WO2002022740A1 - Composition de resine polyimide, produit de polyimide forme dans un film, et bande de transfert intermediaire comprenant ladite composition - Google Patents

Composition de resine polyimide, produit de polyimide forme dans un film, et bande de transfert intermediaire comprenant ladite composition Download PDF

Info

Publication number
WO2002022740A1
WO2002022740A1 PCT/JP2001/007753 JP0107753W WO0222740A1 WO 2002022740 A1 WO2002022740 A1 WO 2002022740A1 JP 0107753 W JP0107753 W JP 0107753W WO 0222740 A1 WO0222740 A1 WO 0222740A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
parts
weight
belt
intermediate transfer
Prior art date
Application number
PCT/JP2001/007753
Other languages
English (en)
French (fr)
Inventor
Hitoshi Nojiri
Masami Yanagida
Koji Sezaki
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000277961A external-priority patent/JP2002088242A/ja
Priority claimed from JP2001057617A external-priority patent/JP2002258625A/ja
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to EP01963487A priority Critical patent/EP1327666A4/en
Priority to US10/380,459 priority patent/US20040024107A1/en
Priority to KR10-2003-7002646A priority patent/KR20030026352A/ko
Publication of WO2002022740A1 publication Critical patent/WO2002022740A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • G03G15/1605Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support
    • G03G15/162Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support details of the the intermediate support, e.g. chemical composition

