WO2002020693A1 - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
WO2002020693A1
WO2002020693A1 PCT/JP2001/007729 JP0107729W WO0220693A1 WO 2002020693 A1 WO2002020693 A1 WO 2002020693A1 JP 0107729 W JP0107729 W JP 0107729W WO 0220693 A1 WO0220693 A1 WO 0220693A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
unsubstituted
substituted
carbon atoms
layer
Prior art date
Application number
PCT/JP2001/007729
Other languages
English (en)
French (fr)
Inventor
Takashi Arakane
Kenichi Fukuoka
Chishio Hosokawa
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to JP2002525701A priority Critical patent/JP4632628B2/ja
Priority to EP01963466A priority patent/EP1347031A4/en
Priority to US10/111,667 priority patent/US6929871B2/en
Publication of WO2002020693A1 publication Critical patent/WO2002020693A1/ja
Priority to US11/178,456 priority patent/US8841003B2/en
Priority to US11/822,491 priority patent/US20070254186A1/en
Priority to US12/846,126 priority patent/US7879465B2/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention relates to an organic electroluminescent device (hereinafter sometimes referred to as an organic EL device). More specifically, the present invention relates to an organic electroluminescent device suitably used for a consumer or industrial display device (display) or a light source of a printer head.
  • organic EL device organic electroluminescent device
  • the present invention relates to an organic electroluminescent device suitably used for a consumer or industrial display device (display) or a light source of a printer head.
  • an organic electroluminescent device having an inorganic semiconductor thin film layer together with an organic light emitting layer between electrodes in order to facilitate the injection of electrons and the like has been disclosed in, for example, Japanese Patent Application Laid-Open No. 2-139893. It is disclosed in Japanese Unexamined Patent Application Publication No. Hei 2-196464 and Japanese Unexamined Patent Application Publication No. Hei 2-196475.
  • the organic electroluminescent device disclosed in this publication includes an inorganic semiconductor material such as carbon, germanium, silicon, tin, silicon carbide, boron nitride, boron phosphide, and gallium nitride on the anode. An organic light emitting layer and a cathode are further formed thereon.
  • Japanese Patent Application Laid-Open Nos. Hei 10-88120 and 2000-150-161 disclose a hole injection layer / light emitting layer / electron injection.
  • An electroluminescent device having a layer structure is disclosed. More specifically, a hole-transporting amine-based material is used as a light-emitting material, and tris (8-hydroxyquinolinato) aluminum ( Alq), bis (2-methyl-8-hydroxyquinolinate) (P-cyanophenol) gallium, and the like were used.
  • the inorganic semiconductor thin film layer is provided.
  • the mobility of electrons injected from the cathode was relatively reduced, thereby lowering the luminous efficiency.
  • the inorganic semiconductor thin film is provided by providing the inorganic semiconductor thin film layer. Recombination in the vicinity of the layer and quenching easily, or the recombination property was reduced, and the organic emission of the organic electroluminescent element was There was a problem that the light emission luminance in the light layer was reduced.
  • the inventors of the present invention diligently studied the above problem, and found that an inorganic compound layer was provided between an organic light emitting layer and a cathode layer, and a specific aromatic amine compound was used for the organic light emitting layer.
  • the first invention provides a reducing dopant-containing layer between the organic light emitting layer and the cathode layer, and the use of a specific aromatic amine compound in the organic light emitting layer (second invention).
  • a specific electron injection layer is provided between the organic light emitting layer and the cathode layer, and a specific aromatic amine compound is used in the organic light emitting layer (third invention). It has been found that even when a voltage (for example, DC 10 V) is applied, high emission luminance can be obtained, and that the half-life can be significantly extended.
  • a voltage for example, DC 10 V
  • an object of the present invention is to provide an organic electroluminescent device having a high emission luminance and a remarkably long half-life even when the driving voltage is low. Disclosure of the invention
  • An organic electroluminescent device including at least an anode layer, an organic light emitting layer, and a cathode layer, and an inorganic compound layer provided between the organic light emitting layer and the cathode layer (the structure of the first invention);
  • An organic electroluminescent device including at least an anode layer, an organic light emitting layer, and a cathode layer, and further including a reducing dopant-containing layer between the organic light emitting layer and the cathode layer.
  • Each organic light emitting layer contains an aromatic amine compound represented by the following general formula (1), an aromatic amine compound represented by the following general formula (2), or one of the aromatic amine compounds.
  • An organic electroluminescent device characterized by the above features is provided, and the above-described problems can be solved.
  • an anode layer, an organic light emitting layer, and an anode layer are included, and an energy gap is provided between the organic light emitting layer and the cathode layer.
  • an organic electroluminescent device (constitution of the third invention), which is provided with an electron injection layer containing a hydrocarbon compound having 2.7 eV or more and having a hydrocarbon compound having an anthracene nucleus or a fluoranthene nucleus
  • the organic light emitting layer contains an aromatic amine compound represented by the following general formula (3) and / or an aromatic amine compound represented by the following general formula (4).
  • an organic electroluminescent device characterized by containing, as a light emitting material, an aromatic amine compound containing three or more condensed aromatic rings.
  • the symbol A, and the substituents Ar 1 and Ar 2 are each independently a substituted or unsubstituted aromatic group having 6 to 60 carbon atoms, and An aromatic group not containing a styryl group or an alkenyl group, and at least one of the symbol A and the substituents Ar 1 and Ar 2 is a substituted or unsubstituted fused aromatic ring having three or more rings.
  • the condensed number P is an integer of 1 to 6.
  • the symbol B and the substituents Ar 3 , Ar 4 , Ar 5 and Ar 6 are each independently a substituted or unsubstituted aromatic group having 6 to 60 carbon atoms.
  • An aromatic group not containing a styryl group and an alkenyl group; and at least one of the symbol B and the substituents Ar 3 , Ar 4 , Ar 5 and Ar 6 Is a group containing three or more substituted or unsubstituted condensed aromatic rings, and the condensed numbers Q and r are integers of 1 to 6.
  • the symbol A and the substituents Ar 7 and Ar 8 are each independently a substituted or unsubstituted aromatic group having 6 to 60 carbon atoms. And at least one of the substituents Ar 7 and Ar 8 is a group containing a substituted or unsubstituted three or more condensed aromatic ring, and the condensed number p is an integer of 1 to 6. . ]
  • Each of 12 may be the same or different, and preferably has 6 to 40 carbon atoms. Also preferably, A and B each include a substituted or unsubstituted fused aromatic ring of three or more rings.
  • FIG. 1 is a cross-sectional view of the organic electroluminescent device according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the organic electroluminescent device according to the second embodiment.
  • FIG. 3 is a cross-sectional view of the organic electroluminescent device according to the third embodiment.
  • FIG. 1 is a cross-sectional view of an organic electroluminescent device 100, which has a structure in which an anode layer 10, an organic light emitting layer 12, an inorganic compound layer 14, and a cathode layer 16 are sequentially laminated on a substrate (not shown). It shows that you are doing.
  • the organic light emitting layer 12 and the inorganic compound layer 14, which are characteristic portions of the first embodiment, will be mainly described. Therefore, other components, for example, the configurations and manufacturing methods of the anode layer 10 and the cathode layer 16 will be briefly described, and those not mentioned will be generally known in the field of organic electroluminescent devices. It can adopt a composition and a manufacturing method.
  • Organic light emitting layer The aromatic amine compound represented by the above general formula (1) and general formula (2) is used for the organic light emitting layer.
  • the reason for this is that, by containing an aromatic amine compound containing three or more condensed aromatic rings as described above, when an inorganic compound layer is provided, excellent emission luminance can be obtained at a low voltage of about 10 V. It is.
  • the aromatic amine compounds represented by the general formulas (1) and (2) are characterized in that they do not contain a substituent containing a styryl group and an alkenyl group. The reason for this is that by not including such a substituent, the half life of the organic electroluminescent device can be further extended.
  • Ar 1 and Ar 2 are the same, and in general formula (2), Ar 3 and Ar 5 are the same and Ar 4 and Ar 6 are the same.
  • the aromatic amine compound may have a symmetric structure. As a result, by containing an aromatic amine compound containing a fused aromatic ring of three or more rings substituted with an arylamino group having a symmetric structure, the half life can be significantly increased.
  • Examples of the condensed aromatic ring contained in the aromatic amine compounds represented by the general formulas (1) and (2) include pyrene, perylene, anthracene, fluoranthene, chrysene, rubicene, tetracene, and pentacene.
  • Bone such as sen, tetrabenzophenanthrene, tetrabenzoanthracene, tetrabenzofluorene, benzoperylene, dibenzopyrene, dibenzochrysene, dibenzoperylene, benzotetracene, decacyclene, acenaphthofluoranthene, and dibenzofluoranthene And three or more condensed aromatic rings containing a specific site.
