WO2019010661A1 - 一种高韧性高强度耐腐蚀弹簧 - Google Patents

一种高韧性高强度耐腐蚀弹簧 Download PDF

Info

Publication number
WO2019010661A1
WO2019010661A1 PCT/CN2017/092721 CN2017092721W WO2019010661A1 WO 2019010661 A1 WO2019010661 A1 WO 2019010661A1 CN 2017092721 W CN2017092721 W CN 2017092721W WO 2019010661 A1 WO2019010661 A1 WO 2019010661A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
corrosion resistant
high strength
high toughness
composite metal
Prior art date
Application number
PCT/CN2017/092721
Other languages
English (en)
French (fr)
Inventor
田圣林
Original Assignee
田圣林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田圣林 filed Critical 田圣林
Priority to PCT/CN2017/092721 priority Critical patent/WO2019010661A1/zh
Publication of WO2019010661A1 publication Critical patent/WO2019010661A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the invention belongs to the technical field of springs, and in particular relates to a high toughness and high strength corrosion resistant spring.
  • a spring is a mechanical part that works by elasticity.
  • the part is deformed by an external force, and is restored to its original state after removal of an external force, and is generally made of an elastic material such as spring steel.
  • the types of springs are complex and diverse, and are divided into shapes, mainly spiral springs, scroll springs, leaf springs, and shaped springs.
  • a composite spiral limit spring which comprises a metal spring which extends the initial end and the end of the spiral in opposite directions, and the spring pitch of the middle section is equidistant to form a disk shape.
  • the shape of the disk is mosquito-like, the initial end of the disk is flush with the upper and lower ends of the end, and the upper and lower end faces are respectively tapped and tapped to form a screw hole, and are fixed by bolts and the sieve body and the bottom barrel.
  • the metal spring is made of 60si2MN silicon-manganese steel material by high temperature rolling, and the special mold is cast rubber, and is cooled to form a composite limit spring.
  • the spring can improve the installation speed, saves time and labor, and reduces the installation of the positioning pin, thereby saving the manufacturing cost and also playing a certain limit function, thereby ensuring the safety of the transportation and the customer in the current use.
  • a nickel-base alloy spring applied to a plug seal is disclosed.
  • the nickel-based alloy wire is bent up and down to form a plurality of serpentine box structures, which are based on the center line d, and are specifically connected by several groups.
  • the rectangular protrusion and the rectangular recess are composed; the rectangular protrusion and the rectangular recess are both bent upward with reference to the center line d to form a V-shaped opening.
  • the raw material used in the invention is a nickel-based alloy wire, and the dimensional stability and performance stability of the alloy wire are higher than that of the nickel-based alloy metal piece, and the processing technology is simple; the punching is not required in the process of processing into a V-shaped spring. No burrs, improved fatigue life, and material savings, reducing energy consumption.
  • a coil spring for a suspension device is disclosed in Chinese Patent No. CN105452705A, which includes a lower roll portion (42), an upper roll portion (44), and a spiral formed between the seat portions (42, 44). Valid part (45).
  • the lower roll portion (42) includes: regardless of the size of the load, always with the lower side of the bomb a first portion (42a) of the spring seat contact; and a second portion (42b) that contacts or separates from the lower spring seat in response to the magnitude of the load.
  • the wire diameter of the second portion (42b) is larger than the wire diameter of the first portion (42a) and larger than the average wire diameter of the effective portion (45).
