に設定する。
なお、 循環率の設定は、 塗装面 Pに塗布された塗料の性質を考慮して行う。 例 えば、 溶剤の含有量が少なく、 比較的短時間に塗科内の溶剤が揮努しきる塗料に おいては通路幅 Tを大きくして循環流の温度を高めに設定する。 また、 溶剤の含 有量が多く、 その溶剤の揮発に時間が掛かる塗料を塗布した場合においては、 通 路幅 Tを狭くして循環流の^^を低めに設定する、 など各塗料の特性に見合った 循環率に設定する。
なお、 塗料に対する最適な循環率は、 各種予備実験などにて概ね把握すること ができる。 従って、 作業者はこの予備実験の結果を踏まえて通路幅 τの設定を行 なえば、 本実施の形態に示す車両用乾燥装置 1の操作に不慣れな作業者において も適切な循環率が得られる。
続く、 乾燥装置本体 1 Αの操作としては、 まず、 赤外線ランプ 2の点灯時間を 設定すべくタイマーの操作を行う。 すなわち、 塗装面 Pに対する赤外線の放射時 間をタイマーによって定める (ステップ 1 0 1 )。 次いで、 赤外線ランプ 2の点 灯スィッチ 1 0 dを操作して、 赤外線ランプ 2を点灯させるとタイマーのカウン トが開始される (ステップ 1 0 2、 ステップ 1 0 3 )。
ここで赤外線ランプ 2の点灯に伴 V、放射される赤外線は、 開口部 2 4を介して 塗装面 Pに放射される。 その際、 赤外線ランプ 2から放射される赤外線は、 内部 筐体 2 0内にて乱反射され、 塗装面 P全体に略均一な強度にて されることと なる。 また、 赤外線の放射を受けた塗装面 Pでは、 赤外線の放射エネルギーを吸 収して、 まず塗装面 P内部側からカロ熱が開始される。
続いて、 制御系では、 赤外線ランプ 2の放射強度が所定強度に達した力否かを 赤外線放射時 (赤外線ランプの点灯時) からの経過時間に基づき判断する (ステ ップ 1 0 4 )。 すなわち、 C P Uでは、 タイマーのカウントが所定時間に達した ことを受け、 赤外線ランプ 2が所定強度に達したとみなし、 電動ファン 3を作動 させるべくステップ 1 0 5に移行する。 また、 ステップ 1 0 4において、 未だ所 定時間に満たない時には、 赤外線ランプ 2の放射強度が所定強度に達していない とみなし、 赤外線ランプ 2の予熱 (暖気) 運転を継続して行う。
次に、 ステップ 1 0 5では、 電動ファン 3に電力供給を行い、 内部筐体 2 0背 後の空気を空気導入口 2 5を介して塗装面 Pに送風する。 なお、 ステップ 1 0 5 では、 塗装面 P近傍に支持された温度センサ 6の出力値に基づいて電動ファン 3 の風量調節を実施する。 なお、 電動フアン 3の風量調節に伴うフィ一ドバック制 御については後に詳述する。
またこの時、 塗装面 Pにおいては、 赤外 IIの放射エネルギーを吸収して気化し た溶剤が、 この電動ファン 3の作り出す風によつて直ちにその塗装面 P上から拡 散される。 その結果、 塗装面 Pにおいて、 次なる溶剤の揮発が促される。
続く、 ステップ 1 0 6では、 電動ファン 3の作動と略同時に、 整流板 2 7をス イング (回動) させるべく電動モータに電力供給を行い、 整流板 2 7をスイング させる。 このため電動ファン 3にて塗装面 Pに送風される空気は、 塗装面 P全体 に略均一に送風されることとなる。
また、 塗装面 Pに送風された空気は塗装面 Pに沿って移動し、 塗装面 Pと筐体 8との間を通過して筐体 8外部に排出されるが、 上記の如く外部筐体 4 0と内部 筐体 2 0との間には循環路 4 (所定の隙間) が形成されている。 このため筐体 8 外部に排出されようとする内部筐体 2 0内の空気は、 一部、 この循環路 4に流入 して内部筐体 2 0背後に導かれる。
