WO2001048914A1 - Circuit amplificateur de signal et recepteur de signal optique utilisant ledit circuit amplificateur - Google Patents

Circuit amplificateur de signal et recepteur de signal optique utilisant ledit circuit amplificateur Download PDF

Info

Publication number
WO2001048914A1
WO2001048914A1 PCT/JP1999/007376 JP9907376W WO0148914A1 WO 2001048914 A1 WO2001048914 A1 WO 2001048914A1 JP 9907376 W JP9907376 W JP 9907376W WO 0148914 A1 WO0148914 A1 WO 0148914A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
phase signal
detection circuit
level
Prior art date
Application number
PCT/JP1999/007376
Other languages
English (en)
French (fr)
Inventor
Satoshi Ide
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP1999/007376 priority Critical patent/WO2001048914A1/ja
Priority to JP2001548519A priority patent/JP4429565B2/ja
Publication of WO2001048914A1 publication Critical patent/WO2001048914A1/ja
Priority to US10/171,559 priority patent/US6587004B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver
    • H04B10/6933Offset control of the differential preamplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • H03F3/087Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light with IC amplifier blocks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
    • H03F3/4595Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by using feedforward means
    • H03F3/45955Measuring at the input circuit of the differential amplifier
    • H03F3/45959Controlling the input circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
    • H03F3/45968Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by offset reduction
    • H03F3/45982Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by offset reduction by using a feedforward circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3084Automatic control in amplifiers having semiconductor devices in receivers or transmitters for electromagnetic waves other than radiowaves, e.g. lightwaves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver
    • H04B10/6931Automatic gain control of the preamplifier