  • the upper roll portion (44) includes: a third portion (44a) that always contacts the upper spring seat regardless of the magnitude of the load; and a contact or separation with the upper spring seat depending on the magnitude of the load Part IV (44b).
  • the wire diameter of the fourth portion (44b) is larger than the wire diameter of the third portion (44a) and larger than the average wire diameter of the effective portion (45).
  • the chemical composition of the medium-thick plate steel is as follows: C: 0.03 to 0.05%, Si: 0.20 to 0.40%, Mn: 3.00 to 6.00%, P: ⁇ 0.005%, S: ⁇ 0.003%, Ni: 0.5 to 1.50%, the balance is Fe and unavoidable impurities; the thickness of the plate is 10 mm to 40 mm.
  • the preparation method comprises the following steps: 1) heating the steel slab to 1200 ° C and maintaining the austenitization for 2 to 3 hours; then rolling the steel slab in one-stage or two-stage rolling, and then cooling the plate to room temperature after rolling; 2) slab It is placed in a heating furnace at 610 ° C to 640 ° C, kept for 2 to 3 hours, and then quenched to room temperature.
  • the medium and heavy plate of the invention has the characteristics of uniform microstructure, low yield ratio, high strength, high plasticity and high toughness, and the structure performance is superior to the traditional high strength medium and heavy plate steel; the preparation method is simple and easy to operate.
  • the object of the present invention is to provide a high toughness and high strength corrosion resistant spring, which has the advantages of high toughness, high strength, corrosion resistance, etc., and meets the needs of special use.
  • a high toughness and high strength corrosion resistant spring comprising a spring base and a corrosion resistant layer disposed on the outer layer of the base; the spring base is composed of the following components by weight: 0.25-0.85% carbon, 1.35-2.10% silicon 0.5 to 1.20% manganese, 0.5-0.7% magnesium, composite metal element 1.0-5.0%, P ⁇ 0.02%, S ⁇ 0.01%, the balance being Fe and other unavoidable impurities.
  • the spring substrate is composed of the following components by weight: 0.25-0.50% carbon, 1.35-1.80% silicon, 0.5-0.80% manganese, 0.5-0.6% magnesium, composite metal element 1.0-5.0%, P ⁇ 0.02 %, S ⁇ 0.01%, the balance is Fe and other unavoidable impurities.
  • the spring substrate is composed of the following components by weight: 0.55 to 0.85% carbon, 1.85 to 2.10% silicon, 0.85 to 1.20% manganese, 0.6-0.7% magnesium, composite metal element 1.0-5.0%, P ⁇ 0.02 %, S ⁇ 0.01%, the balance is Fe and other unavoidable impurities.
  • the spring substrate is composed of the following components by weight: 0.50-0.55% carbon, 1.80-1.85% silicon, 0.80-0.85% manganese, 0.5-0.6% magnesium, composite metal element 1.0-5.0%, P ⁇ 0.02 %, S ⁇ 0.01%, the balance is Fe and other unavoidable impurities.
  • the composite metal element is at least four or more of tungsten, vanadium, boron, lanthanum, molybdenum, nickel, copper, zirconium and titanium.
  • the composite metal element is at least five of tungsten, vanadium, boron, lanthanum, molybdenum, nickel, copper, zirconium and titanium.
  • the composite metal element is at least six of tungsten, vanadium, boron, lanthanum, molybdenum, nickel, copper, zirconium and titanium.
  • the mass percentage of each component is 0.10 to 0.20% tungsten, 0.20 to 0.30% vanadium, 0.05 to 0.15% boron, 0.01 to 0.05% bismuth, 0.1 to 0.50% molybdenum, 0.5 to 1.0%.
  • the corrosion-resistant layer is a metal corrosion-resistant layer and is a gold, aluminum, zinc or alloy plating layer thereof.
  • the corrosion resistant layer is a galvanized layer.
