US20050277721A1 - High thermal conductivity materials aligned within resins - Google Patents

High thermal conductivity materials aligned within resins Download PDF

Info

Publication number
US20050277721A1
US20050277721A1 US11/152,985 US15298505A US2005277721A1 US 20050277721 A1 US20050277721 A1 US 20050277721A1 US 15298505 A US15298505 A US 15298505A US 2005277721 A1 US2005277721 A1 US 2005277721A1
Authority
US
United States
Prior art keywords
thermal conductivity
high thermal
resin
fillers
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/152,985
Inventor
James Smith
Gary Stevens
John Wood
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Inc
Original Assignee
Siemens Westinghouse Power Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Westinghouse Power Corp filed Critical Siemens Westinghouse Power Corp
Priority to US11/152,985 priority Critical patent/US20050277721A1/en
Assigned to SIEMENS WESTINGHOUSE POWER CORPORATION reassignment SIEMENS WESTINGHOUSE POWER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STEVENS, GARY, SURREY, UNIVERSITY OF, SMITH, JAMES DAVID BLACKHALL, WOOD, JOHN WILLIAM
Priority to JP2007516712A priority patent/JP2008507594A/en
Priority to KR1020067025148A priority patent/KR101207775B1/en
Priority to EP05790212.4A priority patent/EP1766636B1/en
Priority to PCT/US2005/021217 priority patent/WO2005124790A2/en
Assigned to SIEMENS POWER GENERATION, INC. reassignment SIEMENS POWER GENERATION, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS WESTINGHOUSE POWER CORPORATION
Publication of US20050277721A1 publication Critical patent/US20050277721A1/en
Assigned to SIEMENS ENERGY, INC. reassignment SIEMENS ENERGY, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS POWER GENERATION, INC.
Priority to US13/349,900 priority patent/US8685534B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • the field of the invention relates to resins with aligned high thermal conductivity materials incorporated therein.
  • epoxy resin materials have been used extensively in electrical insulation systems due to their practical benefit of being tough and flexible electrical insulation materials that can be easily adhered to surfaces.
  • Traditional electrical insulation materials such as mica flake and glass fiber, can be surface coated and bonded with these epoxy resins, to produce composite materials with increased mechanical strength, chemical resistance and electrical insulating properties.
  • epoxy resins have replaced traditional varnishes despite such materials having continued use in some high voltage electrical equipment.
  • insulating tapes which themselves have various layers. Common to these types of tapes is a paper layer that is bonded at an interface to a fiber layer, both layers tending to be impregnated with a resin.
  • a favored type of insulation material is a mica-tape. Improvements to mica tapes include catalyzed mica tapes as taught in U.S. Pat. No. 6,103,882. The mica-tape may be wound around conductors to provide extremely good electrical insulation. An example of this is shown in FIG. 1 . Illustrated here is a coil 13 , comprising a plurality of turns of conductors 14 , which in the example illustrated here are assembled into a bakelized coil.
  • the turn insulation 15 is prepared from a fibrous material, for example glass or glass and Dacron which is heat treated.
  • Ground insulation for the coil is provided by wrapping one or more layers of composite mica tape 16 about the bakelized coil 14 .
  • Such composite tape may be a paper or felt of small mica flakes combined with a pliable backing sheet 18 of, for example, glass fiber cloth or polyethylene glycol terephthalate mat, the layer of mica 20 being bonded thereto by a liquid resinous binder.
  • a plurality of layers of the composite tape 16 are wrapped about the coil depending upon voltage requirements.
  • a wrapping of an outer tape 21 of a tough fibrous material, for example, glass fiber, may be applied to the coil.
  • HTC high thermal conductivity
  • High Thermal Conductivity (HTC) organic-inorganic hybrid materials may be formed from discrete two-phase organic-inorganic composites, from organic-inorganic continuous phase materials based on molecular alloys and from discrete organic-dendrimer composites in which the organic-inorganic interface is non-discrete within the dendrimer core-shell structure.
  • Continuous phase material structures may be formed which enhance phonon transport and reduce phonon scattering by ensuring the length scales of the structural elements are shorter than or commensurate with the phonon distribution responsible for thermal transport, and/or that the number of phonon scattering centers are reduced such as by enhancing the overall structural order of the matrix, and/or by the effective elimination or reduction of interface phonon scattering within the composite.
  • Continuous organic-inorganic hybrids may be formed by incorporating inorganic, organic or organic-inorganic hybrid nano-particles in linear or cross-linked polymers (including thermoplastics) and thermosetting resins in which nano-particles dimensions are of the order of or less than the polymer or network segmental length (typically 1 to 50 nm or greater). These various types of nano-particles will contain reactive surfaces to form intimate covalently bonded hybrid organic-inorganic homogeneous materials. Similar requirements exist for inorganic-organic dendrimers which may be reacted together or with matrix polymers or reactive resins to form a continuous material.
  • sol-gel chemistry In the case of both discrete and non-discrete organic-inorganic hybrids it is possible to use sol-gel chemistry to form a continuous molecular alloy.
  • the resulting materials will exhibit higher thermal conductivity than conventional electrically insulating materials and may be used as bonding resins in conventional mica-glass tape constructions, when utilized as unreacted vacuum-pressure impregnation resins and as stand alone materials to fulfill electrical insulation applications in rotating and static electrical power plant and in both high (approximately over 5 kV) and low voltage (approximately under 5 kV) electrical equipment, components and products.
  • engineered electrical insulation materials having prescribed physical properties and performance characteristics and based on the use of nano-to-micro sized inorganic fillers in the presence of organic host materials, requires the production of particle surfaces which can form an intimate interface with the organic host. This may be achieved through the grafting of chemical groups onto the surface of the fillers to make the surface chemically and physically compatible with the host matrix, or the surfaces may contain chemically reactive functional groups that react with the organic host to form covalent bonds between the particle and the host.
  • the use of nano-to-micro sized inorganic fillers in the presence of organic host materials requires the production of particles with defined surface chemistry in addition to bulk dielectric and electrical properties and thermal conductivity.
  • inorganic materials do not allow independent selection of structural characteristics such as shape and size and properties to suit different electrical insulation applications or to achieve composites having the right balance of properties and performance. This may be achieved by selecting particles with appropriate bulk properties and shape and size characteristics and then modifying the surface and interfacial properties and other characteristics to achieve the additional control of composite properties and performance required for electrical insulation applications. This may be achieved by appropriate surface coating of the particles which may include the production of metallic and non-metallic inorganic oxides, nitrides, carbides and mixed systems and organic coatings including reactive surface groups capable of reacting with appropriate organic matrices which act as the host material in the electrical insulation system.
  • the resulting hybrid materials and composites in unreacted or partially reacted form may be used as bonding resins in mica-glass tape constructions, as unreacted vacuum-pressure impregnation resins for conventional mica tape constructions, in other glass fiber, carbon fiber and ply-type and textile composites and as stand alone materials to fulfill electrical insulation applications in rotating and static electrical power plant and in both high and low voltage electrical equipment, components and products.
  • the present invention provides for a high thermal conductivity resin that comprises a host resin matrix containing a high thermal conductivity filler.
  • the high thermal conductivity filler forms a continuous organic-inorganic composite with the host resin matrix, and the fillers have an aspect ratio of between 3-100.
  • the fillers are substantially evenly distributed through the host resin matrix, and are aligned in essentially the same direction or they link within a percolation structure that crosses the material.
  • the resins are highly structured resin types.
  • the present invention provides for a method for making a thermal conductivity resin that comprises impregnating a host resin matrix with a high thermal conductivity filler and distributing the high thermal conductivity filler evenly through the resin matrix. Then aligning at least 75% of the high thermal conductivity fillers within 15 degrees of a common direction and curing or semi-curing the resin matrix.
  • the high thermal conductivity fillers have an aspect ratio of between 3-100.
  • the filler forms a continuous organic-inorganic composite with the host resin matrix.
  • host resin matrix comprises a highly structured resin that is aligned uniformly with the high thermal conductivity filler.
  • the alignment is done by the self-alignment and aggregation of the high thermal conductivity fillers forming a percolation structure, and in another the alignment is done by the application of an external field.
  • the external field include mechanical, electric, magnetic, sonic and ultrasonic.
  • the fillers are first surface coated with field responsive materials, and in other cases field responsive fillers are coated with high thermal conductivity materials.
  • the present invention provides for a high thermal conductivity resin that comprises a host resin matrix and a high thermal conductivity filler.
  • the high thermal conductivity filler forms a continuous organic-inorganic composite with the host resin matrix, and the high thermal conductivity fillers have an aspect ratio of between 3-100.
  • the fillers are substantially evenly distributed through the host resin matrix, and the high thermal conductivity fillers form substructures within the host resin matrix.
  • the substructures may be at least one of columns, layers and super lattices.
  • the present invention provides for a porous media impregnated with a high thermal conductivity resin that comprises a porous media and a high thermal conductivity material loaded resin.
  • the high thermal conductivity material comprises 5-60% by volume of the resin, and the high thermal conductivity materials have aspect ratios of 10-50 and are aligned within the porous media in essential the same direction.
  • FIG. 1 shows the use of an insulating tape being lapped around a stator coil.
  • FIG. 2 illustrates phonons traveling through a loaded resin of the present invention.
  • FIG. 3 illustrates phonons traveling through a loaded resin with aligned fillers of the present invention.
  • FIG. 4 illustrates a column arrangement of aligned fillers according to one embodiment of the present invention.
  • FIG. 5 illustrates a cross-sectional view of a layer arrangement of aligned fillers according to one embodiment of the present invention.
  • FIG. 6 illustrates HTC fillers aligned within a highly structured resin according to one embodiment of the present invention.
  • High thermal conductivity (HTC) composites comprise a resinous host network combined with fillers that are two phase organic-inorganic hybrid materials.
  • the organic-inorganic hybrid materials are formed from two phase organic-inorganic composites, from organic-inorganic continuous phase materials that are based on molecular alloys, and from discrete organic-dendrimer composites in which the organic-inorganic interface is non-discrete with the dendrimer core-shell structure. Phonon transport is enhanced and phonon scattering is reduced by ensuring the length scales of the structural elements are shorter than or commensurate with the phonon distribution responsible for thermal transport.
  • Two phase organic-inorganic hybrids may be formed by incorporating inorganic micro, meso or nano-particles in linear or cross linked polymers (thermoplastics) and thermosetting resins.
  • Host networks include polymers and other types of resins, definitions of which are given below.
  • the resin that acts as a host network may be any resin that is compatible with the particles and, if required, is able to react with the groups introduced at the surface of the filler.
  • Nano-particle dimensions are typically of the order of or less than the polymer network segmental length. For example 1-30 nm.
  • the inorganic particles contain reactive surfaces to form covalently bonded hybrid organic-inorganic homogeneous materials.
  • the particles may be oxides, nitrides, carbides and hybrid stoichiometric and non-stoichiometric mixes of the oxides, nitrides and carbides, more examples of which are given below.
  • the inorganic particles are surface treated to introduce a variety of surface functional groups which are capable of participating in reactions with the host network.
  • the surface functional groups include but are not limited to hydroxyl, carboxylic, amine, epoxide, silane and vinyl groups.
  • the groups may be applied using wet chemical methods, non-equilibrium plasma methods, chemical vapor and physical vapor deposition, laser beams, sputter ion plating and electron and ion beam evaporation methods. Some of these techniques can also be used when applying coating to fillers.
  • the discrete organic-dendrimer composites may be reacted together or with the resin matrix to form a single material.
  • the surface of the dendrimer can contain reactive groups similar to those mentioned above, which will either allow dendrimer-dendrimer or dendrimer-organic matrix reactions to occur.
  • the dendrimer will have an inorganic core and an organic shell containing the reactive groups of interest. It may also be possible to have an organic core with an inorganic shell which also contains reactive groups such as hydroxyl or silane groupings which can participate in inorganic reactions similar to those involved in common sol-gel chemistries.
  • organic-inorganic hybrids it is possible to use sol-gel chemistry to form a continuous molecular alloy. Gel sol-chemistries involving aqueous and non-aqueous reactions may be used.
  • Other compounds for the formation of organic-inorganic hybrids include the polyhedral oligomeric silsesquioxanes (POSS), tetraethyl orthosilicate (TEOS) and tetrabutyl orthotitanate (TBOT) and related monomeric and oligomeric hybrid compounds which are organic functionalized inorganic compounds.
  • PPS polyhedral oligomeric silsesquioxanes
  • TEOS tetraethyl orthosilicate
  • TBOT tetrabutyl orthotitanate
  • POSS molecules are built around a building block of R—SiO 1.5 in which the R group is chosen to compatibilize with and/or react with other organic compounds and the host network.
  • the base compounds may be combined to yield larger molecules commensurate with the size of polymer segment and coil structures.
  • POSS may be used to create organic-inorganic hybrids and may be grafted into existing polymers and networks to control properties, including thermal conductivity.
  • the materials may be obtained from suppliers such as AldrichTM Chemical Co., Hybrid PlasticsTM Inc. and GelestTM Inc.
  • nano-particles whose matrices are known to exhibit high thermal conductivity and to ensure that the particles size and its interfacial characteristics with the resin are sufficient to sustain this effect, and also to satisfy the length scale requirement to reduce phonon scattering.
  • a choice of structures that are more highly ordered will also benefit this, including reacted dendrimer lattices having both short and longer range periodicity and ladder or ordered network structures that may be formed from a host resin, such as liquid crystal epoxies and polybutadienes.
  • the filled resins may be used as bonding resins in a variety of industries such as circuit boards and insulating tapes.
  • a particular kind of insulating tape is the mica-glass tape used in the electrical generator fields.
  • Resins with these types of tapes can be used as bonding resins, or as impregnating resins as is known in the art.
  • the filled resin may also be used in the electrical generator field without the tapes to fulfill electrical insulation applications in the rotating and static electrical equipment components.
  • the tapes may be impregnated with resin before or after being applied to electrical objects.
  • Resin impregnation techniques include VPI and GVPI, discussed more below.
  • VPI once a tape is lapped and impregnated it is compressed. Once in position, the resin in the compressed tape is cured, which effectively locks the position of the HTC materials.
  • the resin is cured in a two stage process, as will be apparent to one of ordinary skill in the art. However, optimal compression of the loaded HTC materials favors a completely uncured resin during the compression stage.
  • FIG. 2 shows one embodiment of the present invention. Illustrated here are HTC materials 30 loaded into a resinous matrix 32 . Phonons 34 traveling through the matrix have a mean path length n, this is the phonon mean free path. This path length can vary depending on the exact composition of the resin matrix, but is generally from 2 to 100 nm, and more typically 5-50 nm, for resins such as epoxy resins. Therefore the mean distance between the loaded HTC materials should be on average less than this distance. Note that the distance between the HTC materials can vary in the thickness versus transverse direction of the tape, and it is generally the thickness direction where the spacing needs to be optimalized.
  • FIG. 2 illustrates an idealized path. In practice there will be phonon scattering as the phonons pass between the resin and HTC materials, although the shorter the distance between the materials, and the better the match of phonon propagation characteristics between the HTC materials and the resin, the less the scattering.
  • the amount of HTC materials loaded in the resin could actually be quite low, for example about 10% as illustrated in FIG. 2 .
  • the average distances, or length scales, between loaded HTC materials therefore may be slightly greater than n, however, a large percentage will still be less than n and therefore fall within embodiments of the present invention.
  • the percentage materials that are less than n distance from the next HTC material is over 50%, with particular embodiment-being over 75%.
  • the average length of the HTC materials is greater than n, which further aids in phonon transport.
  • n the greater the concentration of loaded HTC materials, and conversely, the greater the particle size, the less HTC materials needed.
  • Particular embodiment use 5-60% loaded HTC materials by total volume of the resins and fillers, with more particular embodiments at 25-40%.
  • the resin When the resin is impregnated into the tape, it will fill up the spaces between the tape fibers and substrates.
  • the HTC distribution within the tape at this point is often not optimized, and can even have the mean distance between HTC materials greater than n.
  • Practice of the present invention then compresses the resin impregnated tapes and reduces the distances between the loaded HTC materials.
  • the fibers or particles of the tape act to block some of the HTC materials, particularly if the resin is 30% or more filler.
