WO2001091953A1 - Poudre de niobium ou de tantale, son procede de preparation et condensateur electrolytique solide - Google Patents

Poudre de niobium ou de tantale, son procede de preparation et condensateur electrolytique solide Download PDF

Info

Publication number
WO2001091953A1
WO2001091953A1 PCT/JP2001/004596 JP0104596W WO0191953A1 WO 2001091953 A1 WO2001091953 A1 WO 2001091953A1 JP 0104596 W JP0104596 W JP 0104596W WO 0191953 A1 WO0191953 A1 WO 0191953A1
Authority
WO
WIPO (PCT)
Prior art keywords
niobium
tantalum
pore
forming material
particles
Prior art date
Application number
PCT/JP2001/004596
Other languages
English (en)
French (fr)
Inventor
Yukio Oda
Yujiro Mizusaki
Original Assignee
Cabot Supermetals K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18668630&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001091953(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Cabot Supermetals K.K. filed Critical Cabot Supermetals K.K.
Priority to EP01934455.5A priority Critical patent/EP1291100B2/en
Priority to DE60114415T priority patent/DE60114415T3/de
Priority to US10/297,083 priority patent/US7204866B2/en
Publication of WO2001091953A1 publication Critical patent/WO2001091953A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a niobium or tantalum powder suitable for forming an anode electrode of a solid electrolytic capacitor, a method for producing the same, and a solid electrolytic capacitor.
  • anode electrode made of niobium or tantalum in a solid electrolytic capacitor In order to manufacture an anode electrode made of niobium or tantalum in a solid electrolytic capacitor, agglomerates having a size of about 40 to 100 are press-formed so that pores of about 70% by volume remain. A dielectric oxide film is formed on the sintered body.
  • primary particles of niobium and tantalum are thermally aggregated by a method such as reducing potassium fluoride salt, and then an oxygen scavenger such as magnesium is added thereto. And deoxygenate.
  • the pores of compacts and sintered bodies made of such particles also become smaller, and as a result, the electrolyte solution does not penetrate sufficiently into the interior, and the ESR cannot be reduced. Is in question.
  • the pore diameter in the practically used 50,000 CV niobium or tantalum anode sintered body is about 0.4 m, but in order to achieve higher capacity and lower ESR in the future, It is indispensable to solve the lack of permeation of the electrolyte solution due to the miniaturization of pores.
  • Japanese Patent Application Laid-Open No. Hei 9-74501 discloses a method of forming and sintering a mixture obtained by adding a thread-processed polymer to agglomerates such as tantalum and providing macropores in the sintered body. It has been disclosed.
  • the method disclosed in Japanese Patent Application Laid-Open No. Hei 9-74501 is a sintered body in which pores are formed between a plurality of agglomerated particles, and pores are formed in each agglomerated particle itself. It is not something. Therefore, even if the penetration of the electrolyte between a plurality of aggregated particles is promoted, the permeability of the electrolyte into each aggregated particle is not improved. Further, there is a problem that carbon derived from the added polymer remains in the aggregated particles, which affects the characteristics of the capacitor.
  • An object of the present invention is to improve the permeability of an electrolyte solution by forming large pores in individual agglomerated particles constituting a high CV niobium or tantalum anode sintered body having a capacity exceeding 50,000 CV in particular.
  • Another object of the present invention is to provide a high-capacity, low-ESR solid electrolytic capacitor.
  • the niobium or tantalum powder of the present invention is composed of agglomerated particles in which primary particles of obt or tantalum are aggregated, and has a pore distribution measured by a mercury intrusion method having a peak in the range of 1 to 20 m
  • the method for producing a niobium or tantalum powder according to the present invention is characterized in that the primary particles of niobium or tantalum are thermally decomposable or thermally sublimable, A pore forming material having at least one selected shape is added, and then heat treatment is performed to remove the pore forming material and form aggregated particles.
  • the method for producing a niobium or tantalum powder according to the present invention is characterized in that it is acid-soluble in the primary particles of niobium or tantalum and is selected from the group consisting of granules, films, foils, flakes, and fibers.
  • the method is characterized in that a pore-forming material having at least one kind of shape is added, followed by heat treatment and acid treatment to remove the pore-forming material and form aggregated particles.
  • FIG. 1 is a cross-sectional view schematically showing the niobium or tantalum powder of the present invention.
  • FIG. 2 is a graph schematically showing a pore distribution of the niobium or tantalum powder of the present invention by a mercury intrusion method.
  • the niobium or tantalum powder of the present invention is composed of aggregated particles in which primary particles of niobium or tantalum are aggregated.
  • Primary particles of niobium or tantalum are obtained by a method of reducing a niobium compound or a tantalum compound.
  • niobium compound or tantalum compound used here is not particularly limited, and compounds of these metals can be used, but potassium fluoride salts and halides are preferable.
  • the potassium fluoride salt, K 2 T a F 7, K 2 N b F 7, K 2 N b F 6 , and examples of the halides, niobium pentachloride, lower niobium chloride, five evening chloride rental, Chloride such as lower tantalum chloride, iodide, bromide and the like can be mentioned.
  • niobium compounds include niobium fluoride such as potassium fluoroniobate and oxides such as niobium pentoxide.
  • Examples of the reducing agent used for reducing the niobium compound or the tantalum compound include alkali metals such as sodium, magnesium, and calcium and alkaline earth metals and hydrides thereof, that is, magnesium hydride, hydrogen hydride. Reducing gas such as gasification and hydrogen-containing gas.
  • the primary particles of niobium or tantalum are usually mixed with a niobium compound exemplified above at 800 to 900 ° C in a molten salt composed of a eutectic salt such as KC1-1KF or KC1-NaCl. Obtained by reducing a substance or a tantalum compound.
  • the niobium or tantalum powder of the present invention may contain 50 to 1000 ppm of nitrogen.
  • nitrogen of 50 to 100 ppm is contained, the sintering shrinkage rate of the niobium or tantalum powder at a high temperature becomes small.
  • a capacitor using a sintered body as an anode electrode tends to have a high capacity and a small leakage current, so that a highly reliable capacitor can be obtained.
  • the niobium or tantalum powder of the present invention may contain at least one of phosphorus and boron, and the content of each is preferably 10 to 500 ppm. If phosphorus and / or boron are added before the primary particles of niobium or tantalum are aggregated and thermal aggregation is performed in the presence of phosphorus, Z or boron, a decrease in the surface area of niobium or tantalum can be suppressed.
  • FIG. 1 is a cross-sectional view schematically showing a state of niobium or evening powder 10 of the present invention.
  • the niobium or tantalum powder 10 of the present invention is a powder in which aggregated particles 2 in which the primary particles 1 of niobium or tantalum described above are aggregated, and each aggregated particle 2 has pores 3.
  • a peak is observed within a range of 1 to 20 m.
  • FIG. 1 illustrates three aggregated particles 2.
  • voids 4 generally exist between the primary particles 1, and the size of such voids 4 is measured by a mercury intrusion method. Typically ranges from 0.05 to 2 m. The most frequent value of the size of the voids 4, that is, the peak of the pore distribution is usually 0.05 to 0.3 xm. On the other hand, the pore distribution of the niobium or tantalum powder of the present invention was measured by a mercury intrusion method. The peaks of 1 to 20 observed in this case are not derived from the voids 4 between the primary particles 1 but are, for example, derived from the voids 3 intentionally formed by a method described later. is there.
  • the particle diameter of such agglomerated particles 2 is substantially distributed in the range of 38 to 250 m, and the average particle diameter of the primary particles 1 by the BET method is usually 80 to 500 m. nm.
  • the niobium or tantalum powder of the present invention can be manufactured by the following method.
  • the pore-forming material is added to the primary particle powder of niobium or tantalum obtained by reducing the niobium compound or the tantalum compound.
  • the pore-forming material used here is a thermally decomposable material that is decomposed by heat treatment, a thermally sublimable material that sublimates by heat treatment, or an acid-soluble material that dissolves in acid by acid treatment such as acid washing. It can be easily removed by heat treatment or acid treatment in a later step.
  • the pore-forming material was removed by removing the pore-forming material, the portion where the pore-forming material was present becomes a pore.
  • the pore distribution of the powder is measured by a mercury intrusion method. , And a peak is observed at 1 to 20 m.
  • the pore-forming material is selected from the group consisting of granular, film-like, foil-like, flake-like, and fibrous forms, and is preferably a grain having a diameter of 2 to 6 / zm and a thickness of 1 to 2 It is at least one selected from the group consisting of a 0 m film or foil and a fiber having a diameter of 1 to 206 m and a length of 100 to 1 cm.
  • the film or foil having a thickness of 1 to 20 m is preferably a substantially circular film having a diameter of 100 x m or more.
  • Heat coagulation is usually carried out by heating the powder at 800 to 140 C in vacuum for 0.5 to 2 hours.
  • the pore-forming material is thermally decomposed and removed in this thermal aggregation step. As a result, holes are formed in portions where the hole forming material was present.
  • a preliminary aggregation Prior to the thermal aggregation, it is preferable to perform a preliminary aggregation in which an amount of water is added so that the entire powder is uniformly wetted while applying vibration to the powder. By performing this preliminary agglomeration, stronger agglomerated particles can be obtained.
  • by adding about 10 to 500 ppm of phosphorus, boron, etc. to niob or tantalum in advance to the water added in the preliminary coagulation by adding about 10 to 500 ppm of phosphorus, boron, etc. to niob or tantalum in advance to the water added in the preliminary coagulation, fusion growth of primary particles is suppressed, and high surface area is achieved. While maintaining the temperature.
  • the form of phosphorus added here includes phosphoric acid, phosphorus ammonium hexafluoride, and the like.
  • the cake-like powder obtained by thermal aggregation is crushed in the air or in an inert gas, and then a reducing agent such as magnesium is added, and the oxygen in the particles is reacted with the reducing agent to perform deoxidation. . .
  • Deoxygenation is performed in an inert gas atmosphere such as argon at a temperature not lower than the melting point of the reducing agent and lower than the boiling point for 1 to 3 hours. During the subsequent cooling, air is introduced into the argon gas to perform a slow oxidation stabilization treatment of the niobium or tantalum powder, and then an acid treatment is performed to reduce magnesium, magnesium oxide, etc. remaining in the powder. Remove substances derived from the agent. .
  • the acid treatment dissolves and removes the pore forming material in the acid solution. As a result, holes are formed in portions where the hole forming material was present.
  • the pore-forming agent to be used polymers one having a thermally decomposable and, Shono ⁇ (C 1Q H 16 ⁇ ), naphthalene (C 1Q H 8), benzoic acid (C 7 H 6 0 2), such as Organic substances that can be sublimated by heat are used.
  • the acid-soluble pore-forming material include metals and metal compounds that are easily dissolved in acids such as magnesium, magnesium hydride, calcium, calcium hydride, and aluminum. These acid-soluble pore-forming materials act as pore-forming materials and also act as reducing agents. So this When these are used as pore-forming materials, it is not necessary to add a reducing agent again in deoxidation after thermal aggregation.
