WO2002033002A1 - Composition pour composition de resine synthetique et aimant a resine forme - Google Patents

Composition pour composition de resine synthetique et aimant a resine forme Download PDF

Info

Publication number
WO2002033002A1
WO2002033002A1 PCT/JP2001/006545 JP0106545W WO0233002A1 WO 2002033002 A1 WO2002033002 A1 WO 2002033002A1 JP 0106545 W JP0106545 W JP 0106545W WO 0233002 A1 WO0233002 A1 WO 0233002A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
composition
resin magnet
magnet
magnetic powder
Prior art date
Application number
PCT/JP2001/006545
Other languages
English (en)
French (fr)
Inventor
Kota Kawano
Hideharu Daifuku
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to US10/398,754 priority Critical patent/US6893580B2/en
Priority to AU2002244343A priority patent/AU2002244343A1/en
Publication of WO2002033002A1 publication Critical patent/WO2002033002A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/09Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer using magnetic brush
    • G03G15/0921Details concerning the magnetic brush roller structure, e.g. magnet configuration

Definitions

  • compositions for synthetic resin magnets and molded resin magnets Technical field ''
  • the present invention relates to a composition for a synthetic resin magnet which is obtained by mixing and dispersing magnetic powder in a resin binder, and which is suitably used as a molding material for a resin magnet molded product such as a magnet roller used in an electrophotographic apparatus and an electrostatic recording apparatus. , And a molded resin magnet.
  • resin magnets are used as a developing roller to visualize an electrostatic latent image on a latent image holder such as a photosensitive drum.
  • a magnet roller having a predetermined magnetization pattern magnetized therein is disposed, and a magnetic developer (magnetic toner) is sucked up on the sleeve surface according to the magnetization pattern and conveyed.
  • a development method is known in which magnetic toner is supplied onto an electrostatic latent image on the surface of a latent image holding member to visualize the toner by a so-called jumping phenomenon of flying on the image holding member.
  • the magnet roller is formed by injection molding or extrusion molding a composition for a synthetic resin magnet in which a magnetic powder is mixed with a binder of a thermoplastic resin using a mold having a magnetic field formed around the composition. And magnetized so that the magnetic force on the surface of the magnet opening has a desired magnetization pattern.
  • a desired magnetic force pattern by molding a plurality of magnetized magnet pieces with the above-described composition for a synthetic resin magnet, and pasting them around a shaft.
  • a magnetic powder such as a ferrite-rare earth magnet is mixed in a resin binder made of a polyamide resin such as polyamide-6, polyamide-12, or polypropylene, or polypropylene. What has been mixed and dispersed is conventionally used. However, the demand for higher magnetic force of magnet roller has been increasing with the recent advancement of OA equipment, higher speed, higher accuracy, etc. Is always required.
  • a method of increasing the filling amount of ferrite magnetic powder in the synthetic resin magnet composition forming the magnet roller and the like is considered.However, if the filling amount of ferrite magnetic powder is increased, the melting of the resin magnet composition can be considered. In this case, the fluidity at the time is reduced, the moldability is significantly reduced, and the resulting molded product has problems such as variations in magnetic force and reduced dimensional accuracy. For this reason, the amount of magnetic powder to be filled is naturally limited, and at present it is not possible to fill a sufficient amount of magnetic powder to satisfy the demand for higher magnetic force.
  • the present invention has been made in view of the above circumstances, and has excellent fluidity at the time of melting, can maintain good melt fluidity even when the filling amount of the magnetic powder is increased, and can mold without deteriorating moldability. It is an object of the present invention to provide a composition for a synthetic resin magnet and a resin magnet molded product capable of achieving a high magnetic force of a product.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, when preparing a composition for a synthetic resin magnet by mixing and dispersing magnetic powder in a resin binder made of a thermoplastic resin, By adding and mixing, for example, a polymerized fatty acid-based polyamide represented by the following formula (1), the melt fluidity of the composition can be effectively improved. Good melt fluidity can be maintained even if the powder filling amount is increased, and a resin magnet molded product with high magnetic force can be obtained without problems such as deterioration in moldability due to decrease in fluidity during melting. Was found. HHO 0 HHO 0
  • the present invention provides, as a first invention, dispersion mixing of magnetic powder in a resin binder
  • the composition for a synthetic resin magnet wherein the resin binder comprises a main resin made of a thermoplastic resin and a polymerized fatty acid-based polyamide, A composition for a synthetic resin magnet using the polymerized fatty acid-based polyamide represented by the above (1) as the polymerized fatty acid-based polyamide, and a resin magnet molding obtained by molding the composition for a synthetic resin magnet into a desired shape.
  • the inventors of the present invention focused on additives to the molding material and the molding conditions in order to achieve the above object, and as a result of studying separately, the molding material obtained by mixing and dispersing the magnetic powder in the resin binder was used.
  • the molding material obtained by mixing and dispersing the magnetic powder in the resin binder was used.
  • a predetermined amount of a hindered phenol-based antioxidant to the resin magnet composition and molding the resin magnet composition at a temperature of 120 to 180 ° C.
  • the fluidity during molding is improved. It has been found that a molded resin magnet having high dimensional accuracy and excellent magnetizing performance with little variation in surface magnetic force can be obtained.
  • the present invention provides, as a second invention, a resin magnet composition obtained by mixing a magnetic powder and a hindered phenol-based antioxidant in a resin binder into a desired shape at a temperature of 120 to 180 ° C.
  • a resin magnet molded product characterized by the above feature.
  • FIG. 1 is a graph showing a change in torque during kneading when adjusting a synthetic resin magnet composition in Example Comparative Example 1.
  • the composition for a synthetic resin magnet according to the first invention is obtained by mixing and dispersing magnetic powder in a resin binder obtained by adding a polymerized fatty acid-based polyamide to a main resin composed of a thermoplastic resin. is there.
  • thermoplastic resin which is a main material of the binder resin
  • examples of the thermoplastic resin which is a main material of the binder resin include polyamide resin (polyamide 6, polyamide-12, etc.), polystyrene resin, polyethylene terephthalate resin (PET), polybutylene terephthalate resin (PBT), Polyphenylene sulfide resin (PPS), ethylene-vinyl acetate copolymer resin (EVA), ethylene-ethyl acrylate resin (EEA), epoxy resin, ethylene-vinyl alcohol copolymer resin (EVOH), polypropylene Modification of polyolefins such as resin (PP), polyethylene, and polyethylene copolymers, and modification by introducing reactive functional groups such as maleic anhydride group, olepoxyl group, hydroxyl group, and glycidyl group into the structure of these polyolefins. Polyolefins, etc., and use of one or more of these Can be.
  • the amount of the main resin is not particularly limited, but is preferably about 1 to 20% by weight, and particularly preferably 4 to 16% by weight of the entire resin magnet composition. If the amount of the base resin is less than 1% by weight, it may not be possible to obtain sufficient melt fluidity even if a polymerized fatty acid-based polyamide described below is added. Things can be very brittle. On the other hand, if the content exceeds 20% by weight, the filling amount of the magnetic powder becomes relatively small, and it may be difficult to achieve high magnetic force.
  • any polyamide can be used as long as the object of the present invention can be achieved.
  • those represented by the following formula (1) are preferred. It is preferably used.
  • the molecular weight of the polymerized fatty acid-based polyamide represented by the formula (1) is preferably from 1,000 to 65,000 (number average molecular weight), particularly preferably from 5,000 to 25,000.
  • polymerized fatty acid polyamide represented by the formula (1) examples include “PA-30L”, “PA-30”, “PA_40L”, “PA-40”, and “PA-30L” manufactured by Fuji Kasei Co., Ltd. "PA-30R”, “PA-30H”, “PA-50R”, “PA-50M”, “PA-60”, “PA-160”, “PA-260” and the like.
  • PA-30R Japanese Patent Application Laidity
  • PA-50M PA-50M
  • PA-60 PA-160
  • PA-260 PA-260
  • the amount of the polymerized fatty acid-based polyamide to be added is appropriately selected according to the type of the main resin, the filling amount of the magnetic powder, and the like, and is not particularly limited.
  • the content is preferably 1 to 20% by weight, particularly 0.1 to 5% by weight. If the amount is less than 0.1% by weight, the effect of improving the melt fluidity may not be sufficiently obtained. On the other hand, if it exceeds 20% by weight, the filling amount of the magnetic powder becomes relatively small. However, sufficient magnetic characteristics may not be obtained.
