WO2001044373A1 - Conductive resin, electronic module using conductive resin, and method of manufacturing electronic module - Google Patents

Conductive resin, electronic module using conductive resin, and method of manufacturing electronic module Download PDF

Info

Publication number
WO2001044373A1
WO2001044373A1 PCT/JP2000/008833 JP0008833W WO0144373A1 WO 2001044373 A1 WO2001044373 A1 WO 2001044373A1 JP 0008833 W JP0008833 W JP 0008833W WO 0144373 A1 WO0144373 A1 WO 0144373A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
conductive resin
electronic component
conductive
circuit board
Prior art date
Application number
PCT/JP2000/008833
Other languages
English (en)
French (fr)
Inventor
Tsutomu Mitani
Yukihiro Ishimaru
Takashi Kitae
Hiroaki Takezawa
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP00981698A priority Critical patent/EP1153985B1/en
Priority to US09/889,523 priority patent/US6510059B2/en
Priority to DE60009464T priority patent/DE60009464T2/de
Publication of WO2001044373A1 publication Critical patent/WO2001044373A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49883Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials the conductive materials containing organic materials or pastes, e.g. for thick films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10636Leadless chip, e.g. chip capacitor or resistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10977Encapsulated connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0278Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0779Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
    • H05K2203/0783Using solvent, e.g. for cleaning; Regulating solvent content of pastes or coatings for adjusting the viscosity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/303Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
    • H05K3/305Affixing by adhesive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S205/00Electrolysis: processes, compositions used therein, and methods of preparing the compositions
    • Y10S205/924Electrolytic coating substrate predominantly comprised of specified synthetic resin
    • Y10S205/925Synthetic resin is electrically conductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49146Assembling to base an electrical component, e.g., capacitor, etc. with encapsulating, e.g., potting, etc.