Definitions

  • the present invention relates to a signal amplifier circuit and an optical signal receiver using the same, and more particularly, to a signal amplifier circuit suitable for amplifying a burst signal and a burst optical signal receiver using the same.
  • FIG. 1 is a conceptual diagram of a PON system.
  • a plurality of subscribers # 1 to #n are connected to the coupler 200 through optical transmission lines 200-1 to 200-n, respectively. Further, the coupler 200 and the switching center 201 are connected through an optical trunk line 202.
  • Optical signals burst-cellized are output from each of the plurality of subscribers # 1 to #n, and the optical signals 200 are transmitted to the switching center 201 via the optical trunk line 202 via the power line 200. 3 to 205 are sent.
  • the optical signal receiver on the receiving side needs a wide input dynamic range.
  • FIG. 2 shows a configuration example of an optical signal receiver for receiving a burst optical signal in such a state, which has been proposed by the present inventors.
  • an optical signal is received by a photodiode (PD) 100, converted into a current signal, and input to a preamplifier circuit 101.
  • the preamplifier circuit 101 converts this current signal into a voltage signal.
  • the transimpedance amplifier 103 constituting the preamplifier circuit 101 has a diode 103 C connected in parallel with its feedback resistor 103 B in order to expand the dynamic range. It has an amplifier 103A.
  • the diode 103C When an excessive input signal is received, the diode 103C is turned on, reducing the feedback resistance and preventing the amplifier circuit from saturating. This makes it possible to obtain a good output waveform over a wide input dynamic range from the buffer amplifier 104 having the signal polarity inversion function.
  • the signal amplifying circuit 102 is composed of a master-slave (Master-Slave) type automatic threshold control (ATC) circuit 106 and a limiter amplifier 108.
  • the signal amplifier 102 amplifies the weak signal output from the buffer amplifier 104 of the preamplifier 101 to obtain a sufficiently large logic signal.
  • It has a (Master) peak detection circuit 106 B and a slave bottom detection circuit 106 A that detects the relative minimum value from the peak detection level. These are divided by a resistor divider circuit 106 C connected in series, the intermediate value is generated as a DC level, and a threshold level for the limiter amplifier circuit 108 is set.
  • FIG. 3 shows the input current amplitude versus the output voltage amplitude in the preamplifier circuit 101 of the optical signal receiver shown in FIG.
  • the input current amplitude I of the preamplifier circuit 101 corresponding to the received light is such that the extinction ratio in laser driving on the transmitting side is, for example, about 10 dB or less, and the bias corresponding to this is It has a DC level ⁇ ⁇ for the current.
  • the input current amplitude vs. output voltage amplitude characteristic of the preamplifier 101 is diode 103 as shown in the figure. Makes it non-linear. Therefore, the output m of the preamplifier 101 has a very large rise in the “0” level.
  • the signal amplification circuit 102 shown in Fig. 2 uses the Master-Slave type ATC circuit 106, and the signal after the peak level is determined by the Slave bottom detection circuit 106A. Since the minimum value can be detected, the amplitude level of the signal can be reliably detected.
  • the signal amplifier circuit previously proposed by the inventors of the present invention shown in FIG. 2 has a problem of causing waveform deterioration due to external noise or the like because of single-sided signal transmission.
  • FIG. 4 shows signal waveform responses 1 to ⁇ of corresponding portions of the signal amplification circuit 102 of FIG.
  • a peak value and a bottom value of the input signal waveform response ⁇ ⁇ ⁇ of the signal amplifier 102 are detected by a peak detection circuit 106 B and a bottom value 106 A, respectively.
  • FIG. 4A an example is shown in which external noise is mixed in and superimposed on a portion indicated by a broken-line circle of the input signal waveform response 1.
  • FIG. 4B shows an example in which an intermediate value between the detected peak value and bottom value is set as the threshold value ⁇ ⁇ ⁇ by the voltage dividing circuit 106C.
  • FIG. 4C shows that the input signal waveform response ⁇ ⁇ is obtained as a normal phase output and a negative phase output ⁇ ⁇ ⁇ as output signals by the limiter amplifier 108 based on the threshold 4. Therefore, it can be understood that the noise component appears as it is.
  • an object of the present invention is to provide a signal amplifier circuit configuration and a signal amplifier circuit that solve the problem of causing waveform deterioration due to external noise and the like in the previously proposed signal amplifier circuit of the optical signal receiver shown in FIG.
  • An optical signal receiver is provided.
  • An optical signal receiver according to the present invention that solves the above-described problem includes a first Master-Slave type level detection circuit that detects a DC level of an in-phase signal and a first master-slave type level detection circuit that detects a DC level of an anti-phase signal. It has a Master-Slave type level detection circuit and realizes differential signal transmission by adding alternate signal components.
  • a first level detection circuit that detects a DC level of the positive-phase signal
  • a first addition circuit that adds a negative-phase signal to a detection output of the first level detection circuit
  • a second level detection circuit that detects a DC level of the negative phase signal
  • a second addition circuit that adds a positive phase signal to a detection output of the second level detection circuit
  • the first addition circuit And a differential amplifier circuit for differentially amplifying the output of the second adder circuit.
  • a first level detection circuit for detecting a DC level of the positive-phase signal or the negative-phase signal, and a negative-phase signal or a positive-phase signal output to a detection output of the first level detection circuit.
  • a first addition circuit for adding signals; a second addition circuit for adding the positive-phase signal and the negative-phase signal; and a differential amplifier for differentially amplifying the outputs of the first and second addition circuits. And an amplifier circuit.
  • Figure 1 is a conceptual diagram of a burst optical transmission system.
  • FIG. 2 shows a configuration example of an optical signal receiver for receiving a burst optical signal in such a state, which has been proposed by the present inventors.
  • FIG. 3 is a diagram showing an input current amplitude versus an output voltage amplitude in the preamplifier circuit 101 of the optical signal receiver shown in FIG.
  • FIG. 4 shows signal waveform responses 1 to ⁇ of corresponding portions of the signal amplification circuit 102 of FIG.
  • FIG. 5 is a diagram showing a configuration of a first embodiment of a burst optical signal receiver according to the present invention.
  • FIG. 6 is a diagram showing waveform responses corresponding to each of the units 1 to ⁇ of the embodiment circuit of FIG.
  • FIG. 7 is a diagram showing a configuration example of the Master-Slave type level detection circuit 16 of the circuit of the embodiment of FIG.
  • FIG. 8 is a diagram showing a configuration example of the Master-Slave type level detection circuit 17 of the circuit of the embodiment of FIG.
  • FIG. 9 is a configuration diagram showing a second embodiment of the optical signal receiver of the present invention.
  • FIG. 10 shows the waveform responses 1 to ⁇ of the corresponding parts of the embodiment of FIG.
  • FIG. 11 is a configuration diagram of a third embodiment of the optical signal receiver of the present invention.
  • FIG. 12 is a diagram illustrating an example of a tailing waveform in an optical signal receiver as an example of a response waveform.
  • FIG. 13 is a diagram showing a waveform response of the third embodiment.
  • FIG. 14 shows an embodiment in which a capacitance 30 B is provided on the input side of the preamplifier 31 and a current source of the light receiving element (PD) 30 A, in contrast to the embodiment shown in FIG.
  • FIG. 15 is a diagram showing a configuration example of the master-slave type level detection circuit 36 used in the embodiments of FIGS. 11 and 14.
  • FIG. 16 shows a configuration diagram of a fourth embodiment of the optical signal receiver according to the present invention.
  • FIG. 17 shows the waveform response of the corresponding part in FIG.
  • FIG. 18 is a diagram illustrating a configuration example of the level detection circuit 46.
  • FIG. 19 is a diagram showing a configuration of an optical signal receiver according to a fifth embodiment of the present invention.
  • FIG. 20 is a diagram showing the waveform response of the corresponding parts 1 to ⁇ of FIG.
  • FIG. 21 shows a configuration example of the master-slave type level detection circuit 56.
  • FIG. 22 is a configuration example of the Master-Slave type level detection circuit 57.
  • FIG. 23 is a diagram showing a configuration of an optical signal receiver as a sixth embodiment of the present invention.
  • FIG. 24 is a diagram showing the configuration of an optical signal receiver according to a seventh embodiment of the present invention.
  • the 8 c Figure 2 6 shows a configuration of an optical signal receiver as an embodiment of the present invention, showing the configuration of an optical signal receiver as a ninth embodiment of the present invention
  • FIG. 5 shows a configuration diagram of a first embodiment of a burst optical signal receiver according to the present invention.
  • Figure 6 shows a waveform response corresponding to each of the parts 1 to ⁇ of the embodiment circuit of FIG.
  • the preamplifier 11 inputs a current signal corresponding to the received light from the photodiode (PD) 10 and converts it into a corresponding voltage signal.
  • the transimpedance amplifier 13 includes an amplifier 13A having a feedback resistor 13B and a diode 13C connected in parallel with the amplifier 13A in order to extend the dynamic range.
  • the diode 13 C turns on and lowers the feedback resistance, preventing the amplifier circuit from saturating. As a result, a wide input dynamic range can be obtained.
  • the buffer amplifier 14 receives the output of the transimpedance amplifier 13 using the output from the reference voltage generation circuit 15 as a reference potential, and generates a positive-phase input 1 and a negative-phase input 2. That is, the buffer amplifier 14 is a positive-phase input to the signal amplifier 12
  • the signal amplification circuit 12 includes a first Master-Slave type level detection circuit 16, a second Master-Slave type level detection circuit 17, a limiter amplification circuit 18 and a resistor R 1
  • the master peak detection circuit 16B detects the maximum value 3 of the input signal. Then, the slave bottom detection circuit 16A detects a relative minimum value 4 from the maximum value detection level by the peak detection circuit 16B. Using the intermediate voltage division level as a DC component, the resistance R 2
  • the Master bottom detection circuit 17A detects the minimum value of the input signal as shown in FIG.
  • the Slave peak detection circuit 17B detects the relative maximum value of the bottom detection circuit 17A from the bottom detection level.
