WO2002038941A1 - Pompe d'injection distributrice a chambre d'accumulation - Google Patents

Pompe d'injection distributrice a chambre d'accumulation Download PDF

Info

Publication number
WO2002038941A1
WO2002038941A1 PCT/JP2000/007912 JP0007912W WO0238941A1 WO 2002038941 A1 WO2002038941 A1 WO 2002038941A1 JP 0007912 W JP0007912 W JP 0007912W WO 0238941 A1 WO0238941 A1 WO 0238941A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
fuel injection
injection pump
plunger
fuel
Prior art date
Application number
PCT/JP2000/007912
Other languages
English (en)
French (fr)
Inventor
Kenji Shingu
Original Assignee
Yanmar Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co.,Ltd. filed Critical Yanmar Co.,Ltd.
Priority to PCT/JP2000/007912 priority Critical patent/WO2002038941A1/ja
Priority to US09/744,810 priority patent/US6516784B1/en
Priority to DE60022914T priority patent/DE60022914T2/de
Priority to EP00974889A priority patent/EP1333173B1/en
Priority to CNB008199876A priority patent/CN100494664C/zh
Priority to JP2002541238A priority patent/JP4422405B2/ja
Publication of WO2002038941A1 publication Critical patent/WO2002038941A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/16Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor characterised by the distributor being fed from a constant pressure source, e.g. accumulator or constant pressure positive displacement pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/02Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor being spaced from pumping elements
    • F02M41/06Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor being spaced from pumping elements the distributor rotating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0421Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/02Pumping installations or systems having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections

Definitions

  • the present invention relates to a configuration of an electronically controlled pressure-accumulation type distribution fuel injection pump that distributes and supplies high-pressure fuel accumulated in an accumulation chamber to each cylinder by a distribution unit.
  • This pressure-accumulation type fuel injection pump supplies high-pressure fuel accumulated in a pressure accumulation chamber to each cylinder, and is described in, for example, Japanese Patent Application Laid-Open No. 7-509420.
  • a pressure accumulating type fuel injection pump a fuel pressure accumulating chamber, a plunger for high pressure fuel pumping, an injection control valve for fuel injection control, a distribution means for distributing fuel to each cylinder, a pressure control valve, etc.
  • Functional members for forming a high-pressure path to which high pressure is always applied are provided, but these functional members are separately housed in casings such as blocks formed separately.
  • each functional member configured in the separated structure is always subjected to high pressure even at the connection point, it is difficult to secure the strength, and there is a case where the reliability is low such as oil leakage or damage occurs.
  • the structure was also complicated.
  • the present invention relates to a pressure-accumulation type distribution type fuel injection pump for distributing high-pressure fuel accumulated in one or a plurality of accumulators to respective cylinders by a distributing means, comprising a plunger, a pressure control valve for pressure control, and a fuel injection control.
  • Functional components that constitute a high-pressure path such as a fuel injection control valve, a pressure accumulation chamber, and a distribution means, are disposed in a hydrid base. As a result, these components to which a high pressure is constantly applied are arranged in the hydraulic base, and the strength of the high-pressure path can be sufficiently ensured.
  • connection between the respective components can be performed by an oil passage formed by a drill hole or the like formed in the hydraulic base, and since there is no need to use a joint part or the like, oil leakage or damage to the piping may occur. No reliability can be improved.
  • the distribution shaft as the distribution means is arranged in a direction orthogonal to the cam shaft.
  • the dimension of the fuel injection pump in the camshaft direction can be reduced, and the size of the fuel injection pump can be reduced as a whole.
  • the length of the injection pipe leading to the injection nozzle is shortened by taking out the discharge valve above the holder. Therefore, the fuel volume in the injection pipe is reduced, the injection delay is reduced, and the injection rate and the injection timing can be controlled with high accuracy in a wide rotation range.
  • a distribution shaft as the distribution means is driven by a cam shaft.
  • the fuel passage from the plunger driven by the camshaft to the discharge valve through the distribution shaft can be shortened, and the fuel volume in the fuel passage can be reduced.
  • a solenoid valve such as a pressure control valve, it is possible to achieve high quality injection such as injection rate control such as a small amount of pilot injection and post injection, initial injection rate control, and injection timing control.
  • the present invention includes one plunger section for accumulating fuel in the accumulator. This will reduce the size of the fuel injection pump. In particular, the number of parts can be reduced, and the structure can be simplified and the cost can be reduced.
  • a cam for driving the plunger of the plunger portion is formed separately from a cam shaft for supporting the cam.
  • a pulse generating member for cylinder discrimination is provided on a cam shaft of the accumulator type distribution type fuel injection pump, and the pulse generating member is formed integrally with the cam.
  • the present invention provides a method for distributing fuel by setting a rotational speed of a power shaft for driving a plunger for pumping fuel to the accumulator to be equal to a rotational speed of an engine to which the accumulator type distribution type fuel injection pump is mounted.
  • the rotational speed of the means is half the rotational speed of the engine.
  • the number of peaks formed on the cam is half of the number of cylinders, the number of peaks can be reduced, and the cam can be downsized.
  • the number of processing steps for the cam can be reduced.
  • the cam profile can be reduced to half the speed, and the outer peripheral surface of the cam can be formed to be convex toward the outside.
  • a grindstone can be used, the outer peripheral surface can be easily polished during processing, the processing time can be reduced, and the cost can be reduced.
  • the present invention provides the distributing means, wherein the distributing means is driven by a camshaft via a bevel gear, and the number of teeth of the bevel gear on the distributing means side is twice the number of teeth of the bevel gear on the force shaft side. It was done. As a result, the rotation speed of the distributing means can be reduced with a simple configuration and at low cost by rotating the cam shaft. The speed can be half the rolling speed.
  • the present invention provides a camshaft, wherein both ends of the camshaft are supported by a housing, and a bearing for supporting a peripheral surface of the camshaft on a side opposite to the plunger is disposed near a force center on a center side of the support by the housing. is there.
  • the load that the camshaft receives from the plunger or the like can be received by the bearing, and the deflection of the camshaft can be suppressed to reduce vibration and noise.
  • the bevel gear can be made smaller, and the fuel injection pump can be downsized as a whole.
  • a pressure control valve for accumulating pressure and an injection control valve of the plunger section which are control system functional members, are respectively arranged in a direction perpendicular to a cam shaft.
  • the dimension of the fuel injection pump in the camshaft direction can be reduced, and the overall size of the fuel injection pump can be reduced.
  • the camshaft is arranged horizontally, the axes of the pressure accumulating pressure control valve and the injection control valve are vertical, so that the sliding portion of the control valve can be prevented from being unevenly worn.
  • a pressure control valve for accumulating pressure, a distribution means, and an injection control valve of the plunger section which are control system functional members, are respectively disposed in a direction perpendicular to the cam shaft.
  • the dimension of the fuel injection pump in the cam shaft direction can be reduced, and the overall size of the fuel injection pump can be reduced.
  • the pressure control valve for pressure accumulation, the distribution means, and the injection control valve have vertical axes, so the sliding parts of the control valve and the distribution shaft part may be unevenly worn. Can be prevented.
  • control system functional member is arranged in a cam shaft direction in the order of a plunger part, a distribution means, and an injection control valve.
  • the plunger section for accumulating pressure, the distribution means, and the injection control valve are arranged in series.
  • the solenoid valve for controlling the pressure of the accumulation chamber of the plunger portion and the solenoid valve for controlling the injection control valve are arranged at the end of the plunger and the end of the injection control valve, respectively.
  • the sliding direction of the sliding member of the control electromagnetic valve is perpendicular to a cam shaft.
  • a plurality of the pressure accumulation chambers are formed, and the plurality of the pressure accumulation chambers are arranged in parallel with each other.
  • FIG. 1 is a schematic diagram showing a state of the fuel injection pump of the present invention at the time of fuel injection
  • FIG. 2 is a schematic diagram showing a state of the fuel injection pump also at the time of no fuel injection
  • FIG. FIG. 4 is a side cross-sectional view showing a fuel injection pump
  • FIG. 4 is also a front cross-sectional view
  • FIG. 5 is also a plan view cross-sectional view
  • FIG. 6 shows a second embodiment of the fuel injection pump.
  • FIG. 7 is a front sectional view showing a second embodiment of the same fuel injection pump
  • FIG. 8 is a side sectional view showing a third embodiment of the fuel injection pump
  • FIG. FIG. 10 is a front sectional view showing the third embodiment
  • FIG. 1 is a schematic diagram showing an engine system equipped with a pump.
  • the fuel injection pump 1 configured as a pressure-accumulation type distribution type fuel injection pump is connected to a pressure accumulating chamber 31 in which high-pressure fuel is accumulated, A plunger 7 for pumping the fuel, a distribution shaft 9 for distributing the fuel pumped from the pressure accumulation chamber 31 to the injection nozzles 29 of each cylinder, and the like are provided.
  • the plunger 7 is vertically slidably driven by the cam 5 formed on the camshaft 4 through the evening pet 11, and the plunger chamber 7 a formed above the plunger 7 is moved through the check valve 28. And is connected to the accumulator 31.
  • the plunger chamber 7 a is connected to the low-pressure side circuit 32 via a pressure control valve 27.
  • the plunger chamber 7a When the pressure control valve 27 is in the ON state, the plunger chamber 7a is separated from the low-pressure side circuit 32, and when the pressure control valve 27 is in the OFF state, the plunger chamber 7a is communicated with the low-pressure side circuit 32. I have.
  • the accumulator chamber 31 and the distribution shaft 9 are connected via an injection control valve 26, and the distribution shaft 9 is configured to be able to communicate with the discharge valve 18 of each cylinder connected to the injection nozzle 29. It has been.
  • the pressure accumulating chamber 31 is provided with a pressure sensor 30 for detecting the pressure in the accumulating chamber 31. Further, a safety valve 24 is connected to the pressure accumulating chamber 31, and when the pressure in the pressure accumulating chamber 31 exceeds a certain pressure, the pressure is released to the low pressure side circuit 32. ing.
  • a lower valve 36a, an upper valve 36c, and a piston 36d are slidably housed in the injection control valve 26, and the lower valve 36a is stored in a pressure accumulating chamber 31 by a spring 37. Is biased to the side.
  • the injection control valve 26 is configured as a three-way valve.
  • the accumulation chamber 31 passes through the distribution shaft 9 and the check valve 1.
  • the oil passage r7 and the low-pressure side circuit 3 reach the discharge valve 18 via the distribution shaft 9. It is configured so that only 2 communicates.
  • the end of the injection control valve 26 opposite the pressure accumulation chamber 3 1 is connected to the pilot valve
  • connection path 34 is connected to the pressure accumulating chamber 31 via the bypass circuit 33.
  • the pilot valve 25 disconnects the connection between the connection path 34 and the low-pressure side circuit 32, and the connection path 3 and the low-pressure side circuit when the pilot valve 25 is on.
  • connection path 32 and the low voltage side circuit 32 are configured so as to be disconnected when in the off state.
  • ECU electronice control unit
  • the fuel is supplied from the fuel tank into the plunger chamber 7a, and the pressure control valve 27 is controlled by the ECU 20 as shown in FIG.
  • the plunger chamber 7a is separated from the low-pressure side circuit 32 by being turned on, and the fuel in the plunger chamber 7a is compressed by the plunger 7 which is moved upward by the cam 5 to accumulate the pressure in the accumulator chamber 31. To be pumped.
  • the fuel pumped to the pressure accumulating chamber 31 is prevented from flowing backward by the check valve 28, and the pressure in the accumulating chamber 31 is accumulated as appropriate.
  • Fuel is supplied from the pressure accumulating chamber 31 to the connection path 34 connected to the pressure accumulating chamber 31 by the bypass circuit 33 via the throttle 33a.
  • the pilot valve 25 of the injection control valve 26 is turned on by the control of the ECU 20 to connect the connection path 34 to the low-pressure side circuit 32, so that the pressure of the connection path 34 decreases. Therefore, the pressing of the piston 36 d of the injection control valve 26 in the direction of the pressure accumulating chamber 31 is released.
  • the lower valve 36a is attached to the anti-accumulation chamber 31 side by the pressure of the accumulation chamber 31.
  • the storage chamber 31 is urged to slide toward the pressure accumulation chamber 31 side, and the pressure accumulation chamber 31 communicates with the distribution shaft 9.
  • the fuel in the pressure accumulating chamber 31 is sent to the distribution shaft 9 by pressure, distributed to each cylinder, and discharged from the injection nozzle 29 via the discharge valve 18.
  • the pilot valve 25 of the injection control valve is turned off by the control of the ECU 20, and the fuel is supplied from the pressure accumulating chamber 31 through the throttle 33a. Since the connection path 34 and the low-pressure side circuit 32 are disconnected, the pressure in the connection path 34 increases due to the supplied fuel, and the piston 36 d of the injection control valve 26 is stored in the pressure accumulation chamber. 3 Pressed to the 1 side.
  • the lower valve 36a slides toward the accumulator chamber 31 via the upper valve 36c, the lower valve 36a sits on the seat 36e, and discharges from the injection control valve 26.
  • the oil passages r 6 and r 7 up to the valve 18 communicate with the low-pressure side circuit 32, so that the drain pressure is reached and the injection ends.
  • the spring 36 b urges the lower valve 36 a toward the accumulator 31, and is a panel for increasing the pressure of the accumulator 31 at startup.
  • a camshaft 4 on which a cam 5 is fixed is provided horizontally below the fuel injection pump 1, and one end of the camshaft 4 is connected via a cam bearing 12. It is rotatably supported by the camshaft housing H.
  • a block-shaped hydraulic base Hb which is a housing for each of the components such as the plunger 7, the pressure accumulating chamber 31, and the distribution shaft 9, is connected.
  • a plunger 7 is disposed above the cam 5 in a direction substantially orthogonal to the axial direction of the camshaft 4.
  • the plunger 7 is vertically slidably fitted to a plunger barrel 8 fitted to the lick base Hb. At the lower end of the plunger 7, an evening 11 is attached.
  • the fuel is pumped to the pressure accumulating chamber 31 composed of the plunger 7, the plunger chamber 7a formed above the plunger 7, the pressure control valve 27, the evening pet 11, the cam 5, and the like, and accumulates the fuel.
  • the present fuel injection pump 1 only one plunger is provided.
  • the fuel injection pump 1 can be reduced in size, the number of parts can be reduced, and the structure can be simplified and the cost can be reduced.
  • the pressure control valve 27 which is an electromagnetic valve for controlling fuel pressure feeding by the plunger 7, is disposed.
  • the pressure control valve 27 is, for example, as shown in FIG.
  • the valve element 27a is disposed so as to slide in a direction substantially perpendicular to the axial direction of the camshaft 4, that is, in a vertical direction.
  • the direction in which the pressure control valve 27 is arranged is not limited to a direction that is substantially orthogonal.
  • the pressure control valve 27 needs to maintain a high-precision severe operation in order to control the pressure of the pressure accumulating chamber 31 with high accuracy.
  • the valve element 27a By arranging the valve element 27a to slide in a direction substantially perpendicular to the axial direction of the camshaft 4, uneven wear is prevented from occurring on the sliding part even at high speed operation or many times of operation. To improve durability and reliability.
  • a distributing shaft 9 is disposed in parallel with the plunger ⁇ , and the distributing shaft 9 is provided with a distributing shaft sleeve fitted on the hydraulic lick base Hb. 10 and rotatably fitted to the lower end of the distribution shaft 9. It is rotationally driven by the distribution drive shaft 39.
  • the distribution drive shaft 39 and the distribution shaft 9 are arranged in a direction substantially orthogonal to the axial direction of the cam shaft 4, and the distribution drive shaft 39 and the cam shaft 4 are connected by a bevel gear 19.
  • the distribution shaft 9 can be rotationally driven by the camshaft 4 via the bevel gear 19, and by such an arrangement and configuration, the distribution shaft 9 is distributed from the plunger portion such as the plunger 7 driven by the camshaft 4. It is possible to shorten the fuel passage (the oil passages r 6 and r 7 described below) from the shaft 9 to the discharge valve 18 to reduce the fuel volume in the fuel passage.
  • solenoid valves such as the pressure control valve 27, etc., it is possible to improve the quality of the injection, such as injection rate control such as a small amount of pilot injection, post injection, initial injection rate control, and injection timing control. It becomes possible.
  • discharge valves 18 for the number of cylinders are fitted around the distribution shaft 9 in the hydraulic lick base Hb.
  • the injection control valve 26 is fitted to a side portion of the hide lick base Hb on the side opposite to the plunger 7 of the distribution shaft 9, and is disposed in a direction substantially orthogonal to the axial direction of the cam shaft 4. I have. That is, the injection control valve 26 is disposed such that the upper and lower valves 36 c and 36 a slide in a direction substantially orthogonal to the axial direction of the camshaft 4.
