WO2001094919A1 - Procede et appareil de mesure de la fluorescence, et appareil pour evaluer un echantillon faisant appel a cet appareil de mesure - Google Patents

Procede et appareil de mesure de la fluorescence, et appareil pour evaluer un echantillon faisant appel a cet appareil de mesure Download PDF

Info

Publication number
WO2001094919A1
WO2001094919A1 PCT/JP2001/004794 JP0104794W WO0194919A1 WO 2001094919 A1 WO2001094919 A1 WO 2001094919A1 JP 0104794 W JP0104794 W JP 0104794W WO 0194919 A1 WO0194919 A1 WO 0194919A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
time
waveform
excitation light
fitting
Prior art date
Application number
PCT/JP2001/004794
Other languages
English (en)
French (fr)
Inventor
Motoyuki Watanabe
Kazuya Iguchi
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to DE60129691T priority Critical patent/DE60129691T2/de
Priority to AU2001262709A priority patent/AU2001262709A1/en
Priority to EP01936885A priority patent/EP1291643B1/en
Priority to US10/276,979 priority patent/US6897953B2/en
Publication of WO2001094919A1 publication Critical patent/WO2001094919A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence

Definitions

  • Fluorescence measurement method Fluorescence measurement method, fluorescence measurement device and sample evaluation device using the same
  • the present invention relates to a fluorescence measurement method, a fluorescence measurement device, and a fluorescence measurement method for measuring a time waveform of fluorescence emitted from a sample excited by excitation light, performing data analysis, and calculating waveform data, and the like.
  • a fluorescence measurement method for measuring a time waveform of fluorescence emitted from a sample excited by excitation light, performing data analysis, and calculating waveform data, and the like.
  • a fluorescence measurement device that obtains information such as fluorescence lifetime by time-resolved measurement of fluorescence generated in a sample
  • the sample is excited by irradiating pulsed excitation light from an excitation light source
  • Fluorescence generated and emitted by the detector, especially its intensity change over time is detected by a photodetector such as a photomultiplier tube.
  • the data processing device performs data analysis, such as arithmetic processing, on the time waveform of the fluorescence obtained from the fluorescence detection data output from the photodetector. Is calculated.
  • the time waveform of the obtained fluorescence is a time waveform of fluorescence decay (Decay) in which the intensity of the fluorescence emitted after irradiation of the excitation light pulse is attenuated with time.
  • the time waveform of the exponential fluorescence decay due to the fluorescent component and the time waveform of the excitation light due to the device response time waveform due to the device such as the finite pulse width of the excitation light are convoluted. In this state, the time waveform of the fluorescence is measured.
  • the fluorescence decay and the fluorescence decay time are calculated using the time waveform of the excitation light measured separately from the time waveform of the measured fluorescence. Deconvolution of the response time waveform is performed. At the same time, a fitting calculation using an exponential function or similar function was performed on the time waveform of the fluorescence decay. Then, a physical quantity such as a waveform data for specifying a time waveform or a fluorescence lifetime is calculated (for example, see Japanese Patent No. 2911167). Disclosure of the invention
  • the time waveforms of the fluorescence and excitation light used in the above-mentioned data analysis including the fitting calculation are usually the same measurement system in order to avoid the influence on the time waveform generated by the difference in the configuration of the measurement system. That is, it is measured using the same optical system and photodetector. At this time, these time waveforms can be obtained by separately measuring fluorescence or excitation light at different times. In this way, when measurements are performed separately using the same measurement system, fluctuations in the time waveform caused by changes (drift) in the operating state of the measuring device due to the lapse of time during the measurement can be seen. It becomes a problem in the analysis overnight.
  • the operation state of the measurement device changes due to heat, etc.
  • the oscillation timing of the pulse laser light source used as the excitation light source is adjusted to the timing of the clock signal for synchronization with the photodetector.
  • the measurement conditions change over time due to the phenomenon such as fluctuations with respect to time. For this reason, if the time waveform of the fluorescence obtained in each fluorescence measurement is used as it is, the position on the time axis of the time waveform of the fluorescence will be different from the time waveform of the excitation light obtained in advance in another measurement. It shifts with each fluorescence measurement.
  • the present invention has been made in view of the above problems, and has been made in consideration of the above-described problems. It is intended to provide an apparatus and a sample evaluation apparatus using the same.
  • the fluorescence measurement method comprises: (1) an excitation step of irradiating a sample with pulsed excitation light; and (2) emission from the sample excited by the excitation light.
  • the fitting calculation is performed in a fitting range that is a predetermined time range fixed to the time waveform of the fluorescence.
  • a data processing step of calculating the waveform data by performing a data analysis including the following.
  • the time waveform of the excitation light and the fluorescence On the time axis used for fitting calculation, the time waveform is placed a predetermined time width before the time position where the fluorescence peak of the fluorescence time waveform substantially matches the excitation light peak of the excitation light time waveform.
  • the time waveform is placed a predetermined time width before the time position where the fluorescence peak of the fluorescence time waveform substantially matches the excitation light peak of the excitation light time waveform.
  • the waveform data selected by a predetermined selection criterion among a plurality of waveform data calculated in each of the fitting calculations is a final measured waveform data.
  • the fluorescence measuring apparatus comprises: (a) irradiating a sample with pulsed excitation light. An excitation means; (b) a light detection means for detecting fluorescence emitted from the sample excited by the excitation light; and (c) a time waveform of the fluorescence detected by the light detection means. (D) performing data analysis including performing a data analysis including a fitting calculation in a fitting range that is a predetermined time range that is fixedly set to calculate waveform data.
  • the processing means converts the time waveform of the excitation light and the time waveform of the fluorescence obtained in advance into a time axis used for the fitting calculation so that the fluorescence peak of the fluorescence time waveform is substantially the same as the excitation light peak of the time waveform of the excitation light. After arranging it so that it becomes the initial position before or after a predetermined time width from the coincident time position, from the initial position, on the time axis across the time position where the fluorescent peak substantially matches the excitation light peak While moving the time waveform of the fluorescence and the fitting range or the time waveform of the excitation light with respect to the time axis toward the opposite end position, refer to the time waveform of the excitation light at a plurality of different time positions.
  • Each of the fitting calculations is performed by performing the fitting calculation, and among the plurality of waveform data calculated by each of the fitting calculations, the waveform data selected by a predetermined selection criterion is converted into the final measured waveform data. It is characterized by the following.
  • the time waveform of the fluorescence and the time waveform of the excitation light measured separately from the fluorescence measurement are arranged at predetermined time positions on the time axis of the fitting calculation. I do. Then, the time waveform of the fluorescence or the time waveform of the excitation light is changed from the initial position where the fluorescence peak is a predetermined time width before or after the excitation light peak to the end position on the opposite side (the end position after the previous initial position). , Or from the later initial position to the previous end position).
  • the fluorescence time The fluorescence peak in the waveform is the time position of the excitation light peak or a time position after it. Therefore, the initial position and the end position that specify the mutual movement range in the data analysis of the fluorescence time waveform and the excitation light time waveform are appropriate on the time axis. If it is set to off, the position of the above-described time waveform of the fluorescence when no shift occurs is always included in the moving range.
  • the fitting time calculation is performed a plurality of times while moving the time waveform of the fluorescence or the time waveform of the excitation light on the time axis, and the single measurement is performed.
  • a plurality of waveform data are obtained from the time waveform of one fluorescence, and the most suitable measurement waveform data is obtained from the plurality of waveform data, using the amount used as a criterion for judging the quality of the fitting calculation result as a selection criterion. Select This makes it possible to calculate the waveform data and the physical quantities efficiently with sufficient accuracy regardless of the presence or absence of a shift in the fluorescence time waveform.
  • the time range (fitting range) that specifies the data range for performing the fitting is set to a fixed time position for the fluorescence time waveform, not for the time axis. ing.
  • the fitting range is moved on the time axis together with the fluorescence time waveform, and the respective fitting calculations are executed.
  • the fitting calculation is always performed under the optimal conditions.
  • the fitting calculation performed multiple times within the moving range of the fluorescence time waveform or excitation light time waveform depends on the numerical accuracy required for the waveform data and physical quantities, etc. It is preferable to appropriately set the above-mentioned moving interval and the like.
  • the initial position is specified by the time width from the excitation light peak and the like.
  • the end position may be set according to the time width from the excitation light peak or the like as in the initial position, or may be determined by the above-described selection criterion every time the fitting calculation is performed, and the waveform to be selected may be selected.
  • the data analysis may be ended with the time position at which the data is determined as the end position.
  • a sample evaluation device includes the above-described fluorescence measurement device, measurement waveform data obtained by data processing means of the fluorescence measurement device, And a sample evaluation means for evaluating the sample by comparing the standard waveform data.
  • FIG. 1 is a configuration diagram showing one embodiment of a fluorescence measurement device.
  • FIG. 2 is a graph showing an example of a time waveform of excitation light and fluorescence.
  • FIG. 3 is a graph showing another example of a time waveform of excitation light and fluorescence.
  • 4A to 4D are schematic diagrams for explaining a data analysis method in the fluorescence measuring device shown in FIG.
  • FIG. 5 is a schematic diagram showing selection of a measured waveform data from a plurality of waveform data.
  • FIG. 6 is a flowchart showing an example of a fluorescence measurement method in the fluorescence measurement device shown in FIG.
  • FIG. 7 is a configuration diagram showing one embodiment of the sample evaluation device.
  • FIG. 8 is a flowchart showing an example of a sample evaluation method in the sample evaluation apparatus shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a configuration diagram showing an embodiment of a fluorescence measurement device according to the present invention.
  • the fluorescence measuring device includes an excitation light source 1 for irradiating the sample S held by the sample holding means 2 with excitation light, and a light detection device for detecting fluorescence emitted from the sample S excited by the excitation light. And a control device 6 that drives and controls the excitation light source 1 and the photodetector 5.
  • FIG. 1 as an example of the sample S, a gaseous sample S held in a sample cell installed as the sample holding means 2 is shown.
  • the excitation light source 1 a pulse light source capable of supplying pulsed light having a predetermined wavelength and time width as excitation light is used.
  • the photodetector 5 for example, a photomultiplier tube (PMT) or a photodetector such as a streak camera is used as a photodetector capable of performing time-resolved measurement for obtaining a time waveform.
  • PMT photomultiplier tube
  • a photodetector such as a streak camera
  • a condensing optical system 3 and a spectroscope 4 are installed between the sample holding means 2 holding the sample S and the photodetector 5.
  • the condensing optical system 3 includes necessary optical elements such as a lens, and is generated at an excitation site in the sample S excited by the excitation light emitted from the excitation light source 1 and emitted in each direction. The emitted fluorescence is condensed and focused toward the photodetector 5.
  • the spectrometer 4 is provided as a wavelength selection unit that selects a light component in a predetermined wavelength range from the light component detected by the light detector 5 and causes the light component to enter the light detector 5.
  • a wavelength selection means a wavelength selection filter or the like can be used in addition to the spectroscope.
  • the wavelength range of light selected by the wavelength selecting means such as the spectrometer 4 or the wavelength selection filter is detected by the photodetector 5.
  • the wavelength is set or changed as appropriate to the wavelength range including the wavelength of the fluorescence or excitation light.
  • the control device 6 for controlling the operation of each part of the fluorescence measuring device includes a drive control unit 61, a data processing unit 62, and a range setting unit 63.
  • a control device 6 for example, a personal computer (PC) is used, and various functions required as the control device 6 are realized by activating software for overnight processing of the application software. .
  • PC personal computer
  • the excitation light source 1, the spectroscope 4, and the photodetector 5 are driven based on a clock signal and other control signals provided from the drive control unit 61 of the control device 6.
  • the pulsed excitation light supplied from the excitation light source 1 at a predetermined clock time interval the fluorescence emitted from the sample S by irradiation of each excitation light pulse and its time change are detected by light detection.
  • the fluorescence detection data based on the detected fluorescence is input to the control device 6 based on the detection signal.
  • the data processing unit 62 performs necessary signal processing on the detection signal input from the photodetector 5 based on a data analysis instruction based on a clock signal or the like from the drive control unit 61. Performs overnight processing such as overnight analysis.
  • the overnight analysis of the fluorescence detection data first, for the fluorescence emitted from the sample S and detected by the photodetector 5 due to the corresponding excitation light pulse, the time of the fluorescence indicating the time change of the fluorescence intensity Find the waveform.
  • the range setting unit 63 sets a fitting time range (hereinafter, referred to as a fitting range) used for fitting calculation in the data processing unit 62.
  • a fitting range used for fitting calculation in the data processing unit 62.
  • the control I device 6 includes a display device 7 (for displaying the time waveform of the fluorescence obtained by the data processing unit 62, the calculated waveform data, the fluorescence lifetime, etc.) as necessary. It is preferable to connect (see Fig. 1).
  • FIG. 2 is a graph showing an example of the time waveform of the excitation light emitted from the excitation light source 1 to the sample S and the time waveform of the fluorescence emitted from the sample S after the irradiation of the excitation light pulse.
  • the horizontal axis indicates the time axis (ns) used for the data analysis
  • the vertical axis indicates the number of detected excitation light or fluorescence (counts, detection intensity).
  • the number of detections on the vertical axis corresponding to the fluorescence intensity is shown on a 1 og scale, corresponding to the fact that the time waveform of fluorescence decay is exponential.
  • the time axis on the horizontal axis corresponds to the elapsed time when measuring fluorescence or excitation light.
  • time waveform of the excitation light shown in FIG. 2 in addition to the time waveform of the fluorescence is referred to in the data analysis of the time waveform of the fluorescence, as described below.
  • the time waveform of the excitation light is usually measured using the same measurement system as the fluorescence measurement, that is, the same optical system and photodetector, in order to avoid the influence on the time waveform caused by the difference in the configuration of the measurement system. Is done.
  • the excitation light can be measured by the photodetector 5 via the condensing optical system 3 and the spectroscope 4.
  • an optical system for guiding a part of the excitation light to the photodetector may be separately provided.
  • the wavelength selection by the spectroscope 4 or the wavelength selection filter
  • the excitation light and the fluorescence have different wavelengths, so that it is necessary to perform the excitation light measurement by changing the wavelength range to be selected.
  • the fluorescence intensity of the fluorescence emitted from the sample shows a time change of the fluorescence decay that attenuates with time after the excitation light irradiation. If the time width of the excitation light pulse can be neglected, the time waveform of the fluorescence due to this time change becomes an exponential function time decay time fluorescence. From the amplitude and decay constant of the exponential function in the decay curve, the fluorescence intensity and the fluorescence lifetime of the fluorescence excited by the sample can be calculated.
  • the time waveform of the fluorescence actually measured by the fluorescence measurement device is affected by the time waveform caused by the response of the device, so that the time waveform of the fluorescence that is somewhat deformed from the ideal decay curve is measured. That is, the time waveform of the excitation light determined by the finite pulse time width of the excitation light and the time lag due to the optical path is convoluted with the time waveform of the exponential fluorescence decay caused by the time change of the fluorescence itself.
  • the time waveform of the fluorescence can be obtained in the (complexed) state.
  • the time waveform E of the pumping light indicates the time waveform of the pumping light pulse having a pulse time width of about several ns which cannot be ignored.
  • the time waveform E of the fluorescence is convolved with the time waveform E of the excitation light, the fluorescence intensity rises with the start of the supply of the excitation light, and the number of detections increases. After the fluorescence intensity reaches a peak at a certain point in time (hereinafter referred to as the fluorescence peak), the fluorescence intensity is attenuated almost exponentially (linearly on the 1 og scale) in a time waveform. As shown in Fig.
  • the time position of the fluorescence peak on the time axis is the peak of the excitation light intensity in the time waveform of the excitation light (hereinafter referred to as the excitation light (Referred to as a peak) or at a later time position.
  • the time waveform of the excitation light E is convoluted with the time waveform of the fluorescence:
  • a time analysis of F is performed to obtain information such as the waveform time and the fluorescence lifetime.
  • the fitting calculation by deconvolution is performed. It is necessary to analyze data including.
  • the components of the time waveform E of the excitation light convolved with the time waveform F of the fluorescence are separated by the fitting calculation (deconvolution operation), and the time waveform of the fluorescence decay is calculated. Is extracted.
  • waveform data such as amplitude and decay constant, or physical quantities such as fluorescence intensity and fluorescence lifetime are calculated.
  • the above fitting calculation performed on the time waveform F of the fluorescence is based on the time axis of the measured time waveform F of the fluorescence, which is the time range that specifies the detection data used for the fitting calculation. Set and run above.
  • FIG. 2 illustrates a time range Rt set for the fluorescence time waveform F as an example of such a fitting range.
  • the operating state of the fluorescence measurement device may change (drift).
  • drift the fluctuation of the time waveform of the fluorescence between the respective fluorescence measurements due to the change of the device state becomes a problem in data analysis.
  • the oscillation timing is determined by the synchronous drive clock signal supplied from the drive control unit 61 of the control unit 6.
  • the timing may change within a certain time range.
  • the irradiation timing of the excitation light to the sample S is shifted with respect to the timing of the clock signal, so that the fluorescence generated by the irradiation of the excitation light pulse also has the time on the time axis of the time waveform. The position shifts.
  • FIG. 3 shows the time waveforms of the excitation light and the fluorescence when such a time waveform shift of the fluorescence occurs.