  • the HTC fillers even get pinned to one another.
  • the fillers do not react with the resin matrix, however, in some embodiments the fillers do form covalent bonds with the resin and form more homogeneous matrixes. In a homogenous matrix, the resin molecules that are bound to fillers will be retained better than the unbound resin molecules during compression.
  • Resins are used in a plurality of industries, and have a large number of uses. Different properties of the resins affect not only their uses, but also the quality and efficiency of the products that they are used with. For example, when resins are used in electrical insulation applications, their characteristics of dielectric strength and voltage endurance needs to be high, as does the thermal stability and thermal endurance. However, often contrary to these objectives, resins usually will also have a low thermal conductivity.
  • the present invention balances the various physical properties of resins and the insulation system they are introduced into to produce a system that has a higher thermal conductivity than conventional electrically insulating materials while maintaining adequate, and even enhancing, key physical properties such as dielectric strength, voltage endurance, thermal stability and thermal endurance, mechanical strength and viscoelastic response.
  • the term resin refers to all resins and epoxy resins, including modified epoxies, polyesters, polyurethanes, polyimides, polyesterimides, polyetherimides, bismaleimides, silicones, polysiloxanes, polybutadienes, cyanate esters, hydrocarbons etc. as well as homogeneous blends of these resins.
  • This definition of resins includes additives such as cross-linking agents, accelerators and other catalysts and processing aids.
  • Certain resins, such as liquid crystal thermosets (LCT) and 1,2 vinyl polybutadiene combine low molecular weights characteristics with good crosslinking properties.
  • the resins can be of an organic matrix, such as hydrocarbons with and without hetero atoms, an inorganic matrix, containing silicate and/or alumino silicate components, and a mixture of an organic and inorganic matrix.
  • organic matrix include polymers or reactive thermosetting resins, which if required can react with the reactive groups introduced on inorganic particle surfaces.
  • Cross-linking agents can also be added to the resins to manipulate the structure and segmental length distribution of the final crosslinked network, which can have a positive effect on thermal conductivity. This thermal conductivity enhancement can also be obtained through modifications by other resin additives, such as catalysts, accelerators and other processing aids.
  • Certain resins such as liquid crystal thermosets (LCT) and 1,2 vinyl polybutadiene combine low molecular weights characteristics with good crosslinking properties. These types of resins tend to conduct heat better because of enhanced micro and macro ordering of their sub-structure which may lead to enhanced conduction of heat as a result of improved phonon transport. The better the phonon transport, the better the heat transfer.
  • LCT liquid crystal thermosets
  • 1,2 vinyl polybutadiene combine low molecular weights characteristics with good crosslinking properties.
  • the high thermal conductivity fillers of the present invention When the high thermal conductivity fillers of the present invention are mixed with resins they form a continuous product, in that there is no interface between the resins and the fillers. In some cases, covalent bonds are formed between the fillers and the resin. However, continuous is somewhat subjective and depends on the scale to which the observer is using. On the macro-scale the product is continuous, but on the nano-scale there can still be distinct phases between the fillers and the resin network. Therefore, when referring high thermal conductivity fillers mixing with the resin, they form a continuous organic-inorganic composite, on the macro-scale, while on the micro-scale the same mixture can be referred to as a hybrid. Similarly there is continuity between the filler and any coating that they may have.
  • filled resin may be used in the electrical generator field without the tapes to fulfill electrical insulation applications in the rotating and static electrical equipment components.
  • the use of high thermal conductivity materials in a generator is multiple.
  • component materials other than the groundwall which must have high thermal conductivity to optimize the design.
  • other components associated with the coils to maximize heat removal are included. Improvements to stator design dictate that improvements be made to rotor design so that generator efficiency can by maximized.
  • the distribution of the HTC fillers/materials in the resin can be of equal importance to the type of HTC filler used. It is important that the fillers do not agglomerate together and overly react with each other rather than the resin matrix. What is also important is the alignment that the HTC materials take once they are in the resin. Typically the fillers will be randomly aligned and may self aggregate if left to conventional incorporation techniques. However, the present invention aligns the HTC fillers either in the resin alone or when the resin is impregnated into a porous medium so that heat may pass more along the direction of the aligned fillers.
  • FIG. 3 shows one embodiment of this.
  • the HTC materials 30 in the host resin 32 are aligned in roughly the same direction d.
  • heat 36 passing though the resin will tend to travel in the direction of d more readily than in other directions.
  • the alignment of the HTC fillers may be controlled by characteristics such as surface coating and surface functional groups, which can also affect the general distribution of the fillers in the resin by having the surface groups more or less reactive with one another, while maintaining optimal reactivity with the resin matrix.
  • Inorganic surface coatings such as diamond like coatings, oxides, nitrides and carbides may be generated that, when combined with filler size and shape distribution, provide a defined percolation structure with control of the bulk thermal and electrical conductivity of the insulation system.
  • Reactive surface functional groups may also be formed from surface groups that are part of an inorganic coating or may be achieved by applying additional functional groups, or both. Additional functional groups include such as organic coatings include hydroxyl, carboxylic, amine, epoxide, silane or vinyl groups which will be available for chemical reaction with the host organic matrix as described above.
  • the orientation, position and structural organization of the fillers may be controlled either through the selected nature of the surface coating to align and aggregate itself, or by the application an external field.
  • Examples of such fields are magnetic, electric and mechanical (AC/dynamic, DC/static, pulsed and combinations thereof), sonic and ultrasonic.
  • dielectrophoresis or electrophoresis may be used.
  • Coatings such as TiO2 would respond to electric fields, while coatings containing or consisting of Ni, Co, Mn, V, Cr, or Fe compounds would respond to magnetic fields, in either a paramagnetic or ferromagnetic manner.
  • Organo-metallic compound may also be used, such as metal acetylacetonates, ferrocene, metal porphyrins and metal phthalocyanines.
  • HTC materials can be surface coated onto non-HTC fillers that are responsive to the fields mentioned above.
  • a TiO2 core could be given a BN surface coating: This can in fact be more effective than putting a field responsive surface coating onto an HTC filler, since by this method the bulk of the filler will be responsive to the field, while heat passing to the filler will tend to travel along the surface.
  • the resins simply need to be cured to lock the alignment in place.
  • the resins may be unreacted or may be in a semi-cured, or even a semi-fluid state so that the resins may be properly applied or positioned before curing.
  • a resin with HTC fillers may be impregnated into a tape and the HTC fillers aligned.
  • the tape may then be wound around an electrical object, the HTC fillers maintaining their alignment relative to the tape. Once the object has been wound, the resin may then be cured.
  • VPI and GVPI the resin containing the HTC fillers would be impregnated into the mica tape, then aligned by a field, and the alignment locked in during the cure process.
  • the fillers align with little direct contact with one another.
  • the fillers form structures within the resin, such as columns, layers or super lattices and pearl necklaces. Examples of these are given in FIGS. 4-6 .
  • materials, particles and fillers when used in conjunction with HTC are synonymous.
  • a column 42 is present along with other HTC fillers 30 in the resin 32 .
  • the non-columnar fillers 30 are aligned in approximately the same direction as the column. Heat passing though the resin (not shown) will tend to favor the closely packed column. Note that this is just one example, other examples may include higher particle concentrations as well as translation of particles into the column due to the external field effect or self-agglomeration.
  • the columns could be formed due to a combination of effects, such as the switching on and off of a field, or a slow change in the field, at measured times.
  • FIG. 5 a cross-sectional view of layers 44 are seen within a resin 32 along with some scattered fillers 30 .
  • heat will pass along the layer with a diminished heat flow passing between the layers.
  • heat will conduct along the super lattice structure rapidly.
  • the shape of the super lattice for example, can be a ring or cage unit cell of nanoparticles or POSS type molecules, which could create an organized crystallographic type structure e.g. cubic or face-centered cubic super lattice.
  • the resins such as liquid crystal resins in the liquid phase can also be aligned by the same fields of force, in a similar manner as that described. This will give a preferred orientation and structural characteristic of the resin which may be locked by cross-linking to achieve the required fixed structures.
  • the liquid crystals may also interact with fillers during orientation leading to dual structural alignment to create enhanced properties. Also, fillers may be covalently bound to the resin molecules and be aligned in concert.
  • FIG. 6 shows an example of this.
  • the resin is an LCT type resin that forms mesogenic groups 40 that tend to self align on a small scale.
  • the mesogenic groups tend to be from 0.5-100 nm in length, depending on the type of resin, and aggregates of mesogenic groups can be several hundred nanometers long.
  • Aligned within the mesogenic groups are HTC fillers 30 .
  • the mesogenic groups are aligned in concert with the HTC fillers.
  • the alignment of the nanofillers can thereby aid in the in the alignment of the mesogenic groups, creating aligned area that are thousands of nanometers in length.
  • highly structured resins systems to help align the impregnated HTC fillers.
  • One embodiment of the present invention adds high thermal conductivity (HTC) materials to resins to improve the thermal conductivity of the resins.
  • HTC high thermal conductivity
  • the other physical properties of the resins are reduced in a trade-off with higher thermal conductivity, but in other embodiments, some of the other physical properties will not be significantly affected, and in some particular embodiments these other properties will be improved.
  • the HTC materials are added to resins, such as LCT epoxy, that have ordered sub-structures. When added to these types of resins, the amount of HTC material used can be reduced versus use in resins without ordered sub-structures.
  • the HTC materials loaded into the resins are of a variety of substances that can be added so that they may physically and/or chemically interact with or react with the resins to improve thermal conductivity.
  • the HTC materials are dendrimers, and in another embodiment they are nano or micro inorganic fillers having a defined size or shape including high aspect ratio particles with aspect ratios (ratio mean lateral dimension to mean longitudinal dimension) of 3 to 100 or more, with a more particular range of 10-50.
  • the HTC materials may have a defined size and shape distribution.
  • concentration and relative concentration of the filler particles is chosen to enable a bulk connecting (or so-called percolation) structure to be achieved which confers high thermal conductivity with and without volume filling to achieve a structurally stable discrete two phase composite with enhanced thermal conductivity.
  • orientation of the HTC materials increases-thermal conductivity.
  • surface coating of the HTC materials enhances phonon transport.
  • HTC is achieved by surface coating of lower thermal conductivity fillers with metal oxides; carbides or nitrides and mixed systems having high thermal conductivity which are physically or chemically attached to fillers having defined bulk properties, such attachment being achieved by processes such as chemical vapour deposition and physical vapour deposition and also by plasma treatment.
  • the HTC materials form essentially homogenous mixtures with the resins, essentially free of undesired microscopic interfaces, variable particle wetting and micro void formation. These homogeneous materials form a continuous-phase material which are non-discrete at length scales shorter than either the phonon wavelength or phonon mean free path in conventional electrical insulating materials.
  • intentional interfaces can be placed in the resin structure so as to control dielectric breakdown. In insulating materials, dielectric breakdown will occur given the right conditions. By controlling the nature and spatial distribution of the interfaces in two-phase system, dielectric breakdown strength and long term electrical endurance can be enhanced. Increases in dielectric strength will take place in part because of increased densification, the removal of micro voids and a higher level of internal mechanical compression strength.
  • Resins of the present invention may be used for impregnation of other composite constructions such as a mica tape and glass and polyester tape.
  • other composite constructions such as a mica tape and glass and polyester tape.
  • Biotite mica as well as several other mica-like Alumino-Silicate materials such as Kaolinite, Halloysite, Montmorillonite and Chlorite.
  • Montmorillonite has lattices in its structure which can be readily intercalated with polymer resins, metal cations and nano particles to give high dielectric strength composites.
  • the present invention is used as a continuous coating on surfaces where insulation is desired; note that “continuous coating” is a description of a macro-scale application.
  • the resin forms a coating on materials without the need for a tape or other substrate.
  • the HTC materials can be combined with the resin by a variety of different methods. For example, they can be added prior to the resin being added to the substrate, or the HTC materials can be added to the substrate before the resin is impregnated thereon, or the resin can be added first, followed by the HTC material and then an additional impregnation of resin. Other fabrication and process methods will be apparent to one of ordinary skill in the art.
  • the present invention uses novel organic-inorganic materials which offer higher thermal conductivity and also maintain or enhance other key properties and performance characteristics. Such materials have applications in other high voltage and low voltage electrical insulation situations where high thermal conductivity confers advantage in terms of enhanced power rating, reduced insulation thickness, more compact electrical designs and high heat transfer.
  • the present invention adds nano, meso, and micro inorganic HTC-materials such as alumina, magnesium oxide, silicon carbide, boron nitride, aluminium nitride, zinc oxide and diamond, as well as others, to give higher thermal conductivity.
  • These materials can have a variety of crystallographic and morphological forms and they may be processed with the matrix materials either directly or via a solvent which acts as a carrier liquid.
  • the solvent mixture may be used to mix the HTC-materials into the matrix to various substrates such as mica-tape.
  • molecular hybrid materials which form another embodiment of the present invention, do not contain discrete interfaces, and have the advantages conferred by an inorganic phase within an organic. These materials may also confer enhancement to other physical properties such as thermal stability, tensile strength, flexural strength, and impact strength, variable frequency and temperature dependant mechanical moduli and loss and general viscoelastic response, etc.
  • the present invention comprises discrete organic-dendrimer composites in which the organic-inorganic interface is non-discrete with a dendrimer core-shell structure.
  • Dendrimers are a class of three-dimensional nanoscale, core-shell structures that build on a central core.
  • the core may be of an organic or inorganic material.
  • the dendrimers are formed by a sequential addition of concentric shells.
  • the shells comprise branched molecular groups, and each branched shell is referred to as a generation.
  • the number of generations used is from 1-10, and the number of molecular groups in the outer shell increase exponentially with the generation.
  • the composition of the molecular groups can be precisely synthesized and the outer groupings may be reactive functional groups.
  • Dendrimers are capable of linking with a resin matrix, as well as with each other. Therefore, they may be added to a resin as an HTC material, or, in other embodiments, may form the matrix themselves without being added to traditional resins.
  • the molecular groups can be chosen for their ability to react, either with each other or with a resin.
  • the core structure of the dendrimers will be selected for their own ability to aid in thermal conductivity; for example, metal oxides as discussed below.
  • dendrimer generally, the larger the dendrimer, the greater its ability to function as a phonon transport element. However, its ability to permeate the material and its percolation potential can be adversely affected by its size so optimal sizes are sought to achieve the balance of structure and properties required.
  • solvents can be added to the dendrimers so as to aid in their impregnation of a substrate, such as a mica or a glass tape.
  • dendrimers will be used with a variety of generations with a variety of different molecular groups.
  • organic Dendrimer polymers include Polyamido-amine Dendrimers (PAMAM) and Polypropylene-imine Dendrimers (PPI) and PAMAM-OS which is a dendrimer with a PAMAM interior structure and organo-silicon exterior.
  • PAMAM Polyamido-amine Dendrimers
  • PPI Polypropylene-imine Dendrimers
  • PAMAM-OS which is a dendrimer with a PAMAM interior structure and organo-silicon exterior.
  • the former two are available from Aldrich ChemicalTM and the last one from Dow-CorningTM.
  • inorganic-organic dendrimers which may be reacted together or with matrix polymers or reactive resins to form a single material.
  • the surface of the dendrimer could contain reactive groups similar to those specified above which will either allow dendrimer-dendrimer, dendrimer-organic, dendrimer-hybrid, and dendrimer-HTC matrix reactions to occur.
  • the dendrimer will have an inorganic core and an organic shell, or vice-versa containing either organic or inorganic reactive groups or ligands of interest.
  • an organic core with an inorganic shell which also contains reactive groups such as hydroxyl, silanol, vinyl-silane, epoxy-silane and other groupings which can participate in inorganic reactions similar to those involved in common sol-gel chemistries.
