WO2005044422A1 - ハニカム構造体 - Google Patents

ハニカム構造体 Download PDF

Info

Publication number
WO2005044422A1
WO2005044422A1 PCT/JP2004/016442 JP2004016442W WO2005044422A1 WO 2005044422 A1 WO2005044422 A1 WO 2005044422A1 JP 2004016442 W JP2004016442 W JP 2004016442W WO 2005044422 A1 WO2005044422 A1 WO 2005044422A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
catalyst
wall
porous ceramic
material layer
Prior art date
Application number
PCT/JP2004/016442
Other languages
English (en)
French (fr)
Inventor
Yutaka Yoshida
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to JP2005515321A priority Critical patent/JPWO2005044422A1/ja
Priority to EP04818205A priority patent/EP1649917A4/en
Publication of WO2005044422A1 publication Critical patent/WO2005044422A1/ja
Priority to US11/368,401 priority patent/US7541006B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2476Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Definitions

  • the present invention relates to a honeycomb structure used as a filter or the like for removing particulates and the like in exhaust gas discharged from an internal combustion engine such as a diesel engine.
  • exhaust gas used in many private automobiles and the like which also discharges gasoline engine power, usually contains HC, CO, NOx, and the like.
  • An exhaust gas purification system has been developed in which a catalyst carrier carrying a source catalyst is disposed in an exhaust gas passage.
  • FIG. 6 is a cross-sectional perspective view schematically showing a catalyst carrier used in such an exhaust gas purification system.
  • the catalyst carrier 70 is a honeycomb structure made of a porous ceramic in which a large number of through holes 71 are juxtaposed in the longitudinal direction via a wall 73. The original catalyst is supported.
  • the three-way catalyst shows a high purification ratio of HC, CO, NOx, etc. in the exhaust gas only when the air-fuel ratio of the air-fuel mixture sucked into the gasoline engine is in a narrow range near the stoichiometric air-fuel ratio. Therefore, the air-fuel ratio of the air-fuel mixture sucked into the gasoline engine is controlled to be the stoichiometric air-fuel ratio.
  • diesel engines used for many large-sized transportation means such as buses and trucks have a higher temperature and a leaner fuel (excessive oxygen) than the gasoline engines described above. Because of the combustion in the state, the HC and CO content in the exhaust gas is lower than that of the exhaust gas with gasoline engine power, but it has a higher NOx content and is contained in light oil as fuel. It also includes SOx caused by sulfur contained. In addition, it is a big problem that a large amount of particulate matter (particulates) is contained.
  • Fig. 7 is a partially cutaway perspective view schematically showing a honeycomb structure (hardcam filter) for collecting particulates contained in exhaust gas discharged from a diesel engine. .
  • the honeycomb filter 80 has a honeycomb structure composed of porous ceramics in which a large number of through holes 81 are arranged in a longitudinal direction via a wall portion 83. Either the end on the side or the exit side is sealed with a sealing material 84 so as to form a so-called checkered pattern, and the exhaust gas flowing into one through-hole 81 must be a wall separating the through-hole 81. After passing through the part 83, it flows out from the other through-holes 81. When the exhaust gas passes through the wall 83, the particulates are captured by the wall 83, and the exhaust gas is purified. You.
  • Such a camfinoleta is used to collect or reduce the above-mentioned HC, CO, NOx, etc. contained in the above-mentioned exhaust gas together with the collection of the particulates in the above-mentioned exhaust gas.
  • a catalyst for removing substances is supported.
  • honeycomb filter if a certain amount or more of particulates on the wall of the above-mentioned honeycomb filter is trapped, the pressure drop becomes so high that it cannot be used, so that the trapped particulates are removed by thermal decomposition. It is necessary to perform a regeneration process for regenerating the honeycomb filter.
  • the burning temperature of particulates is about 550-630 ° C.
  • a catalyst that oxidizes and removes the particulates is carried on the wall of the honeycomb filter, the particulates burn due to the catalytic action. The temperature can be reduced.
  • honeycomb filter supporting such a catalyst for example, cordierite or the like is formed on the surface of a filtration wall (cell wall) of a heat-resistant carrier formed like a nod-cam filter shown in FIG. , ⁇ -alumina carrier layer is formed, and noble metal such as Pt, Pd, Rh Carriers carrying a catalytically active component such as caramel are well known (hereinafter, also referred to as supporting method (1)).
  • a fine powder obtained by adding an inorganic binder to ⁇ -alumina, mixing and pulverizing the slurry is used as a slurry, and the slurry is uniformly sprayed on the wall surface of the cordierite-noc-cam carrier to cover the same.
  • an alumina layer is formed by so-called push coating (for example, see Patent Document 1).
  • the above-mentioned push-coated alumina layer fills the pores of the wall surface of the cordierite-nod-cam carrier, and the above-mentioned alumina layer has a small pore diameter and a small porosity, and has a low resistance to ventilation. Because of its large size, there has been a problem that the pressure loss is significantly higher than that of a honeycomb carrier having no alumina layer.
  • the technology (supporting method (2)) developed earlier by the present inventors is that the pores that cannot block the gaps generated between the particles constituting the porous ceramic carrier are maintained as pores.
  • the filter had a smaller pressure loss than that of the above-mentioned loading method (1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 05-68892
  • Patent Document 2 JP 2001-137714 A
  • the inventors of the present invention have conducted further intensive studies in order to obtain a honeycomb filter for exhaust gas purification which is excellent in the regeneration efficiency of collected particulates.
  • the opening ratio and the amount of catalyst carried in the honeycomb structure that constitutes the honeycomb filter for conversion are set to fixed values, and this does not necessarily result in a honeycomb filter with excellent regeneration efficiency. There was found.
  • the regeneration rate of the collected particulate matter is closely related to the opening ratio of the exhaust gas purification honeycomb filter and the amount of the catalyst carried thereon, and Paying attention to the fact that silicon is deeply involved in a catalyst for purifying exhaust gas, the opening ratio of the above-mentioned cam-cam filter and the amount of the supported catalyst are set within predetermined ranges, and the composite is formed using silicon. It has been found that the configuration of (1) can improve the regeneration rate of the honeycomb filter, and have completed the present invention.
  • a column-shaped porous ceramic member in which a large number of through-holes are juxtaposed in the longitudinal direction across a partition wall, and one end of one of the through-holes is sealed.
  • a honeycomb structure composed of two or more,
  • the porous ceramic member is a composite comprising ceramic particles and silicon, and a catalyst is supported on the wall portion.
  • An aperture ratio ⁇ (%) of the honeycomb structure and a supported amount (gZL) of the catalyst have a relationship represented by the following formula (1).
  • the opening ratio ⁇ (%) of the honeycomb structure and the supported amount of catalyst i8 (gZL) have the relationship of the above formula (1). This means that the catalyst necessary for oxidizing and removing the particulate matter accumulated on the wall is sufficiently supported, and therefore, the regeneration treatment of the honeycomb structure is performed. If you do, the regeneration rate will be very good.
  • a column-shaped porous ceramic member having a large number of through-holes arranged in the longitudinal direction across a partition wall, and one end of one of these through-holes sealed. Or a honeycomb structure composed of two or more,
  • the porous ceramic member is a composite composed of ceramic particles and silicon, and a catalyst is supported on the wall,
  • An aperture ratio ⁇ (%) of the honeycomb structure and a supported amount (gZL) of the catalyst have a relationship represented by the following formula (1).
  • the "opening ratio of the honeycomb structure” refers to a cross section in a direction perpendicular to the longitudinal direction of the honeycomb structure (the direction perpendicular to the longitudinal direction of the through hole).
  • a honeycomb structure used as a general filter for purifying exhaust gas (for collecting particulates) includes three types: a partition wall, a through hole, and a sealing portion. Therefore, the aperture ratio in the present invention is a ratio of the cross-sectional area of the honeycomb structure to the sum of the area of the through hole and the sealing portion (the sum of the area of the partition wall is subtracted from the cross section of the filter). .
  • the sealing portions at both ends are not approximately the same amount (for example, when the number of sealing portions at both ends is changed differently, when the cross-sectional shape of the through hole is changed, etc.)
  • the sealing shape is not taken into account, and is calculated by the method described above.
  • the cross-sectional area of the honeycomb structure does not include a portion occupied by the sealing material layer.
  • the honeycomb structure of the present invention is formed by assembling one or more columnar porous ceramic members having a large number of through-holes arranged in a longitudinal direction with a wall portion therebetween.
  • the catalyst is carried on the part.
  • the above-mentioned honeycomb structure is configured as an assembly in which a plurality of columnar porous ceramic members in which a plurality of through-holes are juxtaposed in the longitudinal direction across a partition wall are bound together via a sealing material layer.
  • assembly-type honeycomb structure a porous ceramic member that is entirely formed as a single member may be configured.
  • integrated honeycomb structure also referred to as “integrated honeycomb structure”.
  • the wall is made of a porous ceramic. And a sealing material layer that functions as an adhesive layer between the outer wall of the porous ceramic member and the porous ceramic member. Functions as a filter for collecting particles. That is, a part of the wall functions as a particle collecting filter.
  • the wall portion is constituted by only one type of partition wall, and the entire wall portion functions as a filter for collecting particles. .
  • FIG. 1 is a perspective view schematically showing a specific example of an aggregate-type honeycomb structure which is an example of the honeycomb structure of the present invention.
  • FIG. 2 (a) is a perspective view of FIG.
  • FIG. 2 is a perspective view schematically showing an example of a porous ceramic member constituting the aggregated honeycomb structure shown in FIG. 1B
  • FIG. 1B is a cross-sectional view taken along line AA of the porous ceramic member shown in FIG. FIG.
  • a plurality of porous ceramic members 20 are bound via a sealing material layer 14 to form a ceramic block 15, Around the ceramic block 15, a sealing material layer 13 for preventing leakage of exhaust gas is formed.
  • the porous ceramic member 20 has a sealing material 22 that is located at one end of the through hole 21 on the exhaust gas inlet or outlet side.
  • the exhaust gas that has been plugged in and has flowed into one through-hole 21 always passes through the partition wall 23 separating the through-hole 21 and then flows out from the other through-hole 21.
  • the partition walls 23 that separate each other function as a particle collection filter.
  • the partition walls 23 are provided with a catalyst via a catalyst support material layer (not shown).
  • FIG. 3 (a) is a perspective view schematically showing a specific example of an integrated honeycomb structure which is another example of the honeycomb structure of the present invention
  • FIG. FIG. 4 is a sectional view taken along line BB of FIG.
  • the integral honeycomb structure 30 also has one porous ceramic force in which a large number of through holes 31 are juxtaposed in the longitudinal direction across the wall 33. It constitutes a ceramic block 35, and the entire wall 33 is configured to function as a filter for collecting particles! RU That is, as shown in FIG. 3 (b), the through holes 31 formed in the integral honeycomb structure 30 Either the inlet side or the outlet side of the exhaust gas is sealed with a sealing material 32, and the exhaust gas flowing into one through-hole 31 must pass through the wall 33 separating the through-hole 31 and then into the other through-hole. It flows out from the through hole 31.
  • the particulates contained in the exhaust gas flowing into the integral honeycomb structure 30 of the present invention are captured by the wall 33 when passing through the wall 33 so that the exhaust gas is purified. I'm familiar.
  • the wall 33 is provided with a catalyst via a catalyst support material layer (not shown).
  • a sealing material layer is formed around the ceramic block 35 in the same manner as the aggregated honeycomb structure 10 shown in FIG.
  • the method of supporting the catalyst to be supported on the wall portion of the honeycomb structure may be any of the above-described methods (1) and (2), which are different from each other. It may be something.
  • the particulate matter in the exhaust gas captured by the wall portion may be different from the case where the particulate matter is accumulated on the surface of the wall portion and the case where the particulate matter is accumulated.
  • the honeycomb structure of the present invention may penetrate into the interior of the wall.
  • the supporting method of the catalyst supported on the wall portion is the above-described supporting method (1)
  • the particulate matter in the exhaust gas captured by the wall portion is desirably accumulated on the surface of the wall.
  • the supporting method (1) is a method in which a catalyst support material layer is formed on the surface of the wall and the catalyst is supported on the catalyst support material layer, the particulates that have penetrated into the interior of the wall are oxidized by the catalyst. This is because it is difficult to make a dungeon.
  • the loading method (2) is a method in which the catalyst support material layer is coated on each particle constituting the wall portion and the catalyst is loaded on the uneven surface of the catalyst support material layer. This is because the curate can be suitably oxidized.
  • the method for oxidizing and purifying the particulates captured by the walls of the honeycomb structure of the present invention using a catalyst carried on the walls is not particularly limited.
  • the honeycomb structure When the pressure is increased and the pressure loss of the honeycomb structure increases, the honeycomb structure is heated to a temperature at which the catalyst can function by a heating means such as a heater or a post injection to reduce the particulates.
  • a heating means such as a heater or a post injection to reduce the particulates.
  • active oxygen generated during the reduction of NOx in exhaust gas such as a method for purifying acid oxide (hereinafter also referred to as a regeneration method (1)) or a method such as Toyota's Diesel Particulate-NOx Reduction System (DPNR). Frequently oxidizing and purifying particulates trapped on the wall (hereinafter referred to as “regeneration method (2)”).
  • the method of loading the catalyst supported on the wall is the above-described loading method (1), It is desirable to accumulate particulates only on the wall surface.
  • the particulates are accumulated after a certain amount of particulates are accumulated, and when the particulates penetrate into the wall, the amount of accumulated particulates before the regeneration is performed is reduced. It becomes too much, and particulates accumulate on the wall surface.
  • the regeneration process of the honeycomb structure is performed in such a state, most of the particulates to be oxidized become the particulates accumulated on the surface of the wall, and the particulates are accumulated inside the wall. This is because the accumulated particulates are hardly oxidized and purified, and substantially only the catalyst on the surface of the wall is used.
  • the method for supporting the catalyst supported on the wall is the above-described supporting method (2), and the catalyst is supported even inside the wall. It is hoped that the particulates penetrate!
  • the particulates accumulated inside the wall are immediately oxidized and purified, so that the catalyst supported on the inside and the surface of the wall can be used efficiently. You.
  • the regeneration method (1) can be used sufficiently by changing the conditions of regeneration using the loading method (2) and oxidizing the particulates before the particulates are clogged inside the wall.
  • the honeycomb structure of the present invention is a composite of ceramic particles and silicon.
  • the present invention has derived an optimum range between the ratio ⁇ (%) and the supported amount of catalyst supported on the wall
  • activation of gas or the like means that, for example, in a low temperature range (about 250 to 500 ° C), NOx contained in exhaust gas can be used as a gaseous activator. That is, NO in exhaust gas can be oxidized to NO with high oxidizing power. NO is very low in reducing atmosphere
  • gaseous activator can promote the oxidation of particulates.
  • the activated oxygen is more susceptible to particulate and low-temperature oxidation reactions than non-activated oxygen. Therefore, it is considered that the activated oxygen can promote the oxidation of the particulates.
  • the opening ratio ⁇ (%) of the honeycomb structure and the supported amount of catalyst (gZL) have a relationship represented by the following formula (1).
  • the required amount of supported catalyst ⁇ 8 varies depending on the opening ratio ⁇ of the honeycomb structure, and the opening ratio ⁇ of the honeycomb structure is low according to the above formula (1).
  • the lower limit of the supported amount of catalyst ⁇ 8 increases, and when the opening ratio ⁇ of the honeycomb structure is high, The lower limit force of the quantity i8 is smaller.
  • the opening ratio ⁇ of the honeycomb structure When the opening ratio ⁇ of the honeycomb structure is low, the ratio of the wall portion occupying the cross section perpendicular to the longitudinal direction of the honeycomb structure increases. More specifically, the aperture ratio decreases in the following cases. That is, (1) the thickness of the wall is increased. (2) Increase the number of through-holes Reduce the cross-sectional area of the through-hole.