  • the amount of the pore-forming material is not particularly limited, but is usually at least 3% by volume or more, and preferably 3 to 20% by volume, based on the niobium or intar.
  • a niobium or tantalum powder is obtained, which is composed of agglomerated particles of primary particles of niobium or tantalum and has a pore distribution measured by a mercury intrusion method having a peak in the range of 1 to 20 m. .
  • the niobium or tantalum powder for example a binder one as 3-5 by weight% of camphor by press molding by adding (C 1 () H 16 ⁇ ), etc., porosity 6 0 vol%
  • the pore distribution measured by the mercury intrusion method has peaks in the range of 0.08 to 0.5 m and in the range of 1 to 20 m, respectively.
  • a porous molded body of niobium or tantalum in which 5% by volume or more is pores having a pore diameter of 1 to 20 zm can be produced.
  • the molding density when measuring the pore distribution is 4.5 to 5. Is set to 0 g range Z cm 3.
  • the niobium or tantalum powder comprising the aggregated particles of the present invention has a high opening ratio on the surface of each aggregated particle, so that the contact area between the mold and the surface of the aggregated particle during press molding is reduced, and The agglomerated particles come into contact with the wall, and the friction on the wall decreases. As a result, it is possible to suppress clogging of the voids between the aggregated particles due to wall friction.
  • the porous molded body of niobium or tantalum obtained in this manner is heated at 100 to 140 ° C. for about 0.3 to 1 hour and sintered, whereby the total pore volume is reduced.
  • a niobium or evening porous sintered body in which 5% by volume or more of the pores have pore diameters of 1 to 20 im can be produced.
  • the sintering temperature can be appropriately set according to the type of metal and the surface area of the powder.
  • niobium or tantalum porous sintered body When this niobium or tantalum porous sintered body is used as an anode electrode, a lead wire is embedded in the niobium or tantalum powder before press molding, then press molded and sintered. To integrate the leads. Then, this is carried out in an electrolytic solution such as phosphoric acid or nitric acid at a temperature of 30 to 90 ° C. and a concentration of about 1% by weight at a current density of 40 to 8 O mAZ g at 20 to 60 V. Up to 1 to 3 hours, perform chemical oxidation, and apply anode current for one solid electrolytic capacitor. Used for poles.
  • an electrolytic solution such as phosphoric acid or nitric acid at a temperature of 30 to 90 ° C. and a concentration of about 1% by weight at a current density of 40 to 8 O mAZ g at 20 to 60 V. Up to 1 to 3 hours, perform chemical oxidation, and apply anode current for one
  • a solid electrolyte layer such as manganese dioxide, lead oxide or a conductive polymer, a graphite layer, and a silver paste layer are sequentially formed on the porous sintered body by a known method, and then formed thereon. After connecting the cathode terminal by soldering, etc., form a resin jacket and use it as the anode electrode for one solid electrolytic capacitor.
  • niobium or tantalum powder primary particles of the niobium or tantalum are formed of agglomerated particles, and the pore distribution measured by a mercury intrusion method has a peak in a range of 1 to 20 nm. That is, each agglomerated particle itself has large pores. Therefore, the large holes and the voids existing between the primary particles are connected to each other. Therefore, when an anode electrode is formed using such niobium or tantalum powder, the electrolyte easily penetrates into the entire inside of each agglomerated particle, so that a solid electrolytic capacitor having high capacity and low ESR can be obtained.
  • niobium or tantalum powder is formed into a primary particle of niobium or tantalum, which is thermally decomposable and has at least one kind of shape selected from the group consisting of granules, films, foils, flakes, and fibers.
  • a pore-forming material having at least one shape selected from the group consisting of fibrous materials is added, followed by heat treatment and acid treatment to remove the pore-forming material and form aggregated particles. .
  • the heat treatment and the acid treatment performed here are steps usually performed in the step of producing aggregated particles. Therefore, a separate process for forming holes is not required, and the productivity is excellent.
  • a 50 L reaction vessel was charged with 15 kg each of dilute salts of potassium fluoride and potassium chloride, and the temperature was raised to 850 ° C to obtain a melt.
  • 200 g of tantalum potassium fluoride was added to the melt at a time, and one minute later, 58 g of dissolved sodium was added. Allowed to react for minutes. This operation was repeated 30 times.
  • the mixture was cooled, and the obtained agglomerates were crushed and washed with a weakly acidic aqueous solution to obtain tantalum particles. Further, it was purified with a cleaning solution containing hydrofluoric acid and hydrogen peroxide. The yield of reduced tantalum particles was 1.6 kg.
  • the tan particles obtained in this manner had the following properties.
  • magnesium chips were added to the aggregated particles and deoxidized at 800 ° C in a furnace. After further stabilization (gradual oxidation), it was removed from the furnace. '
  • the obtained aggregated particles were pressed so that the molding density became 5 gZ cm 3 to obtain a molded body.
  • the pore distribution of this molded product was measured by a mercury intrusion method, peaks were observed at around 0.1 lzm and 22 m.
  • the porosity was about 70% by volume, and 7% by volume of the total pore volume was pores having a pore diameter of 1 to 20.
  • the aggregated particles were crushed in an inert gas atmosphere, and the particle size was adjusted so that the average diameter became about 100 m. Furthermore, washing with a mixed acid of nitric acid and hydrogen peroxide was carried out to dissolve and remove the magnesium oxide generated in the previous step and the remaining magnesium. Then, it was further washed with pure water and dried with a vacuum drier.
  • the aggregated particles were press-molded so that the molding density became 4.5 g / cm 3 to obtain a molded body.
  • pore distribution of the obtained molded body was measured by a mercury intrusion method, peaks were observed at around 0.15 m and around 1.5 m.
  • the porosity was about 73% by volume, and 8% by volume of the total pore volume was pores having a pore diameter of 1 to 20 tm.
  • the solid was heated to 850 ° C. in a vacuum heating furnace, maintained for 1 hour, and then heated to 115 ° C. and heat-treated for 0.5 hour. Thereafter, argon gas was passed through the furnace to oxidize and stabilize the metal.
  • the solids taken out of the furnace were crushed with a roll crusher in an argon stream, and further crushed with a pin disk mill and a supermicron mill to 150 m or less. Agglomerated particles having a particle size of Then, with a mixed acid of hydrochloric acid, nitric acid and hydrofluoric acid, the magnesium oxide produced in the previous step and the remaining magnesium were dissolved and removed. Then, it was further washed with pure water and dried.
  • the aggregated particles were press-molded so that the molding density became 5.0 gZ cm 3 to obtain a molded body.
  • pore distribution of this molded product was measured by a mercury intrusion method, peaks were observed at 0.2 ⁇ m and 2.5 m.
  • the porosity was about 70% by volume, and 9% by volume of pores having a pore diameter of 1 to 20 m in the total pore volume.
  • Agglomerated particles were produced in the same manner as in Example 1 except that camphor was not added.
  • the vacancy distribution of the powder comprising the aggregated particles thus obtained was measured by a mercury intrusion method, and peaks were observed at 0.15 / 21! 1 and 0.95 m.
  • Example 2 a molded article was obtained in the same manner as in Example 1.
  • the porosity was about 70% by volume, and the porosity with a pore diameter of 1 to 20 m of the total porosity was less than 1% by volume.
  • Agglomerated particles were obtained in the same manner as in Example 2 except that magnesium hydride was thermally aggregated without being added, and then magnesium hydride was added in the same amount as in Example 2 and deoxygenated at 800 ° C for 2 hours. Was manufactured.
  • the pore distribution of the powder composed of the aggregated particles thus obtained was measured by the mercury intrusion method, peaks were observed at 0.18 ⁇ 111 and 0.9 zm.
  • Example 3 a molded article was obtained in the same manner as in Example 2.
  • a peak was observed at 0.15 and a weak peak was observed at around 0.8 ⁇ m.
  • the porosity was about 70% by volume, and the porosity with a pore diameter of 1 to 20 zm was less than 1% by volume of the total pore volume.
  • Example 3 Example 3 was repeated except that fibrous magnesium was added without heat to make the particles coagulate to a particle size of 15 Oim or less, and then magnesium chips were added at 8% by volume and deoxygenated at 850 for 2 hours. Similarly, agglomerated particles were produced. The vacancy distribution of the powder composed of the aggregated particles thus obtained was measured by a mercury intrusion method, and peaks were found at 0.118111 and 0.95 m.
  • Example 3 a molded article was obtained in the same manner as in Example 3.
  • a large peak at 0.1 m and a very weak peak at around 0.8 / m were recognized.
  • the compact obtained in this manner was heated at a temperature at which the sintering density was 5.5 to 5.6 gZcm 3 for about 20 minutes and sintered to produce a sintered compact.
  • This sintered body was subjected to a chemical oxidation in a phosphoric acid electrolytic solution having a concentration of 0.1% by weight and a temperature of 60 mAZg at a current density of 60 mAZ g for 30 minutes in a phosphoric acid electrolytic solution.
  • the sintered body was further impregnated with a 25, 50, 62, or 76% aqueous solution of manganese nitrate twice from a dilute aqueous solution twice, for a total of eight times, and then preheated at 105 ° C for 15 minutes in a steam atmosphere. Then, it was baked at 220 ° C for 15 minutes.
  • the CV value and ESR of the thus obtained capacitor pellet were measured.
  • the ESR measurement conditions were 100 kHz, 1.5 VDC, 0.5 V rms. Table 1 shows the measurement results.
  • a condenser pellet was obtained in the same manner as in Example 4 except that the aggregated particles used were obtained in Example 2, and the characteristics of the capacitor pellet were measured. Table 1 shows the measurement results. [Example 6]
  • a capacitor pellet was obtained in the same manner as in Example 4 except that the agglomerated particles used were obtained in Example 3, and the characteristics of the capacitor pellet were measured. Table 1 shows the measurement results.
  • Capacitor pellets were obtained in the same manner as in Example 4 except that the aggregated particles used were obtained in Comparative Example 1, and the characteristics of the pellets were measured. Table 1 shows the measurement results.
  • a capacitor pellet was obtained in the same manner as in Example 4 except that the used aggregated particles were obtained in Comparative Example 2, and the characteristics of this capacitor pellet were measured. Table 1 shows the measurement results.
  • a capacitor pellet was obtained in the same manner as in Example 4 except that the used aggregated particles were obtained in Comparative Example 3, and the characteristics of this capacitor pellet were measured. Table 1 shows the measurement results.
  • Comparative Example 70.9 0.98 As is clear from Table 1, the capacitor pellets obtained in Examples 4 to 1.6 had a high CV value and a low ESR. Industrial applicability
  • the niobium or tantalum powder of the present invention is composed of agglomerated particles having large pores, and in each agglomerated particle, the pores and the voids existing between the primary particles are connected to each other. . Therefore, the electrolyte easily penetrates into the entire inside of each aggregated particle. Therefore, when an anode electrode is formed using such niobium or tantalum powder and used for a solid electrolytic capacitor, a solid electrolytic capacitor having high capacity and low ESR can be obtained. Further, in the manufacturing method of the present invention, a separate step for forming holes is not required.
  • a solid electrolytic capacitor having high capacity and low ESR can be provided with high productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