  • the time waveform E of the excitation light is the time position corresponding to the time waveform F of the fluorescence when there is no shift in the time waveform in the analysis of the time waveform F of the fluorescence performed for each fluorescence measurement. As shown in Fig. 2, it is located at a fixed time position with respect to the time axis used for fitting calculation.
  • the excitation light time waveform E and the fluorescence time waveform F are plotted on the time axis.
  • the deconvolution operation cannot be performed correctly. Also, if the fitting range Rt is set to a fixed time range with respect to the time axis, the fitting range Rt and the time waveform F of the fluorescence are similarly shifted, so that there is a problem in performing the fitting calculation. .
  • the fluorescence time waveform F and the fitting range Rt are moved together with respect to the time axis while the The fitting calculation of the overnight analysis is performed multiple times and sequentially at different time positions. Then, by selecting the optimal waveform data as the final measured waveform data from the plurality of waveform data calculated in each of the fitting calculations, the above-described shift of the fluorescence time waveform F and the like can be performed. O Data analysis that minimizes the effects of time waveform fluctuations in individual fluorescence measurements
  • FIG. 4A to FIG. 4D are schematic diagrams for explaining a data analysis method in the fluorescence measurement method using the fluorescence measurement device shown in FIG.
  • the schematic graphs shown in Fig. 4A to Fig. 4D are as follows, and the horizontal axis is the time axis t of data analysis (at the time of measurement).
  • the vertical axis indicates the number of detected excitation light and fluorescence (corresponding to excitation light intensity and fluorescence intensity) on a 1 og scale.
  • the excitation light time waveform E is represented by a pulse-like waveform ignoring the pulse time width, and the fluorescence time waveform F Is shown by a triangular waveform whose rise and decay are each linear on the 1 og scale. Further, regarding the time waveform E of the excitation light, the fixed time position of the excitation light peak on the time axis is defined as t0.
  • Fig. 4A shows that the time waveform F of the fluorescence is plotted in the + direction of the time axis (positive direction) with respect to the time axis used for the fitting calculation and the time waveform E of the excitation light that is fixed to the time axis. Direction).
  • the fitting range used for fitting calculation in the data analysis is a time range R 0 (dotted line) fixed to the time axis
  • the time waveform F shifts the fitting of the fluorescence time waveform F to the fitting range. It deviates from R0, and it becomes impossible to obtain correct waveform data or physical quantities as a result of the fitting calculation.
  • the time range Rt solid line
  • the time waveform F of the fluorescence As shown in the time range Rt (solid line) shown in FIG. 4A, the time fixed not to the time axis but to the time waveform F of the fluorescence.
  • the fitting range Rt is determined by the range setting section 63 (see FIG. 1) of the controller 6 for the fluorescence measurement in the first fluorescence measurement or in the preliminary fluorescence measurement performed prior to the main measurement. It is set automatically or manually by the operator using the time waveform etc. (range setting step).
  • the time waveform F of the fluorescence measured at the time position shifted from the time waveform E of the excitation light is moved so that the time positions of the excitation light peak and the fluorescence peak substantially match.
  • Figure 4B Furthermore, the fluorescence time waveform F is moved so that the fluorescence peak is located at the initial position t 1 (tl ⁇ t 0) that is a predetermined time width before the time position t 0 substantially coincident with the excitation light peak.
  • Fig. 4C the initial position t 1 (tl ⁇ t 0) that is a predetermined time width before the time position t 0 substantially coincident with the excitation light peak.
  • the initial position t1 described above is the number of fitties performed in data analysis. This is a time position that is the start position of the ringing calculation. And the time position t of the excitation light peak
  • the fluorescence time waveform F moves from the initial position t1 before 0 to the end position t2 (t2> tO) after the time position t0 (Fig. 4D).
  • the fluorescence time waveform F is sequentially moved in the + direction at predetermined movement time intervals, and a fitting calculation is performed at each moved time position to calculate the waveform data. I do.
  • the fitting range Rt is set as a fixed time range for the fluorescence time waveform F as described above, it is moved with respect to the time axis together with the fluorescence time waveform F.
  • the waveform data selected as the optimal one according to a predetermined selection criterion is determined by: This is adopted as the final measured waveform data for the time waveform F of this fluorescence.
  • the selection criteria for the waveform data are based on the amount used as a criterion for judging the quality of the results of the fitting calculations performed. Calculate physical quantities such as life.
  • the initial position t1 and the end position t2 that specify the moving range of the time waveform of the fluorescence when the fitting calculation is performed a plurality of times can be appropriately set on the time axis.
  • the time position of the time waveform F of fluorescence when there is no shift in the time waveform is always included in the movement range.
  • a plurality of fitting calculations are performed while moving the time waveform F of the fluorescence within the moving range to obtain a plurality of waveform data from the time waveform F of the single fluorescence, and according to a predetermined selection criterion. Select the most appropriate measurement waveform from multiple waveforms.
  • the movement of the time waveform F of the fluorescence from the initial position t1 to the end position t2 is based on the numerical accuracy required for the amounts to be obtained, such as waveform data and fluorescence lifetime. It is preferable that the moving time interval on the time axis is appropriately set so that is obtained, and the fitting calculation is executed at each time position moved at the moving interval. By setting the travel time interval in this way, both the improvement of the accuracy of each calculated value and the efficiency of the data analysis including the fitting calculation can be achieved at the same time. As a specific setting of the movement time interval, for example, if the time waveform data is digitized into multiple channels, the fluorescence time waveform F is moved by one channel (channel) or by multiple channels. However, there is a way to perform fitting calculations.
  • the initial position t1 is specified by a time width from the time position t0 of the excitation light peak set in advance.
  • the end position t2 may be set according to the time width from the time position t0 in the same manner as the initial position t1, or the judgment based on the above selection criteria is performed every time the fitting calculation is executed. Then, the data analysis may be ended with the time position at which the selected waveform data is determined as the end position.
  • the fitting range Rt applied to the time waveform F of the fluorescence is preferably set in advance in the range setting section 63 of the control device 6.
  • a specific method of setting the fitting range in the range setting unit 63 for example, there is a method of automatically setting the time range of the fluorescence obtained by the first fluorescence measurement or the preliminary fluorescence measurement.
  • the time waveform of the fluorescence is displayed on the display device 7, In both cases, there is a method of manually setting using a mouse force operation by an operator.
  • the fluorescence time waveform is specified by the time position on the time axis of the fluorescence peak of the fluorescence time waveform F.
  • a fitting range is set based on the fluorescence peak. This makes it possible to set a suitable fitting range for each of the fluorescence time waveforms obtained by the respective measurements.
  • the specific fitting range is a time range that excludes the rising and falling edges of the time waveform (both ends of the time waveform), where the number of fluorescence detections is small and statistical fluctuations and noise are easily affected. Is preferably set. More specifically, for example, the fluorescence intensity of the fluorescence peak is set as the reference fluorescence intensity, and the starting point and the end point of the fitting range are defined by a certain range (for example, 20% or more) of the fluorescence intensity with respect to the reference fluorescence intensity. There is a way to set.
  • the position on the time axis of the fluorescence peak is used as a reference time position, and the starting point and the end point of the fitting range are set according to a predetermined time range determined with respect to the reference time position.
  • a fitting range may be set so that both the starting point and the ending point are within the attenuation waveform after the fluorescent peak, or the starting point is within the rising waveform before the fluorescent peak, and the ending point. May be set to be within the attenuation waveform after the fluorescence peak.
  • the binary value (chi-square value) is a numerical value obtained as an index for determining whether or not the calculation result of each fitting executed in the approximate calculation method such as the nonlinear least square method used for the fitting calculation is good. The better the fitting condition, the smaller the value close to 1 (however,! 2 > 1).
  • the binary value is obtained. It gets smaller.
  • the time position tc which is the time position of the excitation light peak or a time position after it, the binary value becomes minimum, and then the binary value increases again toward the end position t2.
  • FIG. 6 is a flowchart showing an example of a data analysis method when c 2 values obtained by fitting calculation are used as selection criteria for waveform data.
  • a fitting range is set with respect to a time waveform F of the fluorescence, based on a fluorescence intensity% range or a time range based on the fluorescence peak (step S101).
  • the time waveform F of the fluorescence obtained by the measurement is moved on the time axis to a time position t 0 at which the fluorescence peak substantially coincides with the excitation light peak, and further moved in the negative direction by a predetermined time width.
  • the fluorescence time waveform F is arranged at the initial position t1 (S102).
  • the first fitting calculation is performed (S103), and the first fitting calculation is performed. Calculating the waveform data and the C 2 value.
  • the fluorescence measurement device and the fluorescence measurement method described above can be applied to a sample evaluation device that evaluates the quality and the like of various samples.
  • fluorescence lifetime measurement device fluorescence lifetime measurement device
  • fluorescence measurement using a semiconductor wafer to be evaluated as a sample fluorescence measurement using a semiconductor wafer to be evaluated as a sample
  • the comparison with the fluorescence lifetime and fluorescence intensity of the standard sample (sample) is performed to evaluate the crystal quality at each part of the semiconductor wafer.
  • FIG. 7 is a configuration diagram showing one embodiment of a sample evaluation device using the fluorescence measurement device according to the present invention.
  • a sample S for example, a semiconductor wafer
  • a sample holding table 2 a as the sample holding means 2.
  • the excitation light source 1 is installed above the sample S held on the sample holder 2a, and the excitation light pulse supplied from the excitation light source 1 passes through the lens 11 and further has a focusing optical system.
  • the light passes through the half mirror 3 2 and the lens 31 constituting 3 and irradiates a predetermined irradiation position on the sample S, which is a part to be evaluated of the sample S.
  • the fluorescence from the site on the sample S excited by the excitation light pulse is collected by the condensing optical system 3 consisting of the lens 31, the half mirror 32, the variable optical attenuator 33, and the lens 34, and the spectroscopy.
  • variable optical attenuator 33 is used by setting light attenuation as necessary for adjusting the amount of light during excitation light measurement or fluorescence measurement.
  • the control device 6 has a sample evaluation unit 64 for evaluating the sample with reference to the result of the fluorescence measurement, in addition to the drive control unit 61, the data processing unit 62, and the range setting unit 63. It is configured.
  • the functions and operations of the drive control unit 61, the data processing unit 62, and the range setting unit 63 are the same as those of the fluorescence measurement device shown in FIG.
  • the sample evaluation unit 6 compares the measured waveform data obtained by the data analysis including the fitting calculations performed multiple times in the data processing unit 62 with the standard waveform data obtained in advance. Compare with Then, the quality of the evaluation portion of the sample S is evaluated based on the comparison results.
  • FIG. 8 is a flowchart showing an example of a sample evaluation method using the sample evaluation device shown in FIG.
  • the sample evaluation method shown in Fig. 8 is applied to each part of the semiconductor wafer.
  • the sample holder 2a is used as a movable stage and the sample S is moved in the X-Y direction, and each part on the sample S is irradiated with the excitation light pulse from the excitation light source 1 sequentially.
  • an evaluation method in the case of performing an evaluation by fluorescence measurement is shown.
  • the time waveform of the excitation light used for the fitting calculation in the data analysis is measured (step S201).
  • the selected wavelength range of the spectrometer 4 (or the wavelength selection filter) is switched to the excitation light wavelength and set.
  • the excitation light can be measured by placing a scatterer that does not generate fluorescence instead of the sample S on the sample holder 2a, as described above with reference to the fluorescence measurement apparatus in FIG. .
  • the amount of the excitation light incident on the photodetector 5 can be adjusted by the variable optical attenuator 33 provided in the focusing optical system 3.
  • the selected wavelength range of the spectrometer 4 (or the wavelength selection filter) is switched to the fluorescence wavelength and set, and a standard sample serving as a reference for sample evaluation is placed on the sample holder 2a.
  • the time waveform of the fluorescence of the standard sample is measured (S202). Also, if the time waveform of the fluorescence from the standard sample is measured and prepared in advance, it is possible to read and use the data of the time waveform directly without performing the fluorescence measurement on the standard sample. good.
  • the fitting range is set with reference to the time waveform (S203).
  • the time waveform of the fluorescence of the standard sample is displayed on the display device 7 connected to the control device 6, and the operator is operated by operating the mouse cursor. Instruct the start point and end point of the setting range.
  • the range setting section 63 of the control device 6 sets the following fitting range to be applied to the main measurement of the fluorescence based on the specified start point and end point. Specifically, depending on the intensity% range for the fluorescence intensity at the fluorescence peak or the time range for the time position of the fluorescence peak, The fitting range is fixedly set for the time waveform of the fluorescence.
  • the measurement sample s to be evaluated is placed at a predetermined position on the sample holder 2a, which is a movable stage, and sample evaluation by fluorescence measurement is started.
  • the sample holder 2a is driven, and the measurement sample S is moved so that a predetermined portion of the measurement sample S is irradiated with the excitation light pulse from the excitation light source 1 (S205). Then, an excitation light pulse is supplied, and the time waveform of the fluorescence of the measurement sample S is measured (S206). Then, a plurality of fitting calculations in the above-described fitting range are applied, and a time analysis is performed on the obtained fluorescence time waveform to calculate the measured waveform data, and the fluorescence lifetime and fluorescence intensity based on the data. (S207).
  • the sample evaluation section 64 compares the measured waveform data calculated for the measurement sample S with the standard waveform data previously obtained for the standard sample, and assigns the measured waveform data to the evaluation site of the measurement sample S.
  • the quality is evaluated to determine the quality or the like (S208).
  • the comparison between the measured waveform data and the standard waveform data may be made by comparing the waveform data with each other, or by comparing the values of the fluorescence lifetime and the fluorescence intensity.
  • a sample evaluation device capable of accurately and efficiently evaluating a sample even when a shift occurs in the fluorescence time waveform is realized.
  • a sample evaluation device capable of accurately and efficiently evaluating a sample even when a shift occurs in the fluorescence time waveform is realized.
  • a semiconductor wafer evaluation apparatus and the like a large number of fluorescence measurements are repeatedly performed on each part of a sample (semiconductor wafer). Even in such a case, if the above-described fluorescence measurement device is applied, the influence of the shift of the time waveform generated between the fluorescence measurements can be suppressed as much as possible.
  • the sample evaluation device described above measures the time waveform of the excitation light even if the time waveform of the excitation light is measured first, and then only the fluorescence measurement for each site on the sample is repeatedly performed.
  • the effect of waveform shift can be minimized by applying data analysis by multiple fitting calculations. Therefore, the evaluation of each part on the sample can be performed accurately, efficiently, and in a short time.
  • the necessary conditions such as the fitting range and the initial position at which multiple fitting calculations are started are set in advance, the measurement sample
  • Fluorescence measurement, data analysis, and sample evaluation for each site in S can all be performed automatically.
  • the fluorescence measurement method and the fluorescence measurement device according to the present invention are not limited to the above embodiment, and various modifications are possible.
  • the type of the sample S to be measured the type of the sample S to be measured, the wavelength of the fluorescence, the excitation light source 1 and the photodetector According to the positional relationship of 5, etc.
  • each has a suitable configuration.
  • the drive control unit and the data processing unit are configured to be provided in the same control device 6 in the embodiment shown in FIGS. 1 and 7, but are separately provided in the drive control device and the data processing device. It may be installed as.
  • the fluorescence may be measured and then the excitation light may be measured, and the above-described data analysis may be performed on each time waveform.
  • the fluorescence measurement is first performed with the standard sample, but the fitting range is set without using the standard sample from the time waveform of the fluorescence obtained by the first fluorescence measurement on the measurement sample. Etc. can be performed.
  • the excitation light time waveform is arranged at a fixed time position on the time axis, and the fluorescence time waveform is shifted from the initial position. It is possible to apply not only the above-described method of executing the fitting calculation while moving to the end position, but also various data analysis methods.
  • the time waveform of the excitation light and the time waveform of the fluorescence are set on the time axis at a position closer to the time point where the fluorescence peak of the fluorescence time waveform substantially coincides with the excitation light peak of the time waveform of the excitation light.
  • one of the time waveform E of the excitation light and the time waveform F of the fluorescence is arranged at a fixed time position on the time axis, and the other is moved with respect to the time axis, which simplifies the data analysis procedure. It is preferable in terms of conversion.
  • sample evaluation device when the time waveform of the fluorescence is measured (S206), if the fluorescence of the sample has fading, the data is analyzed overnight (S207) and the sample is evaluated. (S208) may not be performed.
  • the fluorescence measurement method, the fluorescence measurement device, and the sample evaluation device using the same according to the present invention are capable of efficiently obtaining waveform data and fluorescence lifetime with sufficient accuracy regardless of the presence or absence of a shift in the fluorescence time waveform.
  • the present invention can be used as a fluorescence measurement method and a fluorescence measurement device capable of calculating a physical quantity, and a sample evaluation device using the same.
  • the time axis used for data analysis to determine the fluorescence lifetime are arranged at predetermined time positions, respectively, and the time waveform of the fluorescence and the fitting range, or the time waveform of the excitation light, are such that the fluorescence peak is more than the excitation light peak.
  • the fitting calculation is performed multiple times while moving from the initial position before or after the time width of to the end position on the opposite side. Obtained by fitting calculation; Based on selection criteria such as values, etc., select the most suitable measured waveform data from a plurality of obtained waveform data. This makes it possible to efficiently calculate physical quantities such as waveform data and fluorescence lifetime with sufficient accuracy, regardless of whether or not a shift in the fluorescence time waveform occurs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