  • the intermediate voltage dividing level is generated and output by a voltage dividing circuit 17C having resistors R12 and R13.
  • the differential signals 7 and 8 are amplified by the limiter amplifier 18 to output the positive-phase output signal 9 and the negative-phase output signal 10.
  • the peak detection circuit 16 B in the master-slave type level detection circuit 16 has a detection capacitor 16 3 that charges the peak value of the positive-phase input 2 through a differential amplifier 16 B 1 and a diode 16 B 2.
  • the peak value of positive-phase input 2 charged by this detection capacitor 16 B3 is output through buffer amplifier 16 B4.
  • the bottom detection circuit 16 A in the master-slave type level detection circuit 16 is a detection capacitor 16 A3 that charges the bottom value of the negative-phase input 1 through a differential amplifier 16 A1 and a diode 16 A2. Having. The bottom value of negative-phase input 2 charged by this detection capacitor 16 A3 is output through buffer amplifier 16 A4.
  • the bottom detection circuit 16A is configured by connecting one end of the detection capacitance 16A3 to the output of the peak detection circuit 16B as shown in the figure.
  • the bottom detection in the bottom detection circuit 16A can detect a relative bottom value based on the maximum detection value of the peak detection circuit 16B.
  • FIG. 8 shows a configuration example of the master-slave type level detection circuit 17.
  • FIG. 9 is a configuration diagram showing a second embodiment of the optical signal receiver of the present invention.
  • FIG. 10 shows the waveform responses 1 to ⁇ of the corresponding parts of the embodiment of FIG.
  • the second Master-Slave type level is compared with the embodiment of FIG.
  • the circuit detection circuit 17 is omitted.
  • the output of the master-slave type level detection circuit 26 connected to the positive-phase input ⁇ of the buffer amplifier 23 of the preamplifier 21 and the negative-phase input 2 are added by a resistor R 21.
  • the second Master-Slave type level detection circuit 17 is omitted, and the positive-phase input 1 and the negative-phase input 2 are added by resistors R 12 and R 11.
  • the Master-Slave type level detection circuit 26 is provided only on the positive-phase input side. However, the same applies when the configuration is reversed and the Master-Slave type level detection circuit is provided only on the negative-phase input side. Needless to say, the effect of can be obtained.
  • a dummy amplifier 25 corresponding to the transimpedance amplifier 23 is provided in the preamplifier circuit 21 to realize the dynamic transmission of the signal even in the preamplifier circuit 22.
  • the noise removal characteristics can be further improved.
  • the signal amplifier circuit 22 of the present invention can be combined with various preamplifier circuits 1.1 and 21 shown in each embodiment. It goes without saying that the present invention is also effective for uses other than the optical signal receiver.
  • FIG. 11 is a configuration diagram of an optical signal receiver according to a third embodiment of the present invention.
  • the transimpedance amplifier 33 is of a differential type in comparison with the embodiment of FIG.
  • the polarity of the Master-Slave type level detection circuits 36 and 37 is inverted. This makes it possible to cope with an overwave response of the opposite polarity to that of the previous embodiment, that is, a case where the amplitude level to be detected by the peak detection circuit is lower than the transient maximum value.
  • FIG. 12 shows an example of a tailing waveform in an optical signal receiver as an example of such a response waveform.
  • the frequency characteristics of the photo detector (PD) 3OA generally have a shoulder in the range of several k to several hundred kHz as shown in FIG. 12A.
  • FIG. 13 is a diagram showing the waveform response of the third embodiment.
  • the level detection circuits 36 and 37 by inverting the polarities of the level detection circuits 36 and 37, it is possible to cope with a transient lowering of the peak level due to tailing and the like, and to limit the level of the limiter amplifier 38.
  • symmetrical signals 7 and ⁇ can be realized in positive / negative phase.
  • FIG. 14 shows an embodiment in which a capacitor 308 is connected to one end of the light receiving element (0) 30 A on the inverting input side of the preamplifier 31 with respect to the embodiment shown in FIG. is there. This makes it possible to more effectively realize the pseudo-differentialization of the signal at the input section of the preamplifier 31 and to avoid the influence of noise.
  • the use of the differential transimpedance amplifier 33 in the preamplifier circuit 11 realizes the differentiation. As a result, the noise removal characteristics can be further improved.
  • FIG. 15 shows a configuration example of the master-slave type level detection circuit 36 used in the embodiments of FIGS. 11 and 14. Note that the configuration of the MasterZSlave type level detection circuit 37 is the same, and is not shown.
  • reset circuits 36 A5 and 36 B5 composed of a current source circuit are provided so as to perform a forced reset. With such a configuration, the reset time can be reduced.
  • FIG. 16 shows a configuration diagram of a fourth embodiment of the optical signal receiver according to the present invention.
  • FIG. 17 shows the waveform response of the corresponding part in FIG.
  • the level detection circuits 46 and 47 of the signal amplification circuit 42 are replaced with the configuration of the level detection circuit 46 (the configuration of the level detection circuit 47 is the same) as shown in FIG. / Bottom detection circuit. This case is applicable when there is no DC level fluctuation.
  • the peak detection circuit 46B detects the peak value of the in-phase input 1 with the detection capacitance 46B3.
  • the podom detection circuit 46A detects the bottom value of the in-phase input 2 with the detection capacitor 46A3.
  • a peak detection circuit 43D is inserted into the preamplifier circuit 41, and a transient bottom level rise does not occur, so that a Master-Slave type level detection circuit is used. Instead, the circuit configuration can be simplified.
  • a level detector 46 detects a peak value ⁇ with respect to a positive-phase input 1 with a peak detection circuit 46B, and a bottom value detection circuit 46A detects a bottom value 6.
  • the peak value 3 is detected by the peak detection circuit 47B and the bottom value ⁇ is detected by the bottom detection circuit 47A for the negative phase input 2.
  • the peak detection value 5 of the level detection circuit 46 and the bottom detection value 6 are resistance-divided by the voltage dividing circuit 46 C and added to the negative-phase input 2. Input to the input terminal.
  • the peak detection value 3 of the level detection circuit 47 and the bottom detection value 4 are divided by a resistor in the voltage divider circuit 47 C, added to the in-phase input 1, and input to the input terminal ⁇ of the limiter amplifier 48. .
  • FIG. 19 is a diagram showing the configuration of an optical signal receiver according to a fifth embodiment of the present invention.
  • FIG. 20 is a diagram showing the waveform response of the corresponding parts 1 to ⁇ of FIG.
  • FIG. 21 is a configuration example of the Master-Slave type level detection circuit 56
  • FIG. 22 is a configuration example of the Master-Slave type level detection circuit 57.
  • the peak detection circuit 56 B detects the maximum value of the input signal 1
  • the pressure circuit 56 C generates a divided voltage signal having a maximum amplitude of 1 to 2.
  • the bottom detecting circuit 56A detects a relative minimum value of the divided signal level from the voltage dividing circuit 56C based on the maximum value detection level.
  • the operation of the second Master-Slave type level detection circuit 57 shown in FIG. 22 is the same.
  • the preamplifier 51 in the configuration of the embodiment shown in FIG. 19 is an input of the differential transimpedance amplifier 53, and is connected to the light receiving element (PD) 50 via a capacity 50B by a dummy amplifier 55. Connected to power. With such a configuration, pseudo differential transmission of the input section can be realized, and noise or the like mixed into the power supply of the light receiving element (PD) 50 can be removed.
  • FIG. 23 is a diagram showing a configuration of an optical signal receiver according to a sixth embodiment of the present invention.
  • a level detection circuit 66 is provided only on one side, similarly to the second embodiment shown in FIG.
  • FIG. 24 is a diagram showing the configuration of an optical signal receiver according to a seventh embodiment of the present invention.
  • the configuration is such that the amplifiers are connected in multiple stages with the polarity of the Master-Slave type level detection circuit being alternated.
  • the first-stage amplification circuit 78A in the range where the first-stage amplification circuit 78A to which the outputs of the master-slave level detection circuits 76 and 77 are input is linearly amplified,
  • the lave-type level detection circuits 79 and 70 detect the first-stage offset and the like and cancel them. Therefore, it is possible to reduce the waveform distortion due to the offset.
  • the first-stage amplifier circuit 78 is an AGC amplifier, and the gain control circuit 712 performs feedforward control according to the input amplitude, thereby expanding the linear amplification range and further increasing the effect of multistage connection. are doing.
  • the first-stage level detection circuits 76 and 77 detect a rise in the “0” level due to the extinction ratio deterioration, and the second-stage level detection circuits 79 and 70 detect the tailing described in FIG. Can be detected.
  • FIG. 25 shows a configuration diagram of an optical signal receiver as an eighth embodiment of the present invention.
  • amplifying circuits 98, 911, and 916 are connected in multiple stages as in the seventh embodiment.
  • the bottom detection circuit is omitted for the in-phase input ⁇ of the second and subsequent stages, and the peak detection circuit is omitted for the in-phase input 2.
  • the level detection circuits 89, 814 at each stage are provided with offset adjustment circuits 813B, 813C. As a result, it is possible to reduce the influence of the offset and reduce the deterioration of the output waveform.
  • FIG. 26 shows a configuration diagram of an optical signal receiver as a ninth embodiment of the present invention.
  • an ATC circuit similar to the configuration shown in FIG. 2 is used for the second and subsequent amplifier circuits.
  • the configuration can be simplified.
  • the present invention can be used in combination with various types of amplifier circuits.
  • the master-slave type level detection circuits 96 and 97 have DC control circuits 913A and 913B, respectively. With this configuration, the in-phase and out-of-phase input signals can be controlled to appropriate operating points.
  • offset adjustment can be performed by adjusting the resistance value of one of the DC control circuits 913 A and 913 B.
  • the present invention provides a first Master-Slave type level detection circuit that detects a DC level of an in-phase signal, and a second Master-Slave type that detects a DC level of an opposite-phase signal. And a level detection circuit, and realizes differential signal transmission by adding alternate signal components.
  • an optical signal receiver particularly suitable for receiving burst light is provided. It is possible to get.