  • more preferred condensed aromatic rings include pyrene, perylene, anthracene, fluoranthene, chrysene, rubicene, tetracene, penducene, tetrabenzophenanthrene, tetrabenzoanthracene, tetrabenzofluorene, Examples include benzoperylene, dibenzopyrene, dibenzochrysene, dibenzoperylene, benzotetracene, decacyclene, acenaphthofluoranthene, and dibenzofluoranthene skeleton. It is also preferable that the aromatic amine compounds represented by the general formulas (1) and (2) have a substituent.
  • the aromatic amine compounds have a cyano group, a halogen group, a straight-chain, branched or cyclic group.
  • substituents include halogen groups such as fluorine atom and chlorine atom; methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl Group, isopentyl group, neopentyl group, tert-pentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, cyclohexylmethyl group, n-octyl group, tert-octyl group, 21 A linear, branched or cyclic alkyl group having 1 to 8 carbon atoms such as ethylhexyl group; methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, Isoptoxy, n-pentyloxy, isopentyloxy
  • aromatic amine compounds represented by the general formulas (1) and (2) preferred examples include the following specific examples.
  • the aromatic amine compounds represented by the following formulas (5) to (14) are abbreviated as compounds 1 to 10 in the examples. H5
  • the electron mobility of the organic light emitting material in the organic light-emitting layer it is preferable to 1 X 10- 7 cm 2 ZV ⁇ s or more. This is because the electron mobility, l X 1 0_ 7 cm 2 / V - becomes a value less than s, Ri became difficult high-speed response in the organic electroluminescent device, because the emission luminance may be lowered is there.
  • the electron mobility of the organic luminescent material 1. more preferably within a range of 1 X 1 0- 7 ⁇ 2X 1 0_ 6 cm 2 ZV ⁇ s, 1. 2 X 1 0- 7 ⁇ 1. is more preferably within a range of 0 X 10- 6 cmW ⁇ s.
  • the electron mobility is smaller than the hole mobility of the organic light emitting material in the organic light emitting layer. The reason for this is that if the reverse is true, the organic light-emitting materials that can be used for the organic light-emitting layer may be excessively limited, and the light emission luminance may be reduced.
  • the electron mobility of the organic light-emitting material be larger than 1/1000 of the hole mobility. The reason for this is that if the electron mobility becomes excessively small, it becomes difficult to recombine with holes near the center of the organic light emitting layer, and the light emission luminance may also decrease.
  • luminescent dopants or fluorescent dopants examples include benzothiazole-based, benzimidazole-based, and benzoxazole-based fluorescent whitening agents, styrylbenzene-based compounds, and 8-quinolinol derivatives as ligands. And the like.
  • a compound other than the aromatic amine compounds represented by the general formulas (1) and (2) which is a compound other than the aromatic amine compounds represented by formulas (1) and (2), is added to the organic light emitting layer. Is also preferred.
  • Examples of such a luminescent aromatic amine compound or fluorescent aromatic amine compound include 2,7-bis (diphenylamino) naphthalene and 2,7-bis [4 ′-(di-p-tolylamino) phenyl] naphne. Evening Len.
  • the method for forming the organic light emitting layer is not particularly limited, and for example, a known method such as an evaporation method, a spin coating method, a casting method, and an LB method can be applied.
  • the organic light emitting layer can also be formed by dissolving a binder such as a resin and an organic light emitting material in a solvent to form a solution, and then thinning the solution by spin coating or the like.
  • the thickness of the organic light emitting layer formed in this manner is not particularly limited and can be appropriately selected depending on the situation. For example, the thickness is preferably in the range of 5 nm to 5 / m. .
  • the thickness of the organic light emitting layer is less than 5 nm, the light emission luminance and durability may decrease.On the other hand, when the thickness of the organic light emitting layer exceeds 5 zzm, the value of the applied voltage becomes high. This is because it may be.
  • the thickness of the organic light emitting layer is more preferably set to a value in the range of 10 nm to 3 m, and further preferably to a value in the range of 20 nm to 1 m.
  • an organic electroluminescent element having excellent electron injectability and durability from a cathode can be obtained.
  • an organic electroluminescent element which has a remarkably long life, high strength, and high luminance even when driven at a low voltage. it can. It is preferable to use an insulator material or a semiconductor material as the inorganic compound forming the inorganic compound layer.
  • an insulator material it is preferable to use at least one metal compound selected from the group consisting of an alkali metal chalcogenide, an alkaline earth metal chalcogenide, an alkali metal halide and an alkaline earth metal octogenide. preferable.
  • alkali metal chalcogenide include, L i 2 0, L i 0, Na 2 S, N a 2 S e and N A_ ⁇ .
  • Al Chikarari earth metal chalcogenides Is, for example, Ca0, Ba0, Sr ⁇ , Be ⁇ , BaS, and CaSe.
  • Preferred examples of the alkali metal halide include LiF, NaF, KF, LiCl, KCl, and NaCl.
  • Preferable halides of alkaline earth metals for example, CaF 2, BaF 2, S rF 2, Mg F 2 and B e F 2 such fluoride include Ha port Gen compound other than the fluorides.
  • semiconductor materials constituting the inorganic compound layer include Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, 313 and 11 And oxides, nitrides, oxynitrides and the like containing at least one element.
  • the inorganic compound constituting the inorganic compound layer is more preferably a microcrystalline or amorphous insulating material. The reason for this is that if the inorganic compound layer is composed of these insulating materials, a more uniform thin film is formed, so that pixel defects such as dark spots can be reduced.
  • microcrystalline or amorphous insulating material examples include the above-mentioned alkali metal chalcogenide, alkaline earth metal chalcogenide, and alkali metal halo. Genides and alkaline earth metal haptic compounds.
  • a conductive compound in an amount of 1 to 20% by weight based on the total amount of the inorganic compound layer.
  • the electron affinity of the inorganic compound layer in the first embodiment is preferably set to a value in the range of 1.8 to 3.6 eV.
  • the reason for this is that if the value of the electron affinity is less than 1.8 eV, the electron injection property is reduced, which may lead to an increase in driving voltage and a decrease in luminous efficiency. When the value exceeds 3.6 eV, a complex force S having low luminous efficiency may easily be generated.
  • the electron affinity of the inorganic compound layer is more preferably set to a value in the range of 1.9 to 3. O eV, and further preferably to a value in the range of 2.0 to 2.5 eV. .
  • the difference in electron affinity between the inorganic compound layer and the organic light emitting layer is preferably set to a value of 1.2 eV or less, more preferably 0.5 eV or less.
  • the reason for this is that the smaller the difference in the electron affinity, the easier the electron injection from the electron injection layer to the organic light emitting layer, and an organic electroluminescent device that can respond at high speed.
  • the energy gap (band gap energy) of the inorganic compound layer in the first embodiment is preferably set to a value of 2.7 eV or more, and more preferably to a value of 3.O eV or more.
  • the structure of the inorganic compound layer is not particularly limited, and may be, for example, a single-layer structure, a double-layer structure, or a three-layer structure.
  • the thickness of the inorganic compound layer is not particularly limited, but is preferably, for example, in the range of 0.1 nm to 1,000 nm.
  • the reason for this is that if the thickness of the inorganic compound layer is less than 0.1 nm, the electron injection property may decrease, or the mechanical strength may decrease. If the thickness exceeds 1,000 nm, the resistance becomes high, and high-speed response of the organic electroluminescent device may become difficult, or it may take a long time to form a film.
  • the thickness of the inorganic compound layer is more preferably set to a value within the range of 0.5 to 100 nm, and even more preferably set to a value within the range of 1 to 50 nm.
  • the method of forming the inorganic compound layer is not particularly limited as long as it can be formed as a thin film layer having a uniform thickness.
  • Examples of the method include a vapor deposition method, a spin coating method, a casting method, and an LB method. A known method such as a method can be applied.
  • Electrode As the anode layer, it is preferable to use a metal, an alloy, an electrically conductive compound or a mixture thereof having a large work function (for example, 4.O eV or more). Specifically, one kind of indium tin oxide (ITO), indium copper, tin, zinc oxide, gold, platinum, palladium and the like can be used alone or in combination of two or more kinds.
  • ITO indium tin oxide
  • ITO indium copper, tin, zinc oxide, gold, platinum, palladium and the like
  • the thickness of the anode layer is not particularly limited, but is preferably in the range of 10 to 1,000 nm, and more preferably in the range of 10 to 200 nm. More preferred.
  • the anode layer is substantially transparent, and more specifically, has a light transmittance of 10% or more so that light emitted from the organic light emitting layer can be effectively extracted to the outside.
  • a metal, an alloy, a conductive compound, or a mixture thereof having a small work function for example, less than 4. O eV.
  • the thickness of the cathode layer is not particularly limited, but is preferably in the range of 10 to: ⁇ , a value in the range of 100 nm, and a value in the range of 10 to 200 nm. Is more preferred.