  • the pilot valve 25 is disposed at the upper end of the injection control valve 26.
  • the pilot valve 25 has a valve body 25a in a direction substantially perpendicular to the axial direction of the camshaft 4, that is, It is arranged to slide in the up-down direction.
  • injection control valve 26 and one pilot valve 25, which is a solenoid valve for control are provided regardless of the number of cylinders, high-speed operation and multiple operation Can prevent uneven wear on the sliding part. Durability and reliability can be improved.
  • the fuel injection pump 1 can be downsized as a whole.
  • the pressure sensor 30 for detecting the pressure in the pressure accumulating chamber 31 is attached to one side surface of the lick base Hb.
  • the plunger 7, the distribution shaft 9, and the injection control valve 26 are not completely arranged in series, for example, one of the plunger 7, the distribution shaft 9, and the injection control valve 26 is placed in series. Even if deviated, the plunger 7, the distribution shaft 9, and the injection control valve 26 may be arranged substantially in series.
  • a long hole in the axial direction is formed in the hydraulic lick base Hb substantially in parallel with the axial direction of the camshaft 4 to form a pressure accumulation chamber 31.
  • the pressure accumulating chambers 31 are constituted by one or a plurality of pressure accumulating chambers, and are connected to each other by an oil passage formed in the hydraulic base Hb.
  • One end of a hole of the hydrid base Hb constituting the pressure accumulating chamber 31 is open to the outside, and this opening is closed by the plug 35 or the safety valve 24.
  • the opening of the hole forming one accumulator 31 is closed by the safety valve 24, and the opening of the hole forming the other accumulator 31 is plugged 35. It is blocked by.
  • the plurality of accumulator chambers 31 are arranged in parallel with each other, and are arranged near control system functional members such as the plunger 7, the distribution shaft 9, and the injection control valve 26.
  • the pressure accumulating chamber 31 can be arranged in a direction substantially orthogonal to the axial direction of the camshaft 4, and may be formed not only in a straight line but also in a middle part.
  • the plurality of pressure accumulating chambers 31 arranged in parallel need not be arranged in a completely parallel state, but may be parallel as viewed from one direction, and may be mutually parallel when viewed from another direction. What is necessary is just to arrange with an angle to some extent.
  • the parallel state when viewed from a certain direction is not necessarily perfectly parallel but may be substantially parallel.
  • a trochoid pump 6 which is a feed pump driven by the rotation of the camshaft 4 to feed fuel, is attached to one end surface of the camshaft housing H.
  • the fuel stored in the fuel tank by the trochoid pump 6 is supplied through an oil passage r1 formed in the camshaft housing H and an oil passage r2 formed in the hexadrolic base Hb. It is pumped from chamber 27b to plunger chamber 7a. That is, the oil passage r1 and the oil passage extend from the discharge port 6a of the trochoid pump 6 to the fuel supply chamber 27b and further to the plunger chamber 7a of the plunger section connecting the valve element 27a of the pressure control valve 27. It is connected by road r2.
  • the fuel pumped to the plunger chamber 7a is introduced into the check valve 28 through the oil passage r3, and is led out from the check valve 28 to the pressure accumulation chamber 31 through the oil passage r4.
  • the trochoid pump 6 by mounting the trochoid pump 6 on one end surface of the camshaft housing H and driving the trochoid pump 6 by the camshaft 4, it is not necessary to provide a separate drive shaft for driving the trochoid pump 6, and parts
  • the number of points can be reduced, the structure can be simplified and the cost can be reduced, and the size of the fuel injection pump 1 can be reduced as a whole.
  • the trochoid pump 6 can be connected to the plunger without using a pipe member. Fuel can be pumped, simplifying the structure and lowering costs, and preventing pipe breakage and fuel leakage. Can be prevented.
  • the feed pump for pumping the fuel may be a rotary gear pump or a vane pump other than the trochoid pump 6.
  • the check valve 28 is fitted in a fitting hole hd formed in the hydraulic base Hb, and a fuel passage piece 51 is fitted in the fitting hole hd below the check valve 28. Fitted.
  • the oil passage r3 and the oil passage r4 are formed in the fuel passage piece 51.
  • One end of an oil passage r3 formed in the fuel passage piece 51 is connected to an oil passage r3 formed in the hydraulic lick base Hb, and the other end is a fuel inlet of a check valve 28. Connected to 28a.
  • one end of an oil passage r4 formed in the fuel passage piece 51 is connected to a fuel outlet 28b of a check valve 28, and the other end is formed in a hydric base Hb. Connected to oil path r4.
  • the check valve 28 is connected to the oil passages r 3 and r 4 formed in the hydraulic base Hb and the oil passages r 3 and r 4 formed in the fuel passage piece 51 respectively. Connected through.
  • the oil passage r 3 connected to the fuel inlet 28 a of the check valve 28 provided in the hydraulic base H b and the oil passage r 4 connected to the fuel outlet 28 b are formed.
  • the fuel passage piece 51 is formed separately from the hydraulic base Hb.
  • the processing can be performed with higher precision than the hydraulic base Hb, which is a complicated shape and a large-sized member.
  • the mating surface of the check valve 28 with the formation surface of the fuel inlet 28 a and the fuel outlet 28 can also be processed with high precision and ease, and the oil passage r 3 ⁇ r 4 through which high-pressure fuel passes It is possible to reliably seal the connection between the fuel inlet and outlet 28a and 28b, and to prevent fuel leakage and the like.
  • the high-pressure fuel delivered to and accumulated in the pressure accumulating chamber 31 is introduced into the injection control valve 26 through the oil passage r 5 depending on the control state of the pilot valve 25 (when the pilot valve 25 is turned on).
  • the fuel is guided from the injection control valve 26 to the distribution shaft 9 through the oil passage r6.
  • the injection control valve 26 is fitted in a fitting hole hc formed in the hydraulic base Hb, and the fuel passage piece 52 is fitted in the fitting hole hc below the injection control valve 26. Have been.
  • the oil passage r5 and the oil passage r6 are formed in the fuel passage piece 52.
  • One end of the oil passage r5 formed in the fuel passage piece 52 is connected to the oil passage r5 formed in the hydraulic base Hb, and the other end is connected to the fuel inlet 2 of the injection control valve 26. 6
  • Connected to a is connected to a.
  • one end of an oil passage r 6 formed in the fuel passage piece 52 is connected to a fuel outlet 26 b of the injection control valve 26, and the other end is formed in a hydric base rick base H b. Connected to the oil path r 6.
  • the injection control valve 26 is connected to the oil passages r5 and r6 formed in the hydraulic base Hb and the oil passages r5 and r6 formed in the fuel passage pieces 52, respectively. Connected via
  • the oil passage r5 connected to the fuel inlet 26a of the injection control valve 26 provided in the hydraulic base Hb and the oil passage r6 connected to the fuel outlet 26b are formed. However, it is formed in a fuel passage piece 52 formed separately from the hydraulic base Hb.
  • the fuel passage piece 52 can be processed.
  • the mating surface of the injection control valve 26 with the formation surface of the fuel inlet 26 a and the fuel outlet 26 b can also be processed with high accuracy and ease, and the oil passage r 5 through which the high-pressure fuel passes Check the seal at the connection between r6 and the fuel introduction port 26a It can actually do so, and can prevent fuel leakage and the like.
  • the fuel delivered to the distribution shaft 9 is guided to the discharge valve 18 through the oil passage r7 corresponding to each cylinder, and is injected from the injection nozzle 29 of each cylinder.
  • the plunger 7, the distribution shaft 9, the pressure control valve 27, the check valve 28, the injection control valve 26, and the pressure sensor 30 composing the high pressure path of the fuel in the fuel injection pump 1 are provided.
  • the safety valve 24, the discharge valve 18, the pilot valve, and the pressure accumulating chamber 31 are all integrated on a hydraulic base Hb composed of one block-shaped member. .
  • these components to which a high pressure is constantly applied are arranged in one block-shaped member, and the strength of the high-pressure path can be sufficiently ensured.
  • the connection between the respective components can be performed by the oil passages r 1, r 2,... Formed by the drill holes and the like formed in the lick base Hb without using joint parts and the like. Therefore, it is possible to improve reliability without oil leakage or damage to piping.
  • the functional members (plunger barrel 8, distributing shaft sleeve 10) and fuel passage pieces 51, 52, etc. form a high-pressure passage, and are lubricated by shrink-fitting or cold-fitting on the hydrid base Hb. Closely fitted. Further, a low-pressure chamber 15 is formed below the injection control valve 26 and the distribution shaft 9 at the boundary between the hydraulic lick base Hb and the camshaft housing H.
  • the low-pressure chamber 15 is connected to a low-pressure circuit 32 mainly constituted by a drill hole formed in a lick base Hb, and includes a plunger 7 and a plunger 7 for pumping fuel to the pressure accumulating chamber 31. Fuel that leaks from the fitting gap with the barrel 8 and fuel that leaks from the distribution shaft 9 between the distribution shaft sleeve 10 and the distribution shaft 9 that fits into the fitting hole hb formed in the lick base Hb. The fuel is recovered in the low-pressure chamber 15 and returned to the fuel tank through the low-pressure drain circuit 100.
  • the outer periphery of the plunger barrel 8 communicates with the low-pressure chamber 15 through a leak return hole r12 formed in the lick base Hb.
  • a drain port 24 a of the safety valve 24 provided in the pressure accumulating chamber 31 is connected to a low-pressure side drain circuit 100 by a communication path r 11 formed of a drill hole formed in the hydraulic base Hb. The fuel discharged from the accumulator 31 through the safety valve 24 is returned to the fuel tank.
  • the piping member is eliminated. As a result, it has become possible to prevent fuel leakage and reduce costs. Further, instead of the plug 35 closing the opening of the pressure accumulating chamber 31, the opening is closed by a safety valve 24 so that the safety valve 24 has the function of the plug 35. The number of parts is being reduced.
  • the low pressure chamber 15 may be connected to the suction side port of the trochoid pump 6 so that the fuel recovered in the low pressure chamber 15 is supplied to the trochoid pump 6.
  • the fuel injection pump configured for six cylinders will be described focusing on the configuration of the five cams.
  • the cam 85 is formed in six peaks, and the cam 85 is formed separately from the cam shaft 84.
  • the camshaft 84 in the divided state is attached to the camshaft 84 so as to be integrally rotatable. Further, the cam 85 is formed with a cylinder discriminating pulser 81 for cylinder discrimination.
  • the cam 85 formed for a multi-cylinder As described above, in the case of the cam 85 formed for a multi-cylinder, the curvature of the contact surface with the tappet 11 becomes small, and the contact surface pressure on the tappet 11 becomes high. Therefore, in the case of the fuel injection pump 101 configured for a multi-cylinder, the cam 85 and the camshaft 84 are formed separately, and the cam 85 that comes into contact with the evening pet 11 at high pressure is S KH
  • the camshaft 84 is made of a standard material that is not as strong as the cam 85 to reduce costs by using high surface pressure materials such as steel, SKD and ceramics. I have.
  • the cam 85 which is a high surface pressure material, is formed by a post-processing method such as sintering or MIM to reduce the cost, but the cylinder discriminating pulser 81 is integrated with the cam 85.
  • the fuel injection pump 101 is made smaller by further combining the functional members to further reduce the cost and to reduce the size of the fuel injection pump 101.
  • a multi-cylinder fuel injection pump can be configured as shown in FIGS.
  • the distribution shaft 9 is driven by a cam shaft 94 via a bevel gear 19 ′, and the cam shaft 94 has a cam shaft side gear 1.
  • 9 a ′ is fixed, and the distribution drive shaft 39 on the distribution shaft 9 side is fixed with the distribution shaft side gear 19 b ′, and the cam shaft side gear 19 a ′ and the distribution shaft side gear 19 b 'and.
  • the distribution shaft side gear 19 b ′ in this example has twice the number of teeth as the cam shaft side gear 19 a ′.
  • the camshaft 94 is driven at the same rotation speed as the rotation speed of the engine to which the fuel injection pump 201 is mounted. Therefore, it is driven by the camshaft 94 via the camshaft side gear 19 a ′ and the distribution shaft side gear 19 b ′ having twice the number of teeth of the camshaft side gear 19 a ′.
  • the distribution shaft 9 is driven at half the rotation speed of the cam shaft 94.
  • the multi-cylinder fuel injection pump 201 is, for example, configured for a six-cylinder engine.
  • the distribution shaft 9 rotates once while the camshaft 4 rotates twice.
  • the fuel is distributed and supplied to each of the six cylinders once, and the plunger 7 is configured to pump the fuel to the accumulator chamber 31 six times.
  • the cam 95 has three ridges.
  • the number of peaks formed on the cam 95 is half the number of cylinders.
  • the number of peaks formed on the cam 95 is half the number of cylinders, so that the number of peaks can be reduced and the cam 95 can be downsized. And the number of processing steps for the cam 95 can be reduced.
  • the cam profile can be reduced to half the speed, and the outer peripheral shape of the cam 95 can be formed to be convex toward the outside, so that when the outer peripheral surface of the cam 95 is machined, A large-diameter grindstone can be used, the outer peripheral surface can be easily polished during processing, the processing time can be reduced, and the cost can be reduced.
  • the rotation speed of the distribution shaft 9 is reduced to half the rotation speed of the cam shaft 94 with a simple configuration and low cost. Speed can be.
  • the distribution shaft side gear 19 b ′ has twice as many teeth as the cam shaft side gear 19 a ′, and the outer diameter of the distribution shaft side gear 19 b ′ is the cam shaft side gear.
  • the outer diameter of the camshaft-side gear 19a ' needs to be reduced in order to reduce the size of the fuel injection pump 201 because it is larger than the outer diameter of 19a'.
  • the camshaft 94 becomes smaller in diameter, but the load received by the camshaft 94 from the plunger 7 etc. due to the high E injection of the fuel injection pump 201 If the camshaft 94 is only supported at both ends, the camshaft 94 may be bent.
  • a half-split bearing 71 that supports the peripheral surface of the anti-plunger 7 facing the camshaft 94 (the lower side in FIG. 3) is provided by a camshaft. 9 4 It is arranged near the cam 5 on the center side from the support parts at both ends.
  • the bearing 71 to receive the load that the camshaft 94 receives from the plunger 7 and the like, thereby suppressing deflection of the camshaft 94 and reducing vibration and noise.
  • the bevel gear 19 ' can be made small, and the fuel injection pump 201 can be downsized as a whole.
  • the fuel injection pump 1 is mounted on the engine E.
  • the ECU 20 in the system includes, in addition to the pressure sensor 30, the pilot valve 25, and the pressure control valve 27, a fuel temperature sensor 68 attached to the fuel injection pump 1 and a camshaft.
  • a cylinder discriminating sensor 62 for discriminating a cylinder by a cylinder discriminating pulsar 61 that rotates integrally with the cylinder 4 is connected.
  • the ECU 20 also includes a water temperature sensor 66 for detecting the temperature of the cooling water of the engine E, and a rotation speed sensor 64 for detecting the engine rotation speed by a rotation detection pulser 63 that rotates integrally with the crankshaft.
  • a lift sensor 65 for detecting the lift amount of the injection nozzle 29 of each cylinder is also connected.
  • the ECU 20 is connected to an accelerator sensor 67 and a sensor group 69 for detecting other boost pressure, intake flow rate, intake temperature and the like.
  • the operation of the pilot valve 25, the pressure control valve 27, and the like is electrically controlled by 20 to inject fuel from the injection nozzle 29 at an appropriate injection amount, injection timing, and the like.
  • the injection nozzle 29 for which fuel injection is to be performed is determined by the cylinder determination sensor 62, and the other fuel temperature sensor 68, the water temperature sensor 66, the lift sensor 65, and the detection value of the sensor group 69 are used. The fuel injection conditions are adjusted appropriately. Further, the ECU 20 is provided with a failure diagnosis function for determining whether or not a failure has occurred in the engine E or the fuel injection pump 1 when there is an abnormality in the detection values of various sensors.
  • the accumulator type distribution type fuel injection pump of the present invention is applicable to a fuel injection pump of a diesel engine, and in particular, is used as a fuel injection pump for a low-pollution engine capable of meeting low fuel consumption and exhaust emission regulations. Are suitable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