そして、 この空気は、 上記した外気導入口 4 4から流入する空気と共に電動フ アン 3に再び吸引され、 塗装面 P側に送風される。 すなわち、 電動ファン 3の作 動に伴い電動ファン 3→塗装面 P—循環路 4→内部筐体 2 0背後→電動フアン 3 →塗装面 Pの経路を迪る循環流が筐体 8内に形成されることとなる。
なお、 筐体 2内に形成される循環流は、 塗装面 Pからの輻射熱や、 赤外線ラン プから放熱された熱エネルギーを吸収して次第に昇温する力 s、 循環路 4を経て再 度塗装面 Pに送風される空気は、 外気導入口 4 4より吸気された空気 (外気) と 混ざり合うためその温度は低下する。 その結果、 塗装面 Pに再送風される空気の 温度は、 前回に送風された空気の温度と略同じ温度に保たれることとなり、 塗装 面 Pの過剰な温度上昇に起因した不必要な塗膜の形成を回避することできる。 より詳しく説明すると、 循環路 4を流下して電動ファン 3に供される空気の流 量は、 上記の如くアジヤスタ 7 0の調節によって制限されている。 即ち、 アジャ スタ 7 0を縮めると、 外気導入口 4 4を経て供される空気量が増え、 塗装面 Pに 送風される空気の温度も自ずと低くなる。 このように本実施の形態に示す車両用 乾燥装置 1では、 アジヤスタ 7 0を操作して空気の循環率を調節せしめることに より、 筐体 8内の温度を略一定に保つことが可能なる。
—方、 アジヤスタ 7 0を伸ばして通路幅 Tを大きくすると、 筐体 2內の空気の 循環率は高くなり、 その結果、 循環路 4を経て電動ファン 3に供される空気量が 多くなる。 よって、 循環路 4を経て電動ファン 3に供される空気量と、 外気導入 口 4 4を経て供される空気量との比率が変化し、 以て塗装面 Pに送風される空気 の温度が高くなる。
次いで、 C P Uでは、 タイマーにてカウントされる経過時間が所定時間に達し たか否かを判断し (ステップ 1 0 7 )、 タイマーのカウントが所定時間に達して いると判断したときには、 塗装面 Pが乾燥したとみなし赤外線ランプ 2を消灯す る (ステップ 1 0 8 )。 また、 ステップ 1 0 7において未だ所定時間に達してい ないと判断された時には、 引き続き塗装面 Pに対する赤外線の放射を行う。 すな わち、 ステップ 1 0 7では、 タイマーのカウントをトリガーとして塗装面 Pの乾 燥具合を把握している。
また、 C P Uでは、 赤外線ランプ 2の消灯後、 その赤外線ランプ 2を冷却すベ く電動ファン 3を所定時間継続して作動させた後 (ステップ 1 0 9 )、 電動ファ ン 3に供給する電力を遮断する (ステップ 1 1 0 )。
このように本実施の形態に示す車両用乾燥装置 1では、 赤外線ランプ 2から放 射された赤外線が、 筐体 8内にて乱反射しながら塗装面 P全体に対して均一に作 用する。 また、 その赤外線は、 塗装面 Pをその内部側から加熱し、 その結果、 塗 装面 P内部にて顔料の結合が促進され、 同時に、 塗料内に含まれた溶剤も速やか に塗装面 P外部へと揮発する。
またこの時、 塗料内から盛んに揮発する溶剤は、 電動ファン 3が作り出す循環 流によって速やかに拡散される。 また、 筐体 8内を循環する空気は塗装面の輻射 熱などを吸収して次第に昇温するが、 アジヤスタ 7 0を操作して筐体 2内におけ る空気の循環率を適切な値に調節することにより、 塗装面 Pに送風される空気の 過剰な温度上昇が回避される。 よって塗装面の不必要な加熱(乾燥)が防止され、 理想的な乾燥条件が得られる。