  • reactive groups such as hydroxyl, silanol, vinyl-silane, epoxy-silane and other groupings which can participate in inorganic reactions similar to those involved in common sol-gel chemistries.
  • phonon transport is enhanced and phonon scattering reduced by ensuring the length scales of the structural elements are shorter than or commensurate with the phonon distribution responsible for thermal transport.
  • Larger HTC particulate materials can actually increase phonon transport in their own right, however, smaller HTC materials can alter the nature of the resin matrix, thereby affect a change on the phonon scattering. This may be further assisted by using nano-particles whose matrices are known to exhibit high thermal conductivity and to ensure that the particle size and interface characteristics are sufficient to sustain this effect and also to satisfy the length scale requirements for reduced phonon scattering.
  • a resin matrix of the prior art will have a maximum thermal conductivity of about 0.15 W/mK.
  • the present invention provides resins with a thermal conductivity of 0.5 to 5 W/mK and even greater.
  • Continuous organic-inorganic hybrids may be formed by incorporating inorganic nano-particles in linear or crosslinked polymers and thermosetting resins in which nano-particles dimensions are of the order of or less than the polymer or network segmental length (typically 1 to 50 nm). This would include, but is not exclusive to three routes or mechanisms by which this can occur (i) side chain grafting, (ii) inclusive grafting e.g. between two polymer chain ends, (iii) cross-link grafting involving at least two and typically several polymer molecules. These inorganic nano-particles will contain reactive surfaces to form intimate covalently bonded hybrid organic-inorganic homogeneous materials.
  • These nano-particles may be metal oxides, metal nitrides, and metal carbides, as well as some non-metal oxides, nitrides and carbides.
  • metal oxides metal nitrides, and metal carbides
  • some non-metal oxides nitrides and carbides.
  • alumina magnesium oxide and zinc oxide and other metal oxides
  • boron nitride and aluminum nitride and other metal nitrides silicon carbide and other carbides, diamond of natural or synthetic origin, and any of the various physical forms of each type and other metal carbides and hybrid stoichiometric and non-stoichiometric mixed oxides, nitrides and carbides.
  • these nano-particles will be surface treated to introduce a variety of surface functional groups which are capable of participating in reactions with the host organic polymer or network. It is also possible to coat non-HTC materials, such as silica and other bulk filler materials, with an HTC material. This may be an option when more expensive HTC materials are used.
  • the volume percentage of the HTC materials in the resin may be up to approximately 60% or more by volume, and more particularly up to approximately 35% by volume. Higher volume filling tends to give higher structural stability to a matrix. However, with control of the size and shape distribution, degree of particle association and alignment the HTC materials can occupy as little as 1% by volume or less. Although, for structural stability reasons, it might be useful to add an amount greater than the minimum needed for percolation to occur. Therefore the resin can withstand physical strains and deformation without damaging the percolation structure and the HTC characteristics.
  • surface functional groups may include hydroxyl, carboxylic, amine, epoxide, silane or vinyl groups which will be available for chemical reaction with the host organic polymer or network forming resin system. These functional groups may be naturally present on the surface of inorganic fillers or they may be applied using wet chemical methods, non-equilibrium plasma deposition including plasma polymerization, chemical vapour and physical vapour deposition, laser beams, sputter ion plating and electron and ion beam evaporation methods.
  • the matrix polymer or reactive resin may be any system which is compatible with the nano-particles and, if required, is able to react with the reactive groups introduced at the nano-particle surface. These may be epoxy, polyimide epoxy, liquid crystal epoxy, cyanate-ester and other low molecular weight polymers and resins with a variety of crosslinking agents.
  • sol-gel chemistry In the case of non-discrete organic-inorganic hybrids it is possible to use sol-gel chemistry to form a continuous molecular alloy. In this case sol-gel chemistries involving aqueous and non-aqueous reactions may be considered.
  • the products of the present invention exhibit higher thermal conductivity than conventional electrically insulating materials and may be used as bonding resins in mica-glass tape constructions, as unreacted vacuum-pressure impregnation resins for conventional mica tape constructions and as stand alone materials to fulfill electrical insulation applications in rotating and static electrical power plant and in both high and low voltage electrical and electronic equipment, components and products.
  • Products of the present invention may be combined with each other, as well as HTC-material, and other materials, of the prior art.
  • Micro and nano HTC particles may be selected on their ability to self aggregate into desired structural forms such as filaments and branched dendrites. Particles may be selected for their ability to self-assemble naturally, though this process may also be modified by external forces such as an electric field, magnetic field, sonics, ultra-sonics, pH control, use of surfactants and other methods to affect a change to the particle surface charge state, including charge distribution, of the particle.
  • particles such as boron nitride, aluminum nitride, diamond are made to self assemble into desired forms. In this manner, the desired aggregation structures can be made from highly thermally conductive materials at the outset or assembled during incorporation into the host matrix.
  • the size and shape of the HTC-materials are varied within the same use. Ranges of size and shape are used in the same product.
  • a variety of long and shorter variable aspect ratio HTC-materials will enhance the thermal conductivity of a resin matrix, as well as potentially provide enhanced physical properties and performance.
  • One aspect that should be observed, however, is that the particle length does not get so long as to cause bridging between layers of substrate/insulation.
  • a variety of shapes and length will improve the percolation stability of the HTC-materials by providing a more uniform volume filing and packing density, resulting in a more homogeneous matrix.
  • the longer particles are more rod-shaped, while the smaller particles are more spheroidal, platelet or discoid and even cuboids.
  • a resin containing HTC-materials could contain about 55-65% by volume 10-50 nm diameter spheroids and about 15-25% by volume 10-50 ⁇ m length rods, with 10-30% volume resin.
  • the present invention provides for new electrical insulation materials based on organic-inorganic composites.
  • the thermal conductivity is optimized without detrimentally affecting other insulation properties such as dielectric properties (permittivity and dielectric loss), electrical conductivity, electric strength and voltage endurance, thermal stability, tensile modulus, flexural modulus, impact strength and thermal endurance in addition to other factors such as viscoelastic characteristics and coefficient of thermal expansion, and overall insulation.
  • Organic and inorganic phases are constructed and are selected to achieve an appropriate balance of properties and performance.
  • the surface coating of nano, meso and micro inorganic fillers having the desired shape and size distribution and the selected surface characteristics and bulk filler properties are complimentary to each other. This enables the percolation structure of the filler phase in the organic host and the interconnection properties to be controlled independently while maintaining required bulk properties.
  • organic and inorganic coatings as singular or secondary coatings may be used to ensure compatibilisation of the particle surfaces with the organic matrix and allow chemical reactions to occur with the host organic matrix.
  • the present invention utilizes individual particle shapes tending towards natural rods and platelets for enhanced percolation, with rods being the most preferred embodiment including synthetically processed materials in addition to those naturally formed.
  • a rod is defined as a particle with a mean aspect ratio of approximately 5 or greater, with particular embodiments of 10 or greater, though with more particular embodiments of no greater than 100.
  • the axial length of the rods is approximately in the range 10 nm to 100 microns. Smaller rods will percolate a resin matrix better, and have less adverse effect on the viscosity of the resin.
  • micro and nano particles form spheroidal and discoid shapes, which have reduced ability to distribute evenly under certain conditions and so may lead to aggregated filamentary structures that reduce the concentration at which percolation occurs.
  • the thermal properties of the resin can be increased, or alternately, the amount of HTC material that needs to be added to the resin can be reduced.
  • the enhanced percolation results in a more even distribution of the HTC materials within the resin rather than agglomeration which is to be avoided, creating a more homogenous product that is less likely to have undesired interfaces, incomplete particle wetting and micro-void formation.
  • aggregated filamentary or dendritic structures rather than globular (dense) aggregates or agglomerates, formed from higher aspect ratio particles confer enhanced thermal conductivity.
  • fluid flow fields and electric and magnetic fields can be applied to the HTC materials to distribute and structurally organize them inside of the epoxy resin.
  • the rod and platelet shapes can be aligned on a micro-scale. This creates a material that has different thermal properties in different directions.
  • the creation of an electric field may be accomplished by a variety of techniques known in the art, such as by attaching electrodes across an insulated electrical conductor or by use of a conductor in the centre of a material or the insulation system.
  • Organic surface coatings, and inorganic surface coatings such as, metal-oxide, -nitride, -carbide and mixed systems may be generated which, when combined with the selected particle size and shape distribution, provide a defined percolation structure with control of the bulk thermal and electrical conductivity of the insulation system while the particle permittivity may be chosen to control the permittivity of the system.
  • Another type of coating is micro-particulate and- nano-particulate diamond coatings and of natural or synthetic origin.
  • the particles may associate with the surface of a carrier particle, eg silica.
  • Silica by itself is not a strong thermally conducting material, but with the addition of a surface coating it becomes more of a higher thermal conductivity material.
  • Silica and other such materials have beneficial properties such as being readily formed into rod-shaped particles, as discussed above. In this manner, various HTC properties can be combined into one product.
  • These coatings may also have application to mica tape structures, including both the mica and the glass components, with or without resin impregnation.
  • Reactive surface functional groups may be formed from surface groups intrinsic to the inorganic coating or may be achieved by applying additional organic coatings both of which may include hydroxyl, carboxylic, amine, epoxide, silane, vinyl and other groups which will be available for chemical reaction with the host organic matrix. These single or multiple surface coatings and the surface functional groups may be applied using wet chemical methods, non-equilibrium plasma methods including plasma polymerization and chemical vapour and physical vapour deposition, laser beams, sputter ion plating and electron and ion beam evaporation methods.
  • the present invention provides for new electrical insulation systems based on organic-inorganic composites.
  • the interface between the various inorganic and organic components is made to be chemically and physically intimate to ensure a high degree of physical continuity between the different phases and to provide interfaces which are mechanically strong and not prone to failure during the operation of the electrical insulation system in service in both high and low voltage applications.
  • Such materials have applications in high voltage and low voltage electrical insulation situations where enhanced interfacial integrity would confer advantage in terms of enhanced power rating, higher voltage stressing of the insulation systems, reduced insulation thickness and would achieve high heat transfer.
  • a particular embodiment uses a variety of surface treatments, nano, meso and micro inorganic fillers, so as to introduce a variety of surface functional groups which are capable of compatibilizing the inorganic surface with respect to the organic matrix or to allow chemical reactions to occur with the host organic matrix.
  • These surface functional groups may include hydroxyl, carboxylic, amine, epoxide, silane or vinyl groups which will be available for chemical reaction with the host organic matrix.
  • These functional groups may be applied using wet chemical methods, non-equilibrium plasma methods, chemical vapour and physical vapour deposition, laser beams, sputter ion plating and electron and ion beam evaporation methods.
  • the surface treated materials may be used in bonding resins in mica-glass tape constructions, in unreacted vacuum-pressure impregnation (GVPI &VPI) resins for conventional mica tape constructions and in stand alone electrical insulation coatings or bulk materials to fulfill either electrically insulating or conducting applications in rotating and static electrical power plant and in both high and low voltage electrical equipment, components and products. Also, all chemical reactions should be the result of addition, and not condensation reactions so as to avoid volatile by-products.
  • GVPI &VPI vacuum-pressure impregnation
  • LCT liquid crystal thermoset
  • LCT epoxy resins can be produced with a thermal conductivity greater than that of conventional epoxy resins.
  • a standard Bisphenol A epoxy is shown to have thermal conductivity values of 0.18 to 0.24 wafts per meter degree Kelvin (W/mK) in both the transverse (plane) and thickness direction.
  • W/mK wafts per meter degree Kelvin
  • an LCT epoxy resin is shown to have a thermal conductivity value, when used in practical applications, of no more than 0.4 W/mK in the transverse direction and up to 0.9 W/mK in the thickness direction.
  • the term substrate refers to the host material that the insulating paper is formed from, while paper matrix refers to the more complete paper component made out of the substrate. These two terms may be used somewhat interchangeable when discussing this embodiment of the present invention.
  • the increase of thermal conductivity should be accomplished without significantly impairing the electrical properties, such as dissipation factor, or the physical properties of the substrate, such as tensile strength and cohesive properties.
  • the physical properties can even be improved in some embodiments, such as with surface coatings.
  • the electrical resistivity of the host paper matrix can also be enhanced by the addition of HTC materials.
  • Insulating papers are just one type of porous media that may be impregnated with the resin of the present invention.
  • glass fiber matrices or fabric and polymer matrices or fabric, where the fabric might typically be cloth, matt, or felt.
  • Circuit boards, which are glass fabric laminate, with planar lamination, will be one product which will benefit from the use of resins of the present invention.
  • VPI and GVPI Types of resin impregnation used with stator coils are known as VPI and GVPI.
  • Tape is wrapped around the coil and then impregnated with low viscosity liquid insulation resin by vacuum-pressure impregnation (VPI). That process consists of evacuating a chamber containing the coil in order to remove air and moisture trapped in the mica tape, then introducing the insulation resin under pressure to impregnate the mica tape completely with resin thus eliminating voids, producing resinous insulation in a mica host. A compression of about 20% is particular to the VPI process in some embodiments. After this is completed, the coils are heated to cure the resin.
  • the resin may contain an accelerator or the tape may have one in it.
  • GVPI global VPI
  • the present invention provides for a high thermal conductivity resin that comprises a host resin matrix containing a high thermal conductivity filler.
  • the high thermal conductivity filler forms a continuous organic-inorganic composite with the host resin matrix, and the fillers have an aspect ratio of between 3-100.
  • the fillers are substantially evenly distributed through the host resin matrix, and are aligned in essentially the same direction.
  • the resins are highly structured resin types.
  • the fillers are from 1-1000 nm in length, and may be composed of materials such as diamond, Al2O3, AlN, MgO, ZnO, BeO, BN, Si3N4, SiC and SiO2.
  • the fillers may have non-high thermal conductivity coatings, or they may be comprised on non-high thermal conductivity cores with HTC coatings.
  • the present invention provides for a method for making a thermal conductivity resin that comprises impregnating a host resin matrix with a high thermal conductivity filler and distributing the high thermal conductivity filler evenly through the resin matrix. Then aligning at least 75% of the high thermal conductivity fillers within 15 degrees of a common direction and curing or semi-curing the resin matrix.
  • the high thermal conductivity fillers have an aspect ratio of between 3-100.
  • the filler forms a continuous organic-inorganic composite with the host resin matrix.
  • host resin matrix comprises a highly structured resin that is aligned uniformly with the high thermal conductivity filler.
  • the alignment is done by the self-alignment and aggregation of the high thermal conductivity fillers, and in another the alignment is done by the application of an external field.
  • the external field include mechanical, electric, magnetic, sonic and ultrasonic.
  • the fillers are first surface coated with field responsive materials, and in other cases field responsive fillers are coated with high thermal conductivity materials.
  • the present invention provides for a high thermal conductivity resin that comprises a host resin matrix and a high thermal conductivity filler.
  • the high thermal conductivity filler forms a continuous organic-inorganic composite with the host resin matrix, and the high thermal conductivity fillers have an aspect ratio of between 3-100.
  • the fillers are substantially evenly distributed through the host resin matrix, and the high thermal conductivity fillers form substructures within the host resin matrix.
  • the substructures may be at least one of columns, layers and super lattices.
  • the high thermal conductivity fillers are at least one of oxides, nitrides and carbides. In another related embodiment the high thermal conductivity fillers contain at least one of metallic and organo-metallic compounds that are capable of responding to an external field.
  • the present invention provides for a porous media impregnated with a high thermal conductivity resin that comprises a porous media and a high thermal conductivity material loaded resin.
  • the high thermal conductivity material comprises 5-60% by volume of the resin, and the high thermal conductivity materials have aspect ratios of 10-50 and are aligned within the porous media in essential the same direction.