Definitions

  • the present invention relates to a conductive resin that functions as an adhesive used as an electrical contact of an electronic component or a heat conductive medium of an electronic component, a mounted body of the electronic component using the conductive resin, and a mounting of the electronic component. It relates to a method for producing a body. Background art
  • Lead-free mounting technologies include the use of lead-free solder or conductive resin, but conductive materials that can be expected to have the advantages of flexibility of the joint, lower mounting temperature, free of organic solvents, and no washing are required. Interest in conductive resins is increasing.
  • Conventional conductive resins are generally obtained by dispersing a conductive filler such as metal powder in an epoxy resin binder-resin component, for example.
  • a conductive filler such as metal powder
  • an epoxy resin binder-resin component for example.
  • the binder resin allows the conductive filler to be mutually connected, the conductive filler to the component electrode, and the conductive filler to the substrate electrode.
  • the electronic component and the substrate electrode are bonded and electrically connected via a conductive resin.
  • connection between the electronic component and the circuit board is made of resin. Because they are connected by components, they have the advantage that they deform flexibly against deformation due to heat or external force, and are less likely to crack compared to solder where the connection is an alloy, and are expected as a substitute for solder. I have.
  • Epoxy resin binder resin is one of the strongest among resin materials, especially in terms of adhesive strength to metal, and also has outstanding mechanical strength of resin itself after curing. Therefore, it is frequently used for many adhesive structural members. However, since it is not an alloyed joint like a solder joint, it achieves a joint strength equivalent to that of solder, pulling, bending, torsion, etc. It has become difficult.
  • FIG. 6 is a schematic cross-sectional view of a mounted body in which the electrodes 45 of the electronic component 44 are connected to the board electrodes 42 of the circuit board 41 using the conventional conductive resin 43.
  • the conductive resin 43 is formed at a predetermined position on the substrate electrode 42 by means of, for example, printing or dispensing, and then the electronic component 44 is placed and thermally cured to obtain an electrical connection and a mechanical connection. .
  • the connection portion substantially maintains the shape and dimensions at the time of printing.
  • the conductive filler and the binder resin are almost uniformly dispersed and mixed. are doing.
  • the weight content of the conductive filler of the conventional conductive resin is about 80%.
  • the specific gravity of the conductive filler is, for example, about 10 in the case of a silver conductive filler, and the specific gravity of the binder resin is about 1.1.
  • the mechanical contact at the connection that is, the net contact area of the binder resin that develops the connection strength with the component electrode and the substrate electrode is about 1 Z2 of the apparent connection area. For this reason, the connection strength is lower than in the case where only the binder resin is used.
  • the conventional conductive resin has an excellent advantage that it is flexible to the solder connection and hardly cracks as described above, the absolute connection strength is lower than that of the solder.
  • the disadvantage of being sufficient is that it has not been widely used as a connection material for solder replacement. Disclosure of the invention
  • the present invention provides a new conductive resin capable of improving the connection strength as compared with the conventional conductive resin while maintaining the advantage that the conductive resin is less likely to crack, and an electronic device having an improved connection strength. It is an object of the present invention to provide a component mounted body and a method of manufacturing the same.
  • the present invention relates to a method of connecting an electronic component and a substrate electrode using a conductive resin and curing by heating.
  • a conductive resin in which a portion mainly composed of one resin is formed.
  • the present invention provides an electronic component package in which a portion mainly containing a conductive filler and a portion mainly containing a binder resin are formed in a conductive resin.
  • the present invention provides a method for manufacturing a mounted body of an electronic component in which a portion mainly composed of a conductive filler and a portion mainly composed of a binder resin are substantially separated from each other in a conductive resin. .
  • the conductive resin of the present invention contains a conductive filler and a binder resin as main components, and the conductive filler is substantially uniformly dispersed in the binder resin.
  • a plurality of objects to be bonded are connected by using the conductive resin before curing, and the conductive resin is heated so that the conductive filler and the binder resin are substantially separated from each other. Then, after the conductive resin is cured, a portion mainly containing the conductive filler and a portion mainly containing the binder resin are formed in the conductive resin. According to this configuration, since a portion mainly composed of the binder resin is formed in the cured conductive resin, the connection strength between the adherends can be improved by the portion.
  • the electronic component mounted body of the present invention is an electronic component mounted body in which the electrodes of the electronic component and the electrodes of the circuit board are connected via a conductive resin containing a conductive filler and a binder resin.
  • the conductive resin in a region where the two electrodes face each other includes the conductive filler as a main component, and at least a part of the conductive resin in a region other than a region where the two electrodes face each other includes the binder. It is characterized by containing a resin as a main component. According to such a configuration, a portion containing a conductive filler as a main component expresses electrical connection and mechanical connection, and a portion containing a binder resin as a main component expresses electrical insulation and mechanical connection. In particular, due to the presence of the portion mainly composed of the binder resin, the connection strength of the electronic component can be improved.
  • the first method for manufacturing a package of electronic components according to the present invention includes: a step of applying the conductive resin of the present invention to a predetermined position of a circuit board; and a step of applying the electronic component to a predetermined position to which the conductive resin is applied. And a step of curing the conductive resin in the above order.
  • the second method for manufacturing a package of electronic components includes the step of providing at least one of a circuit board and an electronic component with a wettability of a binder of a conductive resin with respect to a constituent member of the circuit board or the electronic component. Applying a material having an improving effect, and applying the conductive resin to a predetermined position of the circuit board.
  • the step of applying, the step of arranging the electronic component at a predetermined position to which the conductive resin is applied, and the step of curing the conductive resin are performed in the above order.
  • a third method of manufacturing a package of electronic components includes a step of applying a conductive resin to a predetermined position of a circuit board, and at least one of the circuit board, the conductive resin, and the electronic component.
  • the step of arranging the electronic component and the step of curing the conductive resin are performed in the above order.
  • a fourth method for manufacturing a package of electronic components of the present invention includes the steps of: applying a conductive resin to a predetermined position of a circuit board; and arranging the electronic component at a predetermined position to which the conductive resin is applied. Applying a material having a function of improving the wettability of a binder resin of the conductive resin to the circuit board or a component member of the electronic component to at least a mounting portion of the electronic component; and The curing step is performed in the order described above.
  • the conductive filler and the binder resin in the conductive resin are substantially separated from each other at the time of heating. After the resin is cured, a portion mainly composed of the conductive filler and a portion mainly composed of the binder resin are formed in the conductive resin.
  • a material having an action of improving the wettability of the binder resin with respect to the circuit board or the electronic component is provided, so that during the subsequent heating, The conductive filler and the binder resin are substantially separated from each other, and after curing, the conductive filler is mainly contained in the conductive resin.
  • the part mainly containing the binder resin is used.
  • the connection strength of electronic components can be improved.
  • FIGS. 1A to 1C are schematic cross-sectional views illustrating a method for manufacturing a mounted body of an electronic component according to Example 1 of the present invention in the order of steps.
  • FIGS. 2A to 2D are schematic cross-sectional views illustrating a method for manufacturing a mounted body of an electronic component according to Embodiment 2 of the present invention in the order of steps.
  • 3A to 3D are schematic cross-sectional views illustrating a method for manufacturing a mounted body of an electronic component according to Embodiment 3 of the present invention in the order of steps.
  • 4A to 4D are schematic cross-sectional views illustrating a method for manufacturing a mounted body of an electronic component according to Example 4 of the present invention in the order of steps.
  • FIG. 5 is a diagram illustrating a step of curing a conductive resin according to a fifth embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a conventional electronic component package. BEST MODE FOR CARRYING OUT THE INVENTION
  • the conductive resin of the present invention is a conductive resin containing a conductive filler and a binder resin as main components, and the conductive filler is substantially uniformly dispersed in the binder resin.
  • the binder resin When a plurality of adherends are connected with each other using the conductive resin, and the conductive resin is heated, the binder resin has a low viscosity and is easy to flow, and is caused by capillary action between the adherend and the binder resin. Binder resin spreads on the surface of the adherend, resulting in conductivity The filler and the binder resin are substantially separated.
  • a portion mainly containing a conductive filler and a portion mainly containing a binder resin are formed in the conductive resin.
  • the part mainly composed of conductive filler exhibits relatively high conductivity and low mechanical strength
  • the part mainly composed of binder resin exhibits relatively low conductivity and high mechanical strength.
  • the diluent component in the conductive resin is 1% by weight with respect to all the organic components of the conductive resin.
  • the content is preferably 50% or less and 50% or less, more preferably 5% or more and 20% or less.
  • a diluent component a solvent which is easily volatilized at a relatively low temperature, a reactive diluent, or a mixture thereof can be used.
  • the solvent include alcohol solvents such as ethylene glycol, diethylene glycol, and triethylene glycol.
  • an epoxy-based reactive diluent can be used, and for example, "Adekaglycilol” (manufactured by Asahi Denka Co., Ltd.) can be exemplified.
  • the lower limit of the weight content of the conductive filler in the conductive resin shall be 20% or more, and more preferably 30% or more.
  • the upper limit is preferably less than 70%, more preferably less than 50%.
  • the weight content of the conductive filler in the conventional general conductive resin is usually about 75 to 90%.
  • the binder resin flows out during heating and curing to form a portion containing a binder resin as a main component. 01/44373
  • the conductive fillers in the conductive resin have a property of being entangled with each other.
  • the conductive filler is prevented from flowing together with the binder resin when the binder resin flows due to the heating of the conductive resin, so that the conductive filler and the binder are prevented from flowing.
  • Good separation from resin for example, a conductive filler having a different shape is mixed (for example, a scale-shaped and a confetti-shaped) are mixed, A method of mixing conductive fillers having different sizes or using conductive fillers having a shape that is easily entangled with each other can be used.
  • the conductive filler having a shape easily entangled with each other is, for example, a quadruped pillar-shaped conductive filler (for example, “Panatetra” (tetrapod pillar-shaped zinc oxide isker, manufactured by Matsushita Amtech Co., Ltd.)). Plating) or dendritic-shaped (also called dendrites) conductive fillers.
  • quadruped pillar-shaped conductive filler for example, “Panatetra” (tetrapod pillar-shaped zinc oxide isker, manufactured by Matsushita Amtech Co., Ltd.)
  • Plating or dendritic-shaped (also called dendrites) conductive fillers.
  • the conductive resin after curing, the volume resistivity of the portion you a conductive filler as a main component is laid preferred not more than 1 X 1 0- 1 ⁇ ⁇ cm , 5 X 1 0 _ 3 more preferably Omega ⁇ cm or less, and most preferably less than 1 X 1 0 one 3 ⁇ ⁇ cm. Further, the volume resistivity value of the portion containing the binder resin as a main component is preferably 1 ⁇ 10 + 3 ⁇ cm or more, more preferably 1 ⁇ 10 + 6 ⁇ cm or more, and 1 ⁇ 10 + 6 ⁇ cm or more. X 1 and most preferably 0 + 8 ⁇ ⁇ cm or more.
  • the volume specific resistance value of the portion containing the conductive filler as a main component is larger than the above range, good electrical connection will not be exhibited and it will be difficult to secure conduction. If the volume resistivity of the portion containing the binder resin as the main component is smaller than the above range, good electrical insulation is not exhibited, and the mechanical strength is reduced.
  • the phrase “consisting mainly of a conductive filler (or binder resin)” means that the conductive filler (or binder resin) is at least 50% by weight, preferably 60%, more preferably 70% or more.
  • the electronic component mounted body of the present invention is an electronic component mounted body in which the electrodes of the electronic component and the electrodes of the circuit board are connected via a conductive resin containing a conductive filler and a binder resin.
  • the conductive resin in the region where both electrodes face each other has a conductive filler as a main component, thereby achieving electrical connection and mechanical connection, and the conductive resin in the region other than the region where both electrodes face each other. At least a part of the conductive resin has a binder resin as a main component, thereby exhibiting electrical insulation and mechanical connection.
  • the region other than the region where the two electrodes face each other refers to, for example, a region where a portion other than the electrodes of the electronic component faces the circuit board, or a region where the electronic component does not directly face the circuit board (for example, And the area between the surface of the electronic component and the surface of the circuit board which is substantially perpendicular to the surface of the circuit board.
  • a mounted body can be easily obtained by using the above-described conductive resin of the present invention, or by employing the first to fourth methods of manufacturing the mounted body of the present invention.
  • the volume specific resistance of each of the portion mainly containing the conductive filler and the portion mainly containing the binder resin satisfies the above range.
  • the first method for manufacturing a package of electronic components according to the present invention includes the steps of: A step of applying the conductive resin of the present invention to a fixed position, a step of arranging the electronic component at a predetermined position where the conductive resin is applied, and a step of curing the conductive resin. Are performed in the order described above. Thereby, the above-mentioned package of the present invention can be easily obtained.
  • the second method for manufacturing a package of electronic components according to the present invention is characterized in that at least one of the circuit board and the electronic component has an effect of improving the wettability of the binder resin of the conductive resin to the circuit board or the component of the electronic component.
  • a step of applying a material having: a step of applying a conductive resin to a predetermined position of a circuit board; a step of arranging an electronic component at a predetermined position to which the conductive resin is applied; and a step of curing the conductive resin.
  • the electronic component mounted body of the present invention When a conventional conductive resin is used, it is difficult to realize the electronic component mounted body of the present invention by performing the same method for manufacturing a mounted electronic component as before.
  • the method of manufacturing the second mounting body of the present invention at least one of the circuit board and the electronic component has an action of improving the wettability of the binder resin of the conductive resin to the circuit board or the component of the electronic component.
  • the wettability of the binder resin component of the conductive resin to the circuit board or the electronic component is improved in the subsequent heating process of the conductive resin.
  • the mounting body of the present invention can be easily formed.
  • the conductive resin of the present invention can be used as the conductive resin, and a similar mount can be formed. That is, in the second method for manufacturing the electronic component package of the present invention, there is no particular limitation on the conductive resin.
  • a step of applying a conductive resin to a predetermined position of a circuit board, the circuit board, the conductive resin, and the electronic component Applying a material having an action of improving the wettability of a binder of a conductive resin to a circuit board or a component member of an electronic component to at least one of the conductive resin and a predetermined resin to which the conductive resin is applied.