なお、 上記した例では筐体 8内における空気の循環率を変更するに際して、 ァ ジャスタ 7 0の操作を主にその循環率の調節を行っているが、 外気導入口 4 4を 経て流入する空気の流量を積極的に調節することによつても、 循環率の調節をな し得る。 すなわち、 その外気導入口 4 4の開口面積を拡大若しくは収縮させて電 動ファン 3に供される空気の比率を変更してもよい。 より詳しく説明すると、 塗装面に送風される空気の ½が高いときには外気導 入口 4 4の開口面積を拡大して電動ファン 3に供される外気の量を増やし、 塗装 面に送風される空気の温度が低レ、ときには外気導入口 4 4の開口面積を収縮して 電動ファン 3に供される外気の量を減らすことにより、 筐体 8内における空気の 循環率を変更できる。 すなわち、 外気導入口 4 4に設けられた流量調節板 4 6も 本発明に係る流量調節機構としての機能を有する。
続いて、ステップ 1 0 5にて実施されるフィードバック制御について説明する。 なお、 図 1 1は、 電動ファン 3の風量調節に係るフィードパック制御のフローチ ャ一トであり、本処理ルーチンは、本ステップ 1 0 5の処理が終了するまでの間、 継続してなされる。
また、 本フィードパック制御に関し、 温度センサ 6にて検出される温度は、 塗 装面 Pに送風された空気の温度であるが、 塗装面 Pの表面温度は、 その温度セン サ 6の出力値に略比例して変動する。 従って、 温度センサ 6の出力値を略一定に 保つと塗装面 Pの表面温度も自ずと略一定に保たれることとなる。 以下、 図 1 1 に示されるフローチャートを参照して、 電動ファン 3の風量調節に伴うフィード パック制御を説明する。
まず、 C P Uでは、 温度センサ 6の出力値を RAM上に読み込む (ステップ 2 0 1 )。 続いて、 R OM上に予め記録された目標空気温度を読み出し (ステップ 2 0 2 )、 RAM上に記録された温度センサ 6の出力値とその目標空気温度とを 照らし合わせて、 温度センサ 6の出力値が目標空気温度に対して高いか否かを判 定する (ステップ 2 0 3 )。 なお、 目標空気温度とは、 塗装面 Pの表面温度に対 して十分小さい値であり、 予め任意に設定可能な値である。 ' そして、 ステップ 2 0 3において、 温度センサ 6の出力値が目標空気温度より も高いと判断されたときには、 電動ファン 3の風量を増量すぺくインパータの出 力周波数を高くする (ステップ 2 0 4 )。 一方、 温度センサ 6の出力値が目標空 気温度よりも低いと判断されたときには、 電動ファン 3の風量を減量すべくイン パータの出力周波数を低くする (ステップ 2 0 5 )。
なお、 電動ファン 3の風量が増量された時には、 多量の外気が外気導入口 4 4 を経て筐体 2内へと流入することとなり、 塗装面に送風される空気の温度は低下 する。 よって、 塗装面 Pの過剰な温度上昇が抑制される。 一方、 電動: 風量が減量されると、 筐体 2内へと流入する外気の流量も減り、 塗装面に送風さ れる空気の温度は上昇する。 よって、 塗装面 Pの過剰な冷却が抑制される。
なお、 筐体 8內における空気の温度調節は、 上記したアジヤスタ 7 0の操作に て決定されることが望ましく、 本フィードバック制御は、 より正確な温度管理を 実施するための一制御である。
このように本実施の形態に示す車両用乾燥装置 1では、 塗装面 Pに送風される 空気の温度を温度センサ 6にて監視すると共に、 その出力値を電動ファン 3の風 量調節にフィードパック制御させることにより、 塗装面 Pの温度管理をより正確 に行えるようにしている。 なお、 上記したシーケンス制御及ぴフィードバック制 御は、 一実施例であり、 その詳細は、 任意に変更可能である。
続いて、 上記した筐体 8を支持する支持ラック 1 Bについて説明する。
支持ラック 1 Bは、 塗装面 Pに対する赤外線の放射を容易にするものであり、 筐体 8 (乾燥装置本体 1 A) を任意の高さや方向にて支持するものである。