  • the cathode layer is also substantially transparent, and more specifically, has a light transmittance of 10% or more, so that light emitted from the organic light emitting layer can be effectively extracted to the outside. It is preferred that
  • the hole injection / transport layer between the anode layer and the organic light emitting layer.
  • the reason for this is that by providing such a hole injecting and transporting layer, the function of smoothly injecting holes can be exhibited, but the injected holes can be efficiently transported. Therefore, by providing the hole injection / transport layer, injection of holes and transfer to the organic light emitting layer are facilitated, and high-speed response of the organic electroluminescent device becomes possible.
  • the hole injection / transport layer is preferably formed of an organic material or an inorganic material.
  • organic materials include, for example, phthalocyanine compounds, diamine compounds, diamine-containing oligomers and thiophene-containing oligomers.
  • Preferable inorganic materials include, for example, amorphous silicon (a-Si), a-SiC, microcrystalline silicon (iC-Si), C-SiC, II-VI compound, III-I Group V compounds, amorphous carbon, crystalline carbon and diamond can be mentioned.
  • a sealing layer for preventing moisture and oxygen from entering the organic electroluminescent element is preferably provided so as to cover the entire organic electroluminescent element.
  • Preferred materials for the sealing layer include a copolymer obtained by copolymerizing a monomer mixture containing tetrafluoroethylene and at least one comonomer; a copolymer having a cyclic structure in the main chain. Coalescing; polyethylene, polypropylene, polymethyl methacrylate, polyimide, polyurea, polytetrafluoroethylene, polychlorinated trifluoroethylene, polydichlorodifluoroethylene or trichloroethylene and dichlorodifluoroethylene.
  • metals such as N i; Mg_ ⁇ , S I_ ⁇ , S i 0 2, GeO, N i 0, C aO, B aO, F e 2 0, Y 2 0 3, T i 0 metal oxides such as 2; MgF 2, L i F , a 1 F 3, C a F 2 metal fluorides such as; Pafuruoroaru cans, PA full O b amine, per full O Ropo Rie Liquid fluorinated carbon such as one ter; and a composition in which an adsorbent for adsorbing moisture and oxygen is dispersed in the liquid fluorinated carbon.
  • FIG. 2 is a cross-sectional view of an organic electroluminescent device 102 according to the second embodiment, which has a structure in which an anode layer 10, an organic light-emitting layer 12, a reducing dopant-containing layer 22, and a cathode layer 16 are sequentially stacked.
  • anode layer 10 an organic light-emitting layer 10
  • a reducing dopant-containing layer 22 a cathode layer 16 are sequentially stacked.
  • Such a reducing dopant-containing layer (sometimes referred to as an interface layer) has a function of enhancing electron injection properties. Therefore, by providing the reducing dopant-containing layer, injection of electrons and transfer to the organic light-emitting layer are facilitated, and high-speed response of the organic electroluminescent device becomes possible.
  • the reductive dopant-containing layer which is a characteristic portion of the second embodiment, will be mainly described.
  • the organic light-emitting layer and other components are the same as those of the first embodiment. A similar configuration can be adopted.
  • the reducing dopant is not particularly limited as long as it has a reducing property to the aromatic ring compound, and specific examples thereof include alkali metals, alkaline earth metals, rare earth metals, and alkali metals. At least one selected from the group consisting of oxides, alkali metal halides, alkaline earth metal oxides, alkaline earth metal halides, rare earth metal oxides, and rare earth metal haptic halides Preferably, it is one substance.
  • alkali metals include, for example, Li (lithium, work function: 2.93 eV), Na (sodium, work function: 2.36 eV), K (potassium, work function: 2.3 eV), Rb (rubidium, work function: 2.16 eV) and Cs (cesium, work function: 1.95 eV).
  • Li lithium, work function: 2.93 eV
  • Na sodium, work function: 2.36 eV
  • K potassium, work function: 2.3 eV
  • Rb rubidium, work function: 2.16 eV
  • Cs cesium, work function: 1.95 eV
  • Preferred alkaline earth metals include, for example, Ca (calcium, work function: 2.9 eV), Mg (magnesium, work function: 3.66 eV), Ba (barium, work function: 2.52) eV), and Sr (strontium, work function: 2.0 to 2.5 eV).
  • Ca calcium, work function: 2.9 eV
  • Mg magnesium, work function: 3.66 eV
  • Ba barium, work function: 2.52) eV
  • Sr sinrontium, work function: 2.0 to 2.5 eV.
  • the value of the work function of strontium is described in Fujitsu Zubov Semiconductor Device (N. Y. Wylo, 1969, p. 366).
  • Preferred rare earth metals include, for example, Yb (ytterbium, work function: 2.6 eV)> Eu (europium, work function: 2.5 eV), Gd (gadmium, work function: 3). l eV) and En (erbium, work function: 2.5 eV).
  • alkali metal oxides for example, L i F, L i 2 ⁇ , L I_ ⁇ , NaF, and N A_ ⁇ the like.
  • the preferable alkali earth metal oxides e.g., CaO, BaO, S and rO, BeO, Mg_ ⁇ , and B a x S r Bok x ⁇ (0 ⁇ x ⁇ 1) mixed with these and, (0 ⁇ x ⁇ l).
  • Preferred alkali metal halides include, for example, fluorides such as LiF, NaF and KF, as well as LiCl, KCl and NaCl.
  • Preferable halides of alkaline earth metals for example, fluorides such as CaF 2, BaF 2, S rF 2, M g F 2 and B e F 2, and halides other than fluorides.
  • a metal complex in which an aromatic compound is coordinated with an alkali metal can also be mentioned.
  • a metal complex include a compound represented by the following general formula (15).
  • aromatic compound contained in the metal complex represented by the general formula (15) for example, anthracene, naphthylene, diphenylanthracene, terfene , Quarterphenyl, Kinkphenyl, Sexifiphenyl, Quinolinol, Benzoquinolinol, Acridinol, Hydroxyphenyloxazole, Hydroxyphenylthiazole, Hydroxydiaryloxazole, Hydroxyphenylthiaziazole, Hydroxyphenylviridine , Hydroxyphenyl benzoimidazole, hydroxybenzotriazole, hydroxyfluporan, piperidyl, phenanthroline, phthalocyanine, porphyrin and derivatives thereof.
  • the aromatic compound When the aromatic compound is a hydroxy compound, it coordinates in the general formula (15) in such a manner that A + and H (proton) of a hydroxyl group exchange.
  • the amount of the reducing dopant to be added is 0.01% by weight or more when the entire material constituting the reducing dopant-containing layer is 100% by weight.
  • the amount of the reducing dopant added is set to a value of 0.2% by weight or more from the viewpoint of better balance between the emission luminance and the life.
  • the reducing dopant may be used alone and arranged at the interface between the cathode layer and the organic light emitting layer.
  • the mixing ratio of the reducing dopant and the aromatic ring compound is 1:20 to 20:20. It is preferable that the value be within the range of 1 (molar ratio).
  • the reason for this is that if the mixing ratio is outside these ranges, the emission brightness of the organic EL device may be reduced or the life may be shortened.
  • the mixing ratio between the aromatic ring compound and the reducing dopant is set to a value within the range of 1:10 to 10: 1 (molar ratio), and within the range of 1: 5 to 5: 1. Is more preferable.
  • the reducing dopant-containing layer is not limited to a single-layer structure, and for example, preferably has a two-layer structure or a multilayer structure having more layers.
  • the thickness of the reducing dopant-containing layer is not particularly limited. For example, when a mixture of a reducing dopant and an aromatic ring compound is used, the thickness is in the range of 0.1 to 15 nm. It is preferably a value, more preferably a value in the range of 0.1 to 8 nm.
  • the thickness of the reducing dopant-containing layer is preferably set to a value in the range of 0.05 to 3 nm, and 0.1 to 1 nm. More preferably, the value is within the range.
  • reducing dopant-containing layer uniformly or non-uniformly to form a discontinuous reducing dopant-containing layer in an island shape, or to have a uniform or non-uniform thickness. It is also preferable to form a continuous reducing dopant-containing layer.
  • the reducing dopant-containing layer for example, an aromatic ring compound, a luminescent material, and an electron injection material that form an interface region are simultaneously deposited while depositing a reducing dopant by a resistance heating deposition method. Further, it is preferable to disperse the reducing compound in these materials.
  • FIG. 3 is a cross-sectional view of an organic electroluminescent device 104 according to the third embodiment, in which an anode layer 10, an organic light-emitting layer 12, an electron injection layer 24, and a cathode layer 16 are sequentially laminated. It has a structure.
  • the electron injection layer contains a hydrocarbon compound having an energy gap of 2.7 eV or more and has an anthracene nucleus or a fluoranthene nucleus, and the organic light emitting layer has a general formula (3) ), An aromatic amine compound represented by the general formula (4), or one of the aromatic amine compounds.
  • the aromatic amine compound represented by the formula (4) is a compound which may contain a styryl group and an alkenyl group in the aromatic amine compounds represented by the formulas (1) and (2) described above.
  • the description and examples of the aromatic amine compounds represented by the general formulas (1) and (2) are described in the general formulas (3) and (4). It is also applicable to the aromatic amine compounds represented.
  • the electron injection layer and the organic light emitting layer which are characteristic portions of the third embodiment, will be mainly described.
  • Other components are the same as those of the first embodiment and the second embodiment. A similar configuration can be adopted.
  • Electron injection layer For the electron injection layer, a hydrocarbon compound having an energy gap of 2.7 eV or more and having an anthracene nucleus or a fluoranthene nucleus is used. The reason for this is that when the energy gap of the hydrocarbon compound is less than 2.7 eV, the hydrocarbon compound itself emits light, so that the luminous efficiency of the organic electroluminescent device may decrease.