Description

明細書 信号増幅回路及ぴこれを用いた光信号受信器 技術分野
本発明は、 信号増幅回路及びこれを用いた光信号受信器に関し、 特にバースト 信号の増幅に適した信号増幅回路及びこれを用いたバースト光信号受信器に関す る。 背景技術
近年、 光加入者系に用いられる PON(Passive Optical Network)システムな ど、 高速バースト光伝送システムへの期待が高まっている。
図 1は、 P O Nシステムの概念図である。 複数の加入者 # 1〜# nがそれぞれ カプラ 2 0 0に、 光伝送路 2 0 0 — 1〜 2 0 0— nを通して接続される。 さらに、 カプラ 2 0 0と交換局 2 0 1は、 光幹線 2 0 2を通して接続される。
複数の加入者 # 1〜# nのそれぞれからバースト的にセル化された光信号が 出力され、 力ブラ 2 0 0を経由して光幹線 2 0 2を通して交換局 2 0 1に光信号 2 0 3〜 2 0 5が送られる。
この時、 カプラ 2 0 0と複数の加入者 # 1〜# n間の距離がそれぞれ異なる。 したがって、 カプラ 2 0 0から送り出されるセル化された光信号のレベルは、 図 1に示すようにそれぞれ異なったものとなる。 したがって、 かかる信号を共通に. 増幅するために、 受信側の光信号受信器は、 広い入力ダイナミックレンジが必要 となる。
図 2は、 本発明者等が先に提案した、 このような状態のバースト光信号を受信 する光信号受信器の構成例である。 図 2において、 フォトダイオード (PD) 1 0 0で光信号が受信され、 電流信号に変換して前置増幅回路 1 0 1に入力する。 この電流信号を、 前置増幅回路 1 0 1が電圧信号に変換する。 前置増幅回路 1 0 1を構成する トランスインピーダンスアンプ 1 0 3は、 ダイナミックレンジを 拡大するために、 その帰還抵抗 1 0 3 Bに並列接続したダイオ^"ド 1 0 3 Cを備 えたアンプ 1 0 3 Aを有している。
過大な入力信号を受信した場合にはダイォード 1 0 3 Cがオン (on) して帰還 抵抗を下げ、増幅回路の飽和を防止する。これにより、信号極性反転機能を有する バッファアンプ 1 0 4から広い入力ダイナミッグレンジにわたって良好な出力波 形を得ることができる。
信号増幅回路 1 0 2はマスタスレーブ (Master-Slave) 型自動閾値制御 (ATC) 回路 1 0 6と、リ ミッタアンプ 1 0 8から構成される。信号増幅回路 1 0 2は前置 増幅回路 1 0 1のバッファアンプ 1 0 4から出力される微弱信号を増幅し、 十分 大きな論理信号を得る。
Master-Slave型 ATC回路 1 0 6は、 入力信号の最大値を検出するマスタ
(Master) ピーク検出回路 1 0 6 Bと、 ピーク検出レベルからの相対的最小値を 検出するスレーブ (Slave) ボトム検出回路 1 0 6 Aを有する。そして、 直列接続 された抵抗分圧回路 1 0 6 Cにより、 これらを抵抗分割し、 中間値を直流レベル として生成し、 リミッタ増幅回路 1 0 8に対する閾値レベルを設定する。
ここで、 加入者 # 1〜# nにおいて、 光信号の発光はレーザダイオードを駆動 して行なう。 その際、 セル化光信号の数ビット前からバイアス電流を流すことに より発光遅延を少なく して出力波形の改善が行なわれる。
図 2に示した光信号受信器の前置増幅回路 1 0 1における入力電流振幅対出力 電圧振幅が図 3に示される。 受信光に対応する前置増幅回路 1 0 1の入力電流振 幅 Iは、 送信側でのレ^ザ駆動における消光比が例えば、 1 0 d B程度以下であ るが、 これに対応するバイアス電流分の直流レベル Πを有する。
一方、 前置増幅回路 1 0 1の入力電流振幅対出力電圧振幅特性は、 図に示すよ うにダイォード 1 0 3。により非線形となる。このため、前置増幅回路 1 0 1の出 力 mは、 " 0 "レベルの上昇が非常に大きくなる。
この結果、 ボトム検出回路 1 0 6 Aが検出すべき振幅レベルは、 過渡的な最小 値よりも高くなるという問題を生じる。 このような問題に対し、 図 2に示す信号 増幅回路 1 0 2は、 Master-S lave型 ATC回路 1 0 6を用いることにより、 Slave ボトム検出回路 1 0 6 Aによりピークレベルが確定した後の最小値を検出できる ため、 信号の振幅レベルを確実に検出することができる。 しかしながら、 図 2に示す先に本発明者等が提案した信号増幅回路は、 片側信 号伝送であるために、 外来ノイズ等による波形劣化を生じるという問題を有して レヽる。
すなわち、 前置増幅回路 1 0 1から信号増幅回路 1 0 2の間で外来ノイズが混 入した場合、 入力信号に揺れを生じるが、 分圧回路 1 0 6 Cによる閾値は応答が 遅く、 ほとんど変動しないため、 リ ミッタアンプ 1 0 8の出力信号に乱れを生じ る。その結果、 正常な伝送が困難となる。
図 4は、 図 2の信号増幅回路 1 0 2の対応する部位の信号波形応答①〜⑥を示 す。図 4 Aにおいて、信号増幅器 1 0 2の入力信号波形応答①に対し、そのピーク 値とボトム値をそれぞれピーク検出回路 1 0 6 Bと、 ボトム値 1 0 6 Aで検出す る。
図 4 Aに示す例では、 入力信号波形応答①の破線円で示す部分に外来ノイズが 混入し重畳している例が示されている。 図 4 Bは、 検出されるピーク値とボトム 値の中間値を分圧回路 1 0 6 Cにより閾値④とする例を示している。
さらに、 図 4 Cは、 リミッタアンプ 1 0 8により、 入力信号波形応答①を閾値 ④を基準として正相出力⑤及ぴ逆相出力⑥を出力信号として得ることを示してい る。したがって、 ノイズ成分がそのまま現れていることが理解できる。
図 4 Cに示されるように、 図 2に示す光信号受信器の構成では、 片側信号伝送 であるために、 外来ノイズ等による波形劣化を生じるという問題を有しているこ とが理解できる。 発明の概要
したがって、 本発明の目的は、 かかる先に提案した図 2に示す光信号受信器の 信号増幅回路における外来ノイズ等による波形劣化を生じるという問題を解決す る、 信号増幅回路構成及びこれを用いた光信号受信器を提供することにある。 そして、 かかる課題を解決する本発明に従う光信号受信器は、 同相信号の直流 レベルを検出する第 1の Master— Slave型レベル検出回路と、逆相信号の直流レ ベルを検出する第 1 の Master— Slave型レベル検出回路とを有し、それぞれ交互 の信号成分を加算することによって、 差動信号伝送を実現する。 このよ うに本発明によれば、 2つの対称な Master-Slave型レベル検出回路を用 いて差動伝送を実現することにより、 バーストセル先頭に起きる様々な過渡的応 答に対応し、 かつ、 外来ノイズ等の擾乱に強い信号増幅回路を実現することがで きる。
そして本発明の好ましい態様は、 正相信号の直流レベルを検出する第 1のレべ ル検出回路と、 この第 1のレベル検出回路の検出出力に逆相信号を加算する第 1 の加算回路と、 前記逆相信号の直流レベルを検出する第 2のレベル検出回路と、 第 2のレベル検出回路の検出出力に煎記正相信号を加算する第 2の加算回路と、 前記第 1の加算回路と第 2の加算回路の出力を差動増幅する差動増幅回路とを 有することを特徴とする。
さらに、 本発明の好ましい態様は、 正相信号又は、 逆相信号の直流レベルを検 出する第 1のレベル検出回路と、 前記第 1のレベル検出回路の検出出力に逆相信 号又は、 正相信号を加算する第 1の加算回路と、 前記正相信号と逆相信号を加算 する第 2の加算回路と、 前記第 1の加算回路と第 2の加算回路の出力を差動増幅 する差動増幅回路とを有することを特徴とする。
本発明の更なる特徴は、 以下に図面に従い説明される実施の形態から明らカ こ なる。 図面の簡単な説明
図 1は、 バースト光伝送システムの概念図である。
図 2は、 本発明者等が先に提案した、 このような状態のバースト光信号を受信 する光信号受信器の構成例である。
図 3は、 図 2に示した光信号受信器の前置増幅回路 1 0 1における入力電流振 幅対出力電圧振幅を示す図である。
図 4は、 図 2の信号増幅回路 1 0 2の対応する部位の信号波形応答①〜⑥を示 す。
図 5は、 本発明に従うバースト光信号受信器の第 1の実施例構成を示す図であ る。
図 6は、 図 5の実施例回路の各部①〜⑩に対応する波形応答を示す図である。 図 7は、 図 5の実施例回路の Master-Slave型レベル検出回路 1 6の構成例を 示す図である。
図 8は、 図 5の実施例回路の Master-Slave型レベル検出回路 1 7の構成例を 示す図である。
図 9は、 本発明の光信号受信器の第 2の実施例を示す構成図である。
図 1 0は、 対応する図 9の実施例の各部の波形応答①〜⑩である。
図 1 1は、 本発明の光信号受信器の第 3の実施例構成図である。
図 1 2は、 応答波形の一例として、 光信号受信器における裾引き波形の例を示 す図である。
図 1 3は、 第 3の実施例の波形応答を示す図である。
図 1 4は、 図 1 1に示す実施例に対し、 前置増幅器 3 1に入力側に、 容量 3 0 Bを受光素子 (P D ) 3 0 Aの電流源に設けた実施例である。
