WO2001079138A1 - Structure en nid d'abeille et son procede de production - Google Patents

Structure en nid d'abeille et son procede de production Download PDF

Info

Publication number
WO2001079138A1
WO2001079138A1 PCT/JP2001/003140 JP0103140W WO0179138A1 WO 2001079138 A1 WO2001079138 A1 WO 2001079138A1 JP 0103140 W JP0103140 W JP 0103140W WO 0179138 A1 WO0179138 A1 WO 0179138A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
refractory
porosity
particles
structure according
Prior art date
Application number
PCT/JP2001/003140
Other languages
English (en)
French (fr)
Inventor
Shuichi Ichikawa
Takahiro Tomita
Shinji Kawasaki
Hiroaki Sakai
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to EP01919898A priority Critical patent/EP1277714B1/en
Priority to DE60140736T priority patent/DE60140736D1/de
Priority to PL357671A priority patent/PL201692B1/pl
Priority to AU2001246903A priority patent/AU2001246903A1/en
Priority to US10/257,008 priority patent/US7011803B2/en
Publication of WO2001079138A1 publication Critical patent/WO2001079138A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24494Thermal expansion coefficient, heat capacity or thermal conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/9454Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B32/00Artificial stone not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00198Characterisation or quantities of the compositions or their ingredients expressed as mathematical formulae or equations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/61Mechanical properties, e.g. fracture toughness, hardness, Young's modulus or strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/728Silicon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • the present invention relates to a honeycomb structure used for a filter for purifying automobile exhaust gas, a catalyst carrier, and the like.
  • refractory particles such as silicon carbide (SiC) particles as a constituent material of such a honeycomb structure.
  • Japanese Patent Application Laid-Open No. Hei 6-182228 discloses that a starting material is silicon carbide powder having a specific surface area and containing impurities, which is formed into a desired shape.
  • a honeycomb-structured porous silicon carbide-based catalyst carrier obtained by drying and then firing in a temperature range of 160 to 220 is disclosed.
  • Japanese Patent Application Laid-Open No. 61-265550 discloses that an easily oxidizable material, or a refractory composition containing an easily oxidizable material, is added with a vitrified material, mixed with a binder, kneaded and molded.
  • a method for producing a refractory containing a glass-forming material, characterized in that the molded body is barely fired in a furnace in a non-oxidizing atmosphere, is disclosed in Japanese Patent Application Laid-Open No. Hei 8-165171.
  • silicon carbide compacts formed by adding an organic binder and a clay mineral-based, glass-based, or lithium silicate-based inorganic binder to silicon powder.
  • Japanese Patent Application Laid-Open No. 6-182228 discloses a conventional method for producing a porous silicon carbide-based sintered body. A method is also introduced in which a binder is added and molded, and then the molded body is baked at a temperature at which the binder melts.
  • Japanese Patent Publication No. 6-138384 and Japanese Patent Publication No. Quartz sand, ceramic powder ⁇ , A l 2 ⁇ 3, T I_ ⁇ 2, Z R_ ⁇ metal oxides such as 2, silicon carbide, nitride product is granulated to a predetermined particle size made of boride or other refractory materials
  • the high-temperature ceramic filler formed in a porous bottomed cylindrical body with a refractory binder such as water glass, frit, glaze, etc. has a suitable refractory particle average diameter and fire resistance. It discloses the particle size distribution, porosity of the cylindrical body, average pore diameter of the cylindrical body, pore volume of the cylindrical body, wall thickness of the cylindrical body, and the like.
  • the sintering is not possible. Since the mechanism does not function sufficiently, the growth of the neck portion is hindered, which causes a problem that the strength of the filter is reduced. Furthermore, the above materials have an extremely high thermal conductivity of 3 OWZmK or more, which is advantageous in that local heat generation is suppressed.However, for example, a catalyst is supported to oxidize and burn the patitilate, and it is continuously produced.
  • Japanese Patent Application Laid-Open Publication No. Sho 61-265550 and Japanese Patent Application Laid-Open Publication No. Hei 6-182228 disclose a method of bonding raw material silicon carbide powder in a vitreous manner.
  • the temperature can be as low as 140 ° C.
  • a diesel particulate filter (DPF) can be used to remove the particulates contained in the exhaust gas discharged from the diesel engine using the sintered body produced by this method.
  • DPF diesel particulate filter
  • the problem is that when the particulates collected and deposited at the fill are burned for the regeneration of the fill, local heat is generated due to low thermal conductivity. there were.
  • the filter shown in Japanese Patent Publication Nos. 61-13845 and 61-13846 is porous, the bulkhead is 5 to 20 mm in thickness. It was a thick bottomed cylinder and could not be applied under high SV (space velocity) conditions such as filters for purifying automobile exhaust gas.
  • the composite in the composite disclosed in Japanese Patent Publication No. 8-137706 and the manufacturing method thereof, the composite can be made porous. However, when used as a filter, a sufficient porosity is required. In particular, it is difficult to use the complex as a filter for collecting and removing particulate matter contained in dust-containing fluids such as diesel exhaust gas. Was.
  • the present invention has been made in view of such a conventional situation, and includes a refractory particle such as silicon carbide particles, can be manufactured at a relatively low firing temperature at a low cost, and has a low thermal conductivity. Is set to an appropriate value, has a sufficiently porous and high specific surface area, and can be suitably used as a filter for purifying automobile exhaust gas even under high SV conditions by treatment such as plugging and catalyst loading. And a method for producing the same. Disclosure of the invention
  • a honeycomb structure having a large number of flow holes penetrating in the axial direction partitioned by partition walls, comprising refractory particles serving as an aggregate and metallic silicon, and being porous.
  • a honeycomb structure characterized by the following.
  • the kneaded material obtained by adding the metal silicon and the organic binder to the refractory particle material, mixing and kneading is formed into a honeycomb shape, and the obtained formed body is calcined and formed. After the organic binder in the body is removed, the main baking is performed. A method for manufacturing a two-cam structure is provided. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a graph in which the porosity (%), the strength (M Pa), and the thermal conductivity (WZmK) are plotted against the amount (wt%) of the blended metal Si powder.
  • FIG. 2 is a micrograph showing the crystal structure of the silicon carbide-based sintered body produced in Example 1.
  • the honeycomb structure of the present invention contains refractory particles and metal silicon for bonding the refractory particles, the honeycomb structure can be sintered at a relatively low firing temperature during its production. However, the manufacturing cost can be suppressed and the yield can be improved.
  • metal silicon is used to bond the refractory particles, it has a higher thermal conductivity than the conventional structure that uses vitreous material to bond the refractory particles. In some cases, burning the accumulated particulates for filter regeneration does not produce local heat that could damage the filter.
  • the present invention relates to a thick-walled bottomed cylindrical body as disclosed in Japanese Patent Publication No. Sho 61-13845 Since it has an 82 cam structure, it can be used as a filter for purifying automobile exhaust gas or a catalyst carrier under high SV conditions.
  • the honeycomb structure of the present invention preferably has a structure in which the refractory particles constituting the honeycomb structure are bonded by metallic silicon on a part of the particle surface.
  • FIG. 2 shows a micrograph of the 82 cam structure according to the present invention, which is a crystal structure of a silicon carbide sintered body.
  • the white part is metallic silicon 10
  • the gray part is silicon carbide particles 11
  • the black part is pores 12.
  • the firing process Can be prevented from being densified due to the fusion of metal silicon with each other. For this reason, sufficient porosity is secured to keep pressure loss low when used as a filter. Furthermore, since it also has a high thermal conductivity, it has a high thermal conductivity, for example, when used as a DPF for collecting and removing particulates contained in exhaust gas discharged from a diesel engine. A sufficient porosity is ensured, and even if the particulates deposited for filter regeneration are burned, the high thermal conductivity results in a localized damage to the filter. No heat is generated.
  • the 82-cam structure of the present invention preferably has a thermal conductivity of 5 W / mK or more from the viewpoint of avoiding local heat generation as described above.
  • the honeycomb structure of the present invention preferably has, as its microstructure, a structure in which refractory particles are bonded by metallic silicon while keeping the shape of the raw material particles.
  • the porosity is in the range of 30 to 90%. Is preferred. If the porosity of the honeycomb structure is less than 30%, the filtration rate is insufficient, and if it exceeds 90%, the strength of the structure is insufficient.
  • the porosity is preferably set to 40% or more.
  • the porosity is 50%.
  • the thermal conductivity is in the range of 5 to 3 OWZmK
  • the porosity is in the range of 50 to 80%
  • the thermal conductivity is in the range of 7 to 28 W / mK. It is more preferable that the porosity is in the range of 53 to 70% and the thermal conductivity is in the range of 9 to 25 WZmK.
  • a honeycomb structure used as a filter for supporting a catalyst since the pressure loss increases by supporting the catalyst, it is necessary to set a high porosity in advance. Therefore, if the porosity is less than 50%, the pressure loss is undesirably large in the filter of the present method. On the other hand, if the porosity exceeds 90%, the strength of the structure is insufficient, which is not preferable. Furthermore, in the honeycomb structure used as the filter of the above-described method, it is necessary to suppress the generation of local stress in the filter due to the generation of uneven temperature distribution due to local heat generation. Therefore, if the thermal conductivity is less than 5 WZmK, it is difficult to effectively suppress local heat generation.
  • the thermal conductivity exceeds 3 O WZmK, the temperature rises to a temperature at which the catalyst hardly rises due to the large heat dissipation effect and the small amount of particulates deposited. It is not preferable because it takes a lot of time and unburned particulates may occur, which may reduce the regeneration efficiency of the filter.
  • the catalyst supported on the filter one referred to in the present invention there is provided a catalyst used for the purpose of decomposition of the oxidation combustion and N_ ⁇ x particulate, specifically platinum, palladium, rhodium, iridium, Precious metals such as silver or oxides such as alumina, zirconia, titania, ceria, and iron oxide can be used, but the present invention is not limited to these.
  • the average pore diameter of the honeycomb structure is preferably determined according to the object to be filtered.
  • the average pore diameter is preferably in the range of 2 to 50. If the average pore diameter is less than 2 / m, the pressure loss will increase significantly even if a small amount of particulates is deposited. Conversely, if the average pore diameter exceeds 50 / m, the particulates will undesirably escape.
  • the appropriate content of metallic silicon in the honeycomb structure of the present invention varies depending on the particle size of the refractory particles divided by the particle shape, but is in the range of 5 to 50% by weight based on the total amount of the refractory particles and metallic silicon.
  • the content is preferably within the range, more preferably within the range of 15 to 40% by weight. If the content is less than 5% by weight, the bonding material is not sufficiently bonded to the adjacent refractory particles due to the insufficient bonding material, which not only reduces the thermal conductivity but also reduces the thickness of the thin wall such as a honeycomb structure. It is difficult to obtain sufficient strength to maintain the structure.
  • the 82-cam structure sintered body
  • the 82-cam structure is excessively shrunk by sintering due to the presence of metallic silicon more than the refractory particles can be properly bonded to each other.
  • Adverse effects such as a decrease in porosity and a decrease in average pore diameter Is not preferred.
  • the thickness of the partition walls that partition the flow holes (cells) of the honeycomb structure be 4 mi 1 or more (102 m or more). If the thickness of the partition wall is less than 4 mi 1 (102 ⁇ m), the strength of the structure is insufficient. Further, the strength is closely related to the porosity, and in the case of the 82-cam structure of the present invention, if the thickness of the partition is set so that the thickness of the partition and the porosity satisfy the following relationship, The required strength was obtained and found to be favorable.
  • the thickness of the partition wall such that the thickness of the partition wall and the porosity satisfy the following relationship, since sufficient strength can be obtained.
  • the thickness of the partition walls is preferably set to 50 mi 1 or less (1270 / m or less).
  • the cell density of the honeycomb structure is preferably in the range of 5 to 1000 cells square inch (0.7 to 155 cells / cm 2 ). If the cell density is less than 5 cells square inch (0.7 cells Zcm 2 ), the strength of the honeycomb structure will be insufficient, and if it is used as a filter, the filtration area will be insufficient. Conversely, 1000 cell square inch (155 cells (-. 11 2) exceeding the order causing a rise of pressure loss, undesirable then honeycomb structure manufacturing method of the honeycomb structure will be described the present invention of the present invention. In the production of, first, metallic silicon and an organic binder are added to the refractory particle raw material, mixed and kneaded to obtain a forming clay.