明細書
蛍光測定方法、 蛍光測定装置及びそれを用いた試料評価装置 技術分野
本発明は、 励起光によって励起された試料から放出される蛍光の時間波形を測 定し、 データ解析を行って波形デ一夕などを算出する蛍光測定方法、 蛍光測定装 置、 及びそれを用いた試料評価装置に関するものである。 背景技術
試料において発生した蛍光を時間分解測定して、 蛍光寿命などの情報を取得す る蛍光測定装置においては、 励起光源からのパルス状の励起光を照射して試料を 励起するとともに、 励起された試料で発生して放出される蛍光、 特にその時間経 過に伴う強度変化を、 光電子増倍管などの光検出器によって検出する。 そして、 光検出器から出力される蛍光検出デ一夕によって得られる蛍光の時間波形に対し て、 データ処理装置で演算処理等のデータ解析を実行することによって、 波形デ —夕や、 蛍光寿命などの算出を行っている。
このような蛍光測定装置では、 得られる蛍光の時間波形は、 励起光パルスの照 射後に放出される蛍光強度が時間とともに減衰していく蛍光崩壊 (Decay) の時 間波形となる。 ただし、 実際には、 蛍光成分に起因する指数関数的な蛍光崩壊の 時間波形と、 励起光の有限なパルス幅など装置に起因する装置応答の時間波形に よる励起光の時間波形とがコンボリューシヨンされた状態で、 蛍光の時間波形が 測定される。
このため、 デ一夕解析を行って波形データや蛍光寿命などを算出する場合、 測 定された蛍光の時間波形に対して、 別に測定した励起光の時間波形を用いて、 蛍 光崩壊及び装置応答の時間波形のデコンボリューシヨンを行う。 同時に、 蛍光崩 壊の時間波形に対して、 指数関数などの関数系を適用したフイツティング計算を 行って、 時間波形を特定する波形デ一夕や、 蛍光寿命などの物理量を算出してい る (例えば、 特許第 2 9 1 1 1 6 7号公報参照)。 発明の開示
フィ ヅティング計算を含む上記したデ一夕解析に用いる蛍光及び励起光のそれ それの時間波形は、 測定系の構成の相違によって発生する時間波形への影響を避 けるため、 通常は同一の測定系、 すなわち同一の光学系及び光検出器等を用いて 測定される。 このとき、 これらの時間波形は、 異なる時間にそれそれ別に蛍光ま たは励起光の測定を行って求められる。 このように、 同一の測定系を用いて別々 に測定を行った場合、 その間での時間経過による測定装置の動作状態の変化 (ド リフ ト) などに起因して生じる時間波形の変動が、 デ一夕解析上問題となる。 特に、 近年、 半導体ウェハの結晶品質の評価など、 試料評価の様々な用途に対 して、 蛍光寿命などの情報を取得する蛍光測定装置の適用が進められている。 ま た、 このような蛍光測定装置の適用範囲の拡大に伴って、 例えば半導体ウェハ上 の複数の部位に対して蛍光測定による評価を実行していくなど、 多数回の蛍光測 定をできるだけ短時間で連続的に行う必要性が生じている。
このとき、 各蛍光測定での測定条件については、 測定装置の動作状態が熱など によって変化したり、 励起光源として用いるパルスレーザ光源の発振タイミング が、 光検出器との同期用のクロック信号のタイミングに対して変動するなどの現 象によって、 時間の経過とともに測定条件が変化していく。 このため、 それぞれ の蛍光測定で得られる蛍光の時間波形をそのまま用いると、 あらかじめ別の測定 で求められている励起光の時間波形に対して、 蛍光の時間波形の時間軸上での位 置がそれそれの蛍光測定でシフトしてしまう。
このように、 デ一夕解析の時間軸、 及び時間軸に対して固定に配置された励起 光の時間波形に対して、 測定される蛍光の時間波形がシフトしていくと、 その時 間ずれによってデコンボリューシヨンによるフィヅティング計算などのデ一夕解 析を正しく行うことができず、 結果として、 波形デ一夕や蛍光寿命を正しく算出 することができないという問題がある。 一方、 蛍光測定を行うごとに励起光測定 をも行うこととすると、 時間波形のシフトの影響が抑制される一方で、 蛍光測定 や試料評価に要する時間が長時間化してしまうという問題を生じる。
本発明は、 以上の問題点に鑑みてなされたものであり、 蛍光の時間波形の変動 にかかわらず、 波形デ一夕等を正確かつ効率的に算出することが可能な蛍光測定 方法、 蛍光測定装置、 及びそれを用いた試料評価装置を提供することを目的とす る。
このような目的を達成するために、本発明による蛍光測定方法は、 ( 1 )パルス 状の励起光を試料に照射する励起ステップと、 (2 )励起光によって励起された試 料から放出される蛍光を検出する光検出ステヅプと、 (3 )光検出ステヅプで検出 される蛍光の時間波形について、 蛍光の時間波形に対して固定に設定された所定 の時間範囲であるフィヅティング範囲でのフィヅティング計算を含むデ一夕解析 を行って、 波形デ一夕を算出するデ一夕処理ステップと、 を備え、 (4 )デ一夕処 理ステップにおいて、 あらかじめ求められた励起光の時間波形、 及び蛍光の時間 波形を、 フィッティング計算に用いる時間軸上に、 蛍光の時間波形の蛍光ピーク が励起光の時間波形の励起光ピークと略一致する時間位置よりも所定の時間幅だ け前または後の初期位置となるようにそれそれ配置した後、 初期位置から、 蛍光 ピークが励起光ピークと略一致する時間位置を挟んで時間軸上で反対側となる終 了位置に向かって、 蛍光の時間波形及びフィッティング範囲、 または励起光の時 間波形を時間軸に対して移動させつつ、 複数の異なる時間位置において、 励起光 の時間波形を参照してフィ ヅティング計算をそれそれ実行するとともに、 フィ ヅ ティング計算のそれぞれで算出された複数の波形データのうち、 所定の選択基準 によって選択された波形デ一夕を、 最終的な測定波形デ一夕とすることを特徴と する。
また、本発明による蛍光測定装置は、 (a )パルス状の励起光を試料に照射する 励起手段と、 (b )励起光によって励起された試料から放出される蛍光を検出する 光検出手段と、 (c )光検出手段で検出される蛍光の時間波形について、蛍光の時 間波形に対して固定に設定された所定の時間範囲であるフイツティング範囲での フイツティング計算を含むデータ解析を行って、 波形デ一夕を算出するデ一夕処 理手段と、 を備え、 (d )デ一夕処理手段は、 あらかじめ求められた励起光の時間 波形、 及び蛍光の時間波形を、 フィ ヅティング計算に用いる時間軸上に、 蛍光の 時間波形の蛍光ピークが励起光の時間波形の励起光ピークと略一致する時間位置 よりも所定の時間幅だけ前または後の初期位置となるようにそれぞれ配置した後 、 初期位置から、 蛍光ピ一クが励起光ピークと略一致する時間位置を挟んで時間 軸上で反対側となる終了位置に向かって、 蛍光の時間波形及びフイツティング範 囲、 または励起光の時間波形を時間軸に対して移動させつつ、 複数の異なる時間 位置において、 励起光の時間波形を参照してフィ ヅティング計算をそれぞれ実行 するとともに、 フィ ヅティング計算のそれそれで算出された複数の波形デ一夕の うち、 所定の選択基準によって選択された波形デ一夕を、 最終的な測定波形デ一 夕とすることを特徴とする。
上記した蛍光測定方法及び蛍光測定装置においては、 蛍光の時間波形、 及び蛍 光測定とは別に測定された励起光の時間波形を、 フィッティング計算の時間軸上 での所定の時間位置にそれそれ配置する。 そして、 蛍光の時間波形または励起光 の時間波形を、 蛍光ピークが励起光ピークよりも所定の時間幅だけ前または後の 初期位置から、 反対側の終了位置 (前の初期位置から後の終了位置、 または後の 初期位置から前の終了位置) へと移動していく。
ここで、 測定された蛍光の時間波形に時間軸方向のシフトがなく、 蛍光及び励 起光の時間波形の時間軸上での位置 (時間位置) がー致している場合には、 蛍光 の時間波形における蛍光ピークは、 励起光ピークの時間位置またはそれよりも後 の時間位置となる。 したがって、 蛍光の時間波形及び励起光の時間波形の、 デ一 夕解析における相互の移動範囲を指定する初期位置及び終了位置を時間軸上で適 切に設定しておけば、 シフトを生じていないときの上記した蛍光の時間波形の位 置が、 その移動範囲内に必ず含まれることとなる。
これに対して、 本蛍光測定方法及び蛍光測定装置では、 上記したように蛍光の 時間波形または励起光の時間波形を、 時間軸上で移動しつつ複数回のフィッティ ング計算を実行して、 単一の蛍光の時間波形から複数の波形デ一夕を求めるとと もに、 フィヅティングの計算結果の良否を判断する判断基準となる量などを選択 基準として、 複数の波形データから最適な測定波形データを選択する。 これによ つて、 蛍光の時間波形のシフト発生の有無にかかわらず、 充分な正確さで効率的 に波形デ一夕や各物理量などを算出することが可能となる。
また、 デ一夕解析については、 フィッティングを行うデ一夕範囲を指定する時 間範囲 (フィッティング範囲) を、 時間軸に対してではなく蛍光の時間波形に対 して固定の時間位置に設定している。 そして、 蛍光の時間波形を移動する場合に は、 そのフィヅティング範囲を蛍光の時間波形とともに時間軸上で移動させて、 それぞれのフィヅティング計算を実行している。 これによつて、 複数回実行され るフィヅティング計算のそれぞれにおいて、 常に最適な条件でフィヅティング計 算が行われる。
なお、 蛍光の時間波形または励起光の時間波形の移動範囲内での複数回のフィ ッティング計算については、 波形データや物理量に要求される数値精度などに応 じて、 フィッティング計算を実行する時間軸上の移動間隔などを適宜設定するこ とが好ましい。 また、 初期位置及び終了位置については、 初期位置は、 励起光ピ —クからの時間幅等によって位置が指定される。 一方、 終了位置については、 初 期位置と同様に励起光ピークからの時間幅等によって設定しても良いし、 フイツ ティング計算を実行するごとに上記した選択基準による判断を行って、 選択する 波形データが決まった時間位置を終了位置としてデータ解析を終了しても良い。 また、 本発明による試料評価装置は、 上記した蛍光測定装置と、 蛍光測定装置 のデータ処理手段において得られた測定波形データ、 及びあらかじめ求められた 標準波形データを比較して、 試料の評価を行う試料評価手段と、 を備えることを 特徴とする。
これによつて、 測定された蛍光の時間波形に時間軸上でのシフトを生じた場合 でも、 正確かつ効率的に試料の評価を行うことが可能な試料評価装置が実現され る。 特に、 半導体ウェハの評価装置などにおいては、 試料 (半導体ウェハ) の各 部位を対象として多数回の蛍光測定が繰り返して実行される。 このような場合に おいても、 上記した蛍光測定装置を適用すれば、 各蛍光測定間で生じる測定条件 の変動による蛍光の時間波形のシフトの影響を、 極力抑制することができる。 なお、 試料評価装置の評価対象となる試料については、 上記した半導体ウェハ の品質評価以外にも、 創薬におけるマススクリーニングなど、 様々な試料評価に 対して、 上記した構成の試料評価装置を適用することが可能である。 図面の簡単な説明
図 1は、 蛍光測定装置の一実施形態を示す構成図である。
図 2は、 励起光及び蛍光の時間波形の一例を示すグラフである。
図 3は、 励起光及び蛍光の時間波形の他の例を示すグラフである。
図 4 A〜図 4 Dは、 図 1に示した蛍光測定装置におけるデ一夕解析方法につい て説明するための模式図である。
図 5は、 複数の波形デ一夕からの測定波形デ一夕の選択について示す模式図で ある。
図 6は、 図 1に示した蛍光測定装置における蛍光測定方法の一例を示すフロー チヤ一トである。
図 7は、 試料評価装置の一実施形態を示す構成図である。
図 8は、 図 7に示した試料評価装置における試料評価方法の一例を示すフ口一 チャートである。 発明を実施するための最良の形態
以下、 図面とともに本発明による蛍光測定方法、 蛍光測定装置、 及びそれを用 いた試料評価装置の好適な実施形態について詳細に説明する。 なお、 図面の説明 においては同一要素には同一符号を付し、 重複する説明を省略する。 また、 図面 の寸法比率は、 説明のものと必ずしも一致していない。
図 1は、 本発明による蛍光測定装置の一実施形態を示す構成図である。 本蛍光 測定装置は、 試料保持手段 2によって保持されている試料 Sに対して励起光を照 射する励起光源 1と、 励起光によって励起された試料 Sから放出される蛍光を検 出する光検出器 5と、 励起光源 1及び光検出器 5を駆動制御する制御装置 6と、 を備えて構成されている。 なお、 図 1においては、 試料 Sの例として、 試料保持 手段 2として設置された試料セル内に保持されたガス状などの試料 Sを示してあ る o
励起光源 1としては、 所定の波長及び時間幅を有するパルス状の光を励起光と して供給可能なパルス光源が用いられる。 また、 光検出器 5としては、 時間波形 を得るための時間分解測定が可能なものとして、 例えば光電子増倍管 (P M T ) や、 ストリークカメラなどの光検出器が用いられる。