  • the method includes a step of disposing an electronic component at a position and a step of curing a conductive resin, and these steps are performed in the order described above.
  • the third manufacturing method of the present invention When a conventional conductive resin is used, it is difficult to realize the electronic component mounted body of the present invention by performing the same method for manufacturing a mounted electronic component as before.
  • at least one of the circuit board, the conductive resin, and the electronic component is provided with a conductive resin binder and a resin circuit board or an electronic component.
  • the conductive resin of the present invention can be used as the conductive resin, and a similar package can be formed. That is, in the third method for manufacturing a package of electronic components of the present invention, the conductive resin is not particularly limited.
  • a fourth method of manufacturing a package of electronic components according to the present invention includes the steps of: applying a conductive resin to a predetermined position of a circuit board; arranging the electronic component at a predetermined position to which the conductive resin is applied; A process of applying a material having an effect of improving the wettability of a resin binder to a circuit board or a component member of an electronic component to at least a mounting portion of the electronic component, and a process of curing the conductive resin. These steps are performed in the order described above.
  • a material having an action of improving the wettability of the binder resin of the conductive resin with respect to the circuit board or the component member of the electronic component at least on the mounting part of the electronic component By pre-coating, the wettability of the binder resin component of the conductive resin to the circuit board or the electronic component is improved in the subsequent heating process of the conductive resin. As a result, the mounting body of the present invention can be easily formed even when a conventional conductive resin is used.
  • the conductive resin of the present invention can be used as the conductive resin, and a similar package can be formed. That is, in the fourth method for manufacturing a package of electronic components of the present invention, the conductive resin is not particularly limited.
  • an alcohol-based solvent, a reactive diluent, or a mixture thereof is preferable.
  • the alcohol solvent ethylene glycol, diethylene glycol, triethylene glycol, or the like can be used.
  • the reactive diluent an epoxy-based reactive diluent can be used, and for example, "ADEKA glycyrrole" (manufactured by Asahi Denka Co., Ltd.) can be exemplified.
  • the step of reducing the viscosity in which the binder resin component substantially separated from the conductive resin flows out and the step of curing the binder resin component It is preferable to be performed in this order. That is, the conductive resin is heated at a first temperature at which the binder-resin component of the conductive resin decreases in viscosity for a predetermined time, and then heated to a second temperature at which the binder-resin component hardens. For a predetermined time.
  • the viscosity reducing step (first temperature) ensures that the conductive resin in the conductive resin is separated from the binder resin.
  • the curing step (second temperature) of the above a portion mainly composed of the conductive filler and a portion mainly composed of the binder resin can be easily formed in the conductive resin. it can.
  • the binder resin substantially separated from the conductive resin flows out, and the electrodes of the electronic component and the electrodes of the circuit board face each other. It is preferable that at least a part of the region other than the region is connected with a resin having the above-mentioned binder resin as a main component. As a result, the content of the conductive filler increases in the region where both electrodes face each other, and good electrical connection is performed.
  • a resin portion containing a small amount of the conductive filler and containing a binder resin as a main component is formed, which contributes to an improvement in connection strength of the electronic component.
  • FIGS. 1A to 1C are schematic cross-sectional views showing a method for manufacturing a mounted body of an electronic component in the order of steps.
  • FIG. 1A a conductive resin 3 is printed and formed at a predetermined position on a substrate electrode 2 of a circuit board 1, and an electronic component 4 provided with an electrode 5 is aligned, as shown in FIG. 1B.
  • the electronic component 4 is placed on the uncured conductive resin 3.
  • the conductive resin 3 is cured by heating to the curing temperature of the conductive resin 3.
  • FIG. 1C shows a completed state of the mounted electronic component of the present invention after the conductive resin 3 is cured.
  • an epoxy resin as a binder an epoxy resin as a binder, an amine-based curing agent as a curing agent, and diethylene glycol as an alcohol-based solvent.
  • the amount of diethylene glycol added was changed within the range of 0 to 70% by weight based on the whole organic components of the conductive resin.
  • the dimethylene glycol was added at room temperature after kneading the epoxy resin and the amine-based curing agent.
  • the conductive filler those having a scale shape and a substantially spherical shape were mixed at a weight ratio of about 60% and about 40%, respectively, and used. In an unhardened state, the conductive filler is substantially uniformly dispersed and contained in the conductive resin.
  • Table 1 shows the shear adhesion strength and the shape of the joint between the electronic component 4 and the circuit board 1 of the mounted electronic component formed using the conductive resin prepared by changing the weight ratio of diethylene glycol (DEG) added. The result is shown.
  • DEG diethylene glycol
  • the shear adhesion strength was measured using a measurement sample in which a chip resistor of size 31.6 as an electronic component was connected to an FR-4 substrate having copper electrodes with conductive resin. The sample is placed on the shear strength tester so that the longitudinal side of the chip resistor contacts the shear tester indenter, and pressed at a shear speed of 10 mm / min, and the chip resistor falls off the circuit board The load at this time was defined as the shear bond strength.
  • the shape of the connection portion is determined by the presence or absence of the resin bonding portion 3b in the region where the portion of the electronic component 4 other than the electrode 5 and the circuit board 1 face each other (ie, the lower region of the electronic component) In the case of “existing”, the formation state is further obtained), and the presence / absence of formation of a fillet-shaped reinforcing portion 3 c on the side wall surface of the electrode 5 of the electronic component 4 similar to that formed in the case of solder connection (“ If yes, then the height) O 01/44373
  • the conductive resin of the resin bonding portion 3b and the fillet 3c under the electronic component was mainly composed of a binder resin.
  • the conductive resin 3a in the region where the electrode 5 and the substrate electrode 2 face each other showed a good electrical insulating property, and contained a conductive filler as a main component, showing good conductivity.
  • the resin bonding portion 3b and the fillet 3c are formed by separating the binder resin component in the conductive resin 3 and flowing along the surface of the electronic component 4 or the circuit board 1 when heated. .
  • 2A to 2D are schematic cross-sectional views showing a method of manufacturing a package of electronic components in the order of steps.
  • a metal mask 16 having a predetermined opening is provided on a circuit board 11 on which a board electrode 12 is formed, and the circuit mask 11 is provided on the circuit board 11 and the board electrode 12.
  • a material having an effect of improving the wettability with the circuit board 11, that is, a diethylene glycol solution 17 is sprayed and applied while moving the spray nozzle 18 in the direction of the arrow.
  • a conductive resin 13 is printed and formed on predetermined positions of the substrate electrodes 12 of the circuit board 11, and electronic components (chip resistors) 14 having the electrodes 15 are positioned.
  • the electronic component 14 is placed on the uncured conductive resin 13.
  • the conductive resin 13 is cured by heating to the curing temperature of the conductive resin 13.
  • FIG. 2D shows a completed state of the electronic component mounted body of the present invention after the conductive resin 13 is cured.
  • the thickness of the formed diethylene glycol 17 was about 5 m.
  • the conductive resin 13 a conventional conductive resin using a silver filler for the conductive filler and an epoxy resin for the binder resin component was used. did. The conductive resin was cured for 30 minutes in a hot air oven set at 15 Ot :.
  • the electronic component mounted body of the present embodiment has a region where the portion of the electronic component 14 other than the electrode 15 faces the circuit board 11 (the lower part of the electronic component).
  • Region 13) is filled with a resin 13b containing a binder resin as a main component, and the resin 13c containing a binder resin as a main component is also filled on the side wall surface of the electrode 15 of the electronic component 14. It was attached like a bird.
  • These resins 13 b and 13 c are formed by separating the binder resin component in the conductive resin 13 during heating and flowing along the surface of the electronic component 14 or the circuit board 11. .
  • the mechanical bonding strength between the electronic component 14 and the circuit board 11 is improved by the resins 13b and 13c containing these binder resins as main components.
  • the conductive resin 13a in the region where the electrode 15 and the substrate electrode 12 face each other has a conductive filler as a main component, and has shown good conductivity.
  • diethylene glycol As a method for applying diethylene glycol, other methods such as dipping and coating can be used in addition to the spraying described above.
  • the material for improving the wettability other than diethylene glycol, for example, an alcohol solvent such as ethylene glycol and triethylene glycol or a reactive diluent can be used.
  • diethylene glycol was applied to the circuit board 11 side, but may be applied to the electronic component 14 instead or together with this.
  • 3A to 3D are schematic cross-sectional views showing a method of manufacturing a package of electronic components in the order of steps.
  • FIG. 3A shows a completed state of the electronic component mounted body of the present invention after the conductive resin 23 is cured.
  • the thickness of the diethylene dalicol 27 was about 5.
  • a conventional conductive resin using a silver filler as a conductive filler and an epoxy resin as a binder resin component was used. used. The hardening of the conductive resin was performed in a hot air oven set at 150 ° C for 30 minutes.
  • the mounted body of the electronic component of the present embodiment has a binder (a lower region of the electronic component) in a region where a portion other than the electrode 25 of the electronic component 24 and the circuit board 21 face each other.
  • the resin 23b mainly containing a resin is filled, and the resin 23c mainly containing a binder resin adheres to the side wall surface of the electrode 25 of the electronic component 24 in the form of a filler. I was These resins 23 b and 23 c are formed by separating the binder resin component in the conductive resin 23 during heating and flowing along the surface of the electronic component 24 or the circuit board 21. .
  • the resins 23b and 23c containing these binder resins as main components improve the mechanical bonding strength between the electronic component 24 and the circuit board 21.
  • the conductive resin 23a in the region where the electrode 25 and the substrate electrode 22 face each other has a conductive film as a main component, and shows good conductivity.
  • diethylene dalicol As a method for applying diethylene dalicol, other methods such as dipping and coating can be used in addition to the spraying described above.
  • a material for improving the wettability besides diethylene glycol, for example, an alcohol-based agent such as ethylene glycol and triethylene glycol or a reactive diluent is used. It is possible.
  • diethylene glycol is provided on the circuit board 21 side, but may be provided on the electronic component 24 instead or together with this.
  • 4A to 4D are schematic cross-sectional views illustrating a method of manufacturing a mounted body of an electronic component in the order of steps.
  • a conductive resin 33 is formed by printing at a predetermined position of a substrate electrode 32 formed on a circuit board 31.
  • the electronic component (chip resistor) 34 including the electrode 35 is positioned and placed on the uncured substrate electrode 32 of the circuit board 31.
  • a metal mask 36 having a predetermined opening is provided, and the electronic component 34, the circuit board 31 and the board electrode 32 are wetted with the circuit board 31.
  • a material having an effect of improving the property that is, a diethylene glycol liquid 37 is sprayed and applied while moving the spray nozzle 38 in the direction of the arrow.
  • the conductive resin 33 is cured by heating to the curing temperature of the conductive resin 33.
  • FIG. 4D shows a completed state of the mounted electronic component of the present invention after the conductive resin 33 is cured.
  • the thickness of the formed diethylene glycol was about 5 m.
  • the conductive resin 33 a conventional conductive resin using a silver filler as a conductive filler and an epoxy resin as a binder resin component was used. The hardening of the conductive resin was performed in a hot air oven set at 150 ° C for 30 minutes.
  • the electronic component package according to the present embodiment has a binder resin in a region (a lower region of the electronic component) where a portion of the electronic component 34 other than the electrode 35 and the circuit board 31 face each other.
  • a resin 33c containing a binder resin as a main component was adhered to the side wall surface of the electrode 35 of the electronic component 34 in the form of a filler.
  • These resins 33 b and 33 c are formed by separating the binder-resin component in the conductive resin 33 during heating and flowing along the surface of the electronic component 34 or the circuit board 31. is there.
  • the resin 33 b and 33 c containing these binder resins as main components improves the mechanical bonding strength between the electronic component 34 and the circuit board 31.
  • the conductive resin 33a in the region where the electrode 35 and the substrate electrode 32 face each other has a conductive filler as a main component, and shows good conductivity.
  • diethylene glycol As a method of applying diethylene glycol, other methods such as dipping and coating can be used in addition to the spraying described above.
  • an alcoholic solvent such as ethylene glycol and triethylene glycol or a reactive diluent can be used in addition to diethylene dalicol.
  • Example 2 4 1 .1 Overall surface part height about 1/2
  • Example 3 38.6 Overall surface part height about 1 no 2
  • Example 4 37.7 Overall surface part height about 1 Z 2
  • Comparative example 29.4 Ruins As shown in Table 2, it can be seen that in the electronic component mounted bodies of Examples 2 to 4 in which the resin bonding portion and the fillet under the electronic component were well formed, the adhesion strength of the electronic component was improved.
  • a mounted body of an electronic component was obtained in the same manner as in Example 1 except that the composition of the conductive resin and the heating conditions were changed as follows.
  • Epoxy resin (“ADEKARESIN EP-400 J (manufactured by Asahi Denka Co., Ltd.)” as a binder resin, an amine-based curing agent as a curing agent, and an epoxy-based reactive diluent (“ADEKA GRISHI” as a reactive diluent) Roll ED-501 J (manufactured by Asahi Denka Co., Ltd.)), and as a conductive filler, a mixed filler of the same scale-shaped and substantially spherical-shaped one as in Example 1 is used.
  • the reactive diluent was added in an amount of 15% by weight based on the total amount of the epoxy resin and the amine-based curing agent.
  • the conductive resin was printed on a substrate electrode of a circuit board using a 0.1 mm thick stainless steel mask plate having openings formed at predetermined positions. Then, as in Example 1, the electronic components were aligned and mounted on a conductive resin.
  • the conductive resin was cured by heating under two-stage heating conditions.
  • the heating conditions of the fifth embodiment will be described with reference to FIG.
  • the horizontal axis indicates the temperature at which the conductive resin is heated and cured
  • the left vertical axis indicates the viscosity of the conductive resin of this embodiment at each temperature
  • the right vertical axis indicates the elapsed time.
  • the sample was first held at 80 at 10 minutes, then at 150 at 20 minutes, and then cooled.
  • the conductive resin of Example 5 had a reduced viscosity by containing a reactive diluent, and also had an original curing start temperature of the epoxy resin. Low viscosity at about 80 ° C below 106 ° C Is imparted.
  • the binder-resin component in the conductive resin is oozed out of the conductive resin by maintaining the temperature at about 80 ° C. where the viscosity sharply decreases.
  • the content of the conductive filler in the conductive resin in the region where the electrode of the electronic component and the electrode of the circuit board face each other is increased, and the binder-resin component is added to the region other than the region where the electrode faces.
  • the binder resin component is cured by maintaining the temperature at 150, which is higher than the curing start temperature, for a predetermined time.
  • the obtained mounted product was evaluated in the same manner as in Example 1.
  • the electronic component has a shear adhesion strength of 50.6 N, and the space between the lower surface of the electronic component other than the electrode and the circuit board is filled with a resin containing a binder resin as a main component without any gap.
  • a fillet-shaped reinforcing portion containing a binder resin as a main component was formed on the side wall surface at a height of about 1/2 of the height of the electronic component.
  • connection strength which has been a serious problem in practical use, as compared with a conventional electronic component mounted body made of a conductive resin, and to improve various types of electronic devices with a small environmental load. Practical use of equipment becomes possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Description