明 細 書 蓄圧式分配型燃料噴射ポンプ 技術分野
本発明は、 蓄圧室に蓄圧した高圧燃料を、 分配手段により各気筒へ分配して供 給する電子制御方式の蓄圧式分配型燃料噴射ポンプの構成に関する。 背景技術
近年、 ディーゼルエンジンにおいては、 ますます排気ェミッション規制が厳し くなる傾向にあって、 低燃費で且つ N O Xとパーティキュレートの低減等が望ま れており、 これに対応するため、 燃焼効率を向上すべく燃料噴射圧の高圧化が進 んできている。
そして、 燃料噴射圧の高圧化とともに、 エンジンの回転速度にかかわらず噴射 圧を任意に制御することを可能とする電子制御方式の蓄圧式の燃料噴射ポンプが 増加してきている。
この蓄圧式の燃料噴射ポンプは、 蓄圧室内に蓄圧した高圧燃料を、 各気筒に供 給するものであり、 例えば、 特表平 7— 5 0 9 0 4 2に記載の如くである。 このような蓄圧式燃料噴射ポンプにおいては、 燃料蓄圧室や、 高圧燃料圧送用 のプランジャや、 燃料噴射制御用の噴射制御弁や、 燃料を各気筒に分配する分配 手段や、 圧力制御弁等の、 常時高圧がかかる高圧経路を構成するための機能部材 が具備されているが、 これらの機能部材は、 それぞれ別体に形成されたブロック 等のケーシングに分離して収納されていた。
このように、 分離構造に構成された各機能部材は、 その接続箇所においても常 に高圧がかかるため、 強度確保が困難であり、 油漏れや損傷が発生する等、 信頼 性が低い場合があり、 構造も複雑となっていた。
また、 前述の蓄圧式燃料噴射ポンプにおいては、 燃料を蓄圧室へ圧送するため ■部が複数設けられ、 複数のプランジャ部が力ム軸方向に併設されて いたため、 該蓄圧式燃料噴射ポンプが大型化するとともに、 複雑な構造となって いた。 発明の開示
本発明は、 1又は複数の蓄圧室に蓄圧した高圧燃料を、 分配手段により各気筒 へ分配して供給する蓄圧式分配型燃料噴射ポンプにおいて、 プランジャゃ圧力制 御用の圧力制御弁や燃料噴射制御用の噴射制御弁や蓄圧室や分配手段等の高圧経 路を構成する機能部材を、 ハイド口リックべ一ス内に配設するものである。 この ことにより、 常時高い圧力がかかるこれらの構成部材がハイドロリックべ一ス内 に配設されることとなり、 高圧経路の強度を十分に確保することができる。 また 、 各構成部材間の接続はハイドロリックベースに形成したキリ孔等で構成される 油路で行うことができ、 継手部品等を用いることがないので油漏れや配管の損傷 等が発生することもなく、 信頼性向上を図ることができる。
また、 本発明は、 前記分配手段としての分配軸を、 カム軸に対して直交方向に 配置したものである。 このことにより、 燃料噴射ポンプのカム軸方向の寸法を小 さくすることができ、 燃料噴射ポンプを全体的に小型化することが可能となる。 さらに、 小型エンジンにおいては、 吐出弁のホルダーの上方への取り出しにより 噴射ノズルに至る噴射管長が短縮される。 従って、 噴射管内の燃料容積が減少し て噴射遅れが少なくなり、 広い回転範囲での噴射率及び噴射時期の高精度制御が 可能となる。
また、 本発明は、 前記分配手段としての分配軸を、 カム軸により駆動するもの である。 このことにより、 カム軸により駆動されるプランジャ部から、 分配軸を 通じて吐出弁へ至るまでの燃料通路を短縮化して、 該燃料通路内の燃料容積を減 少することができ、 パイロットバルブや圧力制御弁等の電磁弁による、 微量のパ ィロット噴射やポスト噴射、 及び初期噴射率制御等の噴射率制御、 並びに噴射時 期制御等といった、 噴射の高品質化を図ることが可能となる。
また、 本発明は、 前記蓄圧室へ燃料を蓄圧するためのプランジャ部を 1つ設け たものである。 このことにより、 燃料噴射ポンプを小型化することができるとと もに、 部品点数を削減することができ、 構造容易化及び低コスト化を図ることが 可能となる。
また、 本発明は、 前記プランジャ部のプランジャを駆動するためのカムを、 該 カムを支持するカム軸とは分割形成したものである。 このことにより、 燃料噴射 ポンプを多気筒用に形成した場合、 カムの夕ペットとの当接面の曲率が小さくな つて、 該タペットに対する接触面圧が高くなるため、 カムとカム軸とを分割形成 することで、 高圧で夕ペットに接触するカムを、 S KHや S KDやセラミック等 の高面圧材で構成して耐摩耗性を高めながら、 カム軸をカム程高強度でない標準 的な材質の部材により形成して低コスト化を図ることができる。
また、 本発明は、 前記蓄圧式分配型燃料噴射ポンプのカム軸に気筒判別用のパ ルス発生部材を設け、 該パルス発生部材を前記カムと一体形成したものである。 このことにより、 機能部材の複合化を図って部品点数を削減することができ、 さ らなる低コスト化を図るとともに、 燃料噴射ポンプの小型化を図ることが可能と なる。
また、 本発明は、 前記蓄圧室へ燃料を圧送するプランジャを駆動するための力 ム軸の回転速度と、 該蓄圧式分配型燃料噴射ポンプが装着されるエンジンの回転 速度とを同一とし、 分配手段の回転速度を該エンジンの回転速度の半分の速度と したものである。 このことにより、 例えば、 4サイクルエンジンの場合、 カムに 形成される山の数が気筒数の半分の数となり、 山の数を削減することができて、 カムを小型化することができるとともに、 カムの加工工数を低減することができ る。 また、 カムプロフィルも半分の速度に減じることができ、 カムの外周面形状 も外側に向かって凸となる形状に形成することができるため、 カムの外周面を加 ェする際には径の大きな砥石を用いることができ、 加工時における外周面の研磨 が容易となり、 加工時間も低減することができて、 低コスト化を図ることができ る。 , また、 本発明は、 前記分配手段を、 傘歯車を介してカム軸により駆動し、 該分 配手段側の傘歯車の歯数を、 力ム軸側の傘歯車の歯数の 2倍としたものである。 このことにより、 簡単な構成且つ低コストで、 分配手段の回転速度をカム軸の回 転速度の半分の速度とすることができる。
また、 本発明は、 前記カム軸の両端部をハウジングにより支持し、 該カム軸の 反プランジャ側周面を支持する軸受を、 ハウジングによる支持部より中央側の力 ム近傍に配設したものである。 このことにより、 カム軸がプランジャ等から受け る荷重を該軸受によって受けることができ、 カム軸の撓みを抑えて振動や騒音の 低減を図ることができる。 また、 傘歯車を小さく形成することができて、 燃料噴 射ポンプを全体的に小型化することが可能となる。
また、 本発明は、 制御系機能部材である、 前記プランジャ部の蓄圧用圧力制御 弁及び噴射制御弁を、 それぞれカム軸に対して垂直方向に配設したものである。 このことにより、 燃料噴射ポンプのカム軸方向の寸法を小さくすることができ、 燃料噴射ポンプを全体的に小型化することが可能となる。 また、 カム軸を水平に 配置した場合、 蓄圧用圧力制御弁及び噴射制御弁の軸心が垂直となるため、 該制 御弁の摺動部が偏摩耗することを防止することができる。
また、 本発明は、 制御系機能部材である、 前記プランジャ部の蓄圧用圧力制御 弁、 分配手段、 及び噴射制御弁を、 それぞれカム軸に対して垂直方向に配設した ものである。 このことにより、 燃料噴射ポンプのカム軸方向の寸法を小さくする ことができ、 燃料噴射ポンプを全体的に小型化することが可能となる。 また、 力 ム軸を水平に配置した場合、 蓄圧用圧力制御弁、 分配手段、 及び噴射制御弁の軸 心が垂直となるため、 該制御弁や分配軸部分の摺動部が偏摩耗することを防止す ることができる。
また、 本発明は、 前記制御系機能部材を、 プランジャ部、 分配手段、 及び噴射 制御弁の順に、 カム軸方向に配置したものである。 このことにより、 燃料噴射ポ ンプのカム軸方向の寸法を小さくすることができ、 燃料噴射ポンプを全体的に小 型化することが可能となる。
また、 本発明は、 蓄圧用の前記プランジャ部、 分配手段、 及び噴射制御弁を、 直列配置したものである。 このことにより、 燃料噴射ポンプのカム軸方向の寸法 を小さくすることができ、 燃料噴射ポンプを全体的に小型化することが可能とな る。 また、 本発明は、 前記プランジャ部の蓄圧室圧力制御用電磁弁、 及び噴射制御 弁の制御用電磁弁を、 それぞれプランジャの端部及び噴射制御弁の端部に配置し たものである。 このことにより、 燃料噴射ポンプのカム軸方向の寸法を小さくす ることができ、 燃料噴射ポンプを全体的に小型化することが可能となっている。 また、 本発明は、 前記制御用電磁弁の摺動部材の摺動方向を、 カム軸に対して 垂直方向としたものである。 このことにより、 以下の効果を奏する。 即ち、 これ らの制御用電磁弁は気筒数にかかわりなく一つだけ設けられているので、 カム軸 が 1回転する毎に気筒数分の回数だけ動作する必要があり、 非常に高速で作動し 、 且つ多数回の作動が必要となる。 さらに、 該制御用電磁弁は、 噴射量や噴射時 期を高精度に制御するために、 高精度の過酷な作動を維持する必要があるが、 該 制御用電磁弁を、 該制御用電磁弁の摺動部材である弁体がカム軸の軸方向と略直 交する方向に摺動するように配置することで、 高速作動や多数回の作動によって も摺動部に偏摩耗が発生することを防止することができ、 耐久性 ·信頼性の向上 を図ることができる。
また、 本発明は、 前記蓄圧室を複数形成し、 該複数の蓄圧室を互いに並列配置 するものである。 このことにより、 蓄圧室と、 プランジャにより圧送される燃料 が滞留するプランジャ室との間を連結する油路を短く形成することができ、 燃料 通路の無駄な容積を減少することができて、 燃料圧送時間の短縮化及び馬力ロス の減少を図ることが可能となる。 図面の簡単な説明
図 1は、 本発明の燃料噴射ポンプにおける燃料噴射時の状態を示す概略図であ り、 図 2は、 同じく燃料噴射ポンプにおける燃料無噴射時の状態を示す概略図で あり、 図 3は、 燃料噴射ポンプを示す側面断面図であり、 図 4は、 同じく正面断 面図であり、 図 5は、 同じく平面部断面図であり、 図 6は、 燃料噴射ポンプの第 二の実施例を示す側面断面図であり、 図 7は、 同じく第二の実施例を示す正面断 面図であり、 図 8は、 燃料噴射ポンプの第三の実施例を示す側面断面図であり、 図 9は、 同じく第三の実施例を示す正面断面図であり、 図 1 0は、 燃料噴射ボン プを搭載したエンジンシステムを示す概略図である。 発明を実施するための最良の形態
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明する。 まず、 本発明の蓄圧式分配型燃料噴射ポンプの概略構成について説明する。 図