試料 Sを保持している試料保持手段 2と、 光検出器 5との間には、 集光光学系 3及び分光器 4が設置されている。 集光光学系 3はレンズ等の必要な光学要素を 有して構成され、 励起光源 1から照射された励起光によつて励起されだ試料 S中 の励起部位において発生されて、 各方向に放出された蛍光を光検出器 5に向けて 集光及び集束させる。
また、 分光器 4は、 光検出器 5で検出される光成分について、 所定波長域の光 成分を選択して光検出器 5へと入射させる波長選択手段として設置されている。 なお、 このような波長選択手段としては、 分光器の他にも、 波長選択フィル夕な どを用いることも可能である。 また、 分光器 4または波長選択フィル夕などの波 長選択手段によって選択する光の波長域については、 光検出器 5で検出しようと する蛍光、 または励起光の波長を含む波長域に適宜設定または変更される。 蛍光測定装置の各部の動作制御等を行う制御装置 6は、 駆動制御部 6 1、 デー 夕処理部 6 2、 及び範囲設定部 6 3を有して構成されている。 このような制御装 置 6としては、 例えばパーソナルコンピュータ (P C ) などが用いられ、 用 ソフトウヱァゃデ一夕処理用ソフトウェアなどを起動することによって、 制 装 置 6として必要な各機能が実現される。
励起光源 1、 分光器 4、 及び光検出器 5は、 この制御装置 6の駆動制御部 6 1 から与えられるクロヅク信号やその他の制御信号に基づいて駆動される。 これに よって、 所定のクロック時間間隔で励起光源 1から供給されるパルス状の励起光 に対して、 それそれの励起光パルスの照射によって試料 Sから放出される蛍光及 びその時間変化が、 光検出器 5によって検出される。 検出された蛍光による蛍光 検出デ一夕は、 検出信号によつて制御装置 6に入力される。
デ一夕処理部 6 2は、 駆動制御部 6 1からのクロヅク信号などによるデ一夕解 析の指示に基づいて、 光検出器 5から入力された検出信号に対して、 必要な信号 処理ゃデ一夕解析などのデ一夕処理を実行する。 蛍光検出データに対するデ一夕 解析では、 まず、 該当する励起光パルスに起因して、 試料 Sから放出され光検出 器 5によって検出された蛍光について、 その蛍光強度の時間変化を示す蛍光の時 間波形を求める。
そして、 得られた蛍光の時間波形に対して、 時間波形を所定の曲線 (関数系) 等でフィッティングするフィヅティング計算を含むデータ解析を行って、 波形デ —夕や必要な物理量などを算出する。 算出される波形データ及び物理量としては 、 例えば、 時間波形の曲線形状を決める各パラメ一夕、 蛍光成分の蛍光寿命、 蛍 光強度などの物理量がある。 また、 範囲設定部 6 3は、 データ処理部 6 2でのフ ィヅティング計算に用いられるフィッティングの時間範囲 (以下、 フィヅティン グ範囲という) の設定を行う。 ここで、 データ解析の具体的な方法や、 フィヅテ イング範囲の設定などについては、 後述する。 なお、 制 ¾I装置 6には、 必要に応じて、 データ処理部 6 2で得られた蛍光の時 間波形や、 算出された波形デ一夕、 蛍光寿命等を表示するための表示装置 7 (図 1参照) を接続しておくことが好ましい。
以上の構成において、 励起光源 1からパルス状の励起光が供給されて試料 Sに 照射されると (励起ステップ)、励起された試料 Sから蛍光が放出され、集光光学 系 3及び分光器 4を介して光検出器 5によって検出される(光検出ステップ)。そ して、 制御装置 6のデータ処理部 6 2において、 測定された蛍光の時間波形に対 してデータ解析が行われて、 波形デ一夕等が算出される (デ一夕処理ステップ) ο
以下、 図 1に示した蛍光測定装置における蛍光測定方法について、 そのデ一夕 解析方法 (データ処理方法) を示しつつ具体的に説明する。
最初に、 励起光パルス照射後の蛍光測定によって得られる蛍光の時間波形につ いて説明する。
図 2は、 励起光源 1から試料 Sに照射される励起光の時間波形、 及び励起光パ ルスの照射後に試料 Sから放出される蛍光の時間波形について、 その一例を示す グラフである。 このグラフにおいて、 横軸はデ一夕解析に用いる時間軸 (n s ) 、 縦軸は励起光または蛍光の検出数 (c o u n t s , 検出強度) を示している。 ただし、 蛍光強度に相当する縦軸の検出数については、 蛍光崩壊の時間波形が指 数関数的であることに対応して、 1 o gスケールで示してある。 また、 横軸の時 間軸は、 蛍光または励起光の測定時における経過時間に対応している。
ここで、 蛍光の時間波形に加えて図 2で示されている励起光の時間波形は、 以 下に述べるように、 蛍光の時間波形のデータ解析において参照されるものである 。 この励起光の時間波形は、 測定系の構成の相違によって発生する時間波形への 影響を避けるため、 通常は蛍光測定と同一の測定系、 すなわち同一の光学系及び 光検出器等を用いて測定される。
図 1に示した構成においては、 例えば、 蛍光測定の対象となる試料 Sの代わり に、 蛍光を発生しない散乱体を試料保持手段 2に保持させることによって、 集光 光学系 3及び分光器 4を介して光検出器 5で励起光測定を行うことができる。 あ るいは、 励起光の一部を光検出器へと導光するための光学系を別に設置しても良 い。 なお、 分光器 4 (または波長選択フィル夕など) による波長選択については 、 励起光と蛍光とでは波長が異なるので、 選択する波長域を変更して励起光測定 を行う必要がある。
パルス状の励起光によつて試料が励起された場合、 試料から放出される蛍光の 蛍光強度は、 励起光照射後の時間経過とともに減衰していく蛍光崩壊の時間変化 を示す。 この時間変化による蛍光の時間波形は、 励起光パルスの時間幅が無視で きる場合には、 指数関数的な蛍光崩壊の時間波形となる。 そして、 その指数関数 の崩壊曲線での振幅及び減衰定数から、 試料で励起された蛍光の蛍光強度及ぴ蛍 光寿命を算出することができる。
一方、 蛍光測定装置で実際に測定される蛍光の時間波形においては、 装置応答 に起因する時間波形の影響があるため、 理想的な崩壊曲線からある程度変形され た蛍光の時間波形が測定される。 すなわち、 蛍光の時間変化自体に起因する上記 した指数関数的な蛍光崩壊の時間波形に対して、 励起光の有限なパルス時間幅や 光路による時間ずれなどによって決まる励起光の時間波形が畳み込まれた (コン ポリューションされた) 状態で、 蛍光の時間波形が得られる。
図 2に示した各時間波形の例においては、 励起光の時間波形 Eは、 数 n s程度 の無視できないパルス時間幅を有する励起光パルスの時間波形を示している。 こ れに対して、 蛍光の時間波形 Fは、 このような励起光の時間波形 Eがコンボリュ —シヨンされるため、 励起光の供給の開始とともに蛍光強度が立ち上がって検出 数が増加していき、 ある時点で蛍光強度がピークになった後 (以下、 蛍光ピーク という)、 ほぼ指数関数的(1 o gスケールでは直線的)に蛍光強度が減衰してい く時間波形となっている。 なお、 時間軸上における蛍光ピークの時間位置は、 図 2に示すように、 励起光の時間波形における励起光強度のピーク (以下、 励起光 ピークという) の時間位置またはそれよりも後の時間位置となる。
次に、 蛍光の時間波形から波形データや蛍光寿命等を算出するためのデ一夕解 析方法について説明する。
上記のように励起光の時間波形 Eが畳み込まれた蛍光の時間波形: Fに対してデ 一夕解析を行って、 波形デ一夕や蛍光寿命などの情報を取得するためには、 励起 光の時間波形 Eと、 適当な関数系 (例えば指数関数) 及びパラメ一夕 (例えば振 幅及び減衰定数) によって仮定された蛍光崩壊の時間波形とを用いて、 デコンボ リュ一シヨンによるフイツティング計算を含むデータ解析を行う必要がある。 このデ一夕解析では、 フィヅティング計算 (デコンボリュ一シヨン演算) によ つて、 蛍光の時間波形 Fにコンボリューシヨンされている励起光の時間波形 Eの 成分が分離されて、 蛍光崩壊の時間波形が抽出される。 そして、 この蛍光崩壊の 時間波形に対するフィッティング計算の計算結果によって、 振幅及び減衰定数な どの波形データ、 あるいはさらに蛍光強度及び蛍光寿命などの物理量が算出され る o
蛍光の時間波形 Fに対して実行される上記のフイツティング計算は、 測定され た蛍光の時間波形 Fのうちで、 フイツティング計算に用いる検出デ一夕を指定す る時間範囲であるフィッティング範囲を時間軸上で設定して実行される。 図 2に おいては、 このようなフィヅティング範囲の例として、 蛍光の時間波形 Fに対し て設定された時間範囲 R tが図示されている。
ここで、 デコンボリューションに用いる励起光の時間波形の測定時から蛍光測 定までの時間経過や、 蛍光測定を複数回繰り返して行う必要がある場合における 測定実行中の時間経過などに伴って、 測定中に蛍光測定装置の動作状態が変化 ( ドリフト) していくことがある。 このとき、 装置状態の変化に起因する蛍光の時 間波形の、 それぞれの蛍光測定間での変動が、 データ解析上問題となる。
例えば、 励起光源 1としてパルスレーザ光源を用いた場合、 その発振タイミン グは、 制^]装置 6の駆動制御部 6 1から与えられる同期駆動用のクロック信号の タイミングに対して、 ある程度の時間範囲で変化することがある。 この場合、 試 料 Sへの励起光の照射タイミングが、 クロック信号のタイミングに対してずれて しまうので、 励起光パルスの照射によって発生される蛍光についても、 その時間 波形の時間軸上での時間位置がシフトしてしまう。
図 3に、 このような蛍光の時間波形のシフトが発生した場合の励起光及び蛍光 の時間波形が示されている。 励起光の時間波形 Eは、 それぞれの蛍光測定に対し て行われる蛍光の時間波形 Fのデ一夕解析において、 時間波形のシフトがない場 合に蛍光の時間波形 Fと対応した時間位置となる (図 2参照) ように、 フイツテ イング計算に用いる時間軸に対して固定の時間位置に配置される。 ここで、 図 3 に示すように、 蛍光の時間波形 Fが時間軸上の前後いずれかにシフトして測定さ れると、 励起光の時間波形 Eと蛍光の時間波形 Fとが時間軸上でずれてしまい、 デコンボリュ一シヨン演算が正しく行えなくなる。 また、 フィッティング範囲 R tが時間軸に対して固定の時間範囲に設定されていると、 同様にフィッティング 範囲 R tと蛍光の時間波形 Fとがずれてしまうので、 フィッティング計算の実行 上問題がある。
これに対して、 図 1に示した実施形態の蛍光測定装置、 及びそれによる蛍光測 定方法においては、 蛍光の時間波形 F及びフィッティング範囲 R tを、 時間軸に 対してともに移動させつつ、 デ一夕解析のフィッティング計算を複数回、 それそ れ異なる時間位置で順次実行する。 そして、 フィッティング計算のそれぞれで算 出された複数の波形デ一夕から、 最適な波形データを最終的な測定波形デ一夕と して選択することによって、 上記した蛍光の時間波形 Fのシフトなど、 個々の蛍 光測定における時間波形の変動の影響が極力抑制されるデータ解析を実現してい る o
図 4 A〜図 4 Dは、 図 1に示した蛍光測定装置を用いた蛍光測定方法における デ一夕解析方法について説明するための模式図である。 ここで、 図 4 A〜図 4 D に示した模式的なグラフは、 それそれ、 横軸はデータ解析の時間軸 t (測定の時 間経過に対応) を示し、 縦軸は励起光及び蛍光の検出数 (励起光強度及び蛍光強 度に対応) を 1 o gスケールで示している。
なお、 図 4 A〜図 4 Dのそれぞれにおいては、 説明及び図示の簡単のため、 励 起光の時間波形 Eをパルス時間幅を無視したパルス状の波形によって、 また、 蛍 光の時間波形 Fを立ち上がり及び減衰がそれそれ 1 o gスケールで直線となる三 角形状の波形によって示している。 また、 励起光の時間波形 Eについて、 時間軸 上での励起光ピークの固定された時間位置を t 0とする。
図 4 Aは、 蛍光の時間波形 Fが、 フィッティング計算に用いる時間軸と、 時間 軸に対して固定に配置されている励起光の時間波形 Eとに対して、 時間軸の +方 向 (正方向) にシフトして測定された状態を示している。 このとき、 デ一夕解析 でのフィヅティング計算に用いるフィヅティング範囲を、 時間軸に対して固定さ れた時間範囲 R 0 (点線) とすると、 時間波形のシフトによって蛍光の時間波形 Fがフィ ヅティング範囲 R 0から外れてしまい、 フイツティング計算の結果とし て正しい波形デ一夕や物理量を得ることができなくなる。