明 細 書 導電性樹脂、 導電性樹脂を用いた電子部品の実装体、 および電子部品の 実装体の製造方法 技術分野
本発明は、 電子部品の電気的接点又は電子部品の熱伝導媒体に用いら れる接着剤として機能する導電性樹脂、 および該導電性樹脂を用いた電 子部品の実装体、 および電子部品の実装体の製造方法に関する。 背景技術
昨今の環境問題への認識の高まりから、 エレク トロニクス実装の分野 では、 はんだ合金中の鉛に対する規制が実施されようとしており、 電子 部品の実装に鉛を用いない接合技術の確立が急務となっている。 鉛フリ 一実装技術としては、 鉛フリーはんだ又は導電性樹脂の使用が挙げられ るが、 接合部の柔軟性、 実装温度の低温化、 有機溶剤フリー、 洗浄レス 等のメリッ 卜が期待される導電性樹脂に対する関心がますます高まって いる。
従来の導電性樹脂は、 一般的に例えばエポキシ樹脂系バインダ一樹脂 成分中に金属粉末などの導電性フィラーを分散させたものである。 例え ば導電性樹脂で電子部品の部品電極と回路基板の基板電極とを接続する 場合、 前記バインダー樹脂によって導電性フィラー相互、 導電性フイラ —と部品電極、 および導電性フィラーと基板電極とがそれぞれ接触し電 気的に接続されると同時に、 電子部品と基板電極とが導電性樹脂を介し て接着され機械的に接続される。
導電性樹脂を用いた実装では、 電子部品と回路基板との接続部が樹脂 成分で接続されるため、 熱や外力による変形に対して柔軟に変形し、 接 続部が合金であるはんだに比べて亀裂が発生しにくいというメリッ 卜が あり、 はんだの代替材料として期待されている。
ところが、 従来の導電性樹脂ではんだ代替を実現しょうとすると、 は んだと同等の接続強度を達成することが困難であった。
導電性樹脂が部品電極および基板電極と接着する作用は、 上記のよう に例えばエポキシ樹脂系バインダー樹脂が部品電極および基板電極と接 着することで発現される。 エポキシ樹脂系バインダー樹脂は、 樹脂材料 のなかでは特に金属との接着強度がもつとも強いものの一つであり、 か つ硬化した後の樹脂自身の機械的強度も樹脂材料のなかでは卓抜したも のであるため、 多くの接着剤構造部材に多用されている。 しかしながら 、 はんだ接続部のような合金的接合とはなっていないため、 せん断、 引 つ張り、 曲げ、 およびねじり等実際の接続部分が受ける外力に対しては んだと同等の接続強度を達成することが困難となっている。
以下にその主たる原因を図 6を用いて説明する。
図 6は従来の導電性樹脂 4 3を用いて電子部品 4 4の電極 4 5を回路 基板 4 1の基板電極 4 2に接続した実装体の概略断面図である。 導電性 樹脂 4 3は例えば印刷あるいはデイスペンスなどの手段によって基板電 極 4 2の所定位置に形成され、 その後、 電子部品 4 4を載置して熱硬化 し電気的接続と機械的接続が得られる。 このときの接続部は前記印刷時 の形状寸法をほぼ維持している。 また、 電極 4 5と導電性樹脂 4 3との 接続界面、 および基板電極 4 2と導電性樹脂 4 3との接続界面では、 導 電性フィラーとバインダ一樹脂とがほぼ均一に分散して混在している。 一般的に従来の導電性樹脂の導電性フィラーの重量含有率は 8 0 %程 度前後である。 導電性フイラ一の比重は例えば銀の導電性フイラ一の場 合に約 1 0で、 バインダー樹脂の比重は約 1 . 1であるために、 前記接 続部での機械的接続、 即ち接続強度を発現するバインダー樹脂の部品電 極および基板電極との正味接触面積は見かけ上の接続面積の約 1 Z 2程 度である。 このためバインダ一榭脂のみの場合に比べて接続強度は低下 する。
即ち、 従来の導電性樹脂は前記のようなはんだ接続に対して柔軟であ つて亀裂が発生しにくいという優れたメリッ 卜があるにもかかわらず、 絶対的な接続強度がはんだと比較して不十分であるというデメリッ 卜が あるために、 はんだ代替用の接続材料として広範に使用されるには至つ ていない。 発明の開示
そこで本発明は、 導電性樹脂の亀裂が発生しにくいというメリッ トを 維持しつつ、 従来の導電性樹脂に比べて接続強度の向上が可能な新規導 電性樹脂、 および接続強度が向上した電子部品の実装体、 およびその製 造方法を提供することを目的とする。
上記目的を達成するために、 本発明は、 電子部品と基板電極とを導電 性樹脂を用いて接続し加熱硬化させると、 導電性樹脂中に、 導電性フィ ラーを主成分とする部分とバインダ一樹脂を主成分とする部分とが形成 される導電性樹脂を提供する。 また、 本発明は、 導電性樹脂中に、 導電 性フィラーを主成分とする部分とバインダ一樹脂を主成分とする部分と が形成された電子部品の実装体を提供する。 更に本発明は、 導電性樹脂 中に、 導電性フィラーを主成分とする部分とバインダ一樹脂を主成分と する部分とが略分離して形成される電子部品の実装体の製造方法を提供 する。
即ち、 本発明の導電性樹脂は、 導電性フィラーとバインダー榭脂とを 主成分とし、 前記導電性フィラーが前記バインダ一樹脂中に略均一分散 してなる導電性樹脂であって、 硬化前の前記導電性樹脂を用いて複数の 被接着体間を接続し、 前記導電性樹脂を加熱すると前記導電性フィラー と前記バインダ一樹脂とが略分離し、 導電性樹脂の硬化後に前記導電性 榭脂内に、 前記導電性フィラーを主成分とする部分と、 前記バインダー 樹脂を主成分とする部分とが形成されることを特徴とする。 かかる構成 によれば、 硬化後の導電性樹脂内にバインダ一樹脂を主成分とする部分 が形成されるので、 該部分によって被接着体間の接続強度を向上させる ことができる。
また、 本発明の電子部品の実装体は、 電子部品の電極と回路基板の電 極とが、 導電性フイラ一とバインダー樹脂とを含む導電性樹脂を介して 接続された電子部品の実装体であって、 前記両電極が対向する領域内の 前記導電性樹脂は前記導電性フィラーを主成分とし、 前記両電極が対向 する領域以外の領域内の前記導電性樹脂の少なくとも一部は前記バイン ダー樹脂を主成分とすることを特徴とする。 かかる構成によれば、 導電 性フィラーを主成分とする部分は電気的接続と機械的接続とを発現し、 バインダー樹脂を主成分とする部分は電気的絶縁と機械的接続とを発現 する。 特に、 バインダー樹脂を主成分とする部分の存在により、 電子部 品の接続強度を向上させることができる。
また、 本発明の第 1の電子部品の実装体の製造方法は、 回路基板の所 定位置に上記本発明の導電性樹脂を付与する工程と、 前記導電性樹脂を 付与した所定位置に電子部品を配置する工程と、 前記導電性樹脂を硬化 する工程とを上記順序で実施することを特徴とする。
また、 本発明の第 2の電子部品の実装体の製造方法は、 回路基板又は 電子部品の少なくとも一方に、 導電性樹脂のバインダ一樹脂の前記回路 基板又は前記電子部品の構成部材に対する濡れ性を向上する作用を有す る材料を付与する工程と、 前記回路基板の所定位置に前記導電性樹脂を 付与する工程と、 前記導電性樹脂を付与した所定位置に電子部品を配置 する工程と、 前記導電性樹脂を硬化する工程とを上記順序で実施するこ とを特徴とする。
また、 本発明の第 3の電子部品の実装体の製造方法は、 回路基板の所 定位置に導電性樹脂を付与する工程と、 前記回路基板、 前記導電性樹脂 、 及び電子部品のうちの少なくとも一つに、 前記導電性樹脂のバインダ 一樹脂の前記回路基板又は前記電子部品の構成部材に対する濡れ性を向 上する作用を有する材料を付与する工程と、 前記導電性樹脂を付与した 所定位置に前記電子部品を配置する工程と、 前記導電性樹脂を硬化する 工程とを上記順序で実施することを特徴とする。
更に、 本発明の第 4の電子部品の実装体の製造方法は、 回路基板の所 定位置に導電性樹脂を付与する工程と、 前記導電性樹脂を付与した所定 位置に電子部品を配置する工程と、 前記導電性樹脂のバインダー樹脂の 前記回路基板又は前記電子部品の構成部材に対する濡れ性を向上する作 用を有する材料を少なくとも前記電子部品の実装部分に付与する工程と 、 前記導電性樹脂を硬化する工程とを上記順序で実施することを特徴と する。
上記第 1の電子部品の実装体の製造方法によれば、 上記本発明の導電 性樹脂を用いるので、 加熱時に導電性樹脂内の導電性フィラーとバイン ダー榭脂とが略分離し、 導電性樹脂の硬化後に導電性樹脂内に、 導電性 フィラ一を主成分とする部分と、 バインダー樹脂を主成分とする部分と が形成される。
また、 上記第 2〜第 4の電子部品の実装体の製造方法によれば、 回路 基板又は電子部品に対するバインダ一樹脂の濡れ性を向上する作用を有 する材料を付与するので、 その後の加熱時に導電性フィラーとバインダ 一樹脂とが略分離して、 硬化後に導電性樹脂内に、 導電性フイラ一を主 成分とする部分と、 バインダー樹脂を主成分とする部分とが形成される この結果、 上記第 1〜第 4のいずれの実装体の製造方法においても、 上記バインダ一樹脂を主成分とする部分によって電子部品の接続強度を 向上させることができる。 図面の簡単な説明
図 1 A〜図 1 Cは、 本発明の実施例 1に係る電子部品の実装体の製造 方法を工程順に示した概略断面図である。
図 2 A〜図 2 Dは、 本発明の実施例 2に係る電子部品の実装体の製造 方法を工程順に示した概略断面図である。
図 3 A〜図 3 Dは、 本発明の実施例 3に係る電子部品の実装体の製造 方法を工程順に示した概略断面図である。
図 4 A〜図 4 Dは、 本発明の実施例 4に係る電子部品の実装体の製造 方法を工程順に示した概略断面図である。
図 5は、 本発明の実施例 5における導電性樹脂の硬化工程を説明した 図である。
図 6は、 従来の電子部品の実装体の概略断面図である。 発明を実施するための最良の形態
上述したように、 本発明の導電性樹脂は、 導電性フィラーとバインダ 一樹脂とを主成分とし、 導電性フィラーがバインダー樹脂中に略均一分 散してなる導電性樹脂であって、 硬化前の導電性樹脂を用いて複数の被 接着体間を接続し、 導電性樹脂を加熱すると、 バインダー榭脂が低粘度 となり流動しやすくなつて、 被接着体とバインダー樹脂との毛細管現象 によつてバインダー樹脂が被接着体表面上に広がることにより、 導電性 フィラーとバインダー樹脂とが略分離する。 そして導電性樹脂の硬化後 に導電性樹脂内に、 導電性フィラーを主成分とする部分と、 バインダー 樹脂を主成分とする部分とが形成される。 導電性フィラ一を主成分とす る部分は相対的に高い導電性と低い機械的強度を発現し、 バインダー樹 脂を主成分とする部分は相対的に低い導電性と高い機械的強度を発現す る。
上記において、 導電性樹脂の加熱時にバインダ一樹脂成分の流動を容 易ならしめるために、 導電性樹脂中に希釈剤成分が、 導電性樹脂の全有 機物成分に対して重量比率で 1 %以上 5 0 %以下含有されていることが 好ましく、 5 %以上 2 0 %以下含有されていることがより好ましい。 こ のような希釈剤成分としては、 比較的低温で揮発しやすい溶剤、 又は反 応性希釈剤、 又はこれらの混合物を用いることができる。 具体的には、 溶剤として、 例えばエチレングリコール、 ジエチレングリコール、 ある いはトリエチレングリコールなどのアルコール系の溶剤が挙げられる。 また、 反応性希釈剤として、 エポキシ系の反応性希釈剤を使用すること ができ、 例えば 「アデカグリシロール」 (旭電化 (株) 製) を例示する ことができる。
また、 導電性樹脂 (上記の希釈剤成分が含有される場合には、 これを 含む) 中における導電性フィ ラーの重量含有率は、 下限が 2 0 %以上、 更に 3 0 %以上であることが好ましく、 上限が 7 0 %未満、 更に 5 0 % 未満であることが好ましい。 導電性フィラーの含有率が上記の下限より 少ないと、 接続部の電気抵抗が増加する。 一方、 上記の上限より多いと 、 接続部の機械的強度が低下する。 従来の一般的な導電性樹脂中の導電 性フィラーの重量含有率は通常 7 5〜 9 0 %程度である。 本発明の導電 性樹脂は、 加熱 ·硬化時にバインダ一樹脂が流出してバインダー樹脂を 主成分とする部分を形成するために、 従来より少ない導電性フィラーの 01/44373
含有率で、 充分な導電性と機械的強度とを得ることができる。
また、 導電性樹脂中の導電性フィラ一は相互に絡み合う性質を有する ことが好ましい。 このような性質を有することにより、 導電性樹脂の加 熱によってバインダー樹脂が流動する際に、 導電性フィラーがバインダ 一樹脂と一緒に流動するのが防止されるので、 導電性フイラ一とバイン ダー樹脂とが良好に略分離される。 導電性フィラーが相互に絡み合う性 質を有するためには、 例えば、 異なる形状を付与した導電性フィラーを 混在させたり (例えば、 鱗片形状のものと金平糖形状のものとを混在さ せる)、 大小各種のサイズの導電性フィラーを混在させたり、 又は、 相 互に絡み合いやすい形状の導電性フィラーを用いたりする方法が挙げら れる。 相互に絡み合いやすい形状の導電性フィラーとは、 例えば、 四脚 柱状の導電性フィラー (例えば 「パナテトラ」 (四脚柱状の酸化亜鉛ゥ イスカー、 松下アムテック (株) 製) の表面に金及びニッケルのめっき を施したもの)、 又は、 樹枝状晶形状 (別名、 デンドライ ト) の導電性 フィラーを例示することができる。