  • Type of refractory particles to be used is not particularly limited, the oxide A l 2 ⁇ 3, Z R_ ⁇ 2, Y 2 ⁇ 3, S i C, S i 3 N 4 in the nitride is carbide, Particles such as A 1 N and other mritite are preferably used, for example, during the combustion treatment of accumulated particulates.
  • Particles such as A 1 N and other mritite are preferably used, for example, during the combustion treatment of accumulated particulates.
  • SiC or the like is preferably used because of its high heat resistance.
  • the raw materials used for refractory particles and metallic silicon contain trace impurities such as Fe, A, and Ca, but they may be used as they are, and chemical treatment such as chemical cleaning may be used. It may be used after purification.
  • the average particle diameter of the refractory particle raw material is preferably 2 to 4 times the average pore diameter of the honeycomb structure (sintered body) finally obtained by the present production method. Since the honeycomb structure obtained by the present production method has a relatively low firing temperature, the particle shape and particle size of the refractory particle material are generally maintained until after firing. Therefore, if the ratio is less than twice, the particle size is too small for the desired pore size, and consequently small refractory particles are elongated and bonded with metal silicon to form large pores. Therefore, it is not possible to obtain high strength enough to maintain a thin-walled structure such as a honeycomb structure.
  • the refractory particles are SiC particles
  • the recrystallized SiC which has been applied to the porous honeycomb structure, is converted into an aggregate material having almost the same pore size as the desired pore size due to its reaction mechanism.
  • the SiC particles bonded by metal silicon as in the 82-cam structure of the present invention have the same pore size since the particle size may be at least twice the pore size.
  • the ratio exceeds 4 times, the particle size of the refractory particles used for the desired pore size is too large, even by densely filling the refractory particles at the molding stage. It is difficult to obtain desired pores in the gaps, and further, it is not preferable for a filter application in that the porosity is reduced.
  • Metallic silicon melts during firing and wets the surfaces of the refractory particles, and plays a role in bonding the particles together.
  • the appropriate amount of addition depends on the particle size and particle shape of the refractory particles, but is preferably in the range of 5 to 50% by weight based on the total amount of the refractory particles and metallic silicon. . If the amount is less than 5% by weight, the bonding material is insufficient, and the strength for maintaining a thin-walled structure such as a honeycomb structure cannot be obtained. Conversely, if the amount exceeds 50% by weight, appropriate fire resistance is obtained. Since metal silicon is present in excess of particles that can be bonded to each other, adverse effects such as a decrease in porosity and a reduction in average pore diameter occur simultaneously.
  • the average particle size of metallic silicon is 50% or less of the average particle size of the refractory particles that are the aggregate. Is preferred. Metallic silicon melts during sintering and moves together with the refractory particles while aggregating.If the particle size exceeds 50% of the particle size of the refractory particles, the metal silicon particles occupy during molding. The used space remains as a large void, which causes a drop in strength and, when used as a filter, causes a drop in filter efficiency (filtration leakage).
  • the particle size is preferably 50% or less of the average particle size of the refractory particles as the aggregate.
  • One or more organic binders are used as forming aids to smoothly extrude the clay containing the refractory particles as aggregate and metal silicon and, if necessary, a pore-forming agent into a honeycomb shape. It is preferable to add 2% by weight or more of the total amount of the main raw materials (the raw material of the refractory particles and the metallic silicon) in an external manner. However, the addition of more than 30% by weight is not preferable because it causes an excessively high porosity after calcination, leading to insufficient strength. Further, in the case of extrusion molding into a honeycomb structure having a partition wall thickness of 20 mi 1 (508 m) or less, it is preferable to add the partition wall in the range of 4 to 20% by weight. If the addition amount is less than 4% by weight, it is difficult to extrude such a thin wall, and if it exceeds 20% by weight, it becomes difficult to maintain its shape after extrusion.
  • a pore-forming agent may be added at the time of preparing the clay for the purpose of increasing the porosity.
  • the addition amount of the pore-forming agent is preferably 30% by weight or less based on the total amount of the main raw materials (refractory particle material and metallic silicon). Re Addition amount exceeds 30% by weight
  • the porosity becomes excessively high, resulting in insufficient strength. It is preferable to add a pore-forming agent even when a honeycomb structure having a high porosity of 50% or more is obtained.
  • pores are formed between the particles of the refractory particles as the aggregate, but the pore-forming agent has a particle diameter of 1.2 to 4 times the average particle size of the refractory particles as the aggregate.
  • a high porosity having a pore size distribution consisting of two pore size distributions of a gap between particles of the refractory particles and a trace of burning of the pore forming agent can be manufactured. Therefore, by appropriately selecting the particle size of the refractory particles and the pore-forming agent, a flexible material design corresponding to a required pore size distribution can be realized.
  • a structure having a particle diameter of 0.5 times or less the average particle diameter of the refractory particles is used.
  • the clay can be extruded smoothly during extrusion molding. Therefore, a honeycomb structure having a high porosity can be manufactured without lowering the formability.
  • the type of pore-forming agent used is not particularly limited, but specific examples thereof include graphite, wheat flour, starch, phenolic resin, polymethyl methacrylate, polyethylene, polyethylene terephthalate, and the like.
  • the pore-forming agent may be used alone or in combination of two or more depending on the purpose.
  • the kneaded material obtained by mixing and kneading the raw materials by a conventional method is formed into a desired honeycomb shape by an extrusion molding method or the like.
  • the obtained molded body is calcined to remove (degrease) the organic binder contained in the molded body, and then the main firing is performed.
  • the calcination is preferably performed at a temperature lower than the temperature at which the metal silicon melts.
  • the temperature may be temporarily held at a predetermined temperature of about 150 to 700, or may be calcined at a predetermined temperature range by lowering the heating rate to 5 O / hr or less. Good.
  • the heating rate may be slowed down only for a certain temperature zone or may be slowed down for a plurality of sections. You may let it.
  • the calcination atmosphere may be an oxidizing atmosphere, but if the molded body contains a large amount of organic binder, it may burn violently with oxygen during the calcination, causing the molded body temperature to rise rapidly. For this reason, it is also a preferable method to suppress abnormal temperature rise of the compact by performing the treatment in an inert atmosphere such as N 2 or Ar. This suppression of abnormal temperature rise is an important control when using a material with a large coefficient of thermal expansion (weak against thermal shock). is there.
  • the organic binder is added, for example, in an amount of 20% by weight (external part) or more based on the main raw material, it is preferable to perform calcination in the inert atmosphere.
  • the refractory particles are SiC particles and the case where oxidation at a high temperature is a concern, at least at a temperature higher than the temperature at which oxidation starts, a temporary treatment in an inert atmosphere as described above is performed. It is preferable to suppress the oxidation of the molded body by baking.
  • the calcination and the subsequent main calcination may be performed as separate steps in the same or separate furnace, or may be performed as a continuous step in the same furnace.
  • the former is also a preferable method, but the latter method is also preferable from the viewpoint of the total firing time and furnace operating cost.
  • metallic silicon In order to obtain a structure in which refractory particles are bonded by metallic silicon, metallic silicon needs to be softened. Since the melting point of metallic silicon is 140 ° C., it is preferable that the firing temperature in the main firing be 140 ° C. or higher. Further, the optimum firing temperature is determined from the microstructure and characteristic values. However, if the temperature exceeds 180 O :, the evaporation of metallic silicon proceeds, and it becomes difficult to bond through metallic silicon. Therefore, the firing temperature is set to 140 to 180
  • a sintered body having high thermal conductivity can be obtained because silicon carbide particles are bonded to each other.
  • sintering is performed by a mechanism called evaporative condensation, so that a higher firing temperature is required to evaporate silicon carbide than the production method of the present invention, and a silicon carbide sintered body that can be used practically is used. It is necessary to fire at a high temperature of at least 180, usually at least 2000 in order to obtain the same.
  • the atmosphere in the firing rather preferably be selected depending on the kind of refractory particles, e.g., carbide, including S i C particles, the S i 3 N 4, A 1 nitrides that will be represented in N With respect to particles and the like that may be oxidized at a high temperature, it is preferable to use a non-oxidizing atmosphere such as N 2 or Ar at least in a temperature range higher than the temperature at which oxidation starts.
  • a non-oxidizing atmosphere such as N 2 or Ar at least in a temperature range higher than the temperature at which oxidation starts.
  • a SiC raw material powder having an average particle size as shown in Table 1 and a metal Si powder having an average particle size of 4 m were blended so as to have a composition shown in the same table. Then, 6 parts by weight of methylcellulose as an organic binder, 2.5 parts by weight of a surfactant, and 24 parts by weight of water were added and uniformly mixed and kneaded to obtain a forming clay. The obtained kneaded material was formed into a honeycomb shape having an outer diameter of 45 mm, a length of 120 mm, a partition wall thickness of 0.43 mm, and a cell density of 100 cellno square inches (16 cells cm 2 ) using an extruder.
  • This honeycomb formed body was calcined at 550 ° C for 3 hours in an oxidizing atmosphere for degreasing, and then fired for 2 hours at a firing temperature shown in Table 1 in a non-oxidizing atmosphere.
  • a silicon carbide sintered body having a cam structure was manufactured. The average pore diameter and porosity of the sintered body were measured by mercury porosimetry, the thermal conductivity was measured by the laser flash method, and the 4-point bending strength was measured. Are shown in Table 1.
  • FIG. 2 shows a micrograph showing the crystal structure of the silicon carbide sintered body produced in Example 1.
  • Comparative Example 1 a decrease in strength and thermal conductivity was confirmed, and in Comparative Example 2, a decrease in porosity was confirmed.
  • Examples 1 to 13 according to the present invention for example, pores required when used as a DPF or the like for collecting and removing particulates contained in exhaust gas discharged from a diesel engine are described. Sufficient values are shown for the rate ⁇ strength-thermal conductivity. Further, from the graph shown in FIG. 1, it can be seen that a suitable addition amount of the metal Si powder is in the range of 5 to 50% by weight based on the total amount of the SiC raw material powder and the metal Si powder. . As a result, the excellent effects of the present invention could be confirmed.
  • a SiC raw material powder and a metal Si powder having an average particle size as shown in Table 2 were blended so as to have the composition shown in the table, and 100 parts by weight of this powder was used as a pore-forming agent.
  • the polymethyl methacrylate powder was added by the weight shown in the table, 8 parts by weight of methylcellulose as an organic binder, 2.5 parts by weight of a surfactant, and 28 parts by weight of water.
  • a honeycomb structured silicon carbide sintered body was produced in the same manner as in 13. The firing was performed at 144 ° C. in all cases.
  • the average pore diameter and porosity of the sintered body were measured by a mercury porosimeter, and the thermal conductivity was measured by a laser-flash method.
  • Example 1 7 47.0 80 12 20 1.2 20 58.0 15.0 16
  • the honeycomb structure of the present invention has a porosity, a thermal conductivity and an average fineness required when used as a filter for purifying automobile exhaust gas carrying a catalyst. Sufficient values are shown for the pore size. In addition, even when the particle size of the SiC powder as the aggregate is increased (Examples 16 to 19), molding defects are caused by adjusting the particle size and the amount of the pore forming agent. A honeycomb structure could be manufactured without any problems. As a result, the excellent effects of the present invention could be confirmed. Industrial applicability
  • the honeycomb structure of the present invention can be sintered at a relatively low sintering temperature at the time of its production while containing refractory particles such as silicon carbide particles, so that the production cost is reduced. At the same time, the yield is improved, and it can be provided at low cost.
  • refractory particles such as silicon carbide particles
  • the yield is improved, and it can be provided at low cost.
  • particulates deposited for filter regeneration can be removed. Burning does not produce local heat that could damage the filter.
  • the porosity and thermal conductivity are within the specified numerical ranges and the porous honeycomb structure has low pressure loss, it can be used as a filter for automobile exhaust gas purification supporting a catalyst under high SV conditions. However, it is suitable for use.