Definitions

  • the present invention relates to a resin composition having an intermediate resistance value, a polyimide film molded article using the same, and a polyimide intermediate transfer belt having a stable intermediate resistance value and excellent transferability. It is. Background art
  • Polyimide resins are useful for various applications because of their excellent heat resistance, solvent resistance, high strength and high durability. Depending on the application, various additional properties are required for the polyimide resin.
  • One of the inherent characteristics of polyimide is that it has high insulation properties, but it also has the property of being relatively easily charged.
  • Polyimide is often used in electrical and electronic components, and static electricity is stored in electrical and electronic components, which can be a problem. Especially in semiconductor peripheral materials
  • intermediate resistance in the present invention refers to a resistance value in the range of 1 0 6 ⁇ 1 0 12 ⁇ ⁇ cm.
  • JP-A-2-110138 discloses a product comprising an aromatic polyimide matrix and finely divided electrically conductive particles, wherein the particles are uniformly dispersed and present in an amount of 10 to 45% by weight of the whole.
  • JP-A-63-311263 discloses an aromatic polyamide film or an aromatic polyamide film containing 5 to 2 Owt% of car pump racks and having a surface resistance Rs ( ⁇ port) of 10 7 ⁇ Rs ⁇ l 0 15.
  • Rs surface resistance
  • Polyimide has a high resistance value among various resins.
  • the volume resistance value of acrylic resin is about 10 14 ⁇ 'cm
  • the volume resistance value of wholly aromatic linear polyimide is 10 Indicates a value of 16 ⁇ ⁇ cm or more.
  • the degree of difficulty is higher because a partial variation significantly reduces insulation reliability.
  • the fillers reduce the strength of the belt and cause damage to the belt due to use.
  • the resistance value is stably controlled by using various conductive materials as fillers. Even when screening for effects, good results were not obtained with a single conductive substance. Therefore, as described above, it is said that the polyimide resin can reduce the volume resistance value by blending a conductive substance.However, if the polyimide resin is blended with a single conductive substance, the object of the present invention is It was found that it was not possible to obtain an intermediate transfer belt based on a polyimide resin based on a good intermediate resistance ground that meets the requirements of oil and fat, and with high insulation reliability.
  • the present invention has verified the combination of various conductive substances to obtain a specific effect by combining various materials. As a result, the present invention has an intermediate resistance value and insulation reliability. It is an object of the present invention to provide a polyimide resin-based intermediate transfer belt having high performance. Disclosure of the invention
  • the present invention relates to a poly (ethylene) resin containing 0.5 to 20 parts by weight of a force-sensitive black powder and 5 to 40 parts by weight of a plate-like or column-like conductive powder with respect to 100 parts by weight of a polyimide resin. It is a mid resin composition.
  • the present invention provides a polyimide resin composition containing 0.5 to 20 parts by weight of carbon black and 5 to 40 parts by weight of a plate-like or columnar conductive powder with respect to 100 parts by weight of a polyimide resin.
  • the volume resistivity value of the measurement voltage 1 0 0 V is in the range of 1 X 1 0 6 ⁇ 1 X 1 0 12 ⁇ ⁇ cm, a polyimide film-shaped molded body.
  • the polyimide film-shaped molded body has a volume resistivity value of the measurement voltage 1 0 0 V may be in the range of 1 X 1 0 7 ⁇ 1 X 1 0 10 ⁇ 'cm.
  • the force pump rack may be a Ketchen rack, and the blending amount may be 0.5 to 5 parts by weight based on 100 parts by weight of the polyimide resin.
  • the plate-shaped or columnar conductive powder may be a mica-like substance subjected to a conductive treatment.
  • the polyimide film-shaped molded article may be in the form of a tube or a belt.
  • the intermediate transfer belt of the present invention has the polyimide film-like molded body as a base material.
  • the intermediate transfer belt of the present invention has a fluororesin layer containing a conductive substance on its surface, The surface resistance can be in the range of 1 ⁇ 10 8 to 1 ⁇ 10 13 ⁇ / cm 2 .
  • the polyimide resin composition of the present invention basically contains at least carbon black and conductive powder as a filler in a polyimide resin.
  • a polyimide resin for car pump racks, 0 for 100 parts by weight of polyimide resin. 5 to 20 parts by weight, the conductive powder has a plate-like or columnar shape, and contains 5 to 40 parts by weight with respect to 100 parts by weight of the polyimide resin.
  • the polyimide film-shaped molded article of the present invention uses the above-mentioned polyimide resin composition, and the mixing ratio of the force pump rack and the plate-like or columnar conductive powder to the polyimide resin is optimal within the above-mentioned mixing ratio.
  • the composition is selected and blended.
  • the volume resistivity of the film-shaped molded product is within a certain range, that is, the volume resistivity at a measurement voltage of 100 V is within the range of 1 ⁇ 10 6 to 1 ⁇ 10 12 ⁇ ⁇ cm.
  • the compounding ratio of carbon black and the plate-like or columnar conductive powder is optimally selected and compounded in the range of the above-mentioned compounding ratio in the polyimide resin to be used.
  • certain range that is, when the volume resistance value in the measured voltage 1 0 0 V is in the range of 1 X 1 0 6 ⁇ 1 X 1 0 12 ⁇ ⁇ cm is partially resistance abnormality on the intermediate transfer belt
  • Such transfer failure and image disturbance do not occur at all.
  • the polyimide resin in the present invention refers to all resins having an imide bond in the structure, and includes not only resins called by general names such as polyetherimide, polyesterimide, polyesterimide, and polyamideimide, but also other resins. Also includes copolymers and blends.
  • General polyimides are usually produced using a diamine compound and tetracarboxylic dianhydride as monomers.
  • diamine compound for example, N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-N-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • X represents a divalent organic group selected from the following organic groups.
  • R is the same or different and consists of hydrogen, halogen, one CH 3 , -OCH 3 , one (CH 2 ) nCH 3- , one (CH 2 ) nCH 3 , one CF 3 , -0CF 3 Shows at least one group selected from the group.
  • A is the same or different
  • C ( ⁇ ) Indicates at least one group selected from the group consisting of ⁇ and NHCO.
  • m is an integer of 1 to 4, and n is an integer of 1 or more.
  • Y is a tetravalent organic group selected from
  • n is an integer of 1 or more.
  • Various monomers represented by the following formulas can be used. By combining these, various characteristics can be expressed, and selection can be made according to the situation such as the application and the processing method.
  • a diamine containing a large number of bent chains (preferably two or more) and / or an aromatic ring having a bond at the meta position is used, and di-anhydride of two or more rings is used. If so, a thermoplastic polyimide can be obtained, and a resin composition that can be heated and melt molded can be provided.
  • a combination of benzophenonetetracarboxylic dianhydride, or a combination of 2,3,3'4'biphenyltetracarboxylic dianhydride and 4,4'diaminodiphenyl ether, or a combination of oxydiphthalic dianhydride and 3,4'diaminodiphenyl Examples include a combination of two channels.
  • polyimide generally has a high water absorption due to the presence of an imide group, but a characteristic having a relatively low water absorption can be imparted by a combination of specific monomers.
  • acid dianhydrides represented by As the diamine compound used in this case it is preferable to use a monomer having a relatively long chain in order to reduce the imide group content.
  • a monomer having a relatively long chain for example, 1,4-bis (4-aminophenoxy) benzene and its bonding position isomer, 2,2′-bis (4-aminophenoxyphenyl) propane and the like can be mentioned.
  • the structure having many long chains and bent chains is also a condition for simultaneously developing the above-mentioned thermoplasticity, and is inappropriate when sufficient heat resistance is required. It is.
  • a monomer having a long chain and having a linear structure in whole or in part is suitable.
  • tetracarboxylic dianhydride as tetracarboxylic dianhydride,
  • TMHQ p-phenylenebistrimellitate dianhydride
  • a powder is mixed with the polyimide resin.
  • the powder is preferably a conductive inorganic substance. Since the toughness is inevitably reduced by the blending of the inorganic substance, a higher toughness is required for the polyimide as the base resin as compared with the case of using the polyimide alone. However, if the toughness of the polyimide itself is not sufficient, the toughness is inevitably reduced due to the blending of the powder, so that the polyimide may not be practically used.
  • Most preferred from the viewpoint of toughness is a polyimide composed of pyromellitic dianhydride and 4,4 ′ diaminodiphenyl ether. Such a polyimide structure has sufficient heat resistance and high toughness, and has well-balanced properties that can maintain the properties under a wide range of processing conditions.
  • the fine shape of the powder is preferably plate-like or column-like.
  • the carbon black to be blended with the polyimide resin various existing carbon blacks can be used as long as they have conductivity. Examples include fan black, acetylene black, thermal black, and channel black. Among these, it is one kind of furnace black. Particularly, when a carbon black called Ketjen Black having a large specific surface area is used, the blending amount of the carbon black may be smaller.
  • Examples of the plate-shaped conductive powder used in the present invention include a mica-based substance that has been subjected to a conductive treatment by coating a substance obtained by coating antimony on tin oxide, or a flaky metal powder. Can be.
  • Examples of the columnar conductive powder include those obtained by subjecting titanium oxide to a similar conductive treatment with tin oxide and antimony.
  • a mica-based material whose surface is made conductive can be suitably used.
  • the mixing ratio thereof is 0.5 to 20 parts by weight, preferably 0.5 to 10 parts by weight of carbon black and 5 to 40 parts by weight, preferably 10 to 35 parts by weight based on 100 parts by weight of the polyimide resin. Is used. In particular, when Ketjen Black is used as carbon black, it is preferable that Ketjen Black is used in an amount of 0.5 to 5 parts by weight based on 100 parts by weight of the polyimide resin.
  • Each substance is used at least one kind, but it is also possible to use two or more kinds of substances.
  • the resistance can be reduced by adding only tens of parts of carbon black alone. However, it is difficult to stably control the resistance in the middle range of the resistance value, and when a large amount of carbon black is blended, it is difficult to eliminate the cohesion and insulation reliability is poor. Atsuta.
  • the mechanism is not known at this time, but the addition of a large amount of plate or columnar conductive material has the potential to reduce the overall resistance of the material, while the conductive material is non-conductive. Because it is continuous, a state occurs in which no breakdown due to perfect conduction occurs. It is presumed that by taking a structure in which a small amount of carbon black fills the gap between the discontinuous conductive materials, the effect of substantially lowering the resistance value to a suitable level is produced.
  • Non-conductive fillers include, for example, small-diameter particulate substances such as titanium oxide and silica, swelling mica, plate-like and non-swelling mica-based mica-based substances, scale-like substances, and titanic acid. Various materials such as short fibrous or whisker-like substances such as barium and titanate rim are used.
  • the non-conductive filler is added for controlling characteristics such as elastic modulus.
  • the non-conductive powder appropriately assists the dispersion of the conductive powder, so that the aggregation of the conductor can be more highly prevented and the resistance value can be stabilized.