図 1 5は、 図 1 1及び、 図 1 4の実施例に用いた Master-Slave型レベル検出 回路 3 6の構成例を示す図である。
図 1 6は、 本発明に従う光信号受信器の第 4の実施例の構成図を示す。
図 1 7は、 図 1 6の対応する部位の波形応答である。
図 1 8は、 レベル検出回路 4 6の構成例を示す図である。
図 1 9は、 本発明の光信号受信器の第 5の実施例構成を示す図である。
図 2 0は、 図 1 9の対応する部位①〜⑩の波形応答を示す図である。
図 2 1は、 Master-Slave型レベル検出回路 5 6の構成例である。
図 2 2は、 Master-Slave型レベル検出回路 5 7の構成例である。
図 2 3は、本発明の第 6の実施例として、光信号受信器の構成を示す図である。 図 2 4は、 本発明の光信号受信器の第 7の実施例構成を示す図である。
図 2 5は、 本発明の第 8の実施例としての光信号受信器の構成を示す図である c 図 2 6は、本発明の第 9の実施例としての光信号受信器の構成を示す図である。 発明を実施するための最良の形態
以下本発明の実施の形態を図面に従い説明する。
図 5は、 本発明に従うバース ト光信号受信器の第 1の実施例構成図を示す。 図 6は、 図 5の実施例回路の各部①〜⑩に対応する波形応答を示している。
前置増幅器 1 1は、 フォ トダイオード (PD) 1 0からの受信光に対応する電流信 号を入力し、 対応する電圧信号に変換する。
トランスィンピーダンスアンプ 1 3は、ダイナミ ックレンジを拡大するために、 アンプ 1 3 Aに帰還抵抗 1 3 B及び、 これに並列に接続されたダイオード 1 3 C を有して構成されている。
過大な入力信号を受信した場合にはダイオード 1 3 Cがオンして帰還抵抗を下 げ、増幅回路の飽和を防止する。これにより、広い入力ダイナミッグレンジを得る ことが出来る。
バッファアンプ 1 4は、 基準電圧発生回路 1 5からの出力を基準電位として、 トランスインピーダンスアンプ 1 3の出力を入力し、 正相入力①、 逆相入力②を 生成する。 すなわち、 バッファアンプ 1 4は、 信号増幅器 1 2に対する正相入力
①を図 6 Aに示すように出力し、 逆相入力②を図 6 Bに示すように出力する。 信号増幅回路 1 2は、 第 1の Master-Slave型レベル検出回路 16と、 第 2の Master-S lave型レベル検出回路 1 7と、 リ ミッタ増幅回路 1 8および抵抗 R 1
1、 R 1 2を有して構成される。
正相入力①に接続された第 1の Master-Slave型レベル検出回路 1 6において、 Masterピーク検出回路 1 6 Bでは入力信号の最大値③を検出する。そして、 Slave ボトム検出回路 1 6 Aは、 ピーク検出回路 1 6 Bによる最大値検出レベルからの 相対的最小値④を検出する。その中間値の分圧レベルを直流成分として抵抗 R 2
2 , R 2 3を有する分圧回路 1 6 Cにより生成し出力する。
一方、 逆相入力②に接続された第 2の Master-Slave型レベル検出回路 1 7に おいて、 図 6 Bに示すように Masterボトム検出回路 1 7 Aは入力信号の最小値 を検出し、 S laveピーク検出回路 1 7 Bはボトム検出回路 1 7 Aのボトム検出レ ベルからの相対的最大値を検出する。その中間値の分圧レベルを抵抗 R 1 2 , R 1 3を有する分圧回路 1 7 Cにより生成し出力する。
ついで、 図 6 Cに示すように抵抗 R 1 1、 R 2 1を用いて交互の信号入力①、
②と加算する。これにより対称な差動信号⑦、 ⑧を得る。
この時、 各抵抗比は、 例えば R 1 1 : R 1 2 : R 1 3 = 1 : 2 : 2、 R 2 1 : R 2 2 : R 2 3 = 1 : 2 : 2とする。
さらに、 図 6 Dに示すように差動信号⑦, ⑧はリミッタアンプ 1 8により増幅 して正相出力信号⑨、 逆相出力信号⑩を出力する。
ここで、 Master-Slave型レベル検出回路 1 6、 1 7の構成例を、 夫々図 7、 図 8に示す。 Master-Slave型レベル検出回路 1 6におけるピーク検出回路 1 6 Bは、 差動アンプ 1 6 B①、 ダイォード 1 6 B②を通して正相入力①のピーク値を充電 する検出容量 1 6③を有する。 この検出容量 1 6 B③で充電される正相入力①の ピーク値をバッファアンプ 1 6 B④を通して出力する。
さらに、 Master-Slave型レベル検出回路 1 6におけるボトム検出回路 1 6 Aは、 同様に、 差動アンプ 1 6 A①、 ダイオード 1 6 A②を通して逆相入力②のボトム 値を充電する検出容量 1 6 A③を有する。 この検出容量 1 6 A③で充電される逆 相入力②のボトム値をバッファアンプ 1 6 A④を通して出力する。
ここで、 ボトム検出回路 1 6 Aは、 図のように、 検出容量 1 6 A③の一端をピ ーク検出回路 1 6 Bの出力に接続して構成する。 これにより、 ボトム検出回路 1 6 Aにおけるボトム検出は、 ピーク検出回路 1 6 Bの検出最大値を基準に相対的 なボトム値を検出することが出来る。
図 8は、 Master-Slave型レベル検出回路 1 7の構成例であり、 図 7の
Master-Slave型レベル検出回路 1 6の構成と同様である力 逆相入力②が入力さ れ、 逆相入力②のピーク値を検出する検出容量 1 7 B③の一端がボトム検出回路 1 7 Aの出力端に接続される点が異なる。
このような、 Master-Slave型レベル検出回路 1 6、 1 7の構成により、 図 6の 波形応答に示すように、入力信号の過渡的応答 (" 0 "レベルの上昇)によらず、 リ ミ ッタアンプ 1 8の入力において、 正相 Z逆相で対称な信号を実現することができ る。 さらに、 差動伝送が実現されることにより、 外来ノイズ (図 6において、 破線 円部)によっても正相 逆相信号は、 同相で変動する。その結果、 出力信号からノ ィズを除去する事ができる。
図 9は、 本発明の光信号受信器の第 2の実施例を示す構成図である。 図 1 0は、 対応する図 9の実施例の各部の波形応答①〜⑩である。
本実施例では、 図 5の実施例との比較において、 第 2の Master-Slave型レべ ル検出回路 1 7を省略している。前置増幅回路 2 1のバッファアンプ 23の正相 入力①に接続した Master-Slave型レベル検出回路 26の出力と逆相入力②を抵 抗 R 2 1で加算している。
さらに、 第 2の Master-Slave型レベル検出回路 1 7を省略し、 正相入力①と 逆相入力②を抵抗 R 1 2と R 1 1で加算する様に構成している。
そしてこれらの加算出力をリミッタアンプ 1 8に入力して差動信号⑨、 ⑩を得 るように実現している。
この時、 各抵抗比は、 例えば R 1 1 : R 1 2 = 1 : 2, R 21 : R 22 : R 2 3 = 1 : 1 : 1 とする。
本実施例では、 図 1 0 Bに示すように、 正相 逆送信号の対称性が悪いため、 ノイズ除去特性は劣るが、 差動伝送を簡易に実現する事ができる。 なお、 本実施 例では、 正相入力側にのみ Master-Slave型レベル検出回路 26を設けたが、 構 成を反転し、 逆相入力側にのみ Master-Slave型レベル検出回路を設けても同様 の効果が得られることは言うまでもなレ、。
また、 本実施例では、 前置増幅回路 2 1にトランスインピーダンスアンプ 23 に対応するダミーアンプ 25を設け、 前置増幅回器 22内でも信号の^動伝送化 を実現している。 これにより、 さらなる雑音除去特性の向上を図ることができる。 ここで、 本発明の信号増幅回路 2 2は、 各実施例で示す様々な前置増幅回路 1 . 1、 2 1 と組み合わせることができることは言うまでもない。 また、 光信号受信 器以外の用途に対しても、 効果があることは言うまでもない。
図 1 1は、 更に本発明の光信号受信器の第 3の実施例構成図である。 本実施例 では、 図 5の実施例との比較において、 トランスインピーダンスアンプ 33を差 動型としている。 さらに、 Master-Slave型レベル検出回路 3 6, 37の極性を反 転している。 これにより、 先の実施例とは反対極性の過波応答、 すなわち、 ピー ク検出回路が検出すべき振幅レベルが過渡的な最大値よりも低い場合に対応する 事ができる。
図 1 2に、 このような応答波形の一例として、 光信号受信器における裾引き波 形の例を示す。 受光素子 (PD) 3 OAの周波数特性は、 一般に図 1 2 Aに示すよ うに、 数 k〜数百 kHzに肩を有する。 いま、 図 1 2 Bに示すように大きく光パヮ 一の異なる 2つのバース トセル信号 (パケッ ト 1、 パケット 2 ) が到来した場合 を考える。 この時には、 図 1 2 Cに示すように先の大信号セル (パケッ ト 1 ) の 低周波成分による " 0 " レベル上昇 が次の小信号セル (パケット 2 ) 先頭にま で残り、 裾を引くような応答波形となる。
