WO2001069743A1 - Commutateur isole au gaz - Google Patents

Commutateur isole au gaz Download PDF

Info

Publication number
WO2001069743A1
WO2001069743A1 PCT/JP2001/001393 JP0101393W WO0169743A1 WO 2001069743 A1 WO2001069743 A1 WO 2001069743A1 JP 0101393 W JP0101393 W JP 0101393W WO 0169743 A1 WO0169743 A1 WO 0169743A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
bus
cable
main
main buses
Prior art date
Application number
PCT/JP2001/001393
Other languages
English (en)
French (fr)
Inventor
Masaki Hachida
Hirohiko Yatsuzuka
Kenji Annou
Tadasuke Yamamoto
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2001567097A priority Critical patent/JP3945250B2/ja
Publication of WO2001069743A1 publication Critical patent/WO2001069743A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B5/00Non-enclosed substations; Substations with enclosed and non-enclosed equipment
    • H02B5/06Non-enclosed substations; Substations with enclosed and non-enclosed equipment gas-insulated
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear

Definitions

  • the present invention relates to a gas-insulated switchgear installed in an electric substation such as a substation or a switchgear.
  • high voltage is taken in from outside, or high voltage is supplied to outside.
  • high voltage is handled not only from one overhead line, but from multiple overhead lines.
  • gas-insulated switchgears are used to collect and handle high voltages from multiple overhead lines on the bus, and to disconnect the line in the event of a lightning strike.
  • the high voltage of a plurality of overhead wires is first received by a pushing made of high insulating material.
  • the bushing will be insulated with air between the bushings, so install it sufficiently far away.
  • the high voltage received by the pushing is led to the main bus through the service line, and two buses are used for redundancy. To the main bus. Disclosure of the invention
  • the bus is arranged perpendicularly to the arrangement of the pushing, it is conceivable to install a circuit breaker between the pushing lead wire and the bus.
  • the bus and the bus are designed to be narrow.
  • the pushing connection line is connected to the bus section line, but if the spacing between the bus lines is set narrow, for example, the breaker of the pushing connection line will be placed outside the bus, and the gas-insulated switchgear The site area has become larger.
  • the bus-bar dividing line is located at one end of the two main buses, so if a bushing is installed so as to face the one end, the two main buses and the bushing Is placed on the opposite side of the bus line from the bushing side.
  • the connection distance between the lines connecting the two main buses and the pushing is increased, and the economics of the gas insulated switchgear is reduced.
  • a representative object of the present invention is to provide a gas insulated switchgear which can simplify the configuration of a cable tunnel and improve the economical efficiency of the device.
  • the present invention provides first and second main buses arranged in parallel with each other, and first and second main buses each electrically connected to one end of the first and second main buses. And second cable exit lines, first and second pushing exit lines respectively electrically connected to the other ends of the first and second main buses, and a cable exit line side from the pushing exit line.
  • a bus segment line that electrically connects the first and second main buses with each other, at least one of the pushing outgoing lines is disposed between the main buses, and a circuit breaker unit that cuts off power to the main bus line;
  • the circuit breaker has a connection unit that is arranged to cross one of the first and second main buses and guides electric power to the unit.
  • a pushing outgoing line is connected to at least two main buses which are arranged substantially perpendicular to the arrangement of the drop-in towers and are arranged substantially parallel to each other and to the end of the drop-in tower on each side.
  • the two main buses and the cable headers connected to them were arranged in the space formed between the two main buses.
  • the cable head unit of the cable lead-out line connected to one side of the main bus and the cable head unit of the cable lead-out line connected to the other side of the main bus are arranged to face each other. . Or line up along the main bus
  • a breaker unit for the bus section line connecting the two main buses and a small breaker unit for the pushing out line can be arranged.
  • the cable units of the cable lead-out line are arranged in a line along the main bus, they are connected to the breaker unit of the bushing lead-out line connected to one side of the main bus and to the other side of the main bus. Either one of the breaker unit of the bushing lead-out line will be placed.
  • the cable exit line unit will be located on the opposite side of the incoming tower from the bus section line.
  • FIG. 1 is a plan view showing an arrangement of a gas insulated switchgear according to a first embodiment of the present invention.
  • FIG. 2 is a sectional view taken along the line II-II of FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG. 1 and shows the configuration of the pushing out line.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • FIG. 5 is a single connection diagram showing a circuit configuration of a gas insulated switchgear according to a first embodiment of the present invention
  • FIG. 6 is a single connection diagram showing a circuit configuration of a second embodiment of the present invention.
  • FIG. 7 is a partial plan view showing an arrangement configuration of a gas-insulated switchgear as an example.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII of FIG.
  • FIG. 8 is a cross-sectional view taken along the line VIII--VIII of FIG. 6, and shows the configuration of the pushing out line
  • FIG. 9 is a diagram of FIG.
  • FIG. 10 is a cross-sectional view taken along the line IX-IX, showing the configuration of the cable lead-out line.
  • FIG. 10 is a cross-sectional view taken along the line X—X of FIG. 6, showing the configuration of the cable lead-out line.
  • FIG. 5 shows a circuit configuration of the gas insulated switchgear of this embodiment.
  • 1 and 2 are main buses, which are connected via a bus division line 3.
  • the bus section line 3 is a circuit breaker 3a, a current transformer 3b connected to the main bus 1 side, a ground switch 3d, a disconnect switch 3f, a ground switch 3h and a transformer 3j, and the main bus It has a current transformer 3c, a grounding switch 3e, a disconnecting switch 3g, a grounding switch 3i and a transformer 3k connected to the two sides.
  • a pushing outgoing line 4 is connected between the main bus 1 and the pushing 10, and a pushing outgoing line 5 is connected between the main bus 2 and the pushing 11.
  • the push-out line 4 is a circuit breaker 4a, a current transformer 4b connected to the main bus 1 side, a grounding switch 4d and a disconnector 4f, and a current transformer 4 connected to the pushing 10 side thereof.
  • c grounding switch 4e, disconnector 4g, disconnector with grounding device 4h, lightning arrester 4i, and transformer 4j.
  • the push-out line 5 is a circuit breaker 5a, a current transformer 5b connected to the main bus 2 side, a grounding switch 5d and a disconnector 5f, and a current transformer 5 connected to the pushing 20 side thereof.
  • c ground switch 5e, disconnector 5g, disconnector with grounding device 5h, lightning arrester 5i, and transformer 5j.
  • the cable exit line 6 is connected to the main bus 1.
  • the cable exit line 7 is connected to the main bus 2.
  • the cable lead-out line 6 has a circuit breaker 6a, a current transformer 6b connected to the main bus 1 side, a grounding switch 6d, and a disconnector 6f, and a transformer connected to the opposite side of the main bus 1 side. Equipped with a current collector 6 c, grounding switch 6 e and cable head 6 g ing.
  • Cable lead-out line 7 was connected to circuit breaker 7a, current transformer 7b connected to main bus 2 side, earthing switch 7d and disconnector 7f, opposite to the main bus 2 side. It is equipped with a current transformer 7c, a grounding switch 7e, and a cable head 7g.
  • 8 and 9 are the cable extension lines to be added in the future, and are equipped with circuit breakers, current transformers, grounding switches, disconnectors, and cable heads, as with cable extension lines 6 and 7.
  • the main buses 1 and 2 are composed of bus units 30 and 40 and are arranged in parallel and opposed to each other, and are arranged perpendicular to the row of the drop towers 110.
  • the bus units 30 and 40 are composed of a tank filled with SFe (sulfur hexafluoride) gas, which is an insulating medium, and the bus conductors for three phases are collectively stored in a tank.
  • the tank is a grounded container made of metal.
  • the bus division line 3 that connects the main buses 1 and 2 consists of a circuit breaker unit 50, current transformer units 51 and 52, switchgear units 53 and 54, connection bus units 55 and 56, and a transformer.
  • the main units 57 and 58 are separated from each other in phase and arranged perpendicular to the main buses 1 and 2.
  • Each unit is configured by housing components and conductors of the bus division line 3 in a tank filled with SF 6 gas.
  • the tank is a metal grounded container o
  • the circuit breaker unit 50 includes a circuit breaker 3a and is arranged in a space formed between the main buses 1 and 2.
  • the circuit breaker unit 50 may be arranged on the opposite side of the main bus 1 from the main bus 2 side or on the opposite side of the main bus 2 from the main bus 1 side.
  • a current transformer unit 51 having a current transformer 3b is connected to the main bus 1 side of the circuit breaker unit 50.
  • a current transformer unit 52 having a current transformer 3c is connected to the main bus 2 side of the circuit breaker unit 50.
  • the breaker 3a is a vertical type, the current transformer unit 51 is connected to the lower end of the circuit breaker unit 50, and the current transformer unit 52 is connected to the upper end of the circuit breaker unit 50. Connected to.
  • the current transformer unit 51 is at the upper end,
  • the flow unit 52 may be on the lower end side.
  • a switch unit 53 having a disconnector 3 f and grounding switches 3 d and 3 h is connected to the current transformer unit 51 on the side opposite to the circuit breaker unit 50 side.
  • a switch unit 54 having a disconnector 3g and grounding switches 3e and 3i is connected.
  • the switch unit 53 is connected to the bus unit 30 via a connection bus unit 55 provided with a connection bus, and the switch unit 54 is provided via a connection bus unit 56 provided with a connection bus.
  • Line unit 40 A transformer unit 57 having a transformer 3 j is connected to the connection bus unit 55, and a transformer unit 58 having a transformer 3 k is connected to the connection bus unit 55. .
  • the push-out line 4 connecting the main bus 1 and the pusher 10 is composed of a breaker unit 60, current transformer units 61, 62 (or simply called a connection unit), and switch units 63, 64 ( Or simply referred to as a connection unit), a connection bus unit 65, a branch bus unit 66, a lightning arrester unit and a transformer unit (not shown), which are arranged at the end of the main bus 1 on the side of the drop-in tower 110. ing.
  • Each unit has a configuration in which the components and conductors of the pushing out line 4 are stored in a tank filled with SF 6 gas.
  • the tank is a metal grounded container.
  • the part consisting of the breaker unit 60, the current transformer units 61, 62, the switch units 63, 64, and the connection bus unit 65 is composed of phase separation, and is arranged vertically with respect to the main bus 1.
  • the branch bus unit 6 6 is composed of three phases at the same time, and extends in the same direction as the main bus 1, and is branched for each phase along the row of the pushing 10 near the pushing 10, and the pushing 10 10 It is connected to the.
  • the lightning arrester unit and the transformer unit not shown are connected to the pushing 10 for each phase.
  • the circuit breaker unit 60 includes a circuit breaker 4a and is disposed in a space formed between the main buses 1 and 2 so as to face a circuit breaker unit 70 of a bushing lead-out line ⁇ ⁇ described later. Have been.
  • the breaker unit 60 has a current transformer unit 61 with a current transformer 4b and a current transformer with a current transformer 4c on the main bus 1 side of the circuit breaker unit 60 of the main bus 1.
  • Unit 62 is connected.
  • the circuit breaker 4a is a vertical type
  • the current transformer unit 61 is connected to the lower end of the circuit breaker unit 60, and the current transformer unit 62 is connected to the upper end of the circuit breaker unit 60. You.
  • a switch unit 63 having a disconnector 4 f and a ground switch 4 d is connected to the current transformer unit 61 on the side opposite to the circuit breaker unit 60 side.
  • a switch unit 64 having a disconnector 4 g, a grounding switch 4 e, and a disconnector 4 h with a grounding device is connected to the side opposite to the circuit breaker unit 60 side of 62.
  • the switch unit 63 is connected to the bus unit 30.
  • the switch unit 64 is connected to the branch bus unit 66 via a connection bus unit 65 provided with a connection bus.
  • the main bus 2 is arranged at the end of the drop-in tower 110 on the side of the drop-in tower so as to face the pushing outgoing line 4.
  • Each unit is configured by housing the components and conductors of the bushing lead-out line 5 in a tank filled with SFs gas.
  • the tank is a grounded metal container.
  • the part consisting of the breaker unit 70, the current transformer units 71, 72, the switch unit 73, 74 and the connecting bus unit 75 is composed of phase separation, and is arranged vertically with respect to the main bus 2.
  • the branch bus unit 76 is composed of three phases at the same time and extends in the same direction as the main bus 2, and is branched for each phase in the vicinity of the pushing 20 along the row of the pushing 20. It is connected to the.
  • the lightning arrester unit and transformer unit not shown are connected to the pushing 20 for each phase.
  • the circuit breaker unit 70 includes a circuit breaker 5a, and is arranged in a space formed between the main buses 1 and 2 so as to face the circuit breaker unit 60 of the above-described pushing out line 6.
  • a current transformer unit 71 having a current transformer 5b and a current transformer unit ⁇ 2 having a current transformer 5c are connected to the main bus 2 side of the circuit breaker unit 70.
  • the current transformer unit 71 is connected to the lower end of the circuit breaker unit 70, and the current transformer unit 72 is connected to the upper end of the circuit breaker unit 0. Is done.
  • a switch unit 73 having a disconnector 5f and a grounding switch 5d is connected to the current transformer unit 71 on the side opposite to the circuit breaker unit 70 side.
  • a disconnector 5 g, a grounding switch 5 e, and a switch unit 74 having a disconnecting switch 5 h with a grounding device are connected. ing.
  • the switch unit 73 is connected to the bus unit 40.
  • the switch unit 74 is connected to the branch bus unit 76 via a connection bus unit 75 with a connection bus.
  • the breaker units 60 and 70 are arranged in the space formed between the main buses 1 and 2 .
  • the breaker unit 60 is connected to the main bus of the main bus 1.
  • the circuit breaker unit 70 may be arranged on the opposite side to the main bus 1 side of the main bus 2. Either one of the circuit breaker units 60, 70 may be arranged in the space formed between the main buses 1, 2.
  • the cable lead-out line 6 connected to the main bus 1 is connected to the circuit breaker unit 8, the current transformer units 81, 82, the switchgear units 83, 84, and the cable head unit 85.
  • the main bus 1 is vertically separated from the main bus 1, and is connected to the main bus 1 on the opposite side of the drop-in tower 110 from the bus section line 3.
  • Each unit is composed of a tank filled with SFe gas containing the components and conductors of the cable lead-out line 6.
  • the tank is a metal grounded container.
  • the circuit breaker unit 80 includes a circuit breaker 6a, and the main bus 1 is connected to the main bus 2 side. It is located on the opposite side.
  • a current transformer unit 81 having a current transformer 6b and a current transformer unit 82 having a current transformer 6c are connected to the main bus 1 side of the circuit breaker unit 80.
  • the circuit breaker 6a is a vertical type
  • the current transformer unit 81 is connected to the lower end of the circuit breaker unit 80
  • the current transformer unit 82 is connected to the upper end of the circuit breaker unit 80.
  • a switch unit 83 equipped with a disconnector 6 f and a grounding switch 6 d is connected, and the current transformer unit 82 ′
  • a switch unit 84 having a grounding switch 6 e is connected to the side opposite to the circuit breaker unit 80 side.
  • the switch unit 83 is connected to the bus unit 30.
  • a switch head unit 8 4 is connected to a cable head unit with a cable head 6 g:
  • the cable head unit 85 is disposed in a space formed between the main buses 1 and 2 so as to face a cable head unit 95 of a cable lead-out line 7 described later. Under the cable head unit 85, a cable tunnel 100 is formed underground. The cable passage 100 extends to a place where a transformer (not shown) is installed, where a cable for electrically connecting the transformer and the gas insulated switchgear is housed. This cable is connected to cable head 85 g of cable head 6 g.
  • the cable exit line 7 connected to the main bus 2 is phase-separated from the breaker unit 90, the current transformer units 91, 92, the switch units 93, 94, and the cable head unit 95.
  • the main bus 2 is vertically arranged with respect to the main bus 2 and is connected to a portion of the main bus 2 which faces the cable service line 6.
  • Each unit is configured by housing components and conductors of the cable lead-out line 7 in a tank filled with SF 6 gas.
  • the tank is a metal grounded container.
  • the circuit breaker unit 90 includes a circuit breaker 7a, and is arranged on the main bus 2 opposite to the main bus 1 side.
  • a current transformer 7b is connected to the main bus 2 side of the breaker unit 90.
  • a current transformer unit 91 provided with a current transformer unit 91 and a current transformer unit 92 provided with a current transformer 7c are connected.
  • the circuit breaker 7a is a vertical type, the current transformer unit 91 is connected to the lower end of the circuit breaker unit 90, and the current transformer unit 92 is connected to the upper end of the circuit breaker unit 90.
  • a switch unit 93 having a disconnector 7f and a grounding switch 7d is connected to the current transformer unit 91 on the side opposite to the circuit breaker unit 90 side.
  • a switch unit 94 having a ground switch 7e is connected to the side of the current transformer unit 92 opposite to the circuit breaker unit 90 and the switch 90 side.
  • the switch unit 93 is connected to the bus unit 40.
  • a cable head unit 95 having a cable head 7 g is connected to the switch unit 94.
  • the cable head unit 95 is disposed in a space formed between the main buses 1 and 2 so as to face a cable header 85 of a cable lead-out line 6 described later. Under the cable head unit 95, a cable tunnel 100 is formed underground. The cable passage 100 extends to a place where a transformer (not shown) is installed, where a cable for electrically connecting the transformer and the gas insulated switchgear is housed. This cable is connected to the cable head 7 g of the cable head 95.
  • Reference numerals 8 and 9 denote cable outgoing lines 8 and 9 to be added in the future, which are configured in the same manner as the cable outgoing lines 6 and 7 described above and are connected to the main buses 1 and 2.
  • the cable head unit 85 of the cable lead-out line 6 and the cable head unit 95 of the cable lead-out line 7 are arranged in the space formed between the main buses 1 and 2, so that the cable head unit is formed.
  • the cable tunnel 100 formed in the underground area directly below 85, 95 can be composed of one main road, and the configuration of the cable tunnel 100 can be simplified. Therefore, it is easier to plan the route for the cable tunnel 100, and the burden on the power company for the construction is reduced.
  • the pushing out is performed at the end of the main bus 1 on the side of the drop-in tower 110.
  • the line 4 is connected, and the pushing outgoing line 5 is connected to the end of the main bus 2 on the side of the drop-in tower 110, so that the length of the branch buses of the pushing outgoing lines 4 and 5 can be minimized. Therefore, the cost of the gas insulated switchgear can be reduced, and the economic efficiency can be improved.
  • the breaker unit 50 of the bus segment line 3 is arranged in the space formed between the main buses 1 and 2, the length of the connection bus constituting the bus segment line 3 is The circuit breaker unit 50 can be shortened compared to the case where the circuit breaker unit 50 is arranged on the opposite side of the main bus 2 on the main bus 2 side or on the opposite side of the main bus 2 on the main bus 1 side. Therefore, the cost of the gas insulated switchgear can be reduced, and the economic efficiency can be improved.
  • the circuit breaker units 60 and 70 of the pushing outgoing lines 4 and 5 are arranged in the space formed between the main buses 1 and 2, so that the pushing outgoing lines 4 and 5 are configured.
  • the length of the connection bus can be reduced. Therefore, the cost of the gas insulated switchgear can be reduced, and the economic efficiency can be improved.
  • the cable draw-out circuit 6 is connected to the opposite side of the drop-in tower 110 side than the bus-separated line 3 of the main bus 1, and the cable is drawn in from the bus-separated line 3 of the main bus 2.
  • the cable exit line 7 was connected to the opposite side of the tower 110 side, so if additional cable exit lines will be added in the future, the cable exit line 7 on the main buses 1 and 2 will be on the opposite side. This can be done without disassembling the units that make up other lines, such as adding bus units and cable exit lines. Therefore, workability at the time of adding a cable lead-out line can be improved.
  • the gas-insulated switchgear of this embodiment is an improved example of the first embodiment.
  • the gas-insulated switchgear is arranged in opposition.
  • Cable outlet lines 4 and 5 are arranged alternately along the main buses 1 and 2. For this reason, the cable head unit 95 of the cable outlet line 5 and the cable head unit 95 of the cable outlet line 5 are connected to the main buses 1 and 2 in the space formed between the main buses 1 and 2. They are arranged side by side in a row.
  • the interval between the main buses 1 and 2 is reduced, and the breaker unit 60 of the pushing outgoing line 4 and the circuit breaker unit ⁇ 0 of the pushing outgoing line 5 are opposed to each other : between the main buses 1 and 2. Since the circuit breaker unit 60 of the pushing out line 4 cannot be located in the space formed in the main bus 1, the circuit breaker unit 70 of the busing out line 5 is located on the side opposite to the main bus 2 side of the main bus 1. It is located in the space formed between main buses 1 and 2.
  • the circuit breaker unit 60 may be arranged in the space formed between the main buses 1 and 2, and the circuit breaker unit 70 may be arranged on the main bus 2 opposite to the main bus 1 side.
  • the installation base of the other line is formed in the main bus 2 portion facing the cable lead-out line 4 and the main bus 1 portion facing the cable pull-out line 5, opening and closing of the bus division line 3 is performed.
  • the earthing switch 3 i is separated from the unit 54, and is newly arranged as a switch unit 130 on the main bus 2 opposite to the cable lead-out line 4 and connected to the bus unit 40.
  • a transformer unit 58 is connected to the switch unit 130.
  • the grounding switch 3h is separated from the switch unit 53 of the bus section line 3, and a new switch unit 120 is newly placed on the main bus 1 facing the cable lead-out line 5 to form the bus unit 30.
  • a transformer unit 57 is connected to the switch unit 120.
  • the other configuration is substantially the same as the previous example, and the description thereof is omitted.
  • the cable heads 85 of the cable lead-out line 6 and the cable heads 95 of the cable lead-out line 7 are arranged in a line along the main buses 1 and 2. Since they are juxtaposed, the distance between the main buses 1 and 2 can be narrowed compared to the previous example, and the structure of the cable tunnel 100 can be simplified. Therefore, the burden on the electric power company during construction is further reduced. Industrial applicability
  • the two main buses and the cable head unit of the cable connection line connected to the two main buses are arranged in the space formed between the two main buses, so that the underground portion directly below the Cape Le head unity is provided.
  • a single cableway can be used to construct the cableway, and the configuration of the cableway can be simplified.
  • the bushing outgoing line is connected to the end of the two main buses on the drop-in tower, the connection distance between the bushing outgoing line connecting the two main buses and the bushing is reduced. Therefore, it is possible to provide a gas-insulated switchgear that can achieve both simplification of the configuration of the cable tunnel and improvement in the economical efficiency of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Gas-Insulated Switchgears (AREA)

Description

明 細 書
ガス絶縁開閉装置 技術分野
本発明は、 変電所や開閉所などの電気所に設置されるガス絶縁開閉装置に関す る 背景技術
変電所等では、 外部から高電圧を取り込む、 或いは、 高電圧を外部に供給する。 しかも、 1の架線箇所のみではなく、 複数の架線から高電圧を扱うようにしてい る。 そのため、 ガス絶縁開閉装置を用いて、 複数の架線からの高電圧を母線に集 約して扱うと共に、 落雷等があつたときに回線を切り離すようにしている。
複数の架線の高電圧は、 まず、高絶縁材で構成されるプッシングで受けている。 ブッシングとブッシングの間は空気で絶縁をとることとなるので、 充分に離して 設置する。 プッシングで受けた高電圧は引込回線を介して主母線に導いており、 また、 冗長系のため母線を 2本とつているが、 プッシングとプッシングの間が離 れているため、 外側から 2本の主母線に接続することとなる。 発明の開示
プッシングの並びに対して母線を垂直に配置した場合、 プッシング引出線と母 線の間に遮断器を設けることが考えられる。 その場合、 一般には、 母線と母線を 狭く設計する。 このように、 プッシング接続回線は母線区分回線に接続されるが、 母線の間隔が狭く設定されると、 例えば、 プッシング接続回線の遮断器は母線の 外側に配置されることとなり、 ガス絶縁開閉装置の敷地面積が大きくなつてしま ラ。
なお、 例えば特開昭 63— 69406 号公報に記載される技術では、 平行に対向配置 され、 母線区分回線によって接続された二つの主母線を備え、 二つの主母線間に 形成された空間には送電線回線及び変圧器回線のケーブルへッド, 母線区分回線 の補助母線などが配置されている。 しかしながら、 母線区分回線の外側に各回線 の遮断器が配置されており、 主母線間に形成された空間は考慮されていない。 一方、 電気所に設置された変圧器とガス絶縁開閉装置との間の地下部分には、 変圧器とガス絶縁開閉装置とを電気的に接続するケーブルを収納したケーブル洞 道が形成されている。 ケーブル洞道は、 電気所に設置されるガス絶縁開閉装置の 配置構成に基づいてルート計画され施工されるものであり、 電力会社がこれを行 う。 ガス絶縁開閉装置の配置構成によってはケーブル洞道の構成が複雑化し、.施 ェにおける電力会社側の負担が大きくなる場合がある。 従って、 ケーブル洞道の 構成を簡素化できるガス絶縁開閉装置の提供が好ましい。
また、 従来のガス絶縁開閉装置は、 母線区分回線が二つの主母線の一端部に配 置されているので、 その一端部と対向するようにブシングが設置された場合、 二 つの主母線とブッシングを接続する回線が母線区分回線のブッシング側とは反対 側に配置される。 これにより、二つの主母線とプッシングを接続する回線の接続 距離が大きくなり、 ガス絶縁開閉装置の経済性が低下する。
本発明の代表的な目的は、 ケーブル洞道の構成の簡素化と装置の経済性の向上 を両立できるガス絶縁開閉装置の提供にある。
上記目的を達成するため、 本発明は、 互いに並列配置された第 1及び第 2の主 母線と、 第 1及び第 2の主母線の一方端側にそれそれ電気的に接続される第 1及 び第 2ケーブル引出回線と、 第 1及び第 2の主母線の他方端側にそれそれ電気的 に接続される第 1及び第 2のプッシング引出回線と、 プッシング引出回線よりケ —ブル引出回線側で第 1及び第 2の主母線間を電気的に接続する母線区分回線と、 プッシング引出回線の少なくとも 1は、 主母線の間に配置され主母線への電力を 遮断する遮断器ユニットと、 第 1或いは第 2の主母線の一方と交差するように配 置されて遮断器にュニットへ電力を導く接続ュニットを有するように構成した。 さらに、 本発明の基本的な特徴は、 引込鉄塔の並びに対してほぼ垂直に配置さ れ、 ほぼ平行に対向配置された少なくとも二つの主母線それそれの引込鉄塔側端 部にプッシング引出回線を接続し、 二つの主母線それそれに接続されたケーブル 引出回線のケーブルへッドュニットを二つの主母線間に形成された空間に配置し たことにある。
このケーブルヘッドユニットは、 主母線の一方側に接続されたケーブル引出回 線のケーブルへッドュニッ卜と主母線の他方側に接続されたケーブル引出回線の ケ一ブルへッドュニットが対向して配置される。 或いは主母線に沿って一列に並 ' eれる o
また、 二つの主母線間に形成された空間には、 二つの主母線間を接続する母線 区分回線の遮断器ュニット, プッシング引出回線の遮断器ュニッ小を配置するこ ともできる。 尚、 ケーブル引出回線のケーブルユニットが主母線に沿って一列に 並設される場合は、 主母線の一方側に接続されたブッシング引出回線の遮断器ュ ニットと主母線の他方側に接続されたブッシング引出回線の遮断器ュニッ:トのど ちらか一方が配置される。
さらにまた、 ケーブル引出回線ュニットは母線区分回線よりも引込鉄塔側とは 反対側に配置される。 図面の簡単な説明
第 1図は、 本発明の第 1実施例であるガス絶縁開閉装置の配置構成を示す平面 図であり、 第 2図は図 1の II— I I矢視断面図であり、 母線区分回線の構成を示し ており、 第 3図は図 1の ΙΠ— I I I矢視断面図であり、 プッシング引出回線の構成 を示しており、 第 4図は図 1の IV— IV矢視断面図であり、 ケーブル引出回線の構 成を示しており、 第 5図は、 本発明の第 1実施例であるガス絶縁開閉装置の回路 構成を示す単結線図であり、 第 6図は、 本発明の第 2実施例であるガス絶縁開閉 装置の配置構成を示す部分平面図であり、 第 7図は第 6図の VII— VI I矢視断面図 であり、 母線区分回線の構成を示しており、 第 8図は第 6図の VIII— VIII矢視断 面図であり、 プッシング引出回線の構成を示しており、 第 9図は第 6図の IX— IX 矢視断面図であり、 ケーブル引出回線の構成を示しており、 第 1 0図は第 6図の X— X矢視断面図であり、 ケーブル引出回線の構成を示す。
【発明の実施の形態】
(実施例 1 )
本発明の第 1実施例を第 1図〜第 5図に基づき説明する。 図 5は本実施例のガ ス絶縁開閉装置の回路構成を示す。 図面において 1 , 2は主母線であり これら は母線区分回線 3を介して接続されている。 母線区分回線 3は遮断器 3 a、 この 主母線 1側に接続された変流器 3 b , 接地開閉器 3 d , 断路器 3 f , 接地開閉器 3 h及び変成器 3 j、 その主母線 2側に接続された変流器 3 c,接地開閉器 3 e , 断路器 3 g , 接地開閉器 3 i及び変成器 3 kを備えている。
主母線 1とプッシング 1 0の間にはプッシング引出回線 4が接続され、 主母線 2とプッシング 1 1の間にはプッシング引出回線 5が接続されている。 プッシン グ引出回線 4は遮断器 4 a、 この主母線 1側に接続された変流器 4 b, 接地開閉 器 4 d及び断路器 4 f、 そのプッシング 1 0側に接続された変流器 4 c, 接地開 閉器 4 e, 断路器 4 g、 接地装置付断路器 4 h、 避雷器 4 i及び変成器 4 jを備 えている。 プッシング引出回線 5は遮断器 5 a、 この主母線 2側に接続された備 えた変流器 5 b, 接地開閉器 5 d及び断路器 5 f、 そのプッシング 2 0側に接続 され変流器 5 c, 接地開閉器 5 e, 断路器 5 g , 接地装置付断路器 5 h, 避雷器 5 i及び変成器 5 jを備えている。
主母線 1にはケーブル引出回線 6が接続されている。 主母線 2にはケーブル引 出回線 7が接続されている。 ケーブル引出回線 6は遮断器 6 a、 この主母線 1側 に接続された変流器 6 b , 接地開閉器 6 d及び断路器 6 f、 その主母線 1側とは 反対側に接続された変流器 6 c , 接地開閉器 6 e及びケーブルへッド 6 gを備え ている。 ケーブル引出回線 7は遮断器 7 a、 この主母線 2側に接続された変流器 7 b , 接地開閉器 7 d及び断路器 7 f、 その反主母線 2側とは反対側に接続され た変流器 7 c, 接地開閉器 7 e及びケーブルへッド 7 gを備えている。
8 , 9 (点線部分) は、 将来増設されるケーブル引出回線であり、 ケーブル引 出回線 6, 7と同様に遮断器, 変流器, 接地開閉器, 断路器及びケーブルヘッド を備えている。
第 1図〜第 4図は第 5図の回路構成が適用された実際のガス絶縁開閉装置の装 置構成を示す。 主母線 1, 2は母線ユニット 3 0 , 4 0から構成されると共に、 .平行に対向配置され、かつ引込鉄塔 1 1 0の並びに対して垂直に配置されている。 母線ュニッ卜 3 0, 4 0は、絶縁媒体である S Fe (六弗化硫黄)ガスが封入さ : れたタンク内に母線導体が三相分一括で収納され構成されている。 タンクは金属 製の接地容器である。
主母線 1 , 2を接続する母線区分回線 3は遮断器ユニット 5 0, 変流器ュニッ ト 5 1 , 5 2, 開閉器ユニット 5 3, 5 4, 接続母線ユニット 5 5 , 5 6及び変 成器ユニット 5 7, 5 8から相分離で構成され、 主母線 1 , 2に対して垂直に配 : 置されている。各ユニットは、 S F6 ガスが封入されたタンク内に母線区分回線 3の構成機器や導体が収納され構成されている。 タンクは金属製の接地容器であ る o
遮断器ユニット 5 0は遮断器 3 aを備えると共に、 主母線 1 , 2間に形成ざれ た空間に配置されている。 尚、 遮断器ュニット 5 0は主母線 1の主母線 2側とは 反対側或いは主母線 2の主母線 1側とは反対側に配置されてもよい。 遮断器ュ二 ット 5 0の主母線 1側には、 変流器 3 bを備えた変流器ュニット 5 1が接続され ている。 遮断器ュニット 5 0の主母線 2側には、 変流器 3 cを備えた変流器ュニ ヅ ト 5 2が接続されている。 ここで、 遮断器 3 aは縦形であるので、 変流器ュニ ット 5 1は遮断器ュニット 5 0の下端側に接続され、 変流器ュニット 5 2は遮断 器ュニット 5 0の上端側に接続される。 また、 変流器ュニヅト 5 1が上端側、 変 流器ュニット 5 2が下端側であってもよい。
変流器ュニット 5 1の遮断器ュニット 5 0側とは反対側には、 断路器 3 f及び 接地開閉器 3 d, 3 hを備えた開閉器ュニット 5 3が接続されている。 変流器ュ ニット 5 2の遮断器ュニット 5 0側とは反対側には、 断路器 3 g及び接地開閉器 3 e , 3 iを備えた開閉器ュニット 5 4が接続されている。 開閉器ュニット 5 3 は、 接続母線を備えた接続母線ュニット 5 5を介して母線ユニット 3 0に接続さ れ、 開閉器ュニット 5 4は、 接続母線を備えた接続母線ュニット 5 6を介して母 線ュニット 4 0に接続されている。接続母線ュニット 5 5には、 変成器 3 jを備 えた変成器ュニヅト 5 7が接続され、 接続母線ユニット 5 5には、 変成器 3 kを 備えた変成器ユニット 5 8が接続されている。 . .
. 主母線 1とプッシング 1 0を接続するプッシング引出回線 4は遮断器ユニット 6 0, 変流器ュニット 6 1 , 6 2 (或いは単に接続ュニヅ卜と称する) , 開閉器 ユニット 6 3, 6 4 (或いは単に接続ユニットと称する) , 接続母線ユニット 6 5, 分岐母線ュニット 6 6, 図示省略した避雷器ュニット及び変成器ュニットか ら構成され、 主母線 1の引込鉄塔 1 1 0側側端部に配置されている。 各ュニット は、 S F6 ガスが封入されたタンク内にプッシング引出回線 4の構成機器や導体 が収納され構成されている。 タンクは金属製の接地容器である。
遮断器ユニット 6 0, 変流器ユニット 6 1 , 6 2 , 開閉器ユニット 6 3 , 6 4 及び接続母線ユニット 6 5から構成される部分は相分離で構成され、 主母線 1に 対して垂直配置されている。 分岐母線ュニット 6 6は三相一括で構成されると共 に、 主母線 1と同方向に延伸し、 プッシング 1 0の近傍においてプッシング 1 0 の並びに沿って各相毎に分岐され、 プッシング 1 0に接続されている。 図示省略 した避雷器ュニット及び変成器ュニヅトはプッシング 1 0に各相毎に接続されて いる。
遮断器ュニット 6 0は遮断器 4 aを備えると共に、 主母線 1 , 2間に形成され た空間に後述するブッシング引出回線 Ίの遮断器ュニット 7 0と対向して配置さ れている。 尚、 遮断器ユニット 6 0は主母線 1の遮断器ユニット 6 0の主母線 1 側には、 変流器 4 bを備えた変流器ュニット 6 1及び変流器 4 cを備えた変流器 ユニット 6 2が接続されている。 ここで、 遮断器 4 aは縦形であるので、 変流器 ユニット 6 1は遮断器ュニット 6 0の下端側に接続され、 変流器ュニット 6 2は 遮断器ユニット 6 0の上端側に接続される。
変流器ュニット 6 1の遮断器ュニット 6 0側とは反対側には、 断路器 4 f及び 接地開閉器 4 dを備えた開閉器ュニット 6 3が接続されている。 変流器ュニット
6 2の遮断器ュニット 6 0側とは反対側には、 断路器 4 g , 接地開閉器 4 e及び • 接地装置付断路器 4 hを備えた開閉器ュニット 6 4が接続されている。 開閉器ュ ニット 6 3は母線ユニット 3 0に接続されている。 開閉器ユニット 6 4は、 接続 母線を備えた接続母線ュニット 6 5を介して分岐母線ユニット 6 6に接続されて いる。
主母線 2とプッシング 2 0を接続するプッシング引出回線 5は遮断器ュニット
7 0 , 変流器ュニット 7 1 , 7. 2 , 開閉器ュニット 7 3 , 7 4, 接続母線ュニヅ ト 7 5, 分岐母線ュニット 7 6 , 図示省略した避雷器ュニット及び変成器ュニッ トから構成され、 主母線 2の引込鉄塔 1 1 0側端部にプッシング引出回線 4と対 向するように配置されている。各ユニットは、 S Fs ガスが封入されたタンク内 にブッシング引出回線 5の構成機器や導体が収納され構成されている。 タンクは 金属製の接地容器である。
遮断器ュニット 7 0 , 変流器ュニット 7 1, 7 2 , 開閉器ュニット 7 3, 7 4 及び接続母線ュニット 7 5から構成される部分は相分離で構成され、 主母線 2に 対して垂直配置されている。 分岐母線ュニット 7 6は三相一括で構成されると共 に、 主母線 2と同方向に延伸し、 プッシング 2 0の近傍においてプッシング 2 0 の並びに沿って各相毎に分岐され、 プッシング 2 0に接続されている。 図示省略 した避雷器ュニット及び変成器ュニットはプッシング 2 0に各相毎に接続されて いる。 遮断器ユニット 7 0は遮断器 5 aを備えると共に、 主母線 1 , 2間に形成され た空間に前述したプッシング引出回線 6の遮断器ュニット 6 0と対向して配置さ れている。 遮断器ュニット 7 0の主母線 2側には、 変流器 5 bを備えた変流器ュ ニット 7 1及び変流器 5 cを備えた変流器ュニット Ί 2が接続されている。 ここ で、 遮断器 5 aは縦形であるので、 変流器ュニット 7 1は遮断器ュニット 7 0の 下端側に接続され、 変流器ユニット 7 2は遮断器ュニ トマ 0の上端側に接続さ れる。
変流器ュニット 7 1の遮断器ュニット 7 0側とは反対側には、 断路器 5 f及び 接地開閉器 5 dを備えた開閉器ュニット 7 3が接続されている。 変流器ユニット 7 2の遮断器ュニット 7 0側とは反対側には、 断路器 5 g、 接地開閉器 5 e及び : 接地装置付断路器 5 hを備えた開閉器ュニット 7 4が接続されている。 開閉器ュ ニット 7 3は母線ュニット 4 0に接続されている。 開閉器ュニット 7 4は、:接続 母線を備えた接続母線ュニット 7 5を介して分岐母線ュニット 7 6に接続されて いる。
尚、 本実施例においては、 遮断器ユニット 6 0 , 7 0を主母線1, 2間に形成 された空間に配置した場合について説明したが、 遮断器ュニッ小 6 0を主母線 1 の主母線 2側とは反対側に配置し、 遮断器ュニット 7 0を主母線 2の主母線 1側 とは反対側に配置してもよい。 また、 遮断器ュニッ小 6 0, 7 0のとちらか一方 が主母線 1, 2間に形成された空間に配置されてもよい。
主母線 1に接続されたケーブル引出回線 6は遮断器ュニット 8ひ, 変流器ュニ ヅト 8 1 , 8 2 , 開閉器ュニット 8 3 , 8 4及びケ一ブルへッドュニット 8 5か ら相分離で構成されると共に、 主母線 1に対して垂直配置され、 かつ主母線 1の 母線区分回線 3よりも引込鉄塔 1 1 0側とは反対側に接続されている。 各ュニッ トは、 S Fe ガスが封入されたタンク内にケーブル引出回線 6の構成機器や導体 が収納され構成されている。 タンクは金属製の接地容器である。
遮断器ュニット 8 0は遮断器 6 aを備えると共に、 主母線 1の主母線 2側とは 反対側に配置されている。 遮断器ュニット 8 0の主母線 1側には、 変流器 6 bを 備えた変流器ュニット 8 1及び変流器 6 cを備えた変流器ュニット 8 2が接続さ れている。 ここで、 遮断器 6 aは縦形であるので、 変流器ユニット 8 1は遮断器 ユニット 8 0の下端側に接続され、 変流器ュニット 8 2は遮断器ュニット 8 0の 上端側に接続される。
変流器ュニット 8 1の遮断器ュニッ卜 8 0側とは反対側には、 断路器 6 f及び 接地開閉器 6 dを備えた開閉器ュニット 8 3が接続され、 変流器ュニット 8 2の ' 遮断器ュニット 8 0側とは反対側には、 接地開閉器 6 eを備えた開閉器ュニット 8 4が接続されている。 開閉器ュニヅト 8 3は母線ュニヅト 3 0に接続されてい . る。 開閉器ュニット 8 4には、 ケーブルへッド 6 gを備えたケーブルヘッドュニ :· · ット 8 5が接続されている
ケーブルへッドュニット 8 5は、 主母線 1, 2間に形成された空間に、 後述す るケーブル引出回線 7のケーブルへッドュニット 9 5と対向配置されている。 ケ 一ブルへッドユニット 8 5の真下の地下部分にはケーブル洞道 1 0 0が形成され ている。 ケーブル洞道 1 0 0は図示省略した変圧器の設置しているところまで延 伸しており、 そこには、 変圧器とガス絶縁開閉装置を電気的に接続するケーブル が収納されている。 このケーブルはケーブルへッドュニット 8 5のケーブルへッ ド 6 gに接続されている。
主母線 2に接続されたケーブル引出回線 7は遮断器ュニット 9 0、 変流器ュニ ット 9 1 , 9 2, 開閉器ュニット 9 3 , 9 4及びケーブルへッドュニット 9 5か ら相分離で構成されると共に、 主母線 2に対して垂直配置され、 かつ主母線 2の ケーブル引込回線 6と対向する部分に接続されている。各ユニットは、 S F6ガス が封入されたタンク内にケーブル引出回線 7の構成機器や導体が収納され構成さ れている。 タンクは金属製の接地容器である。
遮断器ユニット 9 0は遮断器 7 aを備えると共に、 主母線 2の主母線 1側とは 反対側に配置されている。 遮断器ュニット 9 0の主母線 2側には、 変流器 7 bを 備えた変流器ュニット 9 1及び変流器 7 cを備えた変流器ュニット 9 2が接続さ れている。 ここで、 遮断器 7 aは縦形であるので、 変流器ュニット 9 1は遮断器 ユニット 9 0の下端側に接続され、 変流器ュニット 9 2は遮断器ュニット 9 0の 上端側に接続される。
変流器ュニット 9 1の遮断器ュニット 9 0側と反対側には、 断路器 7 f と接地 開閉器 7 dを備えた開閉器ユニット 9 3が接続されでいる。 変流器ユニット 9 2 の遮断器ュニ、 ト 9 0側とは反対側には、 接地開閉器 7 eを備えた開閉器ュニッ ト 9 4が接続されている。 開閉器ュニット 9 3は母線ュニット 4 0に接続されて いる。 開閉器ユニット 9 4には、'ケーブルヘッド 7 gを備えたケ一ブルヘッドュ ニット 9 5が接続されている。
ケーブルヘッドユニット 9 5は、 主母線 1 , 2間に形成された空間に、 後述す るケーブル引出回線 6のケーブルへッドュニット 8 5と対向配置されている。 ケ —ブルへッドュニット 9 5の真下の地下部分にはケ一ブル洞道 1 0 0が形成され ている。 ケーブル洞道 1 0 0は図示省略した変圧器の設置しているところまで延 伸しており、 そこには、 変圧器とガス絶縁開閉装置を電気的に接続するケーブル が収納されている。 このケーブルはケーブルへッドュ ット 9 5のケーブルへッ ド 7 gに接続されている。
尚、 8 , 9は、 将来増設されるケーブル引出回線 8, 9であり、 上述したケー ブル引出回線 6 , 7と同様に構成され、 主母線 1 , 2に接続される。
本実施例によれば、 ケーブル引出回線 6のケーブルへッドュニット 8 5及びケ 一ブル引出回線 7のケーブルへッドュニット 9 5を主母線 1, 2間に形成された 空間に配置したので、 ケーブルへッドュニット 8 5 , 9 5の真下の地下部分に形 成されるケーブル洞道 1 0 0を 1本道で構成でき、 ケーブル洞道 1 0 0の構成を 簡素化できる。従って、 ケーブル洞道 1 0 0のルート計画が行い易くなり、 かつ その施工における電力会社側の負担が軽減される。
また、 本実施例によれば、 主母線 1の引込鉄塔 1 1 0側端部にプッシング引出 回線 4を接続し、 主母線 2の引込鉄塔 1 1 0側端部にプッシング引出回線 5を接 続したので、 プッシング引出回線 4, 5の分岐母線の長さを最短にできる。 従つ て、 ガス絶縁開閉装置のコストを低減でき、 経済性を向上できる。
また、 本実施例によれば、 主母線 1 , 2間に形成された空間に母線区分回線 3 の遮断器ユニット 5 0を配置したので、 母線区分回線 3を構成する接続母線の長 さが、 遮断器ュニット 5 0を主母線 1の主母線 2側どは反対側或いは主母線 2の 主母線 1側とは反対側に配置した場合と比べ短縮できる。 従って、 ガス絶縁開閉 装置のコストを低減でき、 経済性を向上できる。
また、 本実施例によれば、 主母線 1 , 2間に形成された空間にプッシング引出 回線 4, 5の遮断器ユニット 6 0, 7 0を配置したので、 プッシング引出回線 4, 5を構成する接続母線の長さを短縮できる。 従って、 ガス絶縁開閉装置のコスト を低減でき、 経済性を向上できる。
また、 本実施例によれば、 主母線 1の母線区分回線 3よりも引込鉄塔 1 1 0側 とは反対側にケーブル引出回線 6を接続し、 主母線 2の母線区分回線 3よりも引 込鉄塔 1 1 0側とは反対側にケーブル引出回線 7を接続したので、 将来、 ケ一ブ ル引出回線を増設する場合は、 主母線 1, 2の引込鉄塔 1 1 0側とは反対側に母 線ュニット及びケーブル引出回線を増設するというように、 他の回線を構成する ュニットを分解することなく行える。 従って、 ケーブル引出回線の増設時の作業 性を向上できる。
(実施例 2 )
本発明の第 2実施例を第 6図〜第 1 0図に基づき説明する。 本実施例のガス絶 縁開閉装置は第 1実施例の改良例であり、 主母線 1, 2の間隔を小さくし、 ケー ブル洞道 1 0 0の更なる簡素化のために、 対向配置としていたケーブル引出回線 4, 5を主母線 1 , 2に沿って交互に配置したものである。 このため、 ケーブル 引出回線 4のケーブルへヅドュニット 8 5とケーブル引出回線 5のケーブルへッ ドユニット 9 5は、 主母線 1, 2間に形成された空間において、 主母線 1, 2に 沿って一列に並設されている。
尚、 将来、 ケーブル引出回線 8 , 9が増設され、 主母線 1 , 2の母線区分回線 3よりも引込鉄塔 1 1 0側とは反対側に複数のケーブル引出回線が接続される場 合は、 主母線 1に接続されるケーブル引出回線のケーブルへッドュニットと主母 線 2に接続されるケーブル引出回線のケーブルヘッドユニットが主母線 1 , 2に 沿って交互に配置される。 従って、 主母線 1, 2間に形成された空間にはケープ ルヘッドユニットが主母線 1 , 2に沿って一列に並設される。
また、 本実施例では、 主母線 1 , 2の間隔が狭くなり、 プッシング引出回線 4 の遮断器ュニット 6 0とプッシング引出回線 5の遮断器ュニット Ί 0を対向して : 主母線 1 , 2間に形成された空間に配置できないことから、 プッシング引出回線 4の遮断器ュニット 6 0を主母線 1の主母線 2側とは反対側に配置し、 ブッシン グ引出回線 5の遮断器ュニット 7 0を主母線 1, 2間に形成された空間に配置し ている。 遮断器ユニット 6 0を主母線 1, 2間に形成された空間に配置し、 遮断 器ュニット 7 0を主母線 2の主母線 1側とは反対側に配置してもよい。
また、 本実施例では、 ケーブル引出回線 4と対向する主母線 2部分及びケープ ル引出回線 5と対向する主母線 1部分に他回線の設置スベースが形成されること から、 母線区分回線 3の開閉器ュニット 5 4から接地開閉器 3 iを切離し、 新た に開閉器ュニット 1 3 0としてケーブル引出回線 4と対向する主母線 2部分に配 置して母線ュニット 4 0に接続している。 開閉器ュニット 1 3 0には変成器ュニ ヅ ト 5 8を接続している。 また、 母線区分回線 3の開閉器ユニット 5 3から接地 開閉器 3 hを切離し、 新たに開閉器ュニット 1 2 0としてケーブル引出回線 5と 対向する主母線 1部分に配置して母線ュニット 3 0に接続している。 開閉器ュニ ヅト 1 2 0には変成器ュニヅト 5 7を接続している。
この他の構成は前例と実質同様であるので、 その説明は省略する。
本実施例によれば、 ケ一ブル引出回線 6のケーブルへッドュニット 8 5及びケ 一ブル引出回線 7のケ一ブルへッドュニヅト 9 5を主母線 1 , 2に沿って一列に 並設したので、 前例に比べて、 主母線 1, 2の間隔を狭めることができ、 更にケ 一ブル洞道 1 0 0の構成を簡素化できる。 従って、 施工における電力会社側の負 担が更に軽減される。 産業上の利用可能性
本発明によれば、 二つの主母線それそれに接続されたケーブル引出回線のケ一 ブルへッドュニットを二つの主母線間に形成された空間に配置したので、 ケープ ルへッドュニッ卜の真下の地下部分に形成されるケーブル洞道を 1本道で構成で き、 ケーブル洞道の構成を簡素化できる。 また、 二つの主母線の引込鉄塔側端部 にブッシング引出回線を接続したので、 二つの主母線とブヅシングを接続するブ ッシング引出回線の接続距離が小さくなる。 従って、 ケーブル洞道の構成の簡素 化と装置の経済性の向上を両立できるガス絶縁開閉装置を提供できる。

Claims

請 求 の 範 囲
1 . 引込鉄塔の並びに対してほぼ垂直に配置され、 かつほぼ平行に対向配置され た少なくとも二つの主母線と、 該二つの主母線それそれの前記引込鉄塔側端部に 接続されたプッシング引出回線と、 前記二つの主母線それそれに接続されたケ一 ブル引出回線と、 前記二つの主母線間を接続する母線区分回線とを備え、 前記ケ. 一ブル引出回線は、 ケーブルへヅドを備えたュニットを有し、 該ケーブルュニッ トは、 前記二つの主母線間に形成された空間に配置されることを特徴とするガス
2 . 引込鉄塔の並びに対してほぼ垂直に配置され、 かつほぼ平行に対向配置され ■ た少なくとも つの主母線と、 該二つの主母線それそれの前記引込鉄塔側端部に 接続されたプッシング引出回線と、 前記二つの主母線それそれに接続されたケー ブル引出回線と、 前記二つの主母線間を接続する母線区分回線とを備え、 前記ケ —ブル引出回線は、 ケーブルへヅドを備えたュニットを有し、 該ケーブルュニヅ トは、 前記二つの主母線間に形成された空間に対向配置されることを特徴とする ガス絶縁開閉装置。
3 . 引込鉄塔の並びに対してほぼ垂直に配置され、 かつほぼ平行に対向配置され た少なくとも二つの主母線と、 該二つの主母線それそれの前記引込鉄塔側端部に 接続されたプッシング引出回線と、 前記二つの主母線それそれに接続されたケ一 ブル引出回線と、 前記二つの主母線間を接続する母線区分回線とを備え、 前記ケ —ブル引出回線は、 ケーブルへッドを備えたュニットを有し、 該ケ一ブルュニッ トは、 前記二つの主母線間に形成された空間に配置され、 前記二つの主母線に沿 つて一列に並設されることを特徴とするガス絶縁開閉装置。
4 . 請求項 3において、 前記ケーブル引出回線は、 前記母線区分回線よりも前記 引込鉄塔側とは反対側に配置されることを特徴とするガス絶縁開閉装置。
5 . 請求項 3において、 前記母線区分回線は、 遮断器を備えたユニットを有し、 該遮断器ュニットは、 前記二つの主母線間に形成された空間に配置されることを 特徴とするガス絶縁開閉装置。
6 . 請求項 2において、 前記プッシング引出回線は、 遮断器を備えたユニットを 有し、 該遮断器ユニットは、 前記二つの主母線間に形成された空間に配置される ことを特徴とするガス絶縁開閉装置。
7 . 請求項 3において、 前記プッシング引出回線は、 遮断器を備えたユニットを 有し、 該遮断器ユニットのどちらか一方は、 前記二つの主母線間に形成された空 間に配置されることを特徴とするガス絶縁開閉装置。
8 . 請求項 3において、 前記ケーブル引出回線は、 前記母線区分回線よりも前記 弓 I込鉄塔側とは反対側に配置されることを特徴とするガス絶縁開閉装置。 .
9 . 互いに並列配置された第 1及び第 2の主母線と、 前記第 1及び第 2の主母線 の一方端側にそれそれ電気的に接続される第 1及び第 2ケニブル引出回線と、 前 記第 1及び第 2の主母線の他方端側にそれそれ電気的に接続される第 1及び第 2 のプッシング引出回線と、 前記プッシング引出回線より前記ケーブル引出回線側 で前記第 1及び第 2の主母線間を電気的に接続する母線区分回線と、 前記ブッシ ング引出回線の少なくとも 1は、 前記主母線の間に配置され前記主母線への電力 を遮断する遮断器ュニッ卜と、 前記第 1或いは第 2の主母線の一方と交差するよ うに配置されて前記遮断器にュニットへ電力を導く接続ュニットを有することを 特徴とするガス絶縁開閉装置。
1 0 . 請求項 9において、 前記主母線と並列して配置される分岐母線ユニットを 有し、 前記分岐母線ュニットは前記主母線の外側に配置され、 前記接続ュニット は、 前記分岐母線ュニッ小と前記主母線を電気的に接続し、 前記接続ユニットは 前記主母線とほぼ直交することを特徴とするガス絶縁開閉装置。
1 1 . 請求項 1 0において、 プッシングを有し、 前記プッシングからの電力は前 記分岐母線ュニットを介して前記主母線に導かれることを特徴とするガス絶縁開
1 2 . 請求項 1 1において、 前記遮断器ュニットと前記主母線は第 1の変流器ュ ニット或いは第 1の開閉ュニットを介して接続され、 前記遮断器ュニッ卜と前記 分岐母線ュニットは第 2の変流器ュニット或いは第 2の開閉ュニットを介して接 続され、 第 2の変流器ユニット或いは第 2の開閉ユニットは、 第 1の変流器ュニ ット或いは第 1の開閉ュニッ卜の上方に配置されていることを特徴とするガス絶
1 3 . 請求項 9において、 前記ケーブル引出回線は、 ケーブルヘッドを備えたュ ニットを有し、 該ケーブルユニットは、 前記主母線間に形成された空間に配置さ れることを特徴とするガス絶縁開閉装置。
PCT/JP2001/001393 2000-03-13 2001-02-23 Commutateur isole au gaz WO2001069743A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001567097A JP3945250B2 (ja) 2000-03-13 2001-02-23 ガス絶縁開閉装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000073903 2000-03-13
JP2000-73903 2000-03-13

Publications (1)

Publication Number Publication Date
WO2001069743A1 true WO2001069743A1 (fr) 2001-09-20

Family

ID=18592045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001393 WO2001069743A1 (fr) 2000-03-13 2001-02-23 Commutateur isole au gaz

Country Status (6)

Country Link
US (1) US20020149904A1 (ja)
JP (1) JP3945250B2 (ja)
KR (1) KR100428556B1 (ja)
CN (1) CN1217462C (ja)
TW (1) TWI279053B (ja)
WO (1) WO2001069743A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4272088B2 (ja) * 2004-03-09 2009-06-03 株式会社日本Aeパワーシステムズ ガス絶縁開閉装置
KR101260359B1 (ko) * 2005-12-27 2013-05-07 가부시끼가이샤 히다치 세이사꾸쇼 가스절연 개폐장치
JP5086857B2 (ja) * 2008-03-19 2012-11-28 株式会社東芝 ガス絶縁開閉装置
KR100893534B1 (ko) * 2009-01-02 2009-04-17 주식회사 광명전기 공간 활용성이 개선된 가스절연 개폐장치
KR100886587B1 (ko) * 2009-01-02 2009-03-05 주식회사 광명전기 가스절연 개폐장치
KR100886588B1 (ko) * 2009-01-02 2009-03-05 주식회사 광명전기 유지보수성이 개선된 가스절연 개폐장치
KR101231767B1 (ko) * 2011-08-11 2013-02-08 현대중공업 주식회사 가스절연 개폐장치
KR101231765B1 (ko) * 2011-08-11 2013-02-08 현대중공업 주식회사 가스절연 개폐장치
KR101231766B1 (ko) * 2011-08-11 2013-02-08 현대중공업 주식회사 가스절연 개폐장치
KR101291790B1 (ko) * 2011-08-11 2013-07-31 현대중공업 주식회사 가스절연 개폐장치
JP2014107180A (ja) * 2012-11-29 2014-06-09 Hitachi Ltd ガス遮断器
JP5627821B1 (ja) * 2014-01-20 2014-11-19 三菱電機株式会社 ガス絶縁開閉装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156316U (ja) * 1982-04-12 1983-10-19 株式会社東芝 母線開閉装置
JPS59127509A (ja) * 1983-01-06 1984-07-23 株式会社東芝 ガス絶縁開閉装置
JPH04304104A (ja) * 1991-03-29 1992-10-27 Toshiba Corp ガス絶縁開閉装置
JPH0898348A (ja) * 1994-09-27 1996-04-12 Toshiba Corp ガス絶縁開閉装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156316U (ja) * 1982-04-12 1983-10-19 株式会社東芝 母線開閉装置
JPS59127509A (ja) * 1983-01-06 1984-07-23 株式会社東芝 ガス絶縁開閉装置
JPH04304104A (ja) * 1991-03-29 1992-10-27 Toshiba Corp ガス絶縁開閉装置
JPH0898348A (ja) * 1994-09-27 1996-04-12 Toshiba Corp ガス絶縁開閉装置

Also Published As

Publication number Publication date
US20020149904A1 (en) 2002-10-17
JP3945250B2 (ja) 2007-07-18
TWI279053B (en) 2007-04-11
CN1217462C (zh) 2005-08-31
KR100428556B1 (ko) 2004-04-28
KR20020022105A (ko) 2002-03-23
CN1383599A (zh) 2002-12-04

Similar Documents

Publication Publication Date Title
KR0126219B1 (ko) 가스절연 개폐장치
US7903394B2 (en) Gas-insulated switchgear
TWM263679U (en) Gas insulation switch
WO2001069743A1 (fr) Commutateur isole au gaz
JPH0235531B2 (ja) Gasuzetsuenkaiheisochi
JPH0515020A (ja) ガス絶縁開閉装置
JPH04304105A (ja) ガス絶縁開閉装置
JP2736110B2 (ja) ガス絶縁開閉装置
JP4416667B2 (ja) ガス絶縁開閉装置
JP2576739B2 (ja) ガス絶縁複合開閉装置
JP3763988B2 (ja) 開閉装置の更新方法
JPH03107314A (ja) 変電所への架空電力線の引込方式
JPH063962B2 (ja) ガス絶縁開閉装置
JP4397671B2 (ja) ガス絶縁開閉装置
JPH02266806A (ja) ガス絶縁開閉装置
JPH11146519A (ja) ガス絶縁開閉装置
JPH0564003B2 (ja)
JPH05103404A (ja) ガス絶縁開閉装置
JPH0793774B2 (ja) ガス絶縁開閉装置
JPH06209505A (ja) ガス絶縁開閉装置
JPS6335107A (ja) 移動用ガス絶縁開閉装置
JPS60190107A (ja) ガス絶縁開閉装置
JP2003111221A (ja) ガス絶縁開閉装置
WO2001071872A1 (fr) Commutateur d'isolation au gaz
JPH0488814A (ja) ガス絶縁開閉装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE BR CN IN JP KR MX RU SG US YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020027001980

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018018610

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027001980

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10069016

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWG Wipo information: grant in national office

Ref document number: 1020027001980

Country of ref document: KR