  • Various methods can be used as a method for dispersing the plate-like or columnar conductive powder and the force pump rack to be added to the polyimide resin.
  • the polyimide resin is solvent-soluble
  • a preparatory dispersion method it is effective to add powders to a solvent and sufficiently disperse the particles by an ultrasonic disperser.
  • the plate-like powder may be damaged in shape when subjected to excessive shearing force, and therefore, a method using no three rolls is preferable.
  • the above-mentioned preliminary dispersion is added to a solution of the polyamic acid, which is a precursor of the polyimide, and mixed in the same manner.
  • a method of performing kneading or the like is also possible.
  • a dispersant for assisting the dispersibility of the solid powder can be used in combination as long as the characteristic deterioration of the polyimide does not significantly occur.
  • the dispersibility is more improved by adding the polyamic acid solution to the preliminary dispersion liquid while stirring it little by little than in the reverse procedure as described above.
  • powders are first added to a solvent and sufficiently dispersed by an ultrasonic disperser or the like, and the raw material of polyimide (polyamic acid) is added thereto. And a diamine compound and an acid dianhydride compound are added to carry out a polymerization reaction.
  • the dispersion at the micro-mouth level is favorably maintained by ultrasonic dispersion or the like, and at the same time, the stirring is always carried out from the initial solid powder dispersion to the polymerization, so that the macro level is obtained. Is also very good.
  • the solution is a polyimide solution, it is processed into a belt shape, and then the solvent is volatilized by heating or, in some cases, using a reduced pressure, to obtain a polyimide molded body.
  • a belt can be obtained by the same steps as in the case of the polyimide solution.
  • an acid anhydride such as acetic anhydride or a tertiary amine can be used alone or in combination as a dehydrating agent or a catalyst to promote imidization prior to heating.
  • acid anhydrides not only accelerate the imidization reaction but also may cause the breakage of the main chain of the polyamic acid, so the combination of acid anhydrides and tertiary amines is important for the mechanical properties of polyimide.
  • addition of only tertiary amine is more preferable.
  • the curing reaction of the polyamic acid solution to which the acid anhydride and the tertiary amine are added starts immediately after the mixing, which makes it difficult to handle in a batch-type manufacturing process. Therefore, the addition of only tertiary amine is most preferably employed.
  • the polyimide resin composition obtained by adding at least two types of fillers to a polyimide resin is formed into a film-shaped molded product.
  • Examples of specific molding methods for various shapes are shown. Examples of a method for forming a film or sheet include the following methods.
  • the polyimide resin solution in which each of the above-mentioned inorganic components is dispersed is applied on an endless belt while controlling the thickness by using a T-die or by passing through a comma coat or a dough blade.
  • the resin solution is heated and dried with hot air until it has self-supporting properties, and then peeled off from the endless belt.
  • a film-like molded product can be obtained by fixing both ends of the peeled semi-dry film with pins and clips and sequentially passing the film through a high-temperature heating furnace while defining the length in the width direction.
  • a film or a sheet-shaped polyimide molded body fixed in a sheet shape is applied to a continuous sheet-like support made of metal or the like by the same method and then passed through a heating furnace. After that, a method of peeling off from the support sheet or removing the support sheet by means of etching or the like can be adopted.
  • Examples of the method of molding into a belt or a tube include the following methods. First, a film or sheet-like molded body is obtained by the above-described method, etc. The easiest way is to cut to a predetermined length and width and join them in a belt or tube shape to obtain a belt or tube. Adhesives or adhesive tapes can be used for joining, but this method inevitably causes inconveniences depending on the application because there are steps or cuts at joints.
  • the resin solution is applied to the inner or outer surface of the cylindrical mold, and the solvent is volatilized by heating or drying under reduced pressure, etc., and this is heated as it is to the final baking temperature or once peeled off, and finally the inner diameter is specified.
  • the mold is inserted into the outer periphery of another mold and heated to the final firing temperature.
  • the final firing temperature must be appropriately selected depending on the structure of the polyimide and the heat resistance of the added carbon fiber.
  • the temperature is preferably 450 ° C.
  • the maximum firing temperature in the range of 350 ° C. to 420 ° C.
  • the glass transition point temperature of the polyimide is ⁇ 20 ° C. to -20 ° C.
  • a suitable range is between 10 and 100 ° C.
  • the polyimide belt formed in this manner can be used as an intermediate transfer belt as it is, but a surface layer having a resistance adjusted as an outer layer can be provided in order to obtain characteristics suitable for the intermediate transfer belt.
  • the intermediate transfer belt according to the second embodiment of the present invention comprises 0.5 to 20 parts by weight of carbon black and 5 to 40 parts by weight of plate-like or columnar conductive powder with respect to 100 parts by weight of the polyimide resin. And a surface resistance of 1 ⁇ 10 8 to 1 ⁇ on the surface of a polyimide belt having a volume resistance value within a range of 1 ⁇ 10 6 to 1 ⁇ 10 12 ⁇ cm. A resistance-adjusted surface layer within the range of 10 13 ⁇ cm 2 is formed.
  • the surface layer has a resistance value within the range of 1 X 10 9 to 1 X 10 12 QZcm 2 It is more preferable to use a fluororesin as the matrix resin in order to transfer the toner to paper satisfactorily. Further, a surface layer formed by using a fluororesin as a matrix resin and adding a conductive substance to the fluororesin is more preferable.
  • the conductive substance for adjusting the surface resistance to the above range the same substance as the substance added to the polyimide layer can be used.
  • the resistance value of the fluororesin layer is easier to control than the polyimide resin, and it has a track record of controlling the intermediate resistance region.Conventionally, the addition of carbon black alone can control the above range. It is possible. Similarly, various other conductive substances can be added. In addition, a combination with a non-conductive filler may be appropriately performed for the purpose of stabilizing the resistance value or imparting other properties such as thermal conductivity.
  • the volume resistance value was determined by cutting four sheets of 10 cm square from a polyimide belt, setting them as samples 1 to 4, leaving them for 48 hours in an environment of a temperature of 23 ° C and a humidity of 60% Rh.
  • the volume resistance at 10 V, 30 V, 50 V, and 100 V was measured using a digital ultra-high resistance / micro ammeter R 8340 and a resistance chamber R 12702A.
  • the surface resistance at 100 V was also measured.
  • DMF dimethylformamide
  • PMDA pyromellitic dianhydride
  • the polyimide intermediate transfer belt having a thickness of about 85 / m was removed by applying air pressure from the inside of the porous metal mold.
  • Table 1 shows the results of measuring the volumetric resistance of the polyimide belt (Examples 11 to 11).
  • Dimethylformamide (DMF) 1 100 g of Mitsubishi Chemical Carbon Black 3030 B. 4g and 32.9g of Ishihara Sangyo conductive titanium oxide ET-500W (rutile crystal, titanium oxide base, tin oxide coating, antimonyd) were added and uniformly dispersed by ultrasonic dispersion. . While stirring this dispersion in a water bath at about 10 ° C. under a nitrogen stream, 86.2 g of 4,4 ′ diaminodiphenyl ether (hereinafter, DADPE) powder was added and completely dissolved. Subsequently, 91.0 g of pyromellitic dianhydride (hereinafter, PMDA) powder was added little by little while stirring was continued, and stirring was continued for 30 minutes.
  • DADPE 4,4 ′ diaminodiphenyl ether
  • PMDA pyromellitic dianhydride
  • a polyimide intermediate transfer belt was prepared in the same manner as in Example 1 except that this polyamic acid solution was used.
  • the carbon black 3030 B is 10 parts by weight and the column-shaped conductive powder ET-500 W is 20 parts by weight with respect to 100 parts by weight of the polyimide solid content in the belt.
  • Table 1 shows the results of evaluating the volume resistance of this belt in the same manner as in Example 1.
  • DMF dimethylformamide
  • Ketjen Black EC-600 JD manufactured by Lion and Dentol TM-200 manufactured by Otsuka Chemical (My power base, tin oxide coated antimony dope) lg was added and dispersed uniformly by ultrasonic dispersion. While stirring this dispersion in a water bath at about 10 ° C. under a nitrogen stream, 86.2 g of 4,4 s diaminodiphenyl ether (hereinafter referred to as D ADPE) powder was added and completely dissolved.
  • D ADPE 4,4 s diaminodiphenyl ether
  • a polyimide intermediate transfer belt was prepared in the same manner as in Example 1 except that this polyamic acid solution was used.
  • Table 1 shows the results of evaluating the volume resistance of this belt in the same manner as in Example 1.
  • Ketjen Black 1.5 parts of Ketjen Black and 25 parts of Dentol TM-200, which is a plate-like conductive powder, are 100 parts by weight of the solid content of polyimide in the belt.
  • a polyimide belt-like belt was prepared in the same manner as in Example 1 except that the thickness was 65 m.
  • Table 1 shows the results of evaluating the volume resistance of this polyimide belt at a measurement voltage of 100 V in the same manner as in Example 1.
  • the fluororesin solution was uniformly sprayed on the surface of the polyimide belt using an air spray gun so that the thickness after baking was about 15 zm.
  • This belt was fitted over the core, placed in an oven so that the surface was not touched, and heated at 120 ° C for 5 minutes and at 380 ° C for 10 minutes.
  • the belt was gradually cooled to room temperature, taken out of the opening, and removed from the core to obtain a target intermediate transfer belt.
  • the measured surface resistance of the fluororesin copolymer one up surface of the intermediate transfer bell Bok, 2. a X 10 9 ⁇ port.
  • a polyimide belt having a thickness of about 85 xm was obtained in the same manner as in Example 1 except that the amount of dents of the conductive powder to be added was changed to 32.9 g. Belt.
  • 20 parts of Dentitol TM-200 was used for 100 parts by weight of the polyimide solid content in this belt.
  • Table 1 shows the results of evaluating the volume resistance of this belt at a measurement voltage of 100 V in the same manner as in Example 1. '
  • Example 2 The same operation as in Example 1 was carried out except that the amount of conductive powder to be added was 49.3 g only for Denthol TM-200 (without adding Ripbon Black). The belt was obtained to obtain a polyimide intermediate transfer belt. Dentitol TM-200 is 30 parts with respect to 100 parts by weight of the polyimide solid content in this belt.
  • Table 2 shows the results of evaluating the resistance value of this belt in the same manner as in Example 1.
  • Comparative Example 2 A belt was manufactured and the resistance value was evaluated in the same manner as in Comparative Example 1, except that conductive titanium oxide ET_500W was used instead of Dentol TM-200. Table 2 shows the results.
  • a belt was manufactured and the resistance value was evaluated in the same manner as in Comparative Example 1 except that Denbon TM-200 was replaced with Rikibon Black 300 B. Table 2 shows the results.
  • Tables 1 and 2 show that, for each of Examples and Comparative Examples, the obtained polyimide intermediate transfer was incorporated as a transfer belt of a commercially available printer, and a 100-sheet print test was performed. When a good image was obtained, it was judged as "Good”, and when the image was slightly disturbed, but it was within a practically acceptable range, it was judged as "OK”. If a fault occurs or the belt is damaged, this is indicated as “defective”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Laminated Bodies (AREA)