  • hydrocarbon compounds having an anthracene nucleus or a fluoranthene nucleus have excellent electron mobility and enhance the light emission efficiency of the organic electroluminescent device.
  • Suitable examples of such a hydrocarbon compound having an anthracene nucleus include a compound represented by the following general formula (16).
  • 1 ⁇ to 11 () are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon number.
  • Ar 13 and Ar 14 are each independently a substituted or unsubstituted aryl group having 6 to 30 carbon atoms; 20 alkyl groups, substituted or unsubstituted alkoxy groups having 1 to 20 carbon atoms, substituted or unsubstituted
  • hydrocarbon compound having a fluoranthene nucleus a compound represented by the following general formula (17) can be preferably mentioned.
  • the thickness of the electron injection layer is not particularly limited, but is preferably in the range of 1 to 50 nm, more preferably in the range of 2 to 30 nm, More preferably, the value is in the range of 3 to 25 nm. The reason is that if the thickness of the electron injection layer is less than lnm, the electron injection On the other hand, the effect of improvement may not be exhibited. On the other hand, if the thickness of the electron injection layer exceeds 50 nm, the light emission luminance of the organic EL element may be reduced or the half life may be shortened.
  • the aromatic amine compound represented by the general formula (3) and the general formula (4) is used for the organic light emitting layer.
  • the reason for this is that by containing an aromatic amine compound containing three or more condensed aromatic rings, when an electron injection layer is provided, excellent emission luminance can be obtained at a low voltage of about 10 V. is there.
  • the type, the electron mobility, the additive, the forming method, and the film thickness of the organic light emitting layer in the third embodiment can be the same as those in the first embodiment.
  • ITZ indium tin oxide
  • a transparent electrode-coated glass substrate while mounted on a substrate holder one in the vapor deposition chamber of a vacuum deposition apparatus, the vacuum degree in the vacuum chamber, the pressure was reduced to 1 X 10_ 3 P a, at deposition conditions follows On the anode layer, a hole injection layer, an organic light emitting layer, an inorganic compound layer, and an anode layer were sequentially laminated to produce an organic electroluminescent device.
  • Hole injection layer 4,4'-bis- (N, N-di-m-tolylamino) 1-4 "-1
  • Inorganic compound layer L i F
  • the light emission luminance is the 540 c dZcm 2, it was confirmed that emission color is orange.
  • Examples 2 to 6 compounds 5 (Example 2), compound 6 (Example 3), compound 9 (Example 4), and compound 10 were used as the luminescent materials instead of compound 8 of Example 1.
  • An organic electroluminescent device was produced in the same manner as in Example 1 except that (Example 5) and Compound 1 (Example 6) were used. Then, evaluation was performed by applying a DC voltage of 5.5 V or 6 V between the cathode layer and the anode layer.
  • the emission color was three hundred and ten to seven hundred and twenty c DZM 2, half life 2, 100-3, was 700 hours.
  • Table 1 shows the obtained results.
  • Comparative Examples 1 to 3 a 20-nm-thick electron transport layer made of tris (8-hydroxyxynolinato) aluminum (Aid) was provided instead of the inorganic compound of Example 1, and a light-emitting material was used.
  • An organic electroluminescent device was produced in the same manner as in Example 1, except that Compound 1 was used in Comparative Example 1, Compound 6 was used in Comparative Example 2, and Compound 4 was used in Comparative Example 3. Then, a DC voltage of 5.5 V was applied between the cathode layer and the anode layer for evaluation.
  • Example 7 a compound 1 was used as the light emitting material instead of the compound 8 of Example 1, and instead of the inorganic compound layer, a mixture of compound 1 and metal lithium (Li) as a reducing dopant (Li) was used.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that an interface layer (reducing dopant-containing layer) having a mixing molar ratio of 1: 1) and a thickness of 2 Onm was provided. Then, a DC voltage of 5.5 V was applied between the cathode layer and the anode layer for evaluation.
  • Example 8 compound 1 was used as the light emitting material instead of compound 8 of Example 1, and instead of the inorganic compound layer, the following formula was used as a reducing dopant in the interface region.
  • Compound 11 a lithium metal complex represented by (18)
  • Example 9 instead of the reducing dopant of Example 8, mono (2,2,6,6-tetramethyl-3,5-heptanedionato) lithium complex (referred to as Li (dpm)) was used.
  • An organic electroluminescent device was fabricated in the same manner as in Example 8, except that an interface layer (reducing dopant-containing layer) having a thickness of l nm was provided. Then, evaluation was performed by applying a DC voltage of 6.5 V between the cathode layer and the anode layer.
  • Example 10 instead of the reducing dopant of Example 8, the light-emitting material was a mixture of Compound 1 and Li (dm) as the reducing dopant (mixed mole ratio of 1: 1).
  • An organic electroluminescent device was produced in the same manner as in Example 8, except that an interface layer (reducing dopant-containing layer) having a thickness of 5 nm was provided. Then, a DC voltage of 6.5 V was applied between the cathode layer and the anode layer for evaluation.
  • Example 11 instead of the inorganic compound layer of Example 1, a phenylanthracene compound represented by the following formula (19) (compound 12, having an energy gap of 3.0 eV), An organic electroluminescent device was fabricated in the same manner as in Example 1, except that a 2 Onm-thick electron injection layer composed of a mixture with a metallic lithium (Li) as a dopant (mixing molar ratio 1: 1) was provided. did. Then, evaluation was performed by applying a DC voltage of 6.5 V between the cathode layer and the anode layer.
  • a 2 Onm-thick electron injection layer composed of a mixture with a metallic lithium (Li) as a dopant (mixing molar ratio 1: 1) was provided. did. Then, evaluation was performed by applying a DC voltage of 6.5 V between the cathode layer and the anode layer.
  • Example 12 Compound 1 was used as the light-emitting material instead of Compound 8 of Example 1, and instead of the inorganic compound layer, a fluoranthene-based compound represented by the following formula (20) (referred to as Compound 13; Except for providing a 20-nm-thick electron injection layer consisting of a mixture of energy gap 2.8 eV) and lithium metal (Li) as a reducing dopant (mixing molar ratio 1: 1). An organic electroluminescent device was produced in the same manner as in 1. Then, evaluation was performed by applying a DC voltage of 6.5 V between the cathode layer and the anode layer.
  • a fluoranthene-based compound represented by the following formula (20) referred to as Compound 13; Except for providing a 20-nm-thick electron injection layer consisting of a mixture of energy gap 2.8 eV) and lithium metal (Li) as a reducing dopant (mixing molar ratio 1: 1).
  • An organic electroluminescent device was produced
  • the aromatic material containing three or more fused aromatic rings is used as the light emitting material.
  • an amine compound By using an amine compound, electrons and holes can be effectively recombined in the organic light emitting layer.
  • the driving voltage is low, high light emission luminance, for example, 500 cd Zm 2
  • the driving voltage can be similarly reduced even if the driving voltage is low.
  • the third invention by using a specific hydrocarbon compound for the electron injection layer and using an aromatic amine compound containing three or more condensed aromatic rings for the organic light emitting layer, Even if the driving voltage is low, high emission luminance can be obtained, and an organic electroluminescent device having an extremely long half-life can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書 有機電界発光素子 技術分野
この発明は、 有機電界発光素子 (以下、 有機 E L素子と称する場合がある。 ) に関する。 さらに詳しくは、 民生用および工業用の表示機器 (ディスプレイ) あ るいはプリンターへッドの光源等に好適に用いられる有機電界発光素子に関する。 背景技術
従来、 電子等の注入を容易にするため、 電極間に、 有機発光層とともに、 無機 半導体薄膜層を備えた有機電界発光素子が、 例えば、 特開平 2— 1 3 9 8 9 3号 公報、 特開平 2— 1 9 6 4 7 5号公報、 特開平 2 _ 1 9 6 4 7 5号公報に開示さ れている。 この公報に開示された有機電界発光素子は、 具体的には、 陽極上に、 力一ボン、 ゲルマニウム、 シリコン、 スズ、 シリコンカーバイド、 チッ化硼素、 リン化硼素、 チッ化ガリゥム等の無機半導体材料から構成された無機半導体薄膜 層を備え、 さらにその上に有機発光層および陰極を形成してある。
また、 発光輝度を高めるために、 特開平 1 0— 8 8 1 2 0号公報や、 特開 2 0 0 0 - 1 5 0 1 6 1号公報において、 正孔注入層/発光層/電子注入層の構造を 有する電界発光素子が開示されており、 より具体的には、 発光材料として正孔輸 送性のアミン系材料を使用するとともに、 電子注入層にトリス (8—ヒドロキシ キノリナート) アルミニウム (A l q ) や、 ビス ( 2—メチルー 8—ヒドロキシ キノリナート) (P—シァノフエノラ一ト) ガリウム等が用いられていた。
しかしながら、 特開平 2— 1 3 9 8 9 3号公報ゃ特開平 2— 1 9 6 4 7 5号公 報等に開示された有機電界発光素子においては、 無機半導体薄膜層を設けたこと により、 陰極から注入された電子の移動度が相対的に低下し、 そのため発光効率 が低下するという問題が見られた。 すなわち、 本来、 有機発光層の中央付近で電 子と正孔とが再結合することにより効率的に発光することが望まれるのに対して、 無機半導体薄膜層を設けたことにより、 無機半導体薄膜層付近で再結合して容易 に消光したり、 あるいは再結合性が低下したために、 有機電界発光素子の有機発 光層における発光輝度が低下するという問題が見られた。
また、 特開平 1 0— 8 8 1 2 0号公報や、 特開 2 0 0 0— 1 5 0 1 6 1号公報 に開示された有機電界発光素子においては、 電子注入層に使用した A 1 Q等の電 子注入性材料が容易に劣化して、 半減寿命が短いという問題が見られた。
そこで、 本発明の発明者らは上記問題を鋭意検討したところ、 有機発光層と、 陰極層との間に無機化合物層を設けるとともに、 有機発光層に特定の芳香族ァミ ン化合物を使用することにより (第 1の発明) 、 また、 有機発光層と、 陰極層と の間に還元性ドーパント含有層を設けるとともに、 有機発光層に特定の芳香族ァ ミン化合物を使用することにより (第 2の発明) 、 さらにまた、 有機発光層と、 陰極層との間に特定の電子注入層を設けるとともに、 有機発光層に特定の芳香族 ァミン化合物を使用することにより (第 3の発明) 、 低電圧 (例えば、 直流 1 0 V) の印加であっても高い発光輝度が得られ、 しかも著しく半減寿命を長くでき ることを見出した。
すなわち、 本発明は、 駆動電圧が低くとも、 発光輝度が高く、 しかも半減寿命 が著しく長い有機電界発光素子を提供することを目的とする。 発明の開示
本発明によれば、
少なくとも陽極層、 有機発光層、 および陰極層を含むとともに、 当該有機発光 層と、 陰極層との間に無機化合物層が設けてある有機電界発光素子 (第 1の発明 の構成) 、 および、
少なくとも陽極層、 有機発光層、 および陰極層を含むとともに、 当該有機発光 層と、 陰極層との間に還元性ドーパント含有層が設けてある有機電界発光素子. (第 2の発明の構成) において、
それぞれの有機発光層に、 下記一般式 (1 ) で表される芳香族ァミン化合物お よび下記一般式 (2 ) で表される芳香族ァミン化合物、 あるいはいずれか一方の 芳香族ァミン化合物を含有することを特徴とする有機電界発光素子が提供され、 上述した課題を解決することができる。
また、 本発明の別の態様によれば、 少なくとも陽極層、 有機発光層、 および陰 極層を含むとともに、 当該有機発光層と、 陰極層との間にエネルギーギャップが 2 . 7 e V以上の炭化水素化合物であって、 アントラセン核またはフルオランテ ン核を有する炭化水素化合物を含有する電子注入層が設けてある有機電界発光素 子 (第 3の発明の構成) において、 有機発光層に下記一般式 (3 ) で表される芳 香族ァミン化合物および下記一般式 (4 ) で表される芳香族ァミン化合物、 ある いはいずれか一方の芳香族ァミン化合物を含有することを特徴とする有機電界発 光素子が提供され、 上述した課題を解決することができる。