この支持ラック 1 Bは、 縦フレーム 1 0 1と、 この縦フレーム 1 0 1の上下方 向にスライド自在に設けられたブラケット 1 0 2と、 このブラケット 1 0 2の水 平方向にスライド自在に保持された横フレーム 1 0 3と、 横フレーム 1 0 3から 延出されて筐体 8を揺動自在に支持する支持アーム 1 0 6と、 を備える。
また、 縦フレーム 1 0 1の内部には、 パランスウェイト 1 0 7が設けられ筐体 8の上下移動に要する力を軽減している。 より詳しくは、 図 1に示されるように 一端が縦フレーム 1 0 1の頭頂部に固定され他端がブラケット 1 0 2に連結され たチェーン 1 0 8と、 縦フレーム 1 0 1内にて昇降自在に設けられたパランスゥ エイ ト 1 0 7と、 このパランスウェイト 1 0 7に取り付けられた可動プーリ 1 0 7 aと、縦フレーム 1 0 1の頭頂部に設けられた固定プーリ 1 0 1 aと、を備え、 前記チェーン 1 0 8は、 図 1に示されるように可動プーリ 1 0 7 aと固定プーリ 1 0 1 aとを介してブラケット 1 0 2から縦フレーム 1 0 1の頭頂部に架けて張 架されている。
なお、 パランスウェイト 1 0 7と、 筐体一式を含む横フレーム 1 0 3との間に は、 各プーリ 1 0 7 a、 1 0 1 aの配列によって倍力作用が生じる。 このためパ ランスウェイトの重量を、 筐体 8—式を含む横フレームの総重量に対して 1ノ 2 に設定すると、 パランスウェイト 1 0 7と筐体 8—式を含む横フレーム 1 0 3力 S 重量において均衡状態となり、 筐体 8の上下移動が容易になる。
また、 縦フレーム 1 0 1の下端にはボトムフレーム 1 0 9が連結されており、 このボトムフレーム 1 0 9の四隅には、 キャスタ 1 1 0が設けられている。 この ため本装置 1を修理工場内にて自由に移動させることができる。
本実施の形態では、 車両用の乾燥装置として本発明を説明したが、 本発明の乾 燥装置は、 勿論、 他の用途においても有用である。 また、 上記した乾燥装置本体 1 Aの構造や、支持ラック 1 Bの構造は、あくまでも本発明の一実施例にすぎず、 その詳細は、 任意に変更しても構わない。
例えば、 上記した乾燥装置 1においては アジヤスタ 7 0を使用して筐体 8内 における空気の循環率を設定しているが、 内部筐体 2 0と外部筐体 4 0との間に 脱着自在なスぺ一サを介在させ、 そのスぺーサの厚みを所望に応じて適時変更す ることによつても筐体 8内における空気の循環率を変化させることができる。 ま た、 内部筐体 2 0と外部筐体 4 0との間に形成される隙間に、 短冊状の弁体を設 け、 この弁体を操作して循環路 4を流れる空気の流量を調節せしめるようにして もよい。
なお、 本実施の形態においては、 赤外線の放射装置として赤外線ランプ 2を採 用しているが、 赤外線ランプ 2に替えて赤外線ヒータなどを使用してもよい。 ま た、赤外線ランプ 2は、上記したように天板 2 1と ϊな面内に配設している力 例えば、 面状赤外線ヒータなどを内部筐体 2 0の内壁面に配置して赤外線の放射 部を形成してもよい。 また、 内部筐体 2 0の内壁面にエンボス加工を施し、 赤外 線の反射効率を高めるようにしてもよい。
以上のように、 本実施形態によれば、 塗装面の乾燥に掛かる時間を大幅に短縮 でき、 しかも品質の良い塗装面が得られる車両用乾燥装置を提供できる。
本発明は前記した実施形態の内容に限定されるものではなく、 当業者であれば 特許請求の範囲に記载した要旨から逸脱しない範囲で種々に変形可能である。 彦業上の利用可能性 本発明の乾燥装置は、 車両を修理するに際して、 車体に塗布した塗料などを乾 燥させる装置として特に適している。 また、 本発明の乾燥装置は、 車両のみなら ず、 家具類の塗装面の乾燥や、 建築物壁面の塗装面の乾燥など、 各種用途に使用 することもできる。