1、 図 2、 及び図 3乃至図 5に示すように、 蓄圧式分配型燃料噴射ポンプに構成 される燃料噴射ポンプ 1は、 高圧燃料が蓄圧される蓄圧室 3 1、 該蓄圧室 3 1へ 燃料を圧送するプランジャ 7、 蓄圧室 3 1から圧送される燃料を各気筒の噴射ノ ズル 2 9へ分配して供給する分配軸 9等を具備している。
プランジャ 7は、 カム軸 4に形成されるカム 5により、 夕ペット 1 1を介して 上下摺動駆動され、 該プランジャ 7の上方に形成されるプランジャ室 7 aは、 逆 止弁 2 8を介して蓄圧室 3 1と接続されている。
また、 プランジャ室 7 aは、 圧力制御弁 2 7を介して低圧側回路 3 2と接続さ れている。
そして、 圧力制御弁 2 7がオン状態のときにはプランジャ室 7 aと低圧側回路 3 2とが分断され、 オフ状態のときにはプランジャ室 7 aと低圧側回路 3 2とが 連通するように構成している。
蓄圧室 3 1と分配軸 9とは噴射制御弁 2 6を介して接続されており、 該分配軸 9は、 噴射ノズル 2 9と接続される各気筒の吐出弁 1 8と、 連通可能に構成され ている。 また、 蓄圧室 3 1には、 該蓄圧室 3 1内の圧力を検出する圧力センサ 3 0が付設されている。 さらに、 蓄圧室 3 1には安耷弁 2 4が接続されており、 該 蓄圧室 3 1内の圧力が一定圧以上となった場合には、 該圧力を低圧側回路 3 2へ 逃がすようにしている。
噴射制御弁 2 6内には下部バルブ 3 6 a、 上部バルブ 3 6 c、 及びピストン 3 6 dが摺動自在に収納されており、 下部バルブ 3 6 aはスプリング 3 7により蓄 圧室 3 1側に付勢されている。
また、 噴射制御弁 2 6は三方弁に構成されており、 下部バルブ 3 6 aが反蓄圧 室 3 1側に摺動した状態では、 蓄圧室 3 1は、 分配軸 9を経て逆止弁 1 8を介し て噴射ノズル 2 9に連通し、 逆に下部バルブ 3 6 aが蓄圧室 3 1側に摺動した状 態では、 分配軸 9を経て吐出弁 1 8に至る油路 r 7と低圧側回路 3 2とのみが連 通するように構成されている。
噴射制御弁 2 6の反蓄圧室 3 1側端部は、 接続路 3 4によりパイロットバルブ
2 5と接続されており、 該接続路 3 4はバイパス回路 3 3を介して蓄圧室 3 1と 接続されている。
パイロットバルブ 2 5は、 接続路 3 4と低圧側回路 3 2との連通を断接するも のであり、 該パイ口ットバルブ 2 5がオン状態のときに接続路 3 と低圧側回路
3 2とが連通し、 オフ状態のときに接続路 3 4と低圧側回路 3 2とが分断される ように構成している。
また、 前記パイロットバルブ 2 5、 圧力制御弁 2 7、 及び圧力センサ 3 0は、 電子制御装置 (以下 「E C U」 と記載する) 2 0と接続されている。
このように構成される燃料噴射ポンプ 1においては、 プランジャ室 7 a内に燃 料タンクから燃料が供給されており、 蓄圧時には図 1に示す如く、 E C U 2 0の 制御により圧力制御弁 2 7がオン状態となってプランジャ室 7 aと低圧側回路 3 2とが分断されており、 カム 5によつて上方搢動するプランジャ 7によりプラン ジャ室 7 a内の燃料が圧縮されて蓄圧室 3 1へ圧送される。
蓄圧室 3 1へ圧送された燃料は逆止弁 2 8により逆流が防止されており、 該蓄 圧室 3 1内は適宜圧力に蓄圧されている。
一方、 蓄圧を要しないときは図 2に示す如く、 圧力制御弁 2 7がオフ状態とな つてプランジャ室 7 aと低圧回路 3 2とが連通し、 プランジャ室 7 aの燃料は低 圧側回路ヘドレンされる。
バイパス回路 3 3により蓄圧室 3 1と接続される前記接続路 3 4には、 該蓄圧 室 3 1から絞り 3 3 aを介して燃料が供給されている。 燃料噴射時には、 E C U 2 0の制御により噴射制御弁 2 6のパイ口ットバルブ 2 5はオンされて接続路 3 4と低圧側回路 3 2とが連通されると、 接続路 3 4の圧力が低下するので、 噴射 制御弁 2 6のピストン 3 6 dの蓄圧室 3 1方向への押圧が解除される。
従って、 該下部バルブ 3 6 aは、 蓄圧室 3 1の圧力により反蓄圧室 3 1側に付 勢されて反蓄圧室 3 1側に摺動し、 蓄圧室 3 1と分配軸 9とが連通する。
これにより、 蓄圧室 3 1内の燃料が分配軸 9へ圧送されて、 各気筒へ分配され 吐出弁 1 8を経て、 噴射ノズル 2 9から噴射されることとなる。
一方、 燃料無噴射は、 図 2に'示す如く、 E C U 2 0の制御により噴射制御弁の パイロットバルブ 2 5がオフされ、 蓄圧室 3 1から絞り 3 3 aを介して燃料が供 給される前記接続路 3 4と低圧側回路 3 2とが分断されるため、 供給された燃料 により該接続路 3 4内の圧力が上昇して、 噴射制御弁 2 6のピストン 3 6 dが蓄 圧室 3 1側へ押圧される。
これにより、 上部バルブ 3 6 cを介して下部バルブ 3 6 aが蓄圧室 3 1側に摺 動し、 下部バルブ 3 6 aがシート 3 6 eに着座するとともに、 噴射制御弁 2 6か ら吐出弁 1 8までの間の油路 r 6 · r 7と低圧側回路 3 2とが連通して、 ドレン 圧となり噴射が終了する。
尚、 スプリング 3 6 bは、 下部バルブ 3 6 aを蓄圧室 3 1側に付勢しており、 起動時の蓄圧室 3 1の圧力上昇用のパネである。
次に、 前記プランジャ 7、 蓄圧室 3 1、 分配軸 9、 圧力制御弁 2 7、 及びパイ ロットバルブ 2 5等の、 燃料噴射ポンプ 1の各構成部材の配置構成等について説 明する。
図 3乃至図 5に示すように、 燃料噴射ポンプ 1の下部には、 カム 5が固設され るカム軸 4が横設され、 該カム軸 4の一端部は、 カム軸受 1 2を介してカム軸ハ ウジング Hに回転自在に軸支されている。
カム軸ハウジング Hの上方には、 プランジャ 7、 蓄圧室 3 1、 及び分配軸 9等 の各構成部材のハウジングである、 ブロック状部材のハイドロリックベース H b が連設されている。
カム 5の上方には、 カム軸 4の軸方向と略直交する方向にプランジャ 7が配設 されている。 該プランジャ 7は、 ハイド口リックベース H bに嵌装されるプラン ジャバレル 8に上下摺動自在に嵌挿されている。 該プランジャ 7の下端には夕べ ット 1 1が付設されている。
7及び夕ペット 1 1はスプリング 1 6等の付勢手段により下方へ付 勢され、 該夕ペット 1 1がカム 5に当接しており、 該カム 5の回転によりプラン ジャ 7が上下往復動するように構成している。
これらの、 プランジャ 7、 プランジャ 7の上方に形成されるプランジャ室 7 a 圧力制御弁 2 7、 夕ペット 1 1、 及びカム 5等で構成される、 蓄圧室 3 1へ燃料 を圧送して蓄圧するためのプランジャ部は、 本燃料噴射ポンプ 1においては、 一 つだけ設けられている。
このように、 プランジャ部を一つだけ設けることで、 燃料噴射ポンプ 1を小型 化することができるとともに、 部品点数を削減することができ、 構造容易化及び 低コスト化を図ることを可能としている。
また、 プランジャ 7の上端部には、 該プランジャ 7による燃料圧送の制御用電 磁弁である前記圧力制御弁 2 7が配設されており、 該圧力制御弁 2 7は、 例えば 図 3に示すように、 弁体 2 7 aがカム軸 4の軸方向と略直交する方向、 即ち上下 方向に摺動するように配置されている。 しかし、 この圧力制御弁 2 7の配置方向 は略直交する方向には限定しない。
このように、 プランジャ 7の上端部に前記圧力制御弁 2 7を設置することで、 燃料噴射ポンプ 1のカム軸 4の軸方向の寸法を小さくすることができ、 燃料噴射 ポンプ 1を全体的に小型化することが可能となっている。
また、 圧力制御弁 2 7は気筒数にかかわりなく一つだけ設けられるので、 カム 軸 4が 1回転する毎に気筒数分の回数だけ動作する必要があり、 非常に高速で作 動し、 且つ多数回の作動が必要となる。
さらに、 圧力制御弁 2 7は、 蓄圧室 3 1の圧力を高精度に制御するために、 高 精度の過酷な作動を維持する必要があるが、 本例のように、 圧力制御弁 2 7を、 弁体 2 7 aがカム軸 4の軸方向と略直交する方向に摺動するように配置すること で、 高速作動や多数回の作動によっても摺動部に偏摩耗が発生することを防止す ることができ、 耐久性 ·信頼性の向上を図っている。
また、 ブランジャ 7の側方には、 分配軸 9が該プランジャ Ίと軸心を平行に配 設されており、 該分配軸 9は、 ハイド口リックベース H bに嵌装される分配軸ス リーブ 1 0に回転自在に嵌挿されるとともに、 該分配軸 9の下端部に連結した分 配駆動軸 3 9により回転駆動される。
該分配駆動軸 3 9及び分配軸 9はカム軸 4の軸方向と略直交する方向に配置さ れており、 分配駆動軸 3 9とカム軸 4とを傘歯車 1 9により接続している。 これ により、 分配軸 9を傘歯車 1 9を介してカム軸 4により回転駆動可能としている このような配置 ·構成とすることで、 カム軸 4により駆動されるプランジャ 7 等のプランジャ部から、 分配軸 9を通じて吐出弁 1 8へ至るまでの燃料通路 (後 述の油路 r 6 · r 7等) を短縮化して、 該燃料通路内の燃料容積を減少すること ができ、 パイロットパルプ 2 5や圧力制御弁 2 7等の電磁弁によ.る、 微量のパイ ロット噴射やポスト噴射、 及び初期噴射率制御等の噴射率制御、 並びに噴射時期 制御等といった、 噴射の高品質化を図ることが可能となる。
尚、 ハイド口リックベース H bにおける分配軸 9の周囲には、 気筒数分の吐出 弁 1 8が嵌装されている。
また、 カム軸 4と分配軸 9とは、 直交方向に配置されていなくても、 ある程度 の角度をもって配置されていれば、 上述の効果を奏することが可能である。 ハイド口リックベース H bにおける、 分配軸 9の反ブランジャ 7側の側方部分 には、 前記噴射制御弁 2 6が嵌装され、 カム軸 4の軸方向と略直交する方向に配 置されている。 即ち、 噴射制御弁 2 6は、 上下バルブ 3 6 c · 3 6 aがカム軸 4 の軸方向と略直交する方向に摺動するように配置されている。
該噴射制御弁 2 6の上端部には前記パイ口ットバルブ 2 5が配設されており、 該パイロットバルブ 2 5は、 弁体 2 5 aがカム軸 4の軸方向と略直交する方向、 即ち上下方向に摺動するように配置されている。