  • the opening ratio ⁇ of the honeycomb structure is high !, the ratio of the wall portion to the cross section perpendicular to the longitudinal direction of the honeycomb structure decreases. More specifically, the aperture ratio increases in the following cases. (3) Make the wall thinner. (4) Reduce the number of through holes Increase the cross-sectional area of the through holes. However, the above-mentioned conditions are not so preferable because the strength is reduced. In cases (3) and (4), in order to improve the strength, it is required to reduce the porosity of the filter and to reduce the porosity. When the porosity of the filter is reduced, particulates accumulate only on the wall surface. Since the catalyst only needs to be supported on the surface of the wall, the amount of the catalyst can be reduced.
  • FIG. 4 is a graph showing the relationship between the opening ratio a (%) of the honeycomb structure and the catalyst loading j8 (gZL) in the honeycomb structure of the present invention.
  • the above equation (1) shows the region above the straight line (1) shown in FIG. 4, and in the honeycomb structure of the present invention, the opening ratio / catalyst carrying amount
  • the opening ratio ⁇ of the honeycomb structure is 40%
  • the supported amount j8 of the catalyst is 4.8 gZL or more
  • the opening ratio of the honeycomb structure is 50%
  • the supported amount j8 of the catalyst is 3.55 gZL or more
  • the opening ratio of the honeycomb structure is 60%
  • 8 of the catalyst is 2.3 gZL or more.
  • the opening ratio ⁇ (%) of the honeycomb structure and the supported amount of catalyst i8 (gZL) may have a relationship represented by the following formula (2). desirable.
  • the supported amount ⁇ of the catalyst needs to satisfy the relationship of the above formula (1). If ⁇ is too large, the distance between the catalyst particles is reduced, and the sintering of the catalyst tends to occur quickly. Therefore, the aperture ratio ⁇ of the honeycomb structure and the supported amount of catalyst
  • the above equation (2) shows the area below the straight line (2) shown in FIG. 4, and in the honeycomb structure of the present invention, the opening ratio ⁇ and the catalyst loading
  • the supported amount j8 of the catalyst is preferably 8.OgZL or less. In the case of 50%, the supported amount of the catalyst j8 is 6.75 gZL or less. When the opening ratio of the honeycomb structure is 60%, the supported amount of the catalyst j8 is 5%. It is desirable to be less than 5gZL.
  • Examples of the method of reducing the aperture ratio of the honeycomb structure include a method of increasing the thickness of the wall portion and a method of increasing the cell density.
  • the pressure loss of the exhaust gas purifying apparatus using the honeycomb structure of the present invention tends to increase, and the strength tends to increase.
  • the “cell density” refers to the number of through holes existing in a predetermined area (for example, 1 square inch) in a cross section perpendicular to the longitudinal direction of the honeycomb structure.
  • the method for supporting the catalyst of the honeycomb structure of the present invention is the supporting method (1) and the method for regenerating the honeycomb structure is the regenerating method (1)
  • the method for reducing the aperture ratio of the honeycomb structure is as follows. It is desirable to use a method for increasing the cell density. Cell of honeycomb structure of the present invention When the density is increased, the inner wall of the through-hole, that is, the area of the wall (filterable area) increases, the number of reaction sites between the particulates accumulated on the surface of the wall and the catalyst increases, and the density of the present invention increases. This is because the cam structure can be efficiently regenerated.
  • the honeycomb structure of the present invention is the supporting method (2) and the method of regenerating the honeycomb structure is the regenerating method (2)
  • the honeycomb structure The method of reducing the aperture ratio is preferably a method of increasing the thickness of the wall.
  • the thickness of the wall of the honeycomb structure of the present invention is increased, the number of reaction sites between the particulates accumulated in the wall and the catalyst increases, and the honeycomb structure of the present invention can be efficiently regenerated. This is what you can do.
  • methods for increasing the aperture ratio of the honeycomb structure include a method for reducing the thickness of the wall portion and a method for decreasing the cell density.
  • the pressure loss of the exhaust gas purifying apparatus using the honeycomb structure of the present invention tends to decrease, and the strength tends to decrease.
  • the method for increasing the aperture ratio of the honeycomb structure is as follows. It is preferable that the thickness of the wall be reduced. When the thickness of the wall portion of the honeycomb structure of the present invention is reduced, the inner wall of the through hole, that is, the area (filterable area) of the wall portion is increased, and the particulate matter accumulated on the surface of the wall portion is reduced. This is because the number of reaction sites with the catalyst increases, and the regeneration treatment of the honeycomb structure of the present invention can be performed efficiently.
  • the method of increasing the aperture ratio is desirably the method of decreasing the cell density.
  • the cell density of the honeycomb structure of the present invention is reduced, the number of reaction sites between the particulates accumulated in the wall and the catalyst increases, and the honeycomb structure of the present invention can be efficiently regenerated. It is the power that can be.
  • the lower limit of the aperture ratio ⁇ of the honeycomb structure is preferably 40%. If the lower limit of the aperture ratio ⁇ is less than 40%, the pressure loss will be too high or the strength will be low. In addition, the probability of contact with silicon decreases. this At this time, the supported amount of catalyst ⁇ 8 is 4.8 gZL or more according to the above formula (1).
  • a more desirable lower limit of the aperture ratio ⁇ of the honeycomb structure is 45%, and a still more desirable lower limit is 50%.
  • 8 of the catalyst is 4.18 gZL or more and 3.55 gZL or more, respectively, from the above formula (1).
  • the catalyst supported on the wall in the honeycomb structure of the present invention is not particularly limited, and examples thereof include noble metals such as Pt, Rh, Pd, Ce, Cu, V, Fe, Au, and Ag. No. Of these, Pt is preferably used.
  • Pt is preferably used.
  • the above-mentioned noble metals and the like may be used alone or in combination of two or more. With these catalysts, HC and CO contained in the exhaust gas can be reduced.
  • the material of the catalyst support material layer used for supporting the catalyst is not particularly limited, and examples thereof include alumina and titer. Among them, alumina is preferably used.
  • the honeycomb structure of the present invention supports a catalyst such as an alkali metal or an alkaline earth metal in addition to the above-mentioned catalyst within a range not to impair the object of the present invention. Is also good. This is a power that can purify NOx contained in exhaust gas using the honeycomb structure of the present invention.
  • the shape is a columnar force.
  • the honeycomb structure is not limited to a columnar shape if it is columnar.
  • an arbitrary shape such as an elliptical column or a prism may be used.
  • the ceramic particles constituting the honeycomb structure are not particularly limited, and examples thereof include nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride; Examples thereof include carbide ceramics such as silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, and tungsten carbide. Among them, silicon carbide having high heat resistance, excellent mechanical properties, and high thermal conductivity is desirable.
  • the porosity of the honeycomb structure is not particularly limited, but is preferably about 20 to 80%. If the porosity is less than 20%, the honeycomb structure of the present invention may be clogged immediately, while if the porosity exceeds 80%, the strength of the honeycomb structure is reduced and the honeycomb structure is easily broken. May be done.
  • the porosity is determined by, for example, mercury intrusion method, Archimedes method and scanning electron microscope. It can be measured by a conventionally known method such as measurement by (SEM).
  • the average pore diameter of the honeycomb structure is 5 to 100 ⁇ m. If the average pore size is less than 5 m, the particulates may easily become clogged. On the other hand, if the average pore diameter exceeds 100 m, the particulates may pass through the pores, failing to trap the particulates and failing to function as a filter.
  • the average particle diameter of the ceramic particles constituting the honeycomb structure is preferably 1 to 100 m. Silicon is formed between the ceramic particles to join these ceramic particles.
  • the weight ratio of ceramic particles to silicon is preferably 100 parts by weight of silicon to 100 parts by weight of ceramic particles.
  • the sealing material sealed in the through-hole of the honeycomb structure is desirably a porous ceramic material.
  • the sealing material is the same as the honeycomb structure.
  • the adhesive strength between the two can be increased, and the porosity of the sealing material can be adjusted in the same manner as in the above-described honeycomb structure, so that the thermal expansion coefficient of the honeycomb structure can be improved.
  • the thermal expansion coefficient of the sealing material can be matched, and there is a gap between the sealing material and the wall due to thermal stress during manufacturing or use, or the sealing material is in contact with the sealing material. It is possible to prevent the occurrence of cracks in the wall of the portion where the crack occurs.
  • the sealing material is made of a porous ceramic
  • the material is not particularly limited, and examples thereof include the same materials as the ceramic material constituting the honeycomb structure described above.
  • the sealing material layers 13 and 14 are formed between the porous ceramic members 20 and on the outer periphery of the ceramic block 15. ing.
  • the sealing material layer 14 formed between the porous ceramic members 20 also functions as an adhesive for binding the plurality of porous ceramic members 20, while the sealing material layer formed on the outer periphery of the ceramic block 15
  • Layer 13 comprises the honeycomb structure 10 of the present invention in an internal combustion engine. When installed in the exhaust passage, it has a function of preventing the exhaust gas from leaking from the outer periphery of the ceramic block 15.
  • the material constituting the sealing material layer is not particularly limited, and examples thereof include a material composed of an inorganic binder, an organic binder, inorganic fibers and Z or inorganic particles.
  • the sealing material layers are formed by the forces formed between the porous ceramic members and on the outer periphery of the ceramic block. Or different materials. Furthermore, when the sealing material layers are made of the same material, the compounding ratio of the materials may be the same or different.
  • Examples of the inorganic binder include silica sol and alumina sol. These may be used alone or in combination of two or more. Among the above inorganic binders, silica zonore is desirable.
  • organic binder examples include polybutyl alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose and the like. These may be used alone or in combination of two or more. Among the above organic binders, carboxymethylcellulose is desirable.
  • examples of the inorganic fibers include ceramic fibers such as silica-ano-remina, mullite, alumina, and silica. These may be used alone or in combination of two or more. Among the inorganic fibers, silica-alumina fibers are desirable.
  • Examples of the inorganic particles include carbides and nitrides, and specific examples thereof include inorganic powders such as silicon carbide, silicon nitride, and boron nitride, and whiskers. These may be used alone or in combination of two or more. Among the above inorganic particles, silicon carbide having excellent thermal conductivity is desirable.
  • the sealing material layer 14 may be a porous material so that the exhaust gas may flow into the sealing material layer 14 even if the sealing material layer 14 has a dense physical strength.
  • a catalyst is provided through a catalyst support material layer.
  • a ceramic block to be supported is manufactured.
  • the structure of the honeycomb structure of the present invention is an integrated filter composed entirely of one sintered body as shown in FIG. 3, first, the ceramic force as described above is used. Extrusion molding was carried out using a raw material paste containing ceramic powder and silicon powder as main components to produce a ceramic molded body having substantially the same shape as the integral honeycomb structure 30 shown in FIG. I do.
  • the raw material paste is not particularly limited as long as the porosity of the ceramic block after manufacture is 20 to 80%.
  • a binder and a dispersion medium solution are added to the above-mentioned ceramic powder and silicon powder. Can be mentioned.
  • the binder is not particularly limited, and examples thereof include methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, polyethylene glycol, and phenol resin.
  • the amount of the binder is preferably about 110 parts by weight based on 100 parts by weight of the ceramic powder.
  • the dispersion medium is not particularly limited, and examples thereof include an organic solvent such as benzene; an alcohol such as methanol, and water.
  • the dispersion medium liquid is mixed in an appropriate amount so that the viscosity of the raw material paste falls within a certain range.
  • a molding aid may be added to the raw material paste as needed.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid stone, and polyalcohol.
  • the raw material paste may be added with a pore-forming agent such as a balloon, which is a fine hollow sphere containing an oxidizing ceramic, as a component, a spherical acrylic particle, a graphite, or the like, if necessary. Good.
  • a pore-forming agent such as a balloon, which is a fine hollow sphere containing an oxidizing ceramic, as a component, a spherical acrylic particle, a graphite, or the like, if necessary. Good.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, fly ash balloons are desirable.
  • the ceramic molded body is dried using a microwave drier, a hot air drier, a dielectric drier, a reduced pressure drier, a vacuum drier, a freeze drier, or the like, and then sealed in a predetermined through-hole. A sealing material paste serving as a stopper is filled, and a sealing process for plugging the through hole is performed.
  • the sealing material paste is not particularly limited as long as the porosity of the sealing material manufactured through a post-process is 20 to 80%. Although it can be used, it is desirable that a lubricant, a solvent, a dispersant, and a binder be added to the ceramic powder used in the raw material paste. This is because it is possible to prevent the ceramic particles in the sealing material paste from settling during the sealing process.
  • the ceramic dried body sealed with the sealing material paste is degreased and fired at a firing temperature of 1400 to 1650 ° C under predetermined conditions, so that a porous ceramic force is also obtained. It is possible to manufacture a ceramic block in which the sintered body strength of the ceramic is also configured.
  • the degreasing and firing conditions of the dried ceramic body may be the same as those conventionally used for manufacturing a porous structure having a porous ceramic strength.
  • the honeycomb structure of the present invention is an aggregate-type filter configured by binding a plurality of porous ceramic members via a sealing material layer as shown in Fig. 1
  • extrusion molding is performed using a raw material paste containing the above-described ceramic powder and silicon powder as main components to produce a formed body having a shape like the porous ceramic member 20 shown in FIG.
  • the raw material paste may be the same as the raw material paste described in the integrated filter described above.
  • a filler paste serving as a sealing material is sealed in predetermined through holes of the dried body, A sealing process for plugging the through hole is performed.
  • the filler paste may be the same as the sealing material paste described in the integrated filter described above. Can be the same method as in the case of the integrated filter described above.
  • a plurality of through holes are juxtaposed in the longitudinal direction across the partition walls by performing degreasing and baking on the dried body having undergone the above sealing treatment under the same conditions as in the case of the above-mentioned integrated filter.
  • a porous ceramic member can be manufactured.
  • a sealing material paste to be the sealing material layer 14 is applied in a uniform thickness on the side surface of the porous ceramic member to form a sealing material paste layer 51, and on this sealing material paste layer 51, Then, the step of sequentially laminating the other porous ceramic members 20 is repeated to produce a prismatic porous ceramic member 20 having a predetermined size.
  • the material constituting the sealing material paste is the same as that described in the honeycomb structure of the present invention, and the description thereof is omitted here.
  • the laminate of the porous ceramic members 20 is heated to dry and solidify the sealing material paste layer 51 to form the sealing material layer 14, and thereafter, using a diamond cutter or the like, for example, using a diamond cutter or the like, the outer periphery of the sealing material layer 14 is removed.
  • a ceramic block composed of a plurality of porous ceramic members bound together via a sealing material layer can be manufactured.
  • a sealing material layer 13 is formed on the outer periphery of the manufactured ceramic block using the sealing material paste.
  • Each of the ceramic blocks manufactured as described above has a columnar shape, and the structure is as shown in Figs. 1 and 3.
  • a catalyst is supported on the wall of the ceramic block manufactured by the above method via a catalyst support material layer.
  • the material of the catalyst support material layer is the same as that described in the honeycomb structure of the present invention described above, and the description thereof is omitted here. In the following description, the case where alumina is used as the material of the catalyst support material layer will be described.
  • Examples of the above-mentioned alumina include ⁇ -alumina, and this ⁇ -alumina can be prepared by a sol-gel method or the like.
  • the inorganic binder is not particularly limited, and examples thereof include hydrated alumina.
  • the fine powder is combined with pure water, and stirred using a stirrer or the like to prepare a slurry.