  • a magnetic powder conventionally used as a magnetic powder in a resin magnet has been used.
  • Known magnetic powders can be used. Specific examples include ferrite powders such as Sr ferrite and Ba ferrite, alnico alloys, Sm—Co alloys, Nd—Fe_B alloys, and Sm ferrites. -Examples include rare earth alloy powders such as Fe-N alloys and Ce-Co alloys.
  • the magnetic powder used in the present invention is not particularly limited. However, from the viewpoints of the melt fluidity of the obtained resin magnet composition, the orientation of the magnetic powder, the filling ratio, and the like, the average particle size is usually an average particle size. Is preferably about 0.05 to 300 m, particularly about 0.1 to 100 m.
  • the magnetic powder may be subjected to a known pretreatment if necessary, and blended in the composition for a synthetic resin magnet.
  • a known coupling agent such as a silane coupling agent or a titanate-based coupling agent
  • the magnetic powder subjected to such coupling treatment is preferably used.
  • silane coupling agents include: araminopropyltriethoxysilane, araminopropyltrimethoxysilane, N— / 3- (aminoethyl) -aminaminopropyltrimethoxysilane, and ureidopropyltriethoxysilane.
  • ⁇ one Aminopuropiru Bok triethoxysilane ⁇ one Amino professional buildings trimethoxysilane, ⁇ - j8- (aminoethyl) Ichia - Aminopuropiru trimethoxysilane are particularly preferably used.
  • titanate-based coupling agents examples include isopropyl bis (dioctyl pyrophosphate) titanate, isopropyl tri (N-aminoethyl aminoethyl) titanate, isopropyl triisostearoyl titanate, diisopropane Mouth pyrbis (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1 butyl) ) Bis (ditridecyl) phosphite titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene titanate, etc., among which isopropyl bis (diocty
  • the mixing amount of the magnetic powder is appropriately selected according to the strength of the magnetic force required for the target molded product, and is not particularly limited. It can be 99% by weight, and in the present invention, even if it exceeds 90% by weight and is filled with magnetic powder at a high level, the melt flowability of the composition can be maintained well, and a resin magnet molded article having high magnetic force can be maintained. Can be obtained with good moldability. Further, in the present invention, as described above, a remarkable effect is obtained when the magnetic powder is highly filled. However, the composition for a synthetic resin magnet of the present invention has a compounding amount of the magnetic powder of 80 to 90. Even if the filling is not particularly high, such as about weight%, it is advantageous in terms of uniform dispersion of the magnetic powder.
  • the composition for a synthetic resin magnet of the present invention contains the above-mentioned main material resin, polymerized fatty acid-based polyamide, and magnetic powder, and is not particularly limited. It is preferable to add an appropriate amount of an antioxidant to prevent this.
  • the antioxidant is not particularly limited and known ones can be used. Specific examples include hindered phenol-based, hindered amine-based and phosphorus-based antioxidants.
  • the amount of the antioxidant to be added is appropriately selected according to the type of the antioxidant and the type of the binder-resin, and is not particularly limited. -20% by weight, particularly preferably 0.1-3% by weight. Further, to the composition for a synthetic resin magnet of the present invention, an appropriate amount of a dispersant, a lubricant, a plasticizer, or the like for dispersing the magnetic powder can be added as necessary.
  • dispersant examples include phenol-based and amine-based dispersants.
  • lubricant examples include paraffin wax, micro-sterin wax, and other fatty acids such as stearic acid and oleic acid.
  • Metal salt stearin Calcium acid, zinc stearate, etc.
  • plasticizer a monoester or polyester plasticizer, an epoxy plasticizer, and the like are preferably used.
  • a filler having a large reinforcing effect such as mica powder or talc, carbon fiber, glass fiber or the like may be appropriately added to the composition for a synthetic resin magnet of the present invention as long as the object of the present invention is not hindered.
  • a molded product can be reinforced by adding a filler such as mica powder.
  • the filler preferably used in the present invention is preferably My force or Whis force
  • the whisker is a non-oxide based force composed of silicon carbide, silicon nitride, etc .; g O, T I_ ⁇ 2, S n 0 2, A 1 2 0 3 , etc.
  • metal oxide Uisu force consisting of potassium titanate, borate Aruminiu arm, multiple oxide Uisu force comprising basic magnesium sulfate Among them, double oxide type power is particularly preferably used because it can be easily compounded with plastic.
  • the amount of these fillers used is not particularly limited, but is usually about 1 to 50% by weight, and particularly about 5 to 20% by weight, based on the total composition for synthetic resin magnets.
  • the composition for a synthetic resin magnet of the present invention may contain additives other than the above-mentioned magnetic powder dispersant, lubricant, plasticizer and filler, without departing from the purpose of the present invention.
  • an organic tin-based stabilizer or the like can be added in an appropriate amount as needed.
  • the resin magnet molded product according to the first invention is molded using the above-described composition for a synthetic resin magnet, thereby achieving excellent dimensional accuracy, little variation in magnetic force, and achieving high magnetic force. Is what you can do. That is, since the composition for a synthetic resin magnet of the present invention can maintain good melt fluidity even when a large amount of magnetic powder is filled, even if a large amount of magnetic powder is filled in order to achieve a high magnetic force. Highly magnetic and high-performance magnet rollers that can flow well within the mold cavity during molding without causing poor orientation or filling of the magnetic powder in the mold, and uneven packing density. Resin magnet A stone molding can be obtained with good moldability.
  • the above-described composition for a synthetic resin magnet of the present invention may be kneaded, melted and molded, and the molding method at that time may be injection molding according to the intended resin magnet molded product.
  • An appropriate molding method such as a extrusion method, an extrusion molding method, and a compression molding method can be employed.
  • the molding conditions may be ordinary conditions according to the molding method, the composition of the resin magnet composition, the desired molded product, and the like.
  • the polymerized fatty acid-based polyamide is added to the binder resin constituting the composition for the synthetic resin magnet, the fluidity at the time of melting can be improved, and injection molding and extrusion molding can be performed.
  • the molding processability when obtaining a resin magnet molded product by compression molding or the like is improved. Therefore, it is possible to satisfactorily cope with a high magnetic force due to high filling of the magnetic powder without lowering the moldability.
  • the resin magnet molded product according to the second invention is a resin magnet composition obtained by mixing a magnetic powder and a hindered phenolic antioxidant in a resin binder at a desired temperature of 120 to 180 ° C. It is formed into a shape.
  • the resin binder of the resin magnet composition is not particularly limited, and examples thereof include the same thermoplastic resins as the main resin in the synthetic resin magnet composition of the first invention. These may be used alone or in combination of two or more.
  • polyamide resins such as polyamide-16, polyamide-12, polyamide-66, polyamide-11, polyamide-46, etc. are preferably used.
  • Polyamide-6 is particularly preferably used.
  • a polymerized fatty acid-based polyamide may be mixed with the resin binder.
  • the magnetic powder mixed and dispersed in the binder is not particularly limited, and the ferrite powder, alnico alloy, rare earth alloy powder and the like exemplified in the first invention can be used.
  • high magnetic force of rare earth alloy powder terms of are preferably used, among them such N d 2 F e 1 4 B and N di 2 F e 7 8 C o 4 B 6 Nd-based magnetic powder or Sm-based magnetic powder such as Sm 2 Fe 17 N 3 is particularly preferably used.
  • These magnetic powders may be used alone or in combination of two or more.
  • the magnetic powder is used as a powder, and the particle size is not limited.
  • the average particle size is not limited.
  • the diameter is preferably 1 to 250 m, particularly preferably 20 to 50 / m.
  • these magnetic powders may be subjected to a pretreatment using the coupling agent described in the first invention.
  • the mixing ratio of the resin binder and the magnetic powder in the resin magnet composition for obtaining the resin molded product of the present invention is not particularly limited, and is appropriately selected depending on the magnetic strength required for the resin molded product.
  • the magnetic powder content is about 70 to 95% by weight (the density is about 2.5 to 6. OgZcm 3 ) with respect to the total amount of the composition for resin magnets. 80% by weight or more, especially 80 to 95% by weight (density is about 3.2 to 6. Og / cm 3 ) due to the effect of improving the fluidity by adding a monophenolic antioxidant Good fluidity can be maintained even with a very high filling ratio.