これに対して、 本実施形態の蛍光測定方法においては、 図 4 Aに示した時間範 囲 R t (実線) のように、 時間軸ではなく、 蛍光の時間波形 Fに対して固定され た時間範囲として、 フィッティング範囲を設定する。 なお、 このフィ ヅティング 範囲 R tは、 制御装置 6の範囲設定部 6 3 (図 1参照) において、 最初の蛍光測 定、 または、 本測定に先立って行われる予備的な蛍光測定での蛍光の時間波形な どを用いて、 自動または操作者の手動で設定される (範囲設定ステップ)。
次に、 図 4 Aのように励起光の時間波形 Eに対してシフトした時間位置で測定 された蛍光の時間波形 Fを、 励起光ピーク及び蛍光ピークの時間位置が略一致す るように移動する (図 4 B)。さらに、 この励起光ピークに略一致する時間位置 t 0よりも所定の時間幅だけ前の初期位置 t 1 ( t l < t 0 ) に蛍光ピークが位置 するように、 蛍光の時間波形 Fを移動して酡置する (図 4 C)。
上記した初期位置 t 1は、 データ解析において実行される複数回のフイツティ ング計算の開始位置となる時間位置である。 そして、 励起光ピークの時間位置 t
0よりも前の初期位置 t 1から、 時間位置 t 0よりも後の終了位置 t 2 ( t 2 > t O ) に向かって、 蛍光の時間波形 Fを移動していく (図 4 D )。
このとき、 初期位置 t 1から、 蛍光の時間波形 Fを所定の移動時間間隔で、 + 方向に順次移動していくとともに、 移動した各時間位置においてフィッティング 計算を行って、 波形デ一夕を算出する。 このとき、 フィッティング範囲 R tは、 上記したように蛍光の時間波形 Fに対して固定の時間範囲として設定しているの で、 蛍光の時間波形 Fとともに時間軸に対して移動させる。
そして、 各時間位置で実行された複数回のフィヅティング計算のそれぞれで算 出された波形デ一夕のうちで、 所定の選択基準によつて最適なものとして選択さ れた波形デ一夕を、 この蛍光の時間波形 Fに対する最終的な測定波形デ一夕とし て採用する。 波形データの選択基準としては、 実行されたフィッティングの計算 結果の良否を判断する判断基準となる量などを用い、 最も良いフイツティング計 算の結果を選択して最終的な測定波形データ、 あるいはさらに蛍光寿命などの物 理量を算出する。
上記した蛍光測定装置及び蛍光測定方法によれば、 複数回のフィッティング計 算の実行時における蛍光の時間波形の移動範囲を指定する初期位置 t 1及び終了 位置 t 2を、 時間軸上で適切に配置しておくことによって、 時間波形にシフトが ない場合の蛍光の時間波形 Fの時間位置が、 その移動範囲内に必ず含まれること となる。 そして、 その移動範囲内で、 蛍光の時間波形 Fを移動しつつ複数回のフ ィッティング計算を実行して、 単一の蛍光の時間波形 Fから複数の波形データを 求めるとともに、 所定の選択基準によって、 複数の波形デ一夕から最適な測定波 形デ一夕を選択する。 このとき、 蛍光の時間波形におけるシフトの発生の有無に かかわらず、 常に、 充分な正確さ及び数値精度によって、 波形デ一夕、 及び蛍光 寿命などの物理量等を効率的に算出することが可能となる。
また、 複数回のフィヅティング計算のそれぞれに対して適用するフィヅティン グ範囲 R tについて、 時間軸ではなく蛍光の時間波形 Fに固定の時間範囲として 設定するとともに、 蛍光の時間波形 の移動とともにフイツティング範囲 R tを 移動させて、 各時間位置でのフィッティング計算を行っている (図 4 C及び図 4 D参照)。これによつて、各フィヅティング計算を好適な条件で実行することがで さる。
ここで、 初期位置 t 1から終了位置 t 2までの間での、 蛍光の時間波形 Fの移 動については、 波形データや蛍光寿命などの求めようとしている量に対して要求 されている数値精度が得られるように、 時間軸上での移動時間間隔を適宜設定し 、 その移動間隔で移動された各時間位置でフイツティング計算を実行していくこ とが好ましい。 このように移動時間間隔を設定しておくことによって、 算出され る各数値の精度向上と、 フイツティング計算を含むデ一夕解析の効率化とが両立 される。 具体的な移動時間間隔の設定としては、 例えば、 時間波形のデ一夕が複 数チャンネルにデジタル化されていれば、 蛍光の時間波形 Fを 1 c h (チャンネ ル) または複数 c hずつ移動させて、 それぞれフィッティング計算を実行してい く方法がある。
また、 初期位置 t 1及び終了位置 t 2については、 初期位置 t 1は、 あらかじ め設定された励起光ピークの時間位置 t 0からの時間幅によって指定される。一 方、 終了位置 t 2については、 初期位置 t 1と同様に時間位置 t 0からの時間幅 等によって設定しても良いし、 フィヅティング計算を実行するごとに上記した選 択基準による判断を行って、 選択する波形デ一夕が決まつた時間位置を終了位置 としてデータ解析を終了しても良い。
蛍光の時間波形 Fに対して適用するフィ ヅティング範囲 R tについては、 制御 装置 6の範囲設定部 6 3においてあらかじめ設定しておくことが好ましい。 範囲 設定部 6 3におけるフィヅティング範囲の設定の具体的な方法としては、 例えば 、 最初の蛍光測定または予備的な蛍光測定で得られた蛍光の時間波形から自動で 設定する方法がある。 あるいは、 その蛍光の時間波形を表示装置 7に表示すると ともに、 操作者によるマウス力一ソルの操作などを用いて手動で設定する方法が ある。
また、 フィッティング範囲 R tを蛍光の時間波形 Fに対して固定の時間範囲に 設定する方法としては、 蛍光の時間波形 Fの蛍光ピークの時間軸上の時間位置に よって蛍光の時間波形を特定するとともに、 この蛍光ピークを基準としてフイツ ティング範囲を設定する構成がある。 これによつて、 それそれの測定で得られた 蛍光の時間波形に対してそれぞれ好適なフィヅティング範囲を設定することがで ぎる。
具体的なフィッティング範囲としては、 蛍光の検出数が少なく、 統計的なばら つきやノイズの影響を受けやすい時間波形の立ち上がり、 減衰の端部 (時間波形 の両端部) を除くように、 時間範囲を設定することが好ましい。 より具体的には 、 例えば、 蛍光ピークの蛍光強度を基準蛍光強度とし、 この基準蛍光強度に対す る蛍光強度の%で一定の範囲 (例えば 2 0 %以上) によって、 フィヅティング範 囲の始点及び終点を設定する方法がある。 あるいは、 蛍光ピークの時間軸上の位 置を基準時間位置として用い、 この基準時間位置に対して決められる所定の時間 範囲によって、 フイツティング範囲の始点及び終点を設定する方法がある。 ここで、 このようなフィッティング範囲は、 その始点及び終点がいずれも蛍光 ピークよりも後の減衰波形内となるように設定しても良いし、 始点が蛍光ピーク よりも前の立ち上がり波形内、 終点が蛍光ピークよりも後の減衰波形内となるよ うに設定しても良い。
また、 複数回のフィッティング計算のそれそれで算出される波形デ一夕から、 最終的な測定波形データを選択するための選択基準としては、 フィヅティング計 算において求められた 2値を用いることが好ましい。 この選択方法について、 図 5に示したグラフを用いて説明する。 図 5は、 初期位置 t 1から終了位置 t 2 までの間で複数回行われるフィ ヅティング計算のそれぞれで得られる; c 2値の変 化について示す模式図であり、 横軸は蛍光の時間波形 Fの移動した時間位置、 縦 軸は各時間位置でのフィヅティング計算で得られた 2値を示している。
2値 (カイ二乗値) は、 このようなフィッティング計算に用いられる非線型 最小二乗法などの近似計算方法において、 実行された各フィッティングの計算結 果の良否を判断する指標として求められる数値であり、 フイツティング条件が良 いほど、 1に近い小さい値 (ただし;! 2 > 1 ) となる。 すなわち、 上記したデ一 夕解析方法では、 時間位置 t 0より前の初期位置 t 1からフィッティング計算を 開始すると、 蛍光の時間波形 Fの時間位置を +方向に移動していくにつれて、 2値が小さくなつていく。 そして、 励起光ピークの時間位置またはそれよりも後 の時間位置である時間位置 t cにおいて 2値が最小になった後、 終了位置 t 2 に向かって 2値が再び増大していく。
このとき、 c 2値が最小となったフィヅティング計算で算出された波形データ 、 図 5においては時間位置 t cでのフィヅティング計算によって算出された波形 デ一夕を最終的な測定波形データとして選択することによって、 複数の波形デー 夕から最適な測定波形デ一夕を選択することが可能となる。 また、 このようにフ ィヅティング計算から求まる数値である 2値を判断基準として用いることによ つて、 波形データの選択を含むデータ解析を、 効率的に自動で実行することが可 倉 となる。
図 6は、 フィヅティング計算で得られる; c 2値を、 波形データの選択基準とし て用いた場合のデ一夕解析方法の一例について示すフローチャートである。 このデータ解析方法においては、 まず、 蛍光の時間波形 Fに対し、 蛍光ピーク を基準とした蛍光強度%範囲または時間範囲などによって、 フイツティング範囲 を設定する (ステップ S 1 0 1 )。次に、測定によって得られた蛍光の時間波形 F を、 蛍光ピークが励起光ピークに略一致する時間位置 t 0まで時間軸上で移動し 、 さらに、 所定の時間幅だけ—方向に移動して、 初期位置 t 1に蛍光の時間波形 Fを配置する (S 1 0 2 )。そして、 この初期位置 t 1において、 上記のフイツテ ィング範囲を適用し最初のフィヅティング計算を実行して(S 1 0 3 )、 1番目の 波形データ及び C 2値を算出する。
続いて、 初期位置 t 1から終了位置 t 2の間での、 複数回のフィッティング計 算の実行を開始する。 すなわち、 蛍光の時間波形 Fを、 終了位置 t 2に向かって +方向に所定の移動時間間隔(例えば + 1 c h分)だけ移動し (S 1 0 4 )、 移動 された時間位置で次のフィッティング計算を実行する (S 1 0 5 )。次に、今回の フィヅティング計算で求めらられた c 2値を、前回のフィヅティング計算での;! 2 値と比較する (S 1 0 6 )。
ここで、 今回の 2値が前回の; t 2値以下であれば、 2値はまだ最小値に到達 していないので (図 5参照)、再び蛍光の時間波形 Fの移動(S 1 0 4 )及びフィ ヅティング計算 (S 1 0 5 ) を繰り返す。 一方、 今回の 2値が前回の 2値より も大きければ、 前回の 2値が複数回のフィッティング計算のそれぞれで得られ る 2値の最小値である。 したがって、 この場合には、 複数回のフィヅティング 計算を終了して、 前回 (例えば一 1 c h ) の蛍光の時間波形 Fの時間位置におけ るフイツティング計算で算出された波形データを、 最終的な測定波形デ一夕とし て選択する (S 1◦ 7 )。
以上のデータ解析方法によって、 各蛍光測定で得られた蛍光の時間波形に対し て、 蛍光の時間波形におけるシフトの発生の有無にかかわらず、 充分な正確さ及 びデ一夕解析の効率を両立しつつ、 波形データ、 及び蛍光寿命などの物理量を算 出することができる。
上記した蛍光測定装置及び蛍光測定方法は、 様々な試料に対して品質等の評価 を行う試料評価装置に適用することが可能である。
近年、 半導体ウェハの結晶品質の評価などに対して、 蛍光測定装置 (蛍光寿命 測定装置) の適用が進められている。 半導体ウェハの評価においては、 製品に使 用する半導体ウェハの結晶品質のウェハ内での分布をあらかじめ測定によって評 価しておくことが、 歩留まり向上のために必要と'される。 このような品質評価に 蛍光測定装置を用いる場合、 評価対象である半導体ウェハを試料とした蛍光測定 によって蛍光寿命や蛍光強度を求めるとともに、 標準試料 (サンプル) での蛍光 寿命や蛍光強度との比較を行って、 半導体ウェハの各部位での結晶品質を評価す る。
図 7は、 本発明による蛍光測定装置を用いた試料評価装置の一実施形態を示す 構成図である。 本実施形態においては、 評価の対象となる試料 S (例えば半導体 ウェハ) は、 試料保持手段 2である試料保持台 2 a上に載置された状態で保持さ れている。
励起光源 1は、 試料保持台 2 a上に保持された試料 Sの上方に設置されており 、 励起光源 1から供給される励起光パルスは、 レンズ 1 1を通過し、 さらに、 集 光光学系 3を構成しているハーフミラー 3 2、 レンズ 3 1を通過して、 試料 Sの 評価する部位である試料 S上の所定の照射位置へと照射される。 また、 励起光パ ルスによって励起された試料 S上の部位からの蛍光は、 レンズ 3 1、 ハーフミラ — 3 2、 可変光減衰器 3 3、 及びレンズ 3 4からなる集光光学系 3、 及び分光器 4 (または波長選択フィルタなどの波長選択手段) を介して、 光検出器 5へと入 射される。 ここで、 可変光減衰器 3 3は、 励起光測定時や蛍光測定時において、 光量調整のために必要に応じて光減衰を設定して使用される。