  • the high-toughness and high-strength corrosion-resistant spring of the present invention can improve the overall performance of the spring by the improvement of the substrate and the corrosion-resistant layer, so that it has high toughness at the same time.
  • the reduction ratio of the section is Z ⁇ 45%, and the elongation after fracture is ⁇ 15%.
  • the spring produced has excellent corrosion fatigue resistance, and the strength of the spring is increased by more than 10% and the life is increased by more than 10 times.
  • a high toughness and high strength corrosion resistant spring comprising a spring substrate and a corrosion resistant layer disposed on the outer layer of the substrate; wherein the spring substrate is composed of the following components by weight: 0.25 carbon, 1.35 silicon, 0.5% manganese, 0.5% Magnesium, P ⁇ 0.02%, S ⁇ 0.01%, 0.10% tungsten, 0.20% vanadium, 0.05% boron, 0.01% bismuth, the balance being Fe and other unavoidable impurities.
  • the corrosion resistant layer is a gold plated layer.
  • the tensile strength of the product is above 2100MPa, the reduction of the section is Z ⁇ 45%, and the elongation after fracture is ⁇ 15%.
  • the spring produced has excellent corrosion fatigue resistance and the strength of the spring is increased by more than 10%. The life expectancy is increased by more than 10 times.
  • a high toughness and high strength corrosion resistant spring comprising a spring substrate and a corrosion resistant layer disposed on the outer layer of the substrate; wherein the spring substrate is composed of the following components by weight: 0.85% carbon, 2.10% silicon, 1.20% manganese, 0.7% magnesium, P ⁇ 0.02%, S ⁇ 0.01%, composite metal element is 0.20% tungsten, 0.30% vanadium, 0.15% boron, 0.05% bismuth, 0.50% molybdenum, and the balance is Fe and other unavoidable impurities.
  • the corrosion resistant layer is an aluminized layer.
  • the tensile strength of the product is above 2100MPa, the reduction of the section is Z ⁇ 45%, and the elongation after fracture is ⁇ 15%.
  • the spring produced has excellent corrosion fatigue resistance and the strength of the spring is increased by more than 10%. The life expectancy is increased by more than 10 times.
  • a high toughness and high strength corrosion resistant spring comprising a spring substrate and a corrosion resistant layer disposed on the outer layer of the substrate; wherein the spring substrate is composed of the following components by weight: 0.55% carbon, 1.70% silicon, 0.80% manganese, 0.6% magnesium, composite metal element is 0.03% bismuth, 0.50% molybdenum, 1.0% nickel, 0.35% copper, 0.05% zirconium, 0.10% titanium, P ⁇ 0.02%, S ⁇ 0.01%, the balance is Fe and others are inevitable Impurities.
  • the corrosion resistant layer is a galvanized layer.
  • the spring produced has excellent corrosion fatigue resistance and improves the strength of the spring. 10% or more, life expectancy increased by 10 times or more.
  • a high toughness and high strength corrosion resistant spring comprising a spring substrate and a corrosion resistant layer disposed on the outer layer of the substrate; the spring substrate is composed of the following components by weight: 0.6% carbon, 1.90% silicon, 1.0% manganese , 0.55% magnesium, composite metal element is 0.20% tungsten, 0.30% vanadium, 0.15% boron, 0.05% bismuth, 0.50% molybdenum, 1.0% nickel, 0.35% copper, 0.05% zirconium, 0.10% titanium, P ⁇ 0.02%, S ⁇ 0.01%, the balance is Fe and other unavoidable impurities.
  • the corrosion resistant layer is an alloy plating of gold, aluminum, and zinc.
  • the tensile strength of the product is above 2100MPa, the reduction of the section is Z ⁇ 45%, and the elongation after fracture is ⁇ 15%.
  • the spring produced has excellent corrosion fatigue resistance and the strength of the spring is increased by more than 10%. The life expectancy is increased by more than 10 times.