Abstract

In one embodiment the present invention provides for a high thermal conductivity resin that comprises a host resin matrix 32 a high thermal conductivity filler 30. The high thermal conductivity filler forms a continuous organic-inorganic composite with the host resin matrix, and the fillers have an aspect ratio of between 3-100. The fillers are substantially evenly distributed through the host resin matrix, and are aligned in essentially the same direction. In some embodiments the resins are highly structured resin types.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. provisional 60/580,023, filed Jun. 15, 2004, by Smith, et al., which is incorporated herein by reference. This also claims priority to U.S. application Ser. No. 11/106,845, filed on Apr. 15, 2005, which is incorporated herein by reference. This application is further related to US patent applications High Thermal Conductivity Materials Incorporated into Resins, High Thermal Conductivity Materials with Grafted Surface Functional Groups, Structured Resin Systems with High Thermal Conductivity Fillers, all by Smith, et al., all filed herewith, and all incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The field of the invention relates to resins with aligned high thermal conductivity materials incorporated therein.
  • BACKGROUND OF THE INVENTION
  • With the use of any form of electrical appliance, there is a need to electrically insulate conductors. With the push to continuously reduce the size and to streamline all electrical and electronic systems there is a corresponding need to find better and more compact insulators and insulation systems.
  • Various epoxy resin materials have been used extensively in electrical insulation systems due to their practical benefit of being tough and flexible electrical insulation materials that can be easily adhered to surfaces. Traditional electrical insulation materials, such as mica flake and glass fiber, can be surface coated and bonded with these epoxy resins, to produce composite materials with increased mechanical strength, chemical resistance and electrical insulating properties. In many cases epoxy resins have replaced traditional varnishes despite such materials having continued use in some high voltage electrical equipment.
  • Good electrical insulators, by their very nature, also tend to be good thermal insulators, which is undesirable. Thermal insulating behavior, particularly for air-cooled electrical equipment and components, reduces the efficiency and durability of the components as well as the equipment as a whole. It is desirable to produce electrical insulation systems having maximum electrical insulation and minimal thermal insulation characteristics.
  • Electrical insulation often appears in the form of insulating tapes, which themselves have various layers. Common to these types of tapes is a paper layer that is bonded at an interface to a fiber layer, both layers tending to be impregnated with a resin. A favored type of insulation material is a mica-tape. Improvements to mica tapes include catalyzed mica tapes as taught in U.S. Pat. No. 6,103,882. The mica-tape may be wound around conductors to provide extremely good electrical insulation. An example of this is shown in FIG. 1. Illustrated here is a coil 13, comprising a plurality of turns of conductors 14, which in the example illustrated here are assembled into a bakelized coil. The turn insulation 15 is prepared from a fibrous material, for example glass or glass and Dacron which is heat treated. Ground insulation for the coil is provided by wrapping one or more layers of composite mica tape 16 about the bakelized coil 14. Such composite tape may be a paper or felt of small mica flakes combined with a pliable backing sheet 18 of, for example, glass fiber cloth or polyethylene glycol terephthalate mat, the layer of mica 20 being bonded thereto by a liquid resinous binder. Generally, a plurality of layers of the composite tape 16 are wrapped about the coil depending upon voltage requirements. A wrapping of an outer tape 21 of a tough fibrous material, for example, glass fiber, may be applied to the coil.
  • Generally, multiple layers of the mica tape 16 are wrapped about the coil with sixteen or more layers generally being used for high voltage coils. Resins are then impregnated into the tape layers. Resins can even be used as insulation independently from the insulating tape. Unfortunately this amount of insulation only further adds to the complications of dissipating heat. What is needed is electrical insulation that can conduct heat higher than that of conventional methods, but that does not compromise the electrical insulation and other performance factors including mechanical and thermal compatability.
  • Other difficulties with the prior art also exist, some of which will be apparent upon further reading.
  • SUMMARY OF THE INVENTION
  • With the foregoing in mind, methods and apparatuses consistent with the present invention, which inter alia facilitates the transport of phonons through a high thermal conductivity (HTC) impregnated medium to reduce the mean distances between the HTC materials below that of the phonon mean free path length. This reduces the phonon scattering and produces a greater net flow or flux of phonons away from the heat source. The resins may then be impregnated into a host matrix medium, such as a multi-layered insulating tape.
  • High Thermal Conductivity (HTC) organic-inorganic hybrid materials may be formed from discrete two-phase organic-inorganic composites, from organic-inorganic continuous phase materials based on molecular alloys and from discrete organic-dendrimer composites in which the organic-inorganic interface is non-discrete within the dendrimer core-shell structure. Continuous phase material structures may be formed which enhance phonon transport and reduce phonon scattering by ensuring the length scales of the structural elements are shorter than or commensurate with the phonon distribution responsible for thermal transport, and/or that the number of phonon scattering centers are reduced such as by enhancing the overall structural order of the matrix, and/or by the effective elimination or reduction of interface phonon scattering within the composite. Continuous organic-inorganic hybrids may be formed by incorporating inorganic, organic or organic-inorganic hybrid nano-particles in linear or cross-linked polymers (including thermoplastics) and thermosetting resins in which nano-particles dimensions are of the order of or less than the polymer or network segmental length (typically 1 to 50 nm or greater). These various types of nano-particles will contain reactive surfaces to form intimate covalently bonded hybrid organic-inorganic homogeneous materials. Similar requirements exist for inorganic-organic dendrimers which may be reacted together or with matrix polymers or reactive resins to form a continuous material. In the case of both discrete and non-discrete organic-inorganic hybrids it is possible to use sol-gel chemistry to form a continuous molecular alloy. The resulting materials will exhibit higher thermal conductivity than conventional electrically insulating materials and may be used as bonding resins in conventional mica-glass tape constructions, when utilized as unreacted vacuum-pressure impregnation resins and as stand alone materials to fulfill electrical insulation applications in rotating and static electrical power plant and in both high (approximately over 5 kV) and low voltage (approximately under 5 kV) electrical equipment, components and products.
  • The formation of engineered electrical insulation materials having prescribed physical properties and performance characteristics, and based on the use of nano-to-micro sized inorganic fillers in the presence of organic host materials, requires the production of particle surfaces which can form an intimate interface with the organic host. This may be achieved through the grafting of chemical groups onto the surface of the fillers to make the surface chemically and physically compatible with the host matrix, or the surfaces may contain chemically reactive functional groups that react with the organic host to form covalent bonds between the particle and the host. The use of nano-to-micro sized inorganic fillers in the presence of organic host materials requires the production of particles with defined surface chemistry in addition to bulk dielectric and electrical properties and thermal conductivity. Most inorganic materials do not allow independent selection of structural characteristics such as shape and size and properties to suit different electrical insulation applications or to achieve composites having the right balance of properties and performance. This may be achieved by selecting particles with appropriate bulk properties and shape and size characteristics and then modifying the surface and interfacial properties and other characteristics to achieve the additional control of composite properties and performance required for electrical insulation applications. This may be achieved by appropriate surface coating of the particles which may include the production of metallic and non-metallic inorganic oxides, nitrides, carbides and mixed systems and organic coatings including reactive surface groups capable of reacting with appropriate organic matrices which act as the host material in the electrical insulation system. The resulting hybrid materials and composites in unreacted or partially reacted form may be used as bonding resins in mica-glass tape constructions, as unreacted vacuum-pressure impregnation resins for conventional mica tape constructions, in other glass fiber, carbon fiber and ply-type and textile composites and as stand alone materials to fulfill electrical insulation applications in rotating and static electrical power plant and in both high and low voltage electrical equipment, components and products.
  • In one embodiment the present invention provides for a high thermal conductivity resin that comprises a host resin matrix containing a high thermal conductivity filler. The high thermal conductivity filler forms a continuous organic-inorganic composite with the host resin matrix, and the fillers have an aspect ratio of between 3-100. The fillers are substantially evenly distributed through the host resin matrix, and are aligned in essentially the same direction or they link within a percolation structure that crosses the material. In some embodiments the resins are highly structured resin types.
  • In another embodiment the present invention provides for a method for making a thermal conductivity resin that comprises impregnating a host resin matrix with a high thermal conductivity filler and distributing the high thermal conductivity filler evenly through the resin matrix. Then aligning at least 75% of the high thermal conductivity fillers within 15 degrees of a common direction and curing or semi-curing the resin matrix. The high thermal conductivity fillers have an aspect ratio of between 3-100. In some embodiments, the filler forms a continuous organic-inorganic composite with the host resin matrix. In particular embodiments host resin matrix comprises a highly structured resin that is aligned uniformly with the high thermal conductivity filler.
  • In one embodiment the alignment is done by the self-alignment and aggregation of the high thermal conductivity fillers forming a percolation structure, and in another the alignment is done by the application of an external field. Examples of the external field include mechanical, electric, magnetic, sonic and ultrasonic. In some cases the fillers are first surface coated with field responsive materials, and in other cases field responsive fillers are coated with high thermal conductivity materials.
  • In yet another embodiment the present invention provides for a high thermal conductivity resin that comprises a host resin matrix and a high thermal conductivity filler. The high thermal conductivity filler forms a continuous organic-inorganic composite with the host resin matrix, and the high thermal conductivity fillers have an aspect ratio of between 3-100. The fillers are substantially evenly distributed through the host resin matrix, and the high thermal conductivity fillers form substructures within the host resin matrix. The substructures may be at least one of columns, layers and super lattices.
  • In still another embodiment the present invention provides for a porous media impregnated with a high thermal conductivity resin that comprises a porous media and a high thermal conductivity material loaded resin. The high thermal conductivity material comprises 5-60% by volume of the resin, and the high thermal conductivity materials have aspect ratios of 10-50 and are aligned within the porous media in essential the same direction.
  • Other embodiments of the present invention also exist, which will be apparent upon further reading of the detailed description.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The invention is explained in more detail by way of example with reference to the following drawings:
  • FIG. 1 shows the use of an insulating tape being lapped around a stator coil.
  • FIG. 2 illustrates phonons traveling through a loaded resin of the present invention.
  • FIG. 3 illustrates phonons traveling through a loaded resin with aligned fillers of the present invention.
  • FIG. 4 illustrates a column arrangement of aligned fillers according to one embodiment of the present invention.
  • FIG. 5 illustrates a cross-sectional view of a layer arrangement of aligned fillers according to one embodiment of the present invention.
  • FIG. 6 illustrates HTC fillers aligned within a highly structured resin according to one embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • High thermal conductivity (HTC) composites comprise a resinous host network combined with fillers that are two phase organic-inorganic hybrid materials. The organic-inorganic hybrid materials are formed from two phase organic-inorganic composites, from organic-inorganic continuous phase materials that are based on molecular alloys, and from discrete organic-dendrimer composites in which the organic-inorganic interface is non-discrete with the dendrimer core-shell structure. Phonon transport is enhanced and phonon scattering is reduced by ensuring the length scales of the structural elements are shorter than or commensurate with the phonon distribution responsible for thermal transport.
  • Two phase organic-inorganic hybrids may be formed by incorporating inorganic micro, meso or nano-particles in linear or cross linked polymers (thermoplastics) and thermosetting resins. Host networks include polymers and other types of resins, definitions of which are given below. In general, the resin that acts as a host network may be any resin that is compatible with the particles and, if required, is able to react with the groups introduced at the surface of the filler. Nano-particle dimensions are typically of the order of or less than the polymer network segmental length. For example 1-30 nm. The inorganic particles contain reactive surfaces to form covalently bonded hybrid organic-inorganic homogeneous materials. The particles may be oxides, nitrides, carbides and hybrid stoichiometric and non-stoichiometric mixes of the oxides, nitrides and carbides, more examples of which are given below.
  • The inorganic particles are surface treated to introduce a variety of surface functional groups which are capable of participating in reactions with the host network. The surface functional groups include but are not limited to hydroxyl, carboxylic, amine, epoxide, silane and vinyl groups. The groups may be applied using wet chemical methods, non-equilibrium plasma methods, chemical vapor and physical vapor deposition, laser beams, sputter ion plating and electron and ion beam evaporation methods. Some of these techniques can also be used when applying coating to fillers.
  • The discrete organic-dendrimer composites may be reacted together or with the resin matrix to form a single material. The surface of the dendrimer can contain reactive groups similar to those mentioned above, which will either allow dendrimer-dendrimer or dendrimer-organic matrix reactions to occur. The dendrimer will have an inorganic core and an organic shell containing the reactive groups of interest. It may also be possible to have an organic core with an inorganic shell which also contains reactive groups such as hydroxyl or silane groupings which can participate in inorganic reactions similar to those involved in common sol-gel chemistries.