このように、 噴射制御弁 2 6の上端部にパイ口ットバルブ 2 5を設置すること で、 燃料噴射ポンプ 1のカム軸 4の軸方向の寸法を小さくすることができ、 燃料 噴射ポンプ 1を全体的に小型化することが可能となっている。
また、 噴射制御弁 2 6及び制御用電磁弁であるパイ口ットバルブ 2 5は気筒数 にかかわりなく一つだけ設けられるので、 前述の圧力制御弁 2 7と同様に、 高速 作動や多数回の作動によっても摺動部に偏摩耗が発生することを防止することが でき、 耐久性 '信頼性の向上を図ることができる。
燃料噴射ポンプ 1の制御系機能部材である、 前記プランジャ 7、 分配軸 9、 及 ぴ噴射制御弁 2 6は、 カム軸 4の軸方向に、 ハイド口リックベース H bの一端部 側からプランジャ 7、 分配軸 9、 及び噴射制御弁 2 6の順に、 直列配置されてい る。
このように、 分配軸 9を中央部に配置して、 プランジャ 7、 分配軸 9、 及び噴 射制御弁 2 6を直列配置することで、 燃料噴射ポンプ 1のカム軸 4の軸方向の寸 法を小さくすることができ、 燃料噴射ポンプ 1を全体的に小型化することが可能 となっている。
尚、 蓄圧室 3 1内の圧力を検出する圧力センサ 3 0はハイド口リックベース H bの一側面に取り付けられている。
また、 プランジャ 7、 分配軸 9、 及び噴射制御弁 2 6は、 完全な直列配置とさ れていなくても、 例えばプランジャ 7、 分配軸 9、 及び噴射制御弁 2 6の何れか 一つが直列位置からずれていたとしても、 また、 プランジャ 7、 分配軸 9、 及び 噴射制御弁 2 6が略直列状態で配置されていればよい。
また、 ハイド口リックベース H bには、 カム軸 4の軸方向と略平行に、 軸方向 に長い穴が穿設され、 蓄圧室 3 1を構成している。 該蓄圧室 3 1は、 1又は複数 構成され、 互いにハイドロリックベース H bに形成される油路によって連通され ている。
蓄圧室 3 1を構成するハイド口リックベース H bの穴の一端部は外部に開口し ており、 この開口部は、 プラグ 3 5又は前記安全弁 2 4により閉塞されている。 例えば、 複数の蓄圧室 3 1の内、 一つの蓄圧室 3 1を構成する穴の開口部を安全 弁 2 4により閉塞し、 他の蓄圧室 3 1を構成する穴の開口部をプラグ 3 5により 閉塞している。
該複数の蓄圧室 3 1は、 互いに並列配置され、 前記プランジャ 7、 分配軸 9、 及び噴射制御弁 2 6等の制御系機能部材の近傍に配置されている。
このように、 複数の蓄圧室 3 1を併設するとともに、 制御系機能部材の近傍に 配置することで、 該蓄圧室 3 1とプランジャ室 7 aとの間を連結する油路 (後述 の油路 r 3 · r 4 ) を短く形成することができ、 燃料通路の無駄な容積を減少す ることができて、 燃料圧送時間の短縮化及び馬力ロスの減少を図ることが可能と なっている。
尚、 蓄圧室 3 1は、 カム軸 4の軸方向に対して略直交方向に配置することも可 能であり、 また、 直線状に形成するだけでなく途中部で屈曲させてもよい。 また、 平行配置される複数の蓄圧室 3 1は、 完全な平行状態に配置されていな くても、 ある一方向からみて平行であればよく、 他の方向からみた場合には、 互 いにある程度角度をもって配置されていればよい。 さらに、 ある一方向からみた 場合の平行状態も、 完全な平行でなくても略平行であればよい。
前記カム軸ハウジング Hの一端面には、 カム軸 4の回転により駆動され燃料を 圧送するためのフィードポンプであるトロコィドポンプ 6が付設されている。 該トロコィドポンプ 6により燃料タンクに貯溜される燃料が、 カム軸ハウジン グ Hに穿設形成される油路 r 1及び八ィドロリックベース H bに穿設形成される 油路 r 2を通じて、 燃料供給室 2 7 bからプランジャ室 7 aへ圧送される。 即ち、 トロコイドポンプ 6の吐出口 6 aから燃料供給室 2 7 bに至り、 さらに 圧力制御弁 2 7の弁体 2 7 aを結ぶプランジャ部のプランジャ室 7 aまでが、 油 路 r 1及び油路 r 2により連通されている。
そして、 プランジャ室 7 aへ圧送された燃料は、 油路 r 3を通じて逆止弁 2 8 へ導入され、 該逆止弁 2 8から油路 r 4を通じて蓄圧室 3 1へ導出される。 このように、 トロコィドポンプ 6をカム軸ハウジング Hの一端面に装着して、 カム軸 4により駆動可能とすることで、 トロコイドポンプ 6を駆動するための駆 動軸を別個に設ける必要がなくなり、 部品点数を削減して、 構造の簡易化及び低 コスト化を図ることができ、 燃料噴射ポンプ 1を全体的に小型化することもでき る。
また、 トロコィドポンプ 6の吐出口 6 aからプランジャ部のプランジャ室 7 a までを、 油路 r 1及び油路 r 2により連通することで、 該トロコイドポンプ 6か らパイプ部材を用いることなくブランジャ部まで燃料を圧送することが可能とな り、 構造の簡易化及び低コスト化を図るとともに、 パイプの破損や燃料漏れ等を 防止することができる。
尚、 燃料圧送用のフィードポンプは、 トロコイドポンプ 6以外の回転形式の歯 車ポンプやべーンポンプ等としてもよい。
逆止弁 2 8は、 八ィドロリックベース H bに形成される嵌装孔 h dに嵌装され ており、 該逆止弁 2 8の下方における嵌装孔 h dには燃料通路片 5 1が嵌装され ている。
該燃料通路片 5 1には前記油路 r 3及び油路 r 4が形成されている。 燃料通路 片 5 1に形成される油路 r 3の一端部は、 ハイド口リックベース H bに形成され る油路 r 3と接続され、 他端部は、 逆止弁 2 8の燃料導入口 2 8 aに接続されて いる。 また、 燃料通路片 5 1に形成される油路 r 4の一端部は、 逆止弁 2 8の燃 料導出口 2 8 bに接続され、 他端部は、 ハイド口リックベース H bに形成される 油路 r 4と接続されている。
即ち、 逆止弁 2 8は、 ハイド口リックべ一ス H bに形成される油路 r 3及び r 4と、 それぞれ燃料通路片 5 1に形成される油路 r 3及び油路 r 4を介して接続 されている。
このように、 ハイドロリックベース H b内に設けられる逆止弁 2 8の燃料導入 口 2 8 aと接続される油路 r 3、 及び燃料導出口 2 8 bと接続される油路 r 4を 、 ハイドロリックベース H bとは別体に形成される燃料通路片 5 1に形成してい る。
これにより、 高圧燃料が通過する油路 r 3及び油路 r 4を、 ハイド口リックべ —ス H bとは別体の燃料通路片 5 1単体に加工 ·形成することが可能なり、 該油 路 r 3 · r 4の加工を容易にして加工工数の低減を図ることができる。
また、 燃料通路片 5 1単体に加工を行う場合は、 複雑な形状且つ大型の部材で あるハイドロリックベース H bよりも高精度な加工を施すことができるため、 燃 料通路片 5 1における、 逆止弁 2 8の燃料導入口 2 8 a及び燃料導出口 2 8 の 形成面との合わせ面も、 高精度且つ容易に加工することができ、 高圧燃料が通過 する油路 r 3 · r 4と燃料導入出口 2 8 a · 2 8 bとの接続部のシールを確実に 行うことができて、 燃料漏れ等を防止することができる。 蓄圧室 3 1内へ送出され蓄圧された高圧燃料は、 パイロットバルブ 2 5の制御 状態によっては (パイロットバルブ 2 5がオンされているときには) 、 油路 r 5 を通じて噴射制御弁 2 6へ導入され、 該噴射制御弁 2 6から油路 r 6を通じて分 配軸 9へ導出される。
噴射制御弁 2 6は、 ハイドロリックベース H bに形成される嵌装孔 h cに嵌装 されており、 該噴射制御弁 2 6の下方における嵌装孔 h cには燃料通路片 5 2が 嵌装されている。
該燃料通路片 5 2には前記油路 r 5及び油路 r 6が形成されている。 燃料通路 片 5 2に形成される油路 r 5の一端部は、 ハイドロリックベース H bに形成され る油路 r 5と接続され、 他端部は、 噴射制御弁 2 6の燃料導入口 2 6 aに接続さ れている。 また、 燃料通路片 5 2に形成される油路 r 6の一端部は、 噴射制御弁 2 6の燃料導出口 2 6 bに接続され、 他端部は、 ハイド口リックベース H bに形 成される油路 r 6と接続されている。
即ち、 噴射制御弁 2 6は、 ハイドロリックベース H bに形成される油路 r 5及 び油路 r 6と、 それぞれ燃料通路片 5 2に形成される油路 r 5及び油路 r 6を介 して接続されている。
このように、 ハイドロリックベース H b内に設けられる噴射制御弁 2 6の燃料 導入口 2 6 aと接続される油路 r 5、 及び燃料導出口 2 6 bと接続される油路 r 6を、 ハイドロリックベース H bとは別体に形成される燃料通路片 5 2に形成し ている。
これにより、 高圧燃料が通過する油路 r 5及び油路 r 6を、 ハイド口リックべ ース H bとは別体の燃料通路片 5 2単体に加工 ·形成することが可能なり、 該油 路 r 5 · r 6の加工を容易にして加工工数の低減を図ることができる。
また、 燃料通路片 5 2単体に加工を行う場合は、 複雑な形状且つ大型の部材で あるハイドロリックベ一ス H bよりも高精度な加工を施すことができるため、 燃 料通路片 5 2における、 噴射制御弁 2 6の燃料導入口 2 6 a及び燃料導出口 2 6 bの形成面との合わせ面も、 高精度且つ容易に加工することができ、 高圧燃料が 通過する油路 r 5 · r 6と燃料導入出口 2 6 a · 2 6 bとの接続部のシールを確 実に行うことができて、 燃料漏れ等を防止することができる。
分配軸 9へ送出された燃料は、 各気筒に対応する油路 r 7を通じて吐出弁 1 8 へ案内され、 各気筒の噴射ノズル 2 9から噴射される。
以上のように、 本燃料噴射ポンプ 1における燃料の高圧経路を構成する、 ブラ ンジャ 7、 分配軸 9、 圧力制御弁 2 7、 逆止弁 2 8、 噴射制御弁 2 6、 圧力セン サ 3 0、 安全弁 2 4、 吐出弁 1 8、 パイロットバルブ、 及び蓄圧室 3 1等といつ た機能部材は全て、 一つのブロック状部材にて構成されるハイドロリックベース H bに纏めて配設されている。