Abstract

一种高韧性高强度耐腐蚀弹簧,包括弹簧基体和设在基体外层的耐腐蚀层;所述的弹簧基体由以下重量百分比的各组分组成:0.25~0.85%碳、1.35~2.10%硅、0.5~1.20%锰、0.5-0.7%镁、复合金属元素1.0-5.0%、P≤0.02%、S≤0.01%,余量为Fe和其它不可避免的杂质。该高韧性高强度耐腐蚀弹簧,通过基材和镀耐腐蚀层两个方面进行改进,可以有效提高弹簧的整体性能,使其同时具备高韧性、高强度、耐腐蚀性,经检测,产品的抗拉强度在2100MPa以上时,断面收缩率Z≥45%,断后伸长率≥15%,制成的弹簧具有优异的耐腐蚀疲劳性能,使弹簧的强度提高了10%以上、寿命提高10倍以上。

Description

一种高韧性高强度耐腐蚀弹簧 技术领域
本发明属于弹簧技术领域,具体涉及一种高韧性高强度耐腐蚀弹簧。
背景技术
弹簧是一种利用弹性来工作的机械零件,该零件在外力作用下发生形变,除去外力后又恢复原状,一般用弹性材料制成,例如弹簧钢。弹簧的种类复杂多样,按形状分,主要有螺旋弹簧、涡卷弹簧、板弹簧、异型弹簧等。
随着技术的发展,对弹簧的种类和性能要求也越来越高。例如在中国专利CN106438796A中,公开了一种复合螺旋弹簧,弹簧丝节距相等,弹簧丝为两层结构,外层为金属层,内层为剪切增稠胶。这种复合了剪切增稠胶的螺旋弹簧,静荷载表现线性特性,动荷载由于剪切增稠胶其独特力学性能有非线性刚度、阻尼特性。很好地克服了现有弹簧的不足。在中国专利CN106438804A中公开了一种复合型螺旋限位弹簧,它包括金属弹簧,所述金属弹簧是将螺旋初始端和末端彼此沿相反方向延长,中间段的弹簧螺距为等距构成盘状,盘状的形状呈蚊香状,盘状的初始端和末端上下两个端面平齐,所述上下端面上分别扩孔攻丝制成螺孔,并通过螺栓与筛机参振体和底桶固定。所述金属弹簧由60si2MN硅锰钢材经高温卷制而成,专用模具浇注橡胶,冷却后制成复合式限位弹簧。该弹簧能提高安装速度,省时省力,因减少定位销的安装,故节约了制造成本,同时也起到一定的限位作用,保证了运输及客户现在使用过程中的安全。在中国专利CN106884915A中公开了一种应用于泛塞封的镍基合金弹簧,由镍基合金丝上下折弯形成若干个蛇形方框结构,以中线d为基准,具体由若干组相邻连接的矩形凸起和矩形凹陷组成;所述矩形凸起和矩形凹陷以中线d为基准均向上弯折,形成V型开口。本发明采用的原料为镍基合金丝,与镍基合金金属片相比,合金丝的尺寸稳定性及性能稳定性较高,而且加工工艺简单;加工成V形弹簧过程中不需要冲切,没有毛刺,提高疲劳寿命,并且节省材料,减低了能耗。在中国专利CN105452705A中公开了一种悬挂装置用螺旋弹簧,包括下侧的座卷部(42)、上侧的座卷部(44)及形成于座卷部(42、44)间的螺旋状的有效部(45)。下侧的座卷部(42)包括:无论负荷的大小为多少始终与下侧的弹 簧座接触的第一部分(42a);以及随应负荷的大小与下侧的弹簧座接触或分离的第二部分(42b)。第二部分(42b)的金属丝线径大于第一部分(42a)的金属丝线径且大于有效部(45)的平均金属丝线径。上侧的座卷部(44)包括:无论负荷的大小为多少始终与上侧的弹簧座接触的第三部分(44a);以及随应负荷的大小而与上侧的弹簧座接触或分离的第四部分(44b)。第四部分(44b)的金属丝线径大于第三部分(44a)的金属丝线径且大于有效部(45)的平均金属丝线径。