Description

明 細 書 ハニカム構造体及びその製造方法 技術分野
本発明は、 自動車排気ガス浄化用のフィルターや触媒担体等に使用されるハニ カム構造体に関する。 背景技術
ディーゼルエンジン排気ガスのような含塵流体中に含まれる粒子状物質を捕集 除去するためのフィル夕一、 あるいは排気ガス中の有害物質を浄化する触媒成分 を担持するための触媒担体として、 多孔質のハニカム構造体が広く使用されてい る。 また、 このようなハニカム構造体の構成材料として、 炭化珪素 (S i C ) 粒 子のような耐火性粒子を使用することが知られている。
具体的な関連技術として、 例えば特開平 6— 1 8 2 2 2 8号公報には、 所定の 比表面積を有するとともに不純物を含有する炭化珪素粉末を出発原料とし、 これ を所望の形状に成形、 乾燥後、 1 6 0 0〜2 2 0 0 の温度範囲で焼成して得ら れるハ二カム構造の多孔質炭化珪素質触媒担体が開示されている。
一方、 特開昭 6 1 - 2 6 5 5 0号公報には、 易酸化性素材、 又は易酸化性素材 を含有する耐火組成物にガラス化素材を添加し、 結合材とともに混合、 混練及び 成形し、 成形した成形体を非酸化雰囲気の炉内で裸焼成することを特徴とするガ ラス化素材含有耐火物の製造方法が、 特開平 8— 1 6 5 1 7 1号公報には、 炭化 珪素粉末に、 有機バインダーと、 粘土鉱物系、 ガラス系、 珪酸リチウム系の無機 バインダーを添加して成形する炭化珪素成形体が、 それぞれ開示されている。 また、 前記特開平 6— 1 8 2 2 2 8号公報には、 従来の多孔質炭化珪素質焼結 体の製造方法として、 骨材となる炭化系素粒子にガラス質フラックス、 あるいは 粘土質などの結合材を加え成形した後、 その成形体を前記結合材が溶融する温度 で焼き固めて製造する方法も紹介されている。
更に、特公昭 6 1 - 1 3 8 4 5号公報及び特公昭 6 1— 1 3 8 4 6号公報には、 珪砂、 陶磁器粉碎物、 A l 23、 T i〇2、 Z r〇2等の金属酸化物、 炭化珪素、 窒 化物、 硼化物あるいはその他の耐火性材料等よりなる所定粒度に整粒された耐火 性粒子が、 水ガラス、 フリット、 釉薬等の耐火性結合材で多孔質の有底筒状体に 形成された高温用セラミックフィル夕一について、その好適な耐火性粒子平均径、 耐火性粒子粒度分布、 筒状体気孔率、 筒状体平均細孔径、 筒状体細孔容積、 筒状 体隔壁肉厚等が開示されている。
なお、 特公平 8 _ 1 3 7 0 6号公報においては、 金属珪素を介して一体に接合 してなる構造を有する炭化珪素 Z金属珪素複合体、 及び、 珪素集積バイオマスを アルゴン又は窒素雰囲気下で加熱処理して形成された炭化珪素と金属珪素を用い た前記複合体の製造方法が開示されている。
前記特開平 6— 1 8 2 2 2 8号公報に示される、 炭化珪素粉末自体の再結晶反 応による焼結形態 (ネッキング) では、 炭化珪素粒子表面から炭化珪素成分が蒸 発し、 これが粒子間の接触部 (ネック部) に凝縮することで、 ネック部が成長し 結合状態が得られるが、 炭化珪素を蒸発させるには、 非常に高い焼成温度が必要 であるため、 これがコスト高を招き、 かつ、 熱膨張率の高い材料を高温焼成しな ければならないために、 焼成歩留が低下するという問題があった。
また、 上記の炭化珪素粉末自体の再結晶反応による焼結によって、 高気孔率で あるフィル夕一、 特に 5 0 %以上の気孔率を有するフィル夕一を製造しようとす ると、 当該焼結機構が十分に機能しなくなるためにネック部の成長が妨げられ、 これに起因してフィルターの強度が低下してしまうといった不具合を有していた。 更に、 上記の材料は熱伝導率が 3 O WZmK以上と非常に高く、 局所的な発熱 を抑えるという点では有利ながら、 例えば触媒を担持してパティキユレ一トを酸 化及び燃焼し、 連続的に再生する方式のフィル夕一に用いた場合、 パティキユレ ートの堆積量が少なく、 放熱しやすいといった特徴により、 担体の温度が上がる までに非常に時間を要する。 したがって、 触媒が機能する温度まで温度が上がる のに時間を要するため、 パティキュレートの燃え残りが生じて再生効率が下がる 等の問題も併せもっていた。
特開昭 6 1 - 2 6 5 5 0号公報ゃ特開平 6 - 1 8 2 2 2 8号公報に示される、 原料炭化珪素粉末をガラス質で結合させる手法は、 焼成温度としては 1 0 0 0〜 1 4 0 0 °Cと低くて済むが、 例えばこの手法で作製された焼結体をディーゼルェ ンジンから排出される排気ガス中に含まれるパティキュレートを除去するための ディーゼルパティキュレートフィルター(D P F )の材料として用いる場合には、 フィル夕一再生のため、 フィル夕一に捕集され堆積したパティキュレートを燃焼 させようとすると、 熱伝導率が小さいために局所的な発熱が生じるという問題点 があった。
更に、 特公昭 6 1— 1 3 8 4 5号公報及び特公昭 6 1— 1 3 8 4 6号公報に示 されるフィル夕一は、 多孔質ではあるものの、 隔壁が 5〜 2 0 mmと厚い有底筒 状体であり、 自動車排気ガス浄化用フィルターのような高 S V (空間速度) 条件 下には適用できなかった。
また、特公平 8— 1 3 7 0 6号公報に示される複合体、及びその製造方法では、 当該複合体を多孔質とすることもできるが、 フィルタ一として使用するに際して は十分な気孔率を確保することが容易ではなく、 特に当該複合体をディ一ゼルェ ンジン排気ガスのような含塵流体中に含まれる粒子状物質を捕集除去するための フィル夕一として使用することは困難であった。
本発明は、 このような従来の事情に鑑みてなされたものであり、 炭化珪素粒子 のような耐火性粒子を含みながらも比較的低い焼成温度で安価に製造できるとと もに、熱伝導率が適度な数値に設定されており、十分に多孔質かつ高比表面積で、 目封じや触媒担持等の処理により自動車排気ガス浄化用のフィルタ一として高 S V条件下でも好適に使用できるハニカム構造体とその製造方法を提供することを 目的とする。 発明の開示
本発明によれば、 隔壁により仕切られた軸方向に貫通する多数の流通孔を有す るハニカム構造体であって、 骨材となる耐火性粒子と金属珪素とを含み、 多孔質 であることを特徴とするハニカム構造体、 が提供される。
また、 本発明によれば、 耐火性粒子原料に、 金属珪素と有機バインダーを添加 し混合及び混練して得られた坏土をハニカム形状に成形し、 得られた成形体を仮 焼して成形体中の有機バインダーを除去した後、 本焼成することを特徴とするハ 二カム構造体の製造方法、 が提供される。 図面の簡単な説明
図 1は、 配合した金属 S i粉末の量 (w t %) に対して気孔率 (%)、 強度 (M P a )、 熱伝導率 (WZmK) をプロットしたグラフである。
図 2は、 実施例 1において作製した炭化珪素質焼結体の結晶構造である顕微鏡 写真である。 発明を実施するための最良の形態
前記のとおり、 本発明のハニカム構造体は、 耐火性粒子とともにそれら耐火性 粒子を結合するための金属珪素を含んでいるので、 その製造時において比較的低 い焼成温度で焼結させることができ、 製造コストを抑えるとともに歩留まりを向 上させることができる。 また、 耐火性粒子の結合に金属珪素を利用したことによ り、 耐火性粒子の結合にガラス質を利用した従来の構造体に比して高い熱伝導率 を有するので、 例えば D P Fに使用した場合において、 フィルター再生のために 堆積したパティキュレートを燃焼させても、 フィルターを損傷させるような局所 的な発熱が生じない。 更に、 本発明は、 特公昭 6 1 - 1 3 8 4 5号公報ゃ特公昭 6 1 - 1 3 8 4 6号公報に示されるような厚壁の有底筒状体ではなく、 多孔質の 八二カム構造体であるので、 自動車排気ガス浄化用のフィルターや触媒担体等と して高 S V条件下で使用できる。
また、 本発明のハニカム構造体は、 当該ハニカム構造体を構成する耐火性粒子 が、 その粒子表面の一部において金属珪素により結合された構造を有することが 好ましい。 図 2に、 本発明に係る八二カム構造体であって、 炭化珪素質焼結体の 結晶構造である顕微鏡写真を示す。 図中、 白色部分が金属珪素 1 0、 灰色部分が 炭化珪素粒子 1 1、 黒色部分が気孔 1 2である。 このように、 耐火性粒子である 炭化珪素粒子 1 1はその粒子表面の一部において、 周囲に存在する粒子同士が金 属珪素 1 0により結合されていることがわかる。 なお、 図 2に示す炭化珪素質焼 結体の製造方法は後述する。
上記構造は必要以上の金属珪素を用いることなく形成されるため、 焼成の過程 において生起される金属珪素同志の融合による緻密化を抑えることができる。 こ のため、 フィルタ一として用いた場合の圧力損失を低く抑えるのに、 十分な気孔 率が確保されている。 さらには、 高い熱伝導率をも有しているために、 したがつ て、 例えばディーゼルエンジンから排出される排気ガス中に含まれるパティキュ レートを捕集除去するための D P F等として用いる場合における高気孔率が十分 に確保されるとともに、 フィルター再生のために堆積したパティキュレートを燃 焼させても、 高い熱伝導率を有しているために、 フィル夕一が損傷するような局 所的な発熱が生ずることはない。
本発明の八二カム構造体は、 前記のような局所的な発熱を回避する観点から、 その熱伝導率が 5 W/m K以上であることが好ましい。
また、 本発明のハニカム構造体は、 その微構造として、 耐火性粒子が、 その原 料粒子形状を留めた状態で金属珪素により結合された構造を有することが好まし い。 本発明の八二カム構造体を、 含塵流体中に含まれる粒子状物質を捕集除去す るためのフィル夕一として用いる場合には、 その気孔率を 3 0〜9 0 %の範囲と することが好ましい。 ハニカム構造体の気孔率が 3 0 %未満では濾過速度が不足 し、 9 0 %を超えると構造体としての強度が不足する。 更に、 自動車排気ガス浄 化用フィル夕一等の圧力損失が懸念される用途に用いる場合には、 気孔率を 4 0 %以上とすることが好ましい。