ニオブまたはタンタル粉末およびその製造方法
ならびに固体電解コンデンサ一 技術分野
本発明は、 固体電解コンデンサーのアノード電極の形成に好適なニオブまたは タンタル粉末およびその製造方法ならびに固体電解コンデンサーに関する。
本出願は日本国への特許出願 (特願 2 0 0 0 - 1 6 5 1 0 4 ) に基づくもので あり、当該日本出願の記載内容は本明細書の一部として取り込まれるものとする。 背景技術
近年、 電子集積回路は、 より低電圧での駆動、 高周波化、 低ノイズ化が求めら れていて、 固体電解コンデンサーについても、 低 E S R (等価直列抵抗) ィヒ、 低 E S L化の要求が高まってきている。
固体電解コンデンサ一において、 ニオブまたはタンタルからなるアノード電極 を製造するためには、 大きさが 4 0〜1 0 0 程度の凝集粒を 7 0体積%程度 の空孔が残存するようにプレス成形して焼結したものに、 誘電体酸化膜を形成す る。 ここで用いられる凝集粒を得るためには、 まず、 フッ化カリウム塩を還元す る方法等でニオブ、 タンタルの一次粒子を熱凝集させ、 次いで、 これにマグネシ ゥム等の酸素補足剤を添加して脱酸素する。
最近では、 コンデンサ一の高容量化を図るために、 ニオブ、 タンタルの一次粒 子はさらに微細化されてきている。
一次粒子がより微細化されると、 このような粒子からなる成形体や焼結体の空 孔も小さくなり、 その結果、 電解質の溶液が内部まで十分に浸透せず、 E S Rを 小さくできないことが問題になっている。 現在、 実用化されている 5万 C V程度 のニオブあるいはタンタルのアノード焼結体中の空孔径は、 おおよそ 0 . 4 m 程度であるが、 今後、 さらに高容量化 ·低 E S R化を図るためには、 空孔の微細 化に伴う電解質溶液の浸透不足を解決することが不可欠である。
アノード焼結体への電解質溶液の浸透性を改良するためには、 いくつかの方法 が提案されている。
例えば、 特開平 9一 7 4 0 5 1号公報には、 タンタル等の凝集粒に糸状に加工 したポリマーを添加した混合物を成形、 焼結し、 焼結体にマクロな空孔を設ける 方法が開示されている。
また、 空孔のパスを短くするために薄い焼結体を作り、 硝酸マンガン溶液を含 浸しやすくし、 その後、 薄い焼結体を多数積層する方法 (特開平 6— 2 5 2 0 1 1号公報) が提案されている。
さらに、 成形体を形成する際のプレス圧力を小さくして、 大きな空孔を残存さ せる方法も試みられている。
しかしながら、 特開平 9一 7 4 0 5 1号公報に開示の方法は、 複数の凝集粒間 に空孔が形成された焼結体であって、 個々の凝集粒そのものに空孔が形成されて いるものではない。 したがって、 複数の凝集粒間への電解質の浸透は促進された としても、 個々の凝集粒内部への電解質の浸透性は向上しない。 さらに、 添加し たポリマ一に由来する炭素が凝集粒内に残存してしまい、 コンデンサ一特性に影 響を与えるという問題もあった。
また、 特開平 6— 2 5 2 0 1 1号公報に記載されている方法では、 工程数が増 加してしまうという問題があつた。
さらに、 成形体を形成する際のプレス圧力を小さくして、 大きな空孔を残存さ せる方法では、 アノード電極を形成する際における電極線のワイヤ一と成形体と の接着強度が低下してしまうという問題があつた。 発明の開示
本発明の目的は、 特に容量が 5万 C Vを超える高 C Vのニオブまたはタンタル のアノード焼結体を構成する個々の凝集粒に、 大きな空孔を形成して、 電解質溶 液の浸透性を改良し、 高容量で低 E S Rである固体電解コンデンサーを提供する ことである。
本発明のニオブまたはタンタル粉末は、 オブまたはタンタルの一次粒子が凝 集した凝集粒からなり、 水銀圧入法で測定した空孔分布が 1〜2 0 ; mの範囲内 にピークを有することを特徴とする。 本発明のニオブまたはタンタル粉末の製造方法は、 ニオブまたはタンタルの一 次粒子に、 熱分解性または熱昇華性であって、 粒状、 フィルム状、 箔状、 フレー ク状、 繊維状からなる群より選ばれる少なくとも 1種の形状を有する空孔形成材 を添加し、 ついで熱処理して空孔形成材を除去するとともに凝集粒を形成するこ とを特徴とする。
また、 本発明のニオブまたはタンタル粉末の製造方法は、 ニオブまたはタン夕 ルの一次粒子に、 酸溶解性であって、 粒状、 フィルム状、 箔状、 フレーク状、 繊 維状からなる群より選ばれる少なくとも 1種の形状を有する空孔形成材を添加し、 ついで熱処理および酸処理して、 空孔形成材を除去するとともに凝集粒を形成す ることを特徵とする。 図面の簡単な説明
図 1は、 本発明のニオブまたはタンタル粉末を模式的に示す断面図である。 図 2は、 本発明のニオブまたはタンタル粉末の水銀圧入法による空孔分布を模 式的に示すグラフである。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
本発明のニオブまたはタンタル粉末は、 ニオブまたはタンタルの一次粒子が凝 集した凝集粒からなる。
ニオブまたはタンタルの一次粒子は、 ニオブ化合物またはタンタル化合物を還 元する方法等で得られるものである。
ここで使用されるニオブ化合物またはタンタル化合物としては、 特に制限はな く、 これらの金属の化合物を使用できるが、 フッ化カリウム塩、 ハロゲン化物等 が好ましい。 フッ化カリウム塩としては、 K2T a F 7、 K2N b F 7、 K2N b F 6等 が挙げられ、 ハロゲン化物としては、 五塩化ニオブ、 低級塩化ニオブ、 五塩化夕 ンタル、 低級塩化タンタル等の塩化物や、 ヨウ化物、 臭化物等が挙げられる。 ま た、 特にニオブ化合物としては、 フッ化ニオブ酸カリウム等のフッ化ニオブ酸塩 や、 五酸化ニオブ等の酸化物も挙げられる。 また、 ニオブ化合物またはタンタル化合物を還元する際に使用される還元剤と しては、 ナトリウム、 マグネシウム、 カルシウム等のアルカリ金属およびアル力 リ土類金属ならびにこれらの水素化物、 すなわち水素化マグネシウム、 水素化力 ルシゥムや、 水素含有ガス等の還元性の気体が挙げられる。
ニオブまたはタンタルの一次粒子は、 通常、 K C 1一 K F、 K C 1— N a C l 等の共晶塩からなる溶融塩中で、 8 0 0〜9 0 0 °Cで上記に例示したニオブ化合 物またはタンタル化合物を還元して得られる。
また、 本発明のニオブまたはタンタル粉末には、 5 0〜1 0 0 0 0 p p mの窒 素が含まれていてもよい。 5 0〜 1 0 0 0 0 p p mの窒素が含まれると、 ニオブ またはタンタル粉末の高温での焼結収縮率が小さくなる。 その結果、 焼結体をァ ノード電極として使用したコンデンサーが、 高容量になりやすく、 また、 漏れ電 流も小さくなり、 信頼性の高いコンデンサ一が得られる。
さらに本発明のニオブまたはタンタル粉末は、 リンまたはホウ素の少なくとも 一方を含有してもよく、 それぞれの含有量が 1 0〜5 0 0 p p mであるこ が好 ましい。 リンおよび/またはホウ素を、 ニオブまたはタンタルの一次粒子を凝集 させる前に添加して、 リンおよび Zまたはホウ素の存在下で熱凝集を行うと、 二 ォブまたはタンタルの表面積の低下を抑制できる。
図 1は本発明のニオブまたは夕ンタル粉末 1 0の様子を模式的に示す断面図で あ 。
本発明のニオブまたはタンタル粉末 1 0は、 上述のニオブまたはタンタルの一 次粒子 1が凝集した凝集粒 2が集合した粉体であり、 個々の凝集粒 2が空孔 3を 有する。 そして、 この凝集粒 2の空孔分布を水銀圧入法で測定した場合には、 1 〜2 0 mの範囲内にピークが観測される。 図 1では、 3個の凝集粒 2を例示し ている。
ニオブまたはタンタルの一次粒子 1が凝集した凝集粒 2には、 一般に、 一次粒 子 1同士の間の空隙 4が存在するが、 このような空隙 4の大きさは、 水銀圧入法 で測定した場合には通常 0 . 0 5〜2 mの範囲である。 そして、 空隙 4の大き さの最頻度値、 すなわち空孔分布のピークは通常 0 . 0 5〜0 . 3 x mである。 一方、 本発明のニオブまたはタンタル粉末の空孔分布を、 水銀圧入法で測定した 場合に認められる 1〜2 0 のピークは、 このような一次粒子 1の間の空隙 4 に由来するものではなく、 例えば、 後述する方法によって意図的に形成された空 孔 3に由来するものである。 そのため、 本発明のニオブまたはタンタル粉末の空 孔分布を水銀圧入法で測定した場合には、 図 2のグラフに概略的に示すように、 一次粒子 1同士の間の空隙 4を示すピーク Aと、 凝集粒 2が有する空孔 3を示す ピーク Bが認められる。
このような凝集粒 2の粒子径は、 通常、 実質的に 3 8〜2 5 0 mの範囲に分 布していて、 一次粒子 1の B E T法による平均粒子径は通常 8 0〜5 0 0 n mで ある。
本発明のニオブまたはタンタル粉末は、 次のような方法で製造することができ る。
ニオブ化合物またはタンタル化合物を還元して得られたニオブまたはタンタル の一次粒子粉末に、 空孔形成材を添加する。