除上述的新式高性能的弹簧之外,在制备弹簧的金属材料中,也取得了突飞猛进的发展,例如在中国专利CN105886924A中公开了一种高强韧性能的低合金钢及其制备方法,该制备方法从成分改善、省略铸坯再加热的短流程设计、铸坯心部质量改善、组织微细化控制、轧制规程优化方面综合考虑提高强韧性能的合理搭配方法,充分体现现代材料加工的工艺技术潜力,发挥晶粒细化、控制轧制、快速冷却等工艺手段对钢材强韧化的作用,确保中厚板产品减少脆性相裂纹萌生、获得新的组织形貌以阻止裂纹扩展,实现超高强韧钢铸坯直接热轧的短流程技术突破。在中国专利CN104946973A中公开了一种高强度、韧性、塑性的低碳中锰中厚板及其制备方法,属于钢铁材料技术领域。该中厚板钢的化学成分按重量百分比为:C:0.03~0.05%,Si:0.20~0.40%,Mn:3.00~6.00%,P:≤0.005%,S:≤0.003%,Ni:0.5~1.50%,余量为Fe和不可避免的杂质;该中厚板的厚度10mm~40mm。其制备方法为:1)将钢坯加热至1200℃并保温2~3h进行充分的奥氏体化;然后将钢坯进行一阶段或两阶段轧制,轧后将板材水冷至室温;2)将板材置于610℃~640℃的加热炉中,保温2~3h,然后淬火至室温。本发明的中厚板具有厚向组织均匀、低屈强比、高强度、高塑性和高韧性的特征,组织性能优于传统高强中厚板钢;该制备方法简单易操作。
然而,随着科技的进步,对弹簧性能提出更高的要求,同时具备高韧性、高强度、耐腐蚀等性能,在这种要求下,现有技术中还不能完全满足。
发明内容
发明目的:针对现有技术中存在的不足,本发明的目的是提供一种高韧性高强度耐腐蚀弹簧,同时具备高韧性、高强度、耐腐蚀性等优点,满足特殊用途的使用需求。
技术方案:为了实现上述发明目的,本发明采用的技术方案为:
一种高韧性高强度耐腐蚀弹簧,包括弹簧基体和设在基体外层的耐腐蚀层;所述的弹簧基体由以下重量百分比的各组分组成:0.25~0.85%碳、1.35~2.10%硅、0.5~1.20%锰、0.5-0.7%镁、复合金属元素1.0-5.0%、P≤0.02%、S≤0.01%,余量为Fe和其它不可避免的杂质。
所述的弹簧基体由以下重量百分比的各组分组成:0.25~0.50%碳、1.35~1.80%硅、0.5~0.80%锰、0.5-0.6%镁、复合金属元素1.0-5.0%、P≤0.02%、S≤0.01%,余量为Fe和其它不可避免的杂质。
所述的弹簧基体由以下重量百分比的各组分组成:0.55~0.85%碳、1.85~2.10%硅、0.85~1.20%锰、0.6-0.7%镁、复合金属元素1.0-5.0%、P≤0.02%、S≤0.01%,余量为Fe和其它不可避免的杂质。
所述的弹簧基体由以下重量百分比的各组分组成:0.50~0.55%碳、1.80~1.85%硅、0.80~0.85%锰、0.5-0.6%镁、复合金属元素1.0-5.0%、P≤0.02%、S≤0.01%,余量为Fe和其它不可避免的杂质。
所述的复合金属元素至少为钨、钒、硼、铌、钼、镍、铜、锆、钛中的四种以上。
所述的复合金属元素至少为钨、钒、硼、铌、钼、镍、铜、锆、钛中的五种以上。
所述的复合金属元素至少为钨、钒、硼、铌、钼、镍、铜、锆、钛中的六种。