  • a hindered phenol-based antioxidant is added to the composition for resin magnet, and the composition is subjected to molding.
  • the hindered phenol-based antioxidant is not particularly limited, and a commercially available hindered phenol-based antioxidant can be used.
  • N, N'-bis [3-(3,5- G-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine (“IRGANOX MD 1024” manufactured by Ciba Specialty Chemicals Co., Ltd.), triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-methyl-4-hydroxy) Enyl) propionate] (“IRGANOX 245, 245FF, 245DWJ” manufactured by Ciba Specialty Chemicals Co., Ltd.), pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] ( Ciba 'Specialty Chemicals Co., Ltd.'s "I RGANOX 1010, 1010FP, 101 OFF”), thiojetylene bis [3- (3,5-g (Hydroxyphenyl) propionate] (“I RGANOX 1035, 1035 FF” manufactured
  • IR GANOX 1141 Jethyl ⁇ [3,5-bis (1,1,1-dimethylethyl) -4-hydroxyphenyl] methyl ⁇ phosphate “I RGANOX 1222”, manufactured by Charty Chemicals Co., Ltd.), 3,3 ′, 3 ′ ′, 5,5,5,5′-hexa-t-butyl-a, a ,, a ', 1- (mesitylene- 2,4,6_tolyl) Tree ⁇ -cresol (“IRGANOX 1330” manufactured by Ciba Specialty Chemicals Co., Ltd.), calcium getyl bis ⁇ [[[3,5-bis (1,1-dimethylethyl)] — 4-Hydroxyphenyl] methyl] phosphone
  • the amount of the hindered phenolic antioxidant to be added is appropriately determined depending on the type of the magnetic resin binder resin and the like, but is usually 0.1 to 20% by weight, preferably 0.1 to 5% by weight is added.
  • An appropriate amount of a filler having a large reinforcing effect can be added.
  • the method for preparing the resin magnet composition is not particularly limited.
  • a resin binder, a magnetic powder, and a dispersant and a filler used as necessary are mixed according to a normal method, and then melt-kneaded. After that, the resin magnet composition can be adjusted by molding into pellets.
  • ordinary methods and conditions using a single-screw or twin-screw kneading extruder, a KCK extruder or the like can be adopted.
  • the resin magnet molded product of the present invention is obtained by molding the composition for a resin magnet containing the hindered phenol-based antioxidant thus prepared into a desired shape at 120 to 180 ° C. It is.
  • the molding method is not particularly limited, and the molding is performed while maintaining the mold temperature at the above-mentioned 120 to 180 ° C by an injection molding method, an extrusion molding method, a compression molding method, or the like. Although it can be carried out, it is particularly preferable to use an injection molding method.
  • the synergistic effect of setting the molding temperature (mold temperature) higher than the conventional 85 to 100 ° C. and improving the fluidity of the hindered phenol-based antioxidant can be achieved.
  • MFR melt flowability
  • a resin magnet composition is prepared by mixing and dispersing a magnetic powder such as a rare earth magnetic alloy powder and a hindered phenol-based antioxidant having a fluidity improving effect in a resin binder. Since the resin composition is formed into a resin magnet composition at a temperature of 120 to 180 ° C., the melt fluidity (MFR) of the resin magnet stone composition is improved. The molding can be carried out in a state where it is in a state of being bent. Therefore, it is possible to obtain a resin magnet molded article having high dimensional accuracy and low magnetic force variation and having high magnetic force.
  • MFR melt fluidity
  • the resin magnet molded product according to the first and second inventions can be used for various applications, and is not particularly limited. However, since high magnetic force and high magnetic properties are required, an electrophotographic apparatus is used. ⁇ ⁇ It is particularly preferably used as a magnet aperture used in a developing mechanism of an electrostatic recording device or a member for forming the same.
  • the magnetometer is usually provided with a roller body made of a resin magnet and shaft parts protruding from both ends of the roller body.
  • the shaft made of metal or the like is made of metal.
  • the resin magnet molded product of the first or second invention may be molded around a mold and the shaft portion and the roller body may be integrally formed with the resin magnet molded product of the present invention. . '
  • a plurality of rod-shaped resin magnet pieces are formed from the resin magnet composition of the first and second inventions, and these are formed on the outer periphery of a shaft made of metal or the like.
  • the roller body In this case, of course, all the resin magnet pieces may be the above-described resin magnet molded articles of the first and second inventions, but in some cases, only the resin magnet pieces requiring particularly high magnetic force may be replaced with the first or second resin magnet pieces.
  • the resin magnet molded article of the second invention may be used.
  • the magnetization of the magnet roller may be performed simultaneously with the molding by forming a magnetic field around the mold, or may be performed using a known magnetizing machine after the molding.
  • Example 1 does not show an increase in torque, that is, a tendency to increase in viscosity even after 15 minutes.
  • melt flowability (MFR) of the obtained composition for a synthetic resin magnet was measured using a melt indexer (manufactured by Toyo Seiki Co., Ltd.), and found to be 72.7 gZl 0 min (250 ° C, 5 kgf) And had good melt fluidity.
  • the synthetic resin magnet composition magnetized by injection molding, where creating a cylindrical test piece having a diameter of 20 mm, height 6 mm, to measure a magnetic energy product (BHmax), 54. 91 k JZm 3 And had a high magnetic force.
  • a composition for a synthetic resin magnet was prepared in the same manner as in Example 1 except that the amount of nylon 12 was increased to 8.5 g without using the polymerized fatty acid-based polyamide. At this time, the change in the torque value of the melt during kneading was measured in the same manner as in Example 1. The results are shown in Figure 1. The MFR value and BHmax were measured in the same manner as in Example 1.
  • a synthetic resin according to the first invention which is mixed with 0.42 kg, kneaded with a twin-screw kneader, and pelletized to form a pellet.
  • a composition for a magnet was obtained.
  • melt flowability (MFR) of the obtained composition for synthetic resin magnet was measured with a melt indexer (manufactured by Toyo Seiki Co., Ltd.) to find that it was 156.84 g / l Omin (270 ° C, 5 kgf ) Had good melt fluidity.
  • This synthetic resin magnet composition was injection-molded while applying a magnetic field to produce a cylindrical resin magnet molded article having a diameter of 9.6 mm, and the surface magnetic force was measured. showed that.
  • a pellet-shaped composition for a synthetic resin magnet in the same manner as in Example 1 except that the blended amount of nylon 6 was increased by 0.42 kg to 12.92 kg without using the polymerized fatty acid-based polyamide. was prepared.
  • the MFR value of the obtained synthetic resin magnet composition was measured in the same manner as in Example 2, and the result was 123.99 g / 1 Omin (270 ° C, 5 kgf). Was also inferior in melt fluidity. Further, using the obtained composition for a synthetic resin magnet, a cylindrical resin magnet molded article was prepared in the same manner as in Example 2, and the surface magnetic force was measured. The magnetic force was inferior.
  • Nylon 12 as a fat binder (“P 3012 U” manufactured by Ube Industries, Ltd.) 120
  • N, N'-bis [3 -— (3,5-di-t-butyl), a hindered phenolic antioxidant —4-Hydroxyphenyl) propionyl] hydrazine (“IRGANOX MD1024” manufactured by Chino Specialty Chemicals Co., Ltd.) (50 g) was mixed to prepare a resin magnet composition.
  • the resulting mixture was kneaded with a uniaxial kneader and then pelletized to obtain a pellet-shaped resin magnet composition.
  • the melt fluidity of the resin magnet composition obtained above was 185 g / 10 min (250 ° C., 5 kgf).
  • the resin magnet composition was injected and injected by using an injection molding machine under the injection conditions of a cylinder temperature of 270 ° C, a mold temperature of 150 ° C, and an injection pressure of 100 kgZcm 2 , using the end as a gate.
  • a resin magnet molded product cross-sectional area 3 mm ⁇ 3 mm, length 300 mm
  • a good molded product having high dimensional accuracy and small variation in surface magnetic force was obtained.
  • a composition for a resin magnet was prepared in the same manner as in Example 3 except that nylon 12 was used as 170 and no hindered phenol-based antioxidant (IRG ANOX MD 1024) was added.
  • the melt flowability (MFR) of this resin magnet composition was 97 g / l Omin (250 ° C., 5 kgf), which was considerably lower than that in Example 3.
  • MFR melt flowability
  • a similar resin magnet molded product was molded under the same injection conditions as in Example 3 above, except that a resin magnet composition having the same composition as in Example 3 above was used and the mold temperature was 100 ° C. Also in this case, the resin magnet composition was not sufficiently filled in the mold, resulting in a short shot and poor molding.
  • a resin magnet composition having the same composition as in Example 4 above was used, and a similar resin magnet molded product was molded under the same injection conditions as in Example 4 except that the mold temperature was set to 100 ° C. The object was not sufficiently filled in the mold, resulting in a short shot and poor molding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Hard Magnetic Materials (AREA)