ここで使用する空孔形成材は、 熱処理によって分解する熱分解性のもの、 熱処 理によって昇華する熱昇華性のものや、 酸洗浄等の酸処理で酸に溶解する酸溶解 性を有するものであり、 後の工程で熱処理や酸処理によって、 容易に除去できる ものである。 空孔形成材を除去することにより空孔形成材が存在していた部分が 空孔となり、 このように空孔が形成されることによってこの粉末の空孔分布を水 銀圧入法で測定した場合、 1〜2 0 mにピークが認められるようになる。 空孔形成材としては、 その形状が粒状、 フィルム状、 箔状、 フレーク状、 繊維 状からなる群より選ばれるものであり、 好ましくは、 直径 2〜6 /z mの粒、 厚さ 1〜2 0 mのフィルムまたは箔、 直径 1〜2 0 6 mで長さ 1 0 0 m〜 l c m の繊維からなる群より選ばれるいずれか 1種類以上である。 また、 厚さ 1〜2 0 mのフィルムまたは箔としては、 直径が 1 0 0 x m以上の略円形のものである ことが好ましい。
このような空孔形成材を使用することによって、 個々の凝集粒の表面に、 開口 を有する空孔、 または凝集粒を貫通している貫通孔を効率的に形成することがで きる。
ついで、 空孔形成材を添加したニオブまたはタンタルの一次粒子粉末を、 比較 的粒径の大きな 2次粒子とするために加熱して熱凝集させる。
熱凝集は、 通常、 この粉末を真空中で 8 0 0〜 1 4 0 0 Cで、 0 . 5〜2時間 加熱して行う。 ここで、 空孔形成材として、 熱分解性を有するものが添加されて いる場合には、 この熱凝集工程で空孔形成材は熱分解されて除去される。 その結 果、 空孔形成材が存在していた部分には空孔が形成される。
また、 熱凝集の前には、 粉末に振動を与えながら、 粉末全体が均一に濡れる量 の水を添加する予備凝集を行うことが好ましい。 この予備凝集を行うことによつ て、 より強固な凝集粒を得ることができる。 また予備凝集で添加する水に、 ニォ ブまたはタンタルに対して 1 0〜 5 0 0 p p m程度のリン、 ホウ素等をあらかじ め添加しておくことによって、 一次粒子の融合成長を抑え、 高表面積を維持しな がら熱凝集させることができる。 なお、 ここで加えるリンの形態としては、 リン 酸、 六フッ化リンアンモニゥム等が挙げられる。
ついで、 熱凝集で得られたケーキ状の粉末を、 大気中または不活性ガス中で解 砕した後、 マグネシウム等の還元剤を加え、 粒子中の酸素と還元剤を反応させ、 脱酸素を行う。 .
脱酸素はアルゴン等の不活性ガス雰囲気中で、 還元剤の融点以上、 沸点以下の 温度で、 1〜3時間行う。 そして、 その後の冷却中にアルゴンガスに空気を導入 してニオブまたはタンタル粉末の徐酸化安定化処理を行った後、酸処理を行って、 粉末中に残留しているマグネシウム、 酸化マグネシウム等の還元剤由来の物質等 を除去する。 .
ここで、 先に添加した空孔形成材が、 酸溶解性を有するものである場合には、 この酸処理によって空孔形成材が酸溶液中に溶解して除去される。 その結果、 空 孔形成材が存在していた部分には空孔が形成される。
なお、 使用する空孔形成材としては、 熱分解性を有するポリマ一や、 ショウノ ゥ (C 1QH 16〇) 、 ナフタレン (C 1QH8) 、 安息香酸 (C 7H602) 等の熱昇華性の 有機物が挙げられる。 また、 酸溶解性の空孔形成材としては、 マグネシウム、 マ グネシゥム水素化物、 カルシウム、 カルシウム水素化物、 アルミニウム等の酸に 溶解しやすい金属および金属化合物が挙げられる。 これら酸溶解性の空孔形成材 は、 空孔形成材として作用するとともに還元剤としても作用する。 よって、 これ らを空孔形成材として使用すると、 熱凝集後の脱酸素において改めて還元剤を添 加する必要がない。 また、 空孔形成材の添加量には特に制限はないが、 通常、 二 ォブまたは夕ンタルに対して少なぐとも 3体積%以上であり、 好ましくは 3〜 2 0体積%である。
このような方法によって、 ニオブまたはタンタルの一次粒子が凝集した凝集粒 からなり、 水銀圧入法で測定した空孔分布が 1〜 2 0 mの範囲内にピークを有 するニオブまたはタンタル粉末が得られる。
そして、 このニオブまたはタンタル粉末に、 例えばバインダ一として 3〜 5重 量%程度のショウノウ (C 1()H16〇) 等を加えてプレス成形することによって、 空 孔率が 6 0体積%以上であり、 水銀圧入法で測定した空孔分布が 0 . 0 8〜 0 . 5 mの範囲内と 1〜2 0 mの範囲内にそれぞれピークを有し、 さらに、 全空 孔容積のうちの 5体積%以上が 1〜2 0 z mの空孔径を有する空孔であるニオブ またはタンタルの多孔質成形体を製造できる。 この場合、 空孔分布を測定する際 の成形密度は 4 . 5〜5 . 0 g Z c m3 の範囲に設定する。 また、 本発明の凝集 粒からなるニオブまたはタンタル粉末は、 個々の凝集粒の表面における開口割合 が高いため、 プレス成形時における金型と凝集粒の表面との接触面積が低下し、 金型の壁面と凝集粒が接触し、 摩擦する壁面摩擦が小さくなる。 その結果、 壁面 摩擦による凝集粒間の空隙の閉塞を抑制できる。
このようにして得られたニオブまたはタンタルの多孔質成形体を、 1 0 0 0〜 1 4 0 0 °Cで 0 . 3〜 1時間程度加熱して焼結することによって、 全空孔容積の うちの 5体積%以上が 1〜 2 0 i mの空孔径を有する空孔であるニオブまたは夕 ンタルの多孔質焼結体を製造できる。 なお、 焼結温度は、 金属の種類や粉末の表 面積に応じて適宜設定できる。
このニオブまたはタンタルの多孔質焼結体をアノード電極として使用する場合 には、 ニオブまたはタンタル粉末をプレス成形する前に、 この粉末中にリード線 を埋め込んでおき、 その後プレス成形し、 焼結して、 リード線を一体化させる。 そして、 これを、 例えば温度 3 0〜9 0 °C、 濃度 1重量%程度のリン酸、 硝 酸等の電解溶液中で、 4 0 ~ 8 O mAZ gの電流密度で 2 0〜6 0 Vまで昇圧し て 1〜3時間処理し、 化成酸化を行って、 固体電解コンデンサ一用のアノード電 極に使用する。
具体的には、 さらに、 公知の方法で二酸化マンガン、 酸化鉛や導電性高分子等 の固体電解質層、 グラフアイト層、銀ペースト層を多孔質焼結体上に順次形成し、 ついでその上に陰極端子をハンダ付けなどで接続した後、 樹脂外被を形成して、 固体電解コンデンサ一用のアノード電極として使用する。
このようなニオブまたはタンタル粉末にあっては、 ニオブまたはタンタルの一 次粒子が凝集した凝集粒からなり、 水銀圧入法で測定した空孔分布が 1〜 2 0 n mの範囲内にピークを有する。 すなわち、 個々の凝集粒自体が大きな空孔を有す る。 よって、 この大きな空孔と、 一次粒子間に存在する空隙とが互いにつながつ た状態となる。 よって、 このようなニオブまたはタンタル粉末を使用してァノー ド電極を形成すると、個々の凝集粒内部全体にも電解質が浸透しやすくなるため、 高容量で低 E S Rである固体電解コンデンサーが得られる。
また、 このようなニオブまたはタンタル粉末は、 ニオブまたはタンタルの一次 粒子に、 熱分解性であって、 粒状、 フィルム状、 箔状、 フレーク状、 繊維状から なる群より選ばれる少なくとも 1種の形状を有する空孔形成材を添加し、 ついで 熱処理して空孔形成材を除去するとともに凝集粒を形成する方法か、 または、 酸 溶解性であって、 粒状、 フィルム状、 箔状、 フレーク状、 繊維状からなる群より 選ばれる少なくとも 1種の形状を有する空孔形成材を添加し、 ついで熱処理およ び酸処理して、空孔形成材を除去するとともに凝集粒を形成する方法で得られる。 そして、 ここで行われる熱処理および酸処理は、 凝集粒を製造する工程で通常実 施される工程である。 したがって、空孔を形成するための工程を別途必要とせず、 生産性にも優れる。 実施例
以下、 本発明を実施例を挙げて具体的に説明する。
[実施例 1 ]
5 0 Lの反応容器に、 希釈塩のフッ化カリウムと塩化カリウムを各 1 5 k g入 れ、 8 5 0 °Cまで昇温して融液とした。 この融液内へ、 1回あたりフッ化タンタ ルカリウム 2 0 0 gを添加し、 1分後、 溶解したナトリウムを 5 8 g添加し、 2 分間反応させた。 この操作を 30回繰り返した。
還元反応終了後冷却し、 得られた集塊を砕き、 弱酸性水溶液で洗浄し、 タンタ ル粒子を得た。 さらに、 フッ酸と過酸化水素を含む洗浄液で精製処理した。 タン タルの還元粒子の収量は 1. 6 kgであった。
このようにして得られたタン夕ル粒子は下記の特性を有した。
BET比表面積 1. 8m2Zg
一次粒子の平均粒子径 200 nm
見かけの平均粒径 10 m (Dso¾)
次に、 タンタルの還元粒子 100 gに対し水を 35m 1添加し、 ビーズミル中 ( lmm φのジルコ二アビ一ズを使用) でミル処理し、 平均粒子径が約 2 ^ mに なるまで解砕した。 その後、 水洗、 ろ過して得られたタンタルのウエットケーキ に、 ショウノウのェマルジヨン (濃度 10wt %、 ェマルジヨン粒子の大きさ約 5 ^m) を 15m 1混合してスラリーとし、 噴霧乾燥機で乾燥した。 このように してショウノウ粒子を 17体積%含有する、 平均粒子径が約 80 mのタンタル 球状粒子を得た。
この球状粒子は凝集力が弱いため、 真空加熱炉中で 1 100°Cで 1時間加熱し ショウノウを除去するとともに、 硬い凝集粒を製造した。
ついで、 この凝集粒にマグネシウムチップを添加して、 炉内で 800°Cで脱酸 素した。 さらに安定化処理 (徐酸化) をして、 炉から取り出した。 '
こうして得られた凝集粒からなる粉末の空孔分布を水銀圧入法で測定したとこ ろ、 0. 1 5 mと 2. 5 /mにピークが認められた。