すなわち、 第 1〜第 3の発明の構成において、 発光材料として、 三環以上の縮 合芳香環を含む芳香族ァミン化合物を含有することを特徴とする有機電界発光素 子が提供される。
Figure imgf000005_0001
[一般式 (1 ) 中、 記号 A、 ならびに置換基 A r 1および A r 2は、 それぞれ独 立に、 置換もしくは非置換の炭素数が 6〜6 0の芳香族基であって、 かつ、 スチ リル基およびアルケニル基を含まない芳香族基であり、 また、 記号 A、 ならびに 置換基 A r 1および A r 2のうち少なくとも一つは、 置換もしくは非置換の三環 以上の縮合芳香環を含む基であり、 縮合数 Pは、 1〜6の整数である。 ]
Figure imgf000005_0002
[一般式 (2 ) 中、 記号 B、 ならびに置換基 A r 3、 A r 4、 A r 5および A r 6 は、 それぞれ独立に、 置換もしくは非置換の炭素数が 6〜6 0の芳香族基であつ て、 つ、 スチリル基およびアルケニル基を含まない芳香族基であり、 また、 記 号 B、 ならびに置換基 A r 3、 A r 4、 A r 5および A r 6のうち少なくとも一つ は、 置換もしくは非置換の三環以上の縮合芳香環を含む基であり、 縮合数 Qおよ び rは、 1〜6の整数である。 ]
Figure imgf000006_0001
[一般式 (3) 中、 記号 A、 ならびに置換基 A r 7および A r 8は、 それぞれ独 立に、 置換もしくは非置換の炭素数が 6〜 60の芳香族基であり、 また、 記号 A、 ならびに置換基 A r 7および A r 8のうち少なくとも一つは、 置換もしくは非置 換の三環以上の縮合芳香環を含む基であり、 縮合数 pは、 1〜6の整数であ る。 ]
Figure imgf000006_0002
[一般式 (4) 中、 記号 B、 ならびに置換基 Ar9、 Ar10、 Ar11および Ar
12は、 それぞれ独立に、 置換もしくは非置換の炭素数が 6〜60の芳香族基で あり、 また、 記号 B、 ならびに置換基 Ar 9、 Ar 10、 Ar 11および Ar 12の うち少なくとも一つは、 置換もしくは非置換の三環以上の縮合芳香環を含む基で あり、 縮合数 qおよび rは、 1〜6の整数である。 ]
尚、 前記一般式 (1) 〜 (4) で表される芳香族ァミン化合物において、 Ar ェ〜八!" 12はそれぞれ同一でも異なっても良く、 好ましくは、 炭素数が 6〜40 である。 また、 好ましくは、 A及び Bは、 置換もしくは非置換の三環以上の縮合 芳香環を含む。 図面の簡単な説明
図 1は、 第 1の実施形態における有機電界発光素子の断面図である。
図 2は、 第 2の実施形態における有機電界発光素子の断面図である。
図 3は、 第 3の実施形態における有機電界発光素子の断面図である。 発明を実施するための最良の形態
以下、 図面を参照して、 本発明の実施の形態について具体的に説明する。 なお、 参照する図面は、 この発明が理解できる程度に各構成成分の大きさ、 形状および 配置関係を概略的に示してあるに過ぎない。 したがって、 この発明は図示例にの み限定されるものではない。 また、 図面では、 断面を表すハッチングを省略する 場合がある。
[第 1の実施形態]
まず、 図 1を参照して、 本発明の有機電界発光素子における第 1の実施形態に ついて説明する。 図 1は、 有機電界発光素子 100の断面図であり、 陽極層 10、 有機発光層 12、 無機化合物層 14および陰極層 16を、 基板上 (図示せず。 ) に順次に積層した構造を有していることを表している。
以下、 第 1の実施形態における特徴的な部分である有機発光層 12および無機 化合物層 14について中心に説明する。 したがって、 その他の構成部分、 例えば、 陽極層 10や陰極層 16の構成や製法については簡単に説明するものとし、 言及 していない部分については、 有機電界発光素子の分野において一般的に公知な構 成や製法を採ることができる。
(1) 有機発光層 有機発光層に、 上述した一般式 (1) および一般式 (2) で表される芳香族ァ ミン化合物を使用する。 この理由は、 このように三環以上の縮合芳香環を含む芳 香族ァミン化合物を含有することにより、 無機化合物層を設けた場合、 10V程 度の低電圧において優れた発光輝度が得られるためである。
また、 上記一般式 (1) および一般式 (2) で表される芳香族ァミン化合物は、 スチリル基およびアルケニル基を含む置換基を含まないことを特徴としている。 この理由は、 このような置換基を含まないことにより、 より有機電界発光素子 の半減寿命を長くすることができるためである。
さらに一般式 (1) においては、 Ar 1と Ar 2とを同一とし、 また一般式 (2) においては、 Ar 3と Ar5とを同一かつ Ar4と Ar6とを同一とするこ とで上記芳香族ァミン化合物を対称構造とすることができる。 この結果として、 対称構造のァリールァミノ基が置換された三環以上の縮合芳 香環を含む芳香族ァミン化合物を含有することにより、 半減寿命を著しく長くす ることができる。
また、 上述した一般式 (1 ) および一般式 (2 ) で表される芳香族ァミン化合 物に含まれる縮合芳香環としては、 ピレン、 ペリレン、 アントラセン、 フルオラ ンテン、 クリセン、 ルビセン、 テトラセン、 ペン夕セン、 テトラべンゾフエナン トレン、 テトラべンゾアントラセン、 テトラべンゾフルオレン、 ベンゾペリレン、 ジベンゾピレン、 ジベンゾクリセン、 ジベンゾペリレン、 ベンゾテトラセン、 デ カシクレン、 ァセナフトフルオランテン、 およびジベンゾフルオランテン等の骨 格部位を含む三環以上の縮合芳香環が挙げられる。
また、 これらのうち、 より好ましい縮合芳香環として、 ピレン、 ペリレン、 ァ ントラセン、 フルオランテン、 クリセン、 ルビセン、 テトラセン、 ペン夕セン、 テトラべンゾフエナントレン、 テトラべンゾアントラセン、 テトラべンゾフルォ レン、 ベンゾペリレン、 ジベンゾピレン、 ジベンゾクリセン、 ジベンゾペリレン、 ベンゾテトラセン、 デカシクレン、 ァセナフトフルオランテン、 およびジべンゾ フルオランテン骨格等が挙げられる。 また、 上述した一般式 (1 ) および一般式 (2 ) で表される芳香族ァミン化合 物において、 置換基を有することも好ましく、 具体的に、 シァノ基、 ハロゲン基、 直鎖、 分岐または環状のアルキル基、 直鎖、 分岐または環状のアルコキシ基、 置 換または非置換のァリ一ル基、 置換または非置換のァリールォキシ基、 C O O R で表わされる基 (Rは水素原子、 アルキル基、 ァリール基、 またはァラルキル基 である。 ) 、 置換または非置換のアル一ルチオ基等が挙げられる。
これらのうち、 好ましい置換基として、 フッ素原子、 塩素原子等のハロゲン 基;メチル基、 ェチル基、 n—プロピル基、 イソプロピル基、 n—ブチル基、 ィ ソブチル基、 t e r t一ブチル基、 n—ペンチル基、 イソペンチル基、 ネオペン チル基、 t e r t—ペンチル基、 n—へキシル基、 シクロへキシル基、 n—ヘプ チル基、 シクロへキシルメチル基、 n—才クチル基、 t e r t—才クチル基、 2 一ェチルへキシル基等の炭素数 1〜 8の直鎖、 分岐または環状のアルキル基;メ トキシ基、 エトキシ基、 n—プロポキシ基、 イソプロポキシ基、 n—ブトキシ基、 イソプトキシ基、 n—ペンチルォキシ基、 イソペンチルォキシ基、 ネオペンチル ォキシ基、 n—へキシルォキシ基、 シクロへキシルォキシ基、 n—へプチルォキ シ基、 シクロへキシルメチルォキシ基、 n—才クチルォキシ基、 2—ェチルへキ シルォキシ基等の炭素数 1〜8の直鎖、 分岐または環状のアルコキシ基;フエ二 ル基、 2—メチルフエニル基、 3—メチルフエニル基、 4—メチルフエニル基、 4—ェチルフエニル基、 4— n—プロピルフエニル基、 4— t e r t—ブチルフ ェニル基、 2—メトキシフエ二ル基、 4ーメトキシフエ二ル基、 3—エトキシフ ェニル基、 3—フルオロフェニル基、 4一クロ口フエ二ル基、 1—ナフチル基、 2—ナフチル基等の炭素数 6〜1 0の置換または非置換のァリ一ル基; C O O R で表される基 (Rは水素原子;メチル基、 ェチル基、 n _プロピル基、 イソプロ ピル基、. n—ブチル基、 イソブチル基、 t e r t—ブチル基、 n—ペンチル基、 イソペンチル基、 ネオペンチル基、 t e r t—ペンチル基、 n—へキシル基、 シ クロへキシル基、 n—ヘプチル基、 シクロへキシルメチル基、 n—才クチル基、 t e r tーォクチル基、 2 _ェチルへキシル基等の炭素数 1〜8の直鎖、 分岐ま たは環状のアルキル基;フエニル基、 2—メチルフエニル基、 3—メチルフエ二 ル基、 4一メチルフエニル基、 4一ェチルフエニル基、 4— n—プロピルフエ二 ル基、 4— t e r t—ブチルフエニル基、 2—メトキシフエ二ル基、 4—メトキ シフエ二ル基、 3—エトキシフエニル基、 3—フルオロフェニル基、 4—クロ口 フエニル基、 1—ナフチル基、 2—ナフチル基等の炭素数 6〜1 0の置換または 非置換のァリ一ル基;ベンジル基、 フエネチル基、 2—メチルベンジル基、 3— メチルベンジル基、 4一メチルベンジル基、 3—フルォ口べンジル基、 2—クロ 口べンジル基、 4一クロ口べンジル基、 4—メトキシベンジル基等の炭素数 7〜 1 0の置換または非置換のァラルキル基である。 ) が挙げられる。
このような一般式 (1 ) および一般式 (2 ) で表される芳香族ァミン化合物の うち、 好ましい芳香族ァミン化合物として、 以下の具体例を挙げることができる。 なお、 下記式 (5 ) 〜式 (1 4 ) で表される芳香族ァミン化合物のそれぞれに ついては、 実施例において化合物 1〜 1 0と略記する。 フ 5
,H
二 6
] 1
Figure imgf000010_0001
9, 10—ビス [4'一 (ジー p—トリルァミノ) フエニル] アントラセン
Figure imgf000010_0002
2—テトラキス [4' - (ジフエニルァミノ)
Figure imgf000011_0001
1一ビス (ジフエ二
Figure imgf000011_0002
5, 6—ジフエ二ルー 1 12—ビス [4'— (ジフエ二ルァ. フエニル] ナフ夕セン
Figure imgf000011_0003
3, 9_ビス (ジー Ρ ペリレン
Figure imgf000012_0001
9, 10—ビス (ジー p—トリルァミノ) アントラセン
Figure imgf000012_0002
(11)
3, 4, 9, 10—テトラキス [4: 一 (ジ— p—トリルアミ フエニル]ペリレン
Figure imgf000013_0001
3, 11—ビス (ジフエニルァミノ) -7, 14—ジフエ二ルー ァセナフト (1, 2 -k) フルオランテン
Figure imgf000013_0002
ビス (ジフエニルァミノ) 一7, 14—ジフエエル- (1, 2 -k) フルォ:
Figure imgf000014_0001
3, 11 _ビス (ジ一 p—トリルァミノ) 一 7, 14—ジフエ二ル- ァセナフト (1, 2 -k) フルオランテン
有機発光層における有機発光材料の電子移動度を、 1 X 10— 7 cm2ZV · s 以上の値とすることが好ましい。 この理由は、 電子移動度が、 l X 1 0_7cm2 /V - s未満の値となると、 有機電界発光素子における高速応答が困難となった り、 発光輝度が低下する場合があるためである。
したがって、 有機発光材料の電子移動度を、 1. 1 X 1 0— 7〜2X 1 0_6 c m2ZV · sの範囲内の値とするのがより好ましく、 1. 2 X 1 0— 7〜1. 0 X 10-6cmW · sの範囲内の値とするのがさらに好ましい。
また、 有機発光層における有機発光材料の正孔移動度よりも、 電子移動度を小 さくすることが好ましい。 この理由は、 この逆となると、 有機発光層に使用可能 な有機発光材料が過度に制限される場合があり、 また、 発光輝度が低下する場合 があるためである。
さらに、 有機発光材料の電子移動度を、 正孔移動度の 1/1, 000よりも大 きくすることが好ましい。 この理由は、 電子移動度が過度に小さくなると、 有機 発光層の中央付近で正孔と再結合することが困難となり、 やはり発光輝度が低下 する場合があるためである。
したがって、 有機発光層における有機発光材料の正孔移動度 (^h) と電子移 動度 ( e) とが、 hZ2> e> h/500の関係を満足するのがより好ま しく、 / h/3> e> h/100の関係を満足するのがさらに好ましい。
④添加剤
また、 有機発光層に、 発光性ドーパントまたは蛍光性ド一パントを添加するこ とも好ましい。
このような発光性ド一パントまたは蛍光性ドーパントとしては、 ベンゾチアゾ —ル系、 ベンゾイミダゾール系、 ベンゾォキサゾール系等の蛍光増白剤や、 スチ リルベンゼン系化合物、 8—キノリノール誘導体を配位子とする金属錯体等が挙 げられる。
また、 有機発光層に、 一般式 (1) および (2) で表わされる芳香族ァミン化 合物以外の化合物であって、 発光性芳香族ァミン化合物または蛍光性芳香族アミ ン化合物を添加することも好ましい。
このような発光性芳香族ァミン化合物または蛍光性芳香族ァミン化合物として は、 例えば、 2, 7—ビス (ジフエニルァミノ) ナフタレン、 2, 7—ビス [4'— (ジ一 p—トリルァミノ) フエニル] ナフ夕レン等が挙げられる。
⑤形成方法
有機発光層を形成する方法は特に制限されるものではないが、 例えば、 蒸着法、 スピンコート法、 キャスト法、 LB法等の公知の方法を適用することができる。 また、 樹脂等の結着剤と有機発光材料とを溶剤に溶かして溶液とした後、 これ をスピンコート法等により薄膜化することによつても、 有機発光層を形成するこ とができる。 このようにして形成された有機発光層の膜厚については特に制限はなく、 状況 に応じて適宜選択することができるが、 例えば、 5 nm〜5 /mの範囲内の値 であることが好ましい。 この理由は、 有機発光層の膜厚が 5 nm未満となると、 発光輝度や耐久性が低下する場合があり、 一方、 有機発光層の膜厚が 5 zzmを 超えると、 印加電圧の値が高くなる場合があるためである。
したがって、 有機発光層の膜厚を 10 nm〜 3 mの範囲内の値とすること がより好ましく、 20 nm〜l mの範囲内の値とすることがさらに好ましい。
(2) 無機化合物層 第 1の実施形態において、 無機化合物層を設けることにより、 陰極からの電子 の注入性や耐久性に優れた有機電界発光素子とすることができる。 また、 上述し た特定の有機発光層と組み合わせることにより、 著しく長寿命であり、 し力、も低 電圧駆動であっても高い発光輝度を得ることができる有機電界発光素子を提供す ることができる。 無機化合物層を構成する無機化合物として、 絶縁体材料または半導体材料を使 用することが好ましい。
このような絶縁体材料としては、 アルカリ金属カルコゲナイド、 アルカリ土類 金属カルコゲナイド、 アルカリ金属のハロゲン化物およびアルカリ土類金属の八 ロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するの が好ましい。
より具体的に言えば、 好ましいアルカリ金属カルコゲナイドとして、 例えば、 L i 20、 L i 0、 Na2S、 N a 2 S eおよび N a〇が挙げられ、 好ましいアル 力リ土類金属カルコゲナイドとしては、 例えば、 C a 0、 B a 0、 S r〇、 Be 〇、 BaS、 および C a S eが挙げられる。 また、 好ましいアルカリ金属のハロ ゲン化物としては、 例えば、 L i F、 NaF、 KF、 L i C l、 KC 1および N aC l等が挙げられる。 また、 好ましいアルカリ土類金属のハロゲン化物として は、 例えば、 CaF2、 BaF2、 S rF2、 Mg F 2および B e F 2といったフッ 化物や、 フッ化物以外のハ口ゲン化物が挙げられる。
また、 無機化合物層を構成する半導体材料としては、 Ba、 Ca、 S r、 Yb、 A l、 Ga、 I n、 L i、 Na、 Cd、 Mg、 S i、 Ta、 313ぉょび∑ 11の少 なくとも一つの元素を含む酸化物、 窒化物または酸化窒化物等の一種単独または 二種以上の組み合わせが挙げられる。
また、 無機化合物層を構成する無機化合物としては、 微結晶または非晶質の絶 縁性材料であることがより好ましい。 この理由は、 無機ィヒ合物層がこれらの絶縁 性材料で構成されていれば、 より均質な薄膜が形成されるために、 ダークスポッ ト等の画素欠陥を減少させることができるためである。
なお、 このような微結晶または非晶質の絶縁性材料としては、 上述したアル力 リ金属カルコゲナイド、 アルカリ土類金属カルコゲナイド、 アルカリ金属のハロ ゲン化物およびアルカリ土類金属のハ口ゲン化物等が挙げられる。
さらに、 無機化合物層に導電性を与え、 有機電界発光素子を低電圧化するため に導電性化合物を無機化合物層の全体量に対して 1〜 20重量%添加することも 好ましい。
②電子親和力
また、 第 1実施形態における無機化合物層の電子親和力を 1. 8〜3. 6 e V の範囲内の値とすることが好ましい。 この理由は、 かかる電子親和力の値が 1. 8 eV未満となると、 電子注入性が低下し、 駆動電圧の上昇や発光効率の低下を まねく場合があるためであり、 一方で、 かかる電子親和力の値が 3. 6 eVを超 えると、 発光効率の低い錯体力 S発生しやすくなる場合があるためである。
したがって、 無機化合物層の電子親和力を、 1. 9〜3. O eVの範囲内の値 とすることがより好ましく、 2. 0〜2. 5 eVの範囲内の値とすることがさら に好ましい。
また、 無機^合物層と有機発光層との電子親和力の差を 1. 2 eV以下の値と することが好ましく、 0. 5 eV以下の衞とすることがより好ましい。 この理由 は、 かかる電子親和力の差が小さいほど、 電子注入層から有機発光層への電子注 入が容易となり、 高速応答可能な有機電界発光素子とすることができるためであ る。
③エネルギ一ギャップ
また、 第 1実施形態における無機化合物層のエネルギーギャップ(バンドギヤ ップエネルギー) を 2. 7 eV以上の値とすることが好ましく、 3. O eV以上 の値とすることがより好ましい。
この理由は、 かかるエネルギーギャップの値を 2. 7 eV以上とすることによ り、 正孔が有機発光層を超えて無機化合物層に移動することが少なくなるためで ある。 したがって、 正孔と電子との再結合の効率が向上し、 有機電界発光素子の 発光輝度が高まるとともに、 電子注入層等が発光することを回避することができ る。 また、 無機化合物層の構造についても特に制限されるものではなく、 例えば、 一層構造であっても良く、 あるいは、 二 ·層構造または三層構造であっても良い。 また、 無機化合物層の厚さについても特に制限されるものではないが、 例えば 0. l nm〜l, 000 nmの範囲内の値とするのが好ましい。 この理由は、 か かる無機化合物層の厚さが 0. l nm未満となると、 電子注入性が低下したり、 あるいは機械的強度が低下する場合があるためであり、 一方、 無機化合物層の厚 さが 1 , 000 nmを超えると高抵抗となり、 有機電界発光素子の高速応答が困 難となったり、 あるいは製膜に長時間を要する場合があるためである。
したがって、 無機化合物層の厚さを 0. 5〜100 nmの範囲内の値とするの がより好ましく、 1〜50 nmの範囲内の値とするのがさらに好ましい。
⑤形成方法
無機化合物層の形成方法についても、 均一な厚さを有する薄膜層として形成す ることができる方法であれば特に制限されるものではないが、 例えば、 蒸着法、 スピンコート法、 キャスト法、 LB法等の公知の方法を適用することができる。
(3) 電極 陽極層としては、 仕事関数の大きい (例えば、 4. O eV以上) 金属、 合金、 電気電導性化合物またはこれらの混合物を使用することが好ましい。 具体的には、 インジウムチンオキサイド (I TO) 、 インジウム銅、 スズ、 酸化亜鉛、 金、 白 金、 パラジウム等の一種を単独で、 または二種以上を組み合わせて使用すること ができる。
また、 陽極層の厚さについても特に制限されるものではないが、 10〜1, 0 00 nmの範囲内の値とするのが好ましく、 10~200 nmの範囲内の値とす るのがより好ましい。
さらに、 陽極層に関しては、 有機発光層から発射された光を外部に有効に取り 出すことができるように、 実質的に透明、 より具体的には、 光透過率が 10%以 上の値であることが好ましい。 一方、 陰極層には、 仕事関数の小さい (例えば、 4. O eV未満) 金属、 合金、 電気電導性ィ匕合物またはこれらの混合物を使用することが好ましい。 具体的には、 マグネシウム、 アルミニウム、 インジウム、 リチウム、 ナトリウム、 セシウム、 銀等の一種を単独で、 または二種以上を組み合わせて使用することができる。 また陰極層の厚さも特に制限されるものではないが、 1 0〜: ί , 0 0 0 n mの 範囲内の値とするのが好ましく、 1 0〜2 0 0 nmの範囲内の値とするのがより 好ましい。
なお、 陰極層に関しても、 有機発光層から発射された光を外部に有効に取り出 すことができるように、 実質的に透明、 より具体的には、 光透過率が 1 0 %以上 の値であることが好ましい。
( 4 ) 正孔注入輸送層
第 1の実施形態において、 図示はしないが、 陽極層と有機発光層との間に、 正 孔注入輸送層を設けることが好ましい。 この理由は、 かかる正孔注入輸送層を設 けることにより、 正孔をスムーズに注入する機能を発揮することができる一方、 注入された正孔を効率的に輸送することができるためである。 したがって、 正孔 注入輸送層を設けることにより、 正孔の注入および有機発光層への移動が容易と なり、 有機電界発光素子の高速応答が可能となる。
また、 正孔注入輸送層は、 有機材料または無機材料で形成してあることが好ま しい。 好ましい有機材料としては、 例えば、 フタロシアニン化合物、 ジァミン化 合物、 含ジァミンオリゴマーおよび含チォフェンオリゴマ一をあげることができ る。 また、 好ましい無機材料としては、 例えば、 アモルファスシリコン (ひ_ S i ) 、 a ~ S i C , マイクロクリスタルシリコン ( i C— S i ) 、 C - S i C、 II一 VI族化合物、 III一 V族化合物、 非晶質炭素、 結晶質炭素およびダイ ャモンドをあげることができる。
( 5 ) 封止層