また、 導電性樹脂は、 硬化後において、 導電性フィラーを主成分とす る部分の体積固有抵抗値が 1 X 1 0— 1 Ω · c m以下であることが好ま しく、 5 X 1 0 _ 3 Ω · c m以下であることがより好ましく、 1 X 1 0一 3 Ω · c m以下であることが最も好ましい。 また、 バインダー樹脂を主 成分とする部分の体積固有抵抗値は 1 X 1 0 + 3 Ω · c m以上であるこ とが好ましく、 1 X 1 0 + 6 Ω · c m以上であることがより好ましく、 1 X 1 0 + 8 Ω · c m以上であることが最も好ましい。 導電性フィ ラー を主成分とする部分の体積固有抵抗値が上記範囲より大きいと、 良好な 電気的接続を発現せず導通が確保しにくくなる。 また、 バインダー樹脂 を主成分とする部分の体積固有抵抗値が上記範囲より小さいと、 良好な 電気絶縁性を発現せず、 また機械的強度も低下する。 なお、 本発明にお いて 「導電性フィラー (又はバインダー樹脂) を主成分とする」 とは、 導電性フイラ一 (又はバインダー樹脂) が全体に対して重量割合で 5 0 %以上、 好ましくは 6 0 %、 より好ましくは 7 0 %以上含有されている ことをいう。
次に、 本発明の電子部品の実装体は、 電子部品の電極と回路基板の電 極とが、 導電性フィラーとバインダー樹脂とを含む導電性樹脂を介して 接続された電子部品の実装体であって、 両電極が対向する領域内の導電 性樹脂は導電性フィラーを主成分とすることで電気的接続と機械的接続 とを発現しており、 両電極が対向する領域以外の領域内の導電性樹脂の 少なくとも一部はバインダー樹脂を主成分とすることで電気的絶縁と機 械的接続を発現している。 ここで、 「両電極が対向する領域以外の領域 」 とは、 例えば電子部品の電極以外の部分と回路基板とが対向する領域 や、 電子部品と回路基板とが直接対向していない領域 (例えば、 回路基 板表面に対して略垂直な電子部品の表面と回路基板表面との間の領域) などが該当する。 このような実装体は、 上記の本発明の導電性樹脂を使 用することにより、 又は本発明の第 1〜第 4の実装体の製造方法を採用 することにより容易に得ることができる。
上記の実装体において、 導電性フィラーを主成分とする部分及びバイ ンダ一樹脂を主成分とする部分のそれぞれの体積固有抵抗値は、 上記の 範囲を満足することが好ましい。
また、 上記の実装体において、 電子部品の電極以外の部分と回路基板 とが対向する領域が、 全てバインダー榭脂を主成分とする樹脂で接続さ れていることが好ましい。 これにより、 必要な電気絶縁性を確保しなが ら、 電子部品と回路基板との接続強度をもつとも強固なものとすること ができる。
次に、 本発明の第 1の電子部品の実装体の製造方法は、 回路基板の所 定位置に上記本発明の導電性樹脂を付与する工程と、 前記導電性樹脂を 付与した所定位置に前記電子部品を配置する工程と、 前記導電性榭脂を 硬化する工程とを有し、 これらの工程が上記記載順に実施される。 これ により、 上記の本発明の実装体を容易に得ることができる。
また、 本発明の第 2の電子部品の実装体の製造方法は、 回路基板又は 電子部品の少なくとも一方に、 導電性樹脂のバインダー樹脂の回路基板 又は電子部品の構成部材に対する濡れ性を向上する作用を有する材料を 付与する工程と、 回路基板の所定位置に導電性樹脂を付与する工程と、 前記導電性樹脂を付与した所定位置に電子部品を配置する工程と、 導電 性樹脂の硬化する工程とを有し、 これらの工程が上記記載順に実施され る。
従来の導電性樹脂を用いる場合、 従来と同様の電子部品の実装体の製 造方法を行なったのでは前記本発明の電子部品の実装体を実現すること は困難である。 ところが、 本発明の上記第 2の実装体の製造方法に従い 、 回路基板又は電子部品の少なくとも一方に、 導電性樹脂のバインダー 樹脂の回路基板又は電子部品の構成部材に対する濡れ性を向上する作用 を有する材料を予め塗布することによって、 その後の導電性樹脂の加熱 過程で導電性樹脂のバインダー樹脂成分の回路基板又は電子部品に対す る濡れ性が向上する。 その結果、 従来の導電性樹脂を用いた場合であつ ても本発明の前記実装体の形成が容易となる。
もちろん、 本発明の第 2の電子部品の実装体の製造方法において、 導 電性樹脂として本発明の前記導電性樹脂を用いることもでき、 同様な実 装体を形成することができる。 即ち、 本発明の第 2の電子部品の実装体 の製造方法において、 導電性樹脂に関して特に限定はない。
本発明の第 3の電子部品の実装体の製造方法は、 回路基板の所定位置 に導電性樹脂を付与する工程と、 回路基板、 導電性樹脂、 及び電子部品 のうちの少なくとも一つに、 導電性樹脂のバインダ一樹脂の回路基板又 は電子部品の構成部材に対する濡れ性を向上する作用を有する材料を付 与する工程と、 前記導電性樹脂を付与した所定位置に電子部品を配置す る工程と、 導電性樹脂を硬化する工程とを有し、 これらの工程が上記記 載順に実施される。
従来の導電性樹脂を用いる場合、 従来と同様の電子部品の実装体の製 造方法を行なったのでは前記本発明の電子部品の実装体を実現すること は困難である。 ところが、 本発明の上記第 3の実装体の製造方法に従い 、 回路基板、 導電性樹脂、 及び電子部品のうちの少なくとも一つに、 導 電性樹脂のバインダ一樹脂の回路基板又は電子部品の構成部材に対する 濡れ性を向上する作用を有する材料を予め塗布することによって、 その 後の導電性樹脂の加熱過程で導電性樹脂のバインダー樹脂成分の回路基 板又は電子部品に対する濡れ性が向上する。 その結果、 従来の導電性樹 脂を用いた場合であっても本発明の前記実装体の形成が容易となる。
もちろん、 本発明の第 3の電子部品の実装体の製造方法において、 導 電性樹脂として本発明の前記導電性樹脂を用いることもでき、 同様な実 装体を形成することができる。 即ち、 本発明の第 3の電子部品の実装体 の製造方法において、 導電性樹脂に関して特に限定はない。
本発明の第 4の電子部品の実装体の製造方法は、 回路基板の所定位置 に導電性樹脂を付与する工程と、 導電性樹脂を付与した所定位置に電子 部品を配置する工程と、 導電性樹脂のバインダ一樹脂の回路基板又は電 子部品の構成部材に対する濡れ性を向上する作用を有する材料を少なく とも電子部品の実装部分に付与する工程と、 導電性樹脂を硬化する工程 とを有し、 これらの工程が上記記載順に実施される。
従来の導電性樹脂を用いる場合、 従来と同様の電子部品の実装体の製 造方法を行なったのでは前記本発明の電子部品の実装体を実現すること O 01/44373
は困難である。 ところが. 本発明の上記第 4の実装体の製造方法に従い 、 少なくとも電子部品の実装部分に、 導電性樹脂のバインダー樹脂の回 路基板又は電子部品の構成部材に対する濡れ性を向上する作用を有する 材料を予め塗布することによって、 その後の導電性樹脂の加熱過程で導 電性樹脂のバインダー樹脂成分の回路基板又は電子部品に対する濡れ性 が向上する。 その結果、 従来の導電性樹脂を用いた場合であっても本発 明の前記実装体の形成が容易となる。
もちろん、 本発明の第 4の電子部品の実装体の製造方法において、 導 電性樹脂として本発明の前記導電性樹脂を用いることもでき、 同様な実 装体を形成することができる。 即ち、 本発明の第 4の電子部品の実装体 の製造方法において、 導電性樹脂に関して特に限定はない。
上記第 2〜第 4の実装体の製造方法で使用する、 前記濡れ性を向上す る作用を有する材料としては、 例えばアルコール系溶剤、 反応性希釈剤 、 又はこれらの混合物が好ましい。 アルコール系溶剤としては、 ェチレ ングリコール、 ジエチレングリコール、 あるいは卜リエチレングリコー ルなどを用いることができる。 また、 反応性希釈剤として、 エポキシ系 の反応性希釈剤を使用することができ、 例えば 「アデカグリシロール」 (旭電化 (株) 製) を例示することができる。
上記第 1〜第 4の実装体の製造方法において、 導電性樹脂を硬化する 工程では、 導電性樹脂から略分離したバインダー樹脂成分が流出する低 粘度化工程と、 バインダー樹脂成分の硬化工程とが、 この順に行なわれ ることが好ましい。 即ち、 導電性樹脂の加熱を、 導電性樹脂のバインダ 一樹脂成分が低粘度化する第 1の温度で所定時間保持し、 次いで、 バイ ンダ一樹脂成分が硬化する第 2の温度まで昇温して所定時間保持する。 低粘度化工程 (第 1の温度) により、 導電性樹脂内の導電性フイラ一と バインダ一樹脂との分離を確実に行なわせることができるので、 その後 の硬化工程 (第 2の温度) を経ることで、 導電性樹脂内に、 導電性フィ ラ一を主成分とする部分と、 バインダー樹脂を主成分とする部分とを容 易に形成することができる。
上記第 1〜第 4の実装体の製造方法において、 導電性樹脂を硬化する 工程では、 導電性樹脂から略分離したバインダー樹脂が流出し、 電子部 品の電極と回路基板の電極とが対向する領域以外の領域の少なくとも一 部が、 前記流出したバインダー樹脂を主成分とする樹脂で接続されるこ とが好ましい。 これにより、 両電極が対向する領域内では、 導電性フィ ラーの含有率が増大し、 良好な電気的接続が行なわれる。 一方、 両電極 が対向する領域以外の領域に、 導電性フイラ一の含有率が少なく、 バイ ンダー榭脂を主成分とする樹脂部分が形成され、 これが電子部品の接続 強度の向上に寄与する。
[実施例]
(実施例 1 )
図 1 A〜図 1 Cを参照して本発明の導電性樹脂を用いて形成した電子 部品の実装体の一実施例について説明する。
図 1 A〜図 1 Cは電子部品の実装体の製造方法を工程順に示した概略 断面図である。
まず、 図 1 Aに示すように、 回路基板 1の基板電極 2上の所定位置に 導電性樹脂 3を印刷形成し、 電極 5を備えた電子部品 4を位置合わせし て、 図 1 Bに示すように、 電子部品 4を未硬化の導電性樹脂 3上に載置 する。 次いで導電性樹脂 3の硬化温度に加熱して導電性樹脂 3を硬化さ せる。 図 1 Cは導電性樹脂 3を硬化させた後の、 本発明の電子部品の実 装体の完成状態を示している。
本実施例では導電性樹脂 3として、 バインダーにエポキシ樹脂、 硬化 剤にアミン系硬化剤、 アルコール系溶剤としてジエチレングリコールを 用いた。
ジエチレングリコールの添加量は、 本実施例では導電性樹脂の有機物 成分全体に対して重量比率で 0〜 7 0 %の範囲内で変更した。 ジェチレ ングリコールは、 エポキシ樹脂とアミン系硬化剤を混練した後、 室温状 態で添加した。
導電性フィラーとしては、 形状が鱗片形状のものと略球形状のものと を、 重量比率でそれぞれ約 6 0 %、 約 4 0 %で混合して使用した。 未硬 化の状態で、 導電性フィラーは導電性樹脂中に略均一に分散含有されて いる。
電子部品 4としてはチップ抵抗器を用いた。
表 1にジエチレングリコール (D E G ) の添加重量比率を変化させて 作製した導電性榭脂を用いて形成した電子部品の実装体の、 せん断付着 強度と、 電子部品 4と回路基板 1との接続部形状の結果を示す。 表 1に おいてジエチレングリコール重量比率が 0 %の例は従来の導電性樹脂に 相当し、 比較参考例として示している。
せん断付着強度の測定は、 測定サンプルとして、 電子部品として 3 2 1 6サイズのチップ抵抗器を導電性樹脂で銅電極を有する F R— 4基板 上に接続したものを用いた。 前記サンプルをシェア強度テスターに、 前 記チップ抵抗器の長手方向側面がシェアテスター圧子に当接するように 設置し、 シェア速度 1 0 mm/m i nで押し当てていき、 チップ抵抗器 が回路基板から脱落した時の荷重をせん断付着強度と定義した。
接続部形状は、 図 1 Cに例示するように、 電子部品 4の電極 5以外の 部分と回路基板 1 とが対向する領域 (即ち電子部品下部領域) での樹脂 接着部分 3 bの有無 (「有」 の場合は更にその形成状態)、 及び電子部品 4の電極 5の側壁面の、 ハンダ接続の場合に形成されるのと同様のフィ レッ ト状の補強部 3 cの形成の有無 (「有」 の場合は更にその高さ) に O 01/44373
ついて調べた 表 1
Figure imgf000017_0001
表 1に示すようにジエチレングリコールの添加量が 1重量%以上 5 0 重量%以下、 特に 5重量%以上 2 0重量%以下の場合に、 電子部品下部 の樹脂接着部 3 b及びフィ レッ ト 3 cが良好に形成され、 その結果、 電 子部品の付着強度が向上していた。
得られた電子部品の実装体を分解して導電性樹脂部分を詳細に調べた ところ、 電子部品下部の樹脂接着部 3 b及びフィ レッ ト 3 cの導電性樹 脂はバインダー樹脂を主成分とし、 良好な電気絶緣性を示し、 電極 5と 基板電極 2とが対向する領域内の導電性樹脂 3 aは導電性フィラーを主 成分とし、 良好な導電性を示していた。 バインダー樹脂を主成分とする O 01/44373