  • In regards to the use of non-discrete organic-inorganic hybrids it is possible to use sol-gel chemistry to form a continuous molecular alloy. Gel sol-chemistries involving aqueous and non-aqueous reactions may be used. Other compounds for the formation of organic-inorganic hybrids include the polyhedral oligomeric silsesquioxanes (POSS), tetraethyl orthosilicate (TEOS) and tetrabutyl orthotitanate (TBOT) and related monomeric and oligomeric hybrid compounds which are organic functionalized inorganic compounds. In the example of POSS, molecules are built around a building block of R—SiO1.5 in which the R group is chosen to compatibilize with and/or react with other organic compounds and the host network. The base compounds may be combined to yield larger molecules commensurate with the size of polymer segment and coil structures. POSS may be used to create organic-inorganic hybrids and may be grafted into existing polymers and networks to control properties, including thermal conductivity. The materials may be obtained from suppliers such as Aldrich™ Chemical Co., Hybrid Plastics™ Inc. and Gelest™ Inc.
  • As mentioned, it is important to control the structural form of the materials to reduce phonon scattering. This can be further assisted by using nano-particles whose matrices are known to exhibit high thermal conductivity and to ensure that the particles size and its interfacial characteristics with the resin are sufficient to sustain this effect, and also to satisfy the length scale requirement to reduce phonon scattering. A choice of structures that are more highly ordered will also benefit this, including reacted dendrimer lattices having both short and longer range periodicity and ladder or ordered network structures that may be formed from a host resin, such as liquid crystal epoxies and polybutadienes.
  • The filled resins may be used as bonding resins in a variety of industries such as circuit boards and insulating tapes. A particular kind of insulating tape is the mica-glass tape used in the electrical generator fields. Resins with these types of tapes can be used as bonding resins, or as impregnating resins as is known in the art. The filled resin may also be used in the electrical generator field without the tapes to fulfill electrical insulation applications in the rotating and static electrical equipment components.
  • The tapes may be impregnated with resin before or after being applied to electrical objects. Resin impregnation techniques include VPI and GVPI, discussed more below. In VPI, once a tape is lapped and impregnated it is compressed. Once in position, the resin in the compressed tape is cured, which effectively locks the position of the HTC materials. In some embodiments the resin is cured in a two stage process, as will be apparent to one of ordinary skill in the art. However, optimal compression of the loaded HTC materials favors a completely uncured resin during the compression stage.
  • FIG. 2 shows one embodiment of the present invention. Illustrated here are HTC materials 30 loaded into a resinous matrix 32. Phonons 34 traveling through the matrix have a mean path length n, this is the phonon mean free path. This path length can vary depending on the exact composition of the resin matrix, but is generally from 2 to 100 nm, and more typically 5-50 nm, for resins such as epoxy resins. Therefore the mean distance between the loaded HTC materials should be on average less than this distance. Note that the distance between the HTC materials can vary in the thickness versus transverse direction of the tape, and it is generally the thickness direction where the spacing needs to be optimalized.
  • As phonons 34 travel through the resin 32 they will tend to pass along the embedded HTC materials 30. This will increase the local phonon flux since the raw HTC materials will have a thermal conductivity of between 10-1000 W/mK, as opposed to the resin which is about 0.1-0.5 W/mK. As phonons pass along a loaded HTC material the phonons 36 pass to the next HTC material if the distance between the materials is less than n, therefore the HTC materials form an interconnecting network. FIG. 2 illustrates an idealized path. In practice there will be phonon scattering as the phonons pass between the resin and HTC materials, although the shorter the distance between the materials, and the better the match of phonon propagation characteristics between the HTC materials and the resin, the less the scattering.
  • The amount of HTC materials loaded in the resin could actually be quite low, for example about 10% as illustrated in FIG. 2. The average distances, or length scales, between loaded HTC materials therefore may be slightly greater than n, however, a large percentage will still be less than n and therefore fall within embodiments of the present invention. In particular embodiment, the percentage materials that are less than n distance from the next HTC material is over 50%, with particular embodiment-being over 75%. In particular embodiment the average length of the HTC materials is greater than n, which further aids in phonon transport.
  • The shorter n the greater the concentration of loaded HTC materials, and conversely, the greater the particle size, the less HTC materials needed. Particular embodiment use 5-60% loaded HTC materials by total volume of the resins and fillers, with more particular embodiments at 25-40%. When the resin is impregnated into the tape, it will fill up the spaces between the tape fibers and substrates. The HTC distribution within the tape at this point, however, is often not optimized, and can even have the mean distance between HTC materials greater than n. Practice of the present invention then compresses the resin impregnated tapes and reduces the distances between the loaded HTC materials.
  • When a loaded resin is being impregnated into a tape, the fibers or particles of the tape act to block some of the HTC materials, particularly if the resin is 30% or more filler. However, by compressing the tapes, the reverse happens, and more fillers are trapped within the tape as the HTC materials attach themselves to non-mobile parts of the overall structure. The HTC fillers even get pinned to one another. In the embodiments given, it has been implied that the fillers do not react with the resin matrix, however, in some embodiments the fillers do form covalent bonds with the resin and form more homogeneous matrixes. In a homogenous matrix, the resin molecules that are bound to fillers will be retained better than the unbound resin molecules during compression.
  • Resins are used in a plurality of industries, and have a large number of uses. Different properties of the resins affect not only their uses, but also the quality and efficiency of the products that they are used with. For example, when resins are used in electrical insulation applications, their characteristics of dielectric strength and voltage endurance needs to be high, as does the thermal stability and thermal endurance. However, often contrary to these objectives, resins usually will also have a low thermal conductivity. The present invention balances the various physical properties of resins and the insulation system they are introduced into to produce a system that has a higher thermal conductivity than conventional electrically insulating materials while maintaining adequate, and even enhancing, key physical properties such as dielectric strength, voltage endurance, thermal stability and thermal endurance, mechanical strength and viscoelastic response. Delamination and microvoid formation resulting from stresses caused by thermal, vibration and mechanical cycling effects are reduced or eliminated. As used herein, the term resin refers to all resins and epoxy resins, including modified epoxies, polyesters, polyurethanes, polyimides, polyesterimides, polyetherimides, bismaleimides, silicones, polysiloxanes, polybutadienes, cyanate esters, hydrocarbons etc. as well as homogeneous blends of these resins. This definition of resins includes additives such as cross-linking agents, accelerators and other catalysts and processing aids. Certain resins, such as liquid crystal thermosets (LCT) and 1,2 vinyl polybutadiene combine low molecular weights characteristics with good crosslinking properties. The resins can be of an organic matrix, such as hydrocarbons with and without hetero atoms, an inorganic matrix, containing silicate and/or alumino silicate components, and a mixture of an organic and inorganic matrix. Examples of an organic matrix include polymers or reactive thermosetting resins, which if required can react with the reactive groups introduced on inorganic particle surfaces. Cross-linking agents can also be added to the resins to manipulate the structure and segmental length distribution of the final crosslinked network, which can have a positive effect on thermal conductivity. This thermal conductivity enhancement can also be obtained through modifications by other resin additives, such as catalysts, accelerators and other processing aids. Certain resins, such as liquid crystal thermosets (LCT) and 1,2 vinyl polybutadiene combine low molecular weights characteristics with good crosslinking properties. These types of resins tend to conduct heat better because of enhanced micro and macro ordering of their sub-structure which may lead to enhanced conduction of heat as a result of improved phonon transport. The better the phonon transport, the better the heat transfer.
  • When the high thermal conductivity fillers of the present invention are mixed with resins they form a continuous product, in that there is no interface between the resins and the fillers. In some cases, covalent bonds are formed between the fillers and the resin. However, continuous is somewhat subjective and depends on the scale to which the observer is using. On the macro-scale the product is continuous, but on the nano-scale there can still be distinct phases between the fillers and the resin network. Therefore, when referring high thermal conductivity fillers mixing with the resin, they form a continuous organic-inorganic composite, on the macro-scale, while on the micro-scale the same mixture can be referred to as a hybrid. Similarly there is continuity between the filler and any coating that they may have.
  • As mentioned, filled resin may be used in the electrical generator field without the tapes to fulfill electrical insulation applications in the rotating and static electrical equipment components. The use of high thermal conductivity materials in a generator is multiple. Within the stator coil there are component materials other than the groundwall which must have high thermal conductivity to optimize the design. Likewise other components associated with the coils to maximize heat removal. Improvements to stator design dictate that improvements be made to rotor design so that generator efficiency can by maximized.
  • The distribution of the HTC fillers/materials in the resin can be of equal importance to the type of HTC filler used. It is important that the fillers do not agglomerate together and overly react with each other rather than the resin matrix. What is also important is the alignment that the HTC materials take once they are in the resin. Typically the fillers will be randomly aligned and may self aggregate if left to conventional incorporation techniques. However, the present invention aligns the HTC fillers either in the resin alone or when the resin is impregnated into a porous medium so that heat may pass more along the direction of the aligned fillers.
  • FIG. 3 shows one embodiment of this. The HTC materials 30 in the host resin 32 are aligned in roughly the same direction d. As a result heat 36 passing though the resin will tend to travel in the direction of d more readily than in other directions. Not all of the HTC materials need to aligned, but one embodiment of the present inventions envisions at least 75% of the nanofillers being aligned within +/−15° of d.
  • The alignment of the HTC fillers may be controlled by characteristics such as surface coating and surface functional groups, which can also affect the general distribution of the fillers in the resin by having the surface groups more or less reactive with one another, while maintaining optimal reactivity with the resin matrix. Inorganic surface coatings such as diamond like coatings, oxides, nitrides and carbides may be generated that, when combined with filler size and shape distribution, provide a defined percolation structure with control of the bulk thermal and electrical conductivity of the insulation system. Reactive surface functional groups may also be formed from surface groups that are part of an inorganic coating or may be achieved by applying additional functional groups, or both. Additional functional groups include such as organic coatings include hydroxyl, carboxylic, amine, epoxide, silane or vinyl groups which will be available for chemical reaction with the host organic matrix as described above.
  • In regards to surface coated fillers, the orientation, position and structural organization of the fillers may be controlled either through the selected nature of the surface coating to align and aggregate itself, or by the application an external field. Examples of such fields are magnetic, electric and mechanical (AC/dynamic, DC/static, pulsed and combinations thereof), sonic and ultrasonic. For example, dielectrophoresis or electrophoresis may be used. Coatings such as TiO2 would respond to electric fields, while coatings containing or consisting of Ni, Co, Mn, V, Cr, or Fe compounds would respond to magnetic fields, in either a paramagnetic or ferromagnetic manner. Organo-metallic compound may also be used, such as metal acetylacetonates, ferrocene, metal porphyrins and metal phthalocyanines.
  • It is also possible that HTC materials can be surface coated onto non-HTC fillers that are responsive to the fields mentioned above. For example, a TiO2 core could be given a BN surface coating: This can in fact be more effective than putting a field responsive surface coating onto an HTC filler, since by this method the bulk of the filler will be responsive to the field, while heat passing to the filler will tend to travel along the surface.
  • The resins simply need to be cured to lock the alignment in place. However, in some embodiments, the resins may be unreacted or may be in a semi-cured, or even a semi-fluid state so that the resins may be properly applied or positioned before curing. For example, a resin with HTC fillers may be impregnated into a tape and the HTC fillers aligned. The tape may then be wound around an electrical object, the HTC fillers maintaining their alignment relative to the tape. Once the object has been wound, the resin may then be cured. In the case of VPI and GVPI the resin containing the HTC fillers would be impregnated into the mica tape, then aligned by a field, and the alignment locked in during the cure process.
  • the above description assumes that the fillers align with little direct contact with one another. However, in some embodiments the fillers form structures within the resin, such as columns, layers or super lattices and pearl necklaces. Examples of these are given in FIGS. 4-6. As used herein, materials, particles and fillers when used in conjunction with HTC are synonymous.
  • Referring to FIG. 4, a column 42 is present along with other HTC fillers 30 in the resin 32. In this example the non-columnar fillers 30 are aligned in approximately the same direction as the column. Heat passing though the resin (not shown) will tend to favor the closely packed column. Note that this is just one example, other examples may include higher particle concentrations as well as translation of particles into the column due to the external field effect or self-agglomeration. The columns could be formed due to a combination of effects, such as the switching on and off of a field, or a slow change in the field, at measured times.
  • Referring to FIG. 5, a cross-sectional view of layers 44 are seen within a resin 32 along with some scattered fillers 30. Similarly to the columns of FIG. 4, heat will pass along the layer with a diminished heat flow passing between the layers. Similarly in a super lattice heat will conduct along the super lattice structure rapidly. The shape of the super lattice, for example, can be a ring or cage unit cell of nanoparticles or POSS type molecules, which could create an organized crystallographic type structure e.g. cubic or face-centered cubic super lattice.
  • The resins, such as liquid crystal resins in the liquid phase can also be aligned by the same fields of force, in a similar manner as that described. This will give a preferred orientation and structural characteristic of the resin which may be locked by cross-linking to achieve the required fixed structures. The liquid crystals may also interact with fillers during orientation leading to dual structural alignment to create enhanced properties. Also, fillers may be covalently bound to the resin molecules and be aligned in concert.