これに対し、 図 1 3は、 上記第 3の実施例の波形応答を示す図である。 図 5の 実施例との比較において、 レベル検出回路 3 6, 3 7の極性を逆にしたことによ り、 裾引き等による、 過渡的なピークレベルの低下に対応し、 リミッタアンプ 3 8の入力において、 正相/逆相で対称な信号⑦, ⑧を実現できる。
図 1 4は、 図 1 1に示す実施例に対し、 前置増幅器 3 1の反転入力側に、 容量 3 0 8を受光素子( 0 ) 3 0 Aの一端と接続して設けた実施例である。これによ り、 前置増幅器 3 1の入力部における信号の擬似的な差動化をより効果的に実現 でさ、 ノイズの影響を避けることが出来る。
また、 本実施例でも、 図 1 1の実施例と同様に前置増幅回路 1 1内で差動トラ ンスインピーダンスアンプ 3 3を用いることで、 差動化を実現している。 これに より、 さらなる雑音除去特性の向上を図ることができる。
ここで、 図 1 1及び、 図 1 4の実施例に用いた Master-Slave型レベル検出回 路 3 6の構成例を図 1 5に示す。 なお、 MasterZSlave型レベル検出回路 3 7の 構成も同様であるので、図示を省略する。図 1 5の実施例構成では、強制リセッ ト を行うように、 電流源回路で構成されるリセッ ト回路 3 6 A⑤、 3 6 B⑤を設け ている。 かかる構成により、 リセッ ト時間を低減することが可能である。
図 1 6は、 本発明に従う光信号受信器の第 4の実施例の構成図を示す。 図 1 7 は、 図 1 6の対応する部位の波形応答である。
本実施例では、 信号増幅回路 4 2のレベル検出回路 4 6、 4 7を、 レベル検出 回路 4 6の構成 (レベル検出回路 4 7も同様の構成) として図 1 8に示すように 通常のピーク/ボトム検出回路を用いて構成している。この場合は、直流レベル変 動がない場合に適用可能である。
すなわち、 ピーク検出回路 4 6 Bは同相入力①のピーク値を検出容量 4 6 B③ で検出する。 また、 ポドム検出回路 4 6 Aは、 同相入力①のボトム値を検出容量 4 6 A③で検出する。 さらに、 図 1 6の実施例において、 前置増幅回路 4 1にピ一ク検出回路 4 3 D を挿入し、 過渡的なボトムレベルの上昇が生じないため、 Master-Slave型レベル 検出回路を用いずに、 回路構成を簡略化することができる。
図 1 7 Aにおいて、 レベル検出器 4 6において正相入力①に対し、 ピーク検出 回路 4 6 Bでピーク値⑤を検出し、 ボトム検出回路 4 6 Aでボトム値⑥を検出す る。 一方、 図 1 7 Bにおいて逆相入力②に対し、 ピーク検出回路 4 7 Bでピーク 値③を検出し、 ボトム検出回路 4 7 Aでボトム値④を検出する。
図 1 7 Cに示すように、 レベル検出回路 4 6のピーク検出値⑤と、 ボトム検出 値⑥が、 分圧回路 4 6 Cで抵抗分割され逆相入力②と加算され、 リミッタアンプ 4 8の入力端⑧に入力される。同様に、レベル検出回路 4 7のピーク検出値③と、 ボトム検出値④が、 分圧回路 4 7 Cで抵抗分割され同相入力①と加算され、 リミ ッタアンプ 4 8の入力端⑦に入力される。
したがって、 図 1 7 Dに示すように、 リ ミッタアンプ 4 8でこれらを増幅する ことにより、 良好なノイズの消えた正相出力信号⑨と、 逆相出力信号⑩の波形応 答を得ることができる。
図 1 9は、更に本発明の光信号受信器の第 5の実施例構成を示す図である。図 2 0は、 図 1 9の対応する部位①〜⑩の波形応答を示す図である。
本実施例では、 信号増幅回路 5 2の Master-Slave型レベル検出回路 5 6, 5 7として、 これまでの実施例と異なる構成を用いている。 具体的構成を夫々図 2 1, 2 2に示す。
図 2 1は、 Master-Slave型レベル検出回路 5 6の構成例であり、 図 2 2は、 . Master-Slave型レベル検出回路 5 7の構成例である。
本実施例構成では、 図 2 1に示す正相入力①に接続した第 1の Master-Slave 型レベル検出回路 5 6において、 ピーク検出回路 5 6 Bは入力信号①の最大値を 検出し、分圧回路 5 6 Cはこの最大値振幅 1ノ 2の大きさの分圧信号を生成する。 ボトム検出回路 5 6 Aは、 分圧回路 5 6 Cからの分圧信号レベルの、 最大値検 出レベルを基準としての相対的最小値を検出する。
ここで、 図 2 2に示す第 2の Master-S lave型レベル検出回路 5 7の動作も同 様である。 さらに、 図 1 9の実施例構成における前置増幅器 5 1は、 差動トランスインピ 一ダンスアンプ 5 3の入力で、 ダミーアンプ 5 5により容量 5 0 Bを介して受光 素子 (PD) 5 0の電源に接続している。 このような構成により、 入力部の擬似的 な差動伝送を実現する事ができ、 受光素子 (PD) 5 0の電源に混入するノイズ等 を除去することができる。
図 2 3は、 更に本発明の第 6の実施例として、 光信号受信器の構成を示す図で ある。本実施例は、 図 1 9の実施例構成に対し、 図 9に示した第 2の実施例と同 様に、 片側のみにレベル検出回路 6 6を設けている。
. この実施例では、 各抵抗此は、 例えば R 1 1 : R 1 2 = 1 : 2、 R 2 1 : R 2 2 = 1 : 2とする。
図 2 4は、 本発明の光信号受信器の第 7の実施例構成を示す図である。 本実施 例では、 Master-Slave型レベル検出回路の極性を交互にして増幅回路を多段接続 した構成である。
本実施例構成によれば、 信号増幅回路 7 2において、 Master-Slave レベル検出 回路 7 6, 7 7の出力を入力する初段増幅回路 7 8 Aが線形増幅する範囲では、 次段の Master-S lave型レベル検出回路 7 9, 7 1 0が初段のオフセッ ト等を検 出して相殺する。このため、 オフセットによる波形歪みを低減する事ができる。 さらに、 本実施例では、 初段増幅回路 7 8を AGCアンプとし、 利得制御回路 7 1 2により入力振幅に応じてフィードフォワード制御することにより、 線形増 幅範囲を広げ、 多段接続の効果を更に増加している。
また、 2段目の Master-Slave型レベル検出回路 7 9、 7 1 0を初段と逆極性 とすることにより、 初段とは逆極性の過渡応答に対応できる。 例えば、 初段のレ ベル検出回路 7 6, 7 7で消光比劣化による" 0 "レベル上昇を検出し、 2段目レ ベル検出回路 7 9、 7 1 0により、 図 1 2で説明した裾引きを検出することがで さる。
図 2 5は、 本発明の第 8の実施例としての光信号受信器の構成図を示す。 本実 施例では、 第 7の実施例と同様に増幅回路 9 8、 9 1 1、 9 1 6を多段接続して いる。
そして、 初段增幅回路出力で上下対称な双極性信号を得られていることから、 2段目以降の同相入力①に対してボトム検出回路を省略し、 逆相入力②に対して ピーク検出回路を省略している。 このように 1段目において、 過渡的な応答を除 去した後では。、それ以降のレベル検出回路の構成を簡略化することも可能である。 本実施例では 3段の多段接続としているが、 更に段数を増やすことにより、 多 段接続によるオフセット相殺の効果を付加できる。 また、 本実施例では、 各段の レベル検出回路 8 9、 8 1 4にオフセッ ト調整回路 8 1 3 B、 8 1 3 Cを備えて いる。 これにより、 オフセッ トの影響を低減し、 出力波形の劣化を低減する事が 可能である。
図 2 6は、 本発明の第 9の実施例として、 光信号受信器の構成図を示す。 本実 施例では、 2段目以降の増幅回路に図 2に示す構成と同様の ATC回路を用いてい る。 I C内部等、 ノイズが小さく、 差動化の効果が小さい部分では、 構成を簡略 化することも可能である。
このように、 本発明では、 種々の形式の増幅回路と併用する事が可能である。 また、 本実施例では、 Master-Slave型レベル検出回路 9 6, 9 7にそれぞれ直流 制御回路 9 1 3 A, 9 1 3 Bを有する。 かかる構成により、 同相、 逆相入力信号 を適切な動作点に制御することができる。
また、 片方の直流制御回路 9 1 3 A, 9 1 3 Bのいずれか片方の直流制御回路 の抵抗値を調整することによりオフセット調整を行うこともできる。
発明の利用可能性
上記に図面に従い説明した様に、 本発明は、 同相信号の直流レベルを検出す る第 1の Master— Slave型レベル検出回路と、逆相信号の直流レベルを検出する 第 2の Master— Slave型レベル検出回路とを有し、それぞれ交互の信号成分を加 算することによって、 差動信号伝送を実現している。
これにより、 バ一ス トセル先頭に起きる様々な過渡的応答に対応し、 かつ、 外 来ノイズ等の擾乱に強い信号増幅回路を実現することが可能である。
また、 かかる信号増幅回路の入力信号として、 受光素子により変換された電流 信号を電圧信号に変換する前置増幅回路を通して入力することにより、 特にバー スト光受信の受信に適した光信号受信器を得ることが可能である。
さらに、 上記実施例には限定されず、 特許請求の範囲に記載の構成と均等のも のも本発明の保護の範囲に含まれるものである。