  • the slurry is adhered to the wall surface of the ceramic block by spraying the slurry on the ceramic block, dipping the ceramic block in the slurry, or the like, so-called wet coating. .
  • the ceramic block to which the slurry has been wash-coated is dried and baked at a predetermined temperature to form a catalyst support material layer on the wall surface of the ceramic block.
  • Examples of the raw material for the aluminum-containing metal compound include metal compounds such as metal inorganic compounds and metal organic compounds.
  • Examples of the above metal inorganic compound include Al (NO), A1C1, A10C1, A1PO, Al (S)
  • Examples of the above-mentioned metal organic compound include metal alkoxide, metal acetyl acetonate, metal carboxylate and the like.
  • Examples of the solvent include water, alcohol, diol, polyhydric alcohol, ethylene glycol, ethylene oxide, triethanolamine, xylene and the like. These solvents are used in a mixture of at least one kind in consideration of dissolution of the metal compound.
  • a catalyst such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, and hydrofluoric acid may be added.
  • a simple substance or a compound of Li, K, Ca, Sr, Ba, La, Pr, Nd, Si, and Zr may be added together with the metal compound.
  • the solution of the aluminum-containing metal compound is impregnated into the wall of the ceramic block by a sol-gel method.
  • a sol-gel method in order to spread the solution into all the pores, which are the gaps between the ceramic particles on the wall of the ceramic block, for example, a method of putting the ceramic block in a container, filling the solution with the solution, and degassing the solution. It is desirable to adopt a method in which the above solution is poured into the ceramic block and degassed from the other side.
  • Examples of the degassing device include an aspirator and a vacuum pump.
  • the solution was evaporated and gelled to fix the ceramic block on the surface of the ceramic particles, and excess solution was removed.
  • Preliminary firing by heating to about 300-500 ° C.
  • the alumina thin film formed on the surface of the ceramic particles becomes small fibers (needle-like particles) and stands, forming a so-called flocked structure and a thin film having a rough surface.
  • the catalyst support material layer is formed on the wall of the ceramic block by firing at 500 to 1000 ° C for about 5 to 20 hours.
  • the honeycomb structure of the present invention can be manufactured by supporting a catalyst on the catalyst support material layer formed by any of the above methods.
  • the lower limit of the amount of the catalyst supported on the catalyst support material layer is a force calculated by substituting the opening ratio ⁇ of the ceramic block into the above equation (1). It is desirable that the value be equal to or smaller than the value obtained by substituting the aperture ratio ⁇ of the ceramic block into the equation (2).
  • the method for supporting the above catalyst is not particularly limited, and examples thereof include an impregnation method, an evaporation to dryness method, an equilibrium adsorption method, an incipient wetness method, and a spray method.
  • FIG. 5 is a cross-sectional view schematically showing one example of an exhaust gas purification apparatus for a vehicle in which the honeycomb structure of the present invention is installed.
  • the exhaust gas purifying apparatus 600 mainly includes a honeycomb structure 60 of the present invention, a casing 630 covering the outside of the honeycomb structure 60, and a honeycomb structure.
  • the holding seal material 620 is disposed between the structure 60 and the casing 630.
  • the casing 630 has an introduction end connected to an internal combustion engine such as an engine at an end of the casing 630 where exhaust gas is introduced.
  • a pipe 640 is connected, and the other end of the casing 630 is connected to an externally connected discharge pipe 65. 0 is connected.
  • arrows indicate the flow of exhaust gas.
  • the honeycomb structure 60 may be the honeycomb structure 10 shown in FIG. 1 or the honeycomb structure 30 shown in FIG.
  • the exhaust gas discharged from the internal combustion engine such as the engine is introduced into the casing 630 through the introduction pipe 640, and the honeycomb structure 60 After passing through the wall (partition) from the through hole and collecting and purifying the particulates at the wall (partition), the particulate is discharged to the outside through the discharge pipe 650.
  • the particulates collected on the walls (partitions) of the honeycomb structure 60 are oxidized by the above-mentioned regeneration method (1) or (2) by the catalyst supported on the walls.
  • the honeycomb structure 60 is removed and the honeycomb structure 60 is regenerated.
  • the opening ratio ⁇ of the ceramic block constituting the honeycomb structure and the supported amount of catalyst / 3 are expressed by the above formula (1). Therefore, the catalyst necessary for oxidizing and removing the particulates accumulated on the wall is sufficiently supported, and when the honeycomb structure is regenerated, The regeneration rate will be very good.
  • the formed product was dried using a microwave drier to obtain a ceramic dried product, and a paste having the same composition as that of the formed product was filled in predetermined through-holes.
  • a paste having the same composition as that of the formed product was filled in predetermined through-holes.
  • Degreased at 400 ° C, and 1450 ° C, 1 hour under normal pressure argon atmosphere By sintering, the porosity is 50%, the average pore diameter is 20 / ⁇ , the size is 34.3mm X 34.3mm X 150.5mm, the cell density is 198 cells Z square inch, partition wall A porous ceramic member having a composite force of silicon carbide particles and silicon having a thickness of 0.43 mm was manufactured.
  • a ceramic fiber made of alumina silicate as an inorganic fiber shot content: 3%, fiber length: 0.1 to 100 mm
  • carbonized inorganic particles having an average particle diameter of 0.3 m Silicon powder 30.2% by weight
  • silica sol as inorganic binder SiO content in sol
  • a sealing material paste layer having a thickness of 1.0 mm was formed on the outer peripheral portion of the ceramic block using the above-mentioned sealing material paste. Then, the sealing material paste layer was dried at 120 ° C. to form a sealing material layer on the outer periphery.
  • the opening ratio of the obtained ceramic block was 55.9%.
  • the supported amount of the catalyst calculated by substituting the aperture ratio into the above equation (1) is 2.8 gZL or more, and the supported amount of the catalyst calculated by substituting the above equation (2) is: 6. It is less than OgZL.
  • ⁇ -alumina is formed on the wall (partition) of the ceramic block as a catalyst support material layer by the method described as the case of the supporting method (2) in the above embodiment, and Platinum was supported on the support material layer by the incipient wetness method.
  • the supported amount of platinum was 3.OgZL (Example 1), 4.4gZL (Example 2), 6.OgZL (Example 3), 6.3gZL (Example 4), 2.6gZL (Comparative Example 1).
  • Examples 5-8, Comparative Example 2 A porous ceramic member was manufactured in the same manner as (1) of Example 1 except that the cell density of the porous ceramic member was 316 cells Z square inches and the thickness of the partition walls was 0.36 mm.
  • the supported amount of the catalyst calculated by substituting the opening ratio into the above equation (1) is equal to or greater than 3. OgZL, and the supported amount of the catalyst calculated by substituting the above equation (2) is: 6. It is less than 2gZL.
  • a catalyst support material layer was formed in the same manner as (3) of Example 1, and platinum was carried on the catalyst support material layer to produce a cylindrical honeycomb structure.
  • the supported amount of platinum was 3.4 OgZL (Example 5), 4.4 gZL (Example 6), 6.OgZL (Example 7), 6.3 gZL (Example 8), 2.6 gZL (Comparative Example). 2).
  • a porous ceramic member was manufactured in the same manner as (1) of Example 1, except that the cell density of the porous ceramic member was 430 cells per square inch and the thickness of the partition walls was 0.31 mm.
  • the supported amount of the catalyst calculated by substituting the opening ratio into the above equation (1) is 2.9 gZL or more, and the supported amount of the catalyst calculated by substituting the above equation (2) is: 6. It is less than lgZL.
  • a catalyst support material layer was formed in the same manner as (3) of Example 1, and platinum was supported on the catalyst support material layer to produce a cylindrical honeycomb structure.
  • the supported amount of platinum was 3.4 OgZL (Example 9), 4.4 gZL (Example 10), 6.OgZL (Example 11), 6.3 gZL (Example 12), 2.6 gZL (Comparative Example 3).
  • a porous ceramic member was manufactured in the same manner as (1) of Example 1 except that the cell density of the porous ceramic member was 967 cells per square inch and the thickness of the partition walls was 0.20 mm.
  • the supported amount of the catalyst calculated by substituting the aperture ratio into the above equation (1) is 2.8 gZL or more, and the supported amount of the catalyst calculated by substituting the above equation (2) is: 6. It is less than OgZL.
  • (3) A catalyst support material layer was formed in the same manner as in (3) of Example 1, and platinum was supported on the catalyst support material layer to produce a columnar honeycomb structure. The supported amount of platinum was 3.4 OgZL (Example 13), 4.4 gZL (Example 14), 6.OgZL (Example 15), 6.3 g / L (Example 16), 2.6 gZL ( Comparative Example 4).
  • a porous ceramic member was manufactured in the same manner as (1) of Example 1, except that the cell density of the porous ceramic member was 123 cells per square inch. That is, the thickness of the partition wall is 0.43 mm.
  • the supported amount of the catalyst calculated by substituting the opening ratio into the above equation (1) is 1.8 gZL or more, and the supported amount of the catalyst calculated by substituting the above equation (2) is: 5. It is less than OgZL.
  • a catalyst support material layer was formed in the same manner as (3) of Example 1, and platinum was supported on the catalyst support material layer to produce a columnar honeycomb structure.
  • the supported amount of platinum was 2.0 OgZL (Example 17), 3.4 gZL (Example 18), 5.OgZL (Example 19), 5.3 g / L (Example 20), 1.7 gZL (Example 20). Comparative Example 5).
  • a porous ceramic member was manufactured in the same manner as (1) of Example 5, except that the cell density of the porous ceramic member was 198 cells per square inch. That is, the thickness of the partition is 0.36 mm.
  • the supported amount of the catalyst calculated by substituting the opening ratio into the above equation (1) is equal to or greater than 2.
  • OgZL and the supported amount of the catalyst calculated by substituting the above equation (2) is: 5. It is less than 2gZL.
  • Example 21 A catalyst support material layer was formed in the same manner as in (3) of Example 1, and platinum was carried on the catalyst support material layer to produce a columnar honeycomb structure.
  • the supported amount of platinum was 2.0 OgZL (Example 21), 3.4 gZL (Example 22), 5.OgZL (Example 23), 5.3 g / L (Example 24), 1.7 gZL (Example 24). Comparative Example 6). [0141] Examples 25-28, Comparative Example 7
  • a porous ceramic member was manufactured in the same manner as (1) of Example 9 except that the cell density of the porous ceramic member was set to 265 cells per square inch. That is, the thickness of the partition is 0.31 mm.
  • the supported amount of the catalyst calculated by substituting the opening ratio into the above equation (1) is 1.9 gZL or more, and the supported amount of the catalyst calculated by substituting the above equation (2) is: 5. It is less than lgZL.
  • a catalyst support material layer was formed in the same manner as in (3) of Example 1, and platinum was supported on the catalyst support material layer to produce a columnar honeycomb structure.
  • the supported amount of platinum was 2.0 OgZL (Example 25), 3.4 gZL (Example 26), 5.OgZL (Example 27), 5.3 g / L (Example 28), 1.7 gZL (Example 28). Comparative Example 7).
  • a porous ceramic member was manufactured in the same manner as (1) of Example 13 except that the cell density of the porous ceramic member was 634 cells and Z square inches. That is, the thickness of the partition is 0.20 mm 7.
  • the supported amount of the catalyst calculated by substituting the opening ratio into the above equation (1) is 1.9 gZL or more, and the supported amount of the catalyst calculated by substituting the above equation (2) is: 5. It is less than lgZL.
  • a catalyst support material layer was formed in the same manner as in (3) of Example 1, and platinum was supported on the catalyst support material layer to produce a columnar honeycomb structure.
  • the supported amount of platinum was 2.4 OgZL (Example 29), 3.4 gZL (Example 30), 5.OgZL (Example 31), 5.3 g / L (Example 32), 1.7 gZL (Example 32). Comparative Example 8).
  • a porous ceramic member was manufactured in the same manner as (1) of Example 1, except that the cell density of the porous ceramic member was 55 cells per square inch. That is, the thickness of the partition wall was 0.43 mm.
  • a ceramic block having a sealing material layer formed on the outer periphery was produced. The opening ratio of the obtained ceramic block was 74.2%.
  • the supported amount of catalyst calculated by substituting the opening ratio into the above equation (1) is 0.53 g / L or more, and the supported amount of catalyst calculated by substituting into the above equation (2) is 3.73gZL or less.
  • a catalyst support material layer was formed in the same manner as in (3) of Example 1, and platinum was carried on the catalyst support material layer to produce a columnar honeycomb structure.
  • the supported amount of platinum was 0.55 gZL (Example 33), 2.15 gZL (Example 34), 3.60 gZL (Example 35), 4.OOg / L (Example 36), 0.40 g / L L (Comparative Example 9).
  • a porous ceramic member was manufactured in the same manner as (1) of Example 5, except that the cell density of the porous ceramic member was 79 cells per square inch. That is, the thickness of the partition wall was 0.36 mm.
  • the supported amount of catalyst calculated by substituting the opening ratio into the above equation (1) is 0.48 g / L or more, and the supported amount of catalyst calculated by substituting into the above equation (2) is , 3. Use less than 68gZL.
  • a catalyst support material layer was formed in the same manner as (3) of Example 1, and platinum was carried on the catalyst support material layer to produce a columnar honeycomb structure.
  • the supported amount of platinum was 0.55 gZL (Example 37), 2.15 gZL (Example 38), 3.60 gZL (Example 39), 4.OOg / L (Example 40), 0.40 g / L L (Comparative Example 10).
  • a porous ceramic member was manufactured in the same manner as (1) of Example 9 except that the cell density of the porous ceramic member was 107 cells per square inch. That is, the thickness of the partition is 0.31 mm.
  • a catalyst support material layer was formed in the same manner as in (3) of Example 1, and platinum was supported on the catalyst support material layer to produce a columnar honeycomb structure.
  • the supported amount of platinum was 0.55 gZL (Example 41), 2.15 gZL (Example 42), 3.60 gZL (Example 43), 4.OOg / L (Example 44), 0.40 g / L L (Comparative Example 11).
  • a porous ceramic member was manufactured in the same manner as (1) of Example 13, except that the cell density of the porous ceramic member was 265 cells per square inch. That is, the thickness of the partition is 0.20 mm 7.
  • the supported amount of the catalyst calculated by substituting the opening ratio into the above equation (1) is 0.46 g / L or more, and the supported amount of the catalyst calculated by substituting into the above equation (2) is , 3. Use less than 66gZL.
  • a catalyst support material layer was formed in the same manner as (3) of Example 1, and platinum was supported on the catalyst support material layer to produce a columnar honeycomb structure.
  • the supported amount of platinum was 0.55 gZL (Example 45), 2.15 gZL (Example 46), 3.60 gZL (Example 47), 4.OOg / L (Example 48), 0.40 g / L L (Comparative Example 12).
  • the honeycomb structure according to Example 1-148 and Comparative Example 1-112 was installed in an exhaust gas purifying apparatus as shown in Fig. 5 provided in an exhaust passage of an engine. After operating at a rotation speed of 3,000 and a torque of 50 Nm for a predetermined time to collect particulates, the regeneration process of heating and regenerating the honeycomb structure to 550 ° C using an electric heater was repeated 20 times. The presence or absence of unburned particulates was observed. In addition, the presence or absence of unburned parts was examined by cutting the cam structure in a direction perpendicular to the longitudinal direction and using SEM to observe 15 points.
  • Equation (1) Lower limit of catalyst loading calculated by substituting aperture ratio (g / f
  • Equation (1) i: Lower limit of catalyst loading calculated by substituting aperture ratio (g / L)
  • Example 4 Example 8, Example 12, Example 16, Example 20, Example 24, Example 28, Example 32, Example 36, Example 40, Example 44, and Example
  • Example 48 In the honeycomb structure according to Example 48, although the relationship of the above formula (1) is satisfied with respect to the aperture ratio of the ceramic block, the relationship of the above formula (2) is not satisfied, and the relationship of the particulate After the collection and regeneration treatments were repeated 20 times, unburned particulates were observed, and the regeneration rate was slightly inferior.
  • FIG. 1 is a perspective view schematically showing one example of an exhaust gas purifying filter of the present invention.
  • FIG. 2 (a) is a perspective view schematically showing an example of a porous ceramic member constituting the exhaust gas purification honeycomb structure shown in FIG. 1, and FIG. FIG. 2 is a cross-sectional view of the porous ceramic member shown in FIG.
  • FIG. 3 (a) is a perspective view schematically showing another example of the exhaust gas purifying honeycomb structure of the present invention, and (b) is a honeycomb structure shown in (a).
  • FIG. 3 is a sectional view taken along line BB of FIG.
  • FIG. 4 is a graph showing the relationship between the opening ratio a of a ceramic block and the amount of supported catalyst in a honeycomb structure for purifying exhaust gas of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing one example of an exhaust gas cleaning apparatus using the exhaust gas cleaning honeycomb structure of the present invention.
  • FIG. 6 is a sectional perspective view schematically showing an example of a catalyst carrier used in a conventional exhaust gas purification system.
  • FIG. 7 is a cross-sectional perspective view schematically showing an example of a conventional honeycomb structure for exhaust gas purification.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Catalysts (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

本発明は、捕集したパティキュレートの再生効率に優れる排気ガス浄化用ハニカムフィルタを提供することを目的とするものであり、本発明のハニカム構造体は、多数の貫通孔が隔壁を隔てて長手方向に並設され、これらの貫通孔のいずれか一方の端部が封止されてなる柱状の多孔質セラミック部材が、1又は2以上集合してなるハニカム構造体であって、上記多孔質セラミック部材は、セラミック粒子とシリコンとからなる複合体であるとともに、上記壁部には、触媒が担持されており、上記ハニカム構造体の開口率α(%)と上記触媒の担持量β(g/L)とが、下記式(1)の関係を有することを特徴とする。 9.8−0.125×α≦β・・・(1)

Description

明 細 書
ノヽニカム構造体
技術分野
[0001] 本発明は、ディーゼルエンジン等の内燃機関カゝら排出される排気ガス中のパティキュ レート等を除去するフィルタ等として用いられるハ-カム構造体に関する。
背景技術
[0002] 近年、 自動車等の内燃機関力 排出される排気ガスに含まれる様々な物質が、環境 や人体に害を及ぼすことが問題となっており、排気ガスの規制が強化されてきている
[0003] 例えば、多くの自家用自動車等に用いられているガソリンエンジン力も排出される排 気ガスには、通常、 HC、 CO、 NOx等が含まれており、これらの物質を除去するため に三元触媒が担持された触媒担体が排気ガス通路に配設された排気ガス浄化シス テムが開発されている。
[0004] 図 6は、このような排気ガス浄ィ匕システムにおいて使用される触媒担体を模式的に示 した断面斜視図である。
図 6に示したように、触媒担体 70は、貫通孔 71が壁部 73を介して長手方向に多数 並設された多孔質セラミックからなるハ-カム構造体であり、壁部 73に上記三元触媒 が担持されている。
[0005] そして、この貫通孔 71に排気ガスを流通させて排気ガスと三元触媒とを接触させるこ とにより、排気ガス中の HC及び COが酸ィ匕され、 NOxが還元されて排気ガスが浄ィ匕 される。
このとき、ガソリンエンジンに吸入される混合気の空燃比が理論空燃比近傍の狭い範 囲でのみ、上記三元触媒は、排気ガス中の HC、 CO、 NOx等の高い浄ィ匕率を示す ため、上記ガソリンエンジンに吸入される混合気の空燃比が理論空燃比となるように 制御されている。
[0006] しかしながら、多くのバスやトラック等の大型輸送手段に使用されているディーゼルェ ンジンは、上述したガソリンエンジンに比べて高温で燃料の希薄な状態 (酸素過剰状 態)で燃焼されるため、その排気ガス中の HC及び COの含有量は、ガソリンエンジン 力も排出される排気ガスに比べて少ないものの、 NOxの含有量が多ぐまた、燃料で ある軽油に含まれている硫黄に起因した SOxも含まれている。さらに、粒子状物質( パティキュレート)が多く含まれて 、ることが大きな問題となって 、る。
[0007] 図 7は、ディーゼルエンジン力 排出される排気ガス中に含まれるパティキュレートを 捕集するハ-カム構造体 (ハ-カムフィルタ)を模式的に示した一部切り欠き斜視図 である。
図 7に示したように、ハ-カムフィルタ 80は、貫通孔 81が壁部 83を介して長手方向に 多数並設された多孔質セラミックからなるハ-カム構造であり、貫通孔 81の入口側又 は出口側の端部のいずれかが封止材 84により、所謂、市松模様となるように目封じさ れ、一の貫通孔 81に流入した排気ガスは、必ず貫通孔 81を隔てる壁部 83を通過し た後、他の貫通孔 81から流出するようになっており、排気ガスがこの壁部 83を通過 する際、パティキュレートが壁部 83部分で補足され、排気ガスが浄化される。
[0008] このようなハ-カムフィノレタは、上記排気ガス中のパティキュレートの捕集とともに、上 記排気ガス中に含まれる HC、 CO、 NOx等を酸ィ匕又は還元除去するために、これら の物質を除去するための触媒を担持させて 、る。
また、上記ハ-カムフィルタの壁部にある一定量以上のパティキュレートが捕集される と、圧力損失が高くなつて使用することができなくなるため、捕集したパティキュレート を加熱分解除去してハ-カムフィルタを再生する再生処理を施す必要がある。
[0009] 近年、このようなハ-カムフィルタの再生処理を低エネルギー、高効率で行う方法とし て、ハ-カムフィルタの壁部にパティキュレートを酸ィ匕除去する触媒を担持させる方 法が採られている。
通常、パティキュレート (すす)の燃焼温度は、約 550— 630°Cである力 上記パティ キュレートを酸化除去する触媒をハ-カムフィルタの壁部に担持させると、触媒作用 により、パティキュレートの燃焼温度を低下させることができる。
[0010] このような触媒を担持させたハ-カムフィルタとしては、例えば、コージエライト等を図 7に示したノヽ-カムフィルタのように成形した耐熱性担体の濾過壁 (セル壁)の表面に 、 γ—アルミナカゝらなる担持層を形成し、さらにその担持層に Pt、 Pd、 Rh等の貴金属 カゝらなる触媒活性成分を担持させたものがよく知られている(以下、担持方法(1)とも いう)。
[0011] 上記担持層として、 γ -アルミナに無機質バインダを添加して混合、粉砕して得た微 粉末をスラリーとし、このスラリーをコージエライト製ノヽ-カム担体の壁面に均一に吹き 付けて被覆する、所謂ゥォッシュコートしてアルミナ層を形成したものがある(例えば、 特許文献 1参照。)。
[0012] しかしながら、上記ゥォッシュコートされたアルミナ層は、コージエライト製ノヽ-カム担 体の壁面の気孔を埋めてしまい、また、上記アルミナ層は、気孔径及び気孔率が小 さぐ通気する際の抵抗が大きいため、アルミナ層を持たないハ-カム担体と比べると 、著しく圧力損失が高くなるという問題が生じていた。
さらに、上記アルミナ層に上記触媒活性成分を担持させて得られたハ-カムフィルタ を用いてパティキュレートの捕集と再生処理とを行うと、その再生率は余り高いもので はなかった。
[0013] そこで、本発明者らは、特許文献 2に示すように、多孔質セラミック担体を形作る粒子 単位毎にその表面がアルミナの薄膜にて被覆され、上記アルミナ薄膜の凹凸表面に 触媒活性成分を担持させた技術を開発した (以下、担持方法 (2)とも ヽぅ)。
[0014] 本発明者らが先に開発した技術 (担持方法 (2) )は、多孔質セラミック担体を構成す る各粒子間に生じた間隙を塞ぐことがなぐ気孔は気孔としてそのまま維持することと なり、上記担持方法(1)に比べて圧力損失の小さいフィルタであった。
[0015] ところが、担持方法 (2)を用いて排気ガス浄ィ匕用ハ-カムフィルタを製造し、実際に パティキュレートの捕集及び再生処理を行うと、その再生処理の方法によっては、予 想に反して再生率が余り高くならないものであった。
[0016] 特許文献 1:特開平 05— 68892号公報
特許文献 2 :特開 2001— 137714号公報
発明の開示
発明が解決しょうとする課題
[0017] そこで、本発明者らは、捕集したパティキュレートの再生効率に優れる排気ガス浄ィ匕 用ハ-カムフィルタを得るために、さらに鋭意研究を行った結果、従来の排気ガス浄 化用ハ-カムフィルタを構成するハ-カム構造体の開口率及び触媒担持量は、一定 の値に定められたものであり、これでは、必ずしも再生効率に優れたハ-カムフィルタ とならないことが判明した。
課題を解決するための手段
[0018] そこで、さらに研究を進めた結果、捕集したパティキュレートの再生率は、排気ガス浄 化用ハ-カムフィルタの開口率と触媒の担持量とに密接に関係していること、及び、 シリコンが、排気ガスの浄ィ匕をするための触媒に深く係わることに注目し、上記ハ-カ ムフィルタの開口率と触媒の担持量を所定の範囲に設定し、シリコンを用いて複合体 を構成することにより、ハ-カムフィルタの再生率を向上させることができることを見出 し、本発明を完成させるに至った。
[0019] 本発明は、多数の貫通孔が隔壁を隔てて長手方向に並設され、これらの貫通孔のい ずれか一方の端部が封止されてなる柱状の多孔質セラミック部材が、 1又は 2以上集 合してなるハ-カム構造体であって、
上記多孔質セラミック部材は、セラミック粒子とシリコンとからなる複合体でであるととも に、上記壁部には、触媒が担持されており、
上記ハ-カム構造体の開口率 α (%)と上記触媒の担持量 (gZL)とが、下記式(1 )の関係を有することを特徴とするハ-カム構造体である。
9. 8-0. 125 X α≤ β - " ( 1)
発明の効果
[0020] 本発明のハニカム構造体では、上記ハニカム構造体の開口率 α (%)と上記触媒の 担持量 i8 (gZL)とが、上記式(1)の関係を有する。このことは、壁部に蓄積されたパ ティキュレートを酸ィ匕除去するために必要な触媒が充分に担持されていることを意味 しており、このため、ハ-カム構造体の再生処理を行うと、その再生率が非常に優れ たものとなる。
発明を実施するための最良の形態
[0021] 本発明は、多数の貫通孔が隔壁を隔てて長手方向に並設され、これらの貫通孔のい ずれか一方の端部が封止されてなる柱状の多孔質セラミック部材が、 1又は 2以上集 合してなるハ-カム構造体であって、 上記多孔質セラミック部材は、セラミック粒子とシリコンとからなる複合体であるとともに 、上記壁部には、触媒が担持されており、
上記ハ-カム構造体の開口率 α (%)と上記触媒の担持量 (gZL)とが、下記式(1 )の関係を有することを特徴とするハ-カム構造体である。
9. 8-0. 125 X α≤ β - " ( 1)
[0022] 本発明において、「ハ-カム構造体の開口率」とは、ハ-カム構造体の長手方向に垂 直な方向(貫通孔の長手方向に垂直な方向)の断面において、該断面の面積に対 する貫通孔の断面の面積の比をいう。本発明における、一般的な排気ガス浄化用( パティキュレート捕集用)フィルタとして用いられるハ-カム構造体においては、隔壁 と貫通孔と封止部との三種類からなるものである。よって、本発明のおける開口率と は、ハニカム構造体の断面面積に対して、貫通孔と封止部の面積の和(フィルタの断 面から隔壁の面積の和を差し引く)との比になる。
従って、両端部の封止部分が略同量になっていない場合 (例えば、両端部の封止部 の数を違うように変えている場合、貫通孔の断面形状を変えていた場合等)において も、その封止形状は考慮にいれず、上述した方法で算出する。
ハ-カム形状が長手方向に向って、テーパー形状に広がって 、る場合にぉ 、ては、 長手方向の断面の平均で算出するのが望ましい。
なお、ハ-カム構造体においてシール材層が形成されている場合、ハ-カム構造体 の断面面積には、シール材材層の占める部分は含まないこととする。
[0023] 本発明のハニカム構造体は、多数の貫通孔が壁部を隔てて長手方向に並設された 柱状の多孔質セラミック部材が、 1又は 2以上集合してなるものであり、上記壁部に触 媒が担持されている。
上記ハニカム構造体は、複数の貫通孔が隔壁を隔てて長手方向に並設された柱状 の多孔質セラミック部材がシール材層を介して複数個結束し、組み合せられた集合 体として構成されたものであってもよく(以下、「集合体型ハ-カム構造体」とも 、う)、 また、全体が単一の部材として形成された多孔質セラミック部材カも構成されて 、て もよい。(以下、「一体型ハ-カム構造体」ともいう)。
[0024] 本発明のハ-カム構造体が集合体型ハ-カム構造体の場合、壁部は、多孔質セラミ ック部材の貫通孔を隔てる隔壁と、多孔質セラミック部材の外壁及び多孔質セラミック 部材間の接着材層として機能して ヽるシール材層とから構成されており、上記多孔 質セラミック部材の隔壁が粒子捕集用フィルタとして機能する。即ち、上記壁部の一 部が粒子捕集用フィルタとして機能する。
一方、本発明のハ-カム構造体が一体型ハ-カム構造体の場合、壁部は、一種類 の隔壁のみにより構成されており、上記壁部の全部が粒子捕集用フィルタとして機能 する。
[0025] 図 1は、本発明のハ-カム構造体の一例である集合体型ハ-カム構造体の具体例を 模式的に示した斜視図であり、図 2 (a)は、図 1に示した集合体型ハ-カム構造体を 構成する多孔質セラミック部材の一例を模式的に示した斜視図であり、(b)は、(a)に 示した多孔質セラミック部材の A— A線断面図である。
[0026] 図 1及び図 2に示したように、この集合体型ハ-カム構造体 10では、多孔質セラミック 部材 20がシール材層 14を介して複数個結束されてセラミックブロック 15を構成し、こ のセラミックブロック 15の周囲には、排気ガスの漏れを防止するためのシール材層 1 3が形成されている。
[0027] また、この多孔質セラミック部材 20は、図 2 (b)に示したように、貫通孔 21のうち、排 気ガスの入口側又は出口側の端部のいずれかが封止材 22により目封じされ、一の 貫通孔 21に流入した排気ガスは、必ず貫通孔 21を隔てる隔壁 23を通過した後、他 の貫通孔 21から流出されるようになっており、これらの貫通孔 21同士を隔てる隔壁 2 3が粒子捕集用フィルタとして機能するようになって 、る。
さら〖こ、本発明の集合体型ハ-カム構造体 10において、隔壁 23には図示しない触 媒サポート材層を介して触媒が付与されている。
[0028] また、図 3 (a)は、本発明ハ-カム構造体の別の一例である一体型ハ-カム構造体の 具体例を模式的に示した斜視図であり、(b)は、その B— B線断面図である。
[0029] 図 3 (a)に示したように、一体型ハ-カム構造体 30は、多数の貫通孔 31が壁部 33を 隔てて長手方向に並設された一の多孔質セラミック力もなるセラミックブロック 35を構 成し、壁部 33の全部が粒子捕集用フィルタとして機能するように構成されて!、る。 即ち、一体型ハ-カム構造体 30に形成された貫通孔 31は、図 3 (b)に示したように、 排気ガスの入口側又は出口側のいずれかが封止材 32により目封じされ、一の貫通 孔 31に流入した排気ガスは、必ず貫通孔 31を隔てる壁部 33を通過した後、他の貫 通孔 31から流出されるようになっている。
そして、本発明の一体型ハ-カム構造体 30に流入された排気ガス中に含まれるパテ ィキュレートは、壁部 33を通過する際、壁部 33で捕捉され、排気ガスが浄化されるよ うになつている。
さらに、本発明に係る一体型ハ-カム構造体 30において、壁部 33には図示しない 触媒サポート材層を介して触媒が付与されて!ヽる。
また、図 3には示していないが、セラミックブロック 35の周囲には、図 1に示した集合 体型ハ-カム構造体 10と同様に、シール材層が形成されて 、てよ 、。
[0030] 本発明のハ-カム構造体において、ハ-カム構造体の壁部に担持する触媒の担持 方法としては、上述した担持方法(1)又は担持方法(2)の 、ずれの方法によるもので あってもよい。
[0031] また、上記壁部で捕捉される排気ガス中のパティキュレートは、上記壁部の気孔率や 気孔径によっては、パティキュレートが壁部の表面に蓄積される場合と、パティキユレ 一トが壁部の内部にまで浸透する場合とがあり、本発明のハ-カム構造体では、いず れの場合であってもよい。
[0032] ただし、本発明のハ-カム構造体において、壁部に担持された触媒の担持方法が上 述した担持方法(1)による場合、上記壁部で捕捉される排気ガス中のパティキュレー トは、壁部の表面に蓄積されることが望ましい。担持方法(1)は、壁部の表面に触媒 サポート材層を形成し、該触媒サポート材層に触媒を担持させる方法であるため、壁 部の内部にまで浸透したパティキュレートを触媒により酸ィ匕浄ィ匕させることが困難で あるからである。
一方、壁部に担持された触媒の担持方法が上述した担持方法 (2)による場合、上記 壁部で捕捉される排気ガス中のパティキュレートは、壁部の内部にまで浸透すること が望ましい。担持方法 (2)は、壁部を構成する粒子毎に触媒サポート材層を被覆し、 該触媒サポート材層の凹凸表面に触媒を担持させる方法であるため、壁部の内部に まで浸透したパティキュレートを好適に酸ィ匕浄ィ匕させることができるからである。 [0033] さらに、本発明のハ-カム構造体の壁部で捕捉したパティキュレートを上記壁部に担 持させた触媒により酸化浄化する方法としては特に限定されず、例えば、ある程度パ ティキュレートを蓄積させ、ハ-カム構造体の圧力損失が高くなると、ヒータ等の加熱 手段やポストインジヱクシヨンによりハ-カム構造体を触媒が機能することができる温 度にまで加熱し、パティキュレートを酸ィ匕浄化させる方法 (以下、再生方法(1)ともい う)や、トヨタ自動車株式会社の DPNR (Diesel Particulate- NOx Reduction System) のような排気ガス中の NOxの還元時に生じる活性酸素を利用して壁部に捕捉された パティキュレートの酸化浄化を頻繁に起こす方法 (以下、再生方法 (2)とも ヽぅ)等が 挙げられる。
[0034] 本発明のハニカム構造体では、上記再生方法(1)によりハニカム構造体の再生処理 を行う場合、壁部に担持される触媒の担持方法は、上述した担持方法(1)であり、壁 部の表面にのみパティキュレートを蓄積させることが望ましい。
再生方法(1)は、ある程度のパティキュレートを蓄積させた後にその再生処理を行う ため、パティキュレートが壁部の内部にまで浸透する場合、再生処理が行われるまで に蓄積するパティキュレートの量が多くなりすぎ、壁部の表面にもパティキュレートが 蓄積されることとなる。このような状態でハ-カム構造体の再生処理を行うと、酸ィ匕浄 化されるパティキュレートの大部分は、壁部の表面に蓄積されたパティキュレートとな り、壁部の内部に蓄積されたパティキュレートは、殆ど酸化浄化されず、実質上、壁 部の表面の触媒のみし力使用しないこととなるからである。
[0035] 一方、上記再生方法 (2)によりハニカム構造体の再生処理を行う場合、壁部に担持 される触媒の担持方法は、上述した担持方法 (2)であり、壁部の内部にまでパティキ ュレートが浸透することが望まし!/、。
[0036] 再生方法(2)では、壁部の内部に蓄積されたパティキュレートをすぐに酸化浄化する ため、壁部の内部や表面に担持された触媒を効率よく使用することができるからであ る。
勿論、担持方法(2)を用いて、再生の条件を変えて壁部の内部でパティキュレートが 詰まる前に、酸化させてやれば、再生方法(1)を用いることも十分可能である。
本発明のハ-カム構造体は、セラミック粒子とシリコンの複合体であることを特徴とす る。
ハ-カム構造体を製造する際、セラミック粒子とシリコンの複合材を用いることで、排 気ガスの浄ィ匕を向上させることを見出し、さらに研究を進めて、ハ-カム構造体の開 口率 α (%)と壁部に担持された触媒の担持量 |8 (gZL)との間に最適な範囲を導き 出したのが本発明である。
[0037] 一般的に、セラミックは、共有結合性のものとイオン結合性のものとの 2種類のものが 存在する。この場合、共有結合性、イオン結合性のものは、殆ど電荷の移動がない。 しかしながら、シリコンは、上述したセラミックに比べると、電荷の移動が自由におこる 物質である。したがって、シリコンと貴金属(Pt等)が近くに存在すると、貴金属に、電 荷の移動がスムーズに起こりやすくなつて、通常のセラミックのみの触媒担体に比べ て貴金属が電荷を持ち、ガス等を活性ィ匕しゃすくなる。
[0038] ガス等の活性ィ匕とは、例えば、低温域(250— 500°C程度)において、排気ガスに含 まれる NOxをガス状活性化剤にすることができる。即ち、排気ガス中の NOを酸ィ匕させ て、高い酸化力を持つ NOにすることが可能になる。還元雰囲気時は、 NOは非常に
2 2 活'性が高いものであって、そのガス状活性化剤によって、パティキュレートの酸ィ匕を 促すことができると考えられる。
[0039] 活性ィ匕された酸素は活性ィ匕されていない酸素と比べて、パティキュレートと低温での 酸化反応が起こりやすくなる。このため、活性化された酸素によりパティキュレートの 酸ィ匕を促すことができると考えられる。
以上のように、セラミック粒子とシリコンの複合材を用いることで、シリコンによる排気ガ スの浄化を向上させることを見出し、鋭意研究した結果、以下の最適な範囲を導き出 したのである。
[0040] 本発明のハ-カム構造体において、ハ-カム構造体の開口率 α (%)と触媒の担持 量 (gZL)とが、下記式 (1)の関係を有する。
[0041] 9. 8-0. 125 X α≤ j8 · · · (1)
[0042] 本発明のハ-カム構造体では、ハ-カム構造体の開口率 αにより必要な触媒の担持 量 ι8が変動し、上記式(1)より、ハニカム構造体の開口率 αが低い場合、触媒の担 持量 ι8の下限値が大きくなり、ハニカム構造体の開口率 αが高い場合、触媒の担持 量 i8の下限値力 、さくなる。
[0043] ハニカム構造体の開口率 αが低!、場合、該ハニカム構造体の長手方向に垂直な断 面に占める壁部の割合が高くなる。より具体的にいうと、次の場合に開口率が低くな る。すなわち、(1)壁の厚みを増大させる。(2)貫通孔の数を多ぐ貫通孔の断面積を 小さくする。
ところが、上述した条件は、基本的に圧力損失が高くなることになるので、あまり、好 ましくはない。
[0044] (1)、(2)の場合にぉ 、ては、圧力損失を低減させるためには、フィルタの多孔度を向 上させること (気孔率を大きくすること)が要求される。フィルタの多孔度を向上させる と、パティキュレートが壁部の内部まで浸透するため、壁部の深層部にも触媒を担持 させる必要が生じてくる。そこで、触媒量を増加させる必要が生じるのである。
[0045] ハニカム構造体の開口率 αが高!、場合、該ハニカム構造体の長手方向に垂直な断 面に占める壁部の割合が低くなる。より具体的にいうと、次の場合に開口率が高くな る。(3)壁の厚みを薄くする。(4)貫通孔の数を少なぐ貫通孔の断面積を大きくする。 ところが、上述した条件は、強度が低くなることになるのであまり好ましくはない。 (3)、(4)の場合においては、強度を向上させるためには、フィルタの多孔度を低減さ せ、気孔率を小さくすることが要求される。フィルタの気孔率を低減させるとパティキュ レートが壁部の表面にのみ蓄積される。そして、壁部の表面にのみ触媒を担持すれ ばよいので、触媒量を減らすことが可能になる。
[0046] 図 4は、本発明のハニカム構造体におけるハニカム構造体の開口率 a (%)と触媒担 持量 j8 (gZL)との関係を示したグラフである。
即ち、上記式(1)は、図 4に示した直線(1)の上側の領域を示しており、本発明のハ 二カム構造体において、上記開口率ひと触媒担持量 |8とは、直線(1)の上側の領域 に存在する!、ずれかの値となる。
具体的には、上記ハ-カム構造体の開口率 αが 40%である場合、触媒の担持量 j8 は、 4. 8gZL以上となり、上記ハ-カム構造体の開口率が 50%である場合、触媒の 担持量 j8は、 3. 55gZL以上となり、上記ハ-カム構造体の開口率が 60%である場 合、触媒の担持量 |8は、 2. 3gZL以上となる。 [0047] また、本発明のハ-カム構造体において、ハ-カム構造体の開口率 α (%)と触媒の 担持量 i8 (gZL)とが、下記式 (2)の関係を有することが望ましい。
[0048] 13-0. 125 X α≥ j8 · · · (2)
[0049] 上記式(2)より、本発明のハ-カム構造体において、ハ-カム構造体の開口率 αが 低い場合、触媒の担持量 ι8の望ましい上限値が大きくなり、ハ-カム構造体の開口 率 αが高!、場合、触媒の担持量 βの望ま 、上限値が小さくなる。
[0050] 本発明のハ-カム構造体において、触媒の担持量 βは、上記式(1)の関係を満たす 必要があるが、ハ-カム構造体の開口率 αに対して触媒の担持量 βが大きくなり過 ぎると、触媒粒子間の距離を近づけることになり、上記触媒のシンタリングが早く起こ りやすくなるため、上記ハニカム構造体の開口率 αと触媒の担持量 |8とは、上記式( 2)に示す関係を満たすことが望ましい。
[0051] 上記式(2)は、図 4に示した直線(2)の下側の領域を示しており、本発明のハ-カム 構造体において、上記開口率 αと触媒担持量 |8とは、上述した直線(1)と直線 (2)と に挟まれた領域 Αに存在する 、ずれかの値となることが望ま 、。
具体的には、上記ハ-カム構造体の開口率 αが 40%である場合、触媒の担持量 j8 は、 8. OgZL以下であることが望ましぐ上記ハ-カム構造体の開口率が 50%であ る場合、触媒の担持量 j8は、 6. 75gZL以下であることが望ましぐ上記ハ-カム構 造体の開口率が 60%である場合、触媒の担持量 j8は、 5. 5gZL以下であることが 望ましい。
[0052] 上記ハニカム構造体の開口率を低くする方法としては、上記壁部の厚さを厚くする方 法とセル密度を高くする方法とが挙げられる。この場合、本発明のハニカム構造体を 用いてなる排気ガス浄ィ匕装置の圧力損失は高くなる傾向にあり、強度は高くなる傾 向にめる。
ここで、上記「セル密度」とは、上記ハニカム構造体の長手方向に垂直な断面におい て、所定の面積 (例えば、 1平方インチ)に存在する貫通孔の個数をいう。
[0053] 本発明のハニカム構造体の触媒担持方法が担持方法(1)であり、ハニカム構造体の 再生方法が再生方法(1)である場合、上記ハニカム構造体の開口率を低くする方法 は、セル密度を高くする方法であることが望ましい。本発明のハ-カム構造体のセル 密度を高くすると、貫通孔の内壁、即ち、壁部の面積 (濾過可能面積)が大きくなり、 壁部の表面に蓄積されたパティキュレートと触媒との反応箇所が増大し、本発明のハ 二カム構造体の再生処理を効率よく行うことができるからである。
[0054] また、本発明のハ-カム構造体の触媒担持方法が担持方法(2)であり、ハ-カム構 造体の再生方法が再生方法 (2)である場合、上記ハニカム構造体の開口率を低くす る方法は、上記壁部の厚さを厚くする方法であることが望ましい。本発明のハ-カム 構造体の壁部の厚さを厚くすると、壁部の内部に蓄積させたパティキュレートと触媒と の反応箇所が増加し、本発明のハニカム構造体の再生処理を効率よく行うことができ るカゝらである。
[0055] 一方、上記ハニカム構造体の開口率を高くする方法としては、上記壁部の厚さを薄く する方法とセル密度を低くする方法とが挙げられる。この場合、本発明のハニカム構 造体を用いてなる排気ガス浄ィ匕装置の圧力損失は低くなる傾向にあり、強度は低く なる傾向にある。
[0056] 本発明のハニカム構造体の触媒担持方法が担持方法(1)であり、ハニカム構造体の 再生方法が再生方法(1)である場合、上記ハニカム構造体の開口率を高くする方法 は、上記壁部の厚さを薄くする方法であることが望ましい。本発明のハ-カム構造体 の壁部の厚さを薄くすると、貫通孔の内壁、即ち、壁部の面積 (濾過可能面積)が大 きくなり、壁部の表面に蓄積されたパティキュレートと触媒との反応箇所が増大し、本 発明のハニカム構造体の再生処理を効率よく行うことができるからである。
[0057] また、本発明のハ-カム構造体の触媒担持方法が担持方法(2)であり、ハ-カム構 造体の再生方法が再生方法 (2)である場合、上記ハニカム構造体の開口率を高くす る方法は、上記セル密度を低くする方法であることが望ましい。本発明のハ-カム構 造体のセル密度を低くすると、壁部の内部に蓄積させたパティキュレートと触媒との 反応箇所が増加し、本発明のハニカム構造体の再生処理を効率よく行うことができる 力 である。
[0058] 本発明のハ-カム構造体において、ハ-カム構造体の開口率 αの下限値は、 40% であることが望ましい。開口率 αの下限値が 40%未満であると、圧力損失が高くなり すぎたり、強度が低くなつたりする。また、シリコンとの接触確率が減少してしまう。この とき、触媒の担持量 ι8は、上記式(1)より 4. 8gZL以上となる。
上記ハ-カム構造体の開口率 αのより望ましい下限値は、 45%であり、さらに望まし い下限値は 50%である。このとき、触媒の担持量 |8は、上記式(1)よりそれぞれ 4. 1 8gZL以上、 3. 55gZL以上となる。
[0059] 本発明のハ-カム構造体において壁部に担持される触媒としては特に限定されず、 例えば、 Pt、 Rh、 Pd、 Ce、 Cu、 V、 Fe、 Au、 Ag等の貴金属等が挙げられる。これら のなかでは、 Ptが好適に用いられる。また、上記貴金属等は、単独で用いられてもよ ぐ 2種以上が併用されてもよい。これらの触媒により、排気ガス中に含まれる HC、 COを净ィ匕することもできる。
[0060] 上記触媒を担持させる際に用いる触媒サポート材層の材料としては特に限定されず 、例えば、アルミナ、チタ-ァ等が挙げられ、なかでも、アルミナが好適に用いられる。
[0061] また、本発明のハ-カム構造体には、本発明の目的を阻害しな 、範囲で、上記触媒 のほかに、例えば、アルカリ金属、アルカリ土類金属等の触媒を担持させてもよい。 本発明のハ-カム構造体を用いて排気ガス中に含まれる NOxを浄ィ匕することができ るよう〖こなる力らである。
[0062] 図 1や図 3に示した本発明のハ-カム構造体では、その形状は円柱状である力 本 発明において、ハニカム構造体は、柱状であれば円柱状に限定されることはなぐ例 えば、楕円柱状や角柱状等任意の形状のものであってもよい。
[0063] 本発明のハ-カム構造体において、ハ-カム構造体を構成するセラミック粒子として は特に限定されず、例えば、窒化アルミニウム、窒化ケィ素、窒化ホウ素、窒化チタン 等の窒化物セラミック、炭化珪素、炭化ジルコニウム、炭化チタン、炭化タンタル、炭 化タングステン等の炭化物セラミック等を挙げることができる。これらのなかでは、耐熱 性が高ぐ機械的特性に優れ、かつ、熱伝導率も大きい炭化珪素が望ましい。
[0064] また、ハ-カム構造体の気孔率は特に限定されないが、 20— 80%程度であることが 望ましい。気孔率が 20%未満であると、本発明のハニカム構造体がすぐに目詰まり を起こすことがあり、一方、気孔率が 80%を超えると、ハニカム構造体の強度が低下 して容易に破壊されることがある。
なお、上記気孔率は、例えば、水銀圧入法、アルキメデス法及び走査型電子顕微鏡 (SEM)による測定等、従来公知の方法により測定することができる。
[0065] また、上記ハ-カム構造体の平均気孔径は 5— 100 μ mであることが望まし 、。平均 気孔径が 5 m未満であると、パティキュレートが容易に目詰まりを起こすことがある。 一方、平均気孔径が 100 mを超えると、パティキュレートが気孔を通り抜けてしまい 、該パティキュレートを捕集することができず、フィルタとして機能することができないこ とがある。
[0066] 上記ハ-カム構造体を構成するセラミック粒子の平均粒子径は、 1一 100 mが好ま しい。シリコンは、これらセラミック粒子を接合するようにセラミック粒子の間に形成され ている。
セラミック粒子とシリコンとの重量比は、セラミック粒子 100重量部に対してシリコン 5 一 100重量部が好ましい。
[0067] 上記ハ-カム構造体の貫通孔に封止された封止材は、多孔質セラミック力 なるもの であることが望ましい。
本発明のハ-カム構造体において、上記封止材が封止されたハ-カム構造体は、多 孔質セラミック力 なるものであるため、上記封止材を上記ハ-カム構造体と同じ多 孔質セラミックとすることで、両者の接着強度を高くすることができるとともに、封止材 の気孔率を上述したハニカム構造体と同様に調整することで、上記ハニカム構造体 の熱膨張率と封止材の熱膨張率との整合を図ることができ、製造時や使用時の熱応 力によって封止材と壁部との間に隙間が生じたり、封止材ゃ封止材に接触する部分 の壁部にクラックが発生したりすることを防止することができる。
[0068] 上記封止材が多孔質セラミックからなる場合、その材料としては特に限定されず、例 えば、上述したハ-カム構造体を構成するセラミック材料と同様の材料を挙げること ができる。
[0069] 本発明のハ-カム構造体が図 1に示した集合体型フィルタである場合、シール材層 1 3、 14は、多孔質セラミック部材 20間、及び、セラミックブロック 15の外周に形成され ている。そして、多孔質セラミック部材 20間に形成されたシール材層 14は、複数の多 孔質セラミック部材 20同士を結束する接着剤としても機能し、一方、セラミックブロック 15の外周に形成されたシール材層 13は、本発明のハ-カム構造体 10を内燃機関 の排気通路に設置した際、セラミックブロック 15の外周から排気ガスが漏れ出すこと を防止するための機能を有する。
[0070] 上記シール材層を構成する材料としては特に限定されず、例えば、無機バインダー と、有機バインダーと、無機繊維及び Z又は無機粒子とからなるもの等を挙げること ができる。
なお、上述した通り、本発明のハ-カム構造体において、シール材層は、多孔質セラ ミック部材間、及び、セラミックブロックの外周に形成されている力 これらのシール材 層は、同じ材料力 なるものであってもよぐ異なる材料からなるものであってもよい。 さら〖こ、上記シール材層が同じ材料カゝらなるものである場合、その材料の配合比は同 じものであってもよぐ異なるものであってもよい。
[0071] 上記無機バインダーとしては、例えば、シリカゾル、アルミナゾル等を挙げることがで きる。これらは、単独で用いてもよぐ 2種以上を併用してもよい。上記無機バインダー のなかでは、シリカゾノレが望ましい。
[0072] 上記有機バインダーとしては、例えば、ポリビュルアルコール、メチルセルロース、ェ チルセルロース、カルボキシメチルセルロース等を挙げることができる。これらは、単 独で用いてもよぐ 2種以上を併用してもよい。上記有機バインダーのなかでは、カル ボキシメチルセルロースが望まし 、。
[0073] 上記無機繊維としては、例えば、シリカーァノレミナ、ムライト、アルミナ、シリカ等のセラ ミックファイバ一等を挙げることができる。これらは、単独で用いてもよぐ 2種以上を併 用してもよい。上記無機繊維のなかでは、シリカ一アルミナファイバーが望ましい。
[0074] 上記無機粒子としては、例えば、炭化物、窒化物等を挙げることができ、具体的には 、炭化珪素、窒化珪素、窒化硼素等力 なる無機粉末又はウイスカ一等を挙げること ができる。これらは、単独で用いてもよぐ 2種以上を併用してもよい。上記無機粒子 のなかでは、熱伝導性に優れる炭化珪素が望ま 、。
[0075] シール材層 14は、緻密体力もなるものであってもよぐその内部への排気ガスの流入 が可能なように、多孔質体であってもよい。
[0076] 次に、上述した本発明のハ-カム構造体の製造方法の一例について説明する。
本発明のハ-カム構造体を製造するには、まず、触媒サポート材層を介して触媒を 担持させるためのセラミックブロックを製造する。
[0077] 本発明のハ-カム構造体の構造が図 3に示したような、その全体が一の焼結体から 構成された一体型フィルタである場合、まず、上述したようなセラミック力らなるセラミツ ク粉末とシリコン粉末とを主成分とする原料ペーストを用 Vヽて押出成形を行 、、図 3〖こ 示した一体型ハ-カム構造体 30と略同形状のセラミック成形体を作製する。
[0078] 上記原料ペーストは、製造後のセラミックブロックの気孔率が 20— 80%となるもので あれば特に限定されず、例えば、上述したようなセラミック粉末及びシリコン粉末にバ インダー及び分散媒液を加えたものを挙げることができる。
[0079] 上記バインダーとしては特に限定されず、例えば、メチルセルロース、カルボキシメチ ルセルロース、ヒドロキシェチルセルロース、ポリエチレングリコール、フエノール榭脂
、エポキシ榭脂等を挙げることができる。
上記バインダーの配合量は、通常、セラミック粉末 100重量部に対して、 1一 10重量 部程度が望ましい。
[0080] 上記分散媒液としては特に限定されず、例えば、ベンゼン等の有機溶媒;メタノール 等のアルコール、水等を挙げることができる。
上記分散媒液は、原料ペーストの粘度が一定範囲内となるように、適量配合される。
[0081] これらセラミック粉末、シリコン粉末、バインダー及び分散媒液は、アトライター等で混 合し、ニーダ一等で充分に混練した後、押出成形して上記セラミック成形体を作製す る。
[0082] また、上記原料ペーストには、必要に応じて成形助剤を添加してもよい。
上記成形助剤としては特に限定されず、例えば、エチレングリコール、デキストリン、 脂肪酸石鹼、ポリアルコール等を挙げることができる。
[0083] さらに、上記原料ペーストには、必要に応じて酸ィ匕物系セラミックを成分とする微小中 空球体であるバルーンや、球状アクリル粒子、グラフアイト等の造孔剤を添加してもよ い。
上記バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバ ルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)及びムライトバル一 ン等を挙げることができる。これらのなかでは、フライアッシュバルーンが望ましい。 [0084] そして、上記セラミック成形体を、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧 乾燥機、真空乾燥機及び凍結乾燥機等を用いて乾燥させた後、所定の貫通孔に封 止材となる封止材ペーストを充填し、上記貫通孔に目封じする封止処理を施す。
[0085] 上記封止材ペーストとしては、後工程を経て製造される封止材の気孔率が 20— 80 %となるものであれば特に限定されず、例えば、上記原料ペーストと同様のものを用 いることができるが、上記原料ペーストで用いたセラミック粉末に潤滑剤、溶剤、分散 剤及びバインダーを添加したものであることが望まし 、。上記封止処理の途中で封止 材ペースト中のセラミック粒子が沈降することを防止することができるからである。
[0086] 次に、上記封止材ペーストが封止されたセラミック乾燥体に、所定の条件で脱脂、焼 成温度 1400— 1650°Cで焼成を行うことにより、多孔質セラミック力もなり、その全体 がーの焼結体力も構成されたセラミックブロックを製造することができる。
なお、上記セラミック乾燥体の脱脂及び焼成の条件等は、従来力 多孔質セラミック 力 なるハ-カム構造体を製造する際に用いられている条件を適用することができる
[0087] また、本発明のハ-カム構造体の構造が、図 1に示したような、多孔質セラミック部材 がシール材層を介して複数個結束されて構成された集合体型フィルタである場合、 まず、上述したセラミック粉末及びシリコン粉末を主成分とする原料ペーストを用いて 押出成形を行い、図 2に示した多孔質セラミック部材 20のような形状の生成形体を作 製する。
[0088] なお、上記原料ペーストは、上述した一体型フィルタにおいて説明した原料ペースト と同様のものを挙げることができる。
[0089] 次に、上記生成形体を、マイクロ波乾燥機等を用いて乾燥させて乾燥体とした後、該 乾燥体の所定の貫通孔に封止材となる充填材ペーストを封止し、上記貫通孔を目封 じする封止処理を施す。
なお、上記充填材ペーストは、上述した一体型フィルタにおいて説明した封止材ぺ 一ストと同様のものを挙げることができ、上記封止処理は、封止材ペーストを封止する 対象が異なるほかは、上述した一体型フィルタの場合と同様の方法を挙げることがで きる。 [0090] 次に、上記封止処理を経た乾燥体に上述した一体型フィルタの場合と同様の条件で 脱脂、焼成を行うことにより、複数の貫通孔が隔壁を隔てて長手方向に並設された多 孔質セラミック部材を製造することができる。
[0091] 次に、多孔質セラミック部材の側面に、シール材層 14となるシール材ペーストを均一 な厚さで塗布してシール材ペースト層 51を形成し、このシール材ペースト層 51の上 に、順次他の多孔質セラミック部材 20を積層する工程を繰り返し、所定の大きさの角 柱状の多孔質セラミック部材 20の積層体を作製する。
なお、上記シール材ペーストを構成する材料としては、上述した本発明のハ-カム構 造体において説明した通りであるのでここではその説明を省略する。
[0092] 次に、この多孔質セラミック部材 20の積層体を加熱してシール材ペースト層 51を乾 燥、固化させてシール材層 14とし、その後、例えば、ダイヤモンドカッター等を用いて 、その外周部を図 1に示したような形状に切削することで、多孔質セラミック部材がシ 一ル材層を介して複数個結束されて構成されたセラミックブロックを製造することがで きる。
そして、この製造したセラミックブロックの外周に上記シール材ペーストを用いてシー ル材層 13を形成する。
[0093] このようにして製造したセラミックブロックはいずれも柱状であり、その構造は、図 1や 図 3に示した通りである。
[0094] 次に、上記方法により製造したセラミックブロックの壁部に触媒サポート材層を介して 触媒を担持させる。
[0095] 上記触媒サポート材層の材料としては、上述した本発明のハ-カム構造体において 説明した通りであるのでここでは、その説明を省略する。なお、以下の説明では、上 記触媒サポート材層の材料としてアルミナを用いる場合にっ 、て説明する。
[0096] 上述した担持方法(1)により上記セラミックブロックの壁部に上記触媒を担持させる 場合、まず、アルミナに無機質バインダを添加して混合するとともに、粉砕して微粉体 を作製する。
[0097] 上記アルミナとしては、例えば、 γ—アルミナが挙げられ、この γ—アルミナは、ゾルー ゲル法等により調製することができる。 また、上記無機バインダとしては特に限定されず、例えば、水和アルミナ等が挙げら れる。
[0098] 次に、上記微粉体を純水と合わせ、スターラ等を用いて攪拌することでスラリーを調 製する。
[0099] 次に、上記セラミックブロックに上記スラリーを吹き付けたり、上記スラリー中に上記セ ラミックブロックを浸漬したり等し、所謂、ゥォッシュコートすることにより、上記スラリー をセラミックブロックの壁部表面に付着させる。
[0100] そして、上記スラリーをゥォッシュコートしたセラミックブロックを所定の温度で乾燥、焼 成することでセラミックブロックの壁部表面に触媒サポート材層を形成する。
[0101] また、上述した担持方法(2)により上記セラミックブロックの壁部に上記触媒を担持さ せる場合、まず、触媒サポート材層となるアルミニウム含有金属化合物の溶液を調製 する。
[0102] 上記アルミニウム含有金属化合物の原料としては、金属無機化合物や金属有機化 合物等の金属化合物が挙げられる。
上記金属無機化合物としては、例えば、 Al(NO ) 、 A1C1、 A10C1、 A1PO、 Al (S
3 3 3 4 2
O ) 、 Al O、 Al(OH) 等が挙げられ、なかでも、 Α1(ΝΟ ) や A1C1は、アルコー
4 3 2 3 3 3 3 3
ル、水等の溶媒に溶解しやすく取扱 、やす 、ので好適である。
[0103] 上記金属有機化合物としては、例えば、金属アルコキシド、金属ァセチルァセトネー ト、金属カルボキシレート等が挙げられる。
具体的には、 Al(OCH ) 、 Al(OC H ) 、 Al (iso— OC H ) 等が挙げられる。
3 3 2 3 3 3 7 3
[0104] 溶媒としては、例えば、水、アルコール、ジオール、多価アルコール、エチレングリコ ール、エチレンォキシド、トリエタノールァミン、キシレン等があげられる。これらの溶媒 は、上記金属化合物の溶解を考慮して少なくとも 1種以上を混合して使用する。
[0105] また、上記溶液を調製する際に、塩酸、硫酸、硝酸、酢酸、フッ酸等の触媒を添加し てもよい。さらに、アルミナの耐熱性を向上させるために、 Li、 K、 Ca、 Sr、 Ba、 La、 P r、 Nd、 Si、 Zrの単体又は化合物を上記金属化合物とともに添カ卩してもよい。
[0106] 次に、上記アルミニウム含有金属化合物の溶液をゾルーゲル法により、セラミックブロ ックの壁部に含浸させる。 このとき、上記溶液をセラミックブロックの壁部の各セラミック粒子間の間隙である総て の気孔内に行き渡らせるため、例えば、容器内にセラミックブロックを入れて上記溶 液を満たして脱気する方法や、セラミックブロックの一方力 上記溶液を流し込み、他 方より脱気する方法等を採用することが望ましい。
上記脱気する装置としては、例えば、ァスピレータ、真空ポンプ等が挙げられる。
[0107] 次に、上記セラミックブロックを 120— 170°C、 2時間程度加熱することで、上記溶液 を蒸発除去させてゲル化させてセラミック粒子表面に固定するとともに、余分な溶液 を除去し、 300— 500°C程度に加熱することで仮焼成する。
[0108] 次に、 50— 100°C、 1時間以上で熱水処理を行う。
この熱水処理を行うことで、セラミック粒子の表面に形成したアルミナ薄膜が小繊維 状 (針状粒子)となって林立し、所謂植毛構造を呈して粗い表面の薄膜となる。
[0109] そして、 500— 1000°C、 5— 20時間程度の条件で焼成することで、セラミックブロック の壁部に触媒サポート材層を形成する。
[0110] 次に、上記いずれかの方法により形成した触媒サポート材層に触媒を担持させること で本発明のハ-カム構造体を製造することができる。
[0111] このとき上記触媒サポート材層に担持させる触媒の担持量の下限値は、上記式(1) に上記セラミックブロックの開口率 αを代入することで算出される力 その上限値は、 上記式(2)に上記セラミックブロックの開口率 αを代入した値以下であることが望まし い。
[0112] 上記触媒を担持させる方法としては特に限定されず、例えば、含浸法、蒸発乾固法 、平衡吸着法、インシビアント 'ウエットネス法あるいはスプレー法等が挙げられる。
[0113] 図 5は、本発明のハ-カム構造体が設置された車両の排気ガス浄ィ匕装置の一例を模 式的に示した断面図である。
[0114] 図 5に示したように、排気ガス浄化装置 600は、主に、本発明のハ-カム構造体 60、 ハ-カム構造体 60の外方を覆うケーシング 630、及び、ハ-カム構造体 60とケーシ ング 630との間に配置された保持シール材 620力 構成されており、ケーシング 630 の排気ガスが導入される側の端部には、エンジン等の内燃機関に連結された導入管 640が接続されており、ケーシング 630の他端部には、外部に連結された排出管 65 0が接続されている。なお、図 5中、矢印は排気ガスの流れを示している。
また、図 5において、ハ-カム構造体 60は、図 1に示したハ-カム構造体 10であって もよぐ図 3に示したハ-カム構造体 30であってもよい。
[0115] このような構成力もなる排気ガス浄ィ匕装置 600では、エンジン等の内燃機関から排出 された排気ガスは、導入管 640を通ってケーシング 630内に導入され、ハ-カム構造 体 60の貫通孔から壁部(隔壁)を通過してこの壁部(隔壁)でパティキュレートが捕集 されて浄化された後、排出管 650を通って外部へ排出されることとなる。
[0116] また、ハ-カム構造体 60の壁部(隔壁)捕集されたパティキュレートは、壁部に担持さ れた触媒により、上述した再生方法(1)又は再生方法 (2)により酸化除去され、ハニ カム構造体 60の再生処理が行われる。
[0117] 以上、説明した通り、本発明のハ-カム構造体は、該ハ-カム構造体を構成するセラ ミックブロックの開口率 αと触媒の担持量 /3とが、上記式(1)の関係を満たすもので あるため、壁部に蓄積されたパティキュレートを酸ィ匕除去するために必要な触媒が充 分に担持されており、ハ-カム構造体の再生処理を行うと、その再生率が非常に優 れたものとなる。
実施例
[0118] 以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみ に限定されるものではない。
[0119] 実施例 1一 4、比較例 1
( 1)平均粒径 30 mの α型炭化珪素粉末 80重量部と、平均粒径 5 μ mの金属シリ コンと 20重量部を湿式混合し、得られた混合物 100重量部に対して、有機バインダ 一 (メチルセルロース)を 5重量部、水を 10重量部加えて混練して混合組成物を得た 。次に、上記混合組成物に可塑剤と潤滑剤とを少量加えてさらに混練した後、押出 成形を行い、図 2 (a)に示した多孔質セラミック部材 20と略同形状の生成形体を作製 した。
[0120] 次に、マイクロ波乾燥機を用いて上記生成形体を乾燥させ、セラミック乾燥体とした 後、上記生成形体と同様の組成のペーストを所定の貫通孔に充填した後、再び乾燥 機を用いて乾燥させた後、 400°Cで脱脂し、常圧のアルゴン雰囲気下 1450°C、 1時 間で焼成を行うことにより、気孔率が 50%、平均気孔径が 20 /ζ πι、その大きさが 34. 3mm X 34. 3mm X 150. 5mmで、セル密度が 198個 Z平方インチ、隔壁の厚さが 0. 43mmの炭化珪素粒子とシリコンとの複合体力 なる多孔質セラミック部材を製造 した。
[0121] (2)繊維長 20 mのアルミナファイバー 30重量0 /0、平均粒径 0. 6 mの炭化珪素 粒子 21重量%、シリカゾル 15重量%、カルボキシメチルセルロース 5. 6重量%、及 び、水 28. 4重量%を含む耐熱性のシール材ペーストを用いて上記多孔質セラミック 部材を、上述した多孔質セラミック部材の積層体の作製方法で、上記多孔質セラミツ ク部材を結束するシール材層の厚さが 1. Ommとなるように、多数結束させて積層体 を作製し、続いて、ダイヤモンドカッターを用いて切断することにより、直径が 144mm で円柱形状のセラミックブロックを作製した。
[0122] 次に、無機繊維としてアルミナシリケートからなるセラミックファイバー(ショット含有率: 3%、繊維長: 0. 1— 100mm) 23. 3重量%、無機粒子として平均粒径 0. 3 mの 炭化珪素粉末 30. 2重量%、無機バインダーとしてシリカゾル (ゾル中の SiOの含有
2 率: 30重量%) 7重量%、有機バインダーとしてカルボキシメチルセルロース 0. 5重 量0 /0及び水 39重量%を混合、混練してシール材ペーストを調製した。
[0123] 次に、上記シール材ペーストを用いて、上記セラミックブロックの外周部に厚さ 1. 0m mのシール材ペースト層を形成した。そして、このシール材ペースト層を 120°Cで乾 燥して、外周にシール材層を形成した。
[0124] 得られたセラミックブロックの開口率は、 55. 9%であった。
なお、係る開口率を上記式(1)に代入して算出される触媒の担持量は、 2. 8gZL以 上であり、上記式(2)に代入して算出される触媒の担持量は、 6. OgZL以下である。
[0125] (3)次に、上記実施の形態において担持方法(2)の場合として説明した方法により 触媒サポート材層として γ—アルミナを上記セラミックブロックの壁部(隔壁)に形成し 、該触媒サポート材層に白金をインシビアント ·ウエットネス法により担持させた。
なお、白金の担持量は、 3. OgZL (実施例 1)、 4. 4gZL (実施例 2)、 6. OgZL (実 施例 3)、 6. 3gZL (実施例 4)、 2. 6gZL (比較例 1)であった。
[0126] 実施例 5— 8、比較例 2 (1)多孔質セラミック部材のセル密度を 316個 Z平方インチ、隔壁の厚さを 0. 36m mとしたほかは、実施例 1の(1)と同様にして多孔質セラミック部材を製造した。
[0127] (2)実施例 1の(2)と同様にして、外周にシール材層が形成されたセラミックブロック を作製した。得られたセラミックブロックの開口率は、 54. 4%であった。
なお、係る開口率を上記式(1)に代入して算出される触媒の担持量は、 3. OgZL以 上であり、上記式(2)に代入して算出される触媒の担持量は、 6. 2gZL以下である。
[0128] (3)実施例 1の(3)と同様にして触媒サポート材層を形成し、該触媒サポート材層に 白金を担持させ、円柱形状のハ-カム構造体を製造した。なお、白金の担持量は、 3 . OgZL (実施例 5)、 4. 4gZL (実施例 6)、 6. OgZL (実施例 7)、 6. 3gZL (実施 例 8)、 2. 6gZL (比較例 2)であった。
[0129] 実施例 9一 12、比較例 3
(1)多孔質セラミック部材のセル密度を 430個 Z平方インチ、隔壁の厚さを 0. 31m mとしたほかは、実施例 1の(1)と同様にして多孔質セラミック部材を製造した。
[0130] (2)実施例 1の(2)と同様にして、外周にシール材層が形成されたセラミックブロック を作製した。得られたセラミックブロックの開口率は、 55. 1%であった。
なお、係る開口率を上記式(1)に代入して算出される触媒の担持量は、 2. 9gZL以 上であり、上記式(2)に代入して算出される触媒の担持量は、 6. lgZL以下である。
[0131] (3)実施例 1の(3)と同様にして触媒サポート材層を形成し、該触媒サポート材層に 白金を担持させ、円柱形状のハ-カム構造体を製造した。なお、白金の担持量は、 3 . OgZL (実施例 9)、 4. 4gZL (実施例 10)、 6. OgZL (実施例 11)、 6. 3gZL (実 施例 12)、 2. 6gZL (比較例 3)であった。
[0132] 実施例 13— 16、比較例 4
(1)多孔質セラミック部材のセル密度を 967個 Z平方インチ、隔壁の厚さを 0. 20m mとしたほかは、実施例 1の(1)と同様にして多孔質セラミック部材を製造した。
[0133] (2)実施例 1の(2)と同様にして、外周にシール材層が形成されたセラミックブロック を作製した。得られたセラミックブロックの開口率は、 55. 8%であった。
なお、係る開口率を上記式(1)に代入して算出される触媒の担持量は、 2. 8gZL以 上であり、上記式(2)に代入して算出される触媒の担持量は、 6. OgZL以下である。 [0134] (3)実施例 1の(3)と同様にして触媒サポート材層を形成し、該触媒サポート材層に 白金を担持させ、円柱形状のハ-カム構造体を製造した。なお、白金の担持量は、 3 . OgZL (実施例 13)、 4. 4gZL (実施例 14)、 6. OgZL (実施例 15)、 6. 3g/L( 実施例 16)、 2. 6gZL (比較例 4)であった。
[0135] 実施例 17— 20、比較例 5
(1)多孔質セラミック部材のセル密度を 123個 Z平方インチとしたほかは、実施例 1 の(1)と同様にして多孔質セラミック部材を製造した。即ち、隔壁の厚さは、 0. 43m mであつ 7こ。
[0136] (2)実施例 1の(2)と同様にして、外周にシール材層が形成されたセラミックブロック を作製した。得られたセラミックブロックの開口率は、 63. 7%であった。
なお、係る開口率を上記式(1)に代入して算出される触媒の担持量は、 1. 8gZL以 上であり、上記式(2)に代入して算出される触媒の担持量は、 5. OgZL以下である。
[0137] (3)実施例 1の(3)と同様にして触媒サポート材層を形成し、該触媒サポート材層に 白金を担持させ、円柱形状のハ-カム構造体を製造した。なお、白金の担持量は、 2 . OgZL (実施例 17)、 3. 4gZL (実施例 18)、 5. OgZL (実施例 19)、 5. 3g/L( 実施例 20)、 1. 7gZL (比較例 5)であった。
[0138] 実施例 21— 24、比較例 6
(1)多孔質セラミック部材のセル密度を 198個 Z平方インチとしたほかは、実施例 5 の(1)と同様にして多孔質セラミック部材を製造した。即ち、隔壁の厚さは、 0. 36m mであつ 7こ。
[0139] (2)実施例 1の(2)と同様にして、外周にシール材層が形成されたセラミックブロック を作製した。得られたセラミックブロックの開口率は、 62. 4%であった。
なお、係る開口率を上記式(1)に代入して算出される触媒の担持量は、 2. OgZL以 上であり、上記式(2)に代入して算出される触媒の担持量は、 5. 2gZL以下である。
[0140] (3)実施例 1の(3)と同様にして触媒サポート材層を形成し、該触媒サポート材層に 白金を担持させ、円柱形状のハ-カム構造体を製造した。なお、白金の担持量は、 2 . OgZL (実施例 21)、 3. 4gZL (実施例 22)、 5. OgZL (実施例 23)、 5. 3g/L( 実施例 24)、 1. 7gZL (比較例 6)であった。 [0141] 実施例 25— 28、比較例 7
(1)多孔質セラミック部材のセル密度を 265個 Z平方インチとしたほかは、実施例 9 の(1)と同様にして多孔質セラミック部材を製造した。即ち、隔壁の厚さは、 0. 31m mであつ 7こ。
[0142] (2)実施例 1の(2)と同様にして、外周にシール材層が形成されたセラミックブロック を作製した。得られたセラミックブロックの開口率は、 63. 3%であった。
なお、係る開口率を上記式(1)に代入して算出される触媒の担持量は、 1. 9gZL以 上であり、上記式(2)に代入して算出される触媒の担持量は、 5. lgZL以下である。
[0143] (3)実施例 1の(3)と同様にして触媒サポート材層を形成し、該触媒サポート材層に 白金を担持させ、円柱形状のハ-カム構造体を製造した。なお、白金の担持量は、 2 . OgZL (実施例 25)、 3. 4gZL (実施例 26)、 5. OgZL (実施例 27)、 5. 3g/L( 実施例 28)、 1. 7gZL (比較例 7)であった。
[0144] 実施例 29— 32、比較例 8
(1)多孔質セラミック部材のセル密度を 634個 Z平方インチとしたほかは、実施例 13 の(1)と同様にして多孔質セラミック部材を製造した。即ち、隔壁の厚さは、 0. 20m mであつ 7こ。
[0145] (2)実施例 1の(2)と同様にして、外周にシール材層が形成されたセラミックブロック を作製した。得られたセラミックブロックの開口率は、 63. 0%であった。
なお、係る開口率を上記式(1)に代入して算出される触媒の担持量は、 1. 9gZL以 上であり、上記式(2)に代入して算出される触媒の担持量は、 5. lgZL以下である。
[0146] (3)実施例 1の(3)と同様にして触媒サポート材層を形成し、該触媒サポート材層に 白金を担持させ、円柱形状のハ-カム構造体を製造した。なお、白金の担持量は、 2 . OgZL (実施例 29)、 3. 4gZL (実施例 30)、 5. OgZL (実施例 31)、 5. 3g/L( 実施例 32)、 1. 7gZL (比較例 8)であった。
[0147] 実施例 33— 36、比較例 9
(1)多孔質セラミック部材のセル密度を 55個 Z平方インチとしたほかは、実施例 1の( 1)と同様にして多孔質セラミック部材を製造した。即ち、隔壁の厚さは、 0. 43mmで あった。 [0148] (2)実施例 1の(2)と同様にして、外周にシール材層が形成されたセラミックブロック を作製した。得られたセラミックブロックの開口率は、 74. 2%であった。
なお、係る開口率を上記式(1)に代入して算出される触媒の担持量は、 0. 53g/L 以上であり、上記式(2)に代入して算出される触媒の担持量は、 3. 73gZL以下で める。
[0149] (3)実施例 1の(3)と同様にして触媒サポート材層を形成し、該触媒サポート材層に 白金を担持させ、円柱形状のハ-カム構造体を製造した。なお、白金の担持量は、 0 . 55gZL (実施例 33)、 2. 15gZL (実施例 34)、 3. 60gZL (実施例 35)、 4. OOg /L (実施例 36)、 0. 40g/L (比較例 9)であった。
[0150] 実施例 37— 40、比較例 10
(1)多孔質セラミック部材のセル密度を 79個 Z平方インチとしたほかは、実施例 5の( 1)と同様にして多孔質セラミック部材を製造した。即ち、隔壁の厚さは、 0. 36mmで あった。
[0151] (2)実施例 1の(2)と同様にして、外周にシール材層が形成されたセラミックブロック を作製した。得られたセラミックブロックの開口率は、 74. 6%であった。
なお、係る開口率を上記式(1)に代入して算出される触媒の担持量は、 0. 48g/L 以上であり、上記式(2)に代入して算出される触媒の担持量は、 3. 68gZL以下で める。
[0152] (3)実施例 1の(3)と同様にして触媒サポート材層を形成し、該触媒サポート材層に 白金を担持させ、円柱形状のハ-カム構造体を製造した。なお、白金の担持量は、 0 . 55gZL (実施例 37)、 2. 15gZL (実施例 38)、 3. 60gZL (実施例 39)、 4. OOg /L (実施例 40)、 0. 40g/L (比較例 10)であった。
[0153] 実施例 41一 44、比較例 11
(1)多孔質セラミック部材のセル密度を 107個 Z平方インチとしたほかは、実施例 9 の(1)と同様にして多孔質セラミック部材を製造した。即ち、隔壁の厚さは、 0. 31m mであつ 7こ。
[0154] (2)実施例 1の(2)と同様にして、外周にシール材層が形成されたセラミックブロック を作製した。得られたセラミックブロックの開口率は、 75. 1%であった。 なお、係る開口率を上記式(1)に代入して算出される触媒の担持量は、 0. 41g, 以上であり、上記式(2)に代入して算出される触媒の担持量は、 3. 61gZL以下で める。
[0155] (3)実施例 1の(3)と同様にして触媒サポート材層を形成し、該触媒サポート材層に 白金を担持させ、円柱形状のハ-カム構造体を製造した。なお、白金の担持量は、 0 . 55gZL (実施例 41)、 2. 15gZL (実施例 42)、 3. 60gZL (実施例 43)、 4. OOg /L (実施例 44)、 0. 40g/L (比較例 11)であった。
[0156] 実施例 45— 48、比較例 12
(1)多孔質セラミック部材のセル密度を 265個 Z平方インチとしたほかは、実施例 13 の(1)と同様にして多孔質セラミック部材を製造した。即ち、隔壁の厚さは、 0. 20m mであつ 7こ。
[0157] (2)実施例 1の(2)と同様にして、外周にシール材層が形成されたセラミックブロック を作製した。得られたセラミックブロックの開口率は、 74. 7%であった。
なお、係る開口率を上記式(1)に代入して算出される触媒の担持量は、 0. 46g/L 以上であり、上記式(2)に代入して算出される触媒の担持量は、 3. 66gZL以下で める。
[0158] (3)実施例 1の(3)と同様にして触媒サポート材層を形成し、該触媒サポート材層に 白金を担持させ、円柱形状のハ-カム構造体を製造した。なお、白金の担持量は、 0 . 55gZL (実施例 45)、 2. 15gZL (実施例 46)、 3. 60gZL (実施例 47)、 4. OOg /L (実施例 48)、 0. 40g/L (比較例 12)であった。
[0159] 実施例 1一 48及び比較例 1一 12に係るハ-カム構造体をエンジンの排気通路に配 設した図 5に示したような排気ガス浄ィ匕装置に設置し、上記エンジンを回転数 3000 トルク 50Nmで所定の時間運転し、パティキュレートの捕集を行った後、電気 ヒータを用いてハ-カム構造体を 550°Cに加熱して再生する再生処理を 20回繰り返 し、パティキュレートの燃え残りの有無を観察した。なお、燃え残りの有無は、ハ-カ ム構造体を長手方向に垂直な方向に切断し、 SEMを使用して 15箇所を観察した。 ここで、各実施例および比較例について、サンプルを 2個作製しておき、 1回目の再 生処理終了後に、全ての実施例および比較例に係るサンプルについて観察し、 1回 目終了時に燃え残りが発生しなかったものについては、 20回の再生処理終了後に 再度観察した。
その結果を下記の表 1一 3に示した。
なお、表 1において、パティキュレートの捕集と再生処理とを 20回繰り返しても燃え残 りが発生しな力 たものを〇と表示し、 20回目で燃え残りが発生したものを△と表示 し、 1回目で燃え残りが発生したものを Xで表示した。
[0160] [表 1]
Figure imgf000030_0001
:式(1 )に開口率を代入して算出した触媒の担持量の下限値 (g/L)
※ :式 (2)に開口率を代入して算出した触媒の担持量の上限値 (g/L)
[0161] [表 2]
4016442
Figure imgf000031_0001
«1 :式(1)【:開口率を代入して算出した触媒の担持量の下限値 (g/じ
¾ί2:式(2)に開口率を代入して算出した触媒の担持量の上限値 (g/L)
[0162] [表 3]
Figure imgf000031_0002
«1 :式(1)i:開口率を代入して算出した触媒の担持量の下限値 (g/L)
ί¾2:式(2) 開口率を代入して算出した触媒の担持量の上限値 (g/L)
[0163] 表 1一 3に示した結果より明らかなように、実施例 1一 3、実施例 5— 7、実施例 9一 11 、実施例 13— 15、実施例 17— 19、実施例 21— 23、実施例 25— 27、実施例 29— 31、実施例 33— 35、実施例 37— 39、実施例 41一 43及び実施例 45— 47に係るハ 二カム構造体は、セラミックブロックの開口率に対する白金の担持量力 上記式(1) 及び式(2)の関係を満たすものであり、パティキュレートの捕集と再生処理とを 20回 繰り返してもパティキュレートの燃え残りが殆ど観察されず、非常に再生率に優れた ハ-カム構造体であった。
[0164] また、実施例 4、実施例 8、実施例 12、実施例 16、実施例 20、実施例 24、実施例 28 、実施例 32、実施例 36、実施例 40、実施例 44及び実施例 48に係るハ-カム構造 体は、セラミックブロックの開口率に対する白金の担持量力 上記式(1)の関係は満 たすものの、上記式(2)の関係は満たしておらず、パティキュレートの捕集と再生処 理とを繰り返し 20回行ったところでパティキュレートの燃え残りが観察され、再生率が やや劣るものであった。
[0165] 一方、比較例 1一 12に係るハ-カム構造体は、セラミックブロックの開口率に対する 白金の担持量が、上記式(1)の関係を満たしておらず、 1回目のパティキュレートの 捕集と再生処理でパティキュレートの燃え残りが観察され、その再生率が非常に低い ものであった。
図面の簡単な説明
[0166] [図 1]本発明の排気ガス浄ィ匕用フィルタの一例を模式的に示した斜視図である。
[図 2] (a)は、図 1に示した排気ガス浄ィ匕用ハ-カム構造体を構成する多孔質セラミツ ク部材の一例を模式的に示した斜視図であり、(b)は、(a)に示した多孔質セラミック 部材の A-A線断面図である。
[図 3] (a)は、本発明の排気ガス浄化用ハ-カム構造体の別の一例を模式的に示し た斜視図であり、(b)は、(a)に示したハニカム構造体の B— B線断面図である。
[図 4]本発明の排気ガス浄ィ匕用ハ-カム構造体におけるセラミックブロックの開口率 aと、触媒の担持量との関係を示したグラフである。
[図 5]本発明の本発明の排気ガス浄ィ匕用ハ-カム構造体を用いた排気ガス浄ィ匕装置 の一例を模式的に示した断面図である。
[図 6]従来の排気ガス浄ィ匕システムにおいて使用される触媒担体の一例を模式的に 示した断面斜視図である。 [図 7]従来の排気ガス浄ィ匕用ハニカム構造体の一例を模式的に示した断面斜視図で ある。
符号の説明
10、 30 ハニカム構造体
13、 14 シール材層
15、 35 セラミックブロック
20 多孔質セラミック部材
21、 31 貫通孔
22、 32 封止材
23 隔壁 (壁部)

Claims

請求の範囲
[1] 多数の貫通孔が隔壁を隔てて長手方向に並設され、これらの貫通孔のいずれか一 方の端部が封止されてなる柱状の多孔質セラミック部材が、 1又は 2以上集合してな るハ-カム構造体であって、
前記多孔質セラミック部材は、セラミック粒子とシリコンとからなる複合体であるとともに 、前記壁部には、触媒が担持されており、
前記ハ-カム構造体の開口率 α (%)と前記触媒の担持量 |8 (gZL)とが、下記式(1
)の関係を有することを特徴とするハニカム構造体。
9. 8-0. 125 X α≤ β - " ( 1)
[2] 前記ハニカム構造体の開口率 α (%)と触媒の担持量 |8 (gZL)とが、下記式 (2)の 関係を有する請求項 1に記載のハニカム構造体。
Figure imgf000034_0001
[3] 前記セラミック構造体は、多数の貫通孔が隔壁を隔てて長手方向に並設され、これら の貫通孔のいずれか一方の端部が封止されてなる柱状の多孔質セラミック部材が、 シール材層を介して複数個結束されたものである請求項 1又は 2に記載のハ-カム 構造体。
[4] 前記複合体は、セラミック粒子がシリコンを介して結合された多孔質セラミックである 請求項 1一 3のいずれかに記載のハ-カム構造体。
[5] 前記セラミック粒子は、炭化珪素である請求項 1一 4のいずれかに記載のハ-カム構 造体。
[6] 排気ガス浄ィ匕用フィルタとして用いられる請求項 1一 5のいずれかに記載のハ-カム 構造体。
PCT/JP2004/016442 2003-11-07 2004-11-05 ハニカム構造体 WO2005044422A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005515321A JPWO2005044422A1 (ja) 2003-11-07 2004-11-05 ハニカム構造体
EP04818205A EP1649917A4 (en) 2003-11-07 2004-11-05 BODY WITH HONEYCOMB STRUCTURE
US11/368,401 US7541006B2 (en) 2003-11-07 2006-03-07 Honeycomb structured body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-378708 2003-11-07
JP2003378708 2003-11-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/368,401 Continuation US7541006B2 (en) 2003-11-07 2006-03-07 Honeycomb structured body

Publications (1)

Publication Number Publication Date
WO2005044422A1 true WO2005044422A1 (ja) 2005-05-19

Family

ID=34567190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016442 WO2005044422A1 (ja) 2003-11-07 2004-11-05 ハニカム構造体

Country Status (4)

Country Link
US (1) US7541006B2 (ja)
EP (1) EP1649917A4 (ja)
JP (1) JPWO2005044422A1 (ja)
WO (1) WO2005044422A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007058006A1 (ja) * 2005-11-18 2009-04-30 イビデン株式会社 ハニカム構造体
JP2009521303A (ja) * 2005-12-24 2009-06-04 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト セラミックハニカム体を触媒により被覆する方法
US7611764B2 (en) 2003-06-23 2009-11-03 Ibiden Co., Ltd. Honeycomb structure

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4437085B2 (ja) * 2002-10-07 2010-03-24 イビデン株式会社 ハニカム構造体
US20060051556A1 (en) * 2003-09-12 2006-03-09 Ibiden Co., Ltd. Sintered ceramic compact and ceramic filter
JP5142529B2 (ja) 2004-09-30 2013-02-13 イビデン株式会社 ハニカム構造体
DE102007012928B4 (de) * 2007-03-19 2009-09-03 Umicore Ag & Co. Kg Verfahren zur Einbringung einer katalytischen Beschichtung in die Poren eines keramischen Durchfluß-Wabenkörpers
JP2009219971A (ja) * 2007-03-20 2009-10-01 Denso Corp セラミックハニカム構造体
EP3536919A1 (en) * 2008-02-05 2019-09-11 BASF Corporation Gasoline engine emissions treatment systems having particulate traps
US8071504B2 (en) 2008-12-19 2011-12-06 Caterpillar Inc. Exhaust system having a gold-platinum group metal catalyst
US8815189B2 (en) 2010-04-19 2014-08-26 Basf Corporation Gasoline engine emissions treatment systems having particulate filters
US9683474B2 (en) 2013-08-30 2017-06-20 Dürr Systems Inc. Block channel geometries and arrangements of thermal oxidizers
JP2022142543A (ja) * 2021-03-16 2022-09-30 日本碍子株式会社 ハニカム構造体及び電気加熱式担体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568892A (ja) 1991-09-13 1993-03-23 Mazda Motor Corp 排気ガス浄化用触媒の製造方法
JPH11179158A (ja) * 1997-10-15 1999-07-06 Ngk Insulators Ltd 小細孔多孔体を含む自動車排ガス浄化用の吸着材及び吸着体、これを用いた排ガス浄化システム及び排ガス浄化方法
WO2000001463A1 (en) 1998-07-07 2000-01-13 Silentor Notox A/S Diesel exhaust gas filter
JP2001137714A (ja) 1999-11-16 2001-05-22 Ibiden Co Ltd 触媒およびその製造方法
JP2002253916A (ja) * 2001-03-01 2002-09-10 Ngk Insulators Ltd ハニカムフィルター、及びその製造方法
WO2002096827A1 (fr) 2001-05-31 2002-12-05 Ibiden Co., Ltd. Corps fritte ceramique poreux et procede permettant sa production, et filtre a gasoil particulaire
EP1277714A1 (en) 2000-04-14 2003-01-22 Ngk Insulators, Ltd. Honeycomb structure and method for its manufacture
JP2004019498A (ja) * 2002-06-13 2004-01-22 Toyota Motor Corp 排ガス浄化フィルタ触媒
JP2004076717A (ja) * 2002-06-17 2004-03-11 Toyota Motor Corp 排ガス浄化フィルタと排ガス浄化用触媒及びその製造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417908A (en) 1982-02-22 1983-11-29 Corning Glass Works Honeycomb filter and method of making it
US4416676A (en) 1982-02-22 1983-11-22 Corning Glass Works Honeycomb filter and method of making it
JP3113662B2 (ja) * 1990-02-26 2000-12-04 株式会社日本触媒 ディーゼルエンジン排ガス浄化用触媒体
JP3434533B2 (ja) * 1993-04-02 2003-08-11 水澤化学工業株式会社 メソポアを有するハニカム状成形体及びその製法
WO1997025203A1 (fr) * 1994-07-14 1997-07-17 Ibiden Co., Ltd. Structure ceramique
US5930994A (en) 1996-07-02 1999-08-03 Ibiden Co., Ltd. Reverse cleaning regeneration type exhaust emission control device and method of regenerating the same
JP2000167329A (ja) 1998-09-30 2000-06-20 Ibiden Co Ltd 排気ガス浄化装置の再生システム
JP2002530175A (ja) 1998-11-20 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コードレス走査ヘッドの充電器を備える超音波診断イメージングシステム
JP4642955B2 (ja) 1999-06-23 2011-03-02 イビデン株式会社 触媒担体およびその製造方法
DE20023989U1 (de) 1999-09-29 2008-09-18 IBIDEN CO., LTD., Ogaki-shi Keramische Filteranordnung
JP2001329830A (ja) 2000-03-15 2001-11-30 Ibiden Co Ltd 排気ガス浄化フィルタの再生装置及びフィルタ再生方法、排気ガス浄化フィルタの再生プログラム及びそのプログラムを格納する記録媒体
JP2002070531A (ja) 2000-08-24 2002-03-08 Ibiden Co Ltd 排気ガス浄化装置、排気ガス浄化装置のケーシング構造
KR100507048B1 (ko) 2001-03-22 2005-08-05 이비덴 가부시키가이샤 배기가스 정화장치
EP1479882B2 (en) 2002-02-05 2012-08-22 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination
DE60319756T3 (de) 2002-02-05 2014-04-17 Ibiden Co., Ltd. Wabenkörperfilter zur Abgasreinigung, Kleber, Beschichtungsmaterial und Verfahren zur Herstellung eines solchen Wabenfilterkörpers
DE60318937T3 (de) 2002-03-04 2013-10-10 Ibiden Co., Ltd. Verwendung eines wabenfilters zur abgasreinigung
US20050169819A1 (en) 2002-03-22 2005-08-04 Ibiden Co., Ltd Honeycomb filter for purifying exhaust gas
US20050169818A1 (en) 2002-03-25 2005-08-04 Ibiden Co., Ltd. Filter for exhaust gas decontamination
EP1829595A1 (en) 2002-03-29 2007-09-05 Ibiden Co., Ltd. Ceramic filter and exhaust gas decontamination unit
EP1495790A4 (en) 2002-04-09 2005-01-26 Ibiden Co Ltd HONEYCOMB FILTER FOR CLARIFYING EXHAUST GAS
EP1493904B1 (en) 2002-04-10 2016-09-07 Ibiden Co., Ltd. Honeycomb filter for clarifying exhaust gas
EP1500799B1 (en) 2002-04-11 2007-10-24 Ibiden Co., Ltd. Honeycomb filter for clarifying exhaust gas
US7316722B2 (en) 2002-09-13 2008-01-08 Ibiden Co., Ltd. Honeycomb structure
WO2004024293A1 (ja) 2002-09-13 2004-03-25 Ibiden Co., Ltd. ハニカム構造体
JP4437084B2 (ja) 2002-10-07 2010-03-24 イビデン株式会社 ハニカム構造体
JP4437085B2 (ja) 2002-10-07 2010-03-24 イビデン株式会社 ハニカム構造体
EP1790623B1 (en) 2003-11-12 2009-05-13 Ibiden Co., Ltd. Method of manufacturing ceramic structure
JPWO2005064128A1 (ja) 2003-12-25 2007-07-19 イビデン株式会社 排気ガス浄化装置および排気ガス浄化装置の再生方法
US7387829B2 (en) 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
EP1623750B1 (en) 2004-04-05 2017-12-13 Ibiden Co., Ltd. Honeycomb structure and exhaust emission control device
WO2005108328A1 (ja) 2004-05-06 2005-11-17 Ibiden Co., Ltd. ハニカム構造体及びその製造方法
ES1060669Y (es) * 2005-06-27 2006-02-01 Patent 2000 S L Plancha de asar portatil

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568892A (ja) 1991-09-13 1993-03-23 Mazda Motor Corp 排気ガス浄化用触媒の製造方法
JPH11179158A (ja) * 1997-10-15 1999-07-06 Ngk Insulators Ltd 小細孔多孔体を含む自動車排ガス浄化用の吸着材及び吸着体、これを用いた排ガス浄化システム及び排ガス浄化方法
WO2000001463A1 (en) 1998-07-07 2000-01-13 Silentor Notox A/S Diesel exhaust gas filter
JP2001137714A (ja) 1999-11-16 2001-05-22 Ibiden Co Ltd 触媒およびその製造方法
EP1277714A1 (en) 2000-04-14 2003-01-22 Ngk Insulators, Ltd. Honeycomb structure and method for its manufacture
JP2002253916A (ja) * 2001-03-01 2002-09-10 Ngk Insulators Ltd ハニカムフィルター、及びその製造方法
WO2002096827A1 (fr) 2001-05-31 2002-12-05 Ibiden Co., Ltd. Corps fritte ceramique poreux et procede permettant sa production, et filtre a gasoil particulaire
EP1403231A1 (en) 2001-05-31 2004-03-31 Ibiden Co., Ltd. Porous ceramic sintered body and method of producing the same, and diesel particulate filter
JP2004019498A (ja) * 2002-06-13 2004-01-22 Toyota Motor Corp 排ガス浄化フィルタ触媒
JP2004076717A (ja) * 2002-06-17 2004-03-11 Toyota Motor Corp 排ガス浄化フィルタと排ガス浄化用触媒及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1649917A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7611764B2 (en) 2003-06-23 2009-11-03 Ibiden Co., Ltd. Honeycomb structure
JPWO2007058006A1 (ja) * 2005-11-18 2009-04-30 イビデン株式会社 ハニカム構造体
JP2009521303A (ja) * 2005-12-24 2009-06-04 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト セラミックハニカム体を触媒により被覆する方法
US8278236B2 (en) * 2005-12-24 2012-10-02 Umicore Ag & Co. Kg Method for catalytically coating ceramic honeycomb bodies
US9278347B2 (en) 2005-12-24 2016-03-08 Umicore Ag & Co. Kg Catalytically coated ceramic honeycomb bodies

Also Published As

Publication number Publication date
EP1649917A1 (en) 2006-04-26
JPWO2005044422A1 (ja) 2007-11-29
US7541006B2 (en) 2009-06-02
EP1649917A4 (en) 2006-07-05
US20060217262A1 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4812316B2 (ja) ハニカム構造体
JP5142529B2 (ja) ハニカム構造体
US7524350B2 (en) Ceramic honeycomb structural body
JP5142532B2 (ja) ハニカム構造体
KR100831836B1 (ko) 벌집형 유닛 및 벌집형 구조체
US7541006B2 (en) Honeycomb structured body
JP4386830B2 (ja) 排気ガス浄化用ハニカムフィルタ
KR100680078B1 (ko) 벌집형 구조체
KR100632161B1 (ko) 세라믹 하니컴 구조체
EP1489277A1 (en) Honeycomb filter for purifying exhaust gases
WO2006035823A1 (ja) ハニカム構造体
WO2002096827A1 (fr) Corps fritte ceramique poreux et procede permettant sa production, et filtre a gasoil particulaire
WO2006087932A1 (ja) ハニカム構造体
WO2009101683A1 (ja) ハニカム構造体の製造方法
WO2007058007A1 (ja) ハニカム構造体
WO2005108328A1 (ja) ハニカム構造体及びその製造方法
WO2004031101A1 (ja) ハニカム構造体
JPWO2008105082A1 (ja) ハニカム構造体
JP2004167482A (ja) 排気ガス浄化用ハニカムフィルタおよびその製造方法
JP2009190020A (ja) ハニカム構造体
WO2005044425A1 (ja) 排気ガス浄化用ハニカムフィルタおよびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004818205

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005515321

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11368401

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004818205

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11368401

Country of ref document: US