そして得られた凝集粒を成形密度が 5 gZ cm3になるようにプレスして成形 体を得た。 この成形体の空孔分布を水銀圧入法で測定したところ、 0. l zmと 2 2m付近にピークが認められた。 また、 空孔率は約 70体積%であり、 全空孔 容積のうちの 7体積%が 1〜20 の空孔径を有する空孔であった。
[実施例 2 ]
実施例 1と同様にして、 タンタルの還元粒子を得た。 そして、 このタンタルの 還元粒子 100 gを脱水アルコール中でビーズミル解砕した。 その後、 直径が 7 mの水素化マグネシウムの粒子 3 gと、 六フッ化リンアンモニゥムの粉末 20 mgを添加、 混合し、 真空乾燥機内で 50°Cで乾燥しアルコール分を除いた固形 物を得た。 水素化マグネシウムの添加量は還元粒子に対して約 20体積%であつ た。 この固形物を真空加熱炉で 800°Cで 1時間加熱しさらに 1 200 で0. 5時間熱処理した。 このような操作によって、 タンタル表面の酸素を除去 (脱酸 素) するととともに、 熱凝集させた。
ついで、 この凝集粒を不活性ガス雰囲気中で解砕し平均径が約 100 mにな るように粒度を調整した。 .さらに硝酸と過酸化水素の混酸で洗浄し、 先の工程で 生成した酸化マグネシゥムと残存しているマグネシゥムを溶解除去した。そして、 さらに純水で洗浄し真空乾燥機で乾燥した。
こうして得られた凝集粒からなる粉末の空孔分布を水銀圧入法で測定したとこ ろ、 0. 20 //mと 2. 5 にピークが認められた。
この凝集粒を成形密度が 4. 5 g/ cm3になるようにプレス成形して成形体 を得た。 得られた成形体の空孔分布を水銀圧入法で測定したところ、 0. 1 5 mと 1. 5 m付近にピークが認められた。 また、 空孔率は約 73体積%であり、 全空孔容積のうちの 8体積%が 1〜20 tmの空孔径を有する空孔であった。
[実施例 3 ]
実施例 1と同様にして、 タンタルの還元粒子を得た。 そして、 このタンタルの 還元粒子 100 gに繊維状 (直径約 8 xm、 長さ 100〜 300 m) のマグネ シゥム金属 2 gを良く混合した後、 これに振動を与えながらリン酸水溶液を少量 ずつ添加し、 団塊状の固形物を得た。 マグネシウム金属の添加量は還元粒子に対 して 14体積%であった。 団塊化するのに要した水分量は 22m 1であり、 リン 酸のタンタル粒子に対する含有量は 150 p pmであった。
この固形物を真空加熱炉で 850°Cまで昇温し、 1時間保持した後に 1 1 5 0°Cまで昇温して 0. 5時間熱処理した。 その後炉内にアルゴンガスを流通させ てタン夕ル金属を酸化安定化処理した。
ついで、 炉から取り出した固形物をアルゴン気流中でロールクラッシャーで粗 碎し、 さらにピンディスクミル、 スーパーミクロンミルで粉砕し 150 m以下 の粒度の凝集粒を得た。 そして、 塩酸、 硝酸、 フッ酸の混酸で、 先の工程で生成 した酸化マグネシウムと残存しているマグネシウムを溶解除去した。 そして、 さ らに純水で洗浄し乾燥した。
こうして得られた凝集粒からなる粉末の空孔分布を水銀圧入法で測定したとこ ろ、 0. 1 5 imと 2. 8 //mにピークが認められた。
この凝集粒を成形密度が 5. 0 gZ cm3になるようにプレス成形して成形体 を得た。 この成形体の空孔分布を水銀圧入法で測定したところ、 0. 2 ^mと 2. 5 mにピークが認められた。 また、 空孔率は約 70体積%であり、 全空孔容積 のうちの 1〜 20 mの空孔径を有する空孔は 9体積%であった。
[比較例 1 ]
ショウノウを添加しない以外は実施例 1と同様にして、 凝集粒を製造した。 こ うして得られた凝集粒からなる粉末の空孔分布を水銀圧入法で測定したところ、 0. 15 /21!1と0. 95 mにピークが認められた。
ついで、 実施例 1と同様にして成形体を得た。 この成形体の空孔分布を水銀圧 入法で測定したところ、 0. 1 zmにピークが認められ、 0. 8 m付近にごく 弱いピークが認められた。 また、 空孔率は約 70体積%であり、 全空孔容積のう ちの 1〜20 mの空孔径を有する空孔は 1体積%以下であった。
[比較例 2]
水素化マグネシウムを添加せずに熱凝集させ、 その後、 水素化マグネシウムを 実施例 2と同量添加した後、 800°Cで 2時間脱酸素処理した以外は実施例 2と 同様にして、 凝集粒を製造した。 こうして得られた凝集粒からなる粉末の空孔分 布を水銀圧入法で測定したところ、 0. 18 ^111と0. 9 zmにピークが認めら れた。
ついで、 実施例 2と同様にして成形体を得た。 この成形体の空孔分布を水銀圧 入法で測定したところ、 0. 15 にピークが認められ、 0. 8 ^m付近に弱 いピークが認められた。 また、 空孔率は約 70体積%であり、 全空孔容積のうち の 1〜20 zmの空孔径を有する空孔は 1体積%以下であった。 [比較例 3]
繊維状のマグネシウムを添加せずに熱凝集させ、 これを 1 5 O im以下の粒径 にした後、 マグネシウムチップを 8体積%添加し、 850 で 2時間脱酸素処理 した以外は実施例 3と同様にして、 凝集粒を製造した。 こうして得られた凝集粒 からなる粉末の空孔分布を水銀圧入法で測定したところ、 0. 18 111と0. 9 5 mにピークが認められた。
ついで、 実施例 3と同様にして成形体を得た。 この成形体の空孔分布を水銀圧 入法で測定したところ、 0. 1 mの大きなピークと 0. 8 /m付近のごく弱い ピークが認められた。
[実施例 4]
実施例 1の凝集粒に対してバインダーとしてショウノウを 3重量%添加したも の 1 5mgを、 成形密度が 5. 0 gZ cm3になるようにプレス成形して成形体 を得た。
このようにして得られた成形体を、 焼結密度が 5. 5〜5. 6 gZcm3とな る温度で 20分程度加熱して焼結させ、 焼結体を製造した。
この焼結体を、 濃度 0. 1重量%、 60°Cのリン酸電解溶液中で、 60mAZ gの電流密度で 30 Vまで昇圧して 120分間処理し、 化成酸化を行った。
さらにこの焼結体に、 25、 50、 62、 76 %の硝酸マンガン水溶液を、 濃 度の薄い水溶液から 2回すつ、 合計 8回含浸した後、 水蒸気雰囲気下において、 105°Cで 15分間予熱し、 ついで 220°Cで 1 5分間焼成した。
このようにして得られたコンデンサ一ぺレットをの CV値、 ESRを測定した。 なお ESR測定条件は、 100 kHz、 1. 5VDC、 0. 5 V r m s . であつ た。 測定結果を表 1に示す。
[実施例 5 ]
使用した凝集粒を、 実施例 2で得られたものとした以外は実施例 4と同様にし てコンデンサーペレツトを得て、 このコンデンサーペレットの特性を測定した。 測定結果を表 1に示す。 [実施例 6 ]
使用した凝集粒を、 実施例 3で得られたものとした以外は実施例 4と同様にし てコンデンサ一ペレツトを得て、 このコンデンサ一ペレツトの特性を測定した。 測定結果を表 1に示す。
[比較例 4]
使用した凝集粒を比較例 1で得られたものとした以外は実施例 4と同様にして コンデンサーペレットを得て、 このユンデンサ一ペレットの特性を測定した。 測 定結果を表 1に示す。
[比較例 5]
使用した凝集粒を、 比較例 2で得られたものとした以外は実施例 4と同様にし てコンデンサーペレツトを得て、 このコンデンサ一ペレツトの特性を測定した。 測定結果を表 1に示す。
[比較例 6]
使用した凝集粒を、 比較例 3で得られたものとした以外は実施例 4と同様にし てコンデンサーペレツトを得て、 このコンデンサ一ペレツトの特性を測定した。 測定結果を表 1に示す。
[比較例 7]
比較例 3で得られた凝集粒に、 直径が 10 /zmで長さが 30 mのメタクリル 酸エステルポリマー繊維を 3w t %添加混合して、 成形密度が 5. O g/cm3 になるように成形した以外は実施例 4と同様にしてコンデンサーペレツ卜を得て、 トの特性を測定した。 測定結果を表 1に示す。 ESR
( Ω )
実施例 4 1 0 1 0 . 5 9
実施例 5 1 0 0 0 . 5 5
実施例 6 9 9 0 . 6 0
比較例 4 9 5 0 . 9 8
比較例 5 . 9 3 0 . 9 5
比較例 6 9 1 0 . 9 5
比較例 7 9 0 0 . 9 8 表 1から明らかなように、 実施例 4〜两 . 6で得られたコンデンサ一ペレットは、 C V値が高く、 低 E S Rであった。 産業上の利用可能性
以上説明したように、 本発明のニオブまたはタンタル粉末は大きな空孔を有す る凝集粒からなり、 個々の凝集粒においては、 この空孔と一次粒子間に存在する 空隙とが互いにつながっている。 そのため、 個々の凝集粒内部全体に電解質が浸 透しやすくなる。 よって、 このようなニオブまたはタンタル粉末を使用してァノ ード電極を形成し、 固体電解コンデンサーに使用すると、 高容量で低 E S Rであ る固体電解コンデンサ一が得られる。 また、 本発明の製造方法においては、 空孔 を形成するための工程を別途必要しない。
よって、 本発明によれば、 高容量で低 E S Rである固体電解コンデンサ一を生 産性よく提供することができる。
本発明は、 その精神または主要な特徴から逸脱することなく、 他のいろいろな 形で実施することができる。 そのため、 前述の実施例はあらゆる点で単なる例示 にすぎず、 限定的に解釈してはならない。 本発明の範囲は、 特許請求の範囲によ つて示すものであって、 明細書本文には、 なんら拘束されない。 さらに、 特許請 求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。