Description

明 細 書
合成樹脂磁石用組成物、 及び樹脂磁石成形物 技術分野 '
本発明は、 樹脂バインダーに磁性粉を混合分散してなり、 電子写真装置ゃ静電 記録装置に用いられるマグネットローラなどの樹脂磁石成形物の成形材料として 好適に使用される合成樹脂磁石用組成物、 及び樹脂磁石成形物に関する。 背景技術
従来から、 複写機、 プリンタ等の電子写真装置ゃ静電記録装置などにおいて、 感光ドラム等の潜像保持体上の静電潜像を可視化する現像ローラとして、 回転す るスリーブ内に、 樹脂磁石により成形され、 所定の磁化パターンが着磁されたマ グネットローラを配設し、 上記磁化パターンに従って、 磁性現像剤 (磁性トナ 一) をスリーブ表面に吸い上げて搬送した後、 上記磁性トナーを上記潜像保持体 上に飛翔させるいわゆるジヤンピング現象によって、 潜像保持体表面の静電潜像 上に磁性トナーを供給し、 可視化する現像方法が知られている。
上記マグネットローラは、 熱可塑性樹脂のバインダ一に磁性粉体を混合した合 成樹脂磁石用組成物を、 周囲に磁場を形成した金型を用いて射出成形又は押出成 形することによって、 ローラ状に成形すると共に、 マグネット口一ラの表面の磁 力が所望の磁化パターンになるように着磁させることにより、 製造されている。 また、 近年の電子写真装置等の進歩に伴って、 マグネットローラに対してもよ り複雑な磁化パターンが要求される傾向にあり、 この要求に応えるため、 目的と する磁化パターンに応じた磁極を着磁させた複数のマグネット片を上記合成樹脂 磁石用組成物で成形し、 これらをシャフトの周囲に貼り合わせることにより所望 の磁力パターンを構成することも行なわれている。
このような、 マグネットローラを得るための樹脂磁石用組成物としては、 フエ ライトゃ希土類磁石等の磁性粉をポリアミドー 6, ポリアミド— 1 2等のポリア ミド樹脂やポリプロピレンなどからなる樹脂バインダ一中に混合分散したものが 従来から用いられている。 しかしながら、 近年の OA機器の高度化、 高速度化、 高精度化などに伴ってマ グネットローラの高磁力化に対する要求が高まってきており、 また他の分野にお いても樹脂磁石の高磁力化については常に要求されているところである。
この要求に応えるため、 マグネットローラ等を構成する合成樹脂磁石用組成物 のフェライト磁性粉の充填量を多くする方法が考えられるが、 フェライト磁性粉 の充填量を多くすると、 樹脂磁石組成物の溶融時の流動性が低下し、 成形加工性 が著しく低下し、 得られる成形物に磁力のばらつきや寸法精度の低下といった問 題が生じることとなる。 このため、 磁性粉の充填量はおのずから制限され、 高磁 力化の要求を満足させるに十分な量の磁性粉を充填することができないのが現状 である。
また、 上記フェライト磁性紛に代えて、 希土類磁性合金粉末を用いることによ り、 高磁力化を図ることも可能であるが、 この場合でも十分な磁力を得るには溶 融流動性の低下を良好に防止するには至らず、 特に小型のマグネットローラを作 製しょうとする場合には、 樹脂磁石組成物が型内に十分に充填されず、 ショート ショットとなるため、 成形不良になるという問題が生じることとなる。 発明の開示
本発明は、 上記事情に鑑みなされたもので、 溶融時の流動性に優れ、 磁性粉の 充填量を多くしても良好な溶融流動性を維持し得、 成形加工性を低下させること なく成形物の高磁力化を達成することができる合成樹脂磁石用組成物及び樹脂磁 石成形物を提供することを目的とする。
本発明者らは、 上記目的を達成するため鋭意検討を行った結果、 熱可塑性樹脂 からなる樹脂バインダーに磁性粉を混合分散して合成樹脂磁石用組成物を調製す る場合に、 上記樹脂バインダー中に、 例えば下記式 (1 ) で示される重合脂肪酸 系ポリアミドを添加混合することにより、 組成物の溶融流動性を効果的に向上さ せることができ、 成形物の高磁力化のために磁性粉の充填量を多くしても良好な 溶融流動性を維持し得、 溶融時の流動性低下に基づく成形加工性低下などの問題 を生じることなく、 高磁力の樹脂磁石成形物が得られることを見出した。 H H O 0 H H O 0
I I II II I I II II
— t N-C -N-C-R,-C - N-Cm-N-C-Cn-C ¥½- — (1 )
[式中、 R は HOOC (CH2 ) n COOH (n=7又は n=8) 、 Cmはジ アミン残鎖 (m=2〜20) 、 Cnはダイマー酸残鎖 (n=20〜48) 、 aは 1~50の整数、 bは 1〜50の整数、 Xは 1〜50の整数をそれぞれ表す] 従って、 本発明は、 第一の発明として、 樹脂バインダーに磁性粉を分散混合な る合成樹脂磁石用組成物において、 上記樹脂バインダーが、 熱可塑性樹脂からな る主材樹脂と重合脂肪酸系ポリアミドとを含有するものであることを特徴とする 合成樹脂磁石用組成物、 特に上記重合脂肪酸系ポリアミドとして、 上記 (1) で 表される重合脂肪酸系ポリアミドを用いた合成樹脂磁石用組成物、 及び、 この合 成樹脂磁石用組成物を所望の形状に成形してなる樹脂磁石成形物を提供する。 また、 本発明者らは、 上記目的を達成すべく、 成形材料への添加剤及び成形条 件に着目して別途に検討を重ねた結果、 樹脂バインダ一に磁性粉を混合分散した 成形材料の樹脂磁石組成物に、 所定量のヒンダ一ドフエノール系酸化防止剤を添 加すると共に、 この樹脂磁石組成物を 120〜 180 °Cの温度で成形することに より、 成形時の流動性が改善され、 寸法精度が高く、 表面磁力のバラツキの少な い磁化性能に優れた樹脂磁石成形物が得られることを見出した。
従って、 本発明は、 第二の発明として、 樹脂バインダーに磁性粉とヒンダード フエノール系酸化防止剤とを配合した樹脂磁石用組成物を 120〜180 Cの温 度で所望の形状に成形してなることを特徴とする樹脂磁石成形物を提供する。 図面の簡単な説明
図 1は、 実施例 比較例 1において、 合成樹脂磁石組成物を調整する際の混 練時のトルク変化を示すグラフである。 発明を実施するための最良の形態
以下、 本発明につき、 上記第一の発明及び第二の発明ごとにその詳細を説明す る。 [第一の発明]
上記第一の発明にかかる合成樹脂磁石用組成物は、 上述のように、 熱可塑性樹 脂からなる主材樹脂に重合脂肪酸系ポリアミドを添加した樹脂バインダーに、 磁 性粉を混合分散したものである。
上記バインダー樹脂の主材となる熱可塑性樹脂としては、 ポリアミド樹脂 (ポ リアミドー 6、 ポリアミド一 12等) 、 ポリスチレン樹脂、 ポリエチレンテレフ タレ一ト樹脂 (PET) 、 ポリブチレンテレフ夕レート樹脂 (PBT) 、 ポリフ ェニレンサルファイド樹脂 (PPS) 、 エチレン一酢酸ビニル共重合体樹脂 (E VA) 、 エチレン—ェチルァクリレート樹脂 (EEA) 、 エポキシ樹脂、 ェチレ ンービニルアルコール共重合体樹脂 (EVOH) 、 ポリプロピレン樹脂 (PP) 、 ポリエチレン, ポリエチレン共重合体等のポリオレフインや、 これらポリオレフ インの構造中に無水マレイン酸基, 力ルポキシル基, ヒドロキシル基, グリシジ ル基等の反応性を持つ官能基を導入した変性ポリオレフィン等が挙げられ、 これ らの 1種又は 2種以上を用いることができる。
上記主材樹脂の配合量は、 特に制限されるものではないが、 樹脂磁石用組成物 全体の 1〜20重量%程度、 特に 4〜16重量%とすることが好ましい。 この主 材樹脂の配合量が 1重量%未満であると、 後述する重合脂肪酸系ポリアミドを添 加しても十分な溶融流動性を得ることができない場合があり、 また得られる樹月旨 磁石成形物が非常に脆いものとなってしまう場合がある。 一方、 20重量%を超 えると相対的に磁性粉の充填量が少なくなつて、 高磁力化を達成することが困難 となる場合がある。
次に、 この主材樹脂に添加される上記重合脂肪酸系ポリアミドとしては、 本発 明の目的を達成し得るものであればいずれのものでもよいが、 特に下記式 (1) に示されるものが好ましく用いられる。
Figure imgf000006_0001
[式中、 は HOOC (CH2 ) n COOH (n=7又は n=8) 、 Cmはジ アミン残鎖 (m=2〜20) 、 Cnはダイマー酸残鎖 (n = 20〜48) 、 aは 1〜 50の整数、 bは 1〜 50の整数、 Xは 1〜 50の整数をそれぞれ表す] ここで、 上記式 (1) 中の各符号は上記の通りであるが、 更に説明すれば、 R 丄は HO〇C (CH2) n COOHで表されるァゼライン酸 (n=7) 又はセバ シン酸 (n=8) であり、 この場合ァゼライン酸 (n = 7) を含むブロックとセ バシン酸 (n=8) を含むブロックが混在していてもよい。 また、 Cmは m=2 〜20のジァミン残鎖であり、 具体的にはエチレンジァミン、 1, 4ージァミノ ブタンへキサメチレンジァミン、 ノナメチレンジァミン、 ゥンデカメチレンジァ ミン、 ドデカメチレンジァミン、 2, 2, 4一トリメチルへキサメチレンジアミ ン、 ビス一 (4, 4' 一アミノシクロへキシル) メタン、 メタキシレンジァミン 等が挙げられ、 Cnは n=20〜48のダイマ一残鎖であり、 具体的にはォレイ ン酸、 リノール酸、 エル力酸等の二量体等が挙げられる。 更に、 式中の aは 1〜 50の整数、 bは 1〜50の整数、 Xは 1〜50の整数である。 なお、 特に制限 されるものではないが、 この式 (1) で表される重合脂肪酸系ポリアミドの分子 量は 1000〜 65000 (数平均分子量) 、 特に 5000〜 25000である ことが好ましい。