Description

明 細 書 ポリイミド樹脂組成物並びにそれからなるポリイミドフィルム状成形体及び中間 転写ベルト 技術分野
本発明は中間的な抵抗値を有する樹脂組成物ならびにこれを用いたポリイミド フィルム状成形体、 および中間的な抵抗値を安定的に有し、 転写性に優れたポリ ィミド製中間転写ベルトに関するものである。 背景技術
ポリイミド樹脂は、 その優れた耐熱性ゃ耐溶剤性、 さらに高強度 ·高耐久性の ために様々な用途で有用に用いられる。 それら用途により、 様々な付加特性がポ リイミド樹脂に対して求められる。 ポリイミドは、 本来有する特徴の一つとして 絶縁性が高いことが挙げられるが、 その一方で比較的帯電しやすい特性をも有す る。 電気 ·電子部品には、 .ポリイミドが使用される機会が多く、 電気 ·電子部品 中に静電気が蓄えられ、 問題になる場合がある。 特に半導体周辺材料においては
、 静電気が I Cの誤作動を引き起こす可能性があるため、 静電気を除去すること は重要な課題である。
また、 例えばプリンタ一等の電子写真用途における転写ベルト ·中間転写ベル ト ·定着ベルト等は、 トナーを転写させる機能から、 中間抵抗値を有する特性が 要求され、 この特性は重要な品質課題であることが良く知られている。 ここで、 本発明における用語 「中間抵抗値」 とは、 1 06〜1 0 12Ω · c mの範囲の抵抗値 をいう。 この中間抵抗値 (1 06〜1 0 12Ω · c m) に制御することにより、 ベル ト状物の抵抗値を一定レベルに下げつつ、 かつ絶縁性を保持することができる。 従来、 この用途には例えば E T F E製のベルト等が用いられていた。 しかし、 E T F Eは比較的柔らかい樹脂であるため、 長期の使用に際して永久歪みが生じ ることがある。 また一定レベルの機械的強度を保証するためには、 かなりの厚み
差替え用紙 (規則 26) を必要としていた。 さらに、 近年転写機能および定着機能を兼ね備えるベルトを 用いるという考え方もあり、 この場合定着時の高温に耐えるためには、 高耐熱の 榭脂を用いる必要が生じる。
このような要求に鑑み、 ポリイミド樹脂をベース樹脂として用いて、 これに対 し各種の導電性物質を添加して抵抗値を下げる試みが様々なされている。 例えば 特開平 2 -1 10138号は、 芳香族ポリイミド母体と微分割電気伝導性粒子材 料とを含み、 該粒子材料が均一に分散し、 全体の 10〜45重量%存在する製品 を開示する。 特開昭 63 - 311263号は、 カーポンプラックを 5〜2 Owt %含有し、 表面抵抗 Rs (ΩΖ口) が 107≤Rs≤l 015の範囲にある芳香族ポ リアミドフィルム又は芳香族ポリイミドフィルムからなる電子写真記録装置用中 間転写体を提案している。
しかしながら、 このような種々の試みにも関わらず、 依然ポリイミドの抵抗値 を中間的な値に安定して制御することは、 以下に示す理由で、 困難な課題である と言われている。
ポリイミドは種々の樹脂の中でも、 それ自身の抵抗値が高く、 例えばアクリル 榭脂の体積抵抗値が 1014Ω ' cm程度であるのに対し、 全芳香族線状ポリイミ ドの体積抵抗値は 1016Ω · cm以上の値を示す。 このため、 抵抗値を下げるた めに、 他の樹脂に比較して単体抵抗値の低い導電性物質をフィラーとして用いる 必要が生じる。 しかし、 これは逆に絶縁信頼性の低下を招くことになりやすく、 また安定して中間域の抵抗値に制御することが困難なのである。 特にフィルム状 成形体、 ベルト状 ·チューブ状の成形体では厚みが薄いため、 部分的なばらつき が顕著な絶縁信頼性の低下の原因となるため、 より困難度は高い。 さらに、 フィ ラーがベルトの強度を低下させ、 使用によるベルトの損傷を引き起こす要因とな る。
さらに、 特に電子写真用中間転写ベルトとして使用する場合に求められる、 1 X 107〜1 X 10 ι αΩ · cmの体積抵抗値の域にポリイミドの抵抗値を調整す ることは、 特に困難であることが知られていた。
しかし、 種々の導電性物質をフィラーとして用いて抵抗値を安定的に制御する 効果をスクリーニングしても、 単独の導電性物質では良好な結果が得られなかつ た。 従って、 前述のようにポリイミド樹脂は導電性物質を配合することにより体 積抵抗値を下げることができるとされているが、 ポリイミド樹脂に単独の導電性 物質を配合したのでは、 本発明の目的に合致した良好な中間的抵抗地を油脂、 か つ絶縁信頼性の高いポリイミド樹脂ベースの中間転写ベルトを得ることはできな いことがわかった。
上記種々の問題を解決すべく、 本発明は、 種々材料の組み合わせによる特異的 効果の発現を得るべく数々の導電性物質の組み合わせを検証した結果、 中間的抵 抗値を有しかつ絶縁信頼性の高いポリィミド樹脂べ一スの中間転写ベルトを提供 することを目的とする。 発明の開示
本発明は、 ポリイミド榭脂 1 0 0重量部に対し、 0 . 5〜2 0重量部の力一ポ ンブラック及び 5〜4 0重量部の板状または柱状導電性粉体を含有する、 ポリイ ミド樹脂組成物である。
また、 本発明は、 ポリイミド樹脂 1 0 0重量部に対し、 0 . 5〜2 0重量部の カーボンブラック及び 5〜 4 0重量部の板状または柱状導電性粉体を含有したポ リイミド樹脂組成物からなり、測定電圧 1 0 0 Vでの体積抵抗値が 1 X 1 06〜 1 X 1 0 12Ω · c mの範囲内である、 ポリイミドフィルム状成形体である。
さらに、 ポリイミドフィルム状成形体は、 測定電圧 1 0 0 Vでの体積抵抗値が 1 X 1 07〜 1 X 1 0 10Ω ' c mの範囲内でありうる。
また、 前記ポリイミドフィルム状成形体は、 力一ポンプラックがケッチェンブ ラックであり、 その配合量がポリイミド樹脂 1 0 0重量部に対して、 0 . 5〜5 重量部でありうる。
さらに、 前記ポリイミドフィルム状成形体は、 前記板状または柱状導電性粉体 が、 雲母状物質を導電化処理したものでありうる。
前記ポリイミドフィルム状成形体は、 形状がチューブないしベルト状でありう る。 本発明の中間転写ベルトは、 前記のポリイミドフィルム状成形体を基材とする また、 本発明の中間転写ベル卜は、 導電性物質を含むフッ素樹脂層を表面に有 し、該フッ素樹脂層の表面抵抗が 1 X 1 0 8〜1 X 1 0 1 3 Ω / c m 2の範囲にあり うる。
本発明によれば、 良好な中間抵抗値を安定的にかつ絶縁信頼性が高く、 また使 用によるベルトの損傷がない中間転写ベルトを得ることができる。 発明を実施するための最良の形態
以下本発明について、 詳述する。
本発明のポリイミド樹脂組成物は、 基本的にポリイミド樹脂に、 フイラ一とし て少なくともカーボンブラックおよび導電性粉体を含む。 カーポンプラックは、 ポリイミド樹脂 1 0 0重量部に対し 0。 5〜 2 0重量部、 導電性粉体は、 板状ま たは柱状の形状を示し、 ポリイミド樹脂 1 0 0重量部に対し、 5〜4 0重量部含 まれる。
また、 本発明のポリイミドフィルム状成形体は、 上記ポリイミド樹脂組成物を 用いており、 ポリイミド樹脂に、 力一ポンプラック及び板状または柱状導電性粉 体の配合比率が上記配合比率の範囲で最適に選択されて配合される構成がなされ ている。 フィルム状成形体の体積抵抗値は、 一定の範囲、 すなわち測定電圧 1 0 0 Vにおける体積抵抗値が 1 X 1 0 6〜 1 X 1 0 12 Ω · c mの範囲内である。 本発明のこのようなフィルム状成形体を中間転写ベルトに用いた場合、 良好な 印刷性が得られ、 転写不良や画像の乱れは、 実用上許容できる範囲内のものであ り、 使用に際しベルトの損傷もない。 さらに、 用いるポリイミド樹脂に、 カーボ ンブラック及び板状または柱状導電性粉体の配合比率が上記配合比率の範囲で最 適に選択され配合されており、 また、 フィルム状成形体の体積抵抗値が一定の範 囲、 すなわち測定電圧 1 0 0 Vにおける体積抵抗値が 1 X 1 0 6〜 1 X 1 0 12 Ω · c mの範囲内である場合は、 中間転写ベルトに部分的に抵抗値が異常な箇所があ るなどの部分的な欠陥が殆どなく、 更に良好な印刷性が得られ、 実用上問題とな るような転写不良や画像の乱れが全く生じない。
本発明におけるポリイミド榭脂とは、 その構造中にイミド結合を有する樹脂全 般を示し、 ポリエーテルイミド、 ポリエ一テルイミド、 ポリエステルイミド、 ポ リアミドイミドなどの一般名称で呼ばれる樹脂はもちろん、 他樹脂との共重合系 やブレンド物も含む。
一般的なポリィミドは、 通常ジァミン化合物とテトラカルボン酸二無水物をモ ノマ一として用いて製造される。