更に、 触媒を担持してパティキュレートを連続して燃焼させる方式のフィル夕 一等、 圧力損失を低く抑えなければならないフィル夕一として用いるハニカム構 造体である場合には、 気孔率が 5 0〜9 0 %、 熱伝導率が 5〜3 O WZmKの範 囲にあることが好ましく、 気孔率が 5 0〜 8 0 %、 熱伝導率が 7〜2 8 W/mK の範囲にあることが更に好ましく、 気孔率が 5 3〜 7 0 %、 熱伝導率が 9〜 2 5 WZmKの範囲にあることが特に好ましい。
触媒を担持させる方式のフィル夕一として用いるハニカム構造体においては、 触媒を担持することで圧力損失が上昇するため、 気孔率を予め高く設定しておく 必要がある。 したがって、 気孔率が 5 0 %未満では、 本方式のフィルターでは圧 力損失が大きくなるために好ましくない。 一方、 気孔率が 9 0 %を超えると、 構 造体としての強度が不足するために好ましくない。 更に、 前記方式のフィルタ一として用いるハニカム構造体においては、 局所的 な発熱による不均一な温度分布の発生によりフィルターに局所的な応力が発生す るのを抑える必要がある。 したがって、 熱伝導率が 5 WZmK未満では、 局所的 な発熱を効果的に抑えることが困難となる。 一方、 熱伝導率が 3 O WZmKを超 えると放熱の効果が大きいこと、 及びパティキュレートの堆積量が少ないこと等 に起因し、 温度が上がりにくく触媒が機能する温度にまで昇温させるのに多大な 時間を要するとともに、 パティキュレートの燃え残りが生じてフィルターの再生 効率が下がることがあるために好ましくない。
なお、 本発明でいうフィルタ一に担持される触媒とは、 パティキュレートの酸 化燃焼及び N〇xの分解を目的として用いられる触媒であって、具体的には白金、 パラジウム、 ロジウム、 イリジウム、 銀などの貴金属あるいはアルミナ、 ジルコ ニァ、 チタニア、 セリア、 酸化鉄などの酸化物等を用いることができるが、 本発 明はこれらのものに限定されることはない。
同様に本発明のハニカム構造体をフィルタ一として用いる場合、 ハニカム構造 体の平均細孔径は、 濾過する対象に応じて決定することが好ましい。 例えば、 デ イーゼルエンジンから排出される排気ガス中に含まれるパティキュレートを捕集 除去するための D P Fとして用いる場合には、 平均細孔径を 2〜 5 0 の範囲 とすることが好ましい。 平均細孔径が 2 / m未満ではパティキュレートの少量堆 積によっても著しく圧損が上昇し、 逆に、 5 0 / mを超えるとパティキュレート の素抜けが起こるため、 好ましくない。
本発明のハニカム構造体における金属珪素の適切な含有量は、 耐火性粒子の粒 径ゃ粒子形状によっても変わるが、 耐火性粒子と金属珪素の合計量に対して 5〜 5 0重量%の範囲内とすることが好ましく、 1 5 ~ 4 0重量%の範囲内とするこ とが更に好ましい。 5重量%未満では、 結合材が不足であるために隣接する耐火 性粒子同士の金属珪素による結合が不十分であり、 熱伝導率が低下するだけでな く、 ハニカム構造のような薄壁の構造体を維持し得る強度を得ることが困難とな る。 逆に 5 0重量%を超えると、 適切に耐火性粒子同士を結合し得る以上に金属 珪素が存在することに起因して、 八二カム構造体 (焼結体) が焼結により過度に 収縮してしまい、 気孔率低下、 平均細孔径縮小などの弊害が併発してくる点にお いて好ましくない。
ハニカム構造体の流通孔 (セル) を仕切る隔壁の厚さは、 4m i 1以上 (10 2 m以上) とすることが好ましい。 隔壁の厚さが 4m i 1 ( 102 ^m) 未満 では、 構造体としての強度が不十分である。 また、 強度は気孔率と密接な関係に あり、 本発明の八二カム構造体の場合、 隔壁の厚さと気孔率とが以下の関係を満 たすように隔壁の厚さを設定すれば、 必要な強度が得られ、 好ましいことが判明 した。
隔壁の厚さ( m)≥気孔率(%) X 4
更に、 隔壁の厚さと気孔率とが以下の関係を満たすように隔壁の厚さを設定す れば、 十分な強度が得られるため、 より好ましい。
隔壁の厚さ m)≥気孔率(%)x 5
一方で、 DPF等のフィルタ一として用いる場合には、 隔壁の厚さを、 50m i 1以下 ( 1270 / m以下) とすることが好ましい。 隔壁の厚さが 50m i 1
( 1270 m)を超えると、濾過速度不足や圧損上昇が懸念されるためである。 なお、 これについても気孔率と密接な関係があり、 隔壁の厚さと気孔率とが以下 の関係を満たすように隔壁の厚さを設定することによって、 問題を回避すること ができる。
隔壁の厚さ m)≤気孔率(%)x 20
ハニカム構造体のセル密度は、 5〜 1000セル 平方インチ (0. 7〜15 5セル/ c m2)の範囲とすることが好ましい。セル密度が 5セル 平方ィンチ( 0. 7セル Zcm2)未満では、 ハニカム構造体として強度不足となるとともに、 フィ ルターとして用いた場合には、 濾過面積も不足する。 逆に、 1000セル 平方 インチ (155セル (:112) を超えると圧損上昇を招くため、 好ましくない。 次に、 本発明のハニカム構造体の製造方法について説明する。 本発明のハニカ ム構造体を製造するにあたっては、 まず、 耐火性粒子原料に金属珪素と有機バイ ンダ一とを添加して混合及び混練し、 成形用の坏土を得る。
使用する耐火性粒子の種類は特に限定されないが、 酸化物系では A l23、 Z r〇2、 Y23、 炭化物系では S i C, 窒化物系では S i3N4、 A 1 N、 その他ムラ イト等の粒子が好適に用いられ、 例えば、 蓄積パティキュレートの燃焼処理時に しばしば高温に晒される D P F等の用途には、 S i C等が耐熱性が高く、 好適に 用いられる。 なお、 耐火性粒子や金属珪素に用いる原料には、 F e、 Aし C a などの微量の不純物を含有するケースがあるが、 そのまま使用してもよく、 薬品 洗浄などの化学的な処理を施して精製したものを用いてもよい。
耐火性粒子原料の平均粒径は、 本製造方法にて最終的に得られるハニカム構造 体 (焼結体) の平均細孔径の 2〜4倍であることが好ましい。 本製造方法で得ら れるハ二カム構造体は、 焼成温度が比較的低いために耐火性粒子原料の粒子形状 や粒径が概ね焼成後まで維持される。 したがって、前記比率が 2倍未満であると、 所望の細孔径に対して粒径が小さ過ぎ、 結果的に、 小さな耐火性粒子群が金属珪 素で細長く結合されて大きな細孔を形成することになり、 ハニカム構造体のよう な薄壁の構造体を維持し得る程高い強度を得ることができない。
また、 例えば耐火性粒子が S i C粒子の場合、 従来多孔質ハニカム構造体に適 用されてきた再結晶 S i Cが、 その反応機構から、 所望とする細孔径とほぼ同等 の骨材原料粒径を必要とするのに対し、 本発明の八二カム構造体のように金属珪 素により結合された S i C粒子は、 粒径が細孔径の 2倍以上でよいので、 同じ細 孔径を得ようとしたときに、 再結晶 S i Cに比べて粗い、 即ち安価な原料を使用 することができ、 コストメリットも大きい。
逆に、 前記比率が 4倍を超える場合には、 所望の細孔径に対して用いる耐火性 粒子の粒径が大き過ぎ、成形の段階で耐火性粒子を密に充填することによつても、 その間隙に所望の細孔を得ることが困難となり、 更にフィルター用途では、 気孔 率低下を招く点でも好ましくない。
金属珪素は焼成中に溶けて耐火性粒子の表面を濡らし、 粒子同士を結合する役 割を担う。 その適切な添加量は、 耐火性粒子の粒径や粒子形状によっても変わる が、 耐火性粒子と金属珪素の合計量に対して 5〜 5 0重量%の範囲内となるよう にすることが好ましい。 5重量%未満では、 結合材が不足して、 ハニカム構造の ような薄壁の構造体を維持し得る強度を得ることができず、 逆に 5 0重量%を超 えると、 適切に耐火性粒子同士を結合し得る以上に過剰に金属珪素が存在するた め、 気孔率低下、 平均細孔径縮小などの弊害が併発してくる。
金属珪素の平均粒径は、 骨材である耐火性粒子の平均粒径の 5 0 %以下である ことが好ましい。 金属珪素は焼成で溶けて集合しながら耐火性粒子にまとわりつ くように移動するため、 その粒径が耐火性粒子の粒径の 5 0 %を超えると、 成形 時に同金属珪素粒子が占有していた空間が大きな空隙となって残り、 強度低下を 招いたり、 フィル夕一として使用する場合にはフィルター効率低下 (濾過漏れ) の原因となったりする。
また、 一般に、 ハニカム構造体の押出成形時には、 粒度差のある原料粉末 2種 以上を混合する方が滑らかに押し出すことができ、 多孔体として適切な組織を得 るためにも、 金属珪素の平均粒径を、 骨材である耐火性粒子の平均粒径の 5 0 % 以下にすることが好ましい。
耐火性粒子を骨材とし、 金属珪素及び必要に応じて造孔剤等を配合してなる坏 土を、 ハニカム形状に滑らかに押出成形するため、 成形助剤として、 1種以上の 有機バインダーを、 主原料 (耐火性粒子原料と金属珪素) の合計量に対し外配で 2重量%以上添加することが好ましい。 しかしながら、 3 0重量%を超える添加 は、 仮焼後に過剰な高気孔率を招き、 強度不足に至らしめるため好ましくない。 更に、 隔壁の厚さが 2 0 m i 1 ( 5 0 8 m) 以下のハニカム構造体に押出成 形する場合には、 4〜2 0重量%の範囲で添加することが好ましい。 添加量が 4 重量%未満では斯様な薄壁に押し出すことが難しく、 逆に、 2 0重量%を超える と、 押し出し後にその形状を維持することが困難となる。
ハニカム構造体をフィル夕一として使用する場合には、気孔率を高める目的で、 坏土の調合時に造孔剤を添加してもよい。 造孔剤の添加量は、 主原料 (耐火性粒 子原料と金属珪素) の合計量に対し、 外配で 3 0重量%以下とすることが好まし レ 添加量が 3 0重量%を超えると、 過度に気孔率が高くなり強度不足に至る。 なお 5 0 %以上の高気孔率であるハニカム構造体を得る場合においても、 造孔 剤を添加することが好ましい。 このとき使用する造孔剤の種類、 及び平均粒径等 を適宜選択することにより、 細孔径分布が制御された高気孔率であるハニカム構 造体を作製することができる。 即ち、 本発明においては骨材である耐火性粒子の 粒子間の間隙が気孔となるが、 骨材である耐火性粒子の平均粒径の 1 . 2〜4倍 の粒径を有する造孔剤を適当量添加することにより、 耐火性粒子の粒子間の間隙 と、 造孔剤の焼失跡との 2つの細孔径分布からなる細孔径分布を有する高気孔率 のハニカム構造体を作製することができる。 したがって、 耐火性粒子及び造孔剤 の粒径を適当に選択することで、 必要な細孔径分布に対応した柔軟な材料設計が 可能となる。