制御装置 6は、 駆動制御部 6 1、 データ処理部 6 2、 及び範囲設定部 6 3に加 えて、 蛍光測定の結果を参照して試料の評価を行うための試料評価部 6 4を有し て構成されている。 駆動制御部 6 1、 データ処理部 6 2、 及び範囲設定部 6 3の 機能及び動作等については、 図 1に示した蛍光測定装置と同様である。
一方、 試料評価部 6 は、 データ処理部 6 2において行われた複数回のフィッ ティング計算を含むデ一夕解析で得られた測定波形デ一夕を、 あらかじめ求めら れた標準波形デ一夕と比較する。 そして、 そのデ一夕比較結果から、 試料 Sの評 価部位の品質などについて評価を行う。
図 8は、 図 7に示した試料評価装置を用いた試料評価方法の一例について示す フローチャートである。 図 8に示した試料評価方法は、 半導体ウェハの各部位に 対する品質評価などのように、 試料保持台 2 aを可動ステージとして試料 Sを X 一 Y方向に移動しつつ、 試料 S上の各部位に対して順次励起光源 1からの励起光 パルスを照射して、 蛍光測定による評価を行う場合の評価方法を示している。 この試料評価方法においては、 まず、 デ一夕解析でのフィッティング計算に用 いる励起光の時間波形の測定を行う (ステップ S 2 0 1 )。 ここで、励起光の波長 は測定対象となる蛍光の波長とは異なるので、 分光器 4 (または波長選択フィル 夕) の選択波長域を、 励起光波長に切り換えてセヅトする。
励起光の測定は、 図 1の蛍光測定装置に関して上述したように、 試料保持台 2 a上に、 試料 Sの代わりとして蛍光を発生しない散乱体を載置させることによつ て行うことができる。 このとき、 光検出器 5へと入射される励起光の光量につい ては、 集光光学系 3に設置されている可変光減衰器 3 3によって調整することが できる。
次に、 分光器 4 (または波長選択フィル夕) の選択波長域を、 蛍光波長に切り 換えてセットするとともに、 試料保持台 2 a上に試料評価の基準となる標準試料 を載置して、標準試料での蛍光の時間波形を測定する (S 2 0 2 )。 また、 あらか じめ標準試料での蛍光の時間波形が測定されて用意されているのであれば、 標準 試料での蛍光測定を行わずに、 直接その時間波形のデータを読み出して使用して も良い。
標準試料での蛍光の時間波形が得られたら、 その時間波形を参照して、 フイツ ティング範囲の設定を行う(S 2 0 3 )。フィヅティング範囲の具体的な設定方法 としては、 例えば、 標準試料での蛍光の時間波形を制御装置 6に接続された表示 装置 7に表示するとともに、 マウス力一ソルの操作などによって、 操作者にフィ ッティング範囲の始点及び終点を指示させる。 そして、 制御装置 6の範囲設定部 6 3では、 指示された始点及び終点に基づいて、 以下の蛍光の本測定に対して適 用するフィッティング範囲を設定する。 具体的には、 蛍光ピークでの蛍光強度に 対する強度%範囲、 または蛍光ピークの時間位置に対する時間範囲によって、 フ ィッティング範囲が蛍光の時間波形に対して固定に設定される。
次に、 設定されたフィッティング範囲を適用して、 標準試料での蛍光の時間波 形に対して上記したデータ解析方法での複数回のフィッティング計算を含むデ一 夕解析を行い、 標準波形データ、 及びそれによる蛍光寿命、 蛍光強度を算出する
( S 2 0 4 )。ただし、 この標準波形デ一夕の算出においては、蛍光の時間波形が シフトしていなければ、 1回のフィヅティング計算のみとしても良い。
標準波形デ一夕が得られたら、 評価対象となる測定試料 sを、 可動ステージで ある試料保持台 2 a上の所定位置に設置して、 蛍光測定による試料評価を開始す る。
まず、 試料保持台 2 aを駆動して、 測定試料 Sの所定部位に励起光源 1からの 励起光パルスが照射されるように測定試料 Sを移動し( S 2 0 5 )、励起光源 1か ら励起光パルスを供給して、 測定試料 Sでの蛍光の時間波形を測定する (S 2 0 6 )。そして、上記のフィヅティング範囲での複数回のフィヅティング計算を適用 して、 得られた蛍光の時間波形に対してデ一夕解析を行い、 測定波形データ、 及 びそれによる蛍光寿命、 蛍光強度を算出する (S 2 0 7 )。
続いて、 試料評価部 6 4において、 測定試料 Sに対して算出された測定波形デ —夕を、 先に標準試料に対して求めた標準波形データと比較して、 測定試料 Sの 評価部位に対して評価を行って、 品質の良否等を判断する (S 2 0 8 )。測定波形 データ及び標準波形デ一夕の比較については、 波形データ同士で比較しても良い し、 あるいは、 蛍光寿命及び蛍光強度の数値で比較しても良い。
試料評価が終了したら、 評価が必要な測定試料 Sの全評価部位について蛍光測 定及び試料評価を実行したかどうかを調べ(S 2 0 9 )、実行されていれば、 その 測定試料 Sに対する全ての蛍光測定及び試料評価を終了する。 まだ測定及び評価 が実行されていない評価部位があれば、 さらに測定試料 Sを移動して (S 2 0 5 )、 測定、 算出、 及び評価 (S 2 0 6、 S 2 0 7 , S 2 0 8 ) を繰り返して実行す る o このような試料評価装置によれば、 蛍光の時間波形にシフトを生じた場合でも 正確かつ効率的に試料の評価を行うことが可能な試料評価装置が実現される。 特 に、 半導体ウェハの評価装置などにおいては、 試料 (半導体ウェハ) の各部位を 対象として多数回の蛍光測定が繰り返して実行される。 このような場合において も、 上記した蛍光測定装置を適用すれば、 各蛍光測定間で生じる時間波形のシフ トの影響を極力抑制することができる。
すなわち、 時間の経過に伴う蛍光の時間波形のシフトの影響を低減するため、 複数回実行される蛍光測定のそれぞれの前に、 励起光の時間波形を測定すること も可能である。 しかし、 このように毎回励起光の測定を行うと、 試料評価に要す る時間が長くなつてしまう。 特に、 半導体ウェハ等の品質をより詳細に評価する ためには、 高分解能、 高スループヅトでの自動評価が要求されるが、 このとき、 半導体ウェハの全面に対する評価部位は非常に多点となり、 試料評価のための測 定時間が増大してしまう。
これに対して、 上記した試料評価装置では、 最初に励起光の時間波形を測定し た後、 試料上の各部位に対する蛍光測定のみを繰り返して実行した場合において も、 その測定中に発生した時間波形のシフトの影響を、 複数回のフィッティング 計算によるデータ解析を適用することによって極力抑制することが可能である。 したがって、 試料上の各部位に対する評価を、 正確かつ効率的に、 短時間で実行 することができる。 特に、 フィ ヅティング範囲や、 複数回のフィ ヅティング計算 を開始する初期位置などの必要な条件をあらかじめ設定しているので、 測定試料
Sの各部位に対する蛍光測定、 データ解析、 試料評価については、 すべて自動で 実行することが可能である。
本発明による蛍光測定方法及び蛍光測定装置は、 上記した実施形態に限られる ものではなく、 様々な変形が可能である。 例えば、 図 1に示した装置構成での集 光光学系 3及び波長選択手段 (分光器 4 ) などについては、 測定対象となる試料 Sの種類、 蛍光の波長や、 励起光源 1及び光検出器 5の位置関係などに応じて、 それそれ好適な構成とすることが好ましい。 また、 駆動制御部及びデータ処理部 については、 図 1及び図 7に示した実施形態においては同一の制御装置 6に設け る構成となっているが、 別々の駆動制御装置及びデ一夕処理装置として設置して も良い。
また、 励起光及び蛍光の測定については、 蛍光測定を行った後に励起光を測定 し、 それそれの時間波形に対して上記したデ一夕解析を行っても良い。 また、 図 8のフローチャートでは、 最初に標準試料で蛍光測定を行っているが、 標準試料 を用いずに、 測定試料での最初の蛍光測定で得られた蛍光の時間波形からフイツ ティング範囲の設定等を行うことも可能である。
さらに、 蛍光の時間波形及び励起光の時間波形の時間軸上での配置及び移動に ついては、 励起光の時間波形を時間軸上で固定の時間位置に配置し、 蛍光の時間 波形を初期位置から終了位置へと移動しつつフイツティング計算を実行する上記 した方法に限らず、 様々なデータ解析方法を適用することが可能である。
すなわち、 より一般的には、 励起光の時間波形及び蛍光の時間波形を、 時間軸 上に、 蛍光の時間波形の蛍光ピークが励起光の時間波形の励起光ピークと略一致 する時間位置よりも所定の時間幅だけ前または後の初期位置となるようにそれそ れ配置した後、 初期位置から、 蛍光ピークが励起光ピークと略一致する時間位置 を挟んで時間軸上で反対側となる終了位置に向かって、 蛍光の時間波形及びフィ ッティング範囲、 または励起光の時間波形を時間軸に対して移動させていくこと によって、 蛍光の時間波形のシフト発生の有無にかかわらず、 正確かつ効率的に 波形データや各物理量などを算出することが可能な蛍光測定方法及び蛍光測定装 置が得られる。
例えば、 上記した実施形態においては、 図 4 A〜図 4 Dに示すように、 蛍光の 時間波形 Fを励起光ピークよりも前の初期位置 t 1に配置した後(図 4 C )、励起 光ピークよりも後の終了位置 t 2 (図 4 D ) に向かって蛍光の時間波形 Fを移動 しつつ、 フィッティング計算を行っている。 これに対して、 図 4 Dに示すような 励起光ピークよりも後の時間位置を蛍光の時間波形の初期位置とし、 励起光ピー クよりも前の終了位置に向かって移動していくデータ解析方法としても良い。 ま た、 蛍光の時間波形 Fを時間軸に対して固定に配置し、 励起光の時間波形 Eの方 を初期位置から終了位置まで同様に移動していくことも可能である。
ただし、 励起光の時間波形 E及び蛍光の時間波形 Fのいずれか一方を時間軸上 で固定の時間位置に配置するとともに、 他方を時間軸に対して移動させることが 、 データ解析の手順を容易化する上で好ましい。
また、 試料評価装置についても、 同様に様々な変形が可能である。 例えば、 図 8に示したフローチャートにおいて、 蛍光の時間波形を測定したときに (S 2 0 6 )、 試料の蛍光に退色がある場合には、 デ一夕解析 ( S 2 0 7 )及び試料評価 ( S 2 0 8 ) を行わないようにしても良い。
また、 評価対象となる試料としては、 半導体ウェハの品質評価を例として挙げ たが、 それ以外にも様々な試料に対する評価に適用することが可能である。 例え ば、 創薬の過程で、 マイクロタイ夕一プレート等を試料として行われるマススク リ一ニング、 ドラッグスクリーニング等においても、 蛍光寿命測定や時間分解蛍 光異方性測定などが、 有効な評価手段として考えられている。 この場合にも、 高 スループヅトでの自動評価が要求されることは半導体ウェハと同様であり、 図 7 の試料評価装置及び図 8のフローチャートなどを適用することによって、 効率的 な試料評価が可能となる。 産業上の利用可能性
本発明による蛍光測定方法、 蛍光測定装置、 及びそれを用いた試料評価装置は 、 蛍光の時間波形のシフト発生の有無にかかわらず、 充分な正確さで効率的に波 形データや蛍光寿命などの物理量を算出することが可能な蛍光測定方法、 蛍光測 定装置、 及びそれを用いた試料評価装置として利用可能である。
すなわち、 蛍光寿命等を求めるためのデータ解析に用いる時間軸に対して、 励 起光の時間波形及び蛍光の時間波形を、 それぞれ所定の時間位置に配置するとと もに、 蛍光の時間波形及びフィッティング範囲、 または励起光の時間波形を、 蛍 光ピークが励起光ピークよりも所定の時間幅だけ前または後の初期位置から、 反 対側の終了位置へと移動しつつ、 複数回のフィッティング計算を行っていく。 そ して、 フィッティング計算で得られる; 値などの選択基準によって、 複数求め られた波形デ一夕から最適な測定波形データを選択する。 これによつて、 蛍光の 時間波形のシフト発生の有無にかかわらず、 充分な正確さで効率的に波形デ一夕 や蛍光寿命などの物理量を算出することが可能となる。
このような蛍光測定装置及び試料評価装置によれば、 特に半導体ウェハの品質 評価や創薬スクリ一ニングなど多数回の蛍光測定を行う場合に、 測定または評価 に要する時間を大幅に短縮することができる。 さらに、 この測定及び評価の効率 化によって、 半導体ウェハ評価や創薬スクリーニング以外の試料評価に対しても 、 広い範囲での応用が可能となると期待される。