在所述的复合金属元素中,各组分的质量百分比为0.10~0.20%钨、0.20~0.30%钒、0.05~0.15%硼、0.01~0.05%铌、0.1~0.50%钼、0.5~1.0%镍、0.05~0.35%铜、0.02~0.05%锆、0.01~0.10%钛,所述的百分比为占弹簧基体重量的百分比。
所述的耐腐蚀层为金属耐腐蚀层,为金、铝、锌或它们的合金镀层。
所述的耐腐蚀层为镀锌层。
有益效果:与现有技术相比,本发明的高韧性高强度耐腐蚀弹簧,通过基材和镀耐腐蚀层两个方面进行改进,可以有效提高弹簧的整体性能,使其同时具备高韧性、高强度、耐腐蚀性,经检测,产品的抗拉强度在2100MPa以上时, 断面收缩率Z≥45%,断后伸长率≥15%,制成的弹簧具有优异的耐腐蚀疲劳性能,使弹簧的强度提高了10%以上、寿命提高10倍以上。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
实施例1
一种高韧性高强度耐腐蚀弹簧,包括弹簧基体和设在基体外层的耐腐蚀层;其中,弹簧基体由以下重量百分比的各组分组成:0.25碳、1.35硅、0.5%锰、0.5%镁、P≤0.02%、S≤0.01%,0.10%钨、0.20%钒、0.05%硼、0.01%铌,余量为Fe和其它不可避免的杂质。耐腐蚀层为镀金层。
经检测,产品的抗拉强度在2100MPa以上时,断面收缩率Z≥45%,断后伸长率≥15%,制成的弹簧具有优异的耐腐蚀疲劳性能,使弹簧的强度提高了10%以上、寿命提高10倍以上。
实施例2
一种高韧性高强度耐腐蚀弹簧,包括弹簧基体和设在基体外层的耐腐蚀层;其中,弹簧基体由以下重量百分比的各组分组成:0.85%碳、2.10%硅、1.20%锰、0.7%镁、P≤0.02%、S≤0.01%,复合金属元素为0.20%钨、0.30%钒、0.15%硼、0.05%铌、0.50%钼,余量为Fe和其它不可避免的杂质。耐腐蚀层为镀铝层。
经检测,产品的抗拉强度在2100MPa以上时,断面收缩率Z≥45%,断后伸长率≥15%,制成的弹簧具有优异的耐腐蚀疲劳性能,使弹簧的强度提高了10%以上、寿命提高10倍以上。
实施例3
一种高韧性高强度耐腐蚀弹簧,包括弹簧基体和设在基体外层的耐腐蚀层;其中,弹簧基体由以下重量百分比的各组分组成:0.55%碳、1.70%硅、0.80%锰、0.6%镁、复合金属元素为0.03%铌、0.50%钼、1.0%镍、0.35%铜、0.05%锆、0.10%钛、P≤0.02%、S≤0.01%,余量为Fe和其它不可避免的杂质。耐腐蚀层为镀锌层。
经检测,产品的抗拉强度在2100MPa以上时,断面收缩率Z≥45%,断后伸长率≥15%,制成的弹簧具有优异的耐腐蚀疲劳性能,使弹簧的强度提高了 10%以上、寿命提高10倍以上。
实施例4
一种高韧性高强度耐腐蚀弹簧,包括弹簧基体和设在基体外层的耐腐蚀层;所述的弹簧基体由以下重量百分比的各组分组成:0.6%碳、1.90%硅、1.0%锰、0.55%镁、复合金属元素为0.20%钨、0.30%钒、0.15%硼、0.05%铌、0.50%钼、1.0%镍、0.35%铜、0.05%锆、0.10%钛,P≤0.02%、S≤0.01%,余量为Fe和其它不可避免的杂质。耐腐蚀层为金、铝、锌的合金镀层。
经检测,产品的抗拉强度在2100MPa以上时,断面收缩率Z≥45%,断后伸长率≥15%,制成的弹簧具有优异的耐腐蚀疲劳性能,使弹簧的强度提高了10%以上、寿命提高10倍以上。