一方、 細孔径が大きいハニカム構造体を作製するために、 粒径の大きな耐火性 粒子や金属珪素を用いる場合においても、 耐火性粒子の平均粒径の 0 . 5倍以下 の粒径を有する造孔剤を適当量添加することにより、 押出成形時に滑らかに坏土 を押し出すことができる。 したがって、 成形性を下げることなく高気孔率のハニ カム構造体を作製することができる。
使用する造孔剤の種類は、 特に限定されることはないが、 具体的にはグラファ イト、 小麦粉、 澱粉、 フエノール樹脂、 ポリメタクリル酸メチル、 ポリエチレン、 ポリエチレンテレフタレート等を挙げることができる。 造孔剤は、 目的に応じて 1種又は 2種以上組み合わせて用いてもよい。
前記原料を常法により混合及び混練して得られた坏土を、 押出成形法等により 所望のハニカム形状に成形する。 次いで、 得られた成形体を仮焼して成形体中に 含まれる有機バインダーを除去 (脱脂) した後、 本焼成を行う。 仮焼は、 金属珪 素が溶融する温度より低い温度にて実施することが好ましい。 具体的には、 1 5 0〜7 0 0で程度の所定の温度で一旦保持してもよく、 また、 所定温度域で昇温 速度を 5 O / h r以下に遅くして仮焼してもよい。
所定の温度で一旦保持する手法については、 使用した有機バインダーの種類と 量により、 一温度水準のみの保持でも複数温度水準での保持でもよく、 更に複数 温度水準で保持する場合には、互いに保持時間を同じにしても異ならせてもよい。 また、 昇温速度を遅くする手法についても同様に、 ある一温度区域間のみ遅くし ても複数区間で遅くしてもよく、 更に複数区間の場合には、 互いに速度を同じと しても異ならせてもよい。
仮焼の雰囲気については、 酸化雰囲気でもよいが、 成形体中に有機バインダー が多く含まれる場合には、 仮焼中にそれ等が酸素で激しく燃焼して成形体温度を 急激に上昇せしめることがあるため、 N2、 A r等の不活性雰囲気で行うことによ つて、 成形体の異常昇温を抑制することも好ましい手法である。 この異常昇温の 抑制は、 熱膨張係数の大きい (熱衝撃に弱い) 原料を用いた場合に重要な制御で ある。 有機バインダーを、 例えば主原料に対して 2 0重量% (外配) 以上添加し た場合には、 前記不活性雰囲気にて仮焼するのが好ましい。 また、 耐火性粒子が S i C粒子である場合の他、 高温での酸化が懸念されるものである場合にも、 少 なくとも酸化が始まる温度以上では、 前記のような不活性雰囲気で仮焼を行うこ とによって、 成形体の酸化を抑制することが好ましい。
仮焼とそれに続く本焼成は、 同一のあるいは別個の炉にて、 別工程として行つ てもよく、 また、 同一炉での連続工程としてもよい。 仮焼と本焼成を異なる雰囲 気にて実施する場合には前者も好ましい手法であるが、 総焼成時間、 炉の運転コ スト等の見地からは後者の手法も好ましい。
耐火性粒子が金属珪素で結合された組織を得るためには、 金属珪素が軟化する 必要がある。 金属珪素の融点は 1 4 1 0 °Cであるので、 本焼成の際の焼成温度は 1 4 0 0 以上とすることが好ましい。 更に最適な焼成温度は、 微構造や特性値 から決定される。 ただし、 1 8 0 O :を超える温度では金属珪素の蒸発が進んで 金属珪素を介した結合が困難になるため、 焼成温度としては 1 4 0 0〜 1 8 0
0 が適当である。
なお、 前記の特開平 6— 1 8 2 2 2 8号公報に示される再結晶法を用いた製造 方法は、炭化珪素粒子同士で結合するために高い熱伝導率の焼結体が得られるが、 先に述べたように蒸発凝縮という機構で焼結するので、 炭化珪素を蒸発させるた めに、 本発明の製造方法よりも高い焼成温度を必要とし、 実用上使用可能な炭化 珪素焼結体を得るためには少なくとも 1 8 0 0 以上、 通常は 2 0 0 0 以上の 高温で焼成する必要がある。
本焼成の雰囲気については、 耐火性粒子の種類によって選択することが好まし く、 例えば、 S i Cをはじめとする炭化物の粒子、 S i 3N4、 A 1 Nに代表され る窒化物の粒子等、 高温での酸化が懸念されるものについては、 少なくとも酸化 が始まる温度以上の温度域においては、 N2、 A r等の非酸化雰囲気とすることが 好ましい。 以下、 本発明を実施例に基づいて更に詳細に説明するが、 本発明はこれらの実 施例に限定されるものではない。 (実施例 1〜 13、 比較例 1〜 2 )
表 1に示すような平均粒径を有する S i C原料粉末と、 平均粒径 4 mの金属 S i粉末とを、 同表に示す組成となるように配合し、 この粉末 100重量部に対 して、 有機バインダーとしてメチルセルロース 6重量部、 界面活性剤 2. 5重量 部、 及び水 24重量部を加え、 均一に混合及び混練して成形用の坏土を得た。 得 られた坏土を、 押出成形機にて外径 45mm、 長さ 120mm、 隔壁厚さ 0. 4 3 mm, セル密度 100セルノ平方インチ (16セル cm2) のハニカム形状に 成形した。 このハニカム成形体を酸化雰囲気において 550°Cで 3時間、 脱脂の ための仮焼を行った後、 非酸化雰囲気において表 1に示す焼成温度にて 2時間の 焼成を行い、 多孔質で八二カム構造の炭化珪素焼結体を作製した。 この焼結体に ついて、 水銀ポロシメ一夕一にて平均細孔径と気孔率を、 また、 レーザーフラッ シュ法にて熱伝導率をそれぞれ測定し、 更に 4点曲げ強度を測定して、 その結果 を表 1に示した。 また図 2に、 実施例 1において作製した炭化珪素質焼結体の結 晶構造である顕微鏡写真を示した。 更に、 配合した金属 S i粉末の量 (wt %) に対して気孔率 (%)、 強度 (MP a)、 熱伝導率 (WZmK) をプロットしたグ ラフを図 1に示した。 なお、 X線回折にて結晶相を同定したところ、 S i C及び S iからなつていることが確認された。
CO
Figure imgf000015_0001
(考察)
比較例 1においては強度 ·熱伝導率の低下、 比較例 2においては気孔率の低下 を確認することができた。 これに対し、 本発明に係る実施例 1〜1 3においては 例えば、 ディーゼルエンジンから排出される排気ガス中に含まれるパティキュレ 一トを捕集除去するための D P F等として用いる場合に要求される気孔率 ·強 度-熱伝導率について、 十分な数値を示している。 また、 図 1に示すグラフから、 金属 S i粉末の好適な添加量は、 S i C原料粉末と金属 S i粉末の合計量に対し て 5〜5 0重量%の範囲に存在することがわかる。 このことにより、 本発明の優 れた効果を確認することができた。
(実施例 1 4〜2 0 )
表 2に示すような平均粒径を有する S i C原料粉末、 金属 S i粉末を、 同表の 組成となるように配合し、 さらにこの粉末 1 0 0重量部に対して、 造孔剤として ポリメタクリル酸メチルの粉末を同表に示す重量部、 有機バインダーとしてメチ ルセルロース 8重量部、 界面活性剤 2 . 5重量部、 及び水 2 8重量部を加え、 そ の後は実施例 1〜 1 3と同様の方法にてハニカム構造の炭化珪素焼結体を作製し た。 なお焼成温度はいずれも 1 4 5 0 °Cにて行った。 この焼結体について、 水銀 ポロシメーターにより平均細孔径と気孔率を、 またレーザ一フラッシュ法にて熱 伝導率をそれぞれ測定した。
SiC粉末の SiC粉末の配 金腐 Si粉末 金属 Si粉末 造孔剤の
造孔剤の平均 気孔率 平均細孔径 熱伝導率
平均粒径 合量 の平均粒径 の配合量 配合量
粒径 (μ ιη) (%) ) (W/m K)
μ m) (w t%) (μ m) (w t%) (%) 、μ m
荚施例 1 4 32.6 80 4 20 60 20 58.0 21.0 1
'舆施例: L 5 32.6 75 4 25 12 .53.0 13.0 25
'舆施例 :1 6 47.0 85 12 15 12 20 60.0 18.0 12
θι 実施例 1 7 47.0 80 12 20 1.2 20 58.0 15.0 16
実施例 1 8 68.0 85 12 15 30 20 55.0 30.0 18
実施例: L 9 68.0 90 12 10 60 25 66.0 40.0 10
実施例 20 32.6 80 4 20 60 30 70.0 25.0 9
¾)2 (考察)
表 2から明らかなように、 本発明のハニカム構造体は、 例えば、 触媒を担持さ せた自動車排気ガス浄化用のフィル夕一等として用いる場合に要求される気孔率、 熱伝導率及び平均細孔径について、 十分な数値を示している。 また、 骨材である S i C粉末の粒径を大きくした場合 (実施例 1 6〜1 9 ) であっても、 造孔剤の 粒径や配合量を調整することによって、 成形不良を起こすことなくハニカム構造 体を作製することができた。 このことにより、 本発明の優れた効果を確認するこ とができた。 産業上の利用可能性
以上説明したように、 本発明のハニカム構造体は、 炭化珪素粒子等の耐火性粒 子を含みながらも、 その製造時において比較的低い焼成温度で焼結させることが できるので、 製造コストを抑えるとともに歩留まりも向上し、 安価に提供するこ とができる。 また、 ガラス質を利用して耐火性粒子を結合させた従来の構造体に 比して高い熱伝導率を有するので、 例えば D P Fに使用した場合において、 フィ ルター再生のために堆積したパティキュレートを燃焼させても、 フィルターを損 傷させるような局所的な発熱が生じない。 更に、 気孔率や熱伝導率が所定の数値 範囲であり、 圧力損失の低い多孔質のハニカム構造体であるので、 触媒を担持さ せた自動車排気ガス浄化用のフィルタ一等として高 S V条件下でも好適に使用で さる。