Claims

請求の範囲
1 . 一端面に開口部を有する筐体と、
この筐体内に設けられ前記開口部より塗装面に対して赤外線を放射する赤外線 放射装置と、
前記筐体内の空気を、 前記開口部を介して塗装面に送風する送風機と、 前記送 によって塗装面に送風された空気のうち、 その少なくとも一部を、 再度、 筐体内に流入させる循環路と、
前記筐体内に外気を導く外気導入口と、
前記循環路を経て筐体内に再流入する空気の流量を調節する流量調節機構と、 を備えることを特徴とする乾燥装置。
2 . 前記流量調節機構は、 前記循環路の通路断面を拡大及び収縮させて、 この循 環路内を流れる空気の流量調節を行うことを特徴とする請求項 1に記載の乾燥装 置。
3 . 前記筐体は、
前記赤外線放射装置を内包して赤外線の放射部を形成する内部筐体と、 この内部筐体表面との間に所定の隙間を保ちつつ、 内部筐体をその外方側から 包み込む外部筐体と、
前記所定の隙間および前記内部筐体内方に形成される空間とを互いに連通させ る連通路と、 を備え、
前記所定の隙間は、 前記循環路の一部を構成していることを特徴とする請求項 1に記載の乾燥装置。
4 . 前記流量調節機構は、 前記内部筐体と前記外部筐体とを互いに連結する伸縮 自在のアジヤスタを備え、 このアジヤスタの全長を可変させることにより前記循 環路の通路断面を拡大及び収縮させることを特徴とする請求項 3に記載の乾燥装
5 . 前記外気導入口は、 前記循環路の経路中に設けられ、
前記流量調節機構は、 その外気導入口の開口面積を拡大及び収縮させて、 前記 循環路を経て前記筐体内に再流入する空気の流量調節を行うことを特徴とする請 求項 1に記載の乾燥装置。
6. 前記流量調節機構は、 前記塗装面に送風される空気の温度を検出する温度検 出センサと、 この温度検出センサにて検出される空気の温度に基づき前記送風機 の風量調節を行う制御装置と、 を備え、
前記制御装置は、 前記温度センサにて検出される温度が目標空気温度より高い とき前記送 の出力を増大させ、 前記温度センサにて検出される温度が目標空 気温度より低いとき前記送 の出力を低下させることを特徴とする請求項 1に
7. 前記赤外線放射装置にて放射される赤外線は、 2· 5μπ!〜 14. 0 / mの 波長を含む赤外線であることを特徴とする請求項 1に記載の乾燥装置。
8. 前記赤外線放射装置にて放射される赤外線は、 3· 0μπι〜4. 0 /imの波 長域に放射エネルギーのピークを有することを特徴とする請求項 1に記載の乾燥
9. 前記赤外/線放射装置にて放射される赤外線は、 5. 5μπ!〜 10. Ο μπιの 波長域に放射エネルギーのピークを有することを特徴とする請求項 1に記載の乾
10. 前記筐体を支持する支持ラックを備え、
前記支持ラックは、 縦フレームと、 この縦フレームにスライド可能に保持され た横フレームとを有し、 前記筐体は、 前記横フレームに摇動自在に保持されるこ とを特徴とする請求項 1に記載の乾燥装置。
PCT/JP2002/001308 2001-02-15 2002-02-15 Systeme de sechage WO2002065041A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/467,748 US6895689B2 (en) 2001-02-15 2002-02-15 Drying system
CA002438578A CA2438578A1 (en) 2001-02-15 2002-02-15 Drying apparatus
EP02712392A EP1367348A1 (en) 2001-02-15 2002-02-15 Drying system
KR10-2003-7010737A KR20030090643A (ko) 2001-02-15 2002-02-15 건조 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001038495A JP4656358B2 (ja) 2001-02-15 2001-02-15 乾燥装置
JP2001-38495 2001-02-15

Publications (1)

Publication Number Publication Date
WO2002065041A1 true WO2002065041A1 (fr) 2002-08-22

Family

ID=18901454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001308 WO2002065041A1 (fr) 2001-02-15 2002-02-15 Systeme de sechage

Country Status (7)