樹脂接着部 3 b及びフィ レッ ト 3 cは、 加熱時に導電性樹脂 3内のバイ ンダー樹脂成分が分離して電子部品 4や回路基板 1の表面に沿って流動 して形成されたものである。
(実施例 2 )
図 2 A〜図 2 Dを参照して本発明の上記第 2の電子部品の実装体の製 造方法の一実施例について説明する。
図 2 A〜図 2 Dは電子部品の実装体の製造方法を工程順に示した概略 断面図である。
まず、 図 2 Aに示すように、 基板電極 1 2が形成された回路基板 1 1 上に所定の開口を有するメタルマスク 1 6を設置して、 回路基板 1 1及 び基板電極 1 2上に、 回路基板 1 1 との濡れ性を向上する作用を有する 材料、 即ちジエチレングリコール液 1 7を、 スプレーノズル 1 8を矢印 方向に移動させながら散布して塗布する。 その後、 図 2 Bに示すように 、 回路基板 1 1の基板電極 1 2の所定位置に導電性樹脂 1 3を印刷形成 し、 電極 1 5を備えた電子部品 (チップ抵抗器) 1 4を位置合わせして 、 図 2 Cに示すように、 電子部品 1 4を未硬化の導電性樹脂 1 3上に載 置する。 次いで導電性樹脂 1 3の硬化温度に加熱して導電性樹脂 1 3を 硬化させる。 図 2 Dは導電性樹脂 1 3を硬化させた後の、 本発明の電子 部品の実装体の完成状態を示している。
本実施例ではジエチレングリコール 1 7の形成厚みは約 5 mとした 導電性樹脂 1 3として、 導電性フイラ一に銀フイラ一を、 バインダー 樹脂成分にエポキシ系樹脂を用いた従来の導電性樹脂を使用した。 導電 性樹脂の硬化は 1 5 O t:に設定した熱風炉中で 3 0分間実施した。
図 2 Dに示すように、 本実施例の電子部品の実装体は、 電子部品 1 4 の電極 1 5以外の部分と回路基板 1 1 とが対向する領域 (電子部品下部 領域) に、 バインダー樹脂を主成分とする樹脂 1 3 bが充填されており 、 また、 電子部品 1 4の電極 1 5の側壁面にもバインダー樹脂を主成分 とする樹脂 1 3 cがフィ レツ 卜状に付着していた。 これら樹脂 1 3 b, 1 3 cは、 加熱時に導電性樹脂 1 3内のバインダー樹脂成分が分離して 電子部品 1 4や回路基板 1 1の表面に沿って流動して形成されたもので ある。 これらのバインダー榭脂を主成分とする樹脂 1 3 b, 1 3 cによ つて電子部品 1 4と回路基板 1 1との機械的接合強度が向上する。 一方 、 電極 1 5と基板電極 1 2とが対向する領域内の導電性樹脂 1 3 aは導 電性フィラーを主成分とし、 良好な導電性を示していた。
ジエチレングリコールの付与方法は、 上記のスプレー散布以外にも、 ディ ップ、 塗布など他の方法も使用可能である。 また、 濡れ性を向上す る材料はジエチレングリコール以外にも例えばエチレングリコール、 卜 リエチレングリコールなどのアルコール系溶剤又は反応性希釈剤が使用 可能である。
上記の例では、 ジエチレングリコールを回路基板 1 1側に付与したが 、 これに代えて、 又はこれとともに電子部品 1 4に付与しても良い。
(実施例 3 )
図 3 A〜図 3 Dを参照して本発明の上記第 3の電子部品の実装体の製 造方法の一実施例について説明する。
図 3 A〜図 3 Dは電子部品の実装体の製造方法を工程順に示した概略 断面図である。
まず、 図 3 Aに示すように、 回路基板 2 1上に形成した基板電極 2 2 の所定位置に導電性樹脂 2 3を印刷形成した後、 所定の開口を有するメ タルマスク 2 6を設置して、 回路基板 2 1、 基板電極 2 2、 及び導電性 樹脂 2 3上に、 回路基板 2 1との濡れ性を向上する作用を有する材料、 即ちジエチレングリコール液 2 7を、 スプレーノズル 2 8を矢印方向に 移動させながら散布して塗布する。 その後、 図 3 Bに示すように、 回路 基板 2 1の基板電極 2 2に電極 2 5を備えた電子部品 (チップ抵抗器) 2 4を位置合わせして、 図 3 Cに示すように、 電子部品 2 4を未硬化の 導電性樹脂 2 3上に載置する。 次いで導電性樹脂 2 3の硬化温度に加熱 して導電性樹脂 2 3を硬化させる。 図 3 Dは導電性樹脂 2 3を硬化させ た後の、 本発明の電子部品の実装体の完成状態を示している。
本実施例ではジエチレンダリコール 2 7の形成厚みは約 5 とした 導電性樹脂 2 3として、 導電性フィラーに銀フイラ一を、 バインダー 榭脂成分にエポキシ系樹脂を用いた従来の導電性樹脂を使用した。 導電 性樹脂の硬化は 1 5 0 °Cに設定した熱風炉中で 3 0分間実施した。
図 3 Dに示すように、 本実施例の電子部品の実装体は、 電子部品 2 4 の電極 2 5以外の部分と回路基板 2 1とが対向する領域 (電子部品下部 領域) に、 バインダー榭脂を主成分とする樹脂 2 3 bが充填されており 、 また、 電子部品 2 4の電極 2 5の側壁面にもバインダー樹脂を主成分 とする樹脂 2 3 cがフィ レツ ト状に付着していた。 これら樹脂 2 3 b, 2 3 cは、 加熱時に導電性樹脂 2 3内のバインダー樹脂成分が分離して 電子部品 2 4や回路基板 2 1の表面に沿って流動して形成されたもので ある。 これらのバインダー樹脂を主成分とする樹脂 2 3 b, 2 3 cによ つて電子部品 2 4と回路基板 2 1 との機械的接合強度が向上する。 一方 、 電極 2 5と基板電極 2 2とが対向する領域内の導電性樹脂 2 3 aは導 電性フイラ一を主成分とし、 良好な導電性を示していた。
ジエチレンダリコールの付与方法は、 上記のスプレー散布以外にも、 ディップ、 塗布など他の方法も使用可能である。 また、 濡れ性を向上す る材料はジエチレングリコール以外にも例えばエチレングリコール、 ト リエチレングリコールなどのアルコール系^剤又は反応性希釈剤が使用 可能である。
上記の例では、 ジエチレングリコールを回路基板 2 1側に付与したが 、 これに代えて、 又はこれとともに電子部品 2 4に付与しても良い。
(実施例 4 )
図 4 A〜図 4 Dを参照して本発明の上記第 4の電子部品の実装体の製 造方法の一実施例について説明する。
図 4 A〜図 4 Dは電子部品の実装体の製造方法を工程順に示した概略 断面図である。
まず、 図 4 Aに示すように、 回路基板 3 1上に形成した基板電極 3 2 の所定位置に導電性樹脂 3 3を印刷形成する。 次いで、 図 4 Bに示すよ うに、 回路基板 3 1の未硬化の基板電極 3 2上に、 電極 3 5を備えた電 子部品 (チップ抵抗器) 3 4を位置合わせして載置する。 次いで、 図 4 Cに示すように、 所定の開口を有するメタルマスク 3 6を設置して、 電 子部品 3 4、 回路基板 3 1及び基板電極 3 2上に、 回路基板 3 1との濡 れ性を向上する作用を有する材料、 即ちジエチレングリコール液 3 7を 、 スプレーノズル 3 8を矢印方向に移動させながら散布して塗布する。 次いで導電性樹脂 3 3の硬化温度に加熱して導電性樹脂 3 3を硬化させ る。 図 4 Dは導電性樹脂 3 3を硬化させた後の、 本発明の電子部品の実 装体の完成状態を示している。
本実施例ではジエチレングリコールの形成厚みは約 5 mとした。 導電性樹脂 3 3として、 導電性フィラーに銀フイラ一を、 バインダー 樹脂成分にエポキシ系樹脂を用いた従来の導電性樹脂を使用した。 導電 性樹脂の硬化は 1 5 0 °Cに設定した熱風炉中で 3 0分間実施した。
図 4 Dに示すように、 本実施例の電子部品の実装体は、 電子部品 3 4 の電極 3 5以外の部分と回路基板 3 1 とが対向する領域 (電子部品下部 領域) に、 バインダー樹脂を主成分とする樹脂 3 3 bが充填されており O 01/44373
、 また、 電子部品 3 4の電極 3 5の側壁面にもバインダー樹脂を主成分 とする樹脂 3 3 cがフィ レツ ト状に付着していた。 これら樹脂 3 3 b, 3 3 cは、 加熱時に導電性樹脂 3 3内のバインダ一樹脂成分が分離して 電子部品 3 4や回路基板 3 1の表面に沿って流動して形成されたもので ある。 これらのバインダー樹脂を主成分とする樹脂 3 3 b, 3 3 cによ つて電子部品 3 4と回路基板 3 1との機械的接合強度が向上する。 一方 、 電極 3 5と基板電極 3 2とが対向する領域内の導電性榭脂 3 3 aは導 電性フィラ一を主成分とし、 良好な導電性を示していた。
ジエチレングリコールの付与方法は、 上記のスプレー散布以外にも、 ディップ、 塗布など他の方法も使用可能である。 また、 濡れ性を向上す る材料はジエチレンダリコール以外にも例えばエチレングリコール、 ト リエチレングリコールなどのアルコール系溶剤又は反応性希釈剤が使用 可能である。
上記の実施例 2、 実施例 3、 実施例 4で得た電子部品実装体と、 ジェ チレングリコールの付与を行なわない以外はこれらと同様にして得た電 子部品実装体 (比較例) について、 実施例 1と同様の方法でせん断付着 強度と接続部形状とを測定した。 結果を表 2に示す。 表 2 せん断付着強度 電子部品下部の フィレットの有無
( N ) 樹脂接着の有無
実施例 2 4 1 . 1 全面 部品高さの約 1 / 2 実施例 3 3 8 . 6 全面 部品高さの約 1ノ 2 実施例 4 3 7 . 7 全面 部品高さの約 1 Z 2 比較例 2 9 . 4 迹 表 2に示すように、 電子部品下部の樹脂接着部及びフィ レツ 卜が良好 に形成された実施例 2〜 4の電子部品実装体では、 電子部品の付着強度 が向上していることがわかる。
(実施例 5 )
実施例 1において、 導電性樹脂の組成、 及びその加熱条件を以下のよ うに変更する以外は同様にして電子部品の実装体を得た。
バインダー樹脂としてエポキシ榭脂 (「アデカレジン E P— 4 0 0 0 J (旭電化 (株) 製)、 硬化剤としてアミン系硬化剤、 反応性希釈剤と してエポキシ系反応性希釈剤 (「アデカグリシロール E D— 5 0 1 J ( 旭電化 (株) 製))、 導電性フイラ一として実施例 1 と同じ鱗片形状のも のと略球形状のものとの混合フィラ一を用い、 これらを混合して混練し て導電性樹脂を得た。 エポキシ樹脂及びアミン系硬化剤の合計量に対す る反応性希釈剤の添加量は 1 5重量%とした。
この導電性樹脂を、 所定位置に開口を形成した、 厚さ 0 . 1 mmのス テンレス製のマスク板を用いて、 回路基板の基板電極上に印刷した。 そ の後、 実施例 1 と同様に、 電子部品を位置合わせして導電性樹脂上に載 置した。
次いで、 2段階の加熱条件で加熱して導電性樹脂を硬化させた。 本実 施例 5の加熱条件を図 5を用いて説明する。 図 5において、 横軸は導電 性樹脂を加熱し硬化させるときの温度を示し、 左縦軸は各温度における 本実施例の導電性樹脂の粘度を示し、 右縦軸は経過時間を示す。
図 5に示すように、 最初に 8 0でで 1 0分間保持し、 次いで 1 5 0で で 2 0分間保持し、 その後冷却した。
本実施例 5の導電性樹脂は、 図 5に示すように、 反応性希釈剤を含有 させていることにより、 粘度が低下させられており、 かつ、 上記ェポキ シ榭脂の本来の硬化開始温度である 1 0 6 °Cより低い約 8 0 °Cで低粘度 化する性質が付与されている。
従って、 第 1段階として、 粘度が急激に低下する約 8 0 °Cで所定時間 保持することで、 導電性樹脂中のバインダ一樹脂成分を導電性樹脂から にじみ出させる。 これにより、 電子部品の電極と回路基板の電極とが対 向する領域内の導電性樹脂中の導電性フィラーの含有率を増大させると ともに、 該対向する領域以外の領域にバインダ一樹脂成分を流出させる 。 次に、 第 2段階として、 硬化開始温度より高い 1 5 0でで所定時間保 持することで、 バインダー樹脂成分を硬化させる。
得られた実装品を実施例 1 と同様に評価した。 電子部品のせん断付着 強度は 5 0 . 6 Nであり、 電子部品の電極以外の下面と回路基板との間 にはバインダー樹脂を主成分とする樹脂がすき間なく充填されており、 電子部品の電極の側壁面にはバインダー樹脂を主成分とするフィ レッ ト 状の補強部が電子部品の高さの約 1 / 2の高さに形成されていた。
以上のように、 本発明によれば、 従来の導電性樹脂による電子部品の 実装体と比較して、 実用化での重大課題であった接続強度の向上が可能 となり、 環境負荷が小さい各種電子機器の実用化が可能になる。
以上に説明した実施の形態は、 いずれもあくまでも本発明の技術的内 容を明らかにする意図のものであって、 本発明はこのような具体例にの み限定して解釈されるものではなく、 その発明の精神と請求の範囲に記 載する範囲内でいろいろと変更して実施することができ、 本発明を広義 に解釈すべきである。