また、 図 1には示さないが、 有機電界発光素子への水分や酸素の侵入を防止す るための封止層を、 有機電界発光素子全体を覆うように設けることも好ましい。 好ましい封止層の材料としては、 テトラフルォロエチレンと、 少なくとも一種 のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体;共重合 主鎖中に環状構造を有する合フッ素共重合体;ポリエチレン、 ポリプロピレン、 ポリメチルメタクリレート、 ポリイミド、 ポリユリア、 ポリテトラフルォロェチ レン、 ポリクロ口トリフルォロエチレン、 ポリジクロロジフルォロェチレンまた はクロ口トリフルォロエチレンとジクロロジフルォロェチレンとの共重合体;吸 収率 1 %以上の吸水性物質;吸水率 0 . 1 %以下の防湿性物質; I n、 S n、 P b、 Au、 Cu、 Ag、 A l、 T i、 N i等の金属; Mg〇、 S i〇、 S i 02、 GeO、 N i 0、 C aO、 B aO、 F e 20、 Y203、 T i 02等の金属酸化 物; MgF2、 L i F、 A 1 F3、 C a F 2等の金属フッ化物;パーフルォロアル カン、 パーフルォロアミン、 パーフルォロポリエ一テル等の液状フッ素化炭素; および当該液状フッ素化炭素に水分や酸素を吸着する吸着剤を分散させた組成物 等が挙げられる。
[第 2の実施形態]
次に、 図 2を参照して、 この発明の第 2の実施形態について説明する。 図 2は、 第 2の実施形態における有機電界発光素子 102の断面図であり、 陽極層 10、 有機発光層 12、 還元性ド一パント含有層 22、 および陰極層 16を順次に積層 した構造を有している。
このような還元性ド一パント含有層 (界面層と称する場合もある。 ) は、 電子 注入性を高める機能を有している。 したがって、 還元性ドーパント含有層を設け ることにより、 電子の注入および有機発光層への移動が容易となり、 有機電界発 光素子の高速応答が可能となる。
以下、 第 2の実施形態における特徴的な部分である還元性ド一パント含有層に ついて中心的に説明するものであり、 有機発光層およびその他の構成部分につい ては、 第 1の実施形態と同様の構成とすることができる。
(1) 種類
還元性ド一パントは、 芳香族環化合物に対し還元性を有するものであれば特に 制限されるものではないが、 具体的に、 アルカリ金属、 アルカリ土類金属、 希土 類金属、 アルカリ金属の酸化物、 アルカリ金属のハロゲン化物、 アルカリ土類金 属の酸化物、 アルカリ土類金属のハロゲン化物、 希土類金属の酸化物または希土 類金属のハ口ゲン化物からなる群から選択される少なくとも一つの物質であるこ とが好ましい。
これらのうち、 好ましいアルカリ金属としては、 例えば、 L i (リチウム、 仕 事関数: 2. 93 e V) 、 N a (ナトリゥム、 仕事関数: 2. 36 e V) 、 K (カリウム、 仕事関数: 2. 3 eV) 、 Rb (ルビジウム、 仕事関数: 2. 16 e V) および Cs (セシウム、 仕事関数: 1. 95 eV) 等が挙げられる。 なお、 括弧内の仕事関数の値は、 化学便覧 (基礎編 I I、 P493、 日本化学会編) に 記載されたものであり、 以下同様である。
また、 好ましいアルカリ土類金属としては、 例えば、 Ca (カルシウム、 仕事 関数: 2. 9 eV) 、 Mg (マグネシウム、 仕事関数: 3. 66 e V) 、 B a (バリウム、 仕事関数: 2. 52 eV) 、 および S r (ストロンチウム、 仕事関 数: 2. 0〜2. 5 e V) が挙げられる。 なお、 ストロンチウムの仕事関数の値 は、 フイジイツクス ォブ セミコンダクタ一デバイス (N. Y. ワイロー 19 69年、 P 366) に記載されたものである。
また、 好ましい希土類金属としては、 例えば、 Yb (イッテルビウム、 仕事関 数: 2. 6 e V) > Eu (ユーロピウム、 仕事関数: 2. 5 e V) 、 Gd (ガド 二ゥム、 仕事関数: 3. l eV) および En (エルビウム、 仕事関数: 2. 5 e V) が挙げられる。
また、 好ましいアルカリ金属酸化物としては、 例えば、 L i F、 L i 2〇、 L i〇、 NaF、 および N a〇が挙げられる。
また、 好ましいアルカリ土類金属酸化物としては、 例えば、 CaO、 BaO、 S rO、 BeO、 Mg〇、 およびこれらを混合した B a x S r卜 x〇 (0<x< 1) や、
Figure imgf000021_0001
(0<x<l) が挙げられる。
また、 好ましいアルカリ金属のハロゲン化物としては、 例えば、 L i F、 Na Fおよび KFといったフッ化物のほかに、 L i C l、 KC 1および NaC lが挙 げられる。 また、 好ましいアルカリ土類金属のハロゲン化物としては、 例えば、 CaF2、 BaF2、 S rF2、 M g F 2および B e F 2といったフッ化物や、 フッ 化物以外のハロゲン化物が挙げられる。
さらに、 好ましい還元性ド一パントとして、 芳香族化合物がアルカリ金属に配 位した金属錯体も挙げられる。 このような金属錯体として、 例えば、 下記一般式 (15) で表される化合物が挙げられる。
A+A r 7 -… (15)
[一般式 (15) 中、 記号 Aは、 アルカリ金属を表わし、 置換基 A r 7は、 炭素 数 10〜40の芳香族化合物である。 ]
ここで、 一般式 (15) で表される金属錯体中に含まれる芳香族化合物として は、 例えば、 アントラセン、 ナフ夕レン、 ジフエ二ルアントラセン、 ターフェ二 ル、 クォーターフエニル、 キンクフエニル、 セクシフエニル、 キノリノール、 ベ ンゾキノリノール、 ァクリジノール、 ヒドロキシフエ二ルォキサゾ一ル、 ヒドロ キシフエ二ルチアゾール、 ヒドロキシジァリールォキサジァゾール、 ヒドロキシ ジァリ一ルチアジァゾール、 ヒドロキシフエ二ルビリジン、 ヒドロキシフエニル ベンゾィミダゾール、 ヒドロキシベンゾトリァゾール、 ヒドロキシフルポラン、 ピピリジル、 フエナント口リン、 フタロシアニン、 ポルフィリンおよびこれらの 誘導体が挙げられる。
なお、 これらの芳香族化合物がヒドロキシ体の場合には、 前記一般式 (1 5 ) において、 A+と水酸基の H (プロトン) が交換する形で配位する。
また、 還元性ドーパントの添加量を、 還元性ドーパント含有層を構成する材料 全体を 1 0 0重量%としたときに、 0 . 0 1重量%以上の値とすること力好まし い。
この理由は、 かかる還元性ドーパントの添加量が、 0. 0 1重量%未満となる と、 添加効果が発現せず、 有機 E L素子の発光輝度が低下したり、 寿命が短くな る場合があるためである。
したがって、 発光輝度や寿命のバランスがより良好となる観点から、 還元性ド 一パントの添加量を 0 . 2重量%以上の値とすることがより好ましい。
なお、 還元性ドーパントを単独で使用して陰極層と有機発光層との界面に配置 してもよい。
また、 還元性ド一パント含有層に、 還元性ドーパントと、 芳香族環化合物との 混合物を使用する場合、 かかる還元性ドーパントと芳香族環化合物との混合比率 を 1 : 2 0〜2 0 : 1 (モル比) の範囲内の値とすることが好ましい。
この理由は、 力 る混合比率がこれらの範囲外となると、 有機 E L素子の発光 輝度が低下したり、 寿命が短くなる場合があるためである。
したがって、 芳香族環化合物と還元性ドーパントとの混合比率を 1 : 1 0〜1 0 : 1 (モル比) の範囲内の値とすることがより好ましく、 1 : 5〜5 : 1の範 囲内の値とすることがさらに好ましい。
( 2 ) 構造
また、 還元性ドーパント含有層は、 一層構造に限らず、 例えば、 二層構造また はそれ以上の多層構造とすることも好ましい。 また、 還元性ドーパント含有層の厚さについても特に制限されるものではない が、 例えば還元性ドーパントと、 芳香族環化合物との混合物を使用する場合、 0 . 1〜1 5 nmの範囲内の値とすることが好ましく、 0 . l〜8 nmの範囲内の値 とすることがより好ましい。 一方、 還元性ドーパントを単独で使用する場合、 還 元性ド一パント含有層の厚さを 0 . 0 5〜3 nmの範囲内の値とすることが好ま しく、 0 . 1〜1 nmの範囲内の値とすることがより好ましい。
さらに、 還元性ドーパント含有層を、 均一または不均一に分散させて、 非連続 の還元性ド一パント含有層として、 島状に形成することも好ましいし、 あるいは、 均一または不均一な厚さを有する連続の還元性ドーパント含有層とすることも好 ましい。
( 3 ) 形成方法
また、 還元性ドーパント含有層の形成方法としては、 例えば、 抵抗加熱蒸着法 により還元性ド一パントを蒸着しながら、 界面領域を形成する芳香族環化合物、 発光材料、 電子注入材料を同時蒸着させて、 これらの材料中に還元性ド一パン卜 を分散させることが好ましい。
[第 3の実施形態]
次に、 図 3を参照して、 この発明の第 3の実施形態について説明する。 図 3は、 第 3の実施形態における有機電界発光素子 1 0 4の断面図であり、 陽極層 1 0、 有機発光層 1 2、 電子注入層 2 4、 および陰極層 1 6を順次に積層した構造を有 している。
そして、 電子注入層に、 エネルギーギャップが 2 . 7 e V以上の炭化水素化合 物であって、 アントラセン核またはフルオランテン核を有する炭化水素化合物を 含有し、 かつ、 有機発光層に、 一般式 (3 ) で表される芳香族ァミン化合物およ び一般式 (4) で表される芳香族ァミン化合物、 あるいはいずれか一方の芳香族 ァミン化合物を含有することを特徴としている。 一般式 (3 ) および一般式
( 4 ) で表される芳香族ァミン化合物は、 前述した一般式 (1 ) および一般式 ( 2 ) で表される芳香族ァミン化合物において、 スチリル基およびアルケニル基 を含んでもよい化合物である。 前述した一般式 (1 ) および一般式 (2 ) で表さ れる芳香族ァミン化合物の説明及び例示は、 一般式 (3 ) および一般式 (4 ) で 表される芳香族ァミン化合物にも適用できる。
以下、 第 3の実施形態における特徴的な部分である電子注入層および有機発光 層について中心的に説明するものであり、 その他の構成部分については、 第 1の 実施形態や第 2の実施形態と同様の構成とすることができる。
( 1 ) 電子注入層 電子注入層に、 エネルギーギャップが 2 . 7 e V以上の炭化水素化合物であつ て、 アントラセン核またはフルオランテン核を有する炭化水素化合物を使用する。 この理由は、 炭化水素化合物のエネルギーギャップが 2 . 7 e V未満となると、 炭化水素化合物自身が発光するため、 有機電界発光素子の発光効率が低下する場 合があるためである。
また、 アントラセン核またはフルオランテン核を有する炭化水素化合物を使用 するのは、 これらの化合物が電子の移動性に優れており、 有機電界発光素子の発 光効率を高めるためである。
このようなアントラセン核を有する炭化水素化合物として、 好適には、 下記一 般式 (1 6 ) で表わされる化合物を挙げることができる。
Figure imgf000024_0001
[一般式 (1 6 ) 中、 1^〜1 1 ()は、 それぞれ独立に、 水素原子、 ハロゲン原子、 置換もしくは非置換の炭素数 1〜 2 0のアルキル基、 置換もしくは非置換の炭素 数 1〜2 0のアルコキシ基、 置換もしくは非置換の炭素数 6〜 3 0のァリールォ キシ基、 置換もしくは非置換の炭素数 1〜2 0のアルキルチオ基、 置換もしくは 非置換の炭素数 6〜 3 0のァリ一ルチオ基、 置換もしくは非置換の炭素数 7〜 3 0のァリールアルキル基、 非置換の炭素数 5〜 30の単環基、 置換もしくは非置 換の炭素数 10〜 30の縮合多環基、 または置換もしくは非置換の炭素数 5〜 3 0の複素環基であり、 Ar 13および Ar 14は、 それぞれ独立に、 置換もしくは 非置換の炭素数 6〜30のァリール基であり、 その置換基としては、 置換もしく は非置換の炭素数 1〜 20のアルキル基、 置換もしくは非置換の炭素数 1〜 20 のアルコキシ基、 置換もしくは非置換の炭素数 6〜 30のァリールォキシ基、 置 換もしくは非置換の炭素数 1〜 20のアルキルチオ基、 置換もしくは非置換の炭 素数 6〜 30のァリ一ルチオ基、 置換もしくは非置換の炭素数 7 ~ 30のァリ一 ルアルキル基、 非置換の炭素数 5〜 30の単環基、 置換もしくは非置換の炭素数 10〜 30の縮合多環基、 置換もしくは非置換の炭素数 5〜 30の複素環基、 ま たは置換もしくは非置換の炭素数 4〜40のアルケニル基であり、 Xおよび zは 0から 3の整数であり、 yは 1〜2の整数である。 ]
また、 フルオランテン核有する炭化水素化合物として、 好適には、 下記一般式 (17) で表わされる化合物を挙げることができる。
Figure imgf000025_0001
[一般式 (17) 中、 11〜!^20ならびに Ar 15は、 それぞれ一般式 (16) の RI〜RIOならびに A r 13および A r 14の内容と同様であり、 vおよび wは 1〜3の整数である。 ]
②厚さ
また、 電子注入層の厚さについても特に制限されるものではないが、 1〜50 nmの範囲内の値とすることが好ましく、 2〜30 nmの範囲内の値とすること がより好ましく、 3〜25 nmの範囲内の値とすることがさらに好ましい。 この理由は、 かかる電子注入層の厚さが、 lnm未満となると、 電子注入性の 改良効果が発現しない場合があり、 一方、 かかる電子注入層の厚さが、 50nm を超えると、 有機 EL素子の発光輝度が低下したり、 半減寿命が短くなる場合が あるためである。
(2) 有機発光層
有機発光層に、 上述した一般式 (3) および一般式 (4) で表される芳香族ァ ミン化合物を使用する。 この理由は、 このように三環以上の縮合芳香環を含む芳 香族ァミン化合物を含有することにより、 電子注入層を設けた場合、 10V程度 の低電圧において優れた発光輝度が得られるためである。
また、 上記芳香族ァミン化合物が有する置換基にスチリル基およびアルケニル 基を含む場合であっても、 上述のように電子注入層に特定の構造を有する炭化水 素化合物を使用することにより、 半減寿命を著しく長くすることができるように なる。
なお、 第 3の実施形態における有機発光層の種類、 電子移動度、 添加剤、 形成 方法、 および膜厚については、 第 1の実施形態と同様の構成とすることができる。 実施例
[実施例 1 ]
(1) 有機電界発光素子の作製
厚さ 1. lmm、 縦 25mm、 横 75mmの透明なガラス基板上に、 陽極層と して厚さ 75 nmのインジウムスズ酸化物 (I T〇) からなる透明電極を形成し た後、 イソプロピルアルコールで超音波洗浄し、 さらに、 Ν2 (窒素ガス) 雰囲 気中で乾燥させた後、 UV (紫外線) およびオゾンを用いて 10分間洗浄した。 次いで、 透明電極付きガラス基板を、 真空蒸着装置の蒸着槽内の基板ホルダ一 に装着するとともに、 真空槽内の真空度を、 1 X 10_3P aに減圧した後、 以 下の蒸着条件で、 陽極層上に、 正孔注入層、 有機発光層、 無機化合物層および陰 極層を順次に積層して有機電界発光素子を作製した。
正孔注入層: 4, 4'一ビス— (N, N—ジ— m—トリルァミノ) 一 4 "一
フエ二ルートリフエニルァミン (TPD 74)
蒸着速度 0. 2 nm/s e c.
厚さ 80 nm 3, 11—ビス (ジフエニルァミノ) 一 7, 14—ジフエニル一 ァセナフ卜 (1, 2— 1 フルオランテン (化合物 8) 蒸着速度 0. 2 n m/ s ec.
厚さ 50 nm
無機化合物層: L i F
蒸着速度 0. 2 nm/s e c .
厚さ 1 nm
陰極層: A 1
蒸着速度 0. 2 nm/s e c .
厚さ 200 nm
(2) 有機電界発光素子の評価
得られた有機電界発光素子における陰極層と陽極層との間に、 6 Vの直流電圧 を印加したところ、 発光輝度が 540 c dZcm2であり、 発光色は橙色である ことを確認した。
また、 初期発光輝度を 500 c d/cm2として、 定電流駆動させたところ、 半減寿命は 3, 200時間であった。 得られた結果を表 1に示す。
[実施例 2〜6]
実施例 2〜 6においては、 発光材料として、 実施例 1の化合物 8の代わりに化 合物 5 (実施例 2) 、 化合物 6 (実施例 3) 、 化合物 9 (実施例 4) 、 化合物 1 0 (実施例 5) 、 および化合物 1 (実施例 6) を用いたほかは、 実施例 1と同様 に有機電界発光素子を作製した。 そして、 陰極層と陽極層との間に、 5. 5Vあ るいは 6 Vの直流電圧を印加して評価した。
その結果、 それぞれ表 1に示す発光色が観察され、 発光輝度は 310〜720 c dZm2であり、 半減寿命は 2, 100〜3, 700時間であった。
得られた結果を表 1に示す。 表 1
Figure imgf000028_0001
[比較例 1〜 3 ]
比較例 1〜 3においては、 実施例 1の無機化合物の代わりにトリス (8—ヒド 口キシキノリナ一ト) アルミニウム (A i d) からなる厚さ 20 nmの電子輸送 層を設けるとともに、 発光材料として、 比較例 1では化合物 1を用い、 比較例 2 では化合物 6を用い、 比較例 3では化合物 4を用いたほかは、 実施例 1と同様に 有機電界発光素子を作製した。 そして、 陰極層と陽極層との間に、 5. 5Vの直 流電圧を印加して評価した。
その結果、 それぞれ表 2に示す発光色が観察され、 発光輝度は 250〜470 c dZm2であり、 半減寿命は 700〜1, 600時間であった。 得られた結果 を表 2に示す。
表 2
Figure imgf000029_0001
[実施例 7 ]
実施例 7においては、 発光材料として、 実施例 1の化合物 8の代わりに化合物 1を用い、 無機化合物層の代わりに、 化合物 1と、 還元性ドーパントである金属 リチウム (L i) との混合物 (混合モル比 1 : 1) からなる厚さ 2 Onmの界面 層 (還元性ドーパント含有層) を設けたほかは、 実施例 1と同様に有機電界発光 素子を作製した。 そして、 陰極層と陽極層との間に、 5. 5 Vの直流電圧を印加 して評価した。
その結果、 橙色の発光が観察され、 発光輝度は 610 c d/m2であり、 半減 寿命は 2, 800時間であった。 得られた結果を表 3に示す。
[実施例 8]
実施例 8においては、 発光材料として、 実施例 1の化合物 8の代わりに化合物 1を用い、 無機化合物層の代わりに、 界面領域に還元性ドーパントとして下記式
(18) で表わされるリチウム金属錯体 (化合物 11と称する。 ) からなる厚さ l nmの界面層 (還元性ド一パント含有層) を設けたほかは、 実施例 1と同様に 有機電界発光素子を作製した。 そして、 陰極層と陽極層との間に、 6. 5Vの直 流電圧を印加して評価した。
その結果、 青緑色の発光が観察され、 発光輝度は 530 c d/m2であり、 半 減寿命は 3, 300時間であった。 得られた結果を表 3に示す。
Figure imgf000030_0001
[実施例 9]
実施例 9においては、 実施例 8の還元性ドーパントのかわりに、 モノ (2, 2, 6, 6—テトラメチル—3, 5—ヘプタンジォナト) リチウム錯体 (L i (dp m) と称する。 ) からなる厚さ l nmの界面層 (還元性ドーパント含有層) を設 けたほかは、 実施例 8と同様に有機電界発光素子を作製した。 そして、 陰極層と 陽極層との間に、 6. 5 Vの直流電圧を印加して評価した。
その結果、 橙色の発光が観察され、 発光輝度は 470 c dZm2であり、 半減 寿命は 3, 000時間であった。 得られた結果を表 3に示す。
[実施例 10]
実施例 10においては、 発光材料として、 実施例 8の還元性ドーパントのかわ りに、 化合物 1と、 還元性ドーパントである L i (d m) との混合物 (混合モ ル比 1 : 1) からなる厚さ 5 nmの界面層 (還元性ド一パント含有層) を設けた ほかは、 実施例 8と同様に有機電界発光素子を作製した。 そして、 陰極層と陽極 層との間に、 6. 5 Vの直流電圧を印加して評価した。
その結果、 橙色の発光が観察され、 発光輝度は 580 c dZm2であり、 半減 寿命は 3 , 900時間であった。 得られた結果を表 3に示す。
[実施例 11 ]
実施例 11においては、 実施例 1の無機化合物層の代わりに、 下記式 (19) で表わされるフエニルァントラセン系化合物 (化合物 12と称する、 エネルギー ギャップ 3. 0 e V) と、 還元性ドーパントである金属リチウム (L i) との混 合物 (混合モル比 1 : 1) からなる厚さ 2 Onmの電子注入層を設けたほかは、 実施例 1と同様に有機電界発光素子を作製した。 そして、 陰極層と陽極層との間 に、 6. 5 Vの直流電圧を印加して評価した。
その結果、 青緑色の発光が観察され、 発光輝度は 430 c dZm2であり、 半 減寿命は 2, 600時間であった。 得られた結果を表 3に示す。
Figure imgf000031_0001
[実施例 12 ]
実施例 12においては、 発光材料として、 実施例 1の化合物 8の代わりに化合 物 1を用い、 無機化合物層の代わりに、 下記式 (20) で表わされるフルオラン テン系化合物 (化合物 13と称する、 エネルギーギャップ 2. 8 eV) と、 還元 性ドーパン卜である金属リチウム (L i) との混合物 (混合モル比 1 : 1) から なる厚さ 20 nmの電子注入層を設けたほかは、 実施例 1と同様に有機電界発光 素子を作製した。 そして、 陰極層と陽極層との間に、 6. 5 Vの直流電圧を印加 して評価した。
その結果、 青緑色の発光が観察され、 発光輝度は 530 c dZm2であり、 半 減寿命は 3, 800時間であつた。
(20)
Figure imgf000031_0002
表 3
Figure imgf000032_0001
産業上の利用可能性
以上、 詳細に説明したように、 第 1の発明によれば、 無機化合物から構成され た電子注入層を備えた場合であっても、 発光材料として、 三環以上の縮合芳香環 を含む芳香族ァミン化合物を使用することにより、 電子と正孔とが有機発光層に おいて有効に再結合することができるようになり、 駆動電圧が低くとも、 高い発 光輝度、 例えば 5 0 0 c d Zm2以上の値が得られるとともに、 半減寿命が著し く長い、 例えば 2 , 0 0 0時間を超える有機電界発光素子を提供することができ るようになった。
また、 第 2の発明によれば、 還元性ドーパント含有層を備えるとともに、 有機 発光層に三環以上の縮合芳香環を含む芳香族ァミン化合物を使用することにより、 同様に、 駆動電圧が低くとも、 高い発光輝度が得られるとともに、 半減寿命が著 しく長い有機電界発光素子を提供することができるようになった。
さらに、 第 3の発明によれば、 電子注入層に特定の炭化水素化合物を使用する とともに、 有機発光層に三環以上の縮合芳香環を含む芳香族ァミン化合物を使用 することにより、 同様に、 駆動電圧が低くとも、 高い発光輝度が得られるととも に、 半減寿命が著しく長い有機電界発光素子を提供することができるようになつ
χε
ZLL0/l0dr/lDd OAV