この式 (1) で表される重合脂肪酸系ポリアミドとして具体的には、 富士化成 (株) 社製 「PA— 30 L」 、 「PA—30」 、 「PA_40L」 、 「PA—4 0」 、 「PA— 30R」 、 「PA - 30H」 、 「PA - 50R」 、 「PA— 50 M」 、 「PA— 60」 、 「PA— 160」 、 「P A— 260」 などが挙げられる。 なお、 重合脂肪酸系ポリアミドは上記式 (1) 以外のものを用いることも可能で あるが、 本発明ではエラストマ一は除くものとする。
この重合脂肪酸系ポリアミドの添加量は、 上記主材樹脂の種類、 磁性粉の充填 量などに応じて適宜選定され、 特に制限されるものではないが、 通常は樹脂磁石 用組成物全体の 0. 1〜20重量%、 特に 0. 1〜 5重量%とすることが好まし い。 この添加量が 0. 1重量%未満であると、 溶融流動性の向上効果が十分に得 られない場合があり、 一方 20重量%を超えると相対的に磁性粉の充填量が少な くなるため、 十分な磁力特性が得られない場合がある。
次に、 上記主材樹脂及び重合脂肪酸系ポリアミドを含むバインダー樹脂中に混 合分散される磁性粉としては、 従来から樹脂磁石に磁性粉として用いられている 公知の磁性粉を用いることができ、 具体的には、 S rフェライト, B aフェライ ト等のフェライト粉末、 アルニコ合金、 S m— C o合金, N d— F e _ B系合金, S m- F e一 N系合金, C e— C o合金等の希土類系合金粉末などを例示するこ とができる。
本発明で用いられる磁性粉は、 特に制限されるものではないが、 得られる樹脂 磁石用組成物の溶融流動性、 磁性粉の配向性, 充填率等の観点から、 通常は、 平 均粒径が 0 . 0 5〜3 0 0 m、 特に 0 . 1〜 1 0 0 m程度のものであること が好ましい。
上記磁性粉は、 必要に応じて公知の前処理を施して、 合成樹脂磁石用組成物中 に配合することができる。 この場合、 特に制限されるものではないが、 シラン力 ップリング剤やチタネート系カツプリング剤などの公知のカツプリング剤を用い て力ップリング処理を施すことが好ましく、 このようなカップリング処理を施し た磁性粉を用いることにより、 高充填時の溶融流動性をより効果的に向上させる ことができる。
上記シランカップリング剤としては、 ァ一ァミノプロピルトリエトキシシラン、 ァーァミノプロピルトリメトキシシラン、 N—/3— (アミノエチル) —ァ一アミ ノプロビルトリメトキシシラン、 ウレイドプロピルトリエトキシシラン、 ビニル トリエトキシシラン、 ビエルトリメトキシシラン、 ビニルトリス (/3—メトキシ エトキシ) シラン、 ァ一メ夕クリロキシプロピルトリメトキシシラン、 ァーメタ クリロキシプロピルトリエトキシシラン、 β— ( 3 , 4—エポキシシクロへキシ ル) ェチルトリメトキシシラン、 ァーグリシドキシプロピルトリメトキシシラン、 ァ一メルカプトプロピルトリメトキシシラン、 ァ—イソシァネートプロピルトリ エトキシシラン、 メチルトリエトキシシラン、 メチルトリメトキシシラン等が挙 げられ、 これらの中では、 ァ一ァミノプロピル卜リエトキシシラン、 ァ一ァミノ プロビルトリメトキシシラン、 Ν— j8— (アミノエチル) 一ァ―ァミノプロピル トリメトキシシラン等が特に好ましく用いられる。
上記チタネート系カップリング剤としては、 イソプロピルビス (ジォクチルパ イロホスフェート) チタネート、 イソプロピルトリ (N—アミノエチル ·ァミノ ェチル) チタネート、 イソプロピルトリイソステアロイルチタネート、 ジイソプ 口ピルビス (ジォクチルパイロホスフェート) チタネート、 テトライソプロピル ビス (ジォクチルホスファイト) チタネート、 テトラオクチルビス (ジトリデシ ルホスフアイ卜) チタネート、 テトラ (2, 2—ジァリルォキシメチル— 1ーブ チル) ビス (ジトリデシル) ホスファイトチタネート、 ビス (ジォクチルパイロ ホスフェート) ォキシアセテートチタネ一卜、 ビス (ジォクチルパイロホスフエ —ト) エチレンチタネート等が挙げられ、 中でもイソプロピルビス (ジォクチル パイ口ホスフェート) チタネートが特に好ましく用いられる。
磁性粉の配合量は、 目的とする成形物に要求される磁力の強さに応じて適宜選 定され、 特に制限されるものではないが、 通常は合成樹脂磁石用組成物全体の 8 0〜9 9重量%とすることができ、 本発明においては 9 0重量%を超えて磁性粉 を高充填しても、 組成物の溶融流動性を良好に維持し得、 高磁力の樹脂磁石成形 物を成形加工性よく得ることができるものである。 また、 本発明では上述のよう に磁性粉を高充填した場合に顕著な効果を奏するものであるが、 本発明の合成樹 脂磁石用組成物は、 磁性粉の配合量が 8 0〜9 0重量%程度の特に高充填ではな い場合でも、 磁性粉の均一分散性等の点で有利である。
本発明の合成樹脂磁石用組成物は、 上記主材樹脂、 重合脂肪酸系ポリアミド、 及び磁性粉を含有するものであり、 特に制限されるものではないが、 これらに加 えてバインダ一樹脂の酸化劣化を防止するために酸化防止剤を適量添加すること が好ましい。 酸化防止剤としては、 特に制限はなく公知のものを用いることがで き、 具体的には、 ヒンダードフエノール系、 ヒンダ一ドアミン系、 リン系などの 酸化防止剤を例示することができる。
この酸化防止剤の添加量は、 酸化防止剤の種類やバインダ一樹脂の種類などに 応じて適宜選定され、 特に制限されるものではないが、 通常は、 樹脂磁石用組成 物全体の 0 . 1〜2 0重量%、 特に0 . 1〜3重量%とすることが好ましい。 また、 本発明の合成樹脂磁石用組成物には、 必要に応じて上記磁性粉を分散す るための分散剤や潤滑剤、 可塑剤等を適量添加することができる。
上記分散剤としては、 フエノール系、 アミン系等の分散剤を用いることができ、 上記潤滑材としては、 パラフィンワックス、 マイクロスタリンワックス等のヮッ クス類ゃステアリン酸、 ォレイン酸等の脂肪酸又はこれらの金属塩 (ステアリン 酸カルシウム、 ステアリン酸亜鉛等) などが好適に用いられ、 上記可塑剤として はモノエステル系又はポリエステル系可塑剤、 エポキシ系可塑剤などが好適に用 いられる。
更に、 本発明の合成樹脂磁石用組成物には、 マイカゃゥイス力或はタルク, 炭 素繊維, ガラス繊維等の補強効果の大きな充填材を本発明の目的を妨げない範囲 で適宜添加することができる。 即ち、 成形物に要求される磁力が比較的低く、 上 記磁性粉の充填量が比較的少ない場合には、 成形物の剛性が低くなりやすく、 こ のような場合には剛性を補うためにマイカゃゥイス力等の充填材を添加して成形 物の補強を行うことができる。 この場合、 本発明に好適に用いられる充填材とし てはマイ力或はウイス力が好ましく、 ウイスカとしては、 炭化ケィ素, 窒化ケィ 素等からなる非酸化物系ゥイス力、 Z n〇, M g O, T i〇2, S n 02, A 1 2 03等からなる金属酸化物系ゥイス力、 チタン酸カリウム, ホウ酸アルミニゥ ム, 塩基性硫酸マグネシウム等からなる複酸化物系ゥイス力などが挙げられるが、 これらの中ではプラスチックとの複合化が容易な点から複酸化物系ゥイス力が特 に好適に使用される。
これらの充填材を用いる際の配合量は、 特に制限されるものではないが、 通常 は合成樹脂磁石用組成物全体の 1〜 5 0重量%、 特に 5〜2 0重量%程度とされ る。 なお、 本発明の合成樹脂磁石用組成物には、 本発明の目的を逸脱しない限り、 上記磁性粉分散剤、 潤滑剤、 可塑剤及び充填材以外の添加材を添加しても差し支 えなく、 例えば有機錫系安定剤等を必要に応じて適量添加することができる。 次に、 上記樹脂磁石用組成物から得られる第一の発明にかかる樹脂磁石成形物 について説明する。
この第一の発明にかかる樹脂磁石成形物は、 上記合成樹脂磁石用組成物を用い て成形したものであり、 これにより寸法精度に優れ、 かつ磁力のばらつきが少な い上、 高磁力化を達成することができるものである。 即ち、 上記本発明の合成樹 脂磁石用組成物は、 磁性粉を大量充填しても良好な溶融流動性を維持し得るので、 高磁力化を達成するために磁性粉を大量充填しても、 成形時に金型のキヤビティ 一内で良好に流動し得、 金型内での磁性粉の配向不良や充填不良、 充填密度のバ ラツキなどを生じることなく、 高磁力で高性能なマグネットローラなどの樹脂磁 石成形物を成形性よく得ることができるものである。
この樹脂磁石成形物を得る場合は、 上記本発明の合成樹脂磁石用組成物を混練 溶融して成形すればよく、 その際の成形法としては、 目的の樹脂磁石成形物に応 じて射出成形法、 押出成形法、 圧縮成形法等の適宜な成形法を採用することがで きる。 なお、 成形条件は、 成形法、 樹脂磁石用組成物の組成、 目的とする成形物 などに応じた通常の条件とすることができる。
この第一の発明によれば、 合成樹脂磁石用組成物を構成するバインダ一樹脂に 重合脂肪酸系ポリアミドを添加しているため、 溶融時の流動性を向上させること ができ、 射出成形, 押出成形, 圧縮成形等により樹脂磁石成形物を得る際の成形 加工性が向上する。 従って、 成形加工性を低下させることなく、 磁性粉の高充填 による高磁力化に良好に対応することができるものである。
[第二の発明]
次に、 第二の発明にかかる樹脂磁石成形物について、 説明する。
第二の発明にかかる樹脂磁石成形物は、 樹脂バインダ一に磁性粉とヒンダード フエノール系酸化防止剤とを配合した樹脂磁石用組成物を、 1 2 0〜1 8 0 °Cの 温度で所望の形状に成形したものである。