Country Link
US (1) US6895689B2 (ja)
EP (1) EP1367348A1 (ja)
JP (1) JP4656358B2 (ja)
KR (1) KR20030090643A (ja)
CA (1) CA2438578A1 (ja)
TW (1) TW518294B (ja)
WO (1) WO2002065041A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20040107A1 (it) 2004-03-02 2004-06-02 Sipa Societa Industrializzazio Dispositivo e metodo di condizionamento di oggetti in plastica.
ITRM20040163A1 (it) 2004-03-30 2004-06-30 Sipa Societa Industrializzazio Apparato di stampaggio per soffiaggio di oggetti in plastica.
KR100619427B1 (ko) * 2005-11-03 2006-09-01 주식회사 지씨남원 루비코트 근적외선히터를 이용한 도장건조장치
JP5002168B2 (ja) * 2006-02-28 2012-08-15 株式会社東芝 液滴塗布装置及び乾燥装置
US8304012B2 (en) * 2006-05-04 2012-11-06 Advanced Cardiovascular Systems, Inc. Method for drying a stent
ITRM20060277A1 (it) 2006-05-24 2007-11-25 Sipa Societa Industrializzazio Impianto e processo di verniciatura di contenitori
GB2444028A (en) * 2006-11-23 2008-05-28 Stephen Ball Personal drying apparatus with heater, fan and infra-red source
KR100772329B1 (ko) * 2007-02-05 2007-10-31 주식회사 테크닉스디앤씨 칙소성 우레탄과 섬유시트를 이용한 방수 및 바닥재시공방법
JP4663685B2 (ja) * 2007-06-13 2011-04-06 気高電機株式会社 乾燥装置
GB0713871D0 (en) * 2007-07-17 2007-08-29 Johnson William N H Flood barrier or the like
US8524330B2 (en) * 2009-03-06 2013-09-03 GM Global Technology Operations LLC Method and apparatus for paint curing
JP5568377B2 (ja) * 2010-05-26 2014-08-06 本田技研工業株式会社 乾燥方法
DE102010063260A1 (de) * 2010-12-16 2012-06-21 Dürr Systems GmbH Bausatz für einen Trocknerabschnitt eines Trockners und Verfahren zum Herstellen eines Trocknerabschnitts eines Trockners
KR101145392B1 (ko) * 2011-01-24 2012-05-15 주식회사 오르테크 원적외선 세라믹히터를 이용한 전착도장 건조장치
US8756827B1 (en) * 2011-05-12 2014-06-24 The Paint Booth Guys, Inc. Spray booth system and methods
US9126216B2 (en) 2011-06-17 2015-09-08 Lockheed Martin Corporation Core striping mechanism
SE536335C2 (sv) * 2011-12-20 2013-08-27 Pivab Ab Anordning för torkning av färg
BR102012019968B1 (pt) * 2012-08-09 2021-11-03 Global Service Controle Termico E Manutencao Refrataria Ltda Mecanismo para carrinho móvel para queimador, com sistema de ajuste para posicionamento em forno industrial
US20140223759A1 (en) * 2013-02-11 2014-08-14 Harry Konstantino Gougoulas Carwash drier apparatus with a stand
US9656289B2 (en) * 2013-03-13 2017-05-23 Nike, Inc. Automatic painting on pliable items
WO2016079846A1 (ja) * 2014-11-20 2016-05-26 日産自動車株式会社 塗装乾燥装置及び塗装乾燥方法
EP3262360A1 (de) * 2015-02-26 2018-01-03 BASF Coatings GmbH Vorrichtung für kontrollierte ablüft- und härtungsprozesse
TWI594803B (zh) * 2016-07-22 2017-08-11 Jg Environmental Technology Co Ltd Gas circulation system and gas circulation method applied in drying room of coating operation
DE102017129017A1 (de) * 2017-12-06 2019-06-06 Heraeus Noblelight Gmbh Verfahren zum Trocknen eines Substrats, Trocknermodul zur Durchführung des Verfahrens sowie Trocknersystem