  • FIG. 6 shows an example of this. In this figure the resin is an LCT type resin that forms mesogenic groups 40 that tend to self align on a small scale. The mesogenic groups tend to be from 0.5-100 nm in length, depending on the type of resin, and aggregates of mesogenic groups can be several hundred nanometers long. Aligned within the mesogenic groups are HTC fillers 30. In particular embodiments the mesogenic groups are aligned in concert with the HTC fillers. The alignment of the nanofillers can thereby aid in the in the alignment of the mesogenic groups, creating aligned area that are thousands of nanometers in length. Conversely, it is also possible for highly structured resins systems to help align the impregnated HTC fillers.
  • One embodiment of the present invention adds high thermal conductivity (HTC) materials to resins to improve the thermal conductivity of the resins. In some embodiments the other physical properties of the resins are reduced in a trade-off with higher thermal conductivity, but in other embodiments, some of the other physical properties will not be significantly affected, and in some particular embodiments these other properties will be improved. In particular embodiments, the HTC materials are added to resins, such as LCT epoxy, that have ordered sub-structures. When added to these types of resins, the amount of HTC material used can be reduced versus use in resins without ordered sub-structures.
  • The HTC materials loaded into the resins are of a variety of substances that can be added so that they may physically and/or chemically interact with or react with the resins to improve thermal conductivity. In one embodiment, the HTC materials are dendrimers, and in another embodiment they are nano or micro inorganic fillers having a defined size or shape including high aspect ratio particles with aspect ratios (ratio mean lateral dimension to mean longitudinal dimension) of 3 to 100 or more, with a more particular range of 10-50.
  • In a related embodiment, the HTC materials may have a defined size and shape distribution. In both cases the concentration and relative concentration of the filler particles is chosen to enable a bulk connecting (or so-called percolation) structure to be achieved which confers high thermal conductivity with and without volume filling to achieve a structurally stable discrete two phase composite with enhanced thermal conductivity. In another related embodiment, the orientation of the HTC materials increases-thermal conductivity. In still another embodiment, the surface coating of the HTC materials enhances phonon transport. These embodiments may stand apart from other embodiments, or be integrally related. For example, dendrimers are combined with other types of highly structured materials such as thermoset and thermoplastic materials. They are uniformly distributed through a resin matrix such that the HTC materials reduce phonon scattering and provide micro-scale bridges for phonons to produce good thermally conducting interfaces between the HTC materials. The highly structured materials are aligned so that thermal conductivity is increased along a single direction or directions to produce either localized or bulk anisotropic electrically insulating materials. In another embodiment HTC is achieved by surface coating of lower thermal conductivity fillers with metal oxides; carbides or nitrides and mixed systems having high thermal conductivity which are physically or chemically attached to fillers having defined bulk properties, such attachment being achieved by processes such as chemical vapour deposition and physical vapour deposition and also by plasma treatment.
  • In related embodiments, the HTC materials form essentially homogenous mixtures with the resins, essentially free of undesired microscopic interfaces, variable particle wetting and micro void formation. These homogeneous materials form a continuous-phase material which are non-discrete at length scales shorter than either the phonon wavelength or phonon mean free path in conventional electrical insulating materials. In some embodiments, intentional interfaces can be placed in the resin structure so as to control dielectric breakdown. In insulating materials, dielectric breakdown will occur given the right conditions. By controlling the nature and spatial distribution of the interfaces in two-phase system, dielectric breakdown strength and long term electrical endurance can be enhanced. Increases in dielectric strength will take place in part because of increased densification, the removal of micro voids and a higher level of internal mechanical compression strength.
  • Resins of the present invention may be used for impregnation of other composite constructions such as a mica tape and glass and polyester tape. In addition to the standard mica (Muscovite,Phlogopite) that is typically used for electrical insulation there is also Biotite mica as well as several other mica-like Alumino-Silicate materials such as Kaolinite, Halloysite, Montmorillonite and Chlorite. Montmorillonite has lattices in its structure which can be readily intercalated with polymer resins, metal cations and nano particles to give high dielectric strength composites.
  • In other embodiments, the present invention is used as a continuous coating on surfaces where insulation is desired; note that “continuous coating” is a description of a macro-scale application. In a continuous coating, the resin forms a coating on materials without the need for a tape or other substrate. When used with a substrate, the HTC materials can be combined with the resin by a variety of different methods. For example, they can be added prior to the resin being added to the substrate, or the HTC materials can be added to the substrate before the resin is impregnated thereon, or the resin can be added first, followed by the HTC material and then an additional impregnation of resin. Other fabrication and process methods will be apparent to one of ordinary skill in the art.
  • In one embodiment the present invention uses novel organic-inorganic materials which offer higher thermal conductivity and also maintain or enhance other key properties and performance characteristics. Such materials have applications in other high voltage and low voltage electrical insulation situations where high thermal conductivity confers advantage in terms of enhanced power rating, reduced insulation thickness, more compact electrical designs and high heat transfer. The present invention adds nano, meso, and micro inorganic HTC-materials such as alumina, magnesium oxide, silicon carbide, boron nitride, aluminium nitride, zinc oxide and diamond, as well as others, to give higher thermal conductivity. These materials can have a variety of crystallographic and morphological forms and they may be processed with the matrix materials either directly or via a solvent which acts as a carrier liquid. The solvent mixture may be used to mix the HTC-materials into the matrix to various substrates such as mica-tape. In contrast, molecular hybrid materials which form another embodiment of the present invention, do not contain discrete interfaces, and have the advantages conferred by an inorganic phase within an organic. These materials may also confer enhancement to other physical properties such as thermal stability, tensile strength, flexural strength, and impact strength, variable frequency and temperature dependant mechanical moduli and loss and general viscoelastic response, etc.
  • In another embodiment, the present invention comprises discrete organic-dendrimer composites in which the organic-inorganic interface is non-discrete with a dendrimer core-shell structure. Dendrimers are a class of three-dimensional nanoscale, core-shell structures that build on a central core. The core may be of an organic or inorganic material. By building on a central core, the dendrimers are formed by a sequential addition of concentric shells. The shells comprise branched molecular groups, and each branched shell is referred to as a generation. Typically, the number of generations used is from 1-10, and the number of molecular groups in the outer shell increase exponentially with the generation. The composition of the molecular groups can be precisely synthesized and the outer groupings may be reactive functional groups. Dendrimers are capable of linking with a resin matrix, as well as with each other. Therefore, they may be added to a resin as an HTC material, or, in other embodiments, may form the matrix themselves without being added to traditional resins.
  • The molecular groups can be chosen for their ability to react, either with each other or with a resin. However, in other embodiments, the core structure of the dendrimers will be selected for their own ability to aid in thermal conductivity; for example, metal oxides as discussed below.
  • Generally, the larger the dendrimer, the greater its ability to function as a phonon transport element. However, its ability to permeate the material and its percolation potential can be adversely affected by its size so optimal sizes are sought to achieve the balance of structure and properties required. Like other HTC materials, solvents can be added to the dendrimers so as to aid in their impregnation of a substrate, such as a mica or a glass tape. In many embodiments, dendrimers will be used with a variety of generations with a variety of different molecular groups.
  • Commercially available organic Dendrimer polymers include Polyamido-amine Dendrimers (PAMAM) and Polypropylene-imine Dendrimers (PPI) and PAMAM-OS which is a dendrimer with a PAMAM interior structure and organo-silicon exterior. The former two are available from Aldrich Chemical™ and the last one from Dow-Corning™.
  • Similar requirements exist for inorganic-organic dendrimers which may be reacted together or with matrix polymers or reactive resins to form a single material. In this case the surface of the dendrimer could contain reactive groups similar to those specified above which will either allow dendrimer-dendrimer, dendrimer-organic, dendrimer-hybrid, and dendrimer-HTC matrix reactions to occur. In this case the dendrimer will have an inorganic core and an organic shell, or vice-versa containing either organic or inorganic reactive groups or ligands of interest. It is therefore also possible to have an organic core with an inorganic shell which also contains reactive groups such as hydroxyl, silanol, vinyl-silane, epoxy-silane and other groupings which can participate in inorganic reactions similar to those involved in common sol-gel chemistries.
  • In all cases phonon transport is enhanced and phonon scattering reduced by ensuring the length scales of the structural elements are shorter than or commensurate with the phonon distribution responsible for thermal transport. Larger HTC particulate materials can actually increase phonon transport in their own right, however, smaller HTC materials can alter the nature of the resin matrix, thereby affect a change on the phonon scattering. This may be further assisted by using nano-particles whose matrices are known to exhibit high thermal conductivity and to ensure that the particle size and interface characteristics are sufficient to sustain this effect and also to satisfy the length scale requirements for reduced phonon scattering. It is also necessary to consider the choice of structures that are more highly ordered including reacted dendrimer lattices having both short and longer range periodicity and ladder or ordered network structures that may be formed from matrices such as liquid crystal epoxy resins and polybutadienes. A resin matrix of the prior art will have a maximum thermal conductivity of about 0.15 W/mK. The present invention provides resins with a thermal conductivity of 0.5 to 5 W/mK and even greater.
  • Continuous organic-inorganic hybrids may be formed by incorporating inorganic nano-particles in linear or crosslinked polymers and thermosetting resins in which nano-particles dimensions are of the order of or less than the polymer or network segmental length (typically 1 to 50 nm). This would include, but is not exclusive to three routes or mechanisms by which this can occur (i) side chain grafting, (ii) inclusive grafting e.g. between two polymer chain ends, (iii) cross-link grafting involving at least two and typically several polymer molecules. These inorganic nano-particles will contain reactive surfaces to form intimate covalently bonded hybrid organic-inorganic homogeneous materials. These nano-particles may be metal oxides, metal nitrides, and metal carbides, as well as some non-metal oxides, nitrides and carbides. For example, alumina, magnesium oxide and zinc oxide and other metal oxides, boron nitride and aluminum nitride and other metal nitrides, silicon carbide and other carbides, diamond of natural or synthetic origin, and any of the various physical forms of each type and other metal carbides and hybrid stoichiometric and non-stoichiometric mixed oxides, nitrides and carbides. More specific examples of these include Al2O3, AlN, MgO, ZnO, BeO, BN, Si3N4, SiC and SiO2 with mixed stoichiometric and non-stoichiometric combinations. Further, these nano-particles will be surface treated to introduce a variety of surface functional groups which are capable of participating in reactions with the host organic polymer or network. It is also possible to coat non-HTC materials, such as silica and other bulk filler materials, with an HTC material. This may be an option when more expensive HTC materials are used.
  • The volume percentage of the HTC materials in the resin may be up to approximately 60% or more by volume, and more particularly up to approximately 35% by volume. Higher volume filling tends to give higher structural stability to a matrix. However, with control of the size and shape distribution, degree of particle association and alignment the HTC materials can occupy as little as 1% by volume or less. Although, for structural stability reasons, it might be useful to add an amount greater than the minimum needed for percolation to occur. Therefore the resin can withstand physical strains and deformation without damaging the percolation structure and the HTC characteristics.
  • The addition of surface functional groups may include hydroxyl, carboxylic, amine, epoxide, silane or vinyl groups which will be available for chemical reaction with the host organic polymer or network forming resin system. These functional groups may be naturally present on the surface of inorganic fillers or they may be applied using wet chemical methods, non-equilibrium plasma deposition including plasma polymerization, chemical vapour and physical vapour deposition, laser beams, sputter ion plating and electron and ion beam evaporation methods. The matrix polymer or reactive resin may be any system which is compatible with the nano-particles and, if required, is able to react with the reactive groups introduced at the nano-particle surface. These may be epoxy, polyimide epoxy, liquid crystal epoxy, cyanate-ester and other low molecular weight polymers and resins with a variety of crosslinking agents.
  • In the case of non-discrete organic-inorganic hybrids it is possible to use sol-gel chemistry to form a continuous molecular alloy. In this case sol-gel chemistries involving aqueous and non-aqueous reactions may be considered.
  • The products of the present invention exhibit higher thermal conductivity than conventional electrically insulating materials and may be used as bonding resins in mica-glass tape constructions, as unreacted vacuum-pressure impregnation resins for conventional mica tape constructions and as stand alone materials to fulfill electrical insulation applications in rotating and static electrical power plant and in both high and low voltage electrical and electronic equipment, components and products. Products of the present invention may be combined with each other, as well as HTC-material, and other materials, of the prior art.
  • Micro and nano HTC particles may be selected on their ability to self aggregate into desired structural forms such as filaments and branched dendrites. Particles may be selected for their ability to self-assemble naturally, though this process may also be modified by external forces such as an electric field, magnetic field, sonics, ultra-sonics, pH control, use of surfactants and other methods to affect a change to the particle surface charge state, including charge distribution, of the particle. In a particular embodiment, particles such as boron nitride, aluminum nitride, diamond are made to self assemble into desired forms. In this manner, the desired aggregation structures can be made from highly thermally conductive materials at the outset or assembled during incorporation into the host matrix.