Claims

請求の範囲
1 . 正相信号の直流レベルを検出する第 1のレベル検出回路と、
該第 1のレベル検出回路の検出出力に逆相信号を加算する第 1の加算回路と、 該逆相信号の直流レベルを検出する第 2のレベル検出回路と、
該第 2のレベル検出回路の検出出力に前記正相信号を加算する第 2の加算回路 と、
前記第 1の加算回路と第 2の加算回路の出力を差動増幅する差動増幅回路とを 有することを特徴とする信号増幅回路。
2 . 正相信号又は、 逆相信号の直流レベルを検出する第 1のレベル検出回路と 該第 1のレベル検出回路の検出出力に逆相信号又は、 正相信号を加算する第 1 の加算回路と、
前記正相信号と逆相信号を加算する第 2の加算回路と、
前記第 1の加算回路と第 2の加算回路の出力を差動増幅する差動増幅回路とを 有することを特徴とする信号増幅回路。 .
3 . 請求項 1または、 2において、
前記第 1及び、 第 2のレベル検出回路は、 前記正相信号の最大値を検出するピ ーク検出回路と、
該ピーク検出回路の検出レベルを基準として、 前記正相信号の相対的な最小値 を検出するボトム検出回路と、
該ピーク検出回路とボトム検出回路の検出出力を分圧する分圧回路とを 有することを特徴とする信号増幅回路。
4 . 請求項 1において、
前記第 2のレベル検出回路は、 前記逆相信号の最小値を検出するボトム検出 回路と、
該ボトム検出回路の検出レベルを基準として、 該逆相信号の相対的な最大値を 検出するピーク検出回路と、
該ボトム検出回路とピーク検出回路の検出出力を分圧する分圧回路とを 有することを特徴とする信号増幅回路。
5 . 請求項 1または、 2において、
前記第 1のレベル検出回路は、 前記正相信号の最大値を検出するピーク検出回 路と、
該ピーク検出回路の出力と該正相信号を分圧する分圧回路と、
該ピーク値検出回路の出力を基準として、 該分圧回路からの分圧信号の相対的 最小値を求めるボトム検出回路を
有して構成されることを特徴とする信号増幅回路。
6 . 請求項 1において、
前記第 1のレベル検出回路は、 前記逆相信号信号の最小値を検出するボトム検 出回路と、
該ボトム検出回路の出力と該正相信号を分圧する分圧回路と、
該ピーク値検出回路の出力を基準として、 該分圧回路からの分圧信号の相対的 最大値を求めるピーク検出回路を
有して構成されることを特徴とする信号増幅回路。
7 . 請求項 1又は、 2において、
前記第 1及び第 2のレベル検出回路は、 入力信号の最大値を検出するピ一ク検 出回路と、
該入力信号の最小値を検出するボトム検出回路と、
該ピーク検出回路とボトム検出回路の出力を分圧する分圧回路とを
有することを特徴とする信号増幅回路。
8 . 請求項 3において、
前記第 2のレベル検出回路は、 ボトム値を検知する検知容量を有し、 該検知容 量の一端を前記第 1のレベル検出回路の出力に接続して構成されることを特徴と する信号増幅回路。
9 . 請求項 5において、
前記第 2のレベル検出回路は、 ボトム値を検知する検知容量を有し、 該検知容 量の一端を前記第 1のレベル検出回路の出力に接続して構成されることを特徴と する信号増幅回路。
1 0 . 請求項 4又は、 6において、 前記第 2のレベル検出回路は、 ボトム値を検知する検知容量を有し、 該検知容 量の一端を前記第 1のレベル検出回路の出力に接続して構成されることを特徴と する信号増幅回路。
1 1 . 複数段の縦続接続された複数の増幅回路を有し、
該複数の増幅回路の少なくとも一段の増幅回路は、
正相信号の直流レベルを検出する第 1のレベル検出回路と、
該第 1のレベル検出回路の検出出力に逆相信号を加算する第 1の加算回路と、 該逆相信号の直流レベルを検出する第 2のレベル検出回路と、
該第 2のレベル検出回路の検出出力に前記正相信号を加算する第 2の加算回路 と、
前記第 1の加算回路と第 2の加算回路の出力を差動増幅する差動増幅回路とを 有することを特徴とする信号増幅回路。
1 2 . 複数段の従属接続された複数の増幅回路を有し、
該複数の増幅回路の少なくとも一段の増幅回路は、
正相信号又は、 逆相信号の直流レベルを検出する第 1のレベル検出回路と 該第 1のレベル検出回路の検出出力に逆相信号又は、 正相信号を加算する第 1 の加算回路と、
前記正相信号と逆相信号を加算する第 2の加算回路と、
前記第 1の加算回路と第 2の加算回路の出力を差動増幅する差動増幅回路とを 有することを特徴とする信号増幅回路。 .
1 3 . 請求項 1 1又は、 1 2において、 前記差動増幅回路は、 入力振幅に応じて利得をフィードフォヮ一ド制御する利得制御回路とを有する ことを特徴とする信号増幅回路。
1 4 . 請求項 1、 2、 1 1又は、 1 2において、 前記第 1のレベル検出回路の出 力にオフセット調整回路を接続することを特徴とする信号増幅回路。
1 5 . 受光素子と、
該受光素子により変換された対応する電流信号を電圧に変換して増幅する前置 増幅回路と、 該前置増幅回路からの同相信号及び逆相信号を入力する信号増幅器を有し、 該信号増幅器は、
正相信号又は、 逆相信号の直流レベルを検出する第 1のレベル検出回路と 該第 1のレベル検出回路の検出出力に逆相信号又は、 正相信号を加算する第 1 の加算回路と、
前記正相信号と逆相信号を加算する第 2の加算回路と、
前記第 1の加算回路と第 2の加算回路の出力を差動増幅する差動増幅回路とを 有することを特徴とする光信号受信器。
1 6 . 受光素子と、
該受光素子により変換された対応する電流信号を電圧に変換して増幅する前置 増幅回路と、
該前置増幅回路からの同相信号及び逆相信号を入力する信号増幅器を有し、 該信号増幅器は、
正相信号又は、 逆相信号の直流レベルを検出する第 1のレベル検出回路と 該第 1のレベル検出回路の検出出力に逆相信号又は、 正相信号を加算する第 1 の加算回路と、
前記正相信号と逆相信号を加算する第 2の加算回路と、
前記第 1の加算回路と第 2の加算回路の出力を差動増幅する差動増幅回路とを 有することを特徴とする光信号受信器。
PCT/JP1999/007376 1999-12-27 1999-12-27 Circuit amplificateur de signal et recepteur de signal optique utilisant ledit circuit amplificateur WO2001048914A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP1999/007376 WO2001048914A1 (fr) 1999-12-27 1999-12-27 Circuit amplificateur de signal et recepteur de signal optique utilisant ledit circuit amplificateur
JP2001548519A JP4429565B2 (ja) 1999-12-27 1999-12-27 信号増幅回路及びこれを用いた光信号受信器
US10/171,559 US6587004B2 (en) 1999-12-27 2002-06-12 Signal amplifier and optical signal receiver using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/007376 WO2001048914A1 (fr) 1999-12-27 1999-12-27 Circuit amplificateur de signal et recepteur de signal optique utilisant ledit circuit amplificateur

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/171,559 Continuation US6587004B2 (en) 1999-12-27 2002-06-12 Signal amplifier and optical signal receiver using the same

Publications (1)

Publication Number Publication Date
WO2001048914A1 true WO2001048914A1 (fr) 2001-07-05

Family

ID=14237721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/007376 WO2001048914A1 (fr) 1999-12-27 1999-12-27 Circuit amplificateur de signal et recepteur de signal optique utilisant ledit circuit amplificateur

Country Status (3)