Claims

請 求 の 範 囲 1 . 導電性フィラーとバインダー樹脂とを主成分とし、 前記導電性フ ィラーが前記バインダー樹脂中に略均一分散してなる導電性樹脂であつ て、
硬化前の前記導電性樹脂を用いて複数の被接着体間を接続し、 前記導 電性樹脂を加熱すると前記導電性フィラーと前記バインダ一樹脂とが略 分離し、 導電性樹脂の硬化後に前記導電性樹脂内に、 前記導電性フイラ 一を主成分とする部分と、 前記バインダ一樹脂を主成分とする部分とが 形成されることを特徴とする導電性樹脂。
2 . 希釈剤成分が前記導電性樹脂の全有機物成分に対して 1重量%以 上、 5 0重量%以下含有されていることを特徴とする請求項 1 に記載の 導電性樹脂。
3 . 前記希釈剤成分が、 溶剤、 反応性希釈剤、 又はこれらの混合物で あることを特徴とする請求項 2に記載の導電性樹脂。
4 . 前記導電性フィラーは互いに絡み合う性質を有することを特徴と する請求項 1に記載の導電性樹脂。
5 . 電子部品の電極と回路基板の電極とが、 導電性フィラーとバイン ダー樹脂とを含む導電性樹脂を介して接続された電子部品の実装体であ つて、 前記両電極が対向する領域内の前記導電性樹脂は前記導電性フィ ラーを主成分とし、 前記両電極が対向する領域以外の領域内の前記導電 性樹脂の少なくとも一部は前記バインダ一樹脂を主成分とすることを特 徴とする電子部品の実装体。
6 . 前記導電性樹脂は、 両電極間に付与した後、 加熱することにより 、 導電性フイラ一とバインダー樹脂とが略分離して、 前記導電性フイラ 一を主成分とする部分と、 前記バインダ一樹脂を主成分とする部分とが 形成される樹脂である請求項 5に記載の電子部品の実装体。
7 . 前記導電性フィラーを主成分とする部分の体積固有抵抗値が 1 X
1 0 - 1 Ω · c m以下であり, 前記バインダー樹脂を主成分とする部分 の体積固有抵抗値が 1 X 1 0 + 3 Ω · c m以上であることを特徴とする 請求項 5に記載の電子部品の実装体。
8 . 前記電子部品の電極以外の部分と前記回路基板とが対向する領域 は全て前記バインダ一樹脂を主成分とする部分で接続されている請求項
5に記載の電子部品の実装体。
9 . 回路基板の所定位置に請求項 1に記載の導電性樹脂を付与するェ 程と、 前記導電性樹脂を付与した所定位置に電子部品を配置する工程と
、 前記導電性樹脂を硬化する工程とを上記順序で実施することを特徴と する電子部品の実装体の製造方法。
1 0 . 回路基板又は電子部品の少なくとも一方に、 導電性樹脂のバイ ンダ一樹脂の前記回路基板又は前記電子部品の構成部材に対する濡れ性 を向上する作用を有する材料を付与する工程と、 前記回路基板の所定位 置に前記導電性樹脂を付与する工程と、 前記導電性樹脂を付与した所定 位置に電子部品を配置する工程と、 前記導電性樹脂を硬化する工程とを 上記順序で実施することを特徴とする電子部品の実装体の製造方法。
1 1 . 回路基板の所定位置に導電性樹脂を付与する工程と、 前記回路 基板、 前記導電性樹脂、 及び電子部品のうちの少なくとも一つに、 前記 導電性榭脂のバインダー樹脂の前記回路基板又は前記電子部品の構成部 材に対する濡れ性を向上する作用を有する材料を付与する工程と、 前記 導電性樹脂を付与した所定位置に前記電子部品を配置する工程と、 前記 導電性樹脂を硬化する工程とを上記順序で実施することを特徴とする電 子部品の実装体の製造方法。
1 2 . 回路基板の所定位置に導電性樹脂を付与する工程と、 前記導電 性樹脂を付与した所定位置に電子部品を配置する工程と、 前記導電性樹 脂のバインダー樹脂の前記回路基板又は前記電子部品の構成部材に対す る濡れ性を向上する作用を有する材料を少なくとも前記電子部品の実装 部分に付与する工程と、 前記導電性樹脂を硬化する工程とを上記順序で 実施することを特徴とする電子部品の実装体の製造方法。
1 3 . バインダー樹脂の前記回路基板又は前記電子部品の構成部材に 対する濡れ性を向上する作用を有する材料が、 アルコール系溶剤又は反 応性希釈剤であることを特徴とする請求項 1 0〜 1 2のいずれかに記載 の電子部品の実装体の製造方法。
1 4 . 前記導電性樹脂を硬化する工程が、 前記導電性樹脂から略分離 したバインダー樹脂が流出する低粘度化工程と、 前記バインダー樹脂の 硬化工程とをこの順に有することを特徴とする請求項 9〜 1 2のいずれ かに記載の電子部品の実装体の製造方法。
1 5 . 前記導電性樹脂を硬化する工程において、 前記導電性樹脂から 略分離したバインダ一樹脂が流出し、 前記電子部品の電極と前記回路基 板の電極とが対向する領域以外の領域の少なくとも一部が、 前記流出し たバインダー樹脂を主成分とする樹脂で接続されることを特徴とする請 求項 9〜 1 2のいずれかに記載の電子部品の実装体の製造方法。
PCT/JP2000/008833 1999-12-17 2000-12-13 Conductive resin, electronic module using conductive resin, and method of manufacturing electronic module WO2001044373A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00981698A EP1153985B1 (en) 1999-12-17 2000-12-13 Conductive resin, electronic module using conductive resin, and method of manufacturing electronic module
US09/889,523 US6510059B2 (en) 1999-12-17 2000-12-13 Conductive resin, electronic module using conductive resin, and method of manufacturing electronic module
DE60009464T DE60009464T2 (de) 1999-12-17 2000-12-13 Leitfähige harzzusammensetzung; elektronisches modul das diese verwendet und verfahren zur herstellung dieses moduls