  • In many embodiments, the size and shape of the HTC-materials are varied within the same use. Ranges of size and shape are used in the same product. A variety of long and shorter variable aspect ratio HTC-materials will enhance the thermal conductivity of a resin matrix, as well as potentially provide enhanced physical properties and performance. One aspect that should be observed, however, is that the particle length does not get so long as to cause bridging between layers of substrate/insulation. Also, a variety of shapes and length will improve the percolation stability of the HTC-materials by providing a more uniform volume filing and packing density, resulting in a more homogeneous matrix. When mixing size and shapes, in one embodiment the longer particles are more rod-shaped, while the smaller particles are more spheroidal, platelet or discoid and even cuboids. For example a resin containing HTC-materials could contain about 55-65% by volume 10-50 nm diameter spheroids and about 15-25% by volume 10-50 μm length rods, with 10-30% volume resin.
  • In another embodiment the present invention provides for new electrical insulation materials based on organic-inorganic composites. The thermal conductivity is optimized without detrimentally affecting other insulation properties such as dielectric properties (permittivity and dielectric loss), electrical conductivity, electric strength and voltage endurance, thermal stability, tensile modulus, flexural modulus, impact strength and thermal endurance in addition to other factors such as viscoelastic characteristics and coefficient of thermal expansion, and overall insulation. Organic and inorganic phases are constructed and are selected to achieve an appropriate balance of properties and performance.
  • In one embodiment the surface coating of nano, meso and micro inorganic fillers having the desired shape and size distribution and the selected surface characteristics and bulk filler properties are complimentary to each other. This enables the percolation structure of the filler phase in the organic host and the interconnection properties to be controlled independently while maintaining required bulk properties. In addition organic and inorganic coatings, as singular or secondary coatings may be used to ensure compatibilisation of the particle surfaces with the organic matrix and allow chemical reactions to occur with the host organic matrix.
  • In regards to shape, the present invention utilizes individual particle shapes tending towards natural rods and platelets for enhanced percolation, with rods being the most preferred embodiment including synthetically processed materials in addition to those naturally formed. A rod is defined as a particle with a mean aspect ratio of approximately 5 or greater, with particular embodiments of 10 or greater, though with more particular embodiments of no greater than 100. In one embodiment, the axial length of the rods is approximately in the range 10 nm to 100 microns. Smaller rods will percolate a resin matrix better, and have less adverse effect on the viscosity of the resin.
  • Many micro and nano particles form spheroidal and discoid shapes, which have reduced ability to distribute evenly under certain conditions and so may lead to aggregated filamentary structures that reduce the concentration at which percolation occurs. By increasing the percolation, the thermal properties of the resin can be increased, or alternately, the amount of HTC material that needs to be added to the resin can be reduced. Also, the enhanced percolation results in a more even distribution of the HTC materials within the resin rather than agglomeration which is to be avoided, creating a more homogenous product that is less likely to have undesired interfaces, incomplete particle wetting and micro-void formation. Likewise aggregated filamentary or dendritic structures, rather than globular (dense) aggregates or agglomerates, formed from higher aspect ratio particles confer enhanced thermal conductivity.
  • Additionally, fluid flow fields and electric and magnetic fields can be applied to the HTC materials to distribute and structurally organize them inside of the epoxy resin. By using alternating or static electric fields, the rod and platelet shapes can be aligned on a micro-scale. This creates a material that has different thermal properties in different directions. The creation of an electric field may be accomplished by a variety of techniques known in the art, such as by attaching electrodes across an insulated electrical conductor or by use of a conductor in the centre of a material or the insulation system.
  • Organic surface coatings, and inorganic surface coatings such as, metal-oxide, -nitride, -carbide and mixed systems may be generated which, when combined with the selected particle size and shape distribution, provide a defined percolation structure with control of the bulk thermal and electrical conductivity of the insulation system while the particle permittivity may be chosen to control the permittivity of the system. Another type of coating is micro-particulate and- nano-particulate diamond coatings and of natural or synthetic origin. In poly-crystalline and mono-crystalline nano-particulate form, the particles may associate with the surface of a carrier particle, eg silica. Silica by itself is not a strong thermally conducting material, but with the addition of a surface coating it becomes more of a higher thermal conductivity material. Silica and other such materials, however, have beneficial properties such as being readily formed into rod-shaped particles, as discussed above. In this manner, various HTC properties can be combined into one product. These coatings may also have application to mica tape structures, including both the mica and the glass components, with or without resin impregnation.
  • Reactive surface functional groups may be formed from surface groups intrinsic to the inorganic coating or may be achieved by applying additional organic coatings both of which may include hydroxyl, carboxylic, amine, epoxide, silane, vinyl and other groups which will be available for chemical reaction with the host organic matrix. These single or multiple surface coatings and the surface functional groups may be applied using wet chemical methods, non-equilibrium plasma methods including plasma polymerization and chemical vapour and physical vapour deposition, laser beams, sputter ion plating and electron and ion beam evaporation methods.
  • In another embodiment the present invention provides for new electrical insulation systems based on organic-inorganic composites. The interface between the various inorganic and organic components is made to be chemically and physically intimate to ensure a high degree of physical continuity between the different phases and to provide interfaces which are mechanically strong and not prone to failure during the operation of the electrical insulation system in service in both high and low voltage applications. Such materials have applications in high voltage and low voltage electrical insulation situations where enhanced interfacial integrity would confer advantage in terms of enhanced power rating, higher voltage stressing of the insulation systems, reduced insulation thickness and would achieve high heat transfer.
  • A particular embodiment uses a variety of surface treatments, nano, meso and micro inorganic fillers, so as to introduce a variety of surface functional groups which are capable of compatibilizing the inorganic surface with respect to the organic matrix or to allow chemical reactions to occur with the host organic matrix. These surface functional groups may include hydroxyl, carboxylic, amine, epoxide, silane or vinyl groups which will be available for chemical reaction with the host organic matrix. These functional groups may be applied using wet chemical methods, non-equilibrium plasma methods, chemical vapour and physical vapour deposition, laser beams, sputter ion plating and electron and ion beam evaporation methods.
  • In many embodiments, the surface treated materials may be used in bonding resins in mica-glass tape constructions, in unreacted vacuum-pressure impregnation (GVPI &VPI) resins for conventional mica tape constructions and in stand alone electrical insulation coatings or bulk materials to fulfill either electrically insulating or conducting applications in rotating and static electrical power plant and in both high and low voltage electrical equipment, components and products. Also, all chemical reactions should be the result of addition, and not condensation reactions so as to avoid volatile by-products.
  • Improvements in epoxy resins have recently been made by using liquid crystal polymers. By mixing an epoxy resin with a liquid crystal monomer or by incorporating a liquid crystalline mesogen into an epoxy resin molecule such as DGEBA, a liquid crystal thermoset (LCT) epoxy resin is produced that contains polymers or monomers that can be cross-linked to form ordered networks having significantly improved mechanical properties. See U.S. Pat. No. 5,904,984, which is incorporated herein by reference. A further benefit of LCTs is that they also have improved thermal conductivity over standard epoxy resins, and lower coefficient of thermal expansion (CTE) values as well.
  • What makes LCT epoxy resins even more appealing is that they are also better able to conduct heat than a standard epoxy resin. U.S. Pat. No. 6,261,481, which is incorporated herein by reference, teaches that LCT epoxy resins can be produced with a thermal conductivity greater than that of conventional epoxy resins. For example, a standard Bisphenol A epoxy is shown to have thermal conductivity values of 0.18 to 0.24 wafts per meter degree Kelvin (W/mK) in both the transverse (plane) and thickness direction. By contrast, an LCT epoxy resin is shown to have a thermal conductivity value, when used in practical applications, of no more than 0.4 W/mK in the transverse direction and up to 0.9 W/mK in the thickness direction.
  • As used in reference to HTC materials being applied to paper, the term substrate refers to the host material that the insulating paper is formed from, while paper matrix refers to the more complete paper component made out of the substrate. These two terms may be used somewhat interchangeable when discussing this embodiment of the present invention. The increase of thermal conductivity should be accomplished without significantly impairing the electrical properties, such as dissipation factor, or the physical properties of the substrate, such as tensile strength and cohesive properties. The physical properties can even be improved in some embodiments, such as with surface coatings. In addition, in some embodiments the electrical resistivity of the host paper matrix can also be enhanced by the addition of HTC materials.
  • In addition to the standard mica (Muscovite,Phlogopite) that is typically used for electrical insulation there is also Biotite mica as well as several other Mica-like Alumino-Silicate materials such as Kaolinite, Halloysite, Montmorillonite and Chlorite. Montmorillonite has lattices in its structure which can be readily intercalated with HTC materials such as metal cations, organic compounds and monomers and polymers to give high dielectric strength composites.
  • Insulating papers are just one type of porous media that may be impregnated with the resin of the present invention. Many other materials and components made therefrom, in many industries, some of which are mentioned below, can use different types of porous media to impregnate the resin into. By way of examples there are glass fiber matrices or fabric, and polymer matrices or fabric, where the fabric might typically be cloth, matt, or felt. Circuit boards, which are glass fabric laminate, with planar lamination, will be one product which will benefit from the use of resins of the present invention.
  • Types of resin impregnation used with stator coils are known as VPI and GVPI. Tape is wrapped around the coil and then impregnated with low viscosity liquid insulation resin by vacuum-pressure impregnation (VPI). That process consists of evacuating a chamber containing the coil in order to remove air and moisture trapped in the mica tape, then introducing the insulation resin under pressure to impregnate the mica tape completely with resin thus eliminating voids, producing resinous insulation in a mica host. A compression of about 20% is particular to the VPI process in some embodiments. After this is completed, the coils are heated to cure the resin. The resin may contain an accelerator or the tape may have one in it. A variation of this, global VPI (GVPI) involves the process where dry insulated coils are wound, and then the whole stator is vacuum pressure impregnated rather than the individual coils. In the GVPI process, the coils are compressed prior to impregnation with the resin since the dry coils are inserted into their final position prior to impregnation. Although various compression methods have been discussed above, it is also possible to use the VPI/GVPI impregnating process for the actual compression stage of the present invention.
  • In one embodiment the present invention provides for a high thermal conductivity resin that comprises a host resin matrix containing a high thermal conductivity filler. The high thermal conductivity filler forms a continuous organic-inorganic composite with the host resin matrix, and the fillers have an aspect ratio of between 3-100. The fillers are substantially evenly distributed through the host resin matrix, and are aligned in essentially the same direction. In some embodiments the resins are highly structured resin types.
  • In a related embodiments, the fillers are from 1-1000 nm in length, and may be composed of materials such as diamond, Al2O3, AlN, MgO, ZnO, BeO, BN, Si3N4, SiC and SiO2. The fillers may have non-high thermal conductivity coatings, or they may be comprised on non-high thermal conductivity cores with HTC coatings.
  • In another embodiment the present invention provides for a method for making a thermal conductivity resin that comprises impregnating a host resin matrix with a high thermal conductivity filler and distributing the high thermal conductivity filler evenly through the resin matrix. Then aligning at least 75% of the high thermal conductivity fillers within 15 degrees of a common direction and curing or semi-curing the resin matrix. The high thermal conductivity fillers have an aspect ratio of between 3-100. In some embodiments, the filler forms a continuous organic-inorganic composite with the host resin matrix. In particular embodiments host resin matrix comprises a highly structured resin that is aligned uniformly with the high thermal conductivity filler.
  • In one embodiment the alignment is done by the self-alignment and aggregation of the high thermal conductivity fillers, and in another the alignment is done by the application of an external field. Examples of the external field include mechanical, electric, magnetic, sonic and ultrasonic. In some cases the fillers are first surface coated with field responsive materials, and in other cases field responsive fillers are coated with high thermal conductivity materials.
  • In yet another embodiment the present invention provides for a high thermal conductivity resin that comprises a host resin matrix and a high thermal conductivity filler. The high thermal conductivity filler forms a continuous organic-inorganic composite with the host resin matrix, and the high thermal conductivity fillers have an aspect ratio of between 3-100. The fillers are substantially evenly distributed through the host resin matrix, and the high thermal conductivity fillers form substructures within the host resin matrix. The substructures may be at least one of columns, layers and super lattices.
  • In a related embodiment, the high thermal conductivity fillers are at least one of oxides, nitrides and carbides. In another related embodiment the high thermal conductivity fillers contain at least one of metallic and organo-metallic compounds that are capable of responding to an external field.
  • In still another embodiment the present invention provides for a porous media impregnated with a high thermal conductivity resin that comprises a porous media and a high thermal conductivity material loaded resin. The high thermal conductivity material comprises 5-60% by volume of the resin, and the high thermal conductivity materials have aspect ratios of 10-50 and are aligned within the porous media in essential the same direction.
  • Although the present invention has been discussed primarily in use with electrical industries, the invention is equally applicable in other areas. Industries that need to increase heat transference would equally benefit from the present invention. For example, the energy, chemical, process and manufacturing industries, inclusive of oil and gas, and the automotive and aerospace industries. Other focuses of the present invention include power electronics, conventional electronics, and integrated circuits where the increasing requirement for enhanced density of components leads to the need to remove heat efficiently in local and large areas. Also, while specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the inventions which, is to be given the full breadth of the claims appended and any and all equivalents thereof.