ここで、 上記樹脂磁石用組成物の樹脂バインダーに特に制限はなく、 上記第一 発明の合成樹脂磁石用組成物で主材樹脂として例示した熱可塑性樹脂と同様のも のを例示することができ、 これらの 1種又は 2種以上を混合して用いることがで きる。 この場合、 特にこの第二発明ではポリアミド一 6、 ポリアミド一 1 2、 ポ リアミド— 6 6、 ポリアミド一 1 1、 ポリアミド— 4 6などのポリアミド系樹脂 が好ましく用いられ、 中でも、 ポリアミド— 1 2、 ポリアミドー6をが特に好ま しく用いられる。
また、 この樹脂バインダーには、 上記第一発明と同様に、 重合脂肪酸系ポリア ミドを混合してもよい。
上記バインダー中に混合分散される磁性粉としては、 特に制限はなく、 上記第 一発明で例示したフェライト粉末、 アルニコ合金、 希土類系合金粉末などを用い ることができるが、 特にこの第二発明では、 高磁力化の観点から希土類系合金粉 末が好ましく用いられ、 中でも N d 2 F e 1 4 Bや N d i 2 F e 7 8 C o 4 B 6など の Nd系磁性紛、 或いは Sm2F e 17N3などの Sm系磁性紛などが特に好まし く用いられる。 これらの磁性紛は、 単独で用いてもよく、 二種以上を組み合わせ て用いても良い。 なお、 上記磁性紛は粉末として用いられ、 その粒径は制限され るものではないが、 得られる樹脂磁石組成物の溶融流動性、 磁性紛の配向性、 充 填率等の観点から、 平均粒径 1〜250 m、 特に 20〜50 / mであることが 好ましい。 また、 これらの磁性紛に上記第一発明で説明したカップリング剤等を 用いた前処理を施しておくこともできる。
本発明樹脂成形物を得るための樹脂磁石用組成物における上記樹脂バインダー と磁性紛の配合割合は、 特に制限はなく、 樹脂成形物に要求される磁力の強さに 応じて適宜選定される。 通常は、 樹脂磁石用組成物全量に対し、 磁性紛が 70〜 95重量%程度 (密度が 2. 5〜6. O gZcm3程度) とされているが、 本発 明においては、 後述するヒンダ一ドフエノ一ル系酸化防止剤の添加による流動性 改良効果のため、 80重量%以上、 特に 80〜95重量% (密度が 3. 2〜6. O g/cm3程度) の範囲となるような高充填の配合比率であっても、 良好な流 動性を維持することができる。
本発明では、 この樹脂磁石用組成物にヒンダ一ドフエノール系酸化防止剤を添 加して成形に供する。 このヒンダードフエノール系酸化防止剤としては、 特に制 限はなく市販のヒンダードフエノール系酸化防止剤を用いることができ、 具体的 には、 N, N' 一ビス [3— (3, 5—ジー tーブチルー 4ーヒドロキシフエ二 ル) プロピオニル] ヒドラジン (チバ ·スペシャルティケミカルズ (株) 製 「I RGANOX MD 1024」 ) 、 トリエチレングリコール—ビス [3— (3 一 t—プチルー 5—メチル—4—ヒドロキシフエニル) プロピオネート] (チ バ ·スペシャルティケミカルズ (株) 製 「 I RGANOX 245, 245FF, 245DWJ」 ) 、 ペンタエリスリトール テトラキス [3— (3, 5—ジ一 t —ブチルー 4—ヒドロキシフエニル) プロピオネート] (チバ 'スペシャルティ ケミカルズ (株) 製 「I RGANOX 1010, 1010FP, 101 OF F」 ) 、 チオジェチレン ビス [3— (3, 5—ジー t一プチルー 4ーヒドロキ シフエ二ル) プロピオネート] (チバ 'スペシャルティケミカルズ (株) 製 「I RGANOX 1035, 1035 F F」 ) 、 ォクタデシル— 3— ( 3, 5—ジ — t—ブチル—4—ヒドロキシフエニル) プロピオネート (チバ 'スペシャルテ ィケミカルズ (株) 製 「 I RGANOX 1076, 1076 FF, 1076 F D、 1076DWJJ ) 、 N, N, —へキサン _ 1, 6—ジィルビス [3, 5 - ジ— tーブチルー 4ーヒドロキシフエニルプロピオナミド] (チバ ·スペシャル ティケミカルズ (株) 製 「 I RGANOX 1098」 ) 、 ベンゼンプロパン酸 3, 5—ビス (1, 1' —ジメチルェチル) — 4—ヒドロキシ C 7, C9側鎖ァ ルキルエステル (チバ ·スペシャルティケミカルズ (株) 製 「I RGANOX 1 135」 ) 、 2, 4一ジメチルー 6— (1ーメチルペン夕デシル) フエノール + I RGANOX 1076 (チバ 'スペシャルティケミカルズ (株) 製 「 I R GANOX 1141」 ) 、 ジェチル { [3, 5—ビス ( 1 , 1一ジメチルェチ ル) ー4ーヒドロキシフエニル] メチル } ホスフェート (チバ 'スペシャルティ ケミカルズ (株) 製 「 I RGANOX 1222」 ) 、 3, 3' , 3' ' , 5, 5, , 5, ' —へキサ— t一ブチル— a, a, , a' , 一 (メシチレン— 2, 4, 6 _トリィル) トリー ρ—クレゾ一ル (チバ ·スペシャルティケミカルズ (株) 製 「I RGANOX 1330」 ) 、 カルシウムジェチルビス { [ [3, 5—ビ ス (1, 1ージメチルェチル) —4—ヒドロキシフエニル] メチル] ホスホネー
GANOX 1425WL」 ) 、 4, 6—ビス (ォクチルチオメチル) 一 o—ク レゾール (チバ ·スペシャルティケミカルズ (株) 製 Γ I RGANOX 152 0 L」 ) 、 へキサメチレン ビス [3— (3, 5—ジ一!:—ブチル一4ーヒドロ キシフエエル) プロピオネート] (チバ ·スペシャルティケミカルズ (株) 製 「I RGANOX 259」 ) 、 1, 3, 5—トリス (3, 5—ジ— t—ブチル 一 4—ヒドロキシベンジル) 一 1, 3, 5—トリアジン一 2, 4, 6 - (1H, 3H, 5H) —トリオン (チバ 'スペシャルティケミカルズ (株) 製 「I RGA NOX 3114」 ) 、 1, 3, 5—トリス [ (4— t一プチルー 3—ヒドロキ シー 2, 6—キシリル) メチル— 1, 3, 5—卜リアジン一 2, 4, 6 - ( 1 H, 3H, 5H) 一トリオン] (チバ ·スペシャルティケミカルズ (株) 製 「I RG ANOX 3790」 ) 、 N—フエニルベンゼンァミンと 2, 4, 4—トリメチ ルペンテンとの反応生成物 (チバ ·スペシャルティケミカルズ (株) 製 Γ I RG AN O X 5 0 5 7」 ) 、 2, 6—ジ一 t一ブチル—4一 (4, 6—ビス (ォク チルチオ) 一 1, 3, 5—トリアジンー 2—ィルァミノ) フエノール (チバ 'ス ぺシャルティケミカルズ (株) 製 「I R GANO X 5 6 5 , 5 6 5 D D」 ) 、 トリス (2, 4—ジ— t一ブチルフエニル) ホスファイト (チバ ·スペシャルテ ィケミカルズ (株) 製 「I R GANO X 1 6 8 , 1 6 8 F F」 ) などを例示す ることができる。
この、 ヒンダードフエノール系酸化防止剤の添加量は、 磁性紛ゃバインダー樹 脂の種類などに応じて適宜決定されるものであるが、 通常は、 0 . 1〜2 0重 量%、 好ましくは 0 . 1〜 5重量%の範囲で添加する。
上記樹脂磁石用組成物には、 第一発明と同様、 必要に応じて上記磁性粉を分散 するための分散剤や潤滑剤、 可塑剤、 マイカゃゥイス力或はタルク, 炭素繊維, ガラス繊維等の補強効果の大きな充填材等を適量添加することができる。
上記樹脂磁石組成物の調整方法としては、 特に制限はないが、 例えば樹脂バイ ンダ一、 磁性紛及び必要に応じて用いられる分散剤, 充填材等を、 通常の方法に 従って混合し、 溶融混練した後、 ペレット状に成形することにより、 樹脂磁石組 成物を調整することができる。 この際、 溶融混練には、 一軸或いは二軸混練押出 機、 K C K押出機などを用いる通常の方法及び条件を採用することができる。 本発明の樹脂磁石成形物は、 このようにして調整されたヒンダードフエノール 系酸化防止剤を含有する樹脂磁石用組成物を、 1 2 0〜 1 8 0 °Cで所望の形状に 成形したものである。 この場合、 成形方法としては、 特に制限されるものではな く、 射出成形法, 押出成形法, 圧縮成形法等により金型温度を上記 1 2 0〜1 8 0 °Cに保持して成形を行うことができるが、 特に射出成形法であることが好まし い。
この第二発明では、 成形温度 (金型温度) を従来の 8 5〜1 0 0 °Cよりも高く 設定したことと、 上記ヒンダードフエノール系酸化防止剤の流動性改良効果との 相乗効果により、 上記成形金型のキヤビティ一内に射出注入された樹脂磁石組成 物の溶融流動性 (M F R) を高めた状態で、 樹脂磁石成形物を成形することがで き、 これにより、 寸法精度が高く、 表面磁力のバラツキの少ない高磁力の樹脂磁 石成形物を得ることができるものである。 以上、 この第二発明によれば、 樹脂バインダ一に希土類磁性合金粉末等の磁性 粉と、 流動性改良効果を有するヒンダ一ドフエノール系酸化防止剤とを混合分散 させた樹脂磁石用組成物を調整し、 この榭脂組成物を、 1 2 0〜1 8 0 °Cの温度 で樹脂磁石組成物を成形するようにしたので、 上記樹脂磁用石組成物の溶融流動 性 (M F R) を向上させた状態で成形を行うことができる。 従って、 寸法精度が 高く、 かつ磁力のバラツキの少ない、 高磁力の樹脂磁石成形物を得ることができ るものである。