Claims

請 求 の 範 囲
1 . 少なくとも陽極層、 有機発光層、 および陰極層を含むとともに、 当該有機 発光層と、 陰極層との間に無機化合物層が設けてある有機電界発光素子において、 前記有機発光層が、 下記一般式 (1 ) で表される芳香族ァミン化合物および下 記一般式 (2 ) で表される芳香族ァミン化合物、 あるいはいずれか一方の芳香族 ァミン化合物を含有することを特徴とする有機電界発光素子。
Figure imgf000034_0001
[一般式 (1 ) 中、 記号 A、 ならびに置換基 A r 1および A r 2は、 それぞれ独立 に、 置換もしくは非置換の炭素数が 6〜 6 0の芳香族基であって、 かつ、 スチリ ル基およびアルケニル基を含まない芳香族基であり、 また、 記号 A、 ならびに置 換基 A r 1および A r 2のうち少なくとも一つは、 置換もしくは非置換の三環以 上の縮合芳香環を含む基であり、 縮合数 pは、 1〜6の整数である。 ]
Figure imgf000034_0002
[一般式 (2 ) 中、 記号 B、 ならびに置換基 A r 3、 A r 4、 A r 5および A r 6 は、 それぞれ独立に、 置換もしくは非置換の炭素数が 6〜 6 0の芳香族基であつ て、 かつ、 スチリル基およびアルケニル基を含まない芳香族基であり、 また、 記 号 B、 ならびに置換基 A r 3、 A r 4、 A r 5および A r 6のうち少なくとも一つ は、 置換もしくは非置換の三環以上の縮合芳香環を含む基であり、 縮合数 およ び rは、 1〜6の整数である。 ]
2 . 前記無機化合物層が、 アルカリ金属カルコゲナイド、 アルカリ土類金属力 ルコゲナイド、 アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン 化物からなる群から選択される少なくとも一つの金属化合物、 または
Ba、 Ca、 S r、 Yb、 A l、 Ga、 I n、 L i、 Na、 Cd、 Mg、 S i、 Ta、 Sbおよび Znの少なくとも一つの元素を含む酸ィヒ物、 窒化物または酸化 窒化物を含有することを特徴とする請求項 1に記載の有機電界発光素子。
3. 少なくとも陽極層、 有機発光層、 および陰極層を含むとともに、 当該有機 発光層と、 陰極層との間に還元性ドーパント含有層が設けてある有機電界発光素 子において、
前記有機発光層が、 下記一般式 (1) で表される芳香族ァミン化合物および下 記一般式 (2) で表される芳香族ァミン化合物、 あるいはいずれか一方の芳香族 アミン化合物を含有することを特徴とする有機電界発光素子。
Figure imgf000035_0001
[一般式 (1) 中、 記号 A、 ならびに置換基 A r 1および A r 2は、 それぞれ独 立に、 置換もしくは非置換の炭素数が 6〜60の芳香族基であって、 かつ、 スチ リル基およびアルケニル基を含まない芳香族基であり、 また、 記号 A、 ならびに 置換基 A r 1および A r 2のうち少なくとも一つは、 置換もしくは非置換の三環 以上の縮合芳香環を含む基であり、 縮合数 pは、 1〜6の整数である。 ]
Figure imgf000035_0002
[一般式 (2) 中、 記号 B、 ならびに置換基 A r 3、 Ar4、 A r 5および A r 6 は、 それぞれ独立に、 置換もしくは非置換の炭素数が 6〜60の芳香族基であつ て、 かつ、 スチリル基およびアルケニル基を含まない芳香族基であり、 また、 記 号 B、 ならびに置換基 A r 3、 A r 4、 A r 5および A r 6のうち少なくとも一つ は、 置換もしくは非置換の三環以上の縮合芳香環を含む基であり、 縮合数 Qおよ び rは、 1〜6の整数である。 ]
4. 前記還元性ドーパント層が、 アルカリ金属、 アルカリ土類金属、 希土類金 属、 アルカリ金属の酸化物、 アルカリ金属のハロゲン化物、 アルカリ土類金属の 酸化物、 アルカリ土類金属のハロゲン化物、 希土類金属の酸化物または希土類金 属のハ口ゲン化物からなる群から選択される少なくとも一つの物質を含有するこ とを特徴とする請求項 3に記載の有機電界発光素子。
5 . 前記還元性ド一パント層が、 一般式 A+A r 7—で表される金属錯体をを含 有することを特徴とする請求項 3に記載の有機電界発光素子。
[一般式中、 記号 Aは、 アルカリ金属を表わし、 置換基 A r 7は、 炭素数 1 0〜 4 0の芳香族化合物である。 ]
6 . 少なくとも陽極層、 有機発光層、 および陰極層を含むとともに、 当該有機 発光層と、 陰極層との間に電子注入層が設けてある有機電界発光素子において、 前記電子注入層が、 エネルギーギャップが 2 . 7 e V以上の炭化水素化合物で あって、 アントラセン核またはフルオランテン核を有する炭化水素化合物を含有 し、 かつ、
前記有機発光層が、 下記一般式 (3 ) で表される芳香族ァミン化合物および下 記一般式 (4 ) で表される芳香族ァミン化合物、 あるいはいずれか一方の芳香族 ァミン化合物を含有することを特徴とする有機電界発光素子。
Figure imgf000036_0001
[一般式 (3 ) 中、 記号 A、 ならびに置換基 A r 7および A r 8は、 それぞれ独 立に、 置換もしくは非置換の炭素数が 6〜6 0の芳香族基であり、 また、 記号 A、 ならびに置換基 A r 7および A r 8のうち少なくとも一つは、 置換もしくは非置 換の三環以上の縮合芳香環を含む基であり、 縮合数 pは、 1〜6の整数であ る。 ]
Figure imgf000037_0001
[一般式 (4) 中、 記号 B、 ならびに置換基 Ar9、 Ar 10, A r 11および A r 12は、 それぞれ独立に、 置換もしくは非置換の炭素数が 6〜60の芳香族基で あり、 また、 記号 B、 ならびに置換基 Ar 9、 Ar1Q、 Ar 11および A r 12の うち少なくとも一つは、 置換もしくは非置換の三環以上の縮合芳香環を含む基で あり、 縮合数 Qおよび rは、 1〜6の整数である。 ]
7. 前記アントラセン核を有する炭化水素化合物が、 下記一般式で表される化 合物であることを特徴とする請求項 6に記載の有機電界発光素子。
Figure imgf000037_0002
[一般式中、 !^〜 は、 それぞれ独立に、 水素原子、 ハロゲン原子、 置換も しくは非置換の炭素数 1〜 20のアルキル基、 置換もしくは非置換の炭素数 1〜 20のアルコキシ基、 置換もしくは非置換の炭素数 6〜 30のァリールォキシ基、 置換もしくは非置換の炭素数 1〜 20のアルキルチオ基、 置換もしくは非置換の 炭素数 6〜 30のァリ一ルチオ基、 置換もしくは非置換の炭素数 7〜 30のァリ ールアルキル基、 非置換の炭素数 5〜30の単環基、 置換もしくは非置換の炭素 数 10〜 30の縮合多環基、 または置換もしくは非置換の炭素数 5〜 30の複素 環基であり、 A r 1 3および A r 1 4は、 それぞれ独立に、 置換もしくは非置換の 炭素数 6〜3 0のァリール基であり、 その置換基としては、 置換もしくは非置換 の炭素数 1〜 2 0のアルキル基、 置換もしくは非置換の炭素数 1〜 2 0のアルコ キシ基、 置換もしくは非置換の炭素数 6〜3 0のァリールォキシ基、 置換もしく は非置換の炭素数 1〜 2 0のアルキルチオ基、 置換もしくは非置換の炭素数 6〜 3 0のァリ一ルチオ基、 置換もしくは非置換の炭素数 7〜 3 0のァリールアルキ ル基、 非置換の炭素数 5〜 3 0の単環基、 置換もしくは非置換の炭素数 1 0〜 3 0の縮合多環基、 置換もしくは非置換の炭素数 5〜 3 0の複素環基、 または置換 もしくは非置換の炭素数 4〜4 0のアルケニル基であり、 Xおよび zは 0から 3 の整数であり、 yは;!〜 2の整数である。 ]
8 . 前記フルオランテン核を有する炭化水素化合物が、 下記一般式で表わされ る化合物であることを特徴とする請求項 6に記載の有機電界発光素子。
Figure imgf000038_0001
[一般式中、 1 1〜!^ は、 それぞれ独立に、 水素原子、 ハロゲン原子、 置換 もしくは非置換の炭素数 1〜 2 0のアルキル基、 置換もしくは非置換の炭素数 1 〜2 0のアルコキシ基、 置換もしくは非置換の炭素数 6〜 3 0のァリールォキシ 基、 置換もしくは非置換の炭素数 1〜2 0のアルキルチオ基、 置換もしくは非置 換の炭素数 6〜 3 0のァリールチオ基、 置換もしくは非置換の炭素数?〜 3 0の ァリ一ルアルキル基、 非置換の炭素数 5〜3 0の単環基、 置換もしくは非置換の 炭素数 1 0〜 3 0の縮合多環基、 または置換もしくは非置換の炭素数 5〜 3 0の 複素環基であり、 A r 1 5は、 置換もしくは非置換の炭素数 6〜 3 0のァリール 基であり、 その置換基としては、 置換もしくは非置換の炭素数 1〜2 0のアルキ ル基、 置換もしくは非置換の炭素数 1〜2 0のアルコキシ基、 置換もしくは非置 換の炭素数 6〜 3 0のァリールォキシ基、 置換もしくは非置換の炭素数 1〜2 0 のアルキルチオ基、 置換もしくは非置換の炭素数 6〜3 0のァリールチオ基、 置 換もしくは非置換の炭素数 7〜 3 0のァリールアルキル基、 非置換の炭素数 5〜 3 0の単環基、 置換もしくは非置換の炭素数 1 0〜 3 0の縮合多環基、 置換もし くは非置換の炭素数 5〜 3 0の複素環基、 または置換もしくは非置換の炭素数 4 〜4 0のアルケニル基であり、 Vおよび wは 1〜3の整数である。 ]
9 . 前記一般式 ( 1 ) 〜 (4 ) で表される芳香族ァミン化合物が、 ピレン、 ぺ リレン、 アントラセン、 フルオランテン、 クリセン、 ルビセン、 テトラセン、 ぺ ン夕セン、 テ卜ラベンゾフヱナントレン、 テトラべンゾアントラセン、 テトラべ ンゾフルオレン、 ベンゾペリレン、 ジベンゾピレン、 ジベンゾクリセン、 ジベン ゾペリレン、 ベンゾテトラセン、 デカシクレン、 ァセナフトフルオランテン、 お よびジベンゾフルオランテン骨格からなる縮合芳香環を含有することを特徴とす る請求項 1、 3、 6のいずれか一項に記載の有機電界発光素子。
1 0 . 前記一般式 (1 ) 〜 ( 4 ) で表される芳香族ァミン化合物において、 A rェ〜八!" 1 2の炭素数が 6〜4 0であり、 A及び Bが置換もしくは非置換の三環 以上の縮合芳香環を含む基であることを特徴とする請求項 1、 3、 6いずれか一 項に記載の有機電界発光素子。
1 1 . 前記一般式 (1 ) 〜 (4 ) で表される芳香族ァミン化合物において、 A r i〜A r 1 2が、 シァノ基、 ハロゲン基、 直鎖、 分岐または環状のアルキル基、 直鎖、 分岐または環状のアルコキシ基、 置換または非置換のァリール基、 置換ま たは非置換のァリールォキシ基、 C O O Rで表わされる基 (Rは水素原子、 アル キル基、 ァリール基、 またはァラルキル基である。 ) 、 置換または非置換のアル 一ルチオ基を含有することを特徴とする請求項 1、 3、 6いずれか一項に記載の 有機電界発光素子。
PCT/JP2001/007729 2000-09-07 2001-09-06 Organic electroluminescent element WO2002020693A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002525701A JP4632628B2 (ja) 2000-09-07 2001-09-06 有機電界発光素子
EP01963466A EP1347031A4 (en) 2000-09-07 2001-09-06 ORGANIC ELECTROLUMINESCENT ELEMENT
US10/111,667 US6929871B2 (en) 2000-09-07 2001-09-06 Organic electric-field light-emitting element
US11/178,456 US8841003B2 (en) 2000-09-07 2005-07-12 Organic electric-field light-emitting element
US11/822,491 US20070254186A1 (en) 2000-09-07 2007-07-06 Organic electric-field light-emitting element
US12/846,126 US7879465B2 (en) 2000-09-07 2010-07-29 Organic electric-field light-emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000271707 2000-09-07
JP2000-271707 2000-09-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10111667 A-371-Of-International 2001-09-06
US11/178,456 Continuation US8841003B2 (en) 2000-09-07 2005-07-12 Organic electric-field light-emitting element

Publications (1)

Publication Number Publication Date
WO2002020693A1 true WO2002020693A1 (en) 2002-03-14

Family

ID=18757952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007729 WO2002020693A1 (en) 2000-09-07 2001-09-06 Organic electroluminescent element

Country Status (7)