Country Link
US (1) US6587004B2 (ja)
JP (1) JP4429565B2 (ja)
WO (1) WO2001048914A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003152470A (ja) * 2001-11-13 2003-05-23 Nippon Telegr & Teleph Corp <Ntt> 前置増幅回路
EP1357665A3 (en) * 2002-04-26 2004-03-17 Samsung Electronics Co., Ltd. Automatic gain control device for a burst-mode optical receiver
JP2005217722A (ja) * 2004-01-29 2005-08-11 Matsushita Electric Ind Co Ltd 光ディスク装置用の増幅回路
JP2006340072A (ja) * 2005-06-02 2006-12-14 Toshiba Corp 光信号受信回路
JP2007149260A (ja) * 2005-11-29 2007-06-14 Toshiba Corp 受光素子回路、光ヘッド装置、光ディスク装置
JP2008010990A (ja) * 2006-06-27 2008-01-17 Nippon Telegr & Teleph Corp <Ntt> 光受信器
US7952427B2 (en) 2006-03-22 2011-05-31 Renesas Electronics Corporation Signal amplifier circuit and optical receiver
JP2011160054A (ja) * 2010-01-29 2011-08-18 Nippon Telegr & Teleph Corp <Ntt> デュアルレート振幅制限増幅回路
JP2016201736A (ja) * 2015-04-13 2016-12-01 富士通株式会社 信号識別回路、これを用いた光受信器、及び信号識別方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803825B2 (en) * 2002-04-09 2004-10-12 Microsemi Corporation Pseudo-differential transimpedance amplifier
KR100630089B1 (ko) * 2002-04-15 2006-09-27 삼성전자주식회사 차동 출력 구조의 버스트모드 광 수신기
KR100605777B1 (ko) * 2002-04-25 2006-07-31 삼성전자주식회사 버스트모드 광 수신기의 판별 임계값 제어장치
US6833762B2 (en) * 2002-12-20 2004-12-21 Intel Corporation Transimpedance ampifier
KR100537901B1 (ko) * 2003-03-29 2005-12-20 한국전자통신연구원 버스트 모드 광 수신기
KR100554163B1 (ko) * 2003-03-29 2006-02-22 한국전자통신연구원 수신된 광신호의 소광비 특성을 고려한 버스트 모드 광수신장치
GB2405295B (en) * 2003-08-19 2006-10-25 Agilent Technologies Inc Variable decision threshold apparatus
WO2006017846A2 (en) * 2004-08-12 2006-02-16 Triaccess Technologies, Inc. Low noise optical receiver
CN101243663B (zh) * 2005-09-28 2011-04-13 三菱电机株式会社 光接收器及其识别阈值生成方法
US7633320B2 (en) * 2007-06-29 2009-12-15 Kabushiki Kaisha Toshiba Comparator circuit
JP2009200944A (ja) * 2008-02-22 2009-09-03 Oki Semiconductor Co Ltd ヒステリシスコンパレータ
JP5272686B2 (ja) * 2008-11-28 2013-08-28 富士通株式会社 光受信器、光受信回路および光受信方法
JP4957734B2 (ja) * 2009-02-10 2012-06-20 ソニー株式会社 受信装置、撮像装置及び受信方法
WO2011049693A2 (en) * 2009-10-20 2011-04-28 Rambus Inc. Single-ended signaling with parallel transmit and return current flow
CN102944714B (zh) * 2012-11-07 2015-07-08 四川和芯微电子股份有限公司 差分信号检测装置
KR20150018723A (ko) * 2013-08-09 2015-02-24 에스케이하이닉스 주식회사 버퍼 회로
DE102015110274A1 (de) * 2015-06-25 2016-12-29 Intel IP Corporation Eine vorrichtung und ein verfahren zum verstärken eines eingangssignals
KR20200104114A (ko) * 2019-02-26 2020-09-03 에스케이하이닉스 주식회사 수신 회로, 이를 포함하는 반도체 장치 및 반도체 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03266577A (ja) * 1990-03-15 1991-11-27 Sharp Corp 受光装置
JPH0818429A (ja) * 1994-07-04 1996-01-19 Fujitsu Ltd 光受信機
US5612810A (en) * 1994-09-12 1997-03-18 Nec Corporation Optical receiving apparatus
US5777507A (en) * 1995-03-31 1998-07-07 Kabushiki Kaisha Toshiba Receiver and transceiver for a digital signal of an arbitrary pattern
US5923219A (en) * 1997-03-19 1999-07-13 Fujitsu Limited Automatic threshold control circuit and signal amplifying circuit for amplifying signals by compensating for low-frequency response of photodetector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2814990B2 (ja) * 1996-05-20 1998-10-27 日本電気株式会社 光受信回路
JPH1084231A (ja) * 1996-05-24 1998-03-31 Toshiba Corp デジタル信号受信回路
JP3340341B2 (ja) * 1996-10-03 2002-11-05 沖電気工業株式会社 レベル識別回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03266577A (ja) * 1990-03-15 1991-11-27 Sharp Corp 受光装置
JPH0818429A (ja) * 1994-07-04 1996-01-19 Fujitsu Ltd 光受信機
US5612810A (en) * 1994-09-12 1997-03-18 Nec Corporation Optical receiving apparatus
US5777507A (en) * 1995-03-31 1998-07-07 Kabushiki Kaisha Toshiba Receiver and transceiver for a digital signal of an arbitrary pattern
US5923219A (en) * 1997-03-19 1999-07-13 Fujitsu Limited Automatic threshold control circuit and signal amplifying circuit for amplifying signals by compensating for low-frequency response of photodetector

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003152470A (ja) * 2001-11-13 2003-05-23 Nippon Telegr & Teleph Corp <Ntt> 前置増幅回路
EP1357665A3 (en) * 2002-04-26 2004-03-17 Samsung Electronics Co., Ltd. Automatic gain control device for a burst-mode optical receiver
US6911644B2 (en) 2002-04-26 2005-06-28 Samsung Electronics Co., Ltd. Automatic gain control device for a burst-mode optical receiver
JP2005217722A (ja) * 2004-01-29 2005-08-11 Matsushita Electric Ind Co Ltd 光ディスク装置用の増幅回路
JP4702921B2 (ja) * 2004-01-29 2011-06-15 パナソニック株式会社 光ディスク装置用の増幅回路
JP2006340072A (ja) * 2005-06-02 2006-12-14 Toshiba Corp 光信号受信回路
JP2007149260A (ja) * 2005-11-29 2007-06-14 Toshiba Corp 受光素子回路、光ヘッド装置、光ディスク装置
US7952427B2 (en) 2006-03-22 2011-05-31 Renesas Electronics Corporation Signal amplifier circuit and optical receiver
JP2008010990A (ja) * 2006-06-27 2008-01-17 Nippon Telegr & Teleph Corp <Ntt> 光受信器
JP2011160054A (ja) * 2010-01-29 2011-08-18 Nippon Telegr & Teleph Corp <Ntt> デュアルレート振幅制限増幅回路
JP2016201736A (ja) * 2015-04-13 2016-12-01 富士通株式会社 信号識別回路、これを用いた光受信器、及び信号識別方法

Also Published As

Publication number Publication date
US20020153958A1 (en) 2002-10-24
US6587004B2 (en) 2003-07-01
JP4429565B2 (ja) 2010-03-10

Similar Documents

Publication Publication Date Title
WO2001048914A1 (fr) Circuit amplificateur de signal et recepteur de signal optique utilisant ledit circuit amplificateur
JP2656734B2 (ja) 光受信回路
JP3340341B2 (ja) レベル識別回路
JP2814990B2 (ja) 光受信回路
US5822104A (en) Digital optical receiving apparatus
WO2006013893A1 (ja) トランスインピーダンスアンプ
JPH1084231A (ja) デジタル信号受信回路
JPH04358443A (ja) 光受信器
JP2009049488A (ja) 前置増幅回路
US7952427B2 (en) Signal amplifier circuit and optical receiver
JP6661057B1 (ja) リミッティング増幅回路
JP2002164855A (ja) 光受信回路
JP3606143B2 (ja) オフセット制御回路及びそれを用いた光受信器並びに光通信システム
JP4576408B2 (ja) リミッタアンプ回路
JP2655130B2 (ja) ディジタル受信回路
JP2962218B2 (ja) ディジタル光受信回路
US6232842B1 (en) Amplifying circuit and optical receiver comprising the same
JP4999774B2 (ja) 振幅制限増幅回路
US20040190914A1 (en) Burst mode optical receiver
JPH09289495A (ja) バースト信号用増幅器および光受信回路
JP2006311210A (ja) リミッタアンプ回路
JP3110997B2 (ja) 切り換え可能なピークおよび平均検出回路
JP3354892B2 (ja) 増幅回路およびそれを用いた光受信器
JP2010273058A (ja) 振幅制限増幅回路
JP3881293B2 (ja) 瞬時応答増幅回路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 548519

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10171559

Country of ref document: US