上記第一発明及び第二発明にかかる樹脂磁石成形物は種々の用途に用いること ができ、 特に制限されるものではないが、 高磁力で高度な磁気特性が要求される ことから、 電子写真装置ゃ静電記録装置の現像機構部に用いられるマグネット口 ーラ又はその形成部材として特に好ましく用いられる。 この場合、 通常マグネッ トロ一ラは、 樹脂磁石からなるローラ本体と、 該ローラ本体の両端部から突出す るシャフト部とを具備した構成とされるが、 この場合、 金属等からなるシャフト を金型にセットしてその外周に上記第一, 第二発明の樹脂磁石成形物を成形して もよく、 またシャフト部とローラ本体とを本発明の樹脂磁石成形物で一体に形成 してもよい。 '
更に、 高度で複雑な磁気特性が要求される場合などには、 上記第一, 第二発明 の樹脂磁石組成物で棒状等の樹脂磁石片を複数形成し、 これらを金属等からなる シャフトの外周に張り合わせてローラ本体を形成してもよい。 この場合、 勿論全 ての樹脂磁石片を上述した上記第一, 第二発明の樹脂磁石成形物としてもよいが、 場合によっては特に高い磁力が要求される樹脂磁石片のみを上記第一又は第二発 明の樹脂磁石成形物としてもよい。 また、 マグネットローラの着磁は、 金型の周 囲に磁場を形成して成形と同時に行っても、 成形後に公知の着磁機を用いて行つ てもよい。
以下、 実施例及び比較例を示して本発明を具体的に説明するが、 本発明は下記 実施例に制限されるものではない。
[実施例 1 ]
原子重量%で N c^ 2 F e 7 8 C o 4 B 6の組成を有する N d系希土類磁石合金 原料粉末 (ゼネラルモータース社製 「MQ P— B」 ) を粉碎して平均粒径 1 0 0 mの粉末とした後、 シランカップリング剤 (日本ュニカ (株) 製 「A1 10 0」 ) により表面処理して、 磁性粉を調製した。 この磁性粉 188 gを、 ナイ口 ン 12 (宇部興産 (株) 製 「P 3012 U」 ) 6. 8 g、 酸化防止剤 (チ バ 'スペシャルティケミカルズ (株) 製 「I RGANOX MD 1024」 ) 3. 5 g及び重合脂肪酸系ポリアミド (富士化成 (株) 製 「PA—30L」 ) 1· 7 gと混合し、 東洋精機社製 「ラボプラストミル 50 C 150型」 (容量 60 c m2) を用い、 250°Cの加熱下で 15分間 50 r pmの回転数で混練し、 上記 第一の発明にかかる合成樹脂磁石用組成物を調製した。 このとき、 混練中に溶融 物のトルク値の変化を測定した。 結果を図 1に示す。 この場合、 トルク値が高い ほど溶融物の粘度が高く、 流動性が悪いことを表す。 図 1に示されているように、 本実施例 1では、 15分経過してもトルクの上昇、 即ち粘度上昇傾向を示してい ない。
次いで、 得られた合成樹脂磁石用組成物の溶融流動性 (MFR) をメルトイン デクサ一 (東洋精機 (株) 社製) で測定したところ、 72. 7 gZl 0m i n (250°C、 5 k g f ) で、 良好な溶融流動性を有していた。
更に、 この合成樹脂磁石用組成物を射出成形し着磁して、 直径 20mm, 高さ 6mmの円柱状テストピースを作成し、 磁気エネルギー積 (BHmax) を測定 したところ、 54. 91 k JZm3であり、 高い磁力を有していた。
[比較例 1 ]
重合脂肪酸系ポリアミドを用いずに、 その分ナイロン 12の配合量を増量して 8. 5 gとしたこと以外は、 実施例 1と同様にして合成樹脂磁石用組成物を調製 した。 このとき、 実施例 1と同様にして、 混練中に溶融物のトルク値の変化を測 定した。 結果を図 1に示す。 また、 実施例 1と同様にして、 MFR値及び BHm a Xを測定した。
図 1に示されているように、 本比較例では、 溶融時のトルク上昇は見られなか つたが、 MFR値は 9. 84 g/10m i n ( 250 °C, 5 k g f ) と流動性に 劣っており、 また BHmaxも 51. 73 k J Zm3と上記実施例 1に比べて劣 るものであった。 [実施例 2 ]
S rフェライト (日本弁柄工業 (株) 社製 「NF 110」 ) 50. 00 kg, B aフェライト (日本弁柄工業 (株) 社製 「DNP— S」 ) 20. 55 kgをシ ランカップリング剤 (日本ュニカー (株) 製 「Α1 160」 ) 0. 7 l kgによ り表面処理して、 磁性粉を調製した。 この磁性粉を、 ナイロン 6 (宇部興産 (株) 製 「P 1010」 ) 12. 5 kg、 酸化防止剤 (チバ ·スペシャルティ ケミカルズ (株) 製 「I RGAN〇X 245」 ) 0. 42 kg及び重合脂肪酸 系ポリアミド (富士化成 (株) 製 「PA—30L」 ) 0. 42 kgと混合し、 2 軸混練機により混練後、 ペレタイズしてペレツト状とした上記第一の発明にかか る合成樹脂磁石用組成物を得た。
得られた合成樹脂磁石用組成物の溶融流動性 (MFR) をメルトインデクサ一 (東洋精機 (株) 社製) で測定したところ、 156. 84 g/l Omi n (27 0°C、 5kg f) で良好な溶融流動性を有していた。 また、 この合成樹脂磁石用 組成物を磁場を印加しながら射出成形して、 直径 9. 6 mmの円柱状樹脂磁石成 形物を作成し、 表面磁力を測定したところ、 80. 5mTの表面磁力を示した。
[比較例 2]
重合脂肪酸系ポリアミドを用いずに、 その分ナイロン 6の配合量を 0. 42 k g増量して 12. 92 kgとしたこと以外は、 実施例 1と同様にしてペレット状 の合成樹脂磁石用組成物を調製した。
得られた合成樹脂磁石用組成物につき、 実施例 2と同様にして、 MFR値を測 定したところ、 123. 99 g/1 Om i n (270°C, 5 kg f) で、 実施例 2よりも溶融流動性に劣るものであった。 また、 得られた合成樹脂磁石用組成物 を用いて、 実施例 2と同様にして円柱状樹脂磁石成形物を作成し、 表面磁力を測 定したところ、 78. 9mTで実施例 2よりも表面磁力に劣るものであった。
[実施例 3]
原子重量%で Nc^ 2 Fe7 8 Co4 B6の組成を有する Nd系希土類磁石合金 原料粉末 (ゼネラルモータ一ス社製 「MQP— B」 、 平均粒径 250 m) を平 均粒径 5 O/ mに粉砕後、 シランカップリング剤 (日本ュニカ (株) 製 「A11 00」 ) により表面処理した。 この表面処理した磁性粉 1880 gを精秤後、 樹 脂バインダーであるナイロン 12 (宇部興産 (株) 製 「P 3012 U」 ) 1 20 , ヒンダードフエノール系酸化防止剤である N, N' 一ビス [3— (3, 5—ジ一 t—ブチル—4—ヒドロキシフエニル) プロピオニル] ヒドラジン (チ ノ 'スペシャルティケミカルズ (株) 製 「I RGANOX MD 1024」 ) 50 gとを混合して、 樹脂磁石組成物を調整した。 得られた混合物を一軸混練機 にて混練後、 ペレタイズし、 ペレット状の樹脂磁石用組成物を得た。 上記得られ た樹脂磁石用組成物の溶融流動性は 185 g/10m i n (250°C, 5 k g f ) であった。
次に射出成形機により、 シリンダー温度 270°C、 金型温度 150°C及び射出 圧力を 100 kgZcm2の射出条件にて、 端部をゲートとして上記樹脂磁石組 成物を射出注入し、 上記第二の発明にかかる樹脂磁石成形物 (断面積 3mmX 3 mm、 長さが 300mm) を成形したところ、 寸法精度が高く、 表面磁力のバラ ツキが少ない良好な成形物が得られた。
[比較例 3]
ナイロン 12を 170 として、 ヒンダードフエノール系酸化防止剤 (I RG ANOX MD 1024) を添加しないこと以外は実施例 3と同様にして樹脂 磁石用組成物を調製した。 この樹脂磁石組成物の溶融流動性 (MFR) は 97 g /l Omi n (250 °C、 5 k g f ) と上記実施例 3よりもかなり低い値を示し た。 上記樹脂磁石用組成物を用いて、 上記実施例 3と同じ射出条件で同様の樹脂 磁石成形物を成形したところ、 樹脂磁石用組成物が型内に十分充填されず、 ショ —トシヨットとなり、 成形不良となった。
[比較例 4]
上記実施例 3と同一の組成の樹脂磁石用組成物を用い、 金型温度を 100°Cと した以外は、 上記実施例 3と同じ射出条件で同様の樹脂磁石成形物を成形したと ころ、 この場合も、 樹脂磁石組成物が型内に十分充填されず、 ショートショット となり、 成形不良となった。
[実施例 4]
ヒンダードフエノール系酸化防止剤として、 上記実施例 3の N, N' 一ビス [3— (3, 5—ジー t—ブチルー 4—ヒドロキシフエニル) プロピオニル] ヒ ドラジンに代えて、 同量 (50 g) のトリエチレングリコ一ルービス [3— (3 — tーブチルー 5—メチルー 4ーヒドロキシフエニル) プロピオネート] (チ バ ·スペシャルティケミカルズ (株) 製 「 I RGANOX 245」 ) を用いて 上記実施例 3と同様にして上記樹脂磁石用組成物を作製した。 得られた樹脂磁石 組成物の溶融流動性 (MFR) は、 133 g/10m i n (250 °C、 5 k g f ) であった。
次に、 上記樹脂磁石組成物を用いて、 上記実施例 3と同じ条件で上記第二の発 明にかかる樹脂磁石成形物を成形したところ、 良好な成形物が得られた。
[比較例 5]
上記実施例 4と同一の組成の樹脂磁石組成物を用い、 金型温度を 100°Cとし た以外は上記実施例 4と同じ射出条件で同様の樹脂磁石成形物を成形したところ、 樹脂磁石組成物が型内に十分充填されず、 ショートショットとなり、 成形不良と なった。