Claims

請 求 の 範 囲
1 . 隔壁により仕切られた軸方向に貫通する多数の流通孔を有するハニカム構 造体であって、 骨材となる耐火性粒子と金属珪素とを含み、 多孔質であることを 特徴とするハニカム構造体。
2 . 前記耐火性粒子が、 その耐火性粒子表面の一部において前記金属珪素によ り結合された構造を有する請求項 1記載のハニカム構造体。
3 . 熱伝導率が 5 WZmK以上である請求項 1記載のハニカム構造体。
4 . 前記耐火性粒子が、 その原料粒子形状を留めた状態で前記金属珪素により 結合された構造を有する請求項 1記載の八二カム構造体。
5 . 前記耐火性粒子が、 炭化珪素粒子である請求項 1記載の八二カム構造体。
6 . 含塵流体中に含まれる粒子状物質を捕集除去するフィル夕一として用いら れる請求項 1記載の八二カム構造体。
7 . 気孔率が 3 0〜9 0 %の範囲にある請求項 1記載のハニカム構造体。
8 . 平均細孔径が 2〜5 0 / mの範囲にある請求項 1記載のハニカム構造体。
9 . 気孔率が 5 0〜9 0 %の範囲にあるとともに、 熱伝導率が 5〜 3 0 WZm Kの範囲にある請求項 2記載のハニカム構造体。
1 0 . 前記金属珪素の含有量が、 前記耐火性粒子原料と金属珪素との合計量に 対して、 5〜5 0重量%の範囲である請求項 1記載のハニカム構造体。
1 1 . 前記隔壁の厚さが 1 0 2〜1 2 7 0 mである請求項 1記載のハニカム 構造体。
1 2 . 前記隔壁の厚さとハニカム構造体の気孔率とが以下の関係を満たす請求 項 1記載のハニカム構造体。
隔壁の厚さ ( m) ≥気孔率 (%) X 4
1 3 . 前記隔壁の厚さとハニカム構造体の気孔率とが以下の関係を満たす請求 項 1記載の八二カム構造体。
隔壁の厚さ ( m) ≥気孔率 (%) X 5
1 4 . 前記隔壁の厚さと八二カム構造体の気孔率とが以下の関係を満たす請求 項 1記載の八二カム構造体。 隔壁の厚さ ( m) ≤気孔率 (%) X 2 0
1 5 . セル密度が 0 . 7〜1 5 5セル/ c m2である請求項 1記載のハニカム構 造体。
1 6 . 耐火性粒子原料に、 金属珪素と有機バインダーを添加し混合及び混練し て得られた坏土をハニカム形状に成形し、 得られた成形体を仮焼して成形体中の 有機バインダーを除去した後、 本焼成することを特徴とする八二カム構造体の製 造方法。
1 7 . 前記耐火性粒子原料が、 炭化珪素粒子原料である請求項 1 6記載の製造 方法。
1 8 . 前記耐火性粒子原料の平均粒径が、 最終的に得られるハニカム構造体の 平均細孔径の 2〜 4倍である請求項 1 6記載の製造方法。
1 9 . 前記金属珪素の添加量が、 前記耐火性粒子原料と金属珪素との合計量に 対して、 5〜5 0重量%の範囲である請求項 1 6記載の製造方法。
2 0 . 前記金属珪素の平均粒径が、 骨材である耐火性粒子の平均粒径の 5 0 % 以下である請求項 1 6記載の製造方法。
2 1 . 前記有機バインダーを、 前記耐火性粒子原料と金属珪素との合計量に対 して、 外配で 2〜3 0重量%の範囲で添加する請求項 1 6記載の製造方法。
2 2 . 前記坏土を調合する際に、 造孔剤を、 前記耐火性原料粒子と金属珪素と の合計量に対して、 外配で 3 0重量%以下の範囲で添加する請求項 1 6記載の製 造方法。
2 3 . 前記成形体の仮焼を、 前記金属珪素が溶融する温度より低い温度にて実 施する請求項 1 6記載の製造方法。
2 4 . 前記本焼成を、 1 4 0 0〜 1 8 0 0 の温度範囲で実施する請求項 1 6 記載の製造方法。
PCT/JP2001/003140 2000-04-14 2001-04-12 Structure en nid d'abeille et son procede de production WO2001079138A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP01919898A EP1277714B1 (en) 2000-04-14 2001-04-12 Honeycomb structure and method for its manufacture
DE60140736T DE60140736D1 (de) 2000-04-14 2001-04-12 Wabenförmige struktur und verfahren zur herstellung derselben
PL357671A PL201692B1 (pl) 2000-04-14 2001-04-12 Kompozyt o strukturze plastra pszczelego oraz jego sposób wytwarzania
AU2001246903A AU2001246903A1 (en) 2000-04-14 2001-04-12 Honeycomb structure and method for its manufacture
US10/257,008 US7011803B2 (en) 2000-04-14 2001-04-12 Honeycomb structure and method for its manufacture

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000113513 2000-04-14
JP2000-113513 2000-04-14
JP2000-337936 2000-11-06
JP2000337936 2000-11-06
JP2001032699A JP4136319B2 (ja) 2000-04-14 2001-02-08 ハニカム構造体及びその製造方法
JP2001-32699 2001-02-08

Publications (1)

Publication Number Publication Date
WO2001079138A1 true WO2001079138A1 (fr) 2001-10-25