Claims

請求の範囲
1 . ニオブまたはタンタルの一次粒子が凝集した凝集粒からなり、 水銀圧入 法で測定した空孔分布が 1〜 2 0 の範囲内にピークを有することを特徴とす るニオブまたはタンタル粉末。
2 . 5 0〜1 0 0 0 0 p p mの窒素を含有することを特徴とする請求項 1に 記載のニオブまたは夕ンタル粉末。
3 . リンまたはホウ素の少なくとも一方を含有し、 それぞれの含有量が 1 0 〜5 0 0 p p mであることを特徴とする請求項 1に記載のニオブまたはタンタル 粉末。
4 . ニオブまたはタンタルの一次粒子に、熱分解性または熱昇華性であって、 粒状、 フィルム状、 箔状、 フレーク状、 繊維状からなる群より選ばれる少なくと も 1種の形状を有する空孔形成材を添加し、
ついで熱処理して空孔形成材を除去するとともに凝集粒を形成することを特徴 とするニオブまたは夕ン夕ル粉末の製造方法。
5 . ニオブまたはタンタルの一次粒子に、 酸溶解性であって、 粒状、 フィル ム状、 箔状、 フレーク状、 繊維状からなる群より選ばれる少なくとも 1種の形状 を有する空孔形成材を添加し、
ついで熱処理および酸処理して、 空孔形成材を除去するとともに凝集粒を形成 することを特徴とするニオブまたはタンタル粉末の製造方法。 '
6 . 空孔形成材が、 マグネシウム、 マグネシウム水素化物、 カルシウム、 力 ルシゥム水素化物、 アルミニウムからなる群より選ばれる少なくとも 1種である ことを特徴とする請求項 4に記載のニオブまたはタンタル粉末の製造方法。
7. 空孔形成材が、 マグネシウム、 マグネシウム水素化物、 カルシウム、 力 ルシゥム水素化物、 アルミニウムからなる群より選ばれる少なくとも 1種である ことを特徴とする請求項 5に記載のニオブまたはタンタル粉末の製造方法。
8. 空孔形成材が、 ポリマーおよび/または有機バインダ一であることを特 徵とする請求項 4に記載のニオブまたはタンタル粉末の製造方法。
9. 空孔形成材が、 直径 2〜 6 mの粒、 厚さ 1〜20 zmのフィルムまた は箔、 直径 1〜20 で長さ 100 im〜l c mの繊維からなる群より選ばれ る少なくとも 1種であることを特徴とする請求項 4に記載のニオブまたはタン夕 ル粉末の製造方法。
10. 空孔形成材が、 直径 2〜 6 mの粒、 厚さ 1〜20 mのフィルムまた は箔、 直径 1〜20 で長さ 100 / m〜l c mの繊維からなる群より選ばれ る少なくとも 1種であることを特徴とする請求項 5に記載のニオブまたはタン夕 ル粉末の製造方法。
11. 空孔形成材の添加量が、 ニオブまたはタンタルに対して少なくとも 3体 積%以上であることを特徴とする請求項 4に記載のニオブまたはタンタル粉末の 製造方法。
12. 空孔形成材の添加量が、 ニオブまたはタンタルに対して少なくとも 3体 積%以上であることを特徴とする請求項 5に記載のニオブまたはタンタル粉末の 製造方法。
13. 空孔率が 60体積%以上であり、 水銀圧入法で測定した空孔分布が 0. 08〜0. 5 mの範囲内と 1〜20 mの範囲内にそれぞれピークを有し、 さ らに、 全空孔容積のうちの 5体積%以上が 1〜 20 mの空孔径を有する空孔で あることを特徴とするニオブまたはタンタルの多孔質成形体。
1 4 . 全空孔容積のうちの 5体積%以上が 1〜2 0 mの空孔径を有する空孔 であることを特徴とするニオブまたはタンタルの多孔質焼結体。
1 5 . 請求項 1 4に記載のニオブまたはタンタル多孔質焼結体からなるァノー ド電極を備えていることを特徴とする固体電解コンデンサ一。
PCT/JP2001/004596 2000-06-01 2001-05-31 Poudre de niobium ou de tantale, son procede de preparation et condensateur electrolytique solide WO2001091953A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01934455.5A EP1291100B2 (en) 2000-06-01 2001-05-31 Niobium or tantalum powder and method for production thereof
DE60114415T DE60114415T3 (de) 2000-06-01 2001-05-31 Niob- und tantal-pulver und verfahren zu deren herstellung
US10/297,083 US7204866B2 (en) 2000-06-01 2001-05-31 Niobium or tantalum powder and method for production thereof, and solid electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-165104 2000-06-01
JP2000165104A JP3718412B2 (ja) 2000-06-01 2000-06-01 ニオブまたはタンタル粉末およびその製造方法