ジァミン化合物としては、 例えば、
H2N-X~ NH2 ここで、 Xは、 下記に示す有機基から選択される 2価の有機基を示す。
Figure imgf000007_0001
Figure imgf000007_0002
(式中、 Rは、 同一または異なって、 水素、 ハロゲン、 一 CH3, -OCH3, 一 0 (CH2) nCH3 -, 一 (CH2) nCH3, 一 CF3, -0CF3 からなる群から選択される少なくとも 1種の基を示す。
また、 Aは、 同一または異なって、
単結合、 0, S, C = 0, (CH2) n, S〇2, N = N, NHCO,
C (〇) 〇, NHCO からなる群から選択される少なくとも 1種の基を示す。 mは、 1から 4の整数、 nは、 1以上の整数である。 )
に示す種々のモノマーを用いることができる。
また、 テトラカルボン酸二無水物としては、 例として、
Figure imgf000008_0001
式中、 Yは、 下記から、 選択される 4価の有機基である <
Figure imgf000008_0002
Figure imgf000008_0003
(式中、 nは、 1以上の整数である。 ) で表される種々のモノマーを用いることができる。 これらの組み合わせにより、 様々な特徴を発現させることが可能であり、 用途や加工法などの状況に応じて選 択することができる。
例えば屈曲鎖を多く (好ましくは 2つ以上) 含む、 かつ/または芳香環がメタ 位での結合を有するジァミンを用い、 2環以上のテトラ力ルポン酸ニ無水物を用 いると、 熱可塑性のポリイミドを得ることができ、 加熱溶融成型が可能な樹脂組 成物を提供することができる。 例えば、 2、 2, ビス (4一アミノフエノキシフ ェニル) プロパンと、 ォキシジフタル酸二無水物の組み合わせや、 ビス(2— ( 4 —アミノフエノキシ) エトキシ) ェタンと 3, 3, , 4 , 4 ' ベンゾフエノンテ トラカルボン酸二無水物の組み合わせ、 あるいは 2, 3, 3 ' 4 ' ビフエニルテ トラカルボン酸二無水物と 4, 4 ' ジアミノジフエ二ルェ一テルの組み合わせ、 ォキシジフタル酸二無水物と 3, 4 ' ジアミノジフエ二ルェ一テルの組み合わせ 等を例示することができる。
また、 ポリイミドは、 イミド基が存在するため、 通常高吸水率であるが、 特定 のモノマーの組み合わせにより、 比較的吸水率の低い特性を付与することができ る。 例として、 テトラカルボン酸二無水物として 2つ以上のエステル結合で複数 のベンゼン核が結合された構造を持つものを使用するポリイミドがある。 具体的 には、
Figure imgf000009_0001
Figure imgf000009_0002
Figure imgf000010_0001
で表されるような酸二無水物が挙げられる。 この場合用いられるジァミン化合物 としては、 イミド基含有率を下げるために比較的長鎖のモノマ一を用いることが 好ましい。 例えば、 1、 4ビス (4アミノフエノキシ) ベンゼンやその結合位置 異性体、 2、 2 ' ビス (4ーァミノフエノキシフエニル) プロパン等を挙げるこ とができる。
ただし、 酸二無水物についてもジァミンについても、 長鎖でかつ屈曲鎖を多数 有する構造は、 同時に前述の熱可塑性を発現するための条件でもあり、 十分な耐 熱性を要求する場合には不適当である。 この場合は長鎖でありかつ直線的構造を 全体的または部分的に有するモノマ一が適当である。 例えばテトラカルボン酸二 無水物としては、
Figure imgf000010_0002
で示す構造のモノマー (TMHQ: p—フエ二レンビストリメリテート 2無水物 ) が挙げられる。 このモノマ一は屈曲鎖を含むが、 全体としては概ね直線的なコ ンフオメーシヨンを取りうる構造であり、 その結合数が多いにもかかわらず、 比 較的剛直なポリイミドを形成することが見出されている。 ジァミンとしては、 例 えばビフエ二ル構造やナフタレン構造をェ一テル結合でつなぐような構造を有す るジァミンが、 長鎖であるにもかかわらず、 比較的剛直な構造を有するものとし て選択され得る。 例えば 4、 4 ' ビスアミノフエノキシビフエニルなどがある。 これら酸二無水物とジァミンの組み合わせにより、 比較的低吸水率であり、 かつ 顕著な熱軟化性を有さないポリイミドを得ることができる。
さらに上記記載のモノマーの他に、 汎用のピロメリット酸二無水物、 ベンゾフ エノンテトラカルボン酸二無水物、 パラフエ二レンジァミン、 4、 4 ' ジァミノ ジフエ二ルェ一テル等を加えて適宜共重合させることにより、 任意の特性のポリ イミドを設計することが可能である。
本発明のポリイミド樹脂組成物は、 ポリイミド樹脂に粉体が配合されている。 粉体は、 好ましくは、 導電性を有する無機物である。 無機物の配合により必然的 に靭性が低下するため、 ポリイミド単体で用いる場合に比較して、 ベース樹脂で あるポリイミドは、 より高い靭性が求められる。 しかし、 ポリイミド自体の靭性 が充分でないと、 粉体の配合により必然的に靭性が低下するため、 実用に供する ことができなくなる場合がある。 この靭性の観点より最も好ましいのは、 ピロメ リット酸二無水物と 4、 4 ' ジアミノジフエ二ルェ一テルからなるポリイミドで ある。 このようなポリイミドの構造は、 十分な耐熱性と高い靭性を兼ね備え、 な おかつ広い範囲の加工条件でその特性を維持しうるバランスの取れた特性を有す る。
上記粉体は、 微細形状は、 板状または柱状が好ましい。
ポリイミド樹脂に対して配合されるカーボンブラックとしては、 導電性を有す るものであれば種々の既存の力一ボンブラックを用いることができる。 ファ一ネ スブラック、 アセチレンブラック、 サーマルブラック、 チャンネルブラック等が 例示される。 これらの中でも、 ファ一ネスブラックの 1種であるが、 特に比表面 積が大きくケッチェンブラックと呼ばれる力一ボンブラックを用いた場合、 力一 ボンブラックの配合量がより少なくてよい。
本発明に用いる板状の導電性粉体としては、 雲母系物質に酸化錫にアンチモン ド一プしたものをコートするなどして導電化処理を施した物や、 鱗片状金属粉等 をあげることができる。 また、 柱状の導電性粉体としては酸化チタンに同様の酸 化錫とアンチモンによる導電化処理を施した物を挙げることができる。 特に板状 の導電性粉体、 具体的には雲母系物質の表面を導電化処理したものが好適に用い うる。
これらの配合比率としては、 ポリイミド樹脂 100重量部に対し、 0. 5〜2 0重量部、 好ましくは 0. 5〜 10重量部のカーボンブラック及び 5〜40重量 部、 好ましくは 10〜35重量部の板状または柱状の導電性粉体を用いる。 特に カーボンブラックとしてケッチェンブラックを用いる場合は、 ポリイミド榭脂 1 00重量部に対して、 ケッチェンブラックは 0. 5〜 5重量部の配合が好ましい 。 それぞれの物質は最低 1種ずつ用いるが、 それぞれ 2種以上の物質を用いるこ とも可能である。
カーボンブラックのみを数十部添加することによつても抵抗値は下げる事は可 能である。 しかし、 '抵抗値の中間域に安定して制御することが困難であり、 また カーボンブラックが大量に配合されると、 その凝集を皆無とすることは困難であ り絶縁信頼性が劣る問題があつた。
上記力一ポンプラック及び板状または柱状の導電性粉体の 2種類の導電性物 質を併用が、 1 Χ 1 06〜1 Χ 1 012Ω · cmさらには 1 X 1 07〜: L X 1 010 Ω · cmという中間的体積抵抗値を安定して得ることを実現しうることに、 発明 者らは想到したのである。
この混合物にカーボンブラックを少量加えることによって、 安定的に中間抵抗 を発現する。
このメカニズムは現在のところ詳細不明であるが、 板状または柱状導電性物質 をある程度大量に添加することにより材料全体の抵抗を下げるという潜在的な可 能性を持たせつつ、 導電性物質が非連続であるため完全な導通による破壊は起こ さないという状態を生じる。 これに少量のカーボンブラックが非連続の導電性物 質間をうめる構造をとることにより、 実質的に抵抗値を好適なレベルに下げる効 果を生じると推察される。
また、 これら配合系にさらに他の非導電性の無機粉体を加えることも可能であ る。 非導電性フィラーとしては、 例えば酸化チタン、 シリカ等の小径粒状物質、 膨潤性雲母 ·非膨潤性雲母等の雲母系を始めとする板状 ·鱗片状物質、 チタン酸 バリゥム、 チタン酸力リゥム等の短繊維状もしくはウイスカ状物質など多様な物 が用いられる。 非導電性フイラ一は、 例えば弾性率等の特性のコントロールのた めに添加される。 また、 非導電性の粉体が、 導電性粉体の分散を適度に補助する ことにより、 導電体の凝集等をさらに高度に防止して抵抗値を安定させることも 、 可能である。