このように構成することで、 常時高い圧力がかかるこれらの構成部材がーつの ブロック状部材内に配設されることとなり、 高圧経路の強度を十分に確保するこ とができる。 また、 各構成部材間の接続はハイド口リックベース H bに形成した キリ孔等で構成される油路 r 1 · r 2 · · ·で行うことができ、 継手部品等を用 いることがないので油漏れや配管の損傷等が発生することもなく、 信頼性向上を 図ることができる。
尚、 機能部材 (プランジャバレル 8、 分配軸スリーブ 1 0 ) 及び燃料通路片 5 1 · 5 2等は高圧通路を形成しており、 ハイド口リックベース H bに焼き嵌めや 冷し嵌め等によって油密に嵌合している。 また、 噴射制御弁 2 6及び分配軸 9の下方における、 ハイド口リックベース H bとカム軸ハウジング Hとの境界部には、 低圧室 1 5が形成されている。
該低圧室 1 5は、 主にハイド口リックベース H bに形成されるキリ孔で構成さ れた低圧側回路 3 2に接続されており、 蓄圧室 3 1へ燃料を圧送するブランジャ 7とプランジャバレル 8との嵌合隙間から漏れ出る燃料や、 ハイド口リックベー ス H bに形成される嵌装孔 h bに嵌装される分配軸スリーブ 1 0と分配軸 9との 間から漏れ出る燃料等を、 該低圧室 1 5に回収し、 低圧側ドレン回路 1 0 0を通 じて燃料タンクへ戻すように構成している。
尚、 プランジャバレル 8の外周部は、 ハイド口リックベース H bに形成される リーク戻し孔 r 1 2により低圧室 1 5と連通されている。
このように、 プランジャ 7部分や分配軸 9部分等の高圧経路側から低圧側へ漏 れ出す燃料の回収室として低圧室 1 5を、 燃料噴射ポンプ 1のハウジングである ハイドロリックベース H b及びカム軸ハウジング Hに設けることで、 燃料噴射ポ ンプ 1の噴射圧が超高圧化して、 高圧経路側から発生するリーク燃料を確実に回 収して燃料夕ンクへ戻すことが可能となる。
これにより、 リーク燃料が、 カム軸ハウジング H内やエンジンの潤滑油に混入 して、 該潤滑油が希釈されてしまうことを防止することができる。
また、 蓄圧室 3 1に設けられる前記安全弁 2 4のドレンポート 2 4 aは、 ハイ ドロリックベース H bに形成されたキリ孔で構成される連通路 r 1 1により低圧 側ドレン回路 1 0 0と接続されており、 蓄圧質 3 1から安全弁 2 4を通じて排出 される燃料を燃料タンクへ戻すようにしている。
このように、 安全弁 2 4と低圧側ドレン回路 1 0 0とを、 ハイド口リックべ一 ス H bに形成されたキリ孔で構成される連通路 r 1 1接続することにより、 配管 部材をなくすことができて、 燃料の漏れ防止や、 低コスト化を図ることが可能と なっている。 また、 蓄圧室 3 1の開口部を閉塞するプラグ 3 5の代わりに、 安全 弁 2 4にて該開口部を閉塞して、 該安全弁 2 4にプラグ 3 5の機能をも具備させ ることで、 部品点数の削減を図っている。
尚、 低圧室 1 5をトロコイドポンプ 6の吸入側ポートと接続して、 該低圧室 1 5で回収した燃料をトロコイドポンプ 6へ供給するように構成することもできる 次に、 多気筒用、 例えば 6気筒用に構成した燃料噴射ポンプについて、 カム 5 部分の構成を中心に説明する。
図 6、 図 7に示す、 6気筒用に構成された燃料噴射ポンプ 1 0 1においては、 カム 8 5は 6山に形成されており、 該カム 8 5はカム軸 8 4と別体に形成されて 分割状態にあるものを、 該カム軸 8 4に揷着して一体的に回転可能とされている 。 また、 カム 8 5には、 気筒判別用の気筒判別用パルサー 8 1がー体的に形成さ れている。
このように、 多気筒用に形成されたカム 8 5の場合、 タペット 1 1との当接面 の曲率が小さくなって、 該タぺット 1 1に対する接触面圧が高くなる。 従って、 多気筒用に構成される本燃料噴射ポンプ 1 0 1の場合は、 カム 8 5と カム軸 8 4とを分割形成し、 高圧で夕ペット 1 1に接触するカム 8 5は、 S KH や S KDやセラミック等の高面圧材で構成して耐摩耗性を高め、 カム軸 8 4は、 カム 8 5程高強度でない標準的な材質の部材により形成して低コスト化を図って いる。
また、 高面圧材であるカム 8 5は、 焼結や M I M等の後工法により形成して低 コスト化を図っているが、 該カム 8 5に前記気筒判別用パルサ一 8 1を一体的に 形成して機能部材の複合化を図り、 さらなる低コスト化を図るとともに、 燃料噴 射ポンプ 1 0 1の小型化を図っている。
また、 多気筒仕様の燃料噴射ポンプとしては、 図 8、 図 9に示すように構成す ることもできる。
図 8、 図 9に示す燃料噴射ポンプ 2 0 1において、 前記分配軸 9は、 傘歯車 1 9 ' を介してカム軸 9 4により駆動されており、 カム軸 9 4にはカム軸側歯車 1 9 a ' が固設され、 分配軸 9側の分配駆動軸 3 9には分配軸側歯車 1 9 b ' が固 設されて、 該カム軸側歯車 1 9 a ' と分配軸側歯車 1 9 b ' とが嚙合している。 そして、 本例における分配軸側歯車 1 9 b ' は、 カム軸側歯車 1 9 a ' に対し て 2倍の歯数を有している。
また、 カム軸 9 4は、 燃料噴射ポンプ 2 0 1が装着されるエンジンの回転数と 同じ回転数で駆動されている。 従って、 カム軸側歯車 1 9 a ' と、 該カム軸側歯 車 1 9 a ' の 2倍の歯数を有する分配軸側歯車 1 9 b ' とを介して、 カム軸 9 4 により駆動される分配軸 9は、 カム軸 9 4の回転数の半分の回転数で駆動される こととなる。
ここで、 多気筒用の本燃料噴射ポンプ 2 0 1は、 例えば 6気筒用に構成されて おり、 4サイクルエンジンの場合、 カム軸 4が 2回転する間に、 分配軸 9が 1回 転して 6つの気筒へそれぞれ 1回ずつ燃料を分配供給し、 ブランジャ 7は 6回燃 料を蓄圧室 3 1へ圧送するように構成されており、 カム 9 5は 3山形成されてい る。
即ち、 この場合、 カム 9 5に形成される山の数は気筒数の半分の数となる。 このように、 4サイクルエンジンの場合、 カム 9 5に形成される山の数が気筒 数の半分の数となるので、 山の数を削減することができて、 カム 9 5を小型化す ることができるとともに、 カム 9 5の加工工数を低減することができる。
また、 カムプロフィルも半分の速度に減じることができ、 カム 9 5の外周面形 状も外側に向かって凸となる形状に形成することができるため、 カム 9 5の外周 面を加工する際には径の大きな砥石を用いることができ、 加工時における外周面 の研磨が容易となり、 加工時間も低減することができて、 低コスト化を図ること ができる。
また、 分配軸 9とカム軸 9 4とは傘歯車 1 9 ' により接続されているので、 簡 単な構成且つ低コストで、 分配軸 9の回転速度をカム軸 9 4の回転速度の半分の 速度とすることができる。
また、 分配軸側歯車 1 9 b ' はカム軸側歯車 1 9 a ' に対して 2倍の歯数を有 しており、 該分配軸側歯車 1 9 b ' の外径はカム軸側歯車 1 9 a ' の外径よりも 大きくなるため、 燃料噴射ポンプ 2 0 1を小型化するためには、 カム軸側歯車 1 9 a ' の外径を小さくする必要がある。
カム軸側歯車 1 9 a ' の外径を小さく形成するとカム軸 9 4が小径となるが、 本燃料噴射ポンプ 2 0 1の高 E噴射化によりカム軸 9 4がブランジャ 7等から受 ける荷重が大きくなつて、 該カム軸 9 4を両端部で支持するのみでは、 カム軸 9 4に撓みが発生する恐れがある。
そこで、 本例の燃料噴射ポンプ 2 0 1においては、 カム軸 9 4に対向した反プ ランジャ 7側周面 (図 3においては下側) を支持する半割状の軸受 7 1を、 カム 軸 9 4両端の支持部より中央側のカム 5近傍に配設している。
これにより、 カム軸 9 4がプランジャ 7等から受ける荷重を軸受 7 1によって 受けることができ、 カム軸 9 4の撓みを抑えて振動や騒音の低減を図ることがで きる。 また、 傘歯車 1 9 ' を小さく形成することができて、 燃料噴射ポンプ 2 0 1を全体的に小型化することが可能となる。
次に、 前記燃料噴射ポンプ 1を搭載したエンジンシステムについて概説する。 図 1 0に示すように、 燃料噴射ポンプ 1はエンジン Eに装着されている。 該システムにおける前記 E C U 2 0には、 前述の圧力センサ 3 0、 パイロットバ ルブ 2 5、 及び圧力制御弁 2 7の他に、 燃料噴射ポンプ 1に付設される燃料温度 センサ 6 8や、 カム軸 4と一体的に回転する気筒判別用パルサー 6 1により気筒 を判別するための気筒判別用センサ 6 2が接続されている。
また、 E C U 2 0には、 エンジン Eの冷却水温度を検出する水温センサ 6 6や 、 クランク軸と一体的に回転する回転検出用パルサ 6 3によりエンジン回転数を 検出する回転数センサ 6 4が接続され、 各気筒の噴射ノズル 2 9のリフト量を検 出するリフトセンサ 6 5も接続されている。
さらに、 E C U 2 0には、 アクセルセンサ 6 7や、 その他のブ一スト圧や吸気 流量や吸気温度等を検出するセンサ群 6 9が接続されている。
そして、 アクセルセンサ 6 7によるアクセル開度の検出値や、 回転数センサ 6 4によるエンジン回転数の検出値や、 圧力センサ 3 0による蓄圧室 3 1内の圧力 の検出値等に基づいて、 E C U 2 0によりパイロットバルブ 2 5や圧力制御弁 2 7等の作動を電気的に制御して、 適切な噴射量や噴射時期等で噴射ノズル 2 9か ら燃料を噴射するようにしている。
この際、 気筒判別用センサ 6 2により燃料噴射をおこなうべき噴射ノズル 2 9 を判別し、 その他の燃料温度センサ 6 8、 水温センサ 6 6、 リフトセンサ 6 5、 及びセンサ群 6 9による検出値により、 燃料噴射条件を適宜調節している。 さらに、 E C U 2 0においては、 各種センサの検出値等に異常があった場合に 、 エンジン Eや燃料噴射ポンプ 1に故障が発生したかどうかの判断を行う故障診 断機能も備えられている。
尚、 前記気筒判別用パルサ一 6 1の代わりに、 傘歯車 1 9等のカム軸 4と連動 する歯車等を用いて気筒の判別を行うことも可能である。 産業上の利用可能性
本発明の蓄圧式分配型燃料噴射ポンプは、 ディ一ゼルエンジンの燃料噴射ボン プに適用可能であり、 特に、 低燃費且つ排気ェミッション規制に対応可能な、 低 公害エンジン用の燃料噴射ポンプとして適している。