Publications (1)

Publication Number Publication Date
WO2001091953A1 true WO2001091953A1 (fr) 2001-12-06

Family

ID=18668630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004596 WO2001091953A1 (fr) 2000-06-01 2001-05-31 Poudre de niobium ou de tantale, son procede de preparation et condensateur electrolytique solide

Country Status (6)

Country Link
US (1) US7204866B2 (ja)
EP (1) EP1291100B2 (ja)
JP (1) JP3718412B2 (ja)
CN (1) CN1263570C (ja)
DE (1) DE60114415T3 (ja)
WO (1) WO2001091953A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004016374A1 (ja) * 2002-08-13 2004-02-26 Jfe Mineral Company, Ltd. ニオブ合金粉末、固体電解コンデンサ用アノード及び固体電解コンデンサ
US6780218B2 (en) 2001-06-20 2004-08-24 Showa Denko Kabushiki Kaisha Production process for niobium powder
WO2004097870A1 (en) * 2003-04-28 2004-11-11 Showa Denko K.K. Valve acting metal sintered body, production method therefor and solid electrolytic capacitor
JP2004349683A (ja) * 2003-04-28 2004-12-09 Showa Denko Kk 弁作用金属焼結体、その製造方法及び固体電解コンデンサ
EP1433187A4 (en) * 2001-10-01 2007-10-24 Showa Denko Kk SINTERED BODY IN TANTALIUM AND CONDENSER PRODUCED BY MEANS OF SAID FRITTE BODY
KR20200099596A (ko) 2017-12-28 2020-08-24 닝시아 오리엔트 탄탈럼 인더스트리 코포레이션 엘티디 탄탈럼 분말 및 이의 제조 방법

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3610942B2 (ja) * 2001-10-12 2005-01-19 住友金属鉱山株式会社 ニオブおよび/またはタンタルの粉末の製造法
JP2004143477A (ja) * 2002-10-22 2004-05-20 Cabot Supermetal Kk ニオブ粉末およびその製造方法、並びにそれを用いた固体電解コンデンサ
US7485256B2 (en) * 2003-04-25 2009-02-03 Cabot Corporation Method of forming sintered valve metal material
EP1690617B1 (en) 2003-11-05 2018-01-10 Ishihara Chemical Co., Ltd. Process for production of ultrafine alloy particles
DE102004011214A1 (de) * 2004-03-04 2005-10-06 W.C. Heraeus Gmbh Hochtemperaturbeständiger Niob-Draht
DE602005011773D1 (de) 2004-04-15 2009-01-29 Jfe Mineral Co Ltd Tantalpulver und dieses verwendender festelektrolytkondensator
JP4604946B2 (ja) * 2004-09-30 2011-01-05 Dic株式会社 多孔質金属焼結体の製造方法
US20080106853A1 (en) * 2004-09-30 2008-05-08 Wataru Suenaga Process for Producing Porous Sintered Metal
US20060260437A1 (en) * 2004-10-06 2006-11-23 Showa Denko K.K. Niobium powder, niobium granulated powder, niobium sintered body, capacitor and production method thereof
WO2006057455A1 (en) * 2004-11-29 2006-06-01 Showa Denko K.K. Porous anode body for solid electrolytic capacitor, production mehtod thereof and solid electrolytic capacitor
US8657915B2 (en) 2005-05-31 2014-02-25 Global Advanced Metals Japan, K.K. Metal powder and manufacturing methods thereof
DE102005038551B3 (de) * 2005-08-12 2007-04-05 W.C. Heraeus Gmbh Draht und Gestell für einseitig gesockelte Lampen auf Basis von Niob oder Tantal sowie Herstellungsverfahren und Verwendung
WO2007130483A2 (en) * 2006-05-05 2007-11-15 Cabot Corporation Tantalum powder with smooth surface and methods of manufacturing same
GB0622463D0 (en) * 2006-11-10 2006-12-20 Avx Ltd Powder modification in the manufacture of solid state capacitor anodes
DE102008048614A1 (de) * 2008-09-23 2010-04-01 H.C. Starck Gmbh Ventilmetall-und Ventilmetalloxid-Agglomeratpulver und Verfahren zu deren Herstellung
JP2010265520A (ja) 2009-05-15 2010-11-25 Cabot Supermetal Kk タンタル混合粉末及びその製造方法、並びにタンタルペレット及びその製造方法。
CN102768906B (zh) * 2012-08-09 2015-10-21 中国振华(集团)新云电子元器件有限责任公司 一种热域环境中混合混粉制作钽电容器阳极块的方法
JP5703365B1 (ja) * 2013-12-25 2015-04-15 株式会社ピュアロンジャパン 微小孔フィルタの製造方法
JP6412251B2 (ja) * 2014-08-12 2018-10-24 グローバル アドバンスト メタルズ,ユー.エス.エー.,インコーポレイティド コンデンサグレード粉末の製造方法及び前記方法から得られたコンデンサのグレード粉末
WO2018031943A1 (en) * 2016-08-12 2018-02-15 Composite Materials Technology, Inc. Electrolytic capacitor and method for improved electrolytic capacitor anodes
US10230110B2 (en) 2016-09-01 2019-03-12 Composite Materials Technology, Inc. Nano-scale/nanostructured Si coating on valve metal substrate for LIB anodes
CN112335344B (zh) * 2018-09-28 2024-02-09 株式会社Lg化学 复合材料
US11289276B2 (en) * 2018-10-30 2022-03-29 Global Advanced Metals Japan K.K. Porous metal foil and capacitor anodes made therefrom and methods of making same
JP7542197B2 (ja) 2021-01-28 2024-08-30 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128816A (en) * 1979-03-27 1980-10-06 Marukon Denshi Kk Tantalum solid electrolytic condenser
JPS62268125A (ja) * 1986-05-16 1987-11-20 日本電気株式会社 電解コンデンサ用多孔質体の製造方法
JPH0234701A (ja) * 1988-07-22 1990-02-05 Showa Kiyabotsuto Suupaa Metal Kk タンタル粉末造粒体
JPH05275293A (ja) * 1992-03-26 1993-10-22 Hitachi Aic Inc 固体電解コンデンサの製造方法
JPH06252011A (ja) 1993-03-01 1994-09-09 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法
JPH0831700A (ja) * 1994-07-12 1996-02-02 Marcon Electron Co Ltd 固体電解コンデンサ用焼結体及びその製造方法
JPH0974051A (ja) 1995-09-06 1997-03-18 Marcon Electron Co Ltd 固体電解コンデンサ用焼結体及びその製造方法
JPH11224833A (ja) * 1998-02-06 1999-08-17 Matsushita Electric Ind Co Ltd 固体電解コンデンサ用多孔質陽極体の製造方法
DE19855998A1 (de) 1998-02-17 1999-08-19 Starck H C Gmbh Co Kg Poröse Agglomerate und Verfahren zu deren Herstellung
US6024914A (en) * 1997-09-01 2000-02-15 Nec Corporation Process for production of anode for solid electrolytic capacitor