Claims

請求 の 範 囲
1. 樹脂バインダーに磁性粉を分散混合なる合成樹脂磁石用組成物において、 上 記樹脂バインダーが、 熱可塑性樹脂からなる主材樹脂と重合脂肪酸系ポリアミド (但し、 エラストマ一を除く) とを含有するものであることを特徴とする合成樹 脂磁石用組成物。
2. 上記重合脂肪酸系ポリアミドが、 下記構造式 (1) で示される基本構造を有 するものである請求の範囲第 1項記載の合成樹脂磁石用組成物。
Figure imgf000020_0001
[式中、 1^は H〇〇C (CH2 ) n COOH (n=7又は n=8) 、 Cmはジ アミン残鎖 (m=2〜20) 、 Cnはダイマー酸残鎖 (n=20〜48) 、 aは 1〜50の整数、 bは 1〜50の整数、 Xは 1〜50の整数をそれぞれ表す] 3. 酸化防止剤を含有する請求の範囲第 1項又は第 2項記載の合成樹脂磁石用組 成物。
4. 磁性粉、 主材樹脂、 重合脂肪酸系ポリアミド、 及び酸化防止剤の配合割合が、 下記の通りである請求の範囲第 3項記載の合成樹脂磁石用組成物。
磁性粉 80〜99重量% 主材樹脂 1〜20重量% 重合脂肪酸系ポリアミド 0 · 1〜 20重量% 酸化防止剤 0. 1〜20重量%
5. 請求の範囲第 1から第 4項のいずれか 1項に記載の合成樹脂磁石用組成物を、 所望の形状に成形してなることを特徴とする樹脂磁石成形物。
6. 樹脂バインダーに磁性粉とヒンダードフエノ一ル系酸化防止剤とを配合した 樹脂磁石用組成物を 120〜180°Cの温度で所望の形状に成形してなることを 特徴とする樹脂磁石成形物。
7. 上記磁性粉が、 希土類磁性合金粉末である請求の範囲第 6項記載の樹脂磁石 成形物。
8 . 上記ヒンダードフエノール系酸化防止剤の配合量を、 樹脂バインダーと磁性 粉との総量に対して、 0 . 1〜 5重量%とした請求の範囲第 6項又は第 7項記載 の樹脂磁石成形物。
9 . 射出成形法により成形したものである請求の範囲第 6力ら第 8項のいずれか 1項に記載の樹脂磁石成形物。
1 0 . 成形物が、 電子写真プロセスにおける現像操作に用いられるマグネット口 ーラである請求の範囲第 5力 ^ら第 9項のいずれか 1項に記載の樹脂磁石成形物。
PCT/JP2001/006545 2000-10-13 2001-07-30 Composition pour composition de resine synthetique et aimant a resine forme WO2002033002A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/398,754 US6893580B2 (en) 2000-10-13 2001-07-30 Composition for synthetic resin magnet and formed resin magnet
AU2002244343A AU2002244343A1 (en) 2000-10-13 2001-07-30 Composition for synthetic resin composition and formed resin magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-313954 2000-10-13
JP2000313954 2000-10-13

Publications (1)

Publication Number Publication Date
WO2002033002A1 true WO2002033002A1 (fr) 2002-04-25

Family

ID=18793284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006545 WO2002033002A1 (fr) 2000-10-13 2001-07-30 Composition pour composition de resine synthetique et aimant a resine forme

Country Status (4)

Country Link
US (1) US6893580B2 (ja)
CN (1) CN1209416C (ja)
AU (1) AU2002244343A1 (ja)
WO (1) WO2002033002A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335316B2 (en) * 2003-02-03 2008-02-26 Mitsubishi Denki Kabushiki Kaisha Plastic magnet precursor, production method for the same, and plastic magnet

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311771A (ja) * 2003-04-08 2004-11-04 Ricoh Co Ltd 長尺マグネット及びその製造方法とマグネットローラ並びに画像形成装置
JP2007042816A (ja) * 2005-08-02 2007-02-15 Ricoh Co Ltd 圧縮成形用磁石コンパウンド、長尺磁石成形体、マグネットローラ、現像剤担持体、現像装置、及び、画像形成装置
KR101385869B1 (ko) * 2007-03-30 2014-04-17 도다 고교 가부시끼가이샤 본드 자석용 페라이트 입자 분말, 본드 자석용 수지 조성물및 이들을 이용한 성형체
CN102344678A (zh) * 2011-09-05 2012-02-08 中山市玛而特电子科技有限公司 一种各向异性永磁铁氧体注塑母料制备材料配方
US11820055B2 (en) 2013-04-03 2023-11-21 Toda Kogyo Corp. Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same
CN103468226B (zh) * 2013-08-27 2016-12-28 中国科学院理化技术研究所 一种镧铁硅基室温磁制冷复合材料及制备方法
US20160217892A1 (en) 2013-10-02 2016-07-28 Toda Kogyo Corp. Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same
CN105331137A (zh) * 2015-11-17 2016-02-17 安徽正华电气有限公司 一种磁性塑料材料的电机风扇叶片
CN107068318A (zh) * 2017-03-24 2017-08-18 合肥羿振电力设备有限公司 一种用于变压器的磁性材料及其制备方法
FR3115039B1 (fr) 2020-10-13 2023-11-10 Arkema France Composition magnétique comprenant une résine de copolymères à blocs polyamides et à blocs polyéthers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304013A (ja) * 1992-04-24 1993-11-16 Kanebo Ltd プラスチック磁石組成物
JPH05315115A (ja) * 1992-05-01 1993-11-26 Asahi Chem Ind Co Ltd 磁性材樹脂複合材料
US5376291A (en) * 1993-01-29 1994-12-27 Ici Japan Limited Bonded magnet molding composition and bonded magnet
JPH08167512A (ja) * 1994-12-12 1996-06-25 Sumitomo Metal Mining Co Ltd 樹脂結合型磁石用組成物及び樹脂結合型磁石
JPH0980914A (ja) * 1995-09-08 1997-03-28 Ricoh Co Ltd 磁性トナー担持体及びその製造方法
JP2000012319A (ja) * 1998-06-25 2000-01-14 Bridgestone Corp 樹脂磁石用組成物及び樹脂磁石成形物
JP2001240740A (ja) * 2000-02-28 2001-09-04 Bridgestone Corp 合成樹脂磁石用組成物及び樹脂磁石成形物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409624A (en) * 1993-01-29 1995-04-25 Ici Japan Limited Bonded magnet moulding compositions
DE19653178A1 (de) * 1996-12-19 1998-06-25 Inventa Ag Thermoplastisch verarbeitbare Formmasse, Verfahren zur Herstellung der Formmasse und Verwendung derselben

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304013A (ja) * 1992-04-24 1993-11-16 Kanebo Ltd プラスチック磁石組成物
JPH05315115A (ja) * 1992-05-01 1993-11-26 Asahi Chem Ind Co Ltd 磁性材樹脂複合材料
US5376291A (en) * 1993-01-29 1994-12-27 Ici Japan Limited Bonded magnet molding composition and bonded magnet
JPH08167512A (ja) * 1994-12-12 1996-06-25 Sumitomo Metal Mining Co Ltd 樹脂結合型磁石用組成物及び樹脂結合型磁石
JPH0980914A (ja) * 1995-09-08 1997-03-28 Ricoh Co Ltd 磁性トナー担持体及びその製造方法
JP2000012319A (ja) * 1998-06-25 2000-01-14 Bridgestone Corp 樹脂磁石用組成物及び樹脂磁石成形物
JP2001240740A (ja) * 2000-02-28 2001-09-04 Bridgestone Corp 合成樹脂磁石用組成物及び樹脂磁石成形物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335316B2 (en) * 2003-02-03 2008-02-26 Mitsubishi Denki Kabushiki Kaisha Plastic magnet precursor, production method for the same, and plastic magnet

Also Published As

Publication number Publication date
CN1209416C (zh) 2005-07-06
US20040094742A1 (en) 2004-05-20
US6893580B2 (en) 2005-05-17
CN1469906A (zh) 2004-01-21
AU2002244343A1 (en) 2002-04-29

Similar Documents

Publication Publication Date Title
WO2002033002A1 (fr) Composition pour composition de resine synthetique et aimant a resine forme
US6346565B1 (en) Synthetic resin composition for resin magnet, molded resin magnet, and production process for synthetic resin composition
EP1049111B1 (en) Synthetic resin magnet composition and synthetic resin magnet molded-product using the same
JP2001123067A (ja) 合成樹脂磁石用組成物及び樹脂磁石成形物
JP2002190421A (ja) 樹脂磁石成形物及びその製造方法
JP4433110B2 (ja) 合成樹脂磁石用組成物
US20040144960A1 (en) Resin-magnet composition
EP1347471B1 (en) Resin composition for bond magnet and bond magnet using the same
JP4305628B2 (ja) ボンド磁石用樹脂組成物及びボンド磁石
JP4677995B2 (ja) ボンド磁石用組成物およびそれを用いたボンド磁石
JP2005072240A (ja) ボンド磁石組成物および該組成物からなる成形品
JP4502292B2 (ja) 合成樹脂磁石組成物およびそれを用いた合成樹脂磁石成形物
JP2010283301A (ja) ボンド磁石用樹脂組成物ならびにそれを用いた成形体
JP2001110620A (ja) 樹脂磁石用組成物及び樹脂磁石成形物
JP2000012319A (ja) 樹脂磁石用組成物及び樹脂磁石成形物
JP2006100783A (ja) 樹脂磁石材料
JPH11265818A (ja) 樹脂磁石用組成物及び該組成物を用いたマグネットローラ
TW202412024A (zh) 黏結磁體用樹脂組合物以及使用其進行成型而得的黏結磁體成型體
JP2010251545A (ja) ボンド磁石用樹脂組成物ならびにそれを用いた成形体
JPH11219815A (ja) 樹脂磁石用組成物及び該組成物を用いてなるマグネットローラ
TW202338003A (zh) 黏結磁體用樹脂組合物和使用其的黏結磁體
JPH11329813A (ja) 樹脂磁石用組成物及び該組成物を用いてなるマグネットローラ
JP2007296666A (ja) マグネットローラ
JP2009242544A (ja) 磁石材料組成物
JP2006257245A (ja) 樹脂磁石組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10398754

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 018173276

Country of ref document: CN

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase