WO2001062998A1 - Tube d'acier facile a former et procede de production de ce dernier - Google Patents

Tube d'acier facile a former et procede de production de ce dernier Download PDF

Info

Publication number
WO2001062998A1
WO2001062998A1 PCT/JP2001/001530 JP0101530W WO0162998A1 WO 2001062998 A1 WO2001062998 A1 WO 2001062998A1 JP 0101530 W JP0101530 W JP 0101530W WO 0162998 A1 WO0162998 A1 WO 0162998A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
steel pipe
thickness
formability
ray random
Prior art date
Application number
PCT/JP2001/001530
Other languages
English (en)
French (fr)
Inventor
Nobuhiro Fujita
Naoki Yoshinaga
Manabu Takahashi
Hitoshi Asahi
Yasuhiro Shinohara
Yasushi Hasegawa
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to JP2001561805A priority Critical patent/JP4264212B2/ja
Priority to US10/220,441 priority patent/US6866725B2/en
Priority to DE60134125T priority patent/DE60134125D1/de
Priority to EP01908167A priority patent/EP1264910B1/en
Publication of WO2001062998A1 publication Critical patent/WO2001062998A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/902Metal treatment having portions of differing metallurgical properties or characteristics
    • Y10S148/909Tube

Definitions

  • the present invention relates to a high-strength steel pipe excellent in formability, such as a hydroform, and a method for producing the same, which is a steel material used for, for example, undercarriage and members of an automobile.
  • grain refining has a large effect on securing the toughness of thick materials, but the point of realizing grain refining by warm working at a relatively low temperature and the degree of work (here, diameter reduction rate / area reduction rate) From the viewpoint of increasing the value, there is a concern that the n value, which is important for molding of a cover opening foam, may be reduced, or that the average r value, which is an index of formability, may not be improved.
  • practically no material has been developed at the practical level, not only for the basic forming mode such as hydroforming, but also for various forms of molding. It is being used for droform molding.
  • An object of the present invention is to provide a steel pipe excellent in formability such as hydroform by limiting the characteristic value of a material, and a method for producing the same.
  • the present inventors have found a metallographic structure, a texture, and a method for controlling the metallographic structure and texture of a material having excellent formability such as a hydroform, and by defining these, a steel pipe excellent in formability such as a hydroform and the production thereof. Provide a method.
  • the gist of the present invention is as follows.
  • the X-ray random intensity ratio of ⁇ 1 1 0 ⁇ ⁇ 1 1 0> on the sheet surface at a thickness of 1/2 or more and a steel sheet 1/2 thickness is one or both of 3.0 or more. Steel tube with excellent formability.
  • the steel further contains, in mass%, one or two of Ca and rare earth elements (Rem) in a total amount of 0.001 to 0.5%.
  • At least 50% of the area ratio of the metal structure is made of ferrite, the crystal grain size of the ferrite grains is in the range of 0.1 to 200 ⁇ , and The average of the X-ray random intensity ratio of the orientation group of ⁇ 1 1 0 ⁇ 1 1 0> to ⁇ 1 1 1> 1 1 0> is 2.0 or more, and the steel sheet 12 thickness Any one of (1) to (7) ′, wherein the X-ray random intensity ratio of ⁇ 1 1 0 ⁇ ⁇ 1 1 0> on the surface is one or both of 3.0 or more.
  • the ⁇ value in the longitudinal direction of the pipe is 0.12 or more;
  • n value in the circumferential direction of the pipe is 0.12 or more;
  • a steel pipe excellent in formability characterized by satisfying one or both of the following.
  • a steel pipe excellent in formability characterized by satisfying any one or more of the above items (1) to (3).
  • Each ferrite grain contains 50% or more of ferrite in area ratio.
  • the average of the X-ray random intensity ratios of the ⁇ 1 1 0 ⁇ ⁇ 1 1 0> to ⁇ 1 1 1 ⁇ 1 1 The X-ray random intensity ratio of ⁇ 1 1 0 ⁇ and 1 1 0> of the sheet surface at a steel sheet thickness of 1/2 or more is one or both of 3.0 or more,
  • the hot rolled plate or cold-rolled sheet satisfy more any one or two items of as a substrate after pipe-making of the substrate tube, A c 3 transformation point or above A c 3
  • a method for producing a steel pipe excellent in formability characterized in that a diameter is reduced at 900 to 65 ° C. after heating to + 200 ° C. or less. (20) In producing the steel pipe excellent in formability according to any one of (1) to (18),
  • the X-ray random intensity ratio of ⁇ 1 1 0 ⁇ ⁇ 1 1 0> on the sheet surface at a steel sheet thickness of 1 Z 2 is one or both of 3.0 or more
  • the X-ray random intensity ratio of ⁇ 100 ⁇ ⁇ 110> on the surface of the steel sheet with a thickness of 12 steel sheets is one or both of 3.0 or less
  • the temperature shall be lower than Ac 3 +200.
  • a method for producing a steel pipe having excellent formability characterized by performing a heat treatment at a temperature of at least 650 ° C. (21) As a characteristic of the steel pipe,
  • n value in the longitudinal direction of the pipe is 0.18 or more
  • n value in the circumferential direction of the pipe is 0.18 or more
  • a steel pipe excellent in formability characterized by satisfying one or both of the following.
  • the r value in the pipe longitudinal direction is 0.6 or more and less than 2.2, and the steel pipe having excellent formability according to the above (21),
  • the steel further comprising, in mass%, one or more of Al, Zr, and Mg in a total amount of 0.0001 to 0.5%.
  • the steel is characterized in that it further contains one or two of Ca and rare earth elements (Rem) in a total mass of 0.0001 to 0.5% by mass.
  • the steel pipe excellent in formability according to any one of the above (21) to (32).
  • the A c 3 transformation point is set to 50 ° C. Above the transformation point of A c 3 + 200 ° C or less, and performing diameter reduction processing at 65 ° C to 900 ° C to reduce the diameter to 10% to 40%. sex Excellent method of manufacturing steel pipe.
  • the component content is% by mass.
  • C is effective in increasing the strength and is added in an amount of 0.005% or more.
  • the addition of a large amount is not preferable in controlling the texture, so the upper limit is 0.30.
  • Si is a strengthening element and a deoxidizing element
  • the lower limit is set to 0.001%. Excessive addition causes deterioration of the wettability of the plating and the deterioration of workability. 0%.
  • Mn Since Mn is an element effective for increasing the strength, the lower limit is set to 0.01%. Also, since excessive addition causes a decrease in ductility, the upper limit is set to 3.0%.
  • the main orientations included in this orientation group are ⁇ 1 1 0 ⁇ ⁇ 1 1 0>, ⁇ 6 6 1 ⁇ ⁇ 1 1 0>, ⁇ 4 4 1 ⁇ ⁇ 1 1 0>, ⁇ 3 3 1 ⁇ ⁇ 1 1 0>, ⁇ 2 2 1 ⁇ ⁇ 1 1 0>, ⁇ 3 3 2 ⁇ ⁇ 1 1 0>, ⁇ 4 4 3 ⁇ ⁇ 1 1 0>, ⁇ 5 5 4 ⁇ , 1 1 0> and ⁇ 1 1 1 ⁇ 1 1 0>.
  • the X-ray random intensity ratios in each of these directions can be calculated from the three-dimensional texture calculated from the ⁇ 1 1 0 ⁇ pole figure by the vector method, ⁇ 1 1 0 ⁇ , ⁇ 1 0 0 ⁇ , ⁇ 2 1 1 ⁇ , ⁇ 3 1 0 ⁇ Based on more than one pole figure It can be obtained from the 3D texture calculated by the series expansion method.
  • the (1 1 0) [1_1 0], (66 1) in the ⁇ 2 45 degree cross section of the three-dimensional texture ) [1-10], (4 4 1) [1-10], (3 3 1) [1-1 0], (2 2 1) [1-10], (3 3 2) [1 -10], (443) [1-10], (5554) [1-10]: and (111) [1-10].
  • the average X-ray random intensity ratio of the group of orientations ⁇ 1 1 0 ⁇ 1 1 0> to ⁇ 1 1 1> 1 1>0> is the arithmetic mean of the above orientations.
  • the phase of the orientation of ⁇ 1 1 0 ⁇ ⁇ 1 1 0>, ⁇ 4 4 1 ⁇ 1 1 0>, ⁇ 2 2 1 ⁇ 1 1 0> may be used instead.
  • ⁇ 110 ⁇ and 110> are important, and it is particularly desirable that the X-ray random intensity ratio in this direction is 3.0 or more.
  • the average intensity ratio of the orientation group of ⁇ 1 1 0 ⁇ ⁇ 1 1 0> to ⁇ 1 1 1> ⁇ 1 1 0> is 2.0 or more, and the intensity ratio of ⁇ 1 1 0 ⁇ x 1 1 0> If the value is 3.0 or more, it is needless to say that it is particularly suitable as a steel pipe for a hydroform.
  • the average strength ratio of the above orientation group should be 3.5 or more, and ⁇ 110 ⁇ ⁇ 1 It is desirable that the intensity ratio of 10> is 5.0 or more.
  • orientation limitation of (1) is deleted from the arithmetic mean of ⁇ 111 ⁇ ⁇ 110> in the orientation group of ⁇ 110 ⁇ ⁇ 110> to ⁇ 111 ⁇ ⁇ 110>.
  • the effect of the present invention is not lost.
  • the linear random strength ratio is one of the important characteristic values for performing hydroforming.
  • At least one-half steel sheet thickness The average of the X-ray random intensity ratios of the ⁇ 1 0 0 ⁇ 1 1 0> to ⁇ 2 3 ⁇ 1 1 0> orientation groups on the sheet surface exceeds 3.0, or at least the steel sheet 1 / If the X-ray random intensity ratio of ⁇ 100 ⁇ ⁇ 110> on the plate surface with a plate thickness of 2 exceeds 3.0, the expansion rate, etc. of the object of the present invention, particularly in the case of hydroform, is 1. Since each value is reduced to about 2 or less, we set each to 3.0 or less.
  • the average of the X-ray random intensity ratio of the orientation group of 2 25 ⁇ is less than 2.0, or the X-ray random intensity of ⁇ 1 1 1 ⁇ ⁇ 1 1 0> of the steel plate at 1 Z 2 thickness If the ratio is less than 3.0, the expansion rate of the hydroform also tends to be low. Therefore, it is determined that the degree of integration is 2.0 or more and 3.0 or more, respectively.
  • at least one of the items (1) to (3) must be satisfied to ensure the workability during hydroforming.
  • the intensity ratio of each direction is obtained by X-ray diffraction of the plate surface at the center position of the thickness to obtain the intensity ratio of each direction with respect to the random crystal.
  • the main azimuths included in the azimuth group of ⁇ 1 1 0 ⁇ 1 1 0> to ⁇ 3 3 2 ⁇ ⁇ 1 1 0> are ⁇ 1 1 0 ⁇ 1 1 0>, ⁇ 6 6 1 ⁇ ⁇ 1 1 0>, ⁇ 4 4 1 ⁇ ⁇ 1 10>, ⁇ 3 3 1 ⁇ ⁇ 1 1 .0>, ⁇ 2 2 1 ⁇ ⁇ 1 1 0>, ⁇ 3 3 2 ⁇ ⁇ 4 4 3 ⁇ 1 1 0> and ⁇ 5 5 4 ⁇ 1 1 0>.
  • the main orientations included in the orientation group of ⁇ 1 0 0 ⁇ 1 1 0> to ⁇ 2 2 3 ⁇ ⁇ 1 1 0> are ⁇ 1 0 0 ⁇ 1 1 0>, ⁇ 1 1 6 ⁇ 1 1 0>, ⁇ 1 1 4 ⁇ ⁇ 1 1 0>, ⁇ 1 1 3 ⁇ ⁇ 1 1 0>, ⁇ 1 1 2 ⁇ ⁇ 1 1 0>, ⁇ 3 3 5 ⁇ And ⁇ 2 2 3 ⁇ 1 1 0> is there.
  • the main orientations included in the orientation groups ⁇ 1 1 1 ⁇ 1 1 0> to ⁇ 1 1 1 ⁇ 1 1 2> are ⁇ 1 1 1 ⁇ 1 1 0> and ⁇ 1 1 1 ⁇ 1 1 2>.
  • the X-ray random intensity ratio in each of these directions can be calculated from the three-dimensional texture calculated by the vector method from the ⁇ 110 ⁇ pole figure, ⁇ 110 ⁇ , ⁇ 100 ⁇ , ⁇ 2 1 1 ⁇ , ⁇ 3 1 0 ⁇ It may be obtained from a three-dimensional texture calculated by the series expansion method based on a plurality of pole figures among the pole figures.
  • the strength level gradually decreases as the temperature increases, but considering the problems of X-ray measurement accuracy, the problem of twist around the axis during steel pipe manufacturing, and the problem of accuracy of X-ray sample preparation, etc. May deviate from these orientation groups by about ⁇ 5 ° to 10 °.
  • an arc-shaped test piece is cut out from the steel pipe and pressed to make a flat plate for X-ray analysis.
  • the strain should be as low as possible in order to avoid the influence of crystal rotation due to the processing of the test piece. I decided to do it.
  • the plate-like sample obtained in this way is reduced in thickness to a predetermined thickness by mechanical polishing, then the distortion is removed by chemical polishing, etc., and at the same time, the thickness center layer becomes the measurement surface. Adjust to
  • the texture specified in the claims can be obtained in a plate surface other than the plate surface having a plate thickness of 1/2, for example, in the range of 38 to 5/8. Is also good. Further, when the X-ray measurement is difficult, the measurement may be performed by the EBSP method or the ECP method.
  • the texture of the present invention is defined by the X-ray measurement results at the center of the sheet thickness or at a surface near the center of the sheet thickness. Is preferred. However, from the outer surface of the steel pipe to a plate thickness of about 1 Z4, the texture changes due to the shear deformation due to the diameter reduction described below, and the above-described texture requirements may not be satisfied. '
  • ⁇ hk 1 ⁇ ⁇ u V w> means that when a sample for X-rays is searched by the above method, the crystal orientation perpendicular to the plate surface is ⁇ hkl> and the longitudinal direction of the steel pipe is u V w >'
  • the characteristics of the texture of the present invention cannot be expressed only by a normal inverse pole figure or positive pole figure, but, for example, an inverse pole figure indicating the radial direction of a steel pipe was measured around the center of the sheet thickness.
  • the X-ray random intensity ratio in each direction is preferably as follows.
  • n-value In the case of the foam with the mouth opening, it may be processed isotropically to some extent, and it is necessary to secure the n-value in the longitudinal and / or circumferential direction of the pipe. The lower limit was set. The effect of the present invention can be obtained without particularly setting the upper limit of the n value.
  • n value is defined as a value obtained at a strain amount of 5 to 10% or 3 to 8% in a JIS tensile test method. -Next, the invention of (10) will be described.
  • r-value In the case of a foam with a foam, there is also a process to push the material in by axial pressing, so the lower limit of the r-value in the longitudinal direction of the pipe was set to 1.1 in order to ensure the workability of such a part. The effect of the present invention can be obtained without specifying the upper limit of the r value.
  • the r-value is defined as the value obtained at the strain of 10% or 5% in the tensile test in JIS.
  • a 1, Zr, Mg: are deoxidizing elements. Also, A 1 contributes to the improvement of the formability, especially when performing box annealing. On the other hand, excessive addition It causes a large amount of crystallization and precipitation of substances, sulfides and nitrides, deteriorating cleanliness, reducing ductility, and significantly impairing plating properties. Therefore
  • one or more of these may be added in a total of 0.0000 to 0.50%, or A1: 0.01 to 0.5%, Zr : 0.00001 to 0.5%, Mg: 0.00001 to 0.5%.
  • Nb, Ti, V: Nb, Ti, V to be added as necessary are one or more of these, or 0.01 alone. /.
  • the above additions increase the strength of the steel by forming carbides, nitrides, or carbonitrides, but when the total or single content exceeds 0.5%, the A large amount of carbides, nitrides or carbonitrides precipitates in certain ferrite grains or at grain boundaries and reduces ductility. It was set to 0.01 to 0.5%.
  • P is an element that is effective for increasing the strength, but it causes deterioration of weld cracking resistance to cracking, deterioration of fatigue properties and toughness, so it should be added as necessary.
  • B added as needed is effective for strengthening grain boundaries and increasing the strength of steel materials. However, if the added amount exceeds 0.01%, not only does the effect become saturated, but it is necessary. As described above, the force to increase the strength of the steel sheet and reduce the workability was set to 0.001% to 0.01%.
  • Ni, Cr, Cu, Co, Mo, W These are strengthening elements, and if necessary, one or more of them may be added in total or individually added in an amount of not less than 0.01%. And Further, since excessive addition causes a decrease in ductility, the content of one or more of them is set to 0.001 to 1.5% in total or alone.
  • Rare earth element (Rem) Effective element for controlling inclusions. Addition of an appropriate amount improves hot workability, but excessive addition conversely promotes hot embrittlement. 0.0 0 0 1 ⁇ 0 The range was 5%.
  • the rare earth elements (R em) refer to Y, Sr and lanthanide elements, and it is industrially advantageous to add them as misch metal, which is a mixture of these elements. .
  • N is effective for increasing the strength and should be added in an amount of 0.001% or more. However, from the viewpoint of controlling welding defects, a large amount of N is not preferable, and the upper limit is set to 0.03%.
  • H f, T a Hf and T a added as necessary increase the strength of steel by forming carbides, nitrides or carbonitrides at a content of 0.001% or more. If it exceeds 2.0%, a large amount of carbides, nitrides or carbonitrides precipitates in the ferrite grains or the grain boundaries, which are the parent phase, and reduces ductility. Was independently set to 0.001 to 2.0%.
  • Grain size It is important to control the grain size in controlling the texture.
  • the particle size of ferrite which is the main phase, should be 0.1 to 0.1. It is necessary to control to 200 ⁇ .
  • the ferrite particle size was determined by a cutting method based on JIS.
  • nital solution for ultra-low carbon steel (for example, IF steel), use special etching solution: SULCG to make ferrite grain boundaries clearly appear.
  • the special etchant is prepared by the following method. After dissolving dodecinolebenzenesnolephonic acid: 2 to 10 g, shinoic acid: 0.:! To lg, picric acid: l to 5 g in 100 ml of water, 6N hydrochloric acid: It can be made by adding 2-3 m 1. Microstructures obtained using these techniques may also include ferrite grain boundaries and some of their subgrains.
  • the ferrite grain boundary refers to an interface visualized by an optical microscope by the above sample preparation, including an interface such as a subdrain that appears partially.
  • the aspect ratio shall be measured.
  • the ferrite particle diameter was measured by image analysis of a field of view of 20 times or more, which was 100 to 500 times, to obtain a particle diameter ratio and the like.
  • the area ratio was measured assuming that the ferrite was spherical. This value has almost the same value for the volume ratio.
  • a structure such as perlite, bainite, martensite, austenite, and carbonitride may be included.
  • the content of these hard phases is less than 50% for the purpose of ensuring ductility.
  • the intensity ratio of the group of orientations of ⁇ 110 ⁇ to 110> to ⁇ 330 ⁇ is increased, and ⁇ 10
  • the standard deviation of ferrite grains or the aspect ratio of ferrite grains was limited. These values were observed in an optical microscope at a magnification of 100 to 100 times for more than 20 visual fields, and for each particle size, the circle equivalent diameter was determined by image analysis to calculate the standard deviation. .
  • the aspect ratio is defined as the ratio of the number of ferrite grain boundaries that intersects a line segment parallel to the rolling direction and a vertical line segment of the same length.
  • Direction / parallel to rolling direction determined by If the standard deviation exceeds ⁇ 40% of the average particle size, the aspect ratio exceeds 3, or if the ratio is less than 0.5, the moldability tends to deteriorate. Stipulated.
  • the orientation group of ⁇ 111 ⁇ ⁇ 110> and / or ⁇ 110 ⁇ ⁇ 110> to ⁇ 332 ⁇ ⁇ 110> was set to 1 ⁇ .
  • the steel ingot is heated to a temperature of 150 ° C to 130 ° C and hot rolling is performed at an Ar3 transformation point of 10 ° C or more and an Ar3 transformation point of less than + 120 ° C.
  • hot rolling is performed at an Ar3 transformation point of 10 ° C or more and an Ar3 transformation point of less than + 120 ° C.
  • to perform lubrication rolling at the time of hot rolling to wind the hot-rolled sheet at a temperature of 75 ° C or lower, and to perform cold rolling, and then to perform box annealing or continuous annealing. Even if the method is combined with a method of manufacturing a steel sheet before pipe making, such as annealing, the effect of the present invention is not hindered at all. That is, a hot-rolled sheet, a cold-rolled sheet, or a cold-rolled annealed sheet can be used as the steel sheet for pipe making.
  • Texture of hot rolled sheet or cold rolled sheet Satisfying one or more of the following (1) to (4) is a condition for further improving the formability of the steel pipe.
  • the average of the X-ray random intensity ratios of the ⁇ 1 1 0 ⁇ ⁇ 1 1 0> to ⁇ 1 1 1 ⁇ ⁇ 1 1 0> orientation groups on the plate surface with at least steel plate 1 Z 2 thickness is 2
  • the X-ray random intensity ratio of ⁇ 110 ⁇ ⁇ 110> on the surface of the steel plate with a thickness of 1/2 or more of steel plate shall be one or both of 3.0 or more.
  • the average of the X-ray random intensity ratios of the orientation group of ⁇ 100 ⁇ ⁇ 110> to ⁇ 222 ⁇ ⁇ 110> on at least one-half steel sheet thickness, Either one or both of the X-ray random intensity ratios of ⁇ 100 ⁇ ⁇ 110> on the plate surface at 1/2 steel plate thickness shall be 3.0 or less.
  • Heating temperature in order to improve formability of the weld, the heating temperature of the reduced diameter front and A c 3 transformation point or higher, for preventing the coarsening of grains, the heating temperature A c 3 + 2 0 0 ° C It is specified as follows.
  • Diameter reduction processing temperature In order to recover strain hardening after diameter reduction, the processing temperature at the time of diameter reduction is specified to be at least 600 ° C, and to prevent coarsening of grains, it is specified to be at most 900 ° C.
  • Post-pipe heat treatment temperature Performed for the purpose of restoring the decrease in ductility of steel pipe due to pipe forming distortion. If the temperature is lower than 65 ° C, a sufficient ductility recovery effect does not appear, and if the temperature exceeds Ac3 + 200 ° C, grain coarsening and surface property deterioration become severe. It was specified as 3 + 200 ° C or less.
  • the heat-affected zone of the weld may be subjected to a local solution heat treatment, alone or in combination, depending on the required properties, and in some cases, may be repeated several times.
  • the effects of the present invention are further enhanced.
  • the purpose of this heat treatment is to add only to the weld and the heat affected zone, and it can be performed online or offline during manufacturing. Further, the effect of the present invention is not impaired even if the diameter is reduced or a homogenization heat treatment is performed before the diameter reduction. Lubrication at the time of diameter reduction is desirable from the viewpoint of improving formability.
  • the texture of the surface layer is defined in the scope of claims, and ⁇ 11 1 ⁇ ⁇ 11 0> and Z or ⁇ 1 1 0 ⁇ 1 1 0> to ⁇ 3 3 2 ⁇ ⁇ 1 1 0 >>, it is possible to manufacture a steel pipe with high formability and high formability. It encourages.
  • N value in the longitudinal direction and / or circumferential direction of the steel pipe It is important to increase the workability up to breakage or buckling in hydroforms, etc., and was set to 0.18 or more in the longitudinal direction and / or circumferential direction.
  • Deformation mode during molding In many cases, the amount of deformation differs in the longitudinal and circumferential directions, but in order to ensure good workability in various machining paths, the n value in the longitudinal and circumferential directions must be 0.18 or more. Is desirable.
  • both the n value in the longitudinal direction and the circumferential direction be 0.20 or more.
  • the effect of the present invention can be obtained without particular limitation on the upper limit of the n value.
  • the r value in the longitudinal direction of the pipe be high. In some cases, it is preferable to set the n value to 0.3 or less to improve the r value in the longitudinal direction of the pipe due to the diameter processing conditions and the like.
  • R-value in the longitudinal direction of steel pipe According to previous studies, for example, as shown in the 50th Joint Lecture on Plastic Working (1999, p. 447), the effect of r-value on the forming of a closed mouth foam However, simulation analysis has shown that r-value in the longitudinal direction is effective in T-shape molding, which is one fundamental deformation mode at HF. In addition, FISI TA World Automated Active Groups, 2000A420 (in Seoul, Junel2_15, 2000) shows that increasing the diameter reduction ratio can improve the r-value in the longitudinal direction. .
  • the lower limit of the r value is set to 0.6 or more from the viewpoint of ensuring formability.
  • the n value may be degraded. Furthermore, in order to enhance the formability and obtain a good balance between the n value and the r value, the ⁇ 1 1 1 ⁇ It is preferable that the X-ray random intensity ratio of ⁇ 110> satisfies 3.0 or more.
  • the intensity ratio of ⁇ 1 1 1 ⁇ ⁇ 1 1 0> is important. Yes, especially when molding complex shapes or large molded products, it is particularly desirable that the X-ray random intensity ratio in this direction be 3.0 or more.
  • the average intensity ratio of the azimuth group of ⁇ 1 1 0> 1 1 0> to ⁇ 1 1 1 ⁇ > 1 1 0> is 2.0 or more and the intensity of ⁇ 1 1 1 ⁇ ⁇ 1 1 0> If the ratio is 3.0 or more, it goes without saying that it is particularly suitable as a steel pipe for hydroforming.
  • ⁇ 1 1 0 ⁇ and 1 1 0> are also important directions.
  • n values in the pipe longitudinal and circumferential directions Must be 5.0 or less, and this is the upper limit.
  • ⁇ hkl ⁇ ⁇ uVw> is uvw, in which the crystal orientation perpendicular to the plate surface is ⁇ hkl> and the longitudinal direction of the steel pipe when the X-ray sample is collected by the method described above. Means that.
  • Crystal grain size and aspect ratio As in the case of the above (12), 0.1.
  • the aspect ratio is the same as that of the above (14).
  • N is defined for the following reasons.
  • N is effective for increasing the strength, so it should be added at 0.001% or more.However, in terms of controlling welding defects, a large amount is not preferable, and the upper limit is set to 0.03%. .
  • Ni, Cr, Cu, Co, Mo, W Since excessive addition of these components causes a reduction in ductility, the total or sole content is set to 0.001 to 5.0%.
  • the heating temperature is lower than the Ac 3 transformation point-50 ° C, it may cause disadvantages in terms of ductility reduction and formation of aggregated structure, and if it is higher than the Ac 3 transformation point + 200 ° C, oxidation will occur.
  • the range is limited to the above range, because of the deterioration of the surface properties and the coarsening of the grains.
  • the diameter reduction processing temperature is lower than 65 ° C.
  • the n value is reduced, so that the range is limited to the above range.
  • the upper limit of the diameter reduction processing temperature is not particularly limited, but is preferably set to 880 ° C. or less because of deterioration of surface properties due to oxidation.
  • the diameter reduction ratio exceeds 40%, the ⁇ value is remarkable, and there is a concern about deterioration of ductility and deterioration of surface properties. Therefore, the diameter is limited to the above range.
  • the lower limit of the diameter reduction rate is set to 10% to promote texture formation.
  • the diameter reduction ratio is the value obtained by dividing the product outer diameter by the outer diameter of the mother pipe and subtracting it from 1, and means the amount reduced by processing.
  • Example 1 Each steel having the composition shown in Tables 1 to 4 was melted on a laboratory scale, heated to 1200 ° C, then hot-rolled, and the Ar 3 transformation point determined by the composition of each steel and the cooling rate At a temperature of 10 ° C or more and the Ar 3 transformation point + less than 120 ° C (approximately 900 ° C), finish hot rolling to a thickness of 2.2 and 7 mm. Each was used for cold rolling.
  • Some parts were further cold rolled and then annealed to produce 2.2 mm thick cold rolled annealed sheets. Then, after cold forming to an outer diameter of 108 to 49 mm using TIG, laser or ERW, the A 3 transformation point to the A 3 transformation point + 200 ° C Then, the outer diameter was reduced to 75 to 25 mm at 900 to 65 ° C. to produce a high-strength steel pipe.
  • the molding of the cover opening was performed under the conditions of an axial pushing amount of l mm and a pressure of 100 bar / mm, and the molding was performed up to the point of perfection.
  • the pipe expansion ratio at which the ratio ⁇ ⁇ ⁇ ⁇ ⁇ 0 becomes ⁇ 0.5 (becomes negative because the sheet thickness decreases) was calculated and evaluated as an index of the formability of the cover opening foam. .
  • X-ray analysis was performed by cutting an arc-shaped test piece from a steel pipe and pressing it into a flat plate. The relative intensity of X-rays was determined by comparing with the random crystal. For the ⁇ value and r value in the longitudinal and circumferential directions, an arc-shaped specimen was taken, respectively. The n value was 5% to 10% or 3% to 8%, and the r value was 10%. % Or 5%, respectively.
  • Tables 1 to 4 show the X-ray random intensity ratio of the orientation group of ⁇ 111 ⁇ ⁇ 110> and ⁇ 110 ⁇ ⁇ 111> to ⁇ 111 ⁇ for each steel.
  • Tables 1 to 4 show the X-ray random intensity ratio of the orientation group of ⁇ 111 ⁇ ⁇ 110> and ⁇ 110 ⁇ ⁇ 111> to ⁇ 111 ⁇ for each steel.
  • steels A to U the ⁇ 110 ⁇ ⁇ 110> relative X-ray intensity is 3.0 or more, and ⁇ 110 ⁇ to 110> to 111
  • the average X-ray random intensity ratio of the orientation group of 0> is also 2.0 or more, and the expansion ratio shows a good value exceeding 1.25.
  • the comparative steels, high-C V steel, high-Mg W steel, high-Nb X steel, high-B Z steel, high-Mo AA steel, and high-REM BB steel are ⁇ 11 1
  • the X-ray random intensity ratio of the ⁇ 0 ⁇ ⁇ 110 >> and ⁇ 110> ⁇ 110> to ⁇ 111 >> 110> groups is low, and the expansion ratio is low.
  • Y with high P has a high ⁇ 111 ⁇ ⁇ 110> X-ray relative intensity, but has poor weldability and low pipe expansion.
  • Table 5 shows the relationship between the area ratio of each particle size of A, B and P steels and the expansion ratio.
  • a sample for an optical microscope was prepared on the cross section parallel to the rolling direction by the above-described etching method, and the particle size distribution was determined by both image analysis processing apparatuses. In these steels with a mixed grain structure, ⁇ 110 ⁇ ⁇ 110> is higher and the expansion ratio is higher.
  • a part of the sheet was further cold-rolled and then annealed to produce a 2.2 mm-thick cold-rolled annealed sheet.
  • pipes were formed using ERW welding in the cold to an outer diameter of 108 to 49 mm, and then the outer diameter of 75 to 49 mm was obtained at the heating temperature and the temperature for diameter reduction shown in Tables 8 and 9.
  • Heat treatment was performed after reducing the diameter to 25 mm or pipe forming to produce a high-strength steel pipe.
  • Tables 8 and 9 also show the properties of each steel. Those in which the strength, ⁇ value, and r value of the orientation group of each texture satisfy the range of the present invention have a high expansion rate. Further, since the heating temperature at the time of diameter reduction exceeds A c 3 , the pipe expansion rate is high. As for the area ratio and particle size distribution of ferrite, most steels have ferrite as a main phase and the average particle size is 100 / zm or less. Also, as can be seen from the average particle size and its standard deviation, no ferrite particles of less than 0.1 ⁇ and more than 200 / zm were not measured.
  • the pipe expansion rate is low.
  • the expansion ratio is low for high C CNNA steel, high Nb CNB B steel and high B CNCC steel.
  • the CNAA steel and CNB B copper had a large number of hard phases, and the particle size could not be measured accurately.
  • Carbonitrides include all cementitides and alloy carbonitrides (eg, TiC, TiN for Ti-added steel).
  • Inclusions include all oxides and sulfides that precipitate and crystallize during the steps from solidification to hot rolling. However, it includes all of these precipitates, crystallized oxides, and sulfides at the optical microscope level. However, it is difficult to accurately measure the area ratio of these precipitates and crystals at the optical microscope level. Therefore, when the area ratio of these second phases is small and accurate measurement is difficult, more than 90% of them are ferrite, and the area ratio of ferrite is marked as 90%.
  • Carbonitrides include cementite and all alloy carbonitrides (eg TiC, TiN for Ti-added steel).
  • Inclusions include all oxides and sulfides that precipitate and crystallize during the solidification and hot rolling stages. However, all of these oxides and sulfides that precipitate and crystallize at the optical microscope level are included. However, it is difficult to accurately measure the area ratio of these precipitates and crystals at the optical microscope level. Therefore, when the area ratio of these 2nd phases is small and accurate measurement is difficult, the ferrite exceeds 90O and the area ratio of ferrite is marked as 90%.
  • Carbonitrides include cementite and all alloy carbonitrides (eg TiC, TiN for Ti-added steel).
  • Inclusions include all oxides and sulfides that precipitate and crystallize during the solidification and hot rolling stages. However, it includes all of these precipitates, crystallized oxides, and sulfides at the optical microscope level. However, it is difficult to accurately measure the area ratio of these precipitates and crystals at the optical microscope level. Therefore, when the area ratio of these second phases is small and accurate measurement is difficult, more than 90% of them are ferrite, and the area ratio of ferrite is marked as 90%.
  • Carbonitrides include cementite and all alloy carbonitrides (eg TiC, TiN for Ti-added steel).
  • Inclusions include all oxides and sulfides that precipitate and crystallize during the production and solidification to hot rolling stages. However, it includes all of these precipitates, crystallized oxides, and sulfides at the optical microscope level. However, it is difficult to accurately measure the area ratio of these precipitates and crystals at the optical microscope level. Therefore, when the area ratio of these second phases is small and accurate measurement is difficult, more than 90% of them are ferrite, and the area ratio of ferrite is marked as 9Q0.
  • Each steel having the components shown in Tables 10 and 11 was used to produce a hot-rolled or cold-rolled annealed plate having a thickness of 2.2 under the same conditions as in Example 1. After that, the pipe is heated to an outer diameter of 108 mm or 89.1 mm using TIG, laser, or ERW, and then heated to reduce the outer diameter to 63.5 to 25 mm. A high strength steel pipe was manufactured.
  • Hide-mouth foam molding was performed up to the point of perfection.
  • the ratio ⁇ / ⁇ 0 between the longitudinal strain ⁇ and the circumferential strain ⁇ 0 of the pipe in the vicinity of the fractured portion or in the portion where the maximum thickness is reduced is ⁇ 0.1 to 0.2 (the thickness is The expansion rate was calculated to be negative because of the reduction), and this was evaluated as one index of the formability of the open-ended foam.
  • X-ray analysis was performed by cutting an arc-shaped test piece from a steel pipe and pressing it into a flat plate. The relative intensity of X-rays was determined by comparing with the random crystal.
  • Tables 12 and 13 show the ⁇ values in the longitudinal and circumferential directions of each steel, the r values in the longitudinal direction of the tubes, the X-ray intensity ratios in each orientation group, and the maximum expansion to the maximum in hydroforming.
  • the n value in the pipe longitudinal and / or circumferential direction shows 0.18 or more
  • the r value in the pipe longitudinal direction is less than 2.2 except for the laser welded pipe of steel A. .
  • the average X-ray random intensity ratio of the orientation group of ⁇ 111 ⁇ to ⁇ 110 ⁇ to ⁇ 110 ⁇ is more than 1.5 and ⁇ 110 ⁇ to 110
  • the relative intensity of X-rays is 5.0 or less, and for some copper species, the relative intensity of X-rays of ⁇ 111 ⁇ ⁇ 110> is 3.0 or more and the expansion ratio is also 1.0. It shows good values over 30.
  • high-C CA steel, high-Mg CB steel, high-Nb CC steel, high-B CE steel and CF steel with high Cr have low n values in both the longitudinal and circumferential directions, and have a low expansion ratio.
  • CE ⁇ 1 1 0 ⁇ 1 1 0> and Z or ⁇ 1 1 1 ⁇ 1 1 0>, ⁇ 1 1 0 ⁇ 1 1 0> to ⁇ 1 1 1 ⁇ 1 1 0
  • the X-ray random intensity ratio of the group of> is low, and the expansion ratio is even lower.
  • high P CD steel and high (C a + R EM) CG steel cause poor welding during pipe production, making it difficult to produce pipe in mass production equipment.
  • Carbonitrides include all cementitides and alloy carbonitrides (for example, TiG, ⁇ ⁇ ⁇ ⁇ for Ti-added steel).
  • the inclusions include all oxides and sulfides that precipitate and crystallize during the steps of solidification, hot rolling, etc. However, all of these oxides and sulfides that precipitate and crystallize at the optical microscope level are included. However, it is difficult to accurately measure the area ratio of these precipitates and crystals at the optical microscope level. Therefore, when the area ratio of these second phases is small and accurate measurement is difficult, more than 90% of them are ferrite, and the area ratio of ferrite is marked as 90%.
  • Carbonitrides include all cementitious and alloy carbonitrides (eg, TiG, TiN for Ti-added steel).
  • the inclusions include all oxides and sulfides that precipitate and crystallize in the steps of “solidification to hot rolling”. However, all of these oxides and sulfides that precipitate and crystallize are included at the optical microscope level. However, it is difficult to accurately measure the area ratio of these precipitates and crystals at the optical microscope level. Therefore, when the area ratio of these second phases is small and accurate measurement is difficult, over 900/0 is ferrite, and the area ratio of ferrite is marked as 9Q0 / 0.
  • A, F, H, K and L steels were melted on a laboratory scale, heated to 1200 ° C, and then hot-rolled.
  • the Ar 3 transformation point which is determined by the composition of each steel and the cooling rate, is 10 ° C or more and the Ar 3 transformation point + less than 120 ° C (approximately 900 ° C), and 2.2 mm thick
  • the hot rolling was completed at that time, and the plate was used as a base plate for pipe making.
  • pipes were formed using ERW welding in the cold to an outer diameter of 108 or 89.1 mm, and then the outer diameter 6 3.
  • the high-strength steel pipe was manufactured by reducing the diameter to 55 to 25 mm.
  • Hide mouth foam molding was carried out up to the point of perfection.
  • the ratio ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ between the longitudinal strain ⁇ ⁇ and the circumferential strain of the pipe near the fractured portion or at the portion where the maximum thickness is reduced is ⁇ 0.1 to ⁇ 0.2 (because the thickness is reduced.
  • the expansion rate was calculated as a negative index, and this was evaluated as an index of the formability of the open mouth foam.
  • Table 14 shows the properties of each steel. Those satisfying the manufacturing conditions defined in Claims 34 and 34 have ⁇ values of 0.18 or more in the pipe longitudinal direction and the circumferential or circumferential direction, and r values in the pipe longitudinal direction of less than 2.2.
  • the average X-ray random intensity ratio of the orientation group of ⁇ 111 ⁇ to ⁇ 110 ⁇ to ⁇ 110 ⁇ is more than 1.5, and ⁇ 110 ⁇ ⁇ 110. > Is less than 5.0, and for some steel grades, the relative intensity of ⁇ 111 ⁇ ⁇ 110> is more than 3.0, and the expansion ratio is also 1.3. It shows good values exceeding 0.
  • a composite structure of a material having excellent formability such as a hydroform and a control method thereof are found, and by limiting this, a high-strength steel pipe excellent in formability such as a hydroform can be obtained. Obtainable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

明 細 書 成形性の優れた鋼管及びその製造方法 技術分野
本発明は、 例えば自動車の足廻り、 メ ンバーなどに用いられる鋼 材で、 特にハイ ドロフォーム等の成形性に優れた高強度鋼管及びそ の製造方法に関するものである。
背景技術
自動車の軽量化ニーズに伴い、 鋼板の高強度化が望まれている。 鋼板を高強度化するこ とで、 板厚減少による軽量化や衝突時の安全 性向上が可能となる。 また最近では、 複雑な形状の部位について、 高強度鋼の素鋼板又は鋼管からハイ ドロフォーム法を用いて成形加 ェする試みが行われている。 これは、 自動車の軽量化や低コス ト化 のニーズに伴い、 部品数の減少や溶接フランジ箇所の削減などを狙 つたものである。 このよ う に、 ハイ ド口フォーム (特開平 1 0— 1 7 5 0 2 6号公報参照) などの新しい成形加工方法が実際に採用さ れれば、 コス トの削減や設計の自由度が拡大されるなどの大きなメ リ ッ トが期待される。
このよ うなハイ ドロフォーム成形のメ リ ッ トを充分に生かすため には、 これらの新しい成形法に適した材料が必要となる。 例えば、 第 5 0回塑性加工連合講演大会 (1999年, 447頁) には、 ハイ ドロ フォーム成形に及ぼす r値の影響が示されている。 しかし、 ここで は、 シミュレーショ ンによる解析によ り、 長手方向の r値がハイ ド 口フォームでの 1基本成形モー ドである T字成形では効果的である ことが示されている。 また、 F I S I TA Wo r l d Aut omo t ive Congr es s , 2 000A420 於 Seoul , June 12- 15, 2000 )にあるよ うに、 結晶粒微細化を 活用して高強度高延性化を図った高加工性鋼管の開発も進められつ つあり、 この中でも管長手方向の r値の向上が述べられている。
しかし、 細粒化は厚手系の材料の靱性確保効力が大きいが、 比較 的低温での温間加工により細粒化を実現させる点や加工度 (ここで は縮径率ゃ減面率) を高くすることからすると、 ハイ ド口フォーム 等の成形に重要な n値が低くなつてしまう ことや、 成形性の指標で ある平均 r値を向上させる結果には至らないことが懸念される。 以上のよ うに、 ハイ ドロフォーム等の 1基本成形モードだけでな く、 種々の成形に適した材料開発は実用レベルではほとんど行われ ておらず、 既存の高 r値鋼板や高延性鋼板がハイ ドロフォーム成形 に使用されつつある。
発明の開示
本発明は、 材料の特性値を限定してハイ ドロフォーム等の成形性 に優れた鋼管及びその製造方法を提供するものである。
本発明者らは、 ハイ ドロフォーム等の成形性に優れた材料の金属 組織、 集合組織及びその制御方法を見出し、 これらを規定すること でハイ ドロフォーム等の成形性に優れた鋼管及びその製造方法を提 供する。
即ち、 本発明の要旨とするところは以下の通りである。
( 1 ) 質量0/。で、 C : 0. 0 0 0 5〜 0. 3 0 %、 S i : 0. 0 0 1〜 2. 0 %、 Mn : 0. 0 1〜 3. 0 %を含有し、 残部が鉄及び 不可避的不純物からなり、 鋼板 1ノ 2板厚での板面の { 1 1 0 } く 1 1 0〉〜 { 1 1 1 } く 1 1 0〉の方位群の X線ランダム強度比の 平均が 2. 0以上、 鋼板 1 / 2板厚での板面の { 1 1 0 } < 1 1 0 >の X線ランダム強度比が 3. 0以上の何れか一方又は両方である ことを特徴とする成形性の優れた鋼管。
( 2 ) 鋼中に、 更に、 質量%で、 A l 、 Z r、 M gの 1種又は 2種 以上を合計で 0. 0 0 0 1〜 0. 5 %含むことを特徴とする前記 ( 1)に記載の成形性の優れた鋼管。
( 3 ) 鋼中に、 更に、 質量%で、 T i 、 V、 N bの 1種又は 2種以 上を合計で 0. 0 0 1〜 0. 5 %含むことを特徴とする前記 (1)又 は(2) に記載の成形性の優れた鋼管。
( 4 ) 鋼中に、 更に、 質量%で、 Pを 0. 0 0 1〜 0. 2 0 %含む ことを特徴とする前記 (1)乃至(3) の何れか 1項に記載の成形性の 優れた鋼管。
( 5 ) 鋼中に、 更に、 質量0 /0で、 Bを 0. 0 0 0 1〜 0. 0 1 %含 むことを特徴とする前記 (1)乃至(4) の何れか 1項に記載の成形性 の優れた鋼管。
( 6 ) 鋼中に、 更に、 質量0 /0で、 C r、 C u、 N i 、 C o、 W、 M oの 1種又は 2種以上を合計で 0. 0 0 1〜 1. 5 %含むことを特 徴とする前記 (1)乃至(5) の何れか 1項に記載の成形性の優れた鋼 管。
( 7 ) 鋼中に、 更に、 質量%で、 C a、 希土類元素 (R e m) の 1 種又は 2種を合計で 0. 0 0 0 1〜 0. 5 %含むことを特徴とする 前記 (1)乃至(6) の何れか 1項に記載の成形性の優れた鋼管。
( 8 ) 金属組織の面積率で 5 0 %以上がフエライ トからなり、 フ エ ライ ト粒の結晶粒径が 0. 1〜 2 0 0 μ πιの範囲にあり、 鋼板 1 / 2板厚での板面の { 1 1 0 } く 1 1 0 >〜 { 1 1 1 } く 1 1 0 >の 方位群の X線ランダム強度比の平均が 2. 0以上、 鋼板 1 2板厚 での板面の { 1 1 0 } < 1 1 0 >の X線ランダム強度比が 3. 0以 上の何れか一方又は両方であることを特徴とする前記 (1)乃至 (7) ' の何れか 1項に記載の成形性の優れた鋼管。
( 9 ) 鋼管の特性として、
(1) 管長手方向の η値が 0. 1 2以上であること、 (2)管円周方向の n値が 0. 1 2以上であること、
の何れか一方又は両方を満たすことを特徴とする成形性の優れた鋼 管。
( 1 0 ) 鋼管の特性と して、 管長手方向の r値が 1. 1以上である ことを特徴とする前記 (9)に記載の成形加工性に優れた鋼管。
( 1 1 ) 鋼管の集合組織と して、
(1) 少なく とも鋼板 1 Z 2板厚での板面の { 1 1 1 } < 1 1 0 > の X線ランダム強度比、 鋼板 1 / 2板厚での板面の { 1 1 0 } < 1 1 0 >〜 { 3 3 2 } く 1 1 0〉の方位群の X線ランダム強度比 の平均、 鋼板 1 / 2板厚での板面の { 1 1 0 } < 1 1 0 >の X線 ランダム強度比のうちの何れか 1又は 2項目以上が 3. 0以上で あること、
(2) 少なく とも鋼板 1 / 2板厚での板面の { 1 0 0 } < 1 1 0 > 〜 { 2 2 3 } く 1 1 0〉の方位群の X線ランダム強度比の平均、 鋼板 1 / 2板厚での板面の { 1 0 0 } < 1 1 0 >の X線ランダム 強度比の何れか一方又は両方が 3. 0以下であること、
(3) 少なく とも鋼板 1ノ 2板厚での板面の { 1 1 1 } < 1 1 0 > - { 1 1 1 } < 1 1 2 >及び { 5 5 4 } < 2 2 5 >の方位群の X 線ランダム強度比の平均が 2. 0以上、 鋼板 1ノ 2板厚での板面 の { 1 1 1 } く 1 1 0 >の X線ランダム強度比が 3. 0以上であ ることの何れか一方又は両方であること、
の上記 (1)乃至(3) のうちの何れか 1又は 2項目以上を満たすこと を特徴とする成形性の優れた鋼管。
( 1 2 ) 面積率で 5 0 %以上のフェライ トを含み、 各フェライ ト粒 径が 0. 1〜 2 0 0 μ mであることを特徴とする前記 (9)乃至(11) の何れか 1項に記載の成形性の優れた鋼管。
( 1 3 ) 面積率で 5 0 %以上のフェライ トを含み、 各フェライ ト粒 径が 1〜 2 0 0 μ mで粒径分布をなし、 その標準偏差が平均粒径の ± 4 0 %以内にあることを特徴とする前記 (9)乃至(12)の何れか 1 項に記載の成形性の優れた鋼管。 '
( 1 4 ) 面積率で 5 0 %以上のフェライ トを含み、 各フェライ ト粒 の平均アスペク ト比 (長手方向粒長さ/厚み方向粒厚さ) が 0. 5 〜 3. 0であることを特徴とする前記 (9)乃至(13)の何れか 1項に 記載の成形性の優れた鋼管。
( 1 5 ) 質量%で、 C : 0. 0 0 0 5〜 0. 3 0 %、 S i : 0. 0 0 1〜 2 . 0 %、 Mn : 0. 0 1〜 3 . 0 %、 P : 0. 0 0 1〜 0 . 2 0 %, N : 0. 0 0 0 1〜 0. 0 3 %を含有し、 残部が鉄及び 不可避的不純物からなることを特徴とする前記 (9)乃至(14)の何れ か 1項に記載の成形性の優れた鋼管。
( 1 6 ) 鋼中に、 更に、 質量%で、 T i : 0. 0 0 1〜 0. 5 %、 Z r : 0 . 0 0 1〜 0. 5 %以下、 11 £ : 0. 0 0 1〜 2. 0 %以 下、 C r : 0 . 0 0 1 〜 1 . 5 %以下、 1^ 0 : 0. 0 0 1〜 1 . 5 %以下、 " W : 0. 0 0 1〜 1 . 5 %以下、 V : 0. 0 0 1〜 0. 5 %以下、 N b : 0. 0 0 1〜 0. 5 %以下、 T a : 0. 0 0 1〜 2 . 0 %以下、 C o : 0. 0 0 1〜 1 . 5 %以下の 1種又は 2種以上 を含むことを特徴とする前記(15)に記載の成形性の優れた鋼管。
( 1 7 ) 鋼中に、 更に、 質量0/。で、 B : 0. 0 0 0 1 〜 0. 0 1 % 、 N i : 0. 0 0 1〜 1 . 5 %、 C u : 0. 0 0 1 〜 1 . 5 %の 1 種又は 2種以上を含むことを特徴とする前記(15)又は(16)に記載の 成形性の優れた鋼管。
( 1 8 ) 鋼中に、 更に、 質量0/。で、 A 1 : 0. 0 0 1〜 0. 5 %、 C a : 0. 0 0 0 1 〜 0. 5 %、 M g : 0. 0 0 0 1 〜 0. 5 %、 R e m : 0. 0 0 0 1〜 0. 5 %の 1種又は 2種以上を含むことを 特徴とする前記 (15) 乃至 (17) の何れか 1項に記載の成形性の優 れた鋼管。
( 1 9 ) 前記 (1)乃至(18)の何れか 1項に記載の成形性の優れた鋼 管を製造するに当たり、
(1) 少なく とも鋼板 1 / 2板厚での板面の { 1 1 0 } < 1 1 0 > 〜 { 1 1 1 } く 1 1 0〉の方位群の X線ランダム強度比の平均が 2. 0以上、 鋼板 1 / 2板厚での板面の { 1 1 0 } く 1 1 0 >の X線ランダム強度比が 3. 0以上の何れか一方又は両方であるこ と、
(2) 少なく とも鋼板 1 / 2板厚での板面の { 1 1 1 } < 1 1 0 > の X線ランダム強度比、 鋼板 1 Z 2板厚での板面の { 1 1 0 } < 1 1 0〉〜 { 3 3 2 } く 1 1 0 >の方位群の X線ランダム強度比 の平均、 鋼板 1 / 2板厚での板面の { 1 1 0 } く 1 1 0 >の X線 ランダム強度比のうちの何れか 1又は 2項目以上が 3. 0以上で あること、
(3) 少なく とも鋼板 1 Z 2板厚での板面の { 1 0 0 } く 1 1 0 > 〜 { 2 2 3 } < 1 1 0 >の方位群の X線ランダム強度比の平均、 鋼板 1 2板厚での板面の { 1 0 0 } く 1 1 0 >の X線ランダム 強度比の、 何れか一方又は两方が 3. 0以下であること、
(4) 少なく とも鋼板 1 / 2板厚での板面の { 1 1 1 } < 1 1 0 > 〜 { 1 1 1 } く 1 1 2 >及び { 5 5 4 } く 2 2 5〉の方位群の X 線ランダム強度比の平均が 2. 0以上、 鋼板 1 Z 2板厚での板面 の { 1 1 1 } く 1 1 0 >の X線ランダム度比が 3. 0以上の何れ か一方又は両方であること、
の上記 (1)乃至(4) のうちの何れか 1又は 2項目以上を満たす熱延 板又は冷延板を基板と して母管を造管した後、 A c 3 変態点以上 A c 3 + 2 0 0 °C以下に加熱後、 9 0 0〜 6 5 0 °Cで縮径加工を施す ことを特徴とする成形加工性に優れた鋼管の製造方法。 ( 2 0 ) 前記 (1)乃至(18)の何れか 1項に記載の成形性の優れた鋼 管を製造するに当たり、
(1) 少なく とも鋼板 1 / 2板厚での板面の { 1 1 0 } く 1 1 0 〉 〜 { 1 1 1 } < 1 1 0〉の方位群の X線ランダム強度比の平均が
2. 0以上、 鋼板 1 Z 2板厚での板面の { 1 1 0 } く 1 1 0 >の X線ランダム強度比が 3 · 0以上の何れか一方又は両方であるこ と、
(2) 少なく とも鋼板 1 / 2板厚での板面の { 1 1 1 } く 1 1 0 〉 の X線ランダム強度比、 鋼板 1 / 2板厚での板面の { 1 1 0 } く 1 1 0 >〜 { 3 3 2 } < 1 1 0 >の方位群の X線ランダム強度比 の平均、 鋼板 1ノ 2板厚での板面の { 1 1 0 } < 1 1 0 >の X線 ランダム強度比のうちの何れか 1又は 2項目以上が 3. 0以上で あること、
(3) 少なく とも鋼板 1 / 2板厚での板面の { 1 0 0 } < 1 1 0 > 〜 { 2 2 3 } く 1 1 0 〉の方位群の X線ランダム強度比の平均が
3. 0以下、 鋼板 1 2板厚での板面の { 1 0 0 } < 1 1 0 >の X線ランダム強度比が 3. 0以下の何れか一方又は両方であるこ と、
(4) 少なく とも鋼板 1 2板厚での板面の { 1 1 1 } < 1 1 0 > 〜 { 1 1 1 } く 1 1 2〉及び { 5 5 4 } く 2 2 5 >の方位群の X 線ランダム強度比の平均が 2. 0以上、 鋼板 1 / 2板厚での板面 の { 1 1 1 } く 1 1 0 >の X線ランダム強度比が 1. 5以上の何 れか一方又は両方であること、
の上記 (1)乃至(4) のうちの何れか 1又は 2項目以上を満たす熱延 板又は冷延板を基板として母管を造管した後、 A c 3 + 2 0 0.°C以 下 6 5 0 °C以上で熱処理を施すことを特徴とする成形性の優れた鋼 管の製造方法。 ( 2 1 ) 鋼管の特性と して、
(1) 管長手方向の n値が 0. 1 8以上であること、
(2)管周方向の n値が 0. 1 8以上であること、
の何れか一方又は両方を満たすことを特徴とする成形性の優れた鋼 管。
( 2 2 ) 鋼管の特性と して、 管長手方向の r値が 0. 6以上 2. 2 未満であることを特徴とする前記(21)に記載の成形性の優れた鋼管
( 2 3 ) 前記 X線ランダム強度比において、
(1) 鋼板 1 / 2板厚での板面の { 1 1 0 } < 1 1 0 〉〜 { 1 1 1 } < 1 1 0 >の方位群の X線ランダム強度比の平均が 1. 5以上、 力 つ、
(2) 鋼板 1 / 2板厚での板面の { 1 1 0 } く 1 1 0 〉の X線ラン ダム強度比が 5. 0以下、
を満たすことを特徴とする前記(21)又は(22)に記載の成形性の優れ た鋼管。
( 2 4 ) 鋼板 1 / 2板厚での板面の { 1 1 1 } < 1 1 0〉の 線ラ ンダム強度比が 3. 0以'上を満たすことを特徴とする前記(21)乃至 (23)の何れか 1項に記載の成形性の優れた鋼管。
( 2 5 ) 面積率で 5 0 %以上のフェライ トを含み、 各フェライ ト粒 径が 0. l〜 2 0 0 z mであることを特徴とする前記(21)乃至(24) の何れか 1項に記載の成形性の優れた鋼管。
( 2 6 ) 面積率で 5 0 %以上のフェライ トを含み、 各フヱライ ト粒 の平均アスペク ト比 (長手方向粒長さ/厚み方向粒厚さ) が 0. 5 〜 3. 0であることを特徴とする前記(21)乃至(25)の何れか 1項に 記載の成形性の優れた鋼管。
( 2 7 ) 質量%で、 C : 0. 0 0 0 5〜 0. 3 0 %、 S i : 0. 0 0 1〜 2. 0 %、 Mn : 0. 0 1〜 3. 0 %、 N : 0. 0 0 0 1〜 0. 0 3 %を含有し、 残部が鉄及び不可避的不純物からなることを 特徴とする前記(21)乃至(26)の何れか 1項に記載の成形性の優れた 鋼管。
( 2 8 ) 鋼中に、 更に、 質量%で、 A l 、 Z r、 M gの 1種又は 2 種以上を合計で 0. 0 0 0 1〜 0. 5 %含むことを特徴とする前記 (21)乃至(27)の何れか 1項に記載の成形性の優れた鋼管。
( 2 9 ) 鋼中に、 更に、 質量%で、 T i 、 V、 N bの 1種又は 2種 以上を合計で 0. 0 0 1〜 0. 5 %含むことを特徴とする前記(21) 乃至(28)の何れか 1項に記載の成形性の優れた鋼管。
( 3 0 ) 鋼中に、 更に、 質量%で、 Pを 0. 0 0 1〜 0. 2 0 %含 むことを特徴とする前記(21)乃至(29)の何れか 1項に記載の成形性 の優れた鋼管。
( 3 1 ) 鋼中に、 更に、 質量0/。で、 Bを 0. 0 0 0 1〜 0. 0 1 % 含むことを特徴とする前記(21)乃至(30)の何れか 1項に記載の成形 性の優れた鋼管。
( 3 2 ) 鋼中に、 更に、 質量0/。で、 C r、 C u、 N i 、 C o、 W、 M oの 1種又は 2種以上を合計で 0. 0 0 1〜 5. 0 %含むことを 特徴とする前記(21)乃至(31)の何れか 1項に記載の成形性の優れた 鋼管。
( 3 3 ) 鋼中に、 更に、 質量%で、 C a、 希土類元素 (R e m) の 1種又は 2種を合計で 0. 0 0 0 1〜 0. 5 %含むことを特徴とす る前記(21)乃至(32)の何れか 1項に記載の成形性の優れた鋼管。
( 3 4 ) 前記(21)乃至(33)の何れか 1項に記載の成形性の優れた鋼 管を製造するに当たり、 母管を造管した後、 A c 3 変態点一 5 0 °C 以上 A c 3 変態点 + 2 0 0 °C以下に加熱し、 6 5 0〜 9 0 0 °Cで縮 径率が 1 0〜 4 0 %となる縮径加工を行う ことを特徴とする成形性 の優れた鋼管の製造方法。
発明を実施するための最良の形態
以下に、 本発明を詳細に説明する。 まず、 前記 ( 1 ) の発明につ いて説明する。
以下の説明において、 成分含有量は質量%である。
C : Cは高強度化に有効で 0. 0 0 0 5 %以上添加するが、 集合 組織を制御する上で多量添加は好ましくないので、 上限を 0. 3 0
%とした。
S i : S i は強化元素であり、 脱酸元素でもあることから下限を 0. 0 0 1 %と し、 過剰添加はメ ツキのぬれ性や加工性の劣化を招 くため、 上限を 2. 0 %と した。
M n : M nは高強度化に有効な元素であるため下限を 0. 0 1 % とした。 また、 過剰添加は延性の低下を招くため、 上限を 3. 0 % とした。
鋼板 1ノ 2板厚での板面の { 1 1 0 } < 1 1 0 >〜 { 1 1 1 } く 1 1 0 >の方位群及び { 1 1 0 } く 1 1 0 >の X線ランダム強度比
: ハイ ド口フォーム成形を行う上で最も必要な特性値である。 板厚 中心位置での板面の X線回折を行い、 ランダム結晶に対する各方位 の強度比を求めたときの、 { 1 1 0 } く 1 1 0 >〜 { 1 1 1 } < 1 1 0 >の方位群での平均を 2. 0以上とした。
この方位群に含まれる主な方位は、 { 1 1 0 } < 1 1 0 >、 { 6 6 1 } < 1 1 0 >、 { 4 4 1 } < 1 1 0〉、 { 3 3 1 } < 1 1 0 > 、 { 2 2 1 } < 1 1 0 >、 { 3 3 2 } < 1 1 0 >、 { 4 4 3 } < 1 1 0 >、 { 5 5 4 } く 1 1 0 >及び { 1 1 1 } く 1 1 0 >である。 これらの各方位の X線ランダム強度比は、 { 1 1 0 } 極点図より ベク トル法によ り計算した 3次元集合組織や、 { 1 1 0 } 、 { 1 0 0 } 、 { 2 1 1 } , { 3 1 0 } 極点図のうちの複数の極点図を基に 級数展開法で計算した 3次元集合組織から求めればよい。
例えば、 後者の方法から各結晶方位の X線ランダム強度比を求め る場合には、 3次元集合組織の φ2 = 4 5度断面における ( 1 1 0 ) 〔 1 _1 0〕 、 ( 6 6 1 ) 〔 1 -1 0〕 、 ( 4 4 1 ) [ 1 -1 0 〕 、 ( 3 3 1 ) 〔 1 _1 0〕 、 ( 2 2 1 ) 〔 1 - 1 0〕 、 ( 3 3 2 ) 〔 1 - 1 0〕 、 ( 4 4 3 ) 〔 1 - 1 0〕 、 ( 5 5 4 ) [ 1 -1 0 :] 及び ( 1 1 1 ) 〔 1 -1 0〕 の強度で代表させることができる。 { 1 1 0 } く 1 1 0 >〜 { 1 1 1 } く 1 1 0 >の方位群の平均 X線 ランダム強度比とは、 上記の各方位の相加平均である。 上記方位の すべての強度が得られない場合には、 { 1 1 0 } < 1 1 0 >、 { 4 4 1 } く 1 1 0 >、 { 2 2 1 } く 1 1 0 >の方位の相加平均で代替 してもよい。 中でも { 1 1 0 } く 1 1 0 >は重要であり、 この方位 の X線ランダム強度比が 3. 0以上であることが特に望ましい。 { 1 1 0 } < 1 1 0 >〜 { 1 1 1 } < 1 1 0 >の方位群の平均強度 比が 2. 0以上で、 かつ、 { 1 1 0 } く 1 1 0 >の強度比が 3. 0 以上であれば、 特にハイ ドロフォーム用鋼管として更に好適である ことは言う までもない。
また、 製品形状が成形加工モードにおいて軸押し量を比較的大き く取らなければならないような場合には、 上記方位群の平均強度比 が 3. 5以上であること、 { 1 1 0 } < 1 1 0 >の強度比が 5. 0 以上であることが望ましい。
また、 前記 ( 1 1 ) の発明では、 鋼管の集合組織と して、
(1) 少なく とも鋼板 1 / 2板厚での板面の { 1 1 1 } < 1 1 0 > の X線ランダム強度比、 鋼板 1 / 2板厚での板面の { 1 1 0 } < 1 1 0 >〜 { 3 3 2 } < 1 1 0 >の方位群の X線ランダム強度比 の平均、 鋼板 1 / 2板厚での板面の { 1 1 0 } < 1 1 0 >の X線 ランダム強度比のうちの何れか 1又は 2項目以上が 3. 0以上で あること、
(2) 少なく とも鋼板 1Z2板厚での板面の { 100 } < 110 > 〜 { 2 2 3 } < 1 1 0 >の方位群の X線ランダム強度比の平均、 鋼板 1 Z 2板厚での板面の { 100 } < 1 10 >の X線ランダム 強度比の何れか一方又は両方が 3. 0以下であること、
(3) 少なく とも鋼板 1 / 2板厚での板面の { 1 1 1 } く 1 1 0〉 〜 { 1 1 1 } く 1 1 2 >及び { 5 5 4 } < 2 2 5 >の方位群の X 線ランダム強度比の平均が 2. 0以上、 鋼板 1Z2板厚での板面 の { 1 1 1 } < 1 1 0 >の X線ランダム強度比が 3. 0以上であ ることの何れか一方又は両方であること、
の上記 (1)乃至(3) のうちの何れか 1又は 2項目以上を満たすこと と した。
上記方位群のうち、 (1) の方位限定については、 { 110} < 1 10 >〜 { 111 } く 110 >の方位群のうち { 111} く 110 〉については、 その相加平均から削除しても本発明の効果を失する ことはない。
すなわち、 少なく とも鋼板 1 Z 2板厚での板面の { 110} < 1 1 0 >の X線ランダム強度比、 { 1 1 0 } く 1 1 0 >〜 { 3 3 2 } < 1 10 >の方位群の平均強度比、 及び、 { 1 10} く 110 >の X線ランダム強度比のうちの、 何れか 1又は 2以上が 3. 0以上で あれば、 本発明の意味する高成形性 (各ハイ ドロフォームの条件で の拡管率で 1 . 2 5以上) を達成することが可能である。
このように、 少なく とも鋼板 1Z2板厚での板面の { 110} く 1 1 0 >〜 { 3 3 2 } く 1 1 0〉の方位群及び { 1 1 0 } < 1 1 0 >の X線ランダム強度比が、 ハイ ドロフォーム成形を行う上で重要 な特性値の 1つである。
また、 (2) の方位限定については、 少なく とも鋼板 1 / 2板厚で の板面の { 1 0 0 } く 1 1 0 >〜 { 2 2 3 } く 1 1 0〉の方位群の X線ランダム強度比の平均が 3. 0を超え、 又は、 少なく とも鋼板 1 / 2板厚での板面の { 1 0 0 } < 1 1 0 >の X線ランダム強度比 が 3. 0を超えると、 本発明の目的とする、 特にハイ ドロフォーム における拡管率等が 1. 2程度以下にまで低くなるため、 それぞれ を 3. 0以下と した。
また、 (3) の方位限定については、 鋼板 1 / 2板厚での板面の { 1 1 1 } く 1 1 0 >〜 { 1 1 1 } く 1 1 2 >及び { 5 5 4 } < 2 2 5 〉の方位群の X線ランダム強度比の平均が 2. 0未満、 又は、 鋼 板 1 Z 2板厚での板面の { 1 1 1 } < 1 1 0 >の X線ランダム強度 比が 3. 0未満であると、 やはりハイ ドロフォームにおける拡管率 が低くなる傾向にあるので、 それぞれ 2. 0以上及び 3. 0以上の 集積度を確保すること とし、 前記 (1)及び(2) と併せて (1)〜(3) のうちの少なく とも 1項目以上を満たすこと とし、 ハイ ドロフォー ム成形時の加工性を確保するものと した。
また、 上記の各方位の強度比は、 板厚中心位置での板面の X線回 折を行い、 ランダム結晶に対する各方位の強度比を求める。
上記方位群に含まれる主な方位について説明する。
{ 1 1 0 } く 1 1 0 >〜 { 3 3 2 } < 1 1 0 >の方位群に含まれ る主な方位は、 { 1 1 0 } く 1 1 0 >、 { 6 6 1 } < 1 1 0 > , { 4 4 1 } < 1 1 0 >、 { 3 3 1 } < 1 1 .0 >、 { 2 2 1 } < 1 1 0 >、 { 3 3 2 } く 1 1 0 >、 { 4 4 3 } く 1 1 0 >、 及び、 { 5 5 4 } く 1 1 0 >である。
また、 { 1 0 0 } く 1 1 0 >〜 { 2 2 3 } < 1 1 0 >の方位群に 含まれる主な方位は、 { 1 0 0 } く 1 1 0 >、 { 1 1 6 } く 1 1 0 >、 { 1 1 4 } < 1 1 0 >、 { 1 1 3 } < 1 1 0 >、 { 1 1 2 } < 1 1 0 >、 { 3 3 5 } く 1 1 0 >、 及び、 { 2 2 3 } く 1 1 0 >で ある。
また、 { 1 1 1 } く 1 1 0 >〜 { 1 1 1 } く 1 1 2 >の方位群に 含まれる主な方位は、 { 1 1 1 } く 1 1 0〉、 及び、 { 1 1 1 } く 1 1 2〉である。
これらの各方位の X線ランダム強度比は、 { 1 1 0 } 極点図よ り べク トル法によ り計算した 3次元集合組織や、 { 1 1 0 } 、 { 1 0 0 } 、 { 2 1 1 } , { 3 1 0 } 極点図のうちの複数の極点図を基に 、 級数展開法で計算した 3次元集合組織から求めればよい。
例えば、 { 1 1 0 } く 1 1 0 >〜 { 3 3 2 } く 1 1 0 >の方位群 について、 後者の方法から各結晶方位の X線ランダム強度比を求め るには、 3次元集合組織の φ 2 = 4 5度断面における ( 1 1 0 ) 〔 1 -1 0〕 、 ( 6 6 1 ) 〔 1 -1 0〕 、 ( 4 4 1 ) 〔 1 -1 0〕 、
( 3 3 1 ) 〔 1 - 1 0〕 、 ( 2 2 1 ) 〔 1 - 1 0〕 、 ( 3 3 2 ) 〔 1 -1 0〕 、 ( 4 4 3 ) 〔 1 -1 0〕 、 ( 5 5 4 ) 〔 1 - 1 0〕 で 計算でき、 また、 { 1 0 0 } く 1 1 0 >〜 { 2 2 3 } く 1 1 0 >の 方位群では、 ( 0 0 1 ) 〔 1 -1 0〕 、 ( 1 1 6 ) 〔 1 -1 0〕 、
( 1 1 4) 〔 1 - 1 0〕 、 ( 1 1 3 ) 〔 1 -1 0〕 、 ( 1 1 2 ) 〔 1 -1 0〕 、 ( 3 3 5 ) 〔 1 -1 0〕 及び ( 2 2 3 ) 〔 1 -1 0〕 で、 { 1 1 1 } く 1 1 0 >〜 { 1 1 1 } く 1 1 2〉の方位群では、
( 1 1 1 ) 〔 1 _1 0〕 及び ( 1 1 1 ) 〔- 1 - 1 2〕 で、 それぞれ 代表できる。
また、 特に重要な { 1 1 0 } く 1 1 0 >〜 { 3 3 2 } < 1 1 0 > の方位群について、 上記方位のすべての強度が得られない場合には 、 ( 1 1 0 ) 〔 1 -1 0〕 、 ( 4 4 1 ) 〔 1 - 1 0〕 、 ( 2 2 1 ) 〔 1 -1 0〕 の方位の相加平均で代替してもよい。
なお、 本発明の集合組織は、 通常の場合、 φ 2 = 4 5 ° 断面にお いて上記の方位群の範囲内に最高強度を有し、 この方位群から離れ るにしたがって徐々に強度レベルが低下するが、 X線の測定精度の 問題や、 鋼管製造時の軸周りのねじれの問題、 X線試料作製の精度 の問題などを考慮すると、 最高強度を示す方位が、 これらの方位群 から ± 5 ° 乃至 1 0 ° 程度ずれる場合も有り得る。
鋼管の X線回折を行う場合には、 鋼管よ り弧状試験片を切り出し 、 これをプレスして平板と し X線解析を行う。 また、 弧状試験片か ら平板とする ときは、 試験片加工による結晶回転の影響を避けるた め極力低歪みで行う ものと し、 加えられる歪み量の上限を 1 0 %と し、 それ以下で行う こと と した。 このようにして得られた板状の試 料については、 機械研磨によって所定の板厚まで減厚した後、 化学 研磨などによつて歪みを除去すると同時に、 板厚中心層が測定面と なるように調整する。
なお、 鋼板の板厚中心層に偏析帯が認められる場合には、 板厚の
3 / 8〜 5 Z 8の範囲で偏析帯のない場所について測定すればよい 。 また、 偏析帯が認められない場合においても、 板厚 1 / 2の板面 以外の板面、 例えば、 上記 3 8〜 5 / 8の範囲で、 請求の範囲で 規定する集合組織が得られてもよい。 更に、 X線測定が困難な場合 には、 E B S P法や E C P法によ り測定しても差し支えない。
本発明の集合組織は、 上述の通り板厚中心又は板厚中心近傍の面 における X線測定結果によ り規定されるが、 中心付近以外の板厚に おいても同様の集合組織を有することが好ましい。 しかしながら、 鋼管の外側表面〜板厚 1 Z 4程度までは、 後述する縮径加工による せん断変形に起因して集合組織が変化し、 上記の集合組織の要件を 満たさない場合もあり得る。 '
なお、 { h k 1 } < u V w >とは、 上述の方法で X線用試料を探 取したとき、 板面に垂直な結晶方位が < h k l >で、 鋼管の長手方 向がく u V w >であることを意味する。 ' 本発明の集合組織に関する特徴は、 通常の逆極点図や正極点図だ けでは表すことができないが、 例えば、 鋼管の半径方向の方位を表 す逆極点図を板厚の中心付近に関して測定した場合、 各方位の X線 ランダム強度比は、 以下のようになることが好ましい。
く 1 .0 0 > : 2以下、 く 4 1 1 > : 2以下、 く 2 1 1 > : 4以下 、 く 1 1 1 > : 1 5以下、 く 3 3 2〉 : 1 5以下、 く 2 2 1 〉 : 2 0. 0以下、 く 1 1 0 > : 3 0. 0以下。
また、 軸方向を表す逆極点図においては、 く 1 1 0 > : 1 0以上 、 上記のく 1 1 0 >以外の全ての方位 : 3以下。
次に、 前記 ( 9 ) の発明について説明する。
n値 : ハイ ド口フォームでは、 ある程度、 等方的に加工が加えら れる場合もあり、 管の長手方向及び/又は周方向の n値を確保する 必要があるため、 それぞれ 0. 1 2を下限と した。 n値の上限は特 に定めることなく本発明の効果を得ることができる。
n値は、 J I Sの引張り試験法における歪み量が 5〜 1 0 %又は 3〜 8 %で求められる値と定義する。 - 次に、 前記 ( 1 0 ) の発明について説明する。
r値 : ハイ ド口フォームでは、 軸押しをして材料を流入させる加 ェもあり、 そのような部位の加工性を確保するため、 管長手方向の r値の下限を 1 . 1 とした。 r値の上限は特に定めることなく本発 明の効果を得ることができる。
r値は、 J I Sにある引張り試験で歪み量で 1 0 %又は 5 %で得 られる値と定義する。
以下に、 前記 ( 2 ) 〜 ( 7 ) 及び前記 ( 1 5 ) 〜 ( 1 8 ) の発明 の成分組成に係る限定理由について説明する。
A 1 、 Z r、 M g : 脱酸元素である。 また、 A 1 は、 特に、 箱焼 鈍を行う場合には成形性向上に寄与する。 一方、 過剰添加は、 酸化 物、 硫化物や窒化物の多量晶出 · 析出を招き、 清浄度を劣化させ、 延性を低下させてしまう上、 メ ツキ性を著しく損なう。 したがって
、 必要に応じて、 これらの 1種または 2種以上を、 合計で 0. 0 0 0 1〜 0. 5 0 %、 又は、 A 1 : 0. 0 0 0 1〜 0. 5 %、 Z r : 0. 0 0 0 1〜 0. 5 %、 M g : 0. 0 0 0 1〜 0. 5 %と した。
N b、 T i 、 V : 必要に応じて添加する N b、 T i 、 Vは、 これ らの 1種又は 2種以上の合計、 又は、 単独での 0. 0 0 1。 /。以上の 添加で、 炭化物、 窒化物もしく は炭窒化物を形成することによって 鋼材を高強度化するが、 その合計又は単独の含有量が 0. 5 %を超 えた場合には、 母相であるフェライ ト粒内もしくは粒界に多量の炭 化物、 窒化物もしくは炭窒化物と して析出して、 延性を低下させる ことから、 添加範囲を 1種又は 2種以上の合計又は単独で 0. 0 0 1〜 0. 5 %とした。
P : Pは高強度化に有効な元素であるが、 溶接性ゃ錶片の耐置き 割れ性の劣化や疲労特性、 靱性の劣化を招く ことから、 必要に応じ て添加すること とし、 その範囲を 0. 0 0 1〜 0. 2 0 %と した。
B : 必要に応じて添加する Bは、 粒界の強化や鋼材の高強度化に 有効ではあるが、 その添加量が 0. 0 1 %を超えるとその効果が飽 和するばかりでなく、 必要以上に鋼板強度を上昇させ、 加工性も低 下させること力、ら、 0. 0 0 0 1〜 0. 0 1 %と した。
N i 、 C r、 C u、 C o、 M o、 W : これらは強化元素であり、 必要に応じて 1種又は 2種以上の合計で又は単独で 0. 0 0 1 %以 上の添加と した。 また、 過剰の添加は延性低下を招く ことから、 1 種又は 2種以上の合計又は単独で 0. 0 0 1〜 1 . 5 %とした。
C a、 希土類元素 (R e m) : 介在物制御に有効な元素で、 適量 添加は熱間加工性を向上させるが、 過剰の添加は、 逆に熱間脆化を 助長させるため、 必要に応じて、 合計又は単独で 0. 0 0 0 1〜 0 . 5 %の範囲と した。 ここで、 希土類元素 (R e m) とは、 Y、 S r及びランタノィ ド系の元素を指し、 工業的にはこれらの混合物で あるミ ッシュメタルと して添加することがコス ト的に有利である。
N : Nは高強度化に有効で 0. 0 0 0 1 %以上の添加とするが、 溶接欠陥制御の点で多量添加は好ましいものではなく、 上限を 0. 0 3 %とした。
H f 、 T a : 必要に応じて添加する H f 、 T aは、 それぞれ 0. 0 0 1 %以上の添加で炭化物、 窒化物もしくは炭窒化物を形成する ことによって鋼材を高強度化するが、 2. 0 %を超えた場合には、 母相であるフェライ ト粒内もしくは粒界に多量の炭化物、 窒化物も しく は炭窒化物として析出して延性を低下させることから、 添加範 囲を、 それぞれ単独で 0. 0 0 1〜 2. 0 %と した。
また、 不可避的不純物と して〇、 S n、 S、 Z n、 P b、 A s、 S bなどを、 それぞれ 0. 0 1 %以下の範囲で含んでも、 本発明の 効果を失するものではない。
結晶粒径 : 集合組織を制御するにあたり結晶粒径を制御するこ と が重要である。 特に、 前記 ( 8 ) 及び ( 1 2 ) の発明においては、 { 1 1 0 } く 1 1 0 >の強度をより強くするためには、 主相である フェライ トの粒径を 0. 1〜 2 0 0 μ πιに制御することが必要であ る。 また、 ある程度混粒であっても、 例えば、 0. 1〜 1 0 μ πιの フェライ ト粒の領域と、 1 0〜 1 0 0 ; i mのフェライ ト粒の領域が 混在する金属組織においても、 { 1 1 0 } く 1 1 0 > ~ { 3 3 2 } < 1 1 0 >の方位群で最も成形性向上に重要な { 1 1 0 } < 1 1 0 >の強度を高めることとができれば、 本発明の効果を失することは ない。 ここでフェライ ト粒径は、 J I Sに準拠した切断法で求める ものとした。
ここで、 フェライ ト粒径ゃァスぺク ト比を測定するにあたり、 粒 界を明確化する必要がある。 観察断面を数 μ mの研磨用ダイャモン ド又はパフ研磨で仕上げて、 炭素量の比較的高い鋼種については、
2〜 5 %ナイタール液を用いて、 極低炭素鋼 (例えば I F鋼) につ いては、 特殊エッチング液 : S U L C— Gを用いて、 それぞれフエ ライ ト粒界を明確に出現させる。
特殊エッチング液は、 以下の方法で作成する。 水 1 0 0 m l に ド デシノレベンゼンスノレホン酸 : 2〜 1 0 g、 篠酸 : 0. :!〜 l g、 ピ ク リ ン酸 : l〜 5 gを溶かした後、 6 Nの塩酸 : 2〜 3 m 1 を加え ることで作製できる。 これらの手法を用いて得られる組織には、 フ エライ ト粒界や、 そのサブグレインの一部も出現することがある。
ここで言う フェライ ト粒界とは、 これらの一部出現したサブダレ イ ンのような界面も含めて、 上記の試料調整によ り光学顕微鏡によ り可視化された界面をさし、 粒径及びァスぺク ト比を測定するもの とする。 ここで、 フェライ ト粒径は、 1 0 0〜 5 0 0倍の 2 0視野 以上の画像解析によ り測定を行い、 粒径ゃァスぺク ト比等を求めた 。 また、 フェライ トを球形と仮定して面積率を測定した。 なお、 こ の値は体積率もほぼ同じ値をとる。
さ らに、 フェライ ト以外の金属組織として、 パーライ ト、 ベイナ ィ ト、 マルテンサイ ト、 オーステナイ ト及び炭窒化物等の組織を含 んでもよい。 また、 延性確保の理由でこれらの硬質相は 5 0 %未満 とする。 また、 0. 1 / m未満の再結晶粒を工業的に作製すること は困難であり、 2 0 0 μ πι超の粒が混在すると { 1 1 0 } く 1 1 0 >の強度が低下するため、 これを上限と した。
更には、 前記 ( 1 3 ) 、 ( 1 4 ) の発明では、 { 1 1 0 } く 1 1 0 >〜 { 3 3 2 } く 1 1 0〉の方位群の強度比を高め、 { 1 0 0 } < 1 1 0 >〜 { 2 2 3 } く 1 1 0 >の強度比を低めるために、 フエ ライ ト粒径の標準偏差又はフェライ ト粒のァスぺク ト比を限定した これらの値は、 1 0 0〜 1 0 0 0倍の光学顕微鏡にて 2 0視野以 上の観察を行い、 各粒径については、 円相当径を画像解析により求 めて標準偏差を算出した。
また、 アスペク ト比については、 圧延方向と平行な線分と同じ長 さの垂直方向の線分とに交わる各フェライ ト粒界の数の比により、 ァスぺク ト比 =圧延方向と垂直方向/圧延方向と平行、 により求め た。 標準偏差が平均粒径の ± 4 0 %を超えたり、 アスペク ト比が 3 を超えたり、 一方、 該比が 0 . 5未満では、 成形性が劣化する傾向 にあるため、 これらを上 · 下限として規定した。
また、 前記 ( 1 3 ) の発明においては、 { 1 1 1 } く 1 1 0 >及 び/又は { 1 1 0 } く 1 1 0 〉〜 { 3 3 2 } < 1 1 0 >の方位群の 強度比を高めるため、 フェライ ト粒径の下限値を 1 μ πιとした。
さらに、 本発明の鋼管を製造するにあたっては、 高炉、 電炉によ る溶製に続き各種の 2次製鍊を行い、 インゴッ ト铸造や連続铸造を 行い、 連続铸造の場合には、 そのまま熱間圧延するなどの製造方法 を組み合わせて製造しても、 何ら本発明の効果を阻害するものでは ない。
また、 1 0 5 0 °C〜 1 3 0 0 °Cに鋼塊を加熱して熱間圧延を A r 3 変態点一 1 0 °C以上 A r 3 変態点 + 1 2 0 °C未満で行うことや、 熱延時に潤滑圧延を施すこと、 熱延板の卷き取り処理を 7 5 0 °C以 下で行うこと、 更には、 冷間圧延を施すこと、 その後に箱焼鈍又は 連続焼鈍にて焼鈍を行うなど、 造管前の鋼板の製造方法を組み合わ せて製造しても、 何ら本発明の効果を阻害するものではない。 すな わち、 造管用の鋼板は熱延板、 冷延板又は冷延焼鈍板を用いること ができる。
また、 0、 S n、 S、 Z n、 P b、 A s 、 S bなどが、 それぞれ 0. 0 1 %以下混入しても、 本発明の効果を失することはない。 さ らに、 鋼管製造にあたっては、 電鏠溶接、 T I G、 M I G、 レーザ 一溶接、 UOや鍛接等の溶接 · 造管手法等を用いることができる。
次に、 前記 ( 1 9 ) 及び ( 2 0 ) の発明 (成形性の優れた鋼管の 製造法) について説明する。
熱延板又は冷延板の集合組織 : 下記 (1)〜(4) のうちの何れか 1 又は 2項目以上を満足させることは、 鋼管の成形性をより高めるた めの条件である。
(1) 少なく とも鋼板 1 Z 2板厚での板面の { 1 1 0 } < 1 1 0 > 〜 { 1 1 1 } < 1 1 0 >の方位群の X線ランダム強度比の平均が 2. 0以上、 鋼板 1 / 2板厚での板面の { 1 1 0 } < 1 1 0 >の X線ランダム強度比が 3. 0以上の何れか一方又は両方であるこ と。
(2) 少なく とも鋼板 1 2板厚での板面の { 1 1 1 } < 1 1 0 > の X線ランダム強度比、 鋼板 1 / 2板厚での板面の { 1 1 0 } < 1 1 0 >〜 { 3 3 2 } < 1 1 0 >の方位群の Xランダム強度比、 鋼板 1 / 2板厚での板面の { 1 1 0 } く 1 1 0 >の X線ランダム 強度比のう ちの何れか 1又は 2項目以上が 3. 0以上であること
(3) 少なく とも鋼板 1 / 2板厚での'板面の { 1 0 0 } < 1 1 0 > 〜 { 2 2 3 } < 1 1 0〉の方位群の X線ランダム強度比の平均、 鋼板 1 / 2板厚での板面の { 1 0 0 } < 1 1 0 >の X線ランダム 強度比の何れか一方又は両方が 3. 0以下であること。
(4) 少なく とも鋼板 1 / 2板厚での板面の { 1 1 1 } < 1 1 0 > 〜 { 1 1 1 } く 1 1 2〉及び { 5 5 4 } < 2 2 5 >の方位群の X 線ランダム強度比の平均が 2. 0以上、 鋼板 1 / 2板厚での板面 の { 1 1 1 } く 1 1 0 >の X線ランダム強度比が 3. 0以上の何 れか一方又は両方であること。
加熱温度 : 溶接部の成形性向上のために、 縮径前の加熱温度を A c 3 変態点以上と し、 粒の粗大化を防止するため、 加熱温度を A c 3 + 2 0 0 °C以下と規定する。
縮径加工温度 : 縮径後の歪み硬化を回復させるために、 縮径時の 加工温度を 6 5 0 °C以上と し、 粒の粗大化防止のため 9 0 0 °C以下 と規定する。
造管後熱処理温度 : 造管歪みによる鋼管の延性低下を回復させる 目的で行う。 6 5 0 °C未満では十分な延性回復効果が現れず、 A c 3 + 2 0 0 °Cを超えると粒粗大化や表面性状劣化が激しくなること 力、ら、 6 5 0で以上 (: 3 + 2 0 0 °C以下と規定した。
これらの溶接鋼管製造において、 溶接熱影響部に対しては、 必要 とする特性に応じて、 局部的な固溶化熱処理を、 単独あるいは複合 して、 場合によっては、 複数回重ねて行ってもよく、 本発明の効果 をさらに高める。 この熱処理は溶接部と溶接熱影響部のみに付加す ることが目的であって、 製造時にオンラインあるいはオフラインで 施行できる。 また、 縮径、 又は、 縮径前に均質化熱処を施しても何 ら本発明の効果を阻害しない。 また、 縮径時に潤滑を施すことは成 形性向上の点で望ましく、 特に表層の集合組織を請求の範囲で規定 するよ うなものと して、 板厚全面に { 1 1 1 } < 1 1 0 >及び Z又 は { 1 1 0 } く 1 1 0 >〜 { 3 3 2 } く 1 1 0 >への集積度を高め た成形加工性の優れた鋼管を製造でき、 本発明の効果を助長するも のである。
次に前記 ( 2 1 ) の発明について説明する。
鋼管の長手方向及び/又は周方向の n値 : ハイ ドロフォーム等に おける破断又は挫屈まで加工度を高めるのに重要であり、 長手方向 及び 又は周方向で 0. 1 8以上と した。 成型時の変形モー ドによ つて変形量が長手方向や周方向で異なる場合が多いが、 いろいろな 加工経路でも良好な良加工性を確保するためには、 長手方向及び周 方向の n値が 0 . 1 8以上であることが望ましい。
また、 極めて厳しい加工の場合には、 長手方向及び周方向の n値 が共に 0 . 2 0以上であることが望ましい。 n値の上限については 、 特に定めることなく本発明の効果を得ることができるが、 加工経 路によっては、 管長手方向の r値が高いことが望まれる場合もあり 、 この場合には、 縮径加工条件などから n値は 0 . 3以下と して、 管長手方向の r値を向上させることが好ましい場合がある。
次に、 前記 ( 2 2 ) の発明について説明する。
鋼管の長手方向の r値 : これまでの研究によれば、 例えば、 第 5 0回塑性加工連合講演大会 (1999年, 447頁) にあるように、 ハイ ド 口フォーム成形に及ぼす r値の影響が、 シミ ュレーショ ンによる解 析により、 長手方向の r値が H Fでの 1基本変形モードである丁字 成形では効果的であることが示されている。 また、 F I S I TA Wor ld A ut omo t ive Congr es s, 2000A420 (於 Seoul, Junel2_15, 2000 )には、 縮 径率を上げることで、 長手方向の r値の向上が望めることが示され ている。
しかし、 縮径加工度を高めて長手方向の r値を向上させても、 も う 1つの重要な成形性の特性値である n値が低下してしまっては、 鋼管の加工性が改善されたことにはならない。 一方では、 部材の大 型化が進む中、 T字成形のような材料流入が十分生じるような形で ハイ ドロフォーム等が行われる部分に加えて、 材料の流入が比較的 少ない部分での成形性をも確保しなければならない。 すなわち、 n 値も十分に確保する必要があり、 長手方向の r値は低くするように 、 縮径加工度の低下ゃ縮径加工を比較的高温で行う ことが有効であ ることを見出した。 長手方向の r値を 2. 2未満とすることで、 前述した長手方向及 び/又は周方向の n値の確保が工業的に容易になることから、 これ を上限と した。
一方、 r値の下限は成形性確保の点から 0. 6以上とする。
次に、 前記 ( 2 3 ) の発明について説明する。
集合組織 : 成形性を確保するため、
(1) 鋼板 1 Z 2板厚での板面の { 1 1 0 } く 1 1 0 >〜 { 1 1 1 } < 1 1 0 >の方位群の X線ランダム強度比の平均が 1. 5以上 、 力、つ
(2) 鋼板 1ノ 2板厚での板面の { 1 1 0 } < 1 1 0 >の X線ラン ダム強度比が 5. 0以下、
を満たすことと した。 この範囲を外れると n値の劣化が懸念される 更に、 成形性を高め、 n値と r値の良好なパランスを得るために 、 鋼板 1 Z 2板厚での板面の { 1 1 1 } < 1 1 0 >の X線ランダム 強度比が 3. 0以上を満たすことが好ましい。
{ 1 1 0 } く 1 1 0 >〜 { 1 1 1 } < 1 1 0 >の方位群の平均 X 線ランダム強度比の中でも、 { 1 1 1 } < 1 1 0 >の強度比は重要 であり、 特に、 複雑形状や大型の成型品を成形加工する場合には、 この方位の X線ランダム強度比が 3. 0以上であることが特に望ま しい。
{ 1 1 0 } く 1 1 0 >〜 { 1 1 1 } く 1 1 0 >の方位群の平均強 度比が 2. 0以上で、 かつ、 { 1 1 1 } < 1 1 0 >の強度比が 3. 0以上であれば、 特にハイ ドロフォーム用鋼管と して更に好適であ ることは言うまでもない。
また、 { 1 1 0 } く 1 1 0 >も重要な方位の 1つである。 しかし ながら、 延性および管長手及び周方向の n値を十分に確保するため には 5. 0以下とする必要があり、 これを上限と した。
なお、 { h k l } < u V w >とは、 上述の方法で X線用試料を採 収したとき、 板面に垂直な結晶方位が < h k l >で、 鋼管の長手方 向がく u v w>であることを意味する。
これらの方位及び方位群に含まれる主な方位は、 前記 ( 1 ) の発 明で説明したものと同じである。
結晶粒径及びァスぺク ト比 : 前記 ( 1 2 ) の発明と同様に、 0.
1 m未満の粒を工業的に作製することは困難であり、 2 0 0 m 超の粒の存在は、 成形性劣化につながるため、 これらを上下限と し た。 また、 アスペク ト比についても、 前記 ( 1 4 ) の発明と同様で ある。
次に、 前部 ( 2 7 ) の発明以降の発明の成分組成に係る限定理由 について説明する。
成分組成に係る限定理由は、 前述した前記 ( 1 ) の発明で説明し た理由と同一である。
なお、 Nは下記の理由で規定した。
N : Nは高強度化に有効であるので、 0. 0 0 0 1 %以上の添加 とするが、 溶接欠陥制御の点で多量添加は好ましいものではなく、 上限を 0. 0 3 %と した。
前記 ( 2 7 ) 〜 ( 3 3 ) の発明の成分組成に係る限定理由は、 前 述した ( 2 ) 〜 ( 7 ) の発明、 及び、 ( 1 5 ) 〜 ( 1 8 ) の発明の 成分組成に係る限定理由と同一である。
N i 、 C r、 C u、 C o、 M o、 W : これら成分の過剰の添加は 延性低下を招く ことから、 合計又は単独で 0. 0 0 1〜 5. 0 %と した。
また、 不可避的不純物どして 0、 S n、 S、 Z n、 P b、 A s、 S bなどを、 それぞれ 0. 0 1 %以下の範囲で含んでも、 本発明の 効果を失するものではない。
次に、 前記 ( 3 4) の発明について説明する。 以下の限定要件を 除き、 前記 ( 1 9 ) の発明と同様である。
'母管製造後、 A c 3 変態点一 5 0 °C以上 A c 3 変態点 + 2 0 0 °C 以下に加熱し、 6 5 0 °C以上で縮径率が 4 0 %以下となる縮径加工 を行う。
加熱温度が A c 3 変態点一 5 0 °Cよ り低いと、 延性低下や集合組 織形成の点で不利になる原因となり、 A c 3 変態点 + 2 0 0 °Cよ り 高いと酸化による表面性状劣化や粒の粗大化を招くため、 上記の範 囲に限定する。
また、 縮径加工温度が 6 5 0 °Cよ り低いと n値が低下するため、 上記の範囲に限定する。 縮径加工温度の上限は特に制限しないが、 酸化による表面性状劣化のため、 8 8 0 °C以下とすることが好まし い。 また、 縮径率は 4 0 %を超えると η値が顕著であり、 また延性 劣化や表面性状の劣化が懸念されるので、 上記の範囲に限定する。 縮径率の下限は集合組織形成助長のため 1 0 %とする。
縮径率とは、 母管の外径で製品の外径を除して 1から差し引いた 値と し、 加工によ り縮径した量を意味する。
また、 縮径時に潤滑を施すことは成形性向上の点で望ましく、 特 に表層の集合組織を本発明で規定する範囲内にあるよ うなものと し て、 板厚全面に、 { 1 1 1 } < 1 1 0 >及びノ又は { 1 1 0 } < 1 1 0 >〜 { 1 1 1 } く 1 1 0 >への集積度を高め、 { 1 1 0 } < 1 1 0 >への集積を適度に抑制するこ とで、 ハイ ドロフォーム等にお ける種々の成形モー ドにおいて良好な加工性を示す高強度鋼管を製 造でき、 本発明の効果を助長するものである。
実施例
[実施例 1 ] 表 1〜 4に示す成分組成の各鋼を、 実験室規模で溶製して 1 2 0 0 °Cに加熱後、 熱間圧延し、 各鋼の成分と冷却速度で決まる A r 3 変態点一 1 0 °C以上 A r 3 変態点 + 1 2 0 °C未満 (概ね 9 0 0 °C ) で、 2. 2及び 7 mm厚さに熱間圧延を終了し、 造管用の元板及び 冷間圧延用にそれぞれ用いた。
又、 一部については更に冷延後焼鈍して、 2. 2mm厚さの冷延焼 鈍板を作製した。 その後、 外径 1 0 8〜 4 9 mmに冷間で T I G、 レ 一ザ一または電縫溶接を用いて造管した後、 A c 3 変態点〜 A c 3 変態点 + 2 0 0 °Cに加熱して、 外径 7 5〜 2 5 mmに 9 0 0〜 6 5 0 °Cで縮径して高強度鋼管を作製した。
ハイ ド口フォーム成形は、 軸押し量 l mm、 1 0 0 bar /mmの条件で 行い、 パース トに至るまで行った。 前もって鋼管に 1 0 ππηφのスク ライブドサークルを転写し、 破断部近傍もしく は最大板厚減少部分 の管の長手方向歪み : ε φ と、 周方向歪み : ε Θを測定し、 この 2 つの歪の比 ρ = ε φ Ζ ε 0が— 0. 5 (板厚は減少するためマイナ スとなる) になる拡管率を求めて、 これをハイ ド口フォーム成形性 の 1指標と して評価した。
X線解析は、 鋼管から弧状試験片を切り出し、 プレスして平板と して行った。 また、 X線の相対強度はランダム結晶と対比すること で求めた。 長手及び周方向の η値および r値は弧状試験片をそれぞ れ採取して、 n値は歪み量が 5 %〜 1 0 %又は 3 %〜 8 %で、 r値 は歪み量が 1 0 %又は 5 %で、 それぞれ求めた。
表 1〜 4に、 各鋼の { 1 1 0 } < 1 1 0 >及び { 1 1 0 } < 1 1 0 >〜 { 1 1 1 } く 1 1 0 >の方位群の X線ランダム強度比、 及び 、 ハイ ド口フォーム成形におけるパース トまでの拡管率 ( =パース ト時点での ρ = ε φ Ζ ε θ =— 0. 5 となる部分の径 Ζ元管の径) を併せて示す。 発明鋼 A〜Uでは、 { 1 1 0 } < 1 1 0 > X線相対強度がいずれ も 3. 0以上、 かつ、 { 1 1 0 } く 1 1 0 >〜 { 1 1 1 } く 1 1 0 >の方位群の平均 X線ランダム強度比も 2. 0以上であり、 拡管率 も 1. 2 5を超える良好な値を示す。
また、 発明鋼 NA〜NGでは、 熱延原板にも関わらず、 { 1 1 0 } < 1 1 0 > X線相対強度が、 いずれも発明鋼 A〜Uのそれよ りも 高く、 拡管率も 1. 3を超す良好なものがほとんどである。
一方、 比較鋼である高 Cの V鋼、 高 M gの W鋼、 高 N bの X鋼、 高 Bの Z鋼、 高 M oの AA鋼及び高 R EMの B B鋼は、 { 1 1 0 } く 1 1 0 >及び { 1 1 0 } く 1 1 0 >〜 { 1 1 1 } く 1 1 0 >の方 位群の X線ランダム強度比が低く、 拡管率も低い。 一方、 高 Pの Y は、 { 1 1 0 } < 1 1 0 > X線相対強度は高いものの、 溶接部加工 性が低く拡管率が低い。
表 5に、 A、 B及び P鋼の各フヱライ ト粒径の面積率と拡管率の 関係を示す。 粒径分布は、 圧延方向に平行な断面を前述したエッチ ング方法にて光学顕微鏡用試料を作成して、 両像解析処理装置にて 粒径分布を求めた。 混粒組織を呈するこれらの鋼においては、 { 1 1 0 } < 1 1 0 >が他に比べ高めで拡管率も高い。
表 1
Si Mn j 1 0 w 3 las时 lUj l lu inuj \i 1— z.
の溶接 相対強度 パースト 加熱温 法 {111}<110> までの拡 度 °c の平均相対 管率
強度
A 0.045 0.15 0.006 0.3 レ-サ 2.6 4.1 1.3 発明銷- cold 770 A
A レ-サ*- 2.5 3.9 1.3 発明銷- hot 770 A
B 0.055 0.6 0.005 0.1 0.005 0.005 レザー 2.8 4.2 1.3 発明鋼- cold 770 B
B u 電縫 2.フ 4.1 1.26 発明鋼- co Id 770 B
B n 電鏠 2.6 4.2 1.25 発明鋼- hot 770 B
B n n 電鏠 5.3 10.5 1.31 発明鋼- co Id 850 B
B 電缝 5.2 9.8 1.3 発明鎖- ho 850 B
C 0.028 0.01 0.007 0.3 0.041 0.025 レ-ザ '- 2.2 3.9 1.35 発明銷 -co Id 750 c c 電縫 2.3 4 1.34 発明錢- co Id 750 cO c TIG 2.3 4 1.38 発明銷 -co Id 750 c c TIG 2.3 3.9 1.36 発明鋼- hot 750 C
D 0.056 0.03 0.006 0.3 0.052 0.12 Η - 2.2 3.5 1.27 発明鋼- cold 700 D
D 電縫 2.2 3.6 1.26 発明鋼- co Id 700 D
D 電縫 4.6 5.6 1.32 発明銷- hot 840 D
D 電縫 6.3 7.6 1.31 発明鋼- cold 840 D
E 0.002 0.05 0.004 0.4 0.01 0.005 レザ- 2.2 4 1.27 発明鋼 -co Id 700 E
E レザ- 2.1 3.9 1.26 発明鋼- hot 700 E
F 0.036 0.05 0.003 0.2 0.006 0.0025 レザ- 2.3 3.8 .26 発明銷 -co Id 750 F
F レ-ザ♦- 2.2 3.7 1.25 発明鍋- hot 750 F
F レ-ザ' - 4.5 6.3 1.29 発明鋼- hot 770 F
F ぃサ *- 5.1 7 1.28 発明鋼- co Id 770 F
G 0.002 0.05 0.005 0.2 0.04 0.05 0.01 レザ- 2.6 4.1 1.37 発明鋼- id 700 G
G レ-ザ'- 2.3 3.8 1.32 発明鋼- hot 700 G
G レ-サ*- 3.5 5.6 1.35 発明鋼- co Id 835 G
G レ-サ '- 4.5 3.9 1.34 発明鋼- hot 835 G
表 2 (表 1の続き)
、/ リ の溶接 相対強度 パース 加熱温 法 く までの拡 度 °c の平均相) 管率
強度
レ 発明鍋
// // レ 発明鋼
I レ -サ*- 発明銷
レ-ザ' - 発明銷 レ - 発明鋼
u u レーザ '- 発明鋼
u レ-ザ'- 発明鋼
„ レザ - 発明鋼
レ -サ'- 発明鋼 レ-サ* - 発明銷 し レ 発明鋼 し し レザ- 発明鋼 し レ -サ' - 発明銷 レ-サ'- 発明鍋 レ-サ*- 発明銷 レ-ザ'- 発明銷 レザ- 発明鋼 レザ- 発明銷 レ-サ '- 発明鋼
// レ-ザ'- 発明鋼
電縫 発明鋼 レ -サ'- 発明銅 レ -サ'- 発明鋼 レ-ザ' - 発明鋼
表 3 (表 2の続き)
c Si S n Al Zr g Ti V Nb P B Cr Gu Ni Mo Go W Ca Rem 造管時 {110}<110> {110}<110> HFによる 綰径前 の溶接 相対強度 パースト 加熱温 法 {111ί<110> までの拡 度/。 c の平均相対 管率
s 0.002 0.1 0.005 1.1 0.04 0.04 レザ- 2.8 4.1 1.3 発明鍋- cold 750 S 丁 0.02 0.1 0.005 1 0.05 レ-サ'- 2.3 3.8 1.29 発明鋼- cold 750 T u 0002 0.1 0.006 0.9 0.03 0.05 0.09 ΙΗ - 2.6 4.2 1.32 発明鋼- co Id 750 U
V 0.32 0.3 0.003 1 0.026 0.01 \r-f- 0.02 0.05 1.18 比較鋼- co Id: 700 V
Cハズレ
V 電縫 0.02 0.04 1.15 比較鋼- cold: 700 V
Cハズレ
V 電縫 0.02 0.03 1.14 比較鋼- hot: 700 V
Cハズレ
CO V TIG 0.03 0.05 1.22 比較鋼 -cold: 800 V
\ズレ w 0.025 0.05 0.003 0.2 0.008 0.6 レ-ザ' - 0.05 0.03 1.02 比較鋼 -cold: 770 W
Mgハズレ w n tt レザ- 0.04 0.03 1.03 比較鋼- hot: 770 W
Mgハスレ
X 0.052 0.6 0.006 0.7 0.032 2.1 0.013 レ - 0.03 0.03 1.07 比較鋼- cold: 770 X
Nbハズレ
X \r-f- 0.02 0.03 1.05 比較鑕- hot: 770 X
Nbハズレ
Y 0.05 0.1 0.009 0.3 0.045 0.45 レ-ザ'- 2.1 3.2 1.05 比較鋼- cold: 750 Y
Pハズレ
Y 電縫 2 3.2 1.1 比較鋼 -cold: 800 Y
Pハズレ
Y TIG 2.1 3.1 1.08 比較鋼- cold: 750 Y
Pハズレ
Y TIG 2 3 1.12 比較銷 -hot: 800 Y
Pハズレ
表 4 (表 3の続き)
Figure imgf000034_0001
表 5
CO
Figure imgf000035_0001
* P鐧はフェライト十べイナイト
[実施例 2 ]
表 6及び 7に示す成分の各鋼を、 実験室規模で溶製して 1 2 0 0 °Cに加熱後、 熱間圧延して、 各鋼の成分と冷却速度で決まる A r 3 変態点— 1 0 °C以上 A r 3 変態点 + 1 2 0 °C未満 (概ね 9 0 0 °C ) で、 2 . 2又は 7 mm厚さに熱間圧延を終了し、 造管用の元板及び冷 間圧延用にそれぞれ用いた。
又、 一部については更に冷延後焼鈍して、 2 . 2 mm厚さの冷延焼 鈍板を作製した。 その後、 外径 1 0 8〜 4 9 mmに冷間で電縫溶接を 用いて造管した後、 表 8及び 9に示す加熱温度及び縮径加工時の温 度にて、 外径 7 5〜 2 5 mmに縮径又は造管後熱処理を行い、 高強度 鋼管を作製した。
ハイ ド口フォーム成形は、 バース トに至るまで行った。 内圧と軸 押し量を制御して、 種々の押し込み量および内圧にてハイ ドロフォ ーム成形を挫屈またはパース トするまで行い、 最大拡管率 (拡管率 =成形後の最大周長 Z母管の周長) を示す部位及び破断部近傍もし くは最大板厚減少部分の管の長手方向歪み : ε φ と、 周方向歪み : ε Θ を測定した。 この 2つの歪の比 ρ = ε φノ ε Θ と最大拡管率を プロ ッ ト し、 ε φ Ζ ε Θが _ 0 · 5 (板厚は減少するためマイナス となる) になる拡管率を求めて、 これもハイ ド口フォーム成形性の 1指標と して評価した。
表 8及び 9に各鋼の特性を併せて示す。 各集合組織の方位群の強 度や η値及び r値が本発明の範囲を満たすものは、 拡管率が高い。 また、 縮径時の加熱温度が A c 3 を超えるもので拡管率が高い。 ま た、 フェライ トの面積率および粒径分布についても、 ほとんどの鋼 がフェライ トを主相として、 その平均粒径も 1 0 0 /z m以下である 。 また、 平均粒径とその標準偏差からも判るように、 0 . Ι μ ιη以 下及び 2 0 0 /z m以上のフェライ ト粒は測定されていない。 一方では、 縮径時の加熱温度及び Z又は縮径加工温度の低い場合 (NDD鋼、 N F F鋼、 N J J鋼) は、 低拡管率である。 また高 C の CNNA鋼、 高 N bの CNB B鋼及び高 Bの、 CN C C鋼では、 拡管率は低い。 また、 CNAA鋼及び CNB B銅では硬質相が多く なり、 精度よく粒径を測定することができなかった。
表 6
Figure imgf000038_0001
フェライ ト以外は炭化物、 窒化物及び介在物が主である。 炭窒化物にはセメンタイ トを始め合金炭窒化物 (例えば T i添加鋼では、 T i C, T i N) をすベて含む。 また、 介在物には製鍊■凝固〜熱延段階等で析出■晶出する酸化物 ·硫化物をすベて含む。 ただし光学顕微鏡レベルでこれら の析出■晶出する酸化物■硫化物をすベて含む。 ただし光学顕微鏡レベルでこれらの析出■晶出物の正確な面積率を測定するのは困難。 したがって、 これらの第 2相の面積率が小さく正確な測定が困難な場合である場合、 その 90%超はフェライ トとなり、 フェライ トの面積率 は 90%と標記した。
表 7 (表 6の続き)
CO
Figure imgf000039_0001
フェライト以外は炭化物、 窒化物及び介在物が主である。 炭窒化物にはセメンタイトを始め合金炭窒化物 (例えば T i添加鋼では、 T i C, T i N) をすベて含む。 また、 介在物には製鍊■凝固〜熱延段階等で析出■晶出する酸化物■硫化物をすベて含む。 ただし光学顕微鏡レベルでこれら の析出 ·晶出する酸化物■硫化物をすベて含む。 ただし光学顕微鏡レベルでこれらの析出■晶出物の正確な面積率を測定するのは困難。 したがって、 これらの第 2相の面積率が小さく正確な測定が困難な場合である場合、 その 90O 超はフェライ トとなり、 フェライトの面積率 は 90%と標記した。
表 8
Figure imgf000040_0001
フェライト以外は炭化物、 窒化物及び介在物が主である。 炭窒化物にはセメンタイトを始め合金炭窒化物 (例えば T i添加鋼では、 T i C, T i N) をすベて含む。 また、 介在物には製鍊■凝固〜熱延段階等で析出■晶出する酸化物■硫化物をすベて含む。 ただし光学顕微鏡レベルでこれら の析出■晶出する酸化物■硫化物をすベて含む。 ただし光学顕微鏡レベルでこれらの析出■晶出物の正確な面積率を測定するのは困難。 したがって、 これらの第 2相の面積率が小さく正確な測定が困難な場合である場合、 その 90%超はフェライ トとなり、 フェライ トの面積率 は 90%と標記した。
表 9 (表 8の続き)
Figure imgf000041_0001
フェライ ト以外は炭化物、 窒化物及び介在物が主である。 炭窒化物にはセメンタイトを始め合金炭窒化物 (例えば T i添加鋼では、 T i C, T i N) をすベて含む。 また、 介在物には製鍊■凝固〜熱延段階等で析出 '晶出する酸化物 ·硫化物をすベて含む。 ただし光学顕微鏡レベルでこれら の析出■晶出する酸化物■硫化物をすベて含む。 ただし光学顕微鏡レベルでこれらの析出■晶出物の正確な面積率を測定するのは困難。 したがって、 これらの第 2相の面積率が小さく正確な測定が困難な場合である場合、 その 90%超はフェライトとなり、 フェライトの面積率 は 9Q0 と標記した。
[実施例 3 ]
表 1 0及び 1 1に示す成分の各鋼を、 実施例 1 と同じ条件で、 2 . 2雇厚さの熱延板又は冷延焼鈍板を作製した。 その後、 外径 1 0 8 mm又は 8 9 . 1 mmに、 T I G、 レーザーまたは電縫溶接を用いて 造管した後に加熱して、 外径 6 3. 5〜 2 5 mmに縮径して高強度鋼 管を作製した。
ハイ ド口フォーム成形は、 パース トに至るまで行った。 このとき の破断部近傍もしく は最大板厚減少部分の管の長手方向歪み ε φ と 、 周方向歪み ε 0の比 ε φ / ε 0が— 0. 1〜一 0. 2 (板厚は減 少するためマイナスとなる) になる拡管率を求めて、 これをハイ ド 口フォーム成形性の 1指標と して評価した。
X線解析は、 鋼管から弧状試験片を切り出し、 プレスして平板と して行った。 また、 X線の相対強度はランダム結晶と対比すること で求めた。
表 1 2及び 1 3に、 各鋼の管長手および周方向の η値、 管長手方 向の r値、 各方位群の X線強度比およびハイ ドロフォーム成形にお けるパース トまでの最大拡管率 (==パース ト時点の最大径/元管の 径) を示す。
発明鋼 A〜0では、 管長手及び/又ほ周方向の n値が 0. 1 8以 上を示し、 A鋼のレーザー溶接管を除き、 管長手方向の r値は 2 . 2未満である。
更に、 { 1 1 0 } く 1 1 0〉〜 { 1 1 1 } く 1 1 0 >の方位群の 平均 X線ランダム強度比が 1 . 5以上、 かつ、 { 1 1 0 } く 1 1 0 >の X線相対強度が 5. 0以下であり、 一部銅種については、 更に 、 { 1 1 1 } < 1 1 0 >の X線相対強度が 3. 0以上となり、 拡管 率も 1 . 3 0を超える良好な値を示す。
一方、 高 Cの C A鋼、 高 M gの C B鋼、 高 N bの C C鋼、 高 Bの C E鋼及び高 C r の C F鋼は、 n値が長手および周方向ともに低く 、 拡管率も低い。 また、 C E以外は { 1 1 0 } く 1 1 0〉及び Z又 は { 1 1 1 } く 1 1 0 >、 { 1 1 0 } く 1 1 0 >〜 { 1 1 1 } く 1 1 0 >の方位群の X線ランダム強度比が低く、 拡管率はさらに低い 。 一方、 高 Pの C D鋼及び高 (C a + R EM) の C G鋼は造管時に 溶接不良が発生してしまい、 量産設備での造管は難しいことが判る
10
銅 C Si S Mn Ai N Zr g Ti V Nb P o Or Gu :
し 0 W し 3 Rem
A 0.05 0.2 0.005 0.4 0.02 0.002 0.005 曰棚
B 0.048 0.05 0.005 0.75 0.05 0.0045 0.02 3£明 S¾
C 0.002 0.04 0.003 0.1 0.02 0.0025 0.09 5S明 a¾ n nリ. nr\ n n υnυRο リ, a nn9R 0.01 御 J
E 0.0032 0.03 0.004 0.7 0.045 0.0029 0.02 0.02 0.05 0.0008 発明鋼
F 0.13 0.05 0.005 0.84 0.03 0.0023 発明鋼
G 0.035 0.4 0.004 1.4 0.02 0.0061 0.16 0.03 発明鋼
H 0.08 0.2 0.004 1.2 0.03 0.0036 0.07 0.03 発明鋼
I 0.0025 0.05 0.005 0.25 0.04 0.0032 0.04 0.04 0.9 0.3 発明鋼
J 0.005 1 0.003 0.7 0.03 0.0035 0.01 0.02 0.02 0.2 0.1 0.1 発明鋼
K 0.11 0.2 0.002 1.4 0.04 0.003 0.047 発明鋼 し 0.05 1.8 0.003 1.5 0.05 0.0036 0.001 0.0002 発明鋼
M 0.17 1.3 0.003 1.2 0.03 0.0032 0.03 0.3 発明鋼
N 0.05 1.5 0.002 1.1 0.04 0.0025 0.08 0.02 発明鋼
O 0.09 1 0.003 0.9 0.03 0.0031 0.01 0.04 0.03 発明鋼
表 11 (表 10の続き)
銅 C Si S Mn Al N Zr Mg Ti V Nb P B Cr Cu Ni Mo Co W Ca Rem
CA 0.47 0.2 0.003 0.9 0.03 0.0025 0.01 比較鋼:
Cハス'レ
CB 0.002 0.05 0.002 0.1 0.005 0.0035 0.6 0.05 比較鋼:
M ス'レ
CC 0.15 0.05 0.003 0.8 0.04 0.0025 1.9 0.02 比較鋼:
Nb ι\Χレ
CO CD 0.12 0.05 0.009 1.4 0.05 0.003 0.08 0.35 比較鋼:
Ρハス'レ
CE 0.0025 0.05 0.008 1.2 0.03 0.003 0.02 0.05 0.03 0.09 比較鋼:
Βバス *レ
CF 0.05 0.1 0.01 1 0.03 0.007 0.03 9.1 1.2 比較鋼:
Gr.Mo Λス'レ
CG 0.05 0.6 0.003 0.7 0.1 0.006 0.02 0.07 0.46 比較鋼:
Ga, REMハス'レ
表 12
Figure imgf000046_0001
フェライト以外は炭化物、 窒化物及び介在物が主である。 炭窒化物にはセメンタイ トを始め合金炭窒化物 (例えば T i添加鋼では、 T i G, Τ ί Ν) をすベて含む。 また、 介在物には製鍊 '凝固〜熱延段階等で析出■晶出する酸化物■硫化物をすベて含む。 ただし光学顕微鏡レベルでこれら の析出 ·晶出する酸化物■硫化物をすベて含む。 ただし光学顕微鏡レベルでこれらの析出■晶出物の正確な面積率を測定するのは困難。 したがって、 これらの第 2相の面積率が小さく正確な測定が困難な場合である場合、 その 90%超はフェライトとなり、 フェライ トの面積率 は 90%と標記した。
表 13 (表 12の続き)
Figure imgf000047_0001
フェライ ト以外は炭化物、 窒化物及び介在物が主である。 炭窒化物にはセメンタイトを始め合金炭窒化物 (例えば Ti添加鋼では、 TiG, TiN) をすベて含む。 また、 介在物には製鍊 '凝固〜熱延段階等で析出■晶出する酸化物 '硫化物をすベて含む。 ただし光学顕微鏡レベルでこれら の析出■晶出する酸化物 '硫化物をすベて含む。 ただし光学顕微鏡レベルでこれらの析出■晶出物の正確な面積率を測定するのは困難。 したがって、 これらの第 2相の面積率が小さく正確な測定が困難な場合である場合、 その 900/0超はフェライトとなり、 フェライトの面積率 は 9Q0/0と標記した。
[実施例 4 ]
表 1 0及び 1 1に示す成分のうち、 A鋼、 F鋼、 H鋼、 K鋼及び L鋼を、 実験室規模で溶製して 1 2 0 0 °Cに加熱後、 熱間圧延して 各鋼の成分と冷却速度で決まる A r 3 変態点一 1 0 °C以上 A r 3 変 態点 + 1 2 0 °C未満 (概ね 9 0 0 °C) で、 2. 2 mm厚さに熱間圧延 を終了し、 造管用の元板とした。
その後、 外径 1 0 8又は 8 9. 1 mmに冷間で電縫溶接を用いて造 管した後、 表 1 4に示す加熱温度及び縮径加工時の温度にて、 外径 6 3. 5 5〜 2 5 mmに縮径して高強度鋼管を作製した。
ハイ ド口 フォーム成形は、 パース トに至るまで行った。 このとき の破断部近傍もしくは最大板厚減少部分の管の長手方向歪み ε Φ と 、 周方向歪み の比 Ε φ Ζ ε θがー 0. 1〜― 0. 2 (板厚は減 少するためマイナスとなる) になる拡管率を求めて、 これをハイ ド 口フォーム成形性の 1指標と して評価した。
表 1 4に各鋼の特性を示す。 請求の範囲 3 4で規定する製造条件 を満たすものは、 管長手及びノ又は周方向の η値が 0. 1 8以上を 示し、 管長手方向の r値は 2. 2未満である。
更に、 { 1 1 0 } く 1 1 0 〉〜 { 1 1 1 } く 1 1 0 〉の方位群の 平均 X線ランダム強度比が 1 . 5以上、 かつ、 { 1 1 0 } < 1 1 0 >の X線相対強度が 5. 0以下であり、 一部鋼種については、 更に 、 { 1 1 1 } < 1 1 0 >の X線相対強度が 3. 0以上となり、 拡管 率も 1 . 3 0を超える良好な値を示す。
一方、 請求の範囲 3 4で規定する製造条件を満たさないものは、 n値が長手および周方向ともに低いが、 請求の範囲 1、 9、 1 0、 1 1及び 1 9の何れかを満たすため、 本成形モー ドでの拡管率は低 めなものの、 概ね 1. 2 5以上程度の比較的良好な拡管率を示すこ とが判る。 また、 縮径率が 7 7 %と高いものは縮径時に破断した。 表 14
Figure imgf000049_0001
産業上の利用分野
本発明によれば、 ハイ ドロフォーム等の成形性に優れた材料の集 合組織及び、 その制御方法を見出だしこれを限定することで、 ハイ ドロフォーム等の成形性に優れた高強度鋼管を得ることができる。

Claims

求 の 範 囲
1. 質量%で、
C : 0. 0 0 0 5〜 0. 3 0 %、
S i : 0. 0 0 1〜 2. 0 %、
M n : 0. 0 1〜 3. 0 %、
を含有し、 残部が鉄及び不可避的不純物からなり、 鋼板 1 / 2板厚 での板面の { 1 1 0 } く 1 1 0 >〜 { 1 1 1 } < 1 1 0 >の方位群 の X線ランダム強度比の平均が 2. 0以上、 鋼板 1 / 2板厚での板 面の { 1 1 0 } く 1 1 0 >の X線ランダム強度比が 3. 0以上の何 れか一方又は両方であることを特徴とする成形性の優れた鋼管。
2. 鋼中に、 更に、 質量%で、 A l 、 Z r、 M gの 1種又は 2種 以上を合計で 0. 0 0 0 1〜 0. 5 %含むことを特徴とする請求の 範囲 1に記載の成形性の優れた鋼管。
3. 鋼中に、 更に、 質量%で、 T i 、 V、 N bの 1種又は 2種以 上を合計で 0. 0 0 1〜 0. 5 %含むことを特徴とする請求の範囲 1又は 2に記載の成形性の優れた鋼管。
4. 鋼中に、 更に、 質量%で、 Pを 0. 0 0 1〜 0. 2 0 %含む ことを特徴とする請求の範囲 1乃至 3の何れか 1項に記載の成形性 の優れた鋼管。
5. 鋼中に、 更に、 質量%で、 Bを 0. 0 0 0 1〜 0. 0 1 %含 むことを特徴とする請求の範囲 1乃至 4の何れか 1項に記載の成形 性の優れた鋼管。
6. 鋼中に、 更に、 質量0 /0で、 C r、 C u、 N i 、 C o、 W、 M oの 1種又は 2種以上を合計で 0. 0 0 1〜 1. 5 %含むことを特 徴とする請求の範囲 1乃至 5の何れか 1項に記載の成形性の優れた 鋼管。
7. 鋼中に、 更に、 質量%で、 C a、 希土類元素 (R e m) の 1 種又は 2種を合計で 0. 0 0 0 1〜 0. 5 %含むことを特徴とする 請求の範囲 1乃至 6の何れか 1項に記載の成形性の優れた鋼管。
8. 金属組織の面積率で 5 0 %以上がフェライ トからなり、 フエ ライ ト粒の結晶粒径が 0. 1〜 2 0 0 μ πιの範囲にあり、 鋼板 1ノ 2板厚での板面の { 1 1 0 } く 1 1 0 >〜 { 1 1 1 } く 1 1 0 >の 方位群の X線ランダム強度比の平均が 2. 0以上、 鋼板 1 / 2板厚 での板面の { 1 1 0 } く 1 1 0 >の X線ランダム強度比が 3. 0以 上の何れか一方又は両方であることを特徴とする請求の範囲 1乃至 7の何れか 1項に記載の成形性の優れた鋼管。
9. 鋼管の特性と して、
(1) 管長手方向の η値が 0. 1 2以上であること、
(2) 管円周方向の η値が 0. 1 2以上であること、
の何れか一方又は両方を満たすことを特徴とする成形性の優れた鋼 管。
1 0. 鋼管の特性と して、 管長手方向の r値が 1. 1以上である ことを特徴とする請求の範囲 9に記載の成形性の優れた鋼管。
1 1 . 鋼管の集合組織と して、
(1) 少なく とも鋼板 1 / 2板厚での板面の { 1 1 1 } < 1 1 0 > の X線ランダム強度比、 鋼板 1 2板厚での板面の { 1 1 0 } < 1 1 0 >〜 { 3 3 2 } < 1 1 0 >の方位群の X線ランダム強度比 の平均、 鋼板 1 2板厚での板面の { 1 1 0 } < 1 1 0 >の X線 ランダム強度比のうちの何れか 1又は 2項目以上が 3. 0以上で あること、
(2) 少なく とも鋼板 1 / 2板厚での板面の { 1 0 0 } く 1 1 0〉 〜 { 2 2 3 } < 1 1 0 >の方位群の X線ランダム強度比の平均、 鋼板 1 / 2板厚での板面の { 1 0 0 } く 1 1 0 >の X線ランダム 強度比の何れか一方又は両方が 3. 0以下であること、
(3) 少なく とも鋼板 1 / 2板厚での板面の { 1 1 1 } < 1 1 0 > 〜 { 1 1 1 } く 1 1 2〉及び { 5 5 4 } く 2 2 5 >の方位群の X 線ランダム強度比の平均が 2. 0以上、 鋼板 1 Z 2板厚での板面 の { 1 1 1 } く 1 1 0 >の X線ランダム強度比が 3. 0以上であ ることの何れか一方又は両方であること、
の上記 (1)乃至(3) のうちの何れか 1又は 2項目以上を満たすこと を特徴とする成形性の優れた鋼管。
1 2. 面積率で 5 0 %以上のフェライ トを含み、 各フェライ ト粒 径が 0. 1〜 2 0 0 μ πιであることを特徴とする請求の範囲 9乃至 1 1の何れか 1項に記載の成形性の優れた鋼管。
1 3. 面積率で 5 0 %以上のフェライ トを含み、 各フェライ ト粒 径が 1〜 2 0 0 μ mで粒径分布をなし、 その標準偏差が平均粒径の ±4 0 %以内にあることを特徴とする請求の範囲 9乃至 1 2の何れ か 1項に記載の成形性の優れた鋼管。
1 4. 面積率で 5 0 %以上のフェライ トを含み、 各フェライ ト粒 の平均アスペク ト比 (長手方向粒長さ 厚み方向粒厚さ) が 0. 5
〜 3. 0であることを特徴とする請求の範囲 9乃至 1 3の何れか 1 項に記載の成形性の優れた鋼管。
1 5. 質量%で、
C : 0. 0 0 0 5〜 0. 3 0 %、
S i : 0. 0 0 1〜 2. 0 %、
M n : 0. 0 1〜 3. 0 %、
P : 0. 0 0 1〜 0. 2 0 %、
N : 0. 0 0 0 1〜 0. 0 3 %、
を含有し、 残部が鉄及び不可避的不純物からなることを特徴とする 請求の範囲 9乃至 1 4の何れか 1項に記載の成形性の優れた鋼管。 鋼中に、 、 %で、
T i : 0 . 0 0 1 〜 0. 5 %、
Z r : 0 . 0 0 1 〜 0. 5 %以下、
H f : 0 . 0 0 1 〜 2. 0 %以下、
C r : 0 . 0 0 1 〜 1. 5 %以下、
M o : 0 . 0 0 1 〜 1, 5 %以下、
W : 0 . 0 0 1 〜 1. 5 %以下、
v . o o o 1丄 o , % ;下
N b : 0 . 0 0 1 0. 5 %以下、
T a : 0 . 0 0 1 2. 0 %以下、
C o : 0 . 0 0 1 1. 5 %以下、
の 1種又は 2種以上を含むことを特徴とする請求の範囲 1 5に記载 の成形性の優れた鋼管。
1 7. 鋼中に、 更に、 質量%で、
B : 0. 0 0 0 1〜 0. 0 1 %、
N i : 0. 0 0 1〜 1. 5 %、
C u : 0. 0 0 1〜 1. 5 %、
の 1種又は 2種以上を含むことを特徴とする請求の範囲 1 5又は 1 6に記載の成形性の優れた鋼管。
1 8. 鋼中に、 更に、 質量%で、
A 1 : 0. 0 0 1〜 0. 5 %、
C a : 0. 0 0 0 1〜 0. 5 %、
M g : 0. 0 0 0 1〜 0. 5 %、
R e m : 0. 0 0 0 1〜 0. 5 %、
の 1種又は 2種以上を含有することを特徴とする請求の範囲 1 5乃 至 1 7の何れか 1項に記載の成形性の優れた鋼管。
1 9. 請求の範囲 1乃至 1 8の何れか 1項に記載の成形性の優れ た鋼管を製造するに当たり、
(1) 少なく とも鋼板 1 / 2板厚での板面の { 1 1 0 } < 1 1 0 > 〜 { 1 1 1 } < 1 1 0 >の方位群の X線ランダム強度比の平均が 2. 0以上、 鋼板 1 / 2板厚での板面の { 1 1 0 } < 1 1 0〉の X線ランダム強度比が 3. 0以上の何れか一方又は両方であるこ と、
(2) 少なく とも鋼板 1 Z 2板厚での板面の { 1 1 1 } < 1 1 0 > の X線ランダム強度比、 鋼板 1 2板厚での板面の { 1 1 0 } < 1 1 0 >〜 { 3 3 2 } く 1 1 0 >の方位群の X線ランダム強度比 の平均、 鋼板 1 / 2板厚での板面の { 1 1 0 } く 1 1 0 >の X線 ランダム強度比のうちの何れか 1又は 2項目以上が 3. 0以上で あること、
(3) 少なく とも鋼板 1 / 2板厚での板面の { 1 0 0 } < 1 1 0 > 〜 { 2 2 3 } く 1 1 0 >の方位群の X線ラシダム強度比の平均、 鋼板 1 / 2板厚での板面の { 1 0 0 } < 1 1 0 >の X線ランダム 強度比の何れか一方又は両方が 3. 0以下であること、
(4) 少なく とも鋼板 1 Z 2板厚での板面の { 1 1 1 } < 1 1 0 > 〜 { 1 1 1 } く 1 1 2 >及び { 5 5 4 } < 2 2 5 >の方位群の X 線ランダム強度比の平均が 2. 0以上、 鋼板 1 Z2板厚での板面 の { 1 1 1 } く 1 1 0〉の X線ランダム強度比が 3. 0以上の何 れか一方又は両方であること、
の上記 (1)乃至(4) のう ちの何れか 1又は 2項目以上を満たす熱延 板又は冷延板を基板と して母管を造管した後、 A c 3 変態点以上 A c 3 + 2 0 0 °C以下に加熱後、 9 0 0 ~ 6 5 0 °Cで縮径加工を施す ことを特徴とする成形性の優れた鋼管の製造方法。
2 0. 請求の範囲 1乃至 1 8の何れか 1項に記載の成形性の優れ た鋼管を製造するに当たり、 (1) 少なく とも鋼板 1 Z 2板厚での板面の { 1 1 0 } < 1 1 0 > 〜 { 1 1 1 } < 1 1 0 >の方位群の X線ランダム強度比の平均が 2. 0以上、 鋼板 1 / 2板厚での板面の { 1 1 0 } < 1 1 0 >の X線ランダム強度比が 3. 0以上の何れか一方又は両方であるこ と、
(2) 少なく とも鋼板 1 / 2板厚での板面の { 1 1 1 } く 1 1 0〉 の X線ランダム強度比、 鋼板 1 / 2板厚での板面の { 1 1 0 } < 1 1 0 >〜 { 3 3 2 } < 1 1 0 >の方位群の X線ランダム強度比 の平均、 鋼板 1 / 2板厚での板面の { 1 1 0 } < 1 1 0 >の X線 ランダム強度比のうちの何れか 1又は 2項目以上が 3. 0以上で あること、
(3) 少なく とも鋼板 1 Z 2板厚での板面の { 1 0 0 } < 1 1 0 > 〜 { 2 2 3 } < 1 1 0 >の方位群の X線ランダム強度比の平均が 3. 0以下、 鋼板 1 Z 2板厚での板面の { 1 0 0 } < 1 1 0 >の X線ランダム強度比が 3. 0以下の何れか一方又は両方であるこ と、
(4) 少なく とも鋼板 1 Z 2板厚での板面の { 1 1 1 } < 1 1 0 > 〜 { 1 1 1 } く 1 1 2 >及び { 5 5 4 } < 2 2 5 >の方位群の X 線ランダム強度比の平均が 2. 0以上、 鋼板 1 / 2板厚での板面 の { 1 1 1 } < 1 1 0 >の X線ランダム強度比が 1 . 5以上の何 れか一方又は両方であること、
の上記 (1)乃至(4) のうちの何れか 1又は 2項目以上を満たす熱延 板又は冷延板を基板と して母管を造管した後、 A c 3 + 2 0 0 °C以 下 6 5 0 °C以上で熱処理を施すことを特徴とする成形性の優れた鋼 管の製造方法。
2 1. 鋼管の特性と して、
(1) 管長手方向の n値が 0. 1 8以上であること、 (2) 管周方向の n値が 0. 1 8以上であること、
の何れか一方又は両方を満たすことを特徴とする成形性の優れた鋼 管。
2 2. 鋼管の特性と して、 管長手方向の r値が 0. 6以上 2. 2 未満であることを特徴とする請求の範囲 2 1 に記載の成形性の優れ た鋼管。
2 3. 前記 X線ランダム強度比において、
(1) 鋼板 1 Z 2板厚での板面の { 1 1 0 } く 1 1 0 〉〜 { 1 1 1 } く 1 1 0 >の方位群の X線ランダム強度比の平均が 1 . 5以上、 力、つ、
(2) 鋼板 1 / 2板厚での板面の { 1 1 0 } く 1 1 0 >の X線ラン ダム強度比が 5 . 0以下、
を満たすことを特徴とする請求の範囲 2 1又は 2 2に記載の成形性 の優れた鋼管。
2 4. 鋼板 1 / 2板厚での板面の { 1 1 1 } く 1 1 0 >の X線ラ ンダム強度比が 3 . 0以上を満たすことを特徴とする請求の範囲 2 1乃至 2 3の何れか 1項に記載の成形性の優れた鋼管。
2 5. 面積率で 5 0 %以上のフェライ トを含み、 各フェライ ト粒 径が 0. 1〜 2 0 0 μ πιであることを特徴とする請求の範囲 2 1乃 至 2 4の何れか 1項に記載の成形性の優れた鋼管。
2 6. 面積率で 5 0 %以上のフェライ トを含み、 各フェライ ト粒 の平均アスペク ト比 (長手方向粒長さノ厚み方向粒厚さ) が 0. 5 〜 3. 0であることを特徴とする請求の範囲 2 1乃至 2 5の何れか 1項に記載の成形性の優れた鋼管。
2 7. 質量。/。で、
C : 0. 0 0 0 5〜 0. 3 0 %、
S i : 0. 0 0 1〜 2. 0 %、 M n : 0. 0 1〜 3. 0 %、
N : 0. 0 0 0 1〜 0. 0 3 %、
を含有し、 残部が鉄及び不可避的不純物からなることを特徴とする 請求の範囲 2 1乃至 2 6の何れか 1項に記載の成形性の優れた鋼管
2 8. 鋼中に、 更に、 質量%で、 A l 、 Z r、 M gの 1種又は 2 種以上を合計で 0. 0 0 0 1〜 0. 5 %含むことを特徴とする請求 の範囲 2 1乃至 2 7の何れか 1項に記載の成形性の優れた鋼管。
2 9. 鋼中に、 更に、 質量%で、 T i 、 V、 N bの 1種又は 2種 以上を合計で 0. 0 0 1〜 0. 5 %含むことを特徴とする請求の範 囲 2 1乃至 2 8の何れか 1項に記載の成形性の優れた鋼管。
3 0. 鋼中に、 更に、 質量%で、 Pを 0. 0 0 1〜 0. 2 0 %含 むことを特徴とする請求の範囲 2 1乃至 2 9の何れか 1項に記載の 成形性の優れた鋼管。
3 1. 鋼中に、 更に、 質量%で、 Bを 0. 0 0 0 1〜 0. 0 1 % 含むことを特徴とする請求の範囲 2 1乃至 3 0の何れか 1項に記载 の成形性の優れた鋼管。
3 2. 鋼中に、 更に、 質量%で、 C r、 C u、 N i 、 C o、 W、 M oの 1種又は 2種以上を合計で 0. 0 0 1〜 5. 0 %含むことを 特徴とする請求の範囲 2 1乃至 3 1 の何れか 1項に記載の成形性の 優れた鋼管。
3 3. 鋼中に、 更に、 質量%で、 C a、 希土類元素 (R e m) の 1種又は 2種を合計で 0. 0 0 0 1〜 0. 5 %含むことを特徴とす る請求の範囲 2 1乃至 3 2の何れか 1項に記載の成形性の優れた鋼 管。
3 4. 請求の範囲 2 1乃至 3 3の何れか 1項に記載の成形性の優 れた鋼管を製造するに当たり、 母管を造管した後、 A c 3 変態点一 5 0 以上 (: 3 変態点 + 2 0 0 °C以下に加熱し、 6 5 0〜 9 0 0 °Cで縮径率が 1 0〜 4 0 %となる縮径加工を行う ことを特徴とする 成形性の優れた鋼管の製造方法。
PCT/JP2001/001530 2000-02-28 2001-02-28 Tube d'acier facile a former et procede de production de ce dernier WO2001062998A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001561805A JP4264212B2 (ja) 2000-02-28 2001-02-28 成形性の優れた鋼管及びその製造方法
US10/220,441 US6866725B2 (en) 2000-02-28 2001-02-28 Steel pipe excellent in formability and method of producing the same
DE60134125T DE60134125D1 (de) 2000-02-28 2001-02-28 Stahlrohr mit ausgezeichneter formbarkeit und herstellungsverfahren dafür
EP01908167A EP1264910B1 (en) 2000-02-28 2001-02-28 Steel pipe having excellent formability and method for production thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2000-52574 2000-02-28
JP2000052574 2000-02-28
JP2000174371 2000-06-09
JP2000-174371 2000-06-09
JP2000-183662 2000-06-19
JP2000183662 2000-06-19
JP2000328156 2000-10-27
JP2000-328156 2000-10-27

Publications (1)

Publication Number Publication Date
WO2001062998A1 true WO2001062998A1 (fr) 2001-08-30

Family

ID=27481078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001530 WO2001062998A1 (fr) 2000-02-28 2001-02-28 Tube d'acier facile a former et procede de production de ce dernier

Country Status (7)

Country Link
US (1) US6866725B2 (ja)
EP (1) EP1264910B1 (ja)
JP (1) JP4264212B2 (ja)
KR (1) KR100514119B1 (ja)
CN (1) CN1144893C (ja)
DE (1) DE60134125D1 (ja)
WO (1) WO2001062998A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1382703A2 (en) * 2002-07-10 2004-01-21 Nippon Steel Corporation Steel pipe having low yield ratio
WO2006057098A1 (ja) * 2004-11-26 2006-06-01 Jfe Steel Corporation 電磁特性に優れた鋼管およびその製造方法
JP2007031822A (ja) * 2005-07-29 2007-02-08 Jfe Steel Kk 高剛性鋼管およびその製造方法
US10071170B2 (en) 2013-06-24 2018-09-11 Ablbio Antibody-drug conjugate having improved stability and use thereof
WO2023190621A1 (ja) * 2022-03-30 2023-10-05 日本製鉄株式会社 無方向性電磁鋼板及びモータコア

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1552271A1 (en) * 2002-09-20 2005-07-13 Enventure Global Technology Pipe formability evaluation for expandable tubulars
JP4284405B2 (ja) * 2002-10-17 2009-06-24 独立行政法人物質・材料研究機構 タッピングネジとその製造方法
DE60333400D1 (de) * 2003-05-27 2010-08-26 Nippon Steel Corp Herstellungsverfahren für hochfestes dünnes stahlblech mit hervorragender beständigkeit gegenüber verzögertem bruch nach dem umformen
TWI248977B (en) * 2003-06-26 2006-02-11 Nippon Steel Corp High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
JP4276482B2 (ja) * 2003-06-26 2009-06-10 新日本製鐵株式会社 極限変形能と形状凍結性に優れた高強度熱延鋼板とその製造方法
JP4819305B2 (ja) * 2003-09-04 2011-11-24 日産自動車株式会社 強化部材の製造方法
JP4443910B2 (ja) * 2003-12-12 2010-03-31 Jfeスチール株式会社 自動車構造部材用鋼材およびその製造方法
US7754344B2 (en) * 2004-12-22 2010-07-13 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel welded pipe superior in expandability
JP2006265668A (ja) * 2005-03-25 2006-10-05 Sumitomo Metal Ind Ltd 油井用継目無鋼管
JP5068645B2 (ja) * 2005-04-04 2012-11-07 新日本製鐵株式会社 延性破壊特性に優れた高強度鋼板及び高強度溶接鋼管並びにそれらの製造方法
CZ299495B6 (cs) * 2005-12-06 2008-08-13 Comtes Fht, S. R. O. Zpusob výroby vysokopevných nízkolegovaných ocelových trubek
US20070267110A1 (en) * 2006-05-17 2007-11-22 Ipsco Enterprises, Inc. Method for making high-strength steel pipe, and pipe made by that method
CN101506392B (zh) * 2006-06-29 2011-01-26 特纳瑞斯连接股份公司 用于液压缸的在低温下具有增强各向同性刚度的无缝精密钢管及其制造工序
EP1905857B1 (de) 2006-09-29 2013-08-14 EZM Edelstahlzieherei Mark GmbH Hochfester Stahl und Verwendungen eines solchen Stahls
US20080226396A1 (en) * 2007-03-15 2008-09-18 Tubos De Acero De Mexico S.A. Seamless steel tube for use as a steel catenary riser in the touch down zone
MX2007004600A (es) * 2007-04-17 2008-12-01 Tubos De Acero De Mexico S A Un tubo sin costura para la aplicación como secciones verticales de work-over.
US7862667B2 (en) * 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
US8328960B2 (en) * 2007-11-19 2012-12-11 Tenaris Connections Limited High strength bainitic steel for OCTG applications
KR101142185B1 (ko) * 2007-12-07 2012-05-04 신닛뽄세이테쯔 카부시키카이샤 용접열 영향부의 ctod 특성이 우수한 강 및 그 제조 방법
AU2009234667B2 (en) * 2008-04-10 2012-03-08 Nippon Steel Corporation High-strength steel sheets which are extremely excellent in the balance between burring workability and ductility and excellent in fatigue endurance, zinc-coated steel sheets, and processes for production of both
US20110002808A1 (en) * 2008-10-27 2011-01-06 Masaki Mizoguchi Fire-resistant steel material superior in weld heat affected zone reheat embrittlement resistance and low temperature toughness and method of production of same
RU2458174C1 (ru) 2009-05-19 2012-08-10 Ниппон Стил Корпорейшн Сталь для сварных конструкций и способ ее получения
US20100319814A1 (en) * 2009-06-17 2010-12-23 Teresa Estela Perez Bainitic steels with boron
DE112010003086B4 (de) * 2009-07-27 2021-11-11 Hyundai Steel Co. Verfahren zum Bewerten der Mittenseigerung einer Stranggussbramme
KR101159926B1 (ko) * 2009-11-27 2012-06-25 현대제철 주식회사 연속주조 슬라브의 중심편석 평가방법
CN101693985B (zh) * 2009-10-30 2012-10-10 天长市天翔机械厂 一种制作喷油器衬套的合金材料
EP2325435B2 (en) 2009-11-24 2020-09-30 Tenaris Connections B.V. Threaded joint sealed to [ultra high] internal and external pressures
CN101838775B (zh) * 2010-05-28 2013-09-25 中材装备集团有限公司 一种高韧性中碳耐磨钢
US9163296B2 (en) 2011-01-25 2015-10-20 Tenaris Coiled Tubes, Llc Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment
IT1403689B1 (it) 2011-02-07 2013-10-31 Dalmine Spa Tubi in acciaio ad alta resistenza con eccellente durezza a bassa temperatura e resistenza alla corrosione sotto tensioni da solfuri.
IT1403688B1 (it) 2011-02-07 2013-10-31 Dalmine Spa Tubi in acciaio con pareti spesse con eccellente durezza a bassa temperatura e resistenza alla corrosione sotto tensione da solfuri.
US8636856B2 (en) 2011-02-18 2014-01-28 Siderca S.A.I.C. High strength steel having good toughness
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US9403242B2 (en) 2011-03-24 2016-08-02 Nippon Steel & Sumitomo Metal Corporation Steel for welding
BR112013026065B1 (pt) * 2011-04-12 2020-05-26 Nippon Steel Corporation Chapa de aço de alta resistência e tubo de aço de alta resintência excelentes em capacidade de deformação e tenacidade a baixa temperatura e método de produção dos mesmos
US9631265B2 (en) 2011-05-25 2017-04-25 Nippon Steel Hot-rolled steel sheet and method for producing same
PL2738274T3 (pl) * 2011-07-27 2019-05-31 Nippon Steel & Sumitomo Metal Corp Blacha stalowa cienka walcowana na zimno o dużej wytrzymałości z doskonałą zdolnością do wywijania kołnierza i podatnością na precyzyjne przebijanie oraz sposób jej wytwarzania
CN102321844A (zh) * 2011-10-10 2012-01-18 钢铁研究总院 一种热轧耐腐蚀烘烤硬化钢及其制备方法
CN102505093B (zh) * 2011-12-15 2013-10-02 浙江金洲管道工业有限公司 一种油气井裸眼完井用实体膨胀管用钢的制造方法
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
KR101439608B1 (ko) * 2012-07-16 2014-09-11 주식회사 포스코 성형성이 우수한 가공용 열연강판 및 그 제조방법
EP2874779B1 (en) 2012-07-18 2018-12-19 Daniel Measurement and Control, Inc. Method for forming a welded seal
TWI487800B (zh) * 2012-09-28 2015-06-11 Shinhokoku Steel Corp And a method for manufacturing the same for producing a seamless steel pipe
CN103018141B (zh) * 2012-11-29 2015-11-18 燕山大学 高合金低碳马氏体钢原始晶粒显示剂及显示方法
JP6204496B2 (ja) 2013-01-11 2017-09-27 テナリス・コネクシヨンズ・ベー・ブイ 耐ゴーリング性ドリルパイプツールジョイントおよび対応するドリルパイプ
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
EP2789701A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
EP2789700A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
KR102197204B1 (ko) 2013-06-25 2021-01-04 테나리스 커넥션즈 비.브이. 고크롬 내열철강
CN103789629A (zh) * 2014-01-16 2014-05-14 安徽省杨氏恒泰钢管扣件加工有限公司 一种耐磨无缝钢管材料及其制备方法
RU2562184C1 (ru) * 2014-06-10 2015-09-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Высокопрочная дисперсионно-твердеющая сталь
RU2572911C1 (ru) * 2014-11-05 2016-01-20 Юлия Алексеевна Щепочкина Сталь
CN104451447B (zh) * 2014-12-10 2016-10-19 无锡鑫常钢管有限责任公司 一种奥氏体不锈钢管及生产工艺
CN104928568B (zh) * 2015-06-30 2017-07-28 宝山钢铁股份有限公司 一种铁素体低密度高强钢及其制造方法
DE102015111150A1 (de) 2015-07-09 2017-01-12 Benteler Steel/Tube Gmbh Stahllegierung, insbesondere für Fahrwerks- oder Antriebsbauteil, und Fahrwerks- oder Antriebsbauteil
CN105113710A (zh) * 2015-08-03 2015-12-02 吴朝霞 一种高层建筑用混凝土构件
CN105112805A (zh) * 2015-08-03 2015-12-02 吴朝霞 一种矩形钢管混凝土预制件
CN106436695A (zh) * 2015-08-13 2017-02-22 江鹏财 一种大跨度桥梁建筑用预制桩柱
CN105133785A (zh) * 2015-08-18 2015-12-09 刁德斌 一种内嵌“y”型筋梁的建筑用混凝土构件
CN105507235A (zh) * 2015-08-20 2016-04-20 喻良军 一种高速公路桥梁用预制桩柱
CN105568129A (zh) * 2015-12-30 2016-05-11 芜湖恒耀汽车零部件有限公司 一种汽车排气管用稀土碳钢材料及其制备方法
CN105673173B (zh) * 2015-12-31 2019-09-03 台州三元车辆净化器有限公司 一种新型高性能材料的排气管及其加工制备工艺
CN105671425B (zh) * 2016-01-26 2017-07-11 安徽同盛环件股份有限公司 一种耐高温合金环件密封圈的制备方法
CN105734425A (zh) * 2016-05-09 2016-07-06 周常 一种海洋钻井平台结构材料
JP6737338B2 (ja) * 2016-08-08 2020-08-05 日本製鉄株式会社 鋼板
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
US10434554B2 (en) 2017-01-17 2019-10-08 Forum Us, Inc. Method of manufacturing a coiled tubing string
WO2019010661A1 (zh) * 2017-07-13 2019-01-17 田圣林 一种高韧性高强度耐腐蚀弹簧
KR102010079B1 (ko) * 2017-09-13 2019-08-12 주식회사 포스코 도장 후 선영성이 우수한 강판 및 그 제조방법
CN108300944A (zh) * 2018-04-13 2018-07-20 合肥市旺友门窗有限公司 一种减振降噪不锈钢管材及其制备方法
KR102109269B1 (ko) * 2018-09-28 2020-05-11 주식회사 포스코 강관용 열연강판 및 그 제조방법
CN109517959A (zh) * 2018-12-17 2019-03-26 包头钢铁(集团)有限责任公司 一种低成本输送管用热轧钢带及其制备方法
KR102209556B1 (ko) * 2018-12-19 2021-01-29 주식회사 포스코 구멍확장성이 우수한 강판, 부재 및 이들의 제조방법
CN111809113B (zh) * 2020-06-24 2021-12-14 延安嘉盛石油机械有限责任公司 一种含稀土的tc-50钢级石油管坯

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586419A (ja) * 1991-09-27 1993-04-06 Nippon Steel Corp 曲げ特性の優れた電縫鋼管の製造方法
JPH05212439A (ja) * 1991-09-07 1993-08-24 Nippon Steel Corp 圧潰特性に優れた電縫油井管およびその製造方法
JPH09196244A (ja) * 1996-01-19 1997-07-29 Nkk Corp 耐震性に優れた鋼管
JPH1052713A (ja) * 1996-08-12 1998-02-24 Nkk Corp 耐震性に優れた鋼管及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3672864D1 (de) * 1985-03-06 1990-08-30 Kawasaki Steel Co Verfahren zur herstellung von gewalzten verformbaren duennen stahlblechen.
JPS6383230A (ja) * 1986-09-27 1988-04-13 Nkk Corp 焼付硬化性およびプレス成形性の優れた高強度冷延鋼板の製造方法
MY116920A (en) * 1996-07-01 2004-04-30 Shell Int Research Expansion of tubings
JP3481409B2 (ja) * 1996-12-17 2003-12-22 新日本製鐵株式会社 鋼管のハイドロフォーム加工方法
CN1088117C (zh) * 1997-04-30 2002-07-24 川崎制铁株式会社 高延展性且高强度的钢材及其制造方法
US6290789B1 (en) * 1997-06-26 2001-09-18 Kawasaki Steel Corporation Ultrafine-grain steel pipe and process for manufacturing the same
JP3731103B2 (ja) * 1997-12-15 2006-01-05 Jfeスチール株式会社 液圧バルジ成形性に優れた高強度電縫鋼管およびその製造方法
JP3779811B2 (ja) * 1998-03-30 2006-05-31 新日本製鐵株式会社 加工性に優れた電縫鋼管とその製造方法
EP1462536B1 (en) * 2000-06-07 2007-02-14 Nippon Steel Corporation Steel pipe excellent in formability and method of producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212439A (ja) * 1991-09-07 1993-08-24 Nippon Steel Corp 圧潰特性に優れた電縫油井管およびその製造方法
JPH0586419A (ja) * 1991-09-27 1993-04-06 Nippon Steel Corp 曲げ特性の優れた電縫鋼管の製造方法
JPH09196244A (ja) * 1996-01-19 1997-07-29 Nkk Corp 耐震性に優れた鋼管
JPH1052713A (ja) * 1996-08-12 1998-02-24 Nkk Corp 耐震性に優れた鋼管及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1264910A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1382703A2 (en) * 2002-07-10 2004-01-21 Nippon Steel Corporation Steel pipe having low yield ratio
JP2004043856A (ja) * 2002-07-10 2004-02-12 Nippon Steel Corp 低降伏比型鋼管
EP1382703A3 (en) * 2002-07-10 2004-05-06 Nippon Steel Corporation Steel pipe having low yield ratio
WO2006057098A1 (ja) * 2004-11-26 2006-06-01 Jfe Steel Corporation 電磁特性に優れた鋼管およびその製造方法
US7942984B2 (en) 2004-11-26 2011-05-17 Jfe Steel Corporation Steel pipe with good magnetic properties and method of producing the same
JP2007031822A (ja) * 2005-07-29 2007-02-08 Jfe Steel Kk 高剛性鋼管およびその製造方法
JP4654818B2 (ja) * 2005-07-29 2011-03-23 Jfeスチール株式会社 高剛性鋼管およびその製造方法
US10071170B2 (en) 2013-06-24 2018-09-11 Ablbio Antibody-drug conjugate having improved stability and use thereof
WO2023190621A1 (ja) * 2022-03-30 2023-10-05 日本製鉄株式会社 無方向性電磁鋼板及びモータコア
JP7448873B2 (ja) 2022-03-30 2024-03-13 日本製鉄株式会社 無方向性電磁鋼板及びモータコア

Also Published As

Publication number Publication date
DE60134125D1 (de) 2008-07-03
EP1264910A1 (en) 2002-12-11
EP1264910B1 (en) 2008-05-21
KR100514119B1 (ko) 2005-09-13
CN1401012A (zh) 2003-03-05
CN1144893C (zh) 2004-04-07
KR20020076340A (ko) 2002-10-09
JP4264212B2 (ja) 2009-05-13
US20030116238A1 (en) 2003-06-26
US6866725B2 (en) 2005-03-15
EP1264910A4 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
WO2001062998A1 (fr) Tube d&#39;acier facile a former et procede de production de ce dernier
US9988700B2 (en) High-strength steel sheet and high-strength galvanized steel sheet excellent in shape fixability, and manufacturing method thereof
TWI494447B (zh) High-strength steel sheet excellent in formability, high-strength zinc plated steel sheet and the like (2)
JP5950045B2 (ja) 鋼板およびその製造方法
JP5574059B2 (ja) 低温靭性に優れた高強度h形鋼及びその製造方法
CN103857812B (zh) 冷裂纹性优异的铁素体系不锈钢热轧钢板以及其制造方法
JP5582274B2 (ja) 冷延鋼鈑、電気亜鉛系めっき冷延鋼板、溶融亜鉛めっき冷延鋼板、合金化溶融亜鉛めっき冷延鋼板、及び、それらの製造方法
WO2001094655A1 (fr) Tuyau d&#39;acier a haute aptitude au formage et son procede de fabrication
JP4220666B2 (ja) 成形性に優れたハイドロフォーム加工用高耐食鋼管およびその製造方法
JP2000513050A (ja) 高張力鋼及びその製造方法
EP1371743A1 (en) Electric welded steel tube for hollow stabilizer
JP5978838B2 (ja) 深絞り性に優れた冷延鋼鈑、電気亜鉛系めっき冷延鋼板、溶融亜鉛めっき冷延鋼板、合金化溶融亜鉛めっき冷延鋼板、及び、それらの製造方法
JP7280537B2 (ja) 熱延鋼板
JP7136335B2 (ja) 高強度鋼板及びその製造方法
JP7136336B2 (ja) 高強度鋼板及びその製造方法
JP4406154B2 (ja) 成形性の優れたハイドロフォーム用鋼管およびその製造方法
JP3828719B2 (ja) 成形性の優れた鋼管の製造方法
JP3887155B2 (ja) 成形性に優れた鋼管及びその製造方法
JP4899885B2 (ja) 靭性および脆性亀裂伝播停止特性に優れた薄肉調質高張力鋼板およびその製造方法
JP2005290553A (ja) 被削性と靭性および溶接性に優れた鋼板およびその製造方法
JP4336026B2 (ja) 成形性に優れた高強度鋼管とその製造方法
JP2002069584A (ja) 成形性の優れた高強度鋼管およびその製造方法
JP4344071B2 (ja) 成形性の優れた鋼管およびその製造方法
JP2013209725A (ja) 曲げ加工性に優れた冷延鋼板及びその製造方法
JP4336027B2 (ja) 成形性に優れた高強度鋼管とその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 561805

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 018050085

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001908167

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10220441

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020027011319

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027011319

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001908167

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027011319

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001908167

Country of ref document: EP