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3130392C2 (de) 1981-07-31 1985-10-17 Hermann C. Starck Berlin, 1000 Berlin Verfahren zur Herstellung reiner agglomerierter Ventilmetallpulver für Elektrolytkondensatoren, deren Verwendung und Verfahren zur Herstellung von Sinteranoden
CA2173142C (en) * 1993-10-01 2000-11-14 Thomas Bosselmann Method and device for measuring an electrical alternating quantity with temperature compensation
US5844409A (en) * 1993-10-01 1998-12-01 Siemens Aktiengesellschaft Method and system for measuring an electric current with two light signals propagating in opposite directions, using the Faraday effect
DE4436181A1 (de) * 1994-10-10 1996-04-11 Siemens Ag Verfahren und Vorrichtung zum Messen einer elektrischen Wechselgröße mit Temperaturkompensation durch Fitting
DE4446425A1 (de) * 1994-12-23 1996-06-27 Siemens Ag Verfahren und Anordnung zum Messen eines Magnetfeldes unter Ausnutzung des Faraday-Effekts mit Kompensation von Intensitätsänderungen und Temperatureinflüssen
DE19547021A1 (de) * 1995-12-15 1997-06-19 Siemens Ag Optisches Meßverfahren und optische Meßanordnung zum Messen einer Wechselgröße mit Intensitätsnormierung
DE19601727C1 (de) * 1996-01-18 1997-04-30 Siemens Ag Optisches Meßverfahren und optische Meßanordnung zum Messen eines magnetischen Wechselfeldes mit erweitertem Meßbereich und guter Linearität
DE59704678D1 (de) * 1996-07-09 2001-10-25 Siemens Ag Verfahren zur intensitätsnormierung optischer sensoren zum messen periodisch schwankender elektrischer oder magnetischer feldstärken
US6417660B2 (en) * 1996-09-20 2002-07-09 Siemens Aktiengesellschaft Method to obtain a temperature coefficient-compensated output signal in an optical current measuring sensor
PT964936E (pt) 1997-02-19 2002-03-28 Starck H C Gmbh Po de tantalo seu processo de producao e anodos sinterizados produzidos a partir deste po
US6238456B1 (en) * 1997-02-19 2001-05-29 H. C. Starck Gmbh & Co. Kg Tantalum powder, method for producing same powder and sintered anodes obtained from it
US6051326A (en) * 1997-04-26 2000-04-18 Cabot Corporation Valve metal compositions and method
JP3077679B2 (ja) 1997-09-01 2000-08-14 日本電気株式会社 固体電解コンデンサ用陽極体の製造方法
JPH11310804A (ja) * 1998-02-17 1999-11-09 Hc Starck Gmbh & Co Kg 多孔性凝集物およびそれらの製造法
EP1073909B1 (de) * 1998-03-31 2004-08-25 Siemens Aktiengesellschaft Verfahren und anordnung zur verarbeitung mindestens eines analogen, mehrere frequenzbereiche umfassenden signals
US6051044A (en) * 1998-05-04 2000-04-18 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
WO2000067936A1 (en) 1998-05-06 2000-11-16 H.C. Starck, Inc. Metal powders produced by the reduction of the oxides with gaseous magnesium
US6171363B1 (en) * 1998-05-06 2001-01-09 H. C. Starck, Inc. Method for producing tantallum/niobium metal powders by the reduction of their oxides with gaseous magnesium
DE19831280A1 (de) 1998-07-13 2000-01-20 Starck H C Gmbh Co Kg Verfahren zur Herstellung von Erdsäuremetallpulvern, insbesondere Niobpulvern
US6576038B1 (en) 1998-05-22 2003-06-10 Cabot Corporation Method to agglomerate metal particles and metal particles having improved properties
ATE385037T1 (de) * 1998-08-05 2008-02-15 Showa Denko Kk Niob-sinter für kondensator und verfahren zu seiner herstellung
DE19847012A1 (de) * 1998-10-13 2000-04-20 Starck H C Gmbh Co Kg Niobpulver und Verfahren zu dessen Herstellung
US6558447B1 (en) * 1999-05-05 2003-05-06 H.C. Starck, Inc. Metal powders produced by the reduction of the oxides with gaseous magnesium
US6517892B1 (en) * 1999-05-24 2003-02-11 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6563695B1 (en) * 1999-11-16 2003-05-13 Cabot Supermetals K.K. Powdered tantalum, niobium, production process thereof, and porous sintered body and solid electrolytic capacitor using the powdered tantalum or niobium
RU2246376C2 (ru) * 2000-03-01 2005-02-20 Кабот Корпорейшн Азотированные вентильные металлы и способы их получения
US6554884B1 (en) * 2000-10-24 2003-04-29 H.C. Starck, Inc. Tantalum and tantalum nitride powder mixtures for electrolytic capacitors substrates
JP2002134368A (ja) * 2000-10-26 2002-05-10 Showa Denko Kk コンデンサ用粉体、焼結体及びその焼結体を用いたコンデンサ
AU2002307722B2 (en) * 2001-05-15 2007-10-18 Showa Denko K.K. Niobium powder, niobium sintered body and capacitor using the sintered body
JP4396970B2 (ja) * 2001-10-01 2010-01-13 昭和電工株式会社 タンタル焼結体及びその焼結体を用いたコンデンサ
DE10307716B4 (de) * 2002-03-12 2021-11-18 Taniobis Gmbh Ventilmetall-Pulver und Verfahren zu deren Herstellung

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128816A (en) * 1979-03-27 1980-10-06 Marukon Denshi Kk Tantalum solid electrolytic condenser
JPS62268125A (ja) * 1986-05-16 1987-11-20 日本電気株式会社 電解コンデンサ用多孔質体の製造方法
JPH0234701A (ja) * 1988-07-22 1990-02-05 Showa Kiyabotsuto Suupaa Metal Kk タンタル粉末造粒体
JPH05275293A (ja) * 1992-03-26 1993-10-22 Hitachi Aic Inc 固体電解コンデンサの製造方法
JPH06252011A (ja) 1993-03-01 1994-09-09 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法
JPH0831700A (ja) * 1994-07-12 1996-02-02 Marcon Electron Co Ltd 固体電解コンデンサ用焼結体及びその製造方法
JPH0974051A (ja) 1995-09-06 1997-03-18 Marcon Electron Co Ltd 固体電解コンデンサ用焼結体及びその製造方法
US6024914A (en) * 1997-09-01 2000-02-15 Nec Corporation Process for production of anode for solid electrolytic capacitor
JPH11224833A (ja) * 1998-02-06 1999-08-17 Matsushita Electric Ind Co Ltd 固体電解コンデンサ用多孔質陽極体の製造方法
DE19855998A1 (de) 1998-02-17 1999-08-19 Starck H C Gmbh Co Kg Poröse Agglomerate und Verfahren zu deren Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1291100A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780218B2 (en) 2001-06-20 2004-08-24 Showa Denko Kabushiki Kaisha Production process for niobium powder
US7138004B2 (en) 2001-06-20 2006-11-21 Showa Denko K.K. Production process for niobium powder
EP1433187A4 (en) * 2001-10-01 2007-10-24 Showa Denko Kk SINTERED BODY IN TANTALIUM AND CONDENSER PRODUCED BY MEANS OF SAID FRITTE BODY
WO2004016374A1 (ja) * 2002-08-13 2004-02-26 Jfe Mineral Company, Ltd. ニオブ合金粉末、固体電解コンデンサ用アノード及び固体電解コンデンサ
US7054142B2 (en) 2002-08-13 2006-05-30 Jfe Mineral Company, Ltd. Niobium alloy powder, anode for solid electrolytic capacitor and solid electrolytic capacitor
WO2004097870A1 (en) * 2003-04-28 2004-11-11 Showa Denko K.K. Valve acting metal sintered body, production method therefor and solid electrolytic capacitor
JP2004349683A (ja) * 2003-04-28 2004-12-09 Showa Denko Kk 弁作用金属焼結体、その製造方法及び固体電解コンデンサ
JP2010034589A (ja) * 2003-04-28 2010-02-12 Showa Denko Kk 造粒紛、固体電解コンデンサ陽極用焼結体及び固体電解コンデンサ
US7713466B2 (en) 2003-04-28 2010-05-11 Showa Denko K.K. Valve acting metal sintered body, production method therefor and solid electrolytic capacitor
JP4727160B2 (ja) * 2003-04-28 2011-07-20 昭和電工株式会社 弁作用金属焼結体、その製造方法及び固体電解コンデンサ
KR20200099596A (ko) 2017-12-28 2020-08-24 닝시아 오리엔트 탄탈럼 인더스트리 코포레이션 엘티디 탄탈럼 분말 및 이의 제조 방법

Also Published As

Publication number Publication date
CN1263570C (zh) 2006-07-12
US20030183042A1 (en) 2003-10-02
DE60114415D1 (de) 2005-12-01
EP1291100A4 (en) 2004-05-06
JP2001345238A (ja) 2001-12-14
DE60114415T3 (de) 2013-08-08
EP1291100B1 (en) 2005-10-26
US7204866B2 (en) 2007-04-17
DE60114415T2 (de) 2006-07-27
EP1291100A1 (en) 2003-03-12
JP3718412B2 (ja) 2005-11-24
CN1437517A (zh) 2003-08-20
EP1291100B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
WO2001091953A1 (fr) Poudre de niobium ou de tantale, son procede de preparation et condensateur electrolytique solide
US6689187B2 (en) Tantalum powder for capacitors
RU2369563C2 (ru) Порошок недоокиси ниобия, анод из недоокиси ниобия и конденсатор с твердым электролитом
AU2002307722B2 (en) Niobium powder, niobium sintered body and capacitor using the sintered body
JP5014402B2 (ja) 造粒紛、固体電解コンデンサ陽極用焼結体及び固体電解コンデンサ
JP5713905B2 (ja) バルブメタル酸化物及びバルブメタル酸化物のアグロメレート粉末、及びその製造方法
JP3434041B2 (ja) タンタル粉末及びそれを用いた電解コンデンサ
JP4712883B2 (ja) コンデンサ用ニオブ粉、ニオブ焼結体及びコンデンサ
JP2003213302A (ja) ニオブ粉、ニオブ焼結体及びニオブ焼結体を用いたコンデンサ
JP4828016B2 (ja) タンタル粉末の製法、タンタル粉末およびタンタル電解コンデンサ
JP2003514378A (ja) コンデンサー粉末
WO2009082631A1 (en) Methods for fabrication of improved electrolytic capacitor anode
JP2002060803A (ja) 電解コンデンサ用タンタル焼結体の製造方法
JP4727160B2 (ja) 弁作用金属焼結体、その製造方法及び固体電解コンデンサ
WO2002004152A1 (fr) Poudre metallique contenant de l'azote, son procede de preparation, condensateur electrolytique solide et agglomere poreux fabrique au moyen de cette poudre metallique
JP4683512B2 (ja) コンデンサ用粉体、それを用いた焼結体及びそれを用いたコンデンサ
JP4360680B2 (ja) コンデンサ用ニオブ粉、ニオブ焼結体及びコンデンサ
JP4707164B2 (ja) コンデンサ用ニオブ粉、それを用いた焼結体及びそれを用いたコンデンサ
JP2003166002A (ja) ニオブまたはタンタル粉末およびその製造方法ならびにそれを用いた多孔質焼結体および固体電解コンデンサ
JPH11224833A (ja) 固体電解コンデンサ用多孔質陽極体の製造方法
WO2004037470A1 (ja) ニオブ粉末およびその製造方法、並びにそれを用いた固体電解コンデンサ
JP2003147402A (ja) ニオブ粉末
JPH04218608A (ja) 高容量土酸金属粉末、その製造方法およびその使用
JP2020125516A (ja) タンタル造粒粉末およびその製造方法
AU2008200187A1 (en) Niobium powder, niobium sintered body and capacitor using the sintered body

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001934455

Country of ref document: EP

Ref document number: 10297083

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 018115225

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001934455

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001934455

Country of ref document: EP