添加する板状または柱状導電性粉体及び力一ポンプラックをポリイミド樹脂に 分散させるための方法としては、 種々の方法をとりうる。
例えば、 ポリイミド樹脂が溶剤可溶性の場合、 溶剤に溶解したポリイミド樹脂 中に粉体類または粉体類を溶媒に予備分散したものを加え、 攪拌翼での混合や、 または 3本ロールなどの混練り機によって分散を進める方法を用いることができ る。 また、 逆に予め粉体類を溶媒に予備分散した物に対し、 溶剤可溶性のポリイ ミドの粉体またはペレツト等を加えて良く混合するという方法も可能である。 予 備分散の方法としては、 粉体類を溶剤に加えて超音波分散機によって十分に分散 を進めておくといった方法が有効である。
特に板状粉体は過剰な剪断力を受けると形状が破壊される可能性があるため、 3本ロールを使用しない方法のほうが好ましい。
ポリイミド榭脂が溶剤不溶性の場合、 ポリイミドの前駆体であるポリアミド酸 の溶液に対し、 上記の予備分散液を加えて、 同様の方法で混合。混練り等を行う 方法も可能である。 この際、 固形粉体の分散性を補助するための分散剤を併用す ることも、 ポリイミドの特性劣化を顕著に起こさない範囲で可能である。
また、 予備分散液の方に、 ポリアミド酸溶液を少量ずつ攪拌しながら添加して いく方が、 上記のような逆手順よりもより分散性は向上する。
また、 特に良好な分散性が得られる別の方法として、 溶剤中に先に粉体類を加 えて、 超音波分散機等により十分に分散させておき、 これにポリイミド (ポリア ミド酸) の原料であるジァミン化合物と酸二無水物化合物を加え重合反応を行う という方法がある。 この方法によれば超音波分散などによりミク口なレベルでの 分散が良好に保たれるのと同時に、 初期の固形粉体分散後から重合中にかけて常 に攪拌がなされるために、 マクロなレベルの分散性も非常に良好である。 溶液がポリイミド溶液の場合、 これをベルト形状に加工した後、 加熱や場合によ つては減圧を併用することにより溶剤を揮発せしめ、 ポリイミド成形体を得るこ とができる。
溶液がポリアミド酸溶液である場合も、 ポリイミド溶液の場合と同様の工程に よりベルトを得ることができる。 この場合、 加熱に先立ち、 イミド化の促進のた め、 脱水剤として無水酢酸などの酸無水物や触媒として三級アミンを単独または 併用して用いる事ができる。 ただし酸無水物はイミド化反応の促進だけでなく、 ポリアミド酸の分子鎖主鎖の切断も引き起こす可能性もあるため、 ポリイミドの 機械的特性のためには、 酸無水物と三級ァミンの併用または三級ァミンのみの添 加がより好ましい。 酸無水物と三級ァミンが加えられたポリアミド酸溶液は混合 直後から硬化反応が開始されるため、 バッチ式の製造工程を取る場合には取り扱 いが難しくなる。 従って三級ァミンのみの添加が最も好適に採用される。
ポリイミド樹脂に少なくとも二種類のフイラ一を添加した上記ポリイミド樹 脂組成物は、 フィルム状成形体に成形される。
各種形状へ具体的成型法の例を示す。 フィルムまたはシート形状への成型法の 例として下記のような方法が挙げられる。
上記各無機成分を分散させたポリイミド樹脂溶液を、 Tダイを使用したり、 コ ンマコー夕一やドク夕一ブレードなどを通すことにより厚み制御をしつつ、 ェン ドレスベルト上に塗布する。 樹脂溶液を熱風などによって自己支持性を有するま で加熱乾燥し、 そののちエンドレスベルトより引き剥がす。 引き剥がした半乾燥 のフィルムの幅両端をピンゃクリップによって固定し、 幅方向の長さを規定しな がら順次高温の加熱炉内を通すことによって、 フィルム状成型物を得ることがで きる。 または金属などの連続したシート状の支持体上に同様の方法で塗布し、 こ れを加熱炉内を通過せしめることによってシ一ト状に固定されたフィルムまたは シ一ト形状のポリイミド成形体を得、 そののち支持体シートより引き剥がすかま たは支持体シートをエッチングなどの手段により除去する方法もとりうる。 ベルトまたはチューブ状への成型法の例としては下記の様な方法が挙げられ る。 まず上述方法等によりフィルムまたはシート状の成形体を得ておき、 これを 所定長さと幅に切り、 ベルトまたはチューブ状につなぎ合わせてベルトまたはチ ュ一ブを得る方法が最も容易である。 つなぎ合わせには接着剤や接着テープ等を 用いることができるが、 この方法は不可避的につなぎ目で段差や切れ目が存在す るため、 用途によっては不都合が生じる場合がある。
次にベルト形状への具体的成型法の例を示す。 円筒状金型の内面または外面に 樹脂溶液を塗布し、 加熱乾燥あるいは減圧乾燥などにより溶媒を揮発させ、 これ をこのまま最終焼成温度まで加熱するか、 あるいは一旦引き剥がして、 最終的に 内径を規定するための別金型の外周にはめ込み、 最終焼成温度まで加熱するとい つた方法がとりうる。 円筒状金型への樹脂溶液の塗布にあたっては、 樹脂溶液の 垂れによる厚みばらつきを緩和するため、 金型を回転させることも有効である。 最終焼成温度は、 ポリイミドの構造や添加する力一ボンの耐熱性により適宜選択 することが必要であるが、 非熱可塑ポリイミドでポリアミド酸状態から加熱 ·焼 成する場合は概ね 300° (:〜 450°Cの間が好ましい。、非熱可塑性のポリイミド 樹脂の特性として樹脂の靭性を発現させるためには、 一定温度以上の加熱が必要 である。 ただし加熱温度が高すぎると力一ポンプラックの導電効果が消失するた め、 より好ましくは、 350 C〜420°Cの範囲を最高焼成温度とするのが好ま しい。 熱可塑ポリイミドの場合はポリイミドのガラス転位点温度に対し— 20°C 〜十 100°Cの間が好適な範囲である。
このようにして形成されたポリイミドベルトをそのまま中間転写ベルトとする こともできるが、 さらに、 中間転写ベルトとして好適な特性とするために外層に 抵抗調整した表面層を設けることもできる。
すなわち、 本発明の第二の態様である中間転写ベルトは、 ポリイミド樹脂 10 0重量部に対し、 0. 5〜20重量部のカーボンブラック及び 5〜40重量部の 板状または柱状導電性粉体を含むポリイミド樹脂組成物からなり、 かつ体積抵抗 値が 1 Χ 1 06〜1 Χ 1 012Ω · cmの範囲内であるポリイミド製ベルトの表面 に、表面抵抗が 1 X 108〜1 X 1013 ΩΖ cm2の範囲内にある、 抵抗調整した 表面層が形成されている。
この表面層の抵抗値は表面抵抗が、 1 X 109〜1 X 1 012QZcm2の範囲内 にあることがさらに好ましく、 またトナーの紙への転写を良好に行うためにマト リックス樹脂としてはフッ素樹脂を用いる事が好ましい。 さらにはマトリックス 榭脂としてフッ素樹脂を用い、 これに導電性物質を添加して形成した表面層がさ らに好ましい。 表面抵抗を該範囲に調整するための導電性物質については、 ポリ イミド層に添加した物質と同様の物質を用いることもできる。 フッ素樹脂層は、 ポリイミド樹脂と比較して抵抗値の制御が容易であり、 従来より中間抵抗域への 制御に実績があり、 カーボンブラックのみの添加でも、 上記目的の範囲に制御す ることも可能である。 また同様に他の様々な導電性物質を添加することもできる 。 さらに、 抵抗値を安定させたり、 熱伝導性等の他の特性を付与する目的で非導 電性フィラーとの併用も同様に適宜行われ得る。
以上、 本発明に係る 1実施態様を説明したが、 本発明は上述の形態に限定され るものではない。
以下、 実施例を説明する。 体積抵抗値は、 ポリイミド製ベルトから 10 cm角 のシート 4枚を切り出し、 サンプル 1〜4とし、 温度 23°C、 湿度 60%Rhの 環境下 48時間放置し、 この環境下にて、 アドバンテスト社製デジタル超高抵抗 /微小電流計 R 8340及びレジスティビティチェンバ R 12702 Aを用いて 10 V, 30 V, 50 V, 100 Vにおける体積抵抗値を測定した。 100 Vに おける表面抵抗も同様に測定した。
〔実施例 1〕
ジメチルフオルムアミド (以下 DMF) 1100 gに、 三菱化学株式会社製力 一ポンプラック 3030 Bを 6. 6 gと大塚化学株式会社製デントール TM— 2 00 (マイ力ベース、 酸化錫コート 'アンチモンド一プ) を 41. l g加え、 超 音波分散により均一に分散させた。 この分散液を約 10°Cの水浴中において窒素 気流下で攪拌しながら、 86. 2 gの 4、 4, ジアミノジフエ二ルェ一テル (以 下 DADPE) 粉体を加えて完全に溶解させた。 続いて、 攪拌を継続させながら 91. 0 gのピロメリット酸二無水物 (以下 PMDA) 粉体を少量ずつ加えた後 、 30分間攪拌を継続した。 さらにこれに、 2. 8 gの PMDAを 40 gの DM Fに溶解した P MD A溶液を少量ずつ加え、 23 °Cで測定した時の粘度が約 20 00 p o i s eになった時点で終了し、 さらに 30分間の攪拌を継続した後、 攪 拌を終了した。