Country Link
US (4) US6929871B2 (ja)
EP (1) EP1347031A4 (ja)
JP (2) JP4632628B2 (ja)
KR (1) KR100822569B1 (ja)
CN (2) CN1271168C (ja)
TW (1) TWI305799B (ja)
WO (1) WO2002020693A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010127A1 (fr) * 2001-07-23 2003-02-06 Petroleum Energy Center, A Juridical Incorporated Foundation Composes aromatiques et dispositifs electroluminescents organiques fabriques a l'aide de ces derniers
JP2003105332A (ja) * 2001-09-28 2003-04-09 Canon Inc 有機発光素子
JP2009188136A (ja) * 2008-02-05 2009-08-20 Idemitsu Kosan Co Ltd 有機el素子及び表示装置
US7794855B2 (en) 2006-04-25 2010-09-14 Canon Kabushiki Kaisha Compound and organic light-emitting element
US8039129B2 (en) 2009-04-06 2011-10-18 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
US8039127B2 (en) 2009-04-06 2011-10-18 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
JPWO2011093067A1 (ja) * 2010-01-29 2013-05-30 出光興産株式会社 ジベンゾフルオランテン化合物及びそれを用いた有機薄膜太陽電池
US8815410B2 (en) 2004-12-28 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, light emitting element using the same, and light emitting device using the same
US9214636B2 (en) 2006-02-28 2015-12-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632628B2 (ja) * 2000-09-07 2011-02-16 出光興産株式会社 有機電界発光素子
US7198859B2 (en) * 2003-07-25 2007-04-03 Universal Display Corporation Materials and structures for enhancing the performance of organic light emitting devices
US20050058853A1 (en) * 2003-09-15 2005-03-17 Eastman Kodak Company Green organic light-emitting diodes
DE10349582B4 (de) * 2003-10-24 2008-09-25 Infineon Technologies Ag Halbleiterdiode sowie dafür geeignetes Herstellungsverfahren
JP4689176B2 (ja) * 2004-02-26 2011-05-25 大日本印刷株式会社 有機エレクトロルミネッセンス素子
JPWO2005112519A1 (ja) * 2004-05-14 2008-03-27 出光興産株式会社 有機エレクトロルミネッセンス素子
US7541099B2 (en) * 2004-05-21 2009-06-02 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative and light emitting element and light emitting device using the same
WO2006057420A1 (en) * 2004-11-26 2006-06-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
JP4429149B2 (ja) * 2004-11-26 2010-03-10 キヤノン株式会社 フルオレン化合物及び有機発光素子
US20060131567A1 (en) * 2004-12-20 2006-06-22 Jie Liu Surface modified electrodes and devices using reduced organic materials
US20070092759A1 (en) * 2005-10-26 2007-04-26 Begley William J Organic element for low voltage electroluminescent devices
US20070092753A1 (en) * 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
US20070092755A1 (en) * 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
US20070092754A1 (en) * 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
US7767317B2 (en) * 2005-10-26 2010-08-03 Global Oled Technology Llc Organic element for low voltage electroluminescent devices
US8956738B2 (en) * 2005-10-26 2015-02-17 Global Oled Technology Llc Organic element for low voltage electroluminescent devices
US20070252516A1 (en) * 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent devices including organic EIL layer
JP2007314511A (ja) * 2006-04-24 2007-12-06 Canon Inc 化合物および有機発光素子
US9118020B2 (en) * 2006-04-27 2015-08-25 Global Oled Technology Llc Electroluminescent devices including organic eil layer
CN101529596B (zh) * 2006-11-29 2011-12-14 株式会社半导体能源研究所 装置及其制造方法
US20080176099A1 (en) * 2007-01-18 2008-07-24 Hatwar Tukaram K White oled device with improved functions
US20080246394A1 (en) * 2007-04-03 2008-10-09 Fujikura Ltd. Organic light-emitting diode element and optical interconnection module
EP2139846B1 (en) * 2007-04-26 2016-09-07 LG Chem, Ltd. New diamine derivatives and organic electronic device using the same
US20080284318A1 (en) * 2007-05-17 2008-11-20 Deaton Joseph C Hybrid fluorescent/phosphorescent oleds
US20080284317A1 (en) * 2007-05-17 2008-11-20 Liang-Sheng Liao Hybrid oled having improved efficiency
US20090110956A1 (en) * 2007-10-26 2009-04-30 Begley William J Oled device with electron transport material combination
US8076009B2 (en) * 2007-10-26 2011-12-13 Global Oled Technology, Llc. OLED device with fluoranthene electron transport materials
US8431242B2 (en) * 2007-10-26 2013-04-30 Global Oled Technology, Llc. OLED device with certain fluoranthene host
US8420229B2 (en) 2007-10-26 2013-04-16 Global OLED Technologies LLC OLED device with certain fluoranthene light-emitting dopants
WO2009066600A1 (ja) * 2007-11-19 2009-05-28 Idemitsu Kosan Co., Ltd. モノベンゾクリセン誘導体、及びそれを含む有機エレクトロルミネッセンス素子用材料、並びにそれを用いた有機エレクトロルミネッセンス素子
KR101583097B1 (ko) * 2007-11-22 2016-01-07 이데미쓰 고산 가부시키가이샤 유기 el 소자 및 유기 el 재료 함유 용액
US20090162612A1 (en) * 2007-12-19 2009-06-25 Hatwar Tukaram K Oled device having two electron-transport layers
KR101620091B1 (ko) 2008-07-24 2016-05-13 삼성디스플레이 주식회사 방향족 복소환 화합물 및 이를 포함한 유기막을 구비한유기 발광 소자
US7931975B2 (en) * 2008-11-07 2011-04-26 Global Oled Technology Llc Electroluminescent device containing a flouranthene compound
US8088500B2 (en) * 2008-11-12 2012-01-03 Global Oled Technology Llc OLED device with fluoranthene electron injection materials
US7968215B2 (en) * 2008-12-09 2011-06-28 Global Oled Technology Llc OLED device with cyclobutene electron injection materials
US8216697B2 (en) * 2009-02-13 2012-07-10 Global Oled Technology Llc OLED with fluoranthene-macrocyclic materials
US8147989B2 (en) * 2009-02-27 2012-04-03 Global Oled Technology Llc OLED device with stabilized green light-emitting layer
US20100244677A1 (en) * 2009-03-31 2010-09-30 Begley William J Oled device containing a silyl-fluoranthene derivative
KR101182673B1 (ko) * 2009-05-13 2012-09-14 네오뷰코오롱 주식회사 유기전계발광소자 및 그 제조방법
KR20130048634A (ko) * 2011-11-02 2013-05-10 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
CN103172524B (zh) * 2011-12-26 2016-02-17 昆山维信诺显示技术有限公司 一类有机化合物及其应用
JP6284531B2 (ja) * 2012-08-30 2018-02-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 有機電子材料のための構成単位としての有利に製造されたナフタレン誘導体およびペリレン誘導体ならびに染料
KR102054847B1 (ko) * 2012-12-27 2019-12-12 삼성디스플레이 주식회사 파이렌계 화합물 및 이를 포함한 유기 발광 소자
KR102017743B1 (ko) * 2013-01-04 2019-09-04 삼성디스플레이 주식회사 개선된 효율 특성을 갖는 유기 발광 소자 및 이를 포함하는 유기 발광 표시 장치
US10062850B2 (en) * 2013-12-12 2018-08-28 Samsung Display Co., Ltd. Amine-based compounds and organic light-emitting devices comprising the same
KR102343142B1 (ko) 2014-09-16 2021-12-27 삼성디스플레이 주식회사 유기 발광 소자
CN106608828A (zh) * 2015-10-22 2017-05-03 上海和辉光电有限公司 一种用于有机电致发光材料的苯并苝衍生物
KR102545675B1 (ko) 2016-05-11 2023-06-20 삼성디스플레이 주식회사 유기 발광 소자
JP6901883B2 (ja) * 2017-03-22 2021-07-14 株式会社ジャパンディスプレイ 表示装置の製造方法
CN110078681B (zh) * 2019-05-20 2020-10-13 武汉华星光电半导体显示技术有限公司 有机发光材料及其制备方法、有机发光器件
KR102349278B1 (ko) 2019-09-03 2022-01-11 삼성디스플레이 주식회사 유기 발광 소자

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330032A (ja) * 1993-05-18 1994-11-29 Mitsubishi Kasei Corp 有機電界発光素子
JPH08311442A (ja) * 1995-05-17 1996-11-26 Tdk Corp 有機el素子
EP0765106A2 (en) * 1995-09-25 1997-03-26 Toyo Ink Manufacturing Co., Ltd. Light-emitting material for organic electroluminescence device, and organic electroluminescence device for which the light-emitting material is adapted
JPH09157643A (ja) * 1995-12-11 1997-06-17 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
EP0855848A2 (en) * 1997-01-27 1998-07-29 Junji Kido Organic electroluminescent devices
EP0936844A2 (en) * 1998-02-17 1999-08-18 Junji Kido Organic electroluminescent devices
JPH11307267A (ja) * 1998-04-16 1999-11-05 Tdk Corp 有機el素子
JPH11329734A (ja) * 1998-03-10 1999-11-30 Mitsubishi Chemical Corp 有機電界発光素子
JP2000164363A (ja) * 1998-11-25 2000-06-16 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196475A (ja) 1989-01-25 1990-08-03 Mitsui Toatsu Chem Inc 薄膜型発光素子
JPH02139893A (ja) 1988-11-21 1990-05-29 Mitsui Toatsu Chem Inc 発光素子
US5503910A (en) * 1994-03-29 1996-04-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US5909081A (en) * 1995-02-06 1999-06-01 Idemitsu Kosan Co., Ltd. Multi-color light emission apparatus with organic electroluminescent device
JP3529543B2 (ja) 1995-04-27 2004-05-24 パイオニア株式会社 有機エレクトロルミネッセンス素子
JP2924809B2 (ja) * 1995-09-25 1999-07-26 東洋インキ製造株式会社 有機エレクトロルミネッセンス素子用発光材料
JP2924810B2 (ja) * 1995-09-25 1999-07-26 東洋インキ製造株式会社 有機エレクトロルミネッセンス素子
JPH1072581A (ja) * 1995-09-25 1998-03-17 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
US5811834A (en) * 1996-01-29 1998-09-22 Toyo Ink Manufacturing Co., Ltd. Light-emitting material for organo-electroluminescence device and organo-electroluminescence device for which the light-emitting material is adapted
US5776622A (en) 1996-07-29 1998-07-07 Eastman Kodak Company Bilayer eletron-injeting electrode for use in an electroluminescent device
US5776623A (en) 1996-07-29 1998-07-07 Eastman Kodak Company Transparent electron-injecting electrode for use in an electroluminescent device
JP3988196B2 (ja) 1996-09-17 2007-10-10 東洋インキ製造株式会社 有機エレクトロルミネッセンス素子
DE69727987T2 (de) * 1996-11-29 2005-01-20 Idemitsu Kosan Co. Ltd. Organische elektrolumineszente Vorrichtung
JP4486713B2 (ja) * 1997-01-27 2010-06-23 淳二 城戸 有機エレクトロルミネッセント素子
JPH11121178A (ja) * 1997-10-14 1999-04-30 Matsushita Electric Ind Co Ltd 有機エレクトロルミネセンス素子及びその製造方法
JPH11135261A (ja) 1997-10-27 1999-05-21 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
US6248458B1 (en) * 1997-11-17 2001-06-19 Lg Electronics Inc. Organic electroluminescent device with improved long-term stability
US5935721A (en) * 1998-03-20 1999-08-10 Eastman Kodak Company Organic electroluminescent elements for stable electroluminescent
US5972247A (en) * 1998-03-20 1999-10-26 Eastman Kodak Company Organic electroluminescent elements for stable blue electroluminescent devices
JP3266573B2 (ja) * 1998-04-08 2002-03-18 出光興産株式会社 有機エレクトロルミネッセンス素子
JP5358050B2 (ja) * 1998-06-26 2013-12-04 出光興産株式会社 発光装置
US6558817B1 (en) * 1998-09-09 2003-05-06 Minolta Co., Ltd. Organic electroluminescent element
JP2000150161A (ja) 1998-11-16 2000-05-30 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス表示装置
JP4505067B2 (ja) * 1998-12-16 2010-07-14 淳二 城戸 有機エレクトロルミネッセント素子
KR20050084517A (ko) * 1998-12-28 2005-08-26 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자
WO2000048431A1 (fr) 1999-02-15 2000-08-17 Idemitsu Kosan Co., Ltd. Dispositif organique electroluminescent et son procede de fabrication
JP2000235893A (ja) 1999-02-15 2000-08-29 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP4632628B2 (ja) * 2000-09-07 2011-02-16 出光興産株式会社 有機電界発光素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330032A (ja) * 1993-05-18 1994-11-29 Mitsubishi Kasei Corp 有機電界発光素子
JPH08311442A (ja) * 1995-05-17 1996-11-26 Tdk Corp 有機el素子
EP0765106A2 (en) * 1995-09-25 1997-03-26 Toyo Ink Manufacturing Co., Ltd. Light-emitting material for organic electroluminescence device, and organic electroluminescence device for which the light-emitting material is adapted
JPH09157643A (ja) * 1995-12-11 1997-06-17 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
EP0855848A2 (en) * 1997-01-27 1998-07-29 Junji Kido Organic electroluminescent devices
EP0936844A2 (en) * 1998-02-17 1999-08-18 Junji Kido Organic electroluminescent devices
JPH11329734A (ja) * 1998-03-10 1999-11-30 Mitsubishi Chemical Corp 有機電界発光素子
JPH11307267A (ja) * 1998-04-16 1999-11-05 Tdk Corp 有機el素子
JP2000164363A (ja) * 1998-11-25 2000-06-16 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1347031A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235312B2 (en) 2001-07-23 2007-06-26 Petroleum Energy Center, A Juridical Incorporated Foundation Aromatic compounds and organic electroluminescent devices made by using the same
WO2003010127A1 (fr) * 2001-07-23 2003-02-06 Petroleum Energy Center, A Juridical Incorporated Foundation Composes aromatiques et dispositifs electroluminescents organiques fabriques a l'aide de ces derniers
JP2003105332A (ja) * 2001-09-28 2003-04-09 Canon Inc 有機発光素子
US11296280B2 (en) 2004-12-28 2022-04-05 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, light emitting element using the same, and light emitting device using the same
US10326078B2 (en) 2004-12-28 2019-06-18 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, light-emitting element using the same, and light-emitting device using the same
US9478751B2 (en) 2004-12-28 2016-10-25 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, light emitting element using the same, and light emitting device using the same
US8815410B2 (en) 2004-12-28 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, light emitting element using the same, and light emitting device using the same
US9214636B2 (en) 2006-02-28 2015-12-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US7794855B2 (en) 2006-04-25 2010-09-14 Canon Kabushiki Kaisha Compound and organic light-emitting element
JP2009188136A (ja) * 2008-02-05 2009-08-20 Idemitsu Kosan Co Ltd 有機el素子及び表示装置
US8039127B2 (en) 2009-04-06 2011-10-18 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
US8039129B2 (en) 2009-04-06 2011-10-18 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
JPWO2011093067A1 (ja) * 2010-01-29 2013-05-30 出光興産株式会社 ジベンゾフルオランテン化合物及びそれを用いた有機薄膜太陽電池

Also Published As

Publication number Publication date
US20050244676A1 (en) 2005-11-03
JP2011054981A (ja) 2011-03-17
US20100308315A1 (en) 2010-12-09
JP4632628B2 (ja) 2011-02-16
US20030044643A1 (en) 2003-03-06
US6929871B2 (en) 2005-08-16
KR20020062939A (ko) 2002-07-31
CN101026226B (zh) 2011-09-14
CN1271168C (zh) 2006-08-23
KR100822569B1 (ko) 2008-04-16
CN101026226A (zh) 2007-08-29
JPWO2002020693A1 (ja) 2004-01-15
CN1388826A (zh) 2003-01-01
JP5274532B2 (ja) 2013-08-28
EP1347031A1 (en) 2003-09-24
US20070254186A1 (en) 2007-11-01
EP1347031A4 (en) 2007-07-04
US7879465B2 (en) 2011-02-01
US8841003B2 (en) 2014-09-23
TWI305799B (ja) 2009-02-01

Similar Documents

Publication Publication Date Title
WO2002020693A1 (en) Organic electroluminescent element
JP4094203B2 (ja) 有機エレクトロルミネッセンス素子及び有機発光媒体
JP5752806B2 (ja) 有機発光素子およびその製造方法
JP4260744B2 (ja) 有機エレクトロルミネッセンス素子及び有機発光媒体
JP3869061B2 (ja) 白色光発光有機エレクトロルミネッセンス素子
JP4850521B2 (ja) 有機電界発光素子
EP0825804A2 (en) Blue organic electroluminescent devices
US20060141287A1 (en) OLEDs with improved operational lifetime
US20060040131A1 (en) OLEDs with improved operational lifetime
US7504163B2 (en) Hole-trapping materials for improved OLED efficiency
TW200840110A (en) Organic electroluminescent device
JP2000182778A (ja) 有機系多層型エレクトロルミネセンス素子
WO2004052057A1 (ja) 有機電界発光素子
JP2000106277A (ja) 有機エレクトロルミネセンス素子
JP4243459B2 (ja) 有機電界発光素子
JP4818298B2 (ja) 有機電界発光素子
JP3525434B2 (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref document number: 2002 525701

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2001963466

Country of ref document: EP

Ref document number: 10111667

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 018026273

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020027005856

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027005856

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001963466

Country of ref document: EP