Claims

請求の範囲
1 . パルス状の励起光を試料に照射する励起ステップと、
前記励起光によって励起された前記試料から放出される蛍光を検出する光検出 ステップと、
前記光検出ステップで検出される蛍光の時間波形について、 前記蛍光の時間波 形に対して固定に設定された所定の時間範囲であるフィッティング範囲でのフィ ヅティング計算を含むデ一夕解析を行って、 波形デ一夕を算出するデ一夕処理ス テヅプと、 を備え、
前記デ一夕処理ステツプにおいて、
あらかじめ求められた励起光の時間波形、 及び前記蛍光の時間波形を、 前記フ ィッティング計算に用いる時間軸上に、 前記蛍光の時間波形の蛍光ピークが前記 励起光の時間波形の励起光ピークと略一致する時間位置よりも所定の時間幅だけ 前または後の初期位置となるようにそれそれ配置した後、
前記初期位置から、 前記蛍光ピークが前記励起光ピークと略一致する時間位置 を挾んで前記時間軸上で反対側となる終了位置に向かって、 前記蛍光の時間波形 及び前記フイツティング範囲、 または前記励起光の時間波形を前記時間軸に対し て移動させつつ、 複数の異なる時間位置において、 前記励起光の時間波形を参照 して前記フィヅティング計算をそれぞれ実行するとともに、
前記フィッティング計算のそれそれで算出された複数の前記波形デ一夕のうち 、 所定の選択基準によって選択された前記波形データを、 最終的な測定波形デ一 夕とすることを特徴とする蛍光測定方法。
2 . 前記デ一夕処理ステップにおいて、
前記励起光の時間波形及び前記蛍光の時間波形のいずれか一方を前記時間軸上 で固定の時間位置に配置するとともに、 他方を前記時間軸に対して移動させるこ とを特徴とする請求項 1記載の蛍光測定方法。
3 . 前記データ処理ステヅプにおいて、前記測定波形デ一夕に基づいて 、 蛍光寿命を求めることを特徴とする請求項 1記載の蛍光測定方法。
4 . 前記デ一夕処理ステップにおいて、前記選択基準として、前記フィ ヅティング計算のそれぞれで求められた 2値を用い、前記% 2値が最小となった 前記フィッティング計算で算出された前記波形デ一夕を、 前記測定波形デ一夕と して選択することを特徴とする請求項 1記載の蛍光測定方法。
5 . 前記デ一夕処理ステップにおいて、前記フィヅティング範囲として 、 前記蛍光の時間波形の前記蛍光ピークを基準として設定された時間範囲を用い ることを特徴とする請求項 1記載の蛍光測定方法。
6 . 前記励起ステップの前に、前記フィッティング範囲をあらかじめ設 定する範囲設定ステツプをさらに備えることを特徴とする請求項 1記載の蛍光測 定方法。
7 . パルス状の励起光を試料に照射する励起手段と、
前記励起光によって励起された前記試料から放出される蛍光を検出する光検出 手段と、
前記光検出手段で検出される蛍光の時間波形について、 前記蛍光の時間波形に 対して固定に設定された所定の時間範囲であるフィッティング範囲でのフィッテ ィング計算を含むデ一夕解析を行って、 波形デ一夕を算出するデ一夕処理手段と 、 を備え、
前記デ一夕処理手段は、
あらかじめ求められた励起光の時間波形、 及び前記蛍光の時間波形を、 前記フ ィッティング計算に用いる時間軸上に、 前記蛍光の時間波形の蛍光ピークが前記 励起光の時間波形の励起光ピークと略一致する時間位置よりも所定の時間幅だけ 前または後の初期位置となるようにそれそれ配置した後、
前記初期位置から、 前記蛍光ピークが前記励起光ピークと略一致する時間位置 を挟んで前記時間軸上で反対側となる終了位置に向かって、 前記蛍光の時間波形 及び前記フィッティング範囲、 または前記励起光の時間波形を前記時間軸に対し て移動させつつ、 複数の異なる時間位置において、 前記励起光の時間波形を参照 して前記フィ ヅティング計算をそれぞれ実行するとともに、
前記フイツティング計算のそれぞれで算出された複数の前記波形デ一夕のうち 、 所定の選択基準によって選択された前記波形デ一夕を、 最終的な測定波形デー 夕とすることを特徴とする蛍光測定装置。
8 . 前記デ一夕処理手段は、
前記励起光の時間波形及び前記蛍光の時間波形のいずれか一方を前記時間軸上 で固定の時間位置に配置するとともに、 他方を前記時間軸に対して移動させるこ とを特徴とする請求項 7記載の蛍光測定装置。
9 . 前記デ一夕処理手段は、前記測定波形デ一夕に基づいて、蛍光寿命 を求めることを特徴とする請求項 7記載の蛍光測定装置。
1 0 . 前記デ一夕処理手段は、前記選択基準として、前記フイツティン グ計算のそれぞれで求められた; t 2値を用い、前記 2値が最小となった前記フィ ヅティング計算で算出された前記波形デ一夕を、 前記測定波形デ一夕として選択 することを特徴とする請求項 7記載の蛍光測定装置。
1 1 . 前記データ処理手段は、前記フイツティング範囲として、前記蛍 光の時間波形の前記蛍光ピークを基準として設定された時間範囲を用いることを 特徴とする請求項 7記載の蛍光測定装置。
1 2 . 前記フィッティング範囲をあらかじめ設定する範囲設定手段をさ らに備えることを特徴とする請求項 7記載の蛍光測定装置。
1 3 . 請求項 7記載の蛍光測定装置と、
前記蛍光測定装置の前記データ処理手段において得られた前記測定波形デ一夕 、 及びあらかじめ求められた標準波形デ一夕を比較して、 前記試料の評価を行う 試料評価手段と、 を備えることを特徴とする試料評価装置。
PCT/JP2001/004794 2000-06-08 2001-06-07 Procede et appareil de mesure de la fluorescence, et appareil pour evaluer un echantillon faisant appel a cet appareil de mesure WO2001094919A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE60129691T DE60129691T2 (de) 2000-06-08 2001-06-07 Verfahren und vorrichtung zur messung der fluoreszenz
AU2001262709A AU2001262709A1 (en) 2000-06-08 2001-06-07 Method for measuring fluorescence, apparatus for measuring fluorescence and apparatus for evaluating sample using it
EP01936885A EP1291643B1 (en) 2000-06-08 2001-06-07 Method and apparatus for measuring fluorescence
US10/276,979 US6897953B2 (en) 2000-06-08 2001-06-07 Method for measuring fluorescence, apparatus for measuring fluorescence and apparatus for evaluating sample using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000172454A JP4459390B2 (ja) 2000-06-08 2000-06-08 蛍光測定方法、蛍光測定装置及びそれを用いた試料評価装置
JP2000-172454 2000-06-08