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/359723 1999-12-17
JP35972399 1999-12-17

Publications (1)

Publication Number Publication Date
WO2001044373A1 true WO2001044373A1 (en) 2001-06-21

Family

ID=18465980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008833 WO2001044373A1 (en) 1999-12-17 2000-12-13 Conductive resin, electronic module using conductive resin, and method of manufacturing electronic module

Country Status (6)

Country Link
US (1) US6510059B2 (ja)
EP (1) EP1153985B1 (ja)
KR (1) KR100454861B1 (ja)
CN (1) CN1322060C (ja)
DE (1) DE60009464T2 (ja)
WO (1) WO2001044373A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059898A1 (ja) * 2019-09-23 2021-04-01 株式会社デンソー 流量検出装置およびその流量検出装置の製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3646719B2 (ja) * 2003-06-19 2005-05-11 セイコーエプソン株式会社 半導体装置及びその製造方法、回路基板並びに電子機器
US7033670B2 (en) * 2003-07-11 2006-04-25 Siemens Power Generation, Inc. LCT-epoxy polymers with HTC-oligomers and method for making the same
US20050277721A1 (en) * 2004-06-15 2005-12-15 Siemens Westinghouse Power Corporation High thermal conductivity materials aligned within resins
US20050274774A1 (en) * 2004-06-15 2005-12-15 Smith James D Insulation paper with high thermal conductivity materials
US7553781B2 (en) * 2004-06-15 2009-06-30 Siemens Energy, Inc. Fabrics with high thermal conductivity coatings
JP4356581B2 (ja) * 2004-10-12 2009-11-04 パナソニック株式会社 電子部品実装方法
US7651963B2 (en) 2005-04-15 2010-01-26 Siemens Energy, Inc. Patterning on surface with high thermal conductivity materials
US7955661B2 (en) * 2005-06-14 2011-06-07 Siemens Energy, Inc. Treatment of micropores in mica materials
US8357433B2 (en) * 2005-06-14 2013-01-22 Siemens Energy, Inc. Polymer brushes
US7781057B2 (en) * 2005-06-14 2010-08-24 Siemens Energy, Inc. Seeding resins for enhancing the crystallinity of polymeric substructures
US7851059B2 (en) * 2005-06-14 2010-12-14 Siemens Energy, Inc. Nano and meso shell-core control of physical properties and performance of electrically insulating composites
US7655295B2 (en) * 2005-06-14 2010-02-02 Siemens Energy, Inc. Mix of grafted and non-grafted particles in a resin
CN101321433B (zh) * 2007-06-04 2010-12-29 英华达(上海)科技有限公司 组件固着印刷电路板上的结构及其固着方法
US9253895B2 (en) 2014-01-14 2016-02-02 Tyco Electronics Corporation Electrical assembly
JP2016143805A (ja) * 2015-02-03 2016-08-08 ファナック株式会社 フローはんだ付け表面実装部品の実装不良を抑制するプリント配線板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH115961A (ja) * 1997-06-18 1999-01-12 Denso Corp 実装用導電性接着剤及びそれを用いた実装方法
JPH11289153A (ja) * 1998-04-06 1999-10-19 Matsushita Electric Ind Co Ltd 電子部品接着用ボンドおよび電子部品接着方法
JP2000049450A (ja) * 1998-05-25 2000-02-18 Matsushita Electric Ind Co Ltd 電子部品の半田付け方法
JP2000239636A (ja) * 1999-02-19 2000-09-05 Mitsui Chemicals Inc 硬化性導電ペースト

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552291A (en) 1978-10-12 1980-04-16 Matsushita Electric Ind Co Ltd Method of attaching chip circuit element
JPS63273393A (ja) 1987-04-30 1988-11-10 Nec Corp 混成集積回路装置
EP0511162A1 (de) * 1991-04-24 1992-10-28 Ciba-Geigy Ag Wärmeleitende Klebfilme, Laminate mit wärmeleitenden Klebschichten und deren Verwendung
JPH0567869A (ja) 1991-09-05 1993-03-19 Matsushita Electric Ind Co Ltd 電装部品接合方法並びにモジユール及び多層基板
DE69722196T2 (de) 1997-07-17 2004-04-01 Raytheon Co., Lexington Leitfähiger Epoxidharzklebstoff mit verbessertem Fallwiderstand

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH115961A (ja) * 1997-06-18 1999-01-12 Denso Corp 実装用導電性接着剤及びそれを用いた実装方法
JPH11289153A (ja) * 1998-04-06 1999-10-19 Matsushita Electric Ind Co Ltd 電子部品接着用ボンドおよび電子部品接着方法
JP2000049450A (ja) * 1998-05-25 2000-02-18 Matsushita Electric Ind Co Ltd 電子部品の半田付け方法
JP2000239636A (ja) * 1999-02-19 2000-09-05 Mitsui Chemicals Inc 硬化性導電ペースト

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1153985A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059898A1 (ja) * 2019-09-23 2021-04-01 株式会社デンソー 流量検出装置およびその流量検出装置の製造方法
JP2021050942A (ja) * 2019-09-23 2021-04-01 株式会社デンソー 流量検出装置およびその流量検出装置の製造方法
JP7379994B2 (ja) 2019-09-23 2023-11-15 株式会社デンソー 流量検出装置およびその流量検出装置の製造方法

Also Published As

Publication number Publication date
CN1322060C (zh) 2007-06-20
DE60009464T2 (de) 2004-08-19
KR20010113688A (ko) 2001-12-28
US20020185306A1 (en) 2002-12-12
DE60009464D1 (de) 2004-05-06
US6510059B2 (en) 2003-01-21
EP1153985A4 (en) 2002-09-25
EP1153985A1 (en) 2001-11-14
EP1153985B1 (en) 2004-03-31
CN1339049A (zh) 2002-03-06
KR100454861B1 (ko) 2004-11-05

Similar Documents

Publication Publication Date Title
WO2001044373A1 (en) Conductive resin, electronic module using conductive resin, and method of manufacturing electronic module
US8222751B2 (en) Electroconductive bonding material and electronic apparatus
EP0914027B1 (en) Film-like adhesive for connecting circuit and circuit board
CN102144432B (zh) 导电连接材料、使用该导电连接材料的端子之间的连接方法以及连接端子的制造方法
JPH10256687A (ja) ビアホール充填用導体ペースト組成物とそれを用いたプリント配線基板
JPH1145618A (ja) 導電ペースト構造およびその製造方法
US20010021547A1 (en) Bonding materials
KR20090045195A (ko) 접착 테이프, 접합체 및 반도체 패키지
JPH07230840A (ja) 接続部材及びこれを用いた電極の接続構造
WO2006028205A1 (ja) 導電性ペースト及びその導電性ペーストを用いて得られるフレキシブルプリント配線板
JP4676907B2 (ja) 半田接着剤および半田接着剤を用いた電子部品実装構造
JP5563932B2 (ja) 異方性導電フィルム
JP4110589B2 (ja) 回路用接続部材及び回路板の製造法
KR101492890B1 (ko) 표면실장용 발광소자의 전도성 접착제
JP3981341B2 (ja) 異方導電性接着剤
JP2004006417A (ja) 接続部材及びこれを用いた電極の接続構造
JPS6331904B2 (ja)
CN1900195B (zh) 电路构件连接用的粘结剂、电路板及其制造方法
JP2001085824A (ja) 電子部品実装用接合剤およびこれを用いた電子部品の実装方法
JPH10265748A (ja) 導電性接着剤
JP2001107020A (ja) 導電性接着剤
JP2002222833A (ja) 導電性接着剤、電子部品実装体およびその製造方法
JP2004179101A (ja) 導電性ペースト及び電子回路用品
JP4108161B2 (ja) 異方導電性組成物及びフィルム
JP2007158070A (ja) 導電ペースト組成物及びそれを用いた厚膜チップ抵抗器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00803338.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 09889523

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2001 544853

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2000981698

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017010243

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000981698

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017010243

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2000981698

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017010243

Country of ref document: KR