Family

ID=27343091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003140 WO2001079138A1 (fr) 2000-04-14 2001-04-12 Structure en nid d'abeille et son procede de production

Country Status (7)

Country Link
US (1) US7011803B2 (ja)
EP (1) EP1277714B1 (ja)
JP (1) JP4136319B2 (ja)
AU (1) AU2001246903A1 (ja)
DE (1) DE60140736D1 (ja)
PL (1) PL201692B1 (ja)
WO (1) WO2001079138A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062611A1 (fr) 2002-01-25 2003-07-31 Ngk Insulators,Ltd. Structure en nid d'abeilles contenant si et son procede de fabrication
EP1340734A1 (en) * 2000-11-17 2003-09-03 Ngk Insulators, Ltd. Honeycomb structure and method for manufacture thereof
CN1320943C (zh) * 2002-03-25 2007-06-13 揖斐电株式会社 废气净化用过滤器
US7387657B2 (en) * 2002-10-07 2008-06-17 Ibiden Co., Ltd. Honeycomb structural body
US7442662B2 (en) 2001-12-21 2008-10-28 Ngk Insulators, Ltd. High-heat conductive Si-containing material and its manufacturing method
US7452591B2 (en) * 2002-03-29 2008-11-18 Ngk Insulators, Ltd. Silicon carbide based porous material and method for production thereof
US7534482B2 (en) 2002-10-07 2009-05-19 Ibiden Co., Ltd. Honeycomb structural body
JP2011213585A (ja) * 2010-03-19 2011-10-27 Sumitomo Chemical Co Ltd ハニカム構造体の製造方法及びハニカム構造体、並びにパティキュレートフィルタ
WO2012132843A1 (ja) * 2011-03-31 2012-10-04 住友化学株式会社 ハニカム構造体

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4426083B2 (ja) * 2000-11-17 2010-03-03 日本碍子株式会社 炭化珪素質多孔体及びその製造方法
JP4464568B2 (ja) * 2001-02-02 2010-05-19 日本碍子株式会社 ハニカム構造体及びその製造方法
JP4307781B2 (ja) * 2001-03-30 2009-08-05 日本碍子株式会社 炭化珪素質多孔体及びその製造方法
WO2003067042A1 (fr) 2002-02-05 2003-08-14 Ibiden Co., Ltd. Filtre a nids d'abeille pour la decontamination des gaz d'echappement
JP4404538B2 (ja) * 2002-10-18 2010-01-27 日本碍子株式会社 排ガス浄化用炭化珪素質触媒体及びその製造方法
JP4750343B2 (ja) * 2002-10-23 2011-08-17 日本碍子株式会社 多孔質ハニカム構造体の製造方法、及びハニカム成形体
AU2003284416A1 (en) * 2002-11-20 2004-06-15 Ngk Insulators, Ltd. Silicon carbide porous body, process for producing the same and honeycomb structure
JP4394343B2 (ja) 2002-12-11 2010-01-06 日本碍子株式会社 炭化珪素質多孔体及びその製造方法、並びにハニカム構造体
JP4441173B2 (ja) * 2002-12-26 2010-03-31 日本碍子株式会社 セラミックス構造体の製造方法
JP4516275B2 (ja) * 2003-01-24 2010-08-04 株式会社デンソー コージェライトセラミック体の製造方法
ATE481151T1 (de) * 2003-02-28 2010-10-15 Ibiden Co Ltd Keramische wabenstruktur
EP1538133B1 (en) * 2003-06-23 2018-01-10 Ibiden Co., Ltd. Honeycomb structure
JP4460239B2 (ja) * 2003-07-25 2010-05-12 太平洋セメント株式会社 SiC質構造体
WO2005044422A1 (ja) 2003-11-07 2005-05-19 Ibiden Co., Ltd. ハニカム構造体
JPWO2005064128A1 (ja) * 2003-12-25 2007-07-19 イビデン株式会社 排気ガス浄化装置および排気ガス浄化装置の再生方法
WO2006001509A1 (ja) * 2004-06-25 2006-01-05 Ibiden Co., Ltd. 多孔体の製造方法、多孔体及びハニカム構造体
WO2006035645A1 (ja) * 2004-09-30 2006-04-06 Ibiden Co., Ltd. 多孔体の製造方法、多孔体及びハニカム構造体
US20060091070A1 (en) * 2004-10-28 2006-05-04 Aufderheide Ronald C Filters made from chemical binders and microspheres
WO2007000847A1 (ja) 2005-06-29 2007-01-04 Ibiden Co., Ltd. ハニカム構造体
DE102005062317B4 (de) * 2005-12-24 2008-08-21 Umicore Ag & Co. Kg Verfahren zur katalytischen Beschichtung von keramischen Wabenkörpern
EP1995226B1 (en) 2006-02-22 2013-07-17 NGK Insulators, Ltd. Porous object based on silicon carbide and process for producing the same
EP2006261B1 (en) 2006-02-22 2012-12-26 NGK Insulators, Ltd. Porous object based on silicon carbide and process for producing the same
EP2006269A4 (en) * 2006-03-20 2013-01-16 Ngk Insulators Ltd POROUS SILICON CARBIDE AND PROCESS FOR PRODUCING THE SAME
WO2008044497A1 (fr) * 2006-10-05 2008-04-17 Ngk Insulators, Ltd. Argile de friction pour céramique et son utilisation
WO2008126319A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. 多孔質炭化ケイ素焼結体の製造方法
WO2009020835A2 (en) 2007-08-03 2009-02-12 Errcive, Inc. Porous bodies and methods
JP5189832B2 (ja) * 2007-12-13 2013-04-24 日本碍子株式会社 炭化珪素質多孔体
JP5075606B2 (ja) 2007-12-13 2012-11-21 日本碍子株式会社 炭化珪素質多孔体
JP4997090B2 (ja) 2007-12-26 2012-08-08 日本碍子株式会社 多孔質焼成体及びその製造方法
WO2009108362A2 (en) * 2008-02-29 2009-09-03 Corning Incorporated Honeycomb manufacturing method using ground nut shells and honeycomb body produced thereby
JP5281967B2 (ja) * 2008-06-25 2013-09-04 日本碍子株式会社 ハニカム構造体
WO2009157503A1 (ja) * 2008-06-25 2009-12-30 日本碍子株式会社 ハニカム構造体
JP5459677B2 (ja) 2008-12-25 2014-04-02 京セラ株式会社 ハニカム構造体およびこれを用いたフィルタならびに排気ガス処理装置
US8277743B1 (en) 2009-04-08 2012-10-02 Errcive, Inc. Substrate fabrication
US8359829B1 (en) 2009-06-25 2013-01-29 Ramberg Charles E Powertrain controls
EP2484446A4 (en) * 2009-09-28 2014-06-11 Ngk Insulators Ltd HONEYCOMB STRUCTURE
WO2011043434A1 (ja) 2009-10-07 2011-04-14 日本碍子株式会社 ハニカム構造体
CN102781555B (zh) 2010-02-26 2014-09-17 日本碍子株式会社 蜂窝构造体
EP2554265B1 (en) 2010-03-31 2017-07-26 NGK Insulators, Ltd. Honeycomb structure
JP5663003B2 (ja) 2010-03-31 2015-02-04 日本碍子株式会社 ハニカム構造体
JP5658233B2 (ja) 2010-03-31 2015-01-21 日本碍子株式会社 ハニカム構造体
US9833932B1 (en) 2010-06-30 2017-12-05 Charles E. Ramberg Layered structures
CN103282102B (zh) 2010-12-24 2015-07-08 日本碍子株式会社 蜂窝结构体
CN103269770B (zh) 2010-12-24 2015-07-15 日本碍子株式会社 蜂窝状结构体
EP2656901B1 (en) 2010-12-24 2020-04-29 NGK Insulators, Ltd. Honeycomb structure
JP5919199B2 (ja) 2010-12-24 2016-05-18 日本碍子株式会社 ハニカム構造体
JP5883299B2 (ja) * 2011-03-24 2016-03-09 日本碍子株式会社 潤滑系流体の加熱用ヒーター
JP5860465B2 (ja) * 2011-07-11 2016-02-16 日本碍子株式会社 ハニカム構造体
JP6046416B2 (ja) 2011-08-23 2016-12-14 日本碍子株式会社 ハニカム構造体の製造方法
EP2762229B1 (en) 2011-09-30 2016-07-27 NGK Insulators, Ltd. Honeycomb structure
EP2597075B1 (de) 2011-11-23 2016-01-27 Stiholt, Leif Poröser alpha-sic-haltiger formkörper mit durchgehend offener porenstruktur
JP6068182B2 (ja) 2012-03-29 2017-01-25 日本碍子株式会社 ハニカム構造体の製造方法
WO2013146955A1 (ja) 2012-03-30 2013-10-03 日本碍子株式会社 ハニカム構造体
WO2013147273A1 (ja) 2012-03-30 2013-10-03 日本碍子株式会社 ハニカム構造体の発熱方法
JP2014054792A (ja) 2012-09-13 2014-03-27 Ngk Insulators Ltd ハニカム構造体の製造方法
JP5990095B2 (ja) * 2012-12-18 2016-09-07 日本碍子株式会社 微粒子捕集フィルタ
JP6006153B2 (ja) 2013-03-29 2016-10-12 日本碍子株式会社 ハニカム構造体及びその製造方法
JP6111122B2 (ja) 2013-03-29 2017-04-05 日本碍子株式会社 ハニカム構造体及びその製造方法
JP6038711B2 (ja) 2013-03-29 2016-12-07 日本碍子株式会社 ハニカム構造体及びその製造方法
JP6126434B2 (ja) 2013-03-29 2017-05-10 日本碍子株式会社 ハニカム構造体
JP6078885B2 (ja) * 2013-04-02 2017-02-15 日本碍子株式会社 複合耐火物および複合耐火物の製造方法
JP6285225B2 (ja) 2014-03-12 2018-02-28 日本碍子株式会社 ハニカム構造体
JP6259327B2 (ja) 2014-03-13 2018-01-10 日本碍子株式会社 ハニカム構造体
US9487448B2 (en) 2014-03-18 2016-11-08 Ngk Insulators, Ltd. Honeycomb structure
EP3127611B1 (en) 2014-03-31 2018-12-26 NGK Insulators, Ltd. Honeycomb structure
JP6373781B2 (ja) 2015-03-20 2018-08-15 日本碍子株式会社 ハニカム構造体
JP6373782B2 (ja) 2015-03-20 2018-08-15 日本碍子株式会社 ハニカム構造体
JP6934702B2 (ja) * 2015-03-27 2021-09-15 株式会社デンソー 排ガス浄化フィルタ
US20160289123A1 (en) * 2015-03-30 2016-10-06 Corning Incorporated Ceramic batch mixtures having decreased wall drag
JP6625468B2 (ja) 2016-03-29 2019-12-25 日本碍子株式会社 ハニカム構造体、及びその製造方法
JP6746386B2 (ja) * 2016-06-06 2020-08-26 イビデン株式会社 ハニカム構造体
US20180138110A1 (en) * 2016-11-17 2018-05-17 Texas Instruments Incorporated Enhanced Adhesion by Nanoparticle Layer Having Randomly Configured Voids
US9865527B1 (en) 2016-12-22 2018-01-09 Texas Instruments Incorporated Packaged semiconductor device having nanoparticle adhesion layer patterned into zones of electrical conductance and insulation
JP6788515B2 (ja) * 2017-02-02 2020-11-25 日本碍子株式会社 目封止ハニカム構造体
US9941194B1 (en) 2017-02-21 2018-04-10 Texas Instruments Incorporated Packaged semiconductor device having patterned conductance dual-material nanoparticle adhesion layer
JP6905929B2 (ja) 2017-12-15 2021-07-21 日本碍子株式会社 ハニカム構造体
JP7038585B2 (ja) 2018-03-30 2022-03-18 日本碍子株式会社 セラミックス多孔体及び集塵用フィルタ
JP7100478B2 (ja) 2018-03-30 2022-07-13 日本碍子株式会社 セラミックス多孔体及びその製造方法、並びに集塵用フィルタ
JP6906468B2 (ja) 2018-03-30 2021-07-21 日本碍子株式会社 セラミックス多孔体及びその製造方法、並びに集塵用フィルタ
JP2022123542A (ja) 2021-02-12 2022-08-24 日本碍子株式会社 目封止ハニカム構造体
US11858857B2 (en) 2021-03-26 2024-01-02 Proterial, Ltd. Silicon carbide ceramic honeycomb structure and its production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255671A (ja) * 1984-05-29 1985-12-17 イビデン株式会社 高強度多孔質炭化ケイ素焼結体とその製造方法
JPH01172290A (ja) * 1987-12-25 1989-07-07 Ibiden Co Ltd 耐熱性複合体及びその製造方法
JPH01192764A (ja) * 1988-01-29 1989-08-02 Ibiden Co Ltd 炭化ケイ素質ハニカム構造体の製造方法
JPH03126670A (ja) * 1989-10-06 1991-05-29 Eagle Ind Co Ltd 多孔質炭化珪素質材料の製造方法
JPH0985038A (ja) * 1995-09-20 1997-03-31 Tokai Konetsu Kogyo Co Ltd 再結晶質SiCハニカム状フィルタ兼ヒータ