Claims

請 求 の 範 囲
1 . 1又は複数の蓄圧室に蓄圧した高圧燃料を、 分配手段により各気筒へ分配し て供給する蓄圧式分配型燃料噴射ポンプにおいて、 プランジャゃ圧力制御用の圧 力制御弁や燃料噴射制御用の噴射制御弁や蓄圧室や分配手段等の高圧経路を構成 する機能部材を、 ハイドロリックベース内に配設したことを特徴とする蓄圧式分 配型燃料噴射ポンプ。 .
2 . 前記分配手段としての分配軸を、 カム軸に対して直交方向に配置したことを 特徴とする請求の範囲第 1項記載の蓄圧式分配型燃料噴射ポンプ。
3 . 前記分配手段としての分配軸を、 カム軸により駆動することを特徴とする請 求の範囲第 1項記載の蓄圧式分配型燃料噴射ポンプ。
4. 前記蓄圧室へ燃料を蓄圧するためのプランジャ部を 1つ設けたことを特徴と する請求の範囲第 1項記載の蓄圧式分配型燃料噴射ポンプ。
5 . 前記プランジャ部のプランジャを駆動するためのカムを、 該カムを支持する カム軸とは分割形成したことを特徴とする請求の範囲第 1項記載の蓄圧式分配型 燃料噴射ポンプ。
6 . 前記蓄圧式分配型燃料噴射ポンプのカム軸には気筒判別用のパルス発生部材 が設けられ、 該パルス発生部材を前記カムと一体形成したことを特徴とする請求 の範囲第 4項記載の蓄圧式分配型燃料噴射ポンプ。
7 . 前記蓄圧室へ燃料を圧送するプランジャを駆動するためのカム軸の回転速度 と、 該蓄圧式分配型燃料噴射ポンプが装着されるェンジンの回転速度とを同一と し、 分配手段の回転速度を該エンジンの回転速度の半分の速度としたことを特徴 とする請求の範囲第 1項記載の蓄圧式分配型燃料噴射ポンプ。
8 . 前記分配手段は傘歯車を介してカム軸により駆動され、 該分配手段側の傘歯 車の歯数を、 カム軸側の傘歯車の歯数の 2倍としたことを特徴とする請求の範囲 第 7項記載の蓄圧式分配型燃料噴射ポンプ。
9 . 前記カム軸は、 その両端部をハウジングにより支持され、 該カム軸の反ブラ ンジャ側周面を支持する軸受を、 ハウジングによる支持部より中央側のカム近傍 に配設したことを特徴とする請求項 7に記載の蓄圧式分配型燃料噴射ポンプ。
1 0 . 制御系機能部材である、 前記プランジャ部及び噴射制御弁を、 それぞれ力 ム軸に対して垂直方向に配設したことを特徴とする請求の範囲第 1項記載の蓄圧 式分配型燃料噴射ポンプ。
1 1 . 制御系機能部材である、 前記プランジャ部、 分配手段、 及び噴射制御弁を. 、 それぞれカム軸に対して垂直方向に配設したことを特徴とする請求の範囲第 1 項記載の蓄圧式分配型燃料噴射ポンプ。
1 2 . 前記制御系機能部材を、 プランジャ部、 分配手段、 及び噴射制御弁の順に 、 カム軸方向に配置したことを特徴とする請求の範囲第 1 1項記載の蓄圧式分配 型燃料噴射ポンプ。
1 3 . 前記プランジャ部、 分配手段、 及び噴射制御弁は、 直列配置されることを 特徴とする請求の範囲第 1 2項記載の蓄圧式分配型燃料噴射ポンプ。
1 4 . 前記プランジャ部の制御用電磁弁、 及び噴射制御弁の制御用電磁弁は、 そ れぞれプランジャの端部及び噴射制御弁の端部に配置されることを特徴とする請 求の範囲第 1 1項記載の蓄圧式分配型燃料噴射ポンプ。
15. 前記制御用電磁弁の摺動部材の摺動方向が、 カム軸に対して垂直方向であ ることを特徴とする請求の範囲第 14項記載の蓄圧式分配型燃料噴射ポンプ。
16. 前記蓄圧室は複数形成され、 該複数の蓄圧室は互いに並列配置されること を特徴とする請求の範囲第 1項記載の蓄圧式分配型燃料噴射ポンプ。
PCT/JP2000/007912 2000-11-09 2000-11-09 Pompe d'injection distributrice a chambre d'accumulation WO2002038941A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2000/007912 WO2002038941A1 (fr) 2000-11-09 2000-11-09 Pompe d'injection distributrice a chambre d'accumulation
US09/744,810 US6516784B1 (en) 2000-11-09 2000-11-09 Pressure accumulating distribution type fuel injection pump
DE60022914T DE60022914T2 (de) 2000-11-09 2000-11-09 Verteilereinspritzpumpe mit kraftstoffspeicher
EP00974889A EP1333173B1 (en) 2000-11-09 2000-11-09 Accumulator distribution type fuel injection pump
CNB008199876A CN100494664C (zh) 2000-11-09 2000-11-09 蓄压式分配型燃料喷射泵
JP2002541238A JP4422405B2 (ja) 2000-11-09 2000-11-09 蓄圧式分配型燃料噴射ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/007912 WO2002038941A1 (fr) 2000-11-09 2000-11-09 Pompe d'injection distributrice a chambre d'accumulation

Publications (1)

Publication Number Publication Date
WO2002038941A1 true WO2002038941A1 (fr) 2002-05-16

Family

ID=11736674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007912 WO2002038941A1 (fr) 2000-11-09 2000-11-09 Pompe d'injection distributrice a chambre d'accumulation

Country Status (6)

Country Link
US (1) US6516784B1 (ja)
EP (1) EP1333173B1 (ja)
JP (1) JP4422405B2 (ja)
CN (1) CN100494664C (ja)
DE (1) DE60022914T2 (ja)
WO (1) WO2002038941A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1359316B1 (en) * 2002-05-03 2007-04-18 Delphi Technologies, Inc. Fuel injection system
US6925990B1 (en) 2003-07-31 2005-08-09 Brunswick Corporation Method for controlling fuel pressure for a fuel injected engine
DE102004028221A1 (de) 2004-06-09 2005-12-29 Ina-Schaeffler Kg Hochbeanspruchtes Motorenbauteil
CN100353050C (zh) * 2004-09-30 2007-12-05 浙江大学 缸内直喷式发动机燃料高压产生装置
CN100344868C (zh) * 2004-09-30 2007-10-24 浙江大学 液化石油气/汽油缸内直喷供油系统的燃料高压产生装置
JP4921886B2 (ja) * 2006-08-16 2012-04-25 ヤンマー株式会社 エンジンの燃料供給装置
EP1923562B1 (en) 2006-11-16 2011-11-02 C.R.F. Società Consortile per Azioni Fuel adjustment and filtering device for a high-pressure pump
ATE467045T1 (de) * 2006-11-16 2010-05-15 Fiat Ricerche Verbessertes kraftstoffeinspritzungssystem für einen verbrennungsmotor
US20070272215A1 (en) * 2007-03-09 2007-11-29 Mazrek Ltd. Fuel Injection Sytem for Internal Combustion Engines
US8308450B2 (en) * 2009-03-05 2012-11-13 Cummins Intellectual Properties, Inc. High pressure fuel pump with parallel cooling fuel flow
JP2013181505A (ja) * 2012-03-02 2013-09-12 Yanmar Co Ltd 燃料噴射ポンプ
DE102014225651B4 (de) * 2014-12-12 2016-06-30 Continental Automotive Gmbh Hubkolbenpumpe
CN106699966B (zh) * 2015-07-17 2019-03-26 中国石油化工股份有限公司 一种丁二烯-异戊二烯共聚橡胶及其制备方法
JP6411313B2 (ja) * 2015-11-26 2018-10-24 ヤンマー株式会社 燃料噴射ポンプ
CN105736204B (zh) * 2016-01-28 2018-08-21 山东康达精密机械制造有限公司 一种直列分配式全电控喷油泵总成
CN105697205B (zh) * 2016-01-28 2018-06-22 山东康达精密机械制造有限公司 一种直列分配式电控喷油泵用高压燃油分配装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165440U (ja) * 1986-04-10 1987-10-21
JPH05288127A (ja) * 1992-04-10 1993-11-02 Isuzu Ceramics Kenkyusho:Kk 燃料供給装置
JPH07509042A (ja) * 1993-05-06 1995-10-05 カミンス エンジン カンパニー インコーポレイテッド アキュムレーターを備えた小型高性能燃料系
JPH0979100A (ja) * 1995-09-13 1997-03-25 Yanmar Diesel Engine Co Ltd 分配型燃料噴射ポンプ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3001166A1 (de) * 1980-01-15 1981-07-23 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzanlage
JPS62165440A (ja) * 1986-01-16 1987-07-22 Mitsubishi Electric Corp ラジオ受信機
DE3722265A1 (de) * 1987-07-06 1989-01-19 Bosch Gmbh Robert Kraftstoffeinspritzpumpe
DE3844365A1 (de) * 1988-12-30 1990-07-05 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung
DE3903313A1 (de) * 1989-02-04 1990-08-09 Bosch Gmbh Robert Speicherkraftstoffeinspritzvorrichtung
JPH07269439A (ja) * 1994-03-31 1995-10-17 Zexel Corp 分配型燃料噴射ポンプ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165440U (ja) * 1986-04-10 1987-10-21
JPH05288127A (ja) * 1992-04-10 1993-11-02 Isuzu Ceramics Kenkyusho:Kk 燃料供給装置
JPH07509042A (ja) * 1993-05-06 1995-10-05 カミンス エンジン カンパニー インコーポレイテッド アキュムレーターを備えた小型高性能燃料系
JPH0979100A (ja) * 1995-09-13 1997-03-25 Yanmar Diesel Engine Co Ltd 分配型燃料噴射ポンプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1333173A4 *

Also Published As

Publication number Publication date
EP1333173A1 (en) 2003-08-06
CN100494664C (zh) 2009-06-03
DE60022914T2 (de) 2006-06-29
CN1455845A (zh) 2003-11-12
JPWO2002038941A1 (ja) 2004-03-18
US6516784B1 (en) 2003-02-11
EP1333173B1 (en) 2005-09-28
JP4422405B2 (ja) 2010-02-24
EP1333173A4 (en) 2004-08-25
DE60022914D1 (de) 2006-02-09

Similar Documents

Publication Publication Date Title
JP4422405B2 (ja) 蓄圧式分配型燃料噴射ポンプ
JP4453028B2 (ja) 高圧燃料ポンプ
US7234448B2 (en) Fuel injection pump having filter
EP1416153A1 (en) Fuel injection pump
US7080631B2 (en) Safety fuel injection pump
US20060016432A1 (en) Fuel injection system for an internal combustion engine
WO2005068823A1 (ja) 燃料供給用ポンプ
WO2009053364A1 (en) Fuel injection system with a high-pressure pump lubricated with the fuel, and associated pump unit
US6817841B2 (en) High-pressure fuel pump for internal combustion engine with improved partial-load performance
GB2390403A (en) Fluid pump
JP2006510835A (ja) 内燃機関の燃料噴射装置のための高圧ポンプ
US20040247464A1 (en) Fuel supply apparatus
JP2007224760A (ja) シリンダ潤滑装置
JP5390692B2 (ja) 高圧ポンプ
JP2002147307A (ja) 蓄圧式分配型燃料噴射ポンプ
JP2002174159A (ja) 蓄圧式分配型燃料噴射ポンプの三方弁
JP3648195B2 (ja) 蓄圧式分配型噴射ポンプのヘッド構造
EP1336752A3 (en) Fuel injection system
JP3745999B2 (ja) 蓄圧式分配型燃料噴射ポンプ
JP2002266718A (ja) 蓄圧式分配型燃料噴射ポンプ
JP2002266719A (ja) 蓄圧式分配型燃料噴射ポンプ
JP2003269279A (ja) 蓄圧式分配型燃料噴射ポンプ
JPH1150926A (ja) 燃料噴射ポンプ
JP2002174157A (ja) 蓄圧式分配型燃料噴射ポンプの三方弁
JP2002174156A (ja) 燃料噴射ポンプの構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09744810

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002541238

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 403/DELNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2000974889

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008199876

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2000974889

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000974889

Country of ref document: EP