Publications (1)

Publication Number Publication Date
WO2001094919A1 true WO2001094919A1 (fr) 2001-12-13

Family

ID=18674853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004794 WO2001094919A1 (fr) 2000-06-08 2001-06-07 Procede et appareil de mesure de la fluorescence, et appareil pour evaluer un echantillon faisant appel a cet appareil de mesure

Country Status (7)

Country Link
US (1) US6897953B2 (ja)
EP (1) EP1291643B1 (ja)
JP (1) JP4459390B2 (ja)
CN (1) CN1201145C (ja)
AU (1) AU2001262709A1 (ja)
DE (1) DE60129691T2 (ja)
WO (1) WO2001094919A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046888B2 (en) * 2002-12-18 2006-05-16 The Regents Of The University Of Michigan Enhancing fiber-optic sensing technique using a dual-core fiber
KR100571825B1 (ko) 2003-11-28 2006-04-17 삼성전자주식회사 가변형 스펙트럼의 분해능 향상을 위한 분광 성분 분석방법 및 그 장치
JP4349216B2 (ja) * 2004-06-21 2009-10-21 富士ゼロックス株式会社 分布適合度検定装置、消耗品補給タイミング判定装置、画像形成装置、分布適合度検定方法及びプログラム
JP4521339B2 (ja) * 2005-09-21 2010-08-11 株式会社日立ハイテクノロジーズ 積分型データ演算法におけるチェック機能を備えたデータ処理方法
KR100885927B1 (ko) * 2007-10-16 2009-02-26 광주과학기술원 형광수명 측정 방법 및 장치
JP5147379B2 (ja) * 2007-12-18 2013-02-20 花王株式会社 メラニン分布可視化方法及びその装置
DE102008045886A1 (de) * 2008-09-03 2010-03-04 Friedrich-Schiller-Universität Jena Verfahren zur exakten Bestimmung der Fluoreszenz in einem Schichtsystem, beispielsweise dem Auge
JP5169857B2 (ja) 2009-01-16 2013-03-27 ソニー株式会社 蛍光寿命測定装置、蛍光寿命測定方法及びプログラム
DE102009005953A1 (de) * 2009-01-19 2010-07-22 Universität Tübingen Verfahren und System zur Charakterisierung einer Probe mittels bildgebender Fluoreszenzmikroskopie
BE1018705A3 (nl) * 2009-03-26 2011-07-05 Best 2 N V Werkwijze voor het sorteren van aardappelproducten en sorteerapparaat voor aardappelproducten.
US8392009B2 (en) * 2009-03-31 2013-03-05 Taiwan Semiconductor Manufacturing Company, Ltd. Advanced process control with novel sampling policy
SE533680C2 (sv) * 2009-04-07 2010-11-30 Per Ola Andersson Metod och anordning för detektering av läkemedel i ett prov
DE102009024943A1 (de) 2009-06-10 2010-12-16 W.O.M. World Of Medicine Ag Bildgebungssystem und Verfahren zur fluoreszenz-optischen Visualisierung eines Objekts
CN101632577B (zh) * 2009-08-20 2011-03-23 浙江大学 基于频域荧光寿命成像的牙釉质矿物质含量检测的方法和装置
WO2011031235A1 (en) * 2009-09-14 2011-03-17 Nitto Denko Corporation A detection method
JP2013534614A (ja) * 2010-03-25 2013-09-05 モコン・インコーポレーテッド 発光寿命に基づく分析物検出装置及び校正技術
CN102297854B (zh) * 2011-05-23 2013-10-02 公安部第一研究所 采用高效多模态激光器诱导荧光激发光路的检测系统
DE102011055330A1 (de) * 2011-11-14 2013-05-16 Leica Microsystems Cms Gmbh Verfahren zum Messen der Lebensdauer eines angeregten Zustandes in einer Probe
CN102680438B (zh) * 2011-11-25 2014-04-02 广东工业大学 一种荧光寿命和荧光动态各向异性参数的定量测量方法
DE102012217676B4 (de) * 2012-09-27 2016-05-04 Secopta Gmbh Verfahren zur Identifikation der Zusammensetzung einer Probe
JP6314872B2 (ja) * 2015-02-25 2018-04-25 株式会社島津製作所 含有蛍光成分数決定方法及びその含有蛍光成分数決定方法を用いた分光蛍光光度計
KR102248372B1 (ko) * 2015-04-09 2021-05-07 한국전자통신연구원 형광 수명 측정 장치
JP6564661B2 (ja) * 2015-09-18 2019-08-21 浜松ホトニクス株式会社 装置応答関数測定方法、蛍光測定方法および装置応答関数測定用部材
CN105300949B (zh) * 2015-11-26 2019-06-11 浙江大学 一种荧光寿命测量方法及装置
CN106248645B (zh) * 2016-09-05 2019-02-19 上海空间电源研究所 一种多结太阳电池中各吸收层材料荧光寿命无损测量方法
GB2573692B (en) * 2017-02-20 2022-02-16 Hitachi High Tech Corp Analysis system and analysis method
CN111504496B (zh) * 2019-01-31 2021-11-12 西安和其光电科技股份有限公司 一种用于荧光解调温度的信号处理方法
CN116067934B (zh) * 2023-03-28 2023-07-18 赛默飞世尔(上海)仪器有限公司 用于信号采集的方法和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972049A (ja) * 1982-10-19 1984-04-23 Horiba Ltd 試料の発光寿命測定装置
JPH02268255A (ja) * 1989-04-07 1990-11-01 Hamamatsu Photonics Kk 螢光特性検査装置
JP2911167B2 (ja) * 1989-09-26 1999-06-23 科学技術振興事業団 過渡波形解析装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855930A (en) * 1987-03-27 1989-08-08 Chimerix Corporation Method and appartatus for improved time-resolved fluorescence spectroscopy
GB2231958A (en) 1989-04-07 1990-11-28 Hamamatsu Photonics Kk Measuring fluorescence characteristics
DE69024301T2 (de) 1989-09-26 1996-05-15 Japan Res Dev Corp Gerät zur Analysierung von vorübergehender Wellenform
US5315993A (en) * 1990-02-16 1994-05-31 The Boc Group, Inc. Luminescence monitoring with modulation frequency multiplexing
JPH0572049A (ja) 1991-09-17 1993-03-23 Hitachi Ltd 温度検出センサー
JP3364333B2 (ja) * 1994-09-19 2003-01-08 浜松ホトニクス株式会社 減衰特性測定装置
DE19634873A1 (de) * 1996-08-29 1998-03-12 Boehringer Mannheim Gmbh System zur Unterscheidung fluoreszierender Molekülgruppen durch zeitaufgelöste Fluoreszenzmessung
US6121053A (en) * 1997-12-10 2000-09-19 Brookhaven Science Associates Multiple protocol fluorometer and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972049A (ja) * 1982-10-19 1984-04-23 Horiba Ltd 試料の発光寿命測定装置
JPH02268255A (ja) * 1989-04-07 1990-11-01 Hamamatsu Photonics Kk 螢光特性検査装置
JP2911167B2 (ja) * 1989-09-26 1999-06-23 科学技術振興事業団 過渡波形解析装置

Also Published As

Publication number Publication date
CN1432129A (zh) 2003-07-23
US20030151000A1 (en) 2003-08-14
DE60129691D1 (de) 2007-09-13
JP2001349833A (ja) 2001-12-21
CN1201145C (zh) 2005-05-11
DE60129691T2 (de) 2008-04-30
US6897953B2 (en) 2005-05-24
EP1291643B1 (en) 2007-08-01
AU2001262709A1 (en) 2001-12-17
EP1291643A1 (en) 2003-03-12
JP4459390B2 (ja) 2010-04-28
EP1291643A4 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
WO2001094919A1 (fr) Procede et appareil de mesure de la fluorescence, et appareil pour evaluer un echantillon faisant appel a cet appareil de mesure
JP4397692B2 (ja) 時間相関のある多光子計数計測のシステムおよび方法
JP4463228B2 (ja) 毛管電気泳動装置のための光学的整合方法及び装置
JP2008536092A (ja) 蛍光検出システム
JP2007501414A (ja) 混合物の迅速かつ高度に鋭敏に定量分析するための多次元蛍光装置及び方法
WO2003002959A1 (en) Controller for a fluorometer
JP2008541139A (ja) 蛍光検出で使用されるパルス光源用のシステムおよび方法
US10041884B2 (en) Nucleic acid analyzer and nucleic acid analysis method using same
US20210389249A1 (en) Optical measurement device and optical measurement method
JP5956587B2 (ja) 定量的な光学的測定のための方法及び実験機器
JP2009069152A (ja) 乾式化学物質試験エレメントを分析するための方法および装置
JP4902582B2 (ja) 蛍光検出装置
WO2004086010A1 (ja) 吸光度読取装置、吸光度読取装置制御方法及び吸光度算出プログラム
KR102101553B1 (ko) 바이오센서용 형광 광학 장치 및 시스템
JP2002286639A (ja) 時間分解蛍光検出装置
JP2009270931A (ja) 単一核酸分子観察装置
EP4123291A1 (en) Optical measurement device and optical measurement method
CN114634868A (zh) 一种光学检测组件、多重荧光定量pcr仪及其控制方法
JPH08145889A (ja) 蛍光測定装置
JP2010071874A (ja) 試料分析装置
JP2002055050A (ja) 蛍光画像検出方法並びにdna検査方法及びその装置
KR20210122252A (ko) 샘플 분석 방법, 분석 장치 및 컴퓨터 프로그램
JP4656009B2 (ja) X線分析装置
US20230001418A1 (en) Real-time thermocycler with adjustable excitation unit
KR102251968B1 (ko) 신속진단키트의 다중 바이오마커 검출 방법 및 이를 이용하는 멀티모달 스캐너

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001936885

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10276979

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 018106773

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001936885

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001936885

Country of ref document: EP