上記重合後のポリアミド酸樹脂溶液 200 gに対して、 イソキノリン 6 gを加 え、 減圧下で良く攪拌した後、 この溶液を内径 82ππηφのガラス管内面に、 外 径 8 Omm0、 リップ間約 lmmの丸ダイス間からワニスを押出しながら移動さ せ、 同時にガラス管を回転させた。 ガラス管を回転させたまま、 真空オーブン内 で 25°C、 1 OTo r rで 1 2時間乾燥し、 ガラス管より半乾燥したポリアミド 酸ベルトを取り外し、 これを外径 80πΐΓηφの、 表面に剥離剤をスプレーした多 孔金属円筒型に外嵌し、 この状態で 10 O で 1 0分、 200°Cで 5分、 250 °Cで 5分、 300°Cで 5分、 380°Cで 5分加熱して、 ポリイミド化した。 その 後、 多孔金属金型の内側から空気加圧することで厚み約 85 / mのポリイミド製 中間転写ベルトを取り外した。
なおこのポリイミド製ベルト中ポリイミド固形分 100重量部に対して、 力一 ボンブラック 3030 Bは 4部、 板状の導電性粉体であるデントール TM— 20 0は 2 5部である。
このポリイミド製ベルトの体積抵坊値を測定した結果を表 1に示す (実施例 1 一 1〜実施例 1一 4) 。
[実施例 2]
ジメチルフオルムアミド (以下 DMF) 1 100 gに三菱化学製カーボンブラ ック 3030 Bを 16。 4 gと石原産業製導電性酸化チタン E T— 500 W (ル チル型結晶、 酸化チタンベース、 酸化錫コート。アンチモンド一プ) を 32. 9 gを加え、 超音波分散により均一に分散させた。 この分散液を約 10°Cの水浴中 において窒素気流下で攪拌しながら、 86. 2 gの 4、 4' ジアミノジフエ二ル エーテル (以下 DADPE) 粉体を加えて完全に溶解させた。 続いて、 攪拌を継 続させながら 9 1. 0 gのピロメリット酸ニ無水物 (以下 PMDA) 粉体を少量 ずつ加えた後、 30分間攪拌を継続した。 さらにこれに、 2. 8 gの PMDAを 40 gの DMFに溶解した PMDA溶液を少量ずつ加え、 23 °Cで測定した時の 粘度が約 2000 p o i s eになった時点で終了し、 さらに 30分間の攪拌を継 続した後、 攪拌を終了した。
このポリアミド酸溶液を使用すること以外は実施例 1と同様の方法でポリイミ ド製中間転写ベルトを作成した。
なお本ベルト中ポリイミド固形分 100重量部に対して、 カーボンブラック 3 030 Bは 10重量部、 柱状の導電性粉体である E T— 500 Wは 20重量部で ある。
このベルトについて実施例 1と同様の方法で体積抵抗値を評価した結果を表 1 に示す。
〔実施例 3〕
ジメチルフオルムアミド (以下 DMF) 1 100 gにライオン社製ケッチェン ブラック EC— 600 JDを 2. 46 gと大塚化学製デントール TM—200 ( マイ力べ一ス、 酸化錫コート ·アンチモンドープ) を 41. l gを加え、 超音波 分散により均一に分散させた。 この分散液を約 10°Cの水浴中において窒素気流 下で攪拌しながら、 86. 2 gの 4、 4 s ジアミノジフエニルエーテル (以下 D ADPE) 粉体を加えて完全に溶解させた。 続いて、 攪拌を継続させながら 91 . 0 gのピロメリット酸二無水物 (以下 PMDA) 粉体を少量ずつ加えた後、 3 0分間攪拌を継続した。 さらにこれに、 2. 8 gの PMDAを 40 gの DMFに 溶解した PMD A溶液を少量ずつ加え、 23 °Cで測定した時の粘度が約 2000 po i s eになった時点で終了し、 さらに 30分間の攪拌を継続した後、 攪拌を 終了した。
このポリアミド酸溶液を使用する事以外は実施例 1と同様の方法でポリイミド 製中間転写ベルトを作成した。
このベルトについて実施例 1と同様の方法で体積抵抗値を評価した結果を表 1 に示す。
なお本ベルト中ポリイミド固形分 100重量部に対して、 ケッチェンブラック は 1. 5部、 板状の導電性粉体であるデントール TM— 200は 25部である。
[実施例 4]
ァトフイナ社製ポリフッ化ビリニデン樹脂 KYNAR 301 F 300 gを 1 kgの DMFに溶解し、 カーポンプラック 3030 B 30 gを500 gのDM F中に超音波分散により分散させた分散液を投入し、 12時間攪拌した。 次に厚 みを 65 mとすること以外は実施例 1と同様の方法でポリイミドベルト性ベル トを作成した。 このポリイミド製ベルトについて実施例 1と同様の方法で測定電 圧 100Vでの体積抵抗値を評価した結果を表 1に示す。 このポリイミド製ベル トの表面に、 上記フッ素樹脂溶液を焼成後厚みが約 1 5 zmになるようにエアス プレーガンを用いて均一にスプレ一した。 このベルトを芯体に外嵌し、 表面が触 れないようにオーブン内に投入して 120°Cで 5分、 380°Cで 10分間加熱し た。 該ベルトが室温になるまで徐冷し、 ォ一プンより取り出して、 芯体より取り 外すことで目的の中間転写ベルトを得た。
また、 この中間転写ベル卜のフッ素樹脂コ一ト面の表面抵抗を測定したところ、 2. X 109ΩΖ口であった。
[実施例 5 ]
加える導電性粉体のデント一ル ΤΜ— 200の量を 32. 9 gとすること以外 は、 実施例 1と同様の方法で、 約 85 xm厚みのポリイミド製ベルトを得てポリ イミド製中間転写ベルトとした。 このベルト中ポリイミド固形分 100重量部に 対し、 板状の導電性粉体であるデント一ル TM— 200は 20部である。
このベルトについて実施例 1と同様の方法で測定電圧 100Vでの体積抵抗 値を評価した結果を表 1に示す。 '
〔比較例 1〕
加える導電性粉体をデント一ル TM— 200のみ 49. 3 gとする (力一ボン ブラックは添加しない) こと以外は実施例 1と同様の操作を行い、 約 85 ^m厚 みのポリイミド製ベルトを得てポリイミド製中間転写ベルトとした。 このベルト 中ポリイミド固形分 100重量部に対し、 デント一ル TM— 200は 30部であ る。
このベルトについて実施例 1と同様の方法で抵抗値を評価した結果を表 2に示 す。
[比較例 2] デントール TM— 2 0 0のかわりに導電性酸化チタン E T _ 5 0 0 Wを用いる 事以外は比較例 1と同様の操作を行い、 ベルトの製作、 抵抗値評価を行った。 結 果を表 2に示す。
[比較例 3 ]
デントール TM— 2 0 0のかわりに力一ボンブラック 3 0 3 0 Bを用いる事以 外は比較例 1と同様の操作を行い、 ベルトの製作、 抵抗値評価を行った。 結果を 表 2に示す。
【表 2】
また、 表 1、 表 2には、 実施例、 比較例それぞれについて、 得られたポリイミ ド製中間転写を市販のプリンタ一の転写ベルトとして組み込み、 1 0 0枚の印刷 テストを行ったとき、 すべて良好な画像が得られた場合を 「良」 とし、 画像の若 干の乱れが認められるものの実用上許容範囲内のものである場合を 「可」 とし、 少なくとも一部に転写不良や画像の乱れが生じ、 またはベルトの損傷があった場 合を 「不良」 として示す。
[表 1]
Figure imgf000021_0001
ほ 2] 体積抵抗値 (Q'cm) 印刷性 10V 30V 50V 100V 比較例 1_1 4.2E+13 9.8E+12 7.9E+12 3.6E+12 比較例 1一 2 4.0E+13 不良 比較例 1一 3 1.8E+12 比較例 1一 4 2JE+12 比較例 2— 1 5.5E+15 1JE+15 7.3E+14 3.7E+14 比較例 2— 2 6.5E+14 不良 比較例 2— 3 2.1E+14 比較例 2— 4 1.6E+15 比較例 3— 1 1.0E+10 6.7E+09 4.3E+09 9.3E+08 比較例 3— 2 2.2E+11 不良 比較例 3— 3 絶縁破壊
比較例 3— 4 絶縁破壊 産業上の利用可能性
本発明によれば中間的抵抗値を有しかつ部分的欠陥の少ないポリイミド製電子 写真用中間転写ベルトを得ることが可能であり。 高性能な複写機、 印刷機を作製 することが可能となる。