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028055A (ja) * 1973-07-17 1975-03-22
JPH0195282U (ja) * 1987-12-16 1989-06-23
JPH02131168A (ja) * 1988-11-11 1990-05-18 Banzai:Kk 乾燥装置
JPH0320296U (ja) * 1989-07-03 1991-02-27
JPH06137763A (ja) * 1992-10-27 1994-05-20 Showa Device Plant Kk 遠赤外線放射球
JPH0718192U (ja) * 1993-08-27 1995-03-31 四国計測工業株式会社 加熱装置
JPH07328511A (ja) * 1994-06-10 1995-12-19 Nissan Motor Co Ltd 乾燥装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195282A (ja) 1987-10-05 1989-04-13 Iseki & Co Ltd 乾燥機における穀物乾燥制御方法
US5070625A (en) * 1988-04-25 1991-12-10 Urquhart Gordon T Oven for the curing and cooling of painted objects and method
US4967487A (en) * 1988-04-25 1990-11-06 Urquhart Gordon T Oven for the curing and cooling of painted objects and method
JPH0320296A (ja) 1989-06-17 1991-01-29 Hotta Yakuhin Gosei Kk プロシラリジン誘導体及びその製法
US5282145A (en) * 1991-08-29 1994-01-25 Ronald Lipson Method of repair paint curing for production lines and apparatus
JPH0718192A (ja) 1993-07-02 1995-01-20 Nippon Kayaku Co Ltd 含銅アゾ化合物及びそれを用いて染色する方法
US5456023A (en) * 1994-06-28 1995-10-10 Ransburg Corporation Advance cure paint spray booth
GB9418561D0 (en) * 1994-09-15 1994-11-02 Trisk Edwin Systems Ltd Apparatus for drying a painted surface
US5793019A (en) * 1996-10-23 1998-08-11 Driquik, Inc. Electric infra-red and forced air oven
US6062850A (en) * 1997-11-21 2000-05-16 Honda Giken Kogyo Kabushiki Kaisha Paint curing oven
JP4044686B2 (ja) * 1997-11-21 2008-02-06 本田技研工業株式会社 乾燥炉

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028055A (ja) * 1973-07-17 1975-03-22
JPH0195282U (ja) * 1987-12-16 1989-06-23
JPH02131168A (ja) * 1988-11-11 1990-05-18 Banzai:Kk 乾燥装置
JPH0320296U (ja) * 1989-07-03 1991-02-27
JPH06137763A (ja) * 1992-10-27 1994-05-20 Showa Device Plant Kk 遠赤外線放射球
JPH0718192U (ja) * 1993-08-27 1995-03-31 四国計測工業株式会社 加熱装置
JPH07328511A (ja) * 1994-06-10 1995-12-19 Nissan Motor Co Ltd 乾燥装置

Also Published As

Publication number Publication date
US6895689B2 (en) 2005-05-24
EP1367348A1 (en) 2003-12-03
TW518294B (en) 2003-01-21
KR20030090643A (ko) 2003-11-28
JP4656358B2 (ja) 2011-03-23
US20040231183A1 (en) 2004-11-25
CA2438578A1 (en) 2002-08-22
JP2002243366A (ja) 2002-08-28

Similar Documents

Publication Publication Date Title
WO2002065041A1 (fr) Systeme de sechage
US8319199B2 (en) Irradiation sources and methods
US8193514B2 (en) Apparatus and method for curing surface coated materials
JP2012034891A (ja) 光重合器
US6207118B1 (en) Mobile ultraviolet radiation curing device
KR20050086399A (ko) 할로겐히터 도장 건조장치
JP3942567B2 (ja) 塗膜の乾燥装置、乾燥方法
CA3160847A1 (en) Infrared hairdryer
JPH05138107A (ja) 塗装用乾燥炉
JP4796706B2 (ja) 浴室暖房機
KR200386028Y1 (ko) 할로겐히터 도장 건조장치
JP2004116919A (ja) 車輌塗装部の乾燥装置及び乾燥方法
JPS5825220Y2 (ja) 温風こたつ
CN219637332U (zh) 一种真空镀膜uv光油的固化机构
KR20180102932A (ko) 전기온풍기
JP2004177003A (ja) ファンコンベクタ
JPS5825225Y2 (ja) 温風循環こたつ
JPS5825224Y2 (ja) 温風強制循環こたつ
JP3203509U (ja) ヘアドライヤー
KR20200046675A (ko) 위치조절이 용이한 선풍기
KR200310708Y1 (ko) 온수를 이용한 온풍기
JP2011153816A (ja) 浴室暖房機
KR200207169Y1 (ko) 이동식 온풍발생기
JPS5825217Y2 (ja) 温風こたつ
CN111911992A (zh) 一种多功能暖风机

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2438578

Country of ref document: CA

Ref document number: 1020037010737

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002712392

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037010737

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002712392

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10467748

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2002712392

Country of ref document: EP