Claims (10)

  1. 一种高韧性高强度耐腐蚀弹簧,其特征在于:包括弹簧基体和设在基体外层的耐腐蚀层;所述的弹簧基体由以下重量百分比的各组分组成:0.25~0.85%碳、1.35~2.10%硅、0.5~1.20%锰、0.5-0.7%镁、复合金属元素1.0-5.0%、P≤0.02%、S≤0.01%,余量为Fe和其它不可避免的杂质。
  2. 根据权利要求1所述的高韧性高强度耐腐蚀弹簧,其特征在于,所述的弹簧基体由以下重量百分比的各组分组成:0.25~0.50%碳、1.35~1.80%硅、0.5~0.80%锰、0.5-0.6%镁、复合金属元素1.0-5.0%、P≤0.02%、S≤0.01%,余量为Fe和其它不可避免的杂质。
  3. 根据权利要求1所述的高韧性高强度耐腐蚀弹簧,其特征在于,所述的弹簧基体由以下重量百分比的各组分组成:0.55~0.85%碳、1.85~2.10%硅、0.85~1.20%锰、0.6-0.7%镁、复合金属元素1.0-5.0%、P≤0.02%、S≤0.01%,余量为Fe和其它不可避免的杂质。
  4. 根据权利要求1所述的高韧性高强度耐腐蚀弹簧,其特征在于,所述的弹簧基体由以下重量百分比的各组分组成:0.50~0.55%碳、1.80~1.85%硅、0.80~0.85%锰、0.5-0.6%镁、复合金属元素1.0-5.0%、P≤0.02%、S≤0.01%,余量为Fe和其它不可避免的杂质。
  5. 根据权利要求1-4任一项所述的高韧性高强度耐腐蚀弹簧,其特征在于,所述的复合金属元素至少为钨、钒、硼、铌、钼、镍、铜、锆、钛中的四种以上。
  6. 根据权利要求5所述的高韧性高强度耐腐蚀弹簧,其特征在于,所述的复合金属元素至少为钨、钒、硼、铌、钼、镍、铜、锆、钛中的五种以上。
  7. 根据权利要求5所述的高韧性高强度耐腐蚀弹簧,其特征在于,所述的复合金属元素至少为钨、钒、硼、铌、钼、镍、铜、锆、钛中的六种。
  8. 根据权利要求6或7所述的高韧性高强度耐腐蚀弹簧,其特征在于,在所述的复合金属元素中,各组分的质量百分比为0.10~0.20%钨、0.20~0.30%钒、0.05~0.15%硼、0.01~0.05%铌、0.1~0.50%钼、0.5~1.0%镍、0.05~0.35%铜、0.02~0.05%锆、0.01~0.10%钛,所述的百分比为占弹簧基体重量的百分比。
  9. 根据权利要求1所述的高韧性高强度耐腐蚀弹簧,其特征在于,所述的 耐腐蚀层为金属耐腐蚀层,为金、铝、锌或它们的合金镀层。
  10. 根据权利要求1所述的高韧性高强度耐腐蚀弹簧,其特征在于,所述的耐腐蚀层为镀锌层。
PCT/CN2017/092721 2017-07-13 2017-07-13 一种高韧性高强度耐腐蚀弹簧 WO2019010661A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/092721 WO2019010661A1 (zh) 2017-07-13 2017-07-13 一种高韧性高强度耐腐蚀弹簧

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/092721 WO2019010661A1 (zh) 2017-07-13 2017-07-13 一种高韧性高强度耐腐蚀弹簧

Publications (1)

Publication Number Publication Date
WO2019010661A1 true WO2019010661A1 (zh) 2019-01-17

Family

ID=65000980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092721 WO2019010661A1 (zh) 2017-07-13 2017-07-13 一种高韧性高强度耐腐蚀弹簧

Country Status (1)