Claims

請 求 の 範 囲
1. ポリイミド樹脂 100重量部に対し、 0. 5〜20重量部のカーボンブラ ック及び 5〜40重量部の板状または柱状導電性粉体を含有する、 ポリイミド樹 脂組成物。
2, ポリイミド樹脂 100重量部に対し、 0. 5〜20重量部の力一ボンブラ ック及び 5〜40重量部の板状または柱状導電性粉体を含有したポリイミド樹脂 組成物からなり、 測定電圧 100 Vでの体積抵抗値が 1 X 106〜 1 X 1012 Ω · cmの範囲内である、 ポリイミドフィルム状成形体。
3。 測定電圧 100 Vでの体積抵抗値が 1 Χ 107〜1 Χ 10ωΩ · ο mの範囲 内である、 請求項 2記載のポリイミドフィルム状成形体。
4. 前記力一ポンプラックがケッチェンブラックであり、 その配合量がポリィ ミド樹脂 100重量部に対して、 0。 5〜5重量部である、 請求項 2または請求 項 3記載のポリイミドフィルム状成形体。
5. 前記板状または柱状導電性粉体が、 雲母状物質を導電化処理したものであ ることを特徴とする請求項 2乃至請求項 4のいずれかに記載のポリイミドフィル ム状成形体。
6. 形状がチューブないしベルト状である、 請求項 2乃至請求項 5のいずれか に記載のポリイミドフィルム状成形体。
7. 請求項 6記載のポリイミドフィルム状成形体を基材とする、 中間転写ベル 卜。
8. 。 導電性物質を含むフッ素樹脂層を表面に有し、 該フッ素樹脂層の表面抵坊 が 1 X I 08〜1 X 1013Ω/ cm2の範囲にある、請求項 7記載の中間転写ベル 卜。
PCT/JP2001/007753 2000-09-13 2001-09-06 Composition de resine polyimide, produit de polyimide forme dans un film, et bande de transfert intermediaire comprenant ladite composition WO2002022740A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01963487A EP1327666A4 (en) 2000-09-13 2001-09-06 POLYIMIDE RESIN COMPOSITION, POLYIMIDE PRODUCT FORMED IN FILM, AND INTERMEDIATE TRANSFER STRIP COMPRISING THE SAME
US10/380,459 US20040024107A1 (en) 2000-09-13 2001-09-06 Polyimide resin composition and, polyimide product formed into film and intermediate transfer belt comprising the same
KR10-2003-7002646A KR20030026352A (ko) 2000-09-13 2001-09-06 폴리이미드 수지 조성물 및 그것으로 이루어지는폴리이미드 필름상 성형체 및 중간 전사 벨트

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000277961A JP2002088242A (ja) 2000-09-13 2000-09-13 ポリイミド樹脂組成物及びポリイミドフィルム状成形体
JP2000-277961 2000-09-13
JP2001-057617 2001-03-02
JP2001057617A JP2002258625A (ja) 2001-03-02 2001-03-02 中間転写ベルト

Publications (1)

Publication Number Publication Date
WO2002022740A1 true WO2002022740A1 (fr) 2002-03-21

Family

ID=26599853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007753 WO2002022740A1 (fr) 2000-09-13 2001-09-06 Composition de resine polyimide, produit de polyimide forme dans un film, et bande de transfert intermediaire comprenant ladite composition

Country Status (3)

Country Link
EP (1) EP1327666A4 (ja)
KR (1) KR20030026352A (ja)
WO (1) WO2002022740A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100514005B1 (ko) * 2002-09-11 2005-09-09 제일모직주식회사 신규한 기능성 디아민 및 이를 사용하여 제조된 액정 배향막
CN102030988A (zh) * 2009-09-24 2011-04-27 可隆股份有限公司 无缝带及其制造方法
CN110699023A (zh) * 2019-10-28 2020-01-17 中原工学院 一种高温导电胶及其应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100677587B1 (ko) * 2005-05-23 2007-02-02 삼성전자주식회사 화상전사유닛 및 이를 구비한 전자사진방식 화상형성장치
CN101831075B (zh) * 2010-05-18 2011-09-28 华东理工大学 改性聚酰亚胺膜
KR101045823B1 (ko) * 2011-02-18 2011-07-04 에스케이씨코오롱피아이 주식회사 블랙 폴리이미드 필름
TW201302858A (zh) 2011-06-24 2013-01-16 Du Pont 有色聚醯亞胺膜及與其有關之方法
KR20130113778A (ko) * 2012-04-06 2013-10-16 에스케이씨코오롱피아이 주식회사 블랙 폴리이미드 필름
KR102089408B1 (ko) * 2016-04-01 2020-04-23 주식회사 엘지화학 폴리이미드 조성물
KR102167222B1 (ko) * 2016-11-29 2020-10-19 주식회사 엘지화학 경화성 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2115396A (en) * 1982-02-08 1983-09-07 Potters Industries Inc Mica conductive flakes
EP0117700A1 (en) * 1983-02-21 1984-09-05 Kuraray Co., Ltd. Rigid resin composition having electromagnetic shielding properties
JPS62246959A (ja) * 1986-04-21 1987-10-28 Toray Ind Inc 帯電防止性樹脂組成物
JPH08176319A (ja) * 1994-12-26 1996-07-09 Gunze Ltd 円筒状ポリイミドフィルム及びその製造方法
JP2001215808A (ja) * 2000-02-07 2001-08-10 Fuji Xerox Co Ltd 中間転写体、及び画像形成装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110144A (ja) * 1984-11-05 1986-05-28 Daicel Chem Ind Ltd 静電記録体
US5922440A (en) * 1998-01-08 1999-07-13 Xerox Corporation Polyimide and doped metal oxide intermediate transfer components
JP2000248086A (ja) * 1999-03-02 2000-09-12 Gunze Ltd 耐久・耐熱性シームレス管状フィルム及びその使用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2115396A (en) * 1982-02-08 1983-09-07 Potters Industries Inc Mica conductive flakes
EP0117700A1 (en) * 1983-02-21 1984-09-05 Kuraray Co., Ltd. Rigid resin composition having electromagnetic shielding properties
JPS62246959A (ja) * 1986-04-21 1987-10-28 Toray Ind Inc 帯電防止性樹脂組成物
JPH08176319A (ja) * 1994-12-26 1996-07-09 Gunze Ltd 円筒状ポリイミドフィルム及びその製造方法
JP2001215808A (ja) * 2000-02-07 2001-08-10 Fuji Xerox Co Ltd 中間転写体、及び画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1327666A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100514005B1 (ko) * 2002-09-11 2005-09-09 제일모직주식회사 신규한 기능성 디아민 및 이를 사용하여 제조된 액정 배향막
CN102030988A (zh) * 2009-09-24 2011-04-27 可隆股份有限公司 无缝带及其制造方法
CN102030988B (zh) * 2009-09-24 2014-02-26 可隆股份有限公司 无缝带及其制造方法
CN110699023A (zh) * 2019-10-28 2020-01-17 中原工学院 一种高温导电胶及其应用

Also Published As

Publication number Publication date
EP1327666A4 (en) 2005-01-12
EP1327666A1 (en) 2003-07-16
KR20030026352A (ko) 2003-03-31

Similar Documents

Publication Publication Date Title
JP2003246927A (ja) ポリイミド樹脂組成物、ポリイミドフィルム、ポリイミド管状物及び電子写真用管状物
JP2004123774A (ja) ポリイミド樹脂組成物、ポリイミドフィルム、及びポリイミド管状物
JP2004123867A (ja) ポリイミド樹脂組成物、ポリイミドフィルム、及びポリイミド管状物
EP2634220A1 (en) Process for production of electrically conductive polyimide film
US20130240777A1 (en) Highly thermal-conductive polyimide film containing graphite powder
WO2002022740A1 (fr) Composition de resine polyimide, produit de polyimide forme dans un film, et bande de transfert intermediaire comprenant ladite composition
JP4619208B2 (ja) 面方向に等方性の誘電率を持ったポリイミド系樹脂ベルト
US20040024107A1 (en) Polyimide resin composition and, polyimide product formed into film and intermediate transfer belt comprising the same
JP2004035825A (ja) 半導電性ポリイミドフィルムおよびその製造方法
JP2010085450A (ja) シームレスベルトおよびシームレスベルトの製造方法
JP2006267572A (ja) 半導電性シームレスベルト
EP2065763B1 (en) Semiconductive seamless belt
JP6102918B2 (ja) 導電性ポリイミドフィルムの製造方法
JP2003192893A (ja) ポリイミド樹脂組成物、ポリイミドフィルム、ポリイミド管状物及び電子写真用管状物
EP2761376B1 (en) Endless belt
JP2004131659A (ja) ポリイミド樹脂組成物、およびこれを用いたポリイミド成形物
KR101376438B1 (ko) 심리스 벨트 및 그 제조방법
JP2003055473A (ja) ポリイミド管状物および電子写真用管状物
JP2003113306A (ja) ポリイミド樹脂組成物、ポリイミドフィルム、ポリイミド管状物及び電子写真用管状物
JP2004138655A (ja) 定着若しくは転写定着用ポリイミド成形物
JP2002316369A (ja) 管状芳香族ポリイミド樹脂系多層フイルムとその製造方法
US8470232B2 (en) Annular belt made of polyimide and a production method thereof
JP2002258625A (ja) 中間転写ベルト
JP2001152013A (ja) 熱安定性半導電ポリアミド酸組成物及びその使用
TW201402694A (zh) 無縫帶

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020037002646

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10380459

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020037002646

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001963487

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001963487

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001963487

Country of ref document: EP