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593955B2 (ja) 1976-06-17 1984-01-26 財団法人特殊無機材料研究所 高強度耐熱性ケイ素化合物焼成成形体の製造方法
JPS55137021A (en) 1979-04-14 1980-10-25 Ngk Insulators Ltd High temperature-use ceramic filter
JPS55137022A (en) 1979-04-14 1980-10-25 Ngk Insulators Ltd High temperature use ceramic filter
US4329162A (en) * 1980-07-03 1982-05-11 Corning Glass Works Diesel particulate trap
JPS60180957A (ja) * 1984-02-29 1985-09-14 日石三菱株式会社 セラミツクス製品の製造方法
US4510265A (en) * 1984-05-04 1985-04-09 Engelhard Corporation Platinum/silver vanadate catalyzed diesel exhaust particulate filter
JPS6126550A (ja) 1984-07-13 1986-02-05 株式会社 広築 ガラス化素材含有耐火物の製造方法
JPS61129015A (ja) * 1984-11-24 1986-06-17 Nippon Denso Co Ltd 排出ガス浄化用フイルタおよびその製造方法
US5340655A (en) * 1986-05-08 1994-08-23 Lanxide Technology Company, Lp Method of making shaped ceramic composites with the use of a barrier and articles produced thereby
JPH0255273A (ja) * 1988-08-18 1990-02-23 Showa Denko Kk メカニカルシール用炭化珪素焼結体およびそれを用いたメカニカルシール
US4946487A (en) * 1988-11-14 1990-08-07 Norton Company High temperature filter
JPH0813706B2 (ja) * 1991-07-02 1996-02-14 工業技術院長 炭化珪素/金属珪素複合体及びその製造方法
FR2684092B1 (fr) * 1991-11-21 1994-03-04 Pechiney Recherche Procede de preparation de carbures metalliques a grande surface specifique a partir de mousses de carbone activees.
JP3548914B2 (ja) 1992-12-16 2004-08-04 イビデン株式会社 触媒担体の製造方法
JPH08165171A (ja) 1994-12-07 1996-06-25 Nippon Cement Co Ltd 炭化珪素成形体及びその焼結体
JP3461615B2 (ja) * 1995-04-12 2003-10-27 電気化学工業株式会社 ハニカム構造体及びその製造方法
JP4246802B2 (ja) * 1995-08-22 2009-04-02 東京窯業株式会社 ハニカム構造体とその製造方法及び用途、並びに加熱装置
JPH10310474A (ja) 1997-05-08 1998-11-24 Tokai Konetsu Kogyo Co Ltd SiC−Si複合セラミックス材
JP4426083B2 (ja) * 2000-11-17 2010-03-03 日本碍子株式会社 炭化珪素質多孔体及びその製造方法
JP2002154876A (ja) * 2000-11-17 2002-05-28 Ngk Insulators Ltd ハニカム構造体及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255671A (ja) * 1984-05-29 1985-12-17 イビデン株式会社 高強度多孔質炭化ケイ素焼結体とその製造方法
JPH01172290A (ja) * 1987-12-25 1989-07-07 Ibiden Co Ltd 耐熱性複合体及びその製造方法
JPH01192764A (ja) * 1988-01-29 1989-08-02 Ibiden Co Ltd 炭化ケイ素質ハニカム構造体の製造方法
JPH03126670A (ja) * 1989-10-06 1991-05-29 Eagle Ind Co Ltd 多孔質炭化珪素質材料の製造方法
JPH0985038A (ja) * 1995-09-20 1997-03-31 Tokai Konetsu Kogyo Co Ltd 再結晶質SiCハニカム状フィルタ兼ヒータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1277714A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1340734A1 (en) * 2000-11-17 2003-09-03 Ngk Insulators, Ltd. Honeycomb structure and method for manufacture thereof
EP1340734A4 (en) * 2000-11-17 2006-06-07 Ngk Insulators Ltd HONEYCOMB STRUCTURE AND PROCESS FOR MANUFACTURING
US7442662B2 (en) 2001-12-21 2008-10-28 Ngk Insulators, Ltd. High-heat conductive Si-containing material and its manufacturing method
JP2003247412A (ja) * 2001-12-21 2003-09-05 Ngk Insulators Ltd Si含有ハニカム構造体及びその製造方法
EP1469172A1 (en) * 2002-01-25 2004-10-20 Ngk Insulators, Ltd. HONEYCOMB STRUCTURE CONTAINING Si AND METHOD FOR MANUFACTURE THEREOF
EP1469172A4 (en) * 2002-01-25 2006-11-08 Ngk Insulators Ltd Si-containing honeycomb structure and method for producing the same
WO2003062611A1 (fr) 2002-01-25 2003-07-31 Ngk Insulators,Ltd. Structure en nid d'abeilles contenant si et son procede de fabrication
CN1320943C (zh) * 2002-03-25 2007-06-13 揖斐电株式会社 废气净化用过滤器
US7452591B2 (en) * 2002-03-29 2008-11-18 Ngk Insulators, Ltd. Silicon carbide based porous material and method for production thereof
US7387657B2 (en) * 2002-10-07 2008-06-17 Ibiden Co., Ltd. Honeycomb structural body
US7534482B2 (en) 2002-10-07 2009-05-19 Ibiden Co., Ltd. Honeycomb structural body
JP2011213585A (ja) * 2010-03-19 2011-10-27 Sumitomo Chemical Co Ltd ハニカム構造体の製造方法及びハニカム構造体、並びにパティキュレートフィルタ
WO2012132843A1 (ja) * 2011-03-31 2012-10-04 住友化学株式会社 ハニカム構造体
JP2012214365A (ja) * 2011-03-31 2012-11-08 Sumitomo Chemical Co Ltd ハニカム構造体

Also Published As

Publication number Publication date
US7011803B2 (en) 2006-03-14
US20030134084A1 (en) 2003-07-17
PL201692B1 (pl) 2009-04-30
EP1277714B1 (en) 2009-12-09
DE60140736D1 (de) 2010-01-21
EP1277714A1 (en) 2003-01-22
PL357671A1 (en) 2004-07-26
JP2002201082A (ja) 2002-07-16
JP4136319B2 (ja) 2008-08-20
EP1277714A4 (en) 2006-02-22
AU2001246903A1 (en) 2001-10-30

Similar Documents

Publication Publication Date Title
JP4136319B2 (ja) ハニカム構造体及びその製造方法
CA2362763C (en) Honeycomb structure and process for production thereof
EP1493724B1 (en) Porous material and method for production thereof
EP1364928B1 (en) Honeycomb structure
JP5478259B2 (ja) 炭化珪素質多孔体
JP4464568B2 (ja) ハニカム構造体及びその製造方法
EP1558545B1 (en) Aluminum titanate-based ceramic article
US6746748B2 (en) Honeycomb structure and process for production thereof
JP2005519834A (ja) 高温用途のストロンチウム・フェルドスパー・アルミニウム・チタネート
JP2002154882A (ja) 炭化珪素質多孔体及びその製造方法
JP2006516528A (ja) コージエライトセラミック体および方法
WO2003062611A1 (fr) Structure en nid d'abeilles contenant si et son procede de fabrication
JP3461615B2 (ja) ハニカム構造体及びその製造方法
JP4441173B2 (ja) セラミックス構造体の製造方法
ZA200208267B (en) Honeycomb structure and method for its manufacture.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10257008

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002/08267

Country of ref document: ZA

Ref document number: 200208267

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2001919898

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001919898

Country of ref document: EP