Country Link
WO (1) WO2019010661A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275533A (ja) * 2001-03-13 2002-09-25 Nippon Steel Corp 成形性に優れた鋼管の製造法
CN1401012A (zh) * 2000-02-28 2003-03-05 新日本制铁株式会社 成形性优良的钢管及制造这种钢管的方法
JP2005298909A (ja) * 2004-04-13 2005-10-27 Nippon Steel Corp 表面割れの少ない鋳片
JP2012041597A (ja) * 2010-08-18 2012-03-01 Nippon Steel Corp 耐遅れ破壊特性に優れたホットプレス用めっき鋼板及びその製造方法
CN102482747A (zh) * 2010-07-06 2012-05-30 新日本制铁株式会社 高强度弹簧用拉伸热处理钢线及高强度弹簧用拉伸前钢线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1401012A (zh) * 2000-02-28 2003-03-05 新日本制铁株式会社 成形性优良的钢管及制造这种钢管的方法
JP2002275533A (ja) * 2001-03-13 2002-09-25 Nippon Steel Corp 成形性に優れた鋼管の製造法
JP2005298909A (ja) * 2004-04-13 2005-10-27 Nippon Steel Corp 表面割れの少ない鋳片
CN102482747A (zh) * 2010-07-06 2012-05-30 新日本制铁株式会社 高强度弹簧用拉伸热处理钢线及高强度弹簧用拉伸前钢线
JP2012041597A (ja) * 2010-08-18 2012-03-01 Nippon Steel Corp 耐遅れ破壊特性に優れたホットプレス用めっき鋼板及びその製造方法

Similar Documents

Publication Publication Date Title
EP4089197A1 (en) Chain steel for use in mine and manufacturing method therefor
US8540933B2 (en) Stainless austenitic low Ni steel alloy
CN105121688B (zh) 奥氏体twip不锈钢,及其生产和应用
CN111218618B (zh) 用于紧固件的抗氢脆、高强韧不锈钢棒材及其制造方法
CN109423577B (zh) 一种高强多相钢镀锡原板及其制造方法
JP6229180B1 (ja) 準安定オーステナイト系ステンレス鋼帯または鋼板並びにその製造方法
CN110218948A (zh) 一种低密度高韧度钢及其制备方法
CN108193144B (zh) 一种高弹性模量的高强弹簧丝及其制备方法
CN102041454A (zh) 一种用于锻造成形冷轧辊的高硬度钢
CN113737091A (zh) 一种低磁高强度耐蚀紧固件用钢以及紧固件
CN109295390B (zh) 一种超高强耐腐蚀钢筋及其生产方法
CN109266973A (zh) Fe-Mn-Si-Ni-C系弹塑性阻尼钢及其制造方法与应用
CN108728728B (zh) 一种具有极低屈强比的高锰钢及其制造方法
JP5764908B2 (ja) 温間プレス成形方法
CN111910134A (zh) 一种用于高温高压条件的高强高韧性弹簧钢及其生产方法
CN110863147B (zh) 一种用于矿井环境服役的q690耐蚀钢及其制备方法
WO2019010661A1 (zh) 一种高韧性高强度耐腐蚀弹簧
CN114959418B (zh) 一种船用抗海水腐蚀疲劳高强钢及制造方法
CN113957361B (zh) 一种石化设备用奥氏体耐热钢板及其制造方法
CN111910104B (zh) 氢燃料电池空压机经济型镍铬基高温合金及其箔片
CN106916996B (zh) 一种低温超高韧耐磨铜合金及其制备方法
JP2017186652A (ja) 非調質ボルト用線材、非調質ボルト用鋼線およびそれらの製造方法、ならびに非調質ボルト
CN110777305A (zh) 一种高硬高强可折叠不锈钢箔
WO2007020914A1 (ja) 冷間加工性に優れた高強度ステンレス鋼線及びその成形品
CN104988423B (zh) 一种高弹性模量弹性元件用恒弹性合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917277

Country of ref document: EP

Kind code of ref document: A1