Claims (18)

1. A high thermal conductivity resin comprising:
a host resin matrix; and
a high thermal conductivity filler;
wherein said high thermal conductivity filler forms a continuous organic-inorganic composite with said host resin matrix;
and wherein high thermal conductivity fillers have an aspect ratio of between 3-100;
wherein said high thermal conductivity fillers are substantially evenly distributed through said host resin matrix, and wherein said high thermal conductivity fillers are aligned in essentially the same direction.
2. The high thermal conductivity resin of claim 1, wherein said high thermal conductivity fillers are from 1-1000 nm in length.
3. The high thermal conductivity resin of claim 1, wherein said high thermal conductivity fillers are at least one of diamond, Al2O3, AlN, MgO, ZnO, BeO, BN, Si3N4, SiC and SiO2.
4. The high thermal conductivity resin of claim 1, wherein said high thermal conductivity fillers are surface coated onto a non-high thermal conductivity filler.
5. The high thermal conductivity resin of claim 1, where said resin is a highly structured resin.
6. A method for making a thermal conductivity resin comprising:
impregnating a host resin matrix with a high thermal conductivity filler;
distributing said high thermal conductivity filler evenly through said resin matrix;
aligning at least 75% of said high thermal conductivity fillers within 15 degrees of a common direction; and
curing said resin matrix;
wherein said high thermal conductivity fillers have an aspect ratio of between 3-100.
7. The method of claim 6, wherein said high thermal conductivity filler forms a continuous organic-inorganic composite with said host resin matrix.
8. The method of claim 6, wherein said high thermal conductivity fillers are from 1-1000 nm in length.
9. The method of claim 6, wherein the alignment is done by the self-alignment and aggregation of said high thermal conductivity fillers.
10. The method of claim 6, wherein the alignment is done by the application of an external field.
11. The method of claim 10, wherein said external field is one of mechanical, electric, magnetic, sonic and ultrasonic.
12. The method of claim 6, further comprising first surface coating said high thermal conductivity fillers with field responsive materials
13. The method of claim 6, further comprising coating field responsive fillers with high thermal conductivity coatings.
14. The method of claim 6, wherein said host resin matrix comprises a highly structured resin that is aligned uniformly with said high thermal conductivity filler.
15. A high thermal conductivity resin comprising:
a host resin matrix; and
a high thermal conductivity filler;
wherein said high thermal conductivity filler forms a continuous organic-inorganic composite with said host resin matrix;
and wherein said high thermal conductivity fillers have an aspect ratio of between 3-100;
wherein said high thermal conductivity fillers are substantially evenly distributed through said host resin matrix, and wherein said high thermal conductivity fillers form substructures within said host resin matrix;
wherein said substructures comprise at least one of columns, layers and super lattices.
16. The high thermal conductivity resin of claim 15, wherein said high thermal conductivity fillers are at least one of oxides, nitrides and carbides.
17. The high thermal conductivity resin of claim 15, wherein said high thermal conductivity fillers contain at least one of metallic and organo-metallic compounds that are capable of responding to an external field.
18. A porous media impregnated with a high thermal conductivity resin comprising:
a porous media; and
a high thermal conductivity material loaded resin, wherein said high thermal conductivity material comprises 5-60% by volume of said resin;
wherein said high thermal conductivity materials have aspect ratios of 10-50 and are aligned within said porous media in essential the same direction.
US11/152,985 2004-06-15 2005-06-14 High thermal conductivity materials aligned within resins Abandoned US20050277721A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/152,985 US20050277721A1 (en) 2004-06-15 2005-06-14 High thermal conductivity materials aligned within resins
JP2007516712A JP2008507594A (en) 2004-06-15 2005-06-15 High thermal conductivity material arranged in resin
KR1020067025148A KR101207775B1 (en) 2004-06-15 2005-06-15 High thermal conductivity materials aligned within resins
EP05790212.4A EP1766636B1 (en) 2004-06-15 2005-06-15 High thermal conductivity materials aligned within resins
PCT/US2005/021217 WO2005124790A2 (en) 2004-06-15 2005-06-15 High thermal conductivity materials aligned within resins
US13/349,900 US8685534B2 (en) 2004-06-15 2012-01-13 High thermal conductivity materials aligned within resins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US58002304P 2004-06-15 2004-06-15
US11/152,985 US20050277721A1 (en) 2004-06-15 2005-06-14 High thermal conductivity materials aligned within resins

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/349,900 Continuation US8685534B2 (en) 2004-06-15 2012-01-13 High thermal conductivity materials aligned within resins

Publications (1)

Publication Number Publication Date
US20050277721A1 true US20050277721A1 (en) 2005-12-15

Family

ID=35461350

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/152,985 Abandoned US20050277721A1 (en) 2004-06-15 2005-06-14 High thermal conductivity materials aligned within resins
US13/349,900 Expired - Fee Related US8685534B2 (en) 2004-06-15 2012-01-13 High thermal conductivity materials aligned within resins

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/349,900 Expired - Fee Related US8685534B2 (en) 2004-06-15 2012-01-13 High thermal conductivity materials aligned within resins

Country Status (1)

Country Link
US (2) US20050277721A1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050277351A1 (en) * 2004-06-15 2005-12-15 Siemens Westinghouse Power Corporation Structured resin systems with high thermal conductivity fillers
US20050274450A1 (en) * 2004-06-15 2005-12-15 Smith James B Compression of resin impregnated insulating tapes
US20060234576A1 (en) * 2005-04-15 2006-10-19 Siemens Power Generation, Inc. Patterning on surface with high thermal conductivity materials
US20060231201A1 (en) * 2005-04-15 2006-10-19 Siemens Power Generation, Inc. Composite insulation tape with loaded HTC materials
US20060280873A1 (en) * 2004-06-15 2006-12-14 Siemens Power Generation, Inc. Seeding of HTC fillers to form dendritic structures
US20060281380A1 (en) * 2005-06-14 2006-12-14 Siemens Power Generation, Inc. Seeding resins for enhancing the crystallinity of polymeric substructures
US20070026221A1 (en) * 2005-06-14 2007-02-01 Siemens Power Generation, Inc. Morphological forms of fillers for electrical insulation
US20080050580A1 (en) * 2004-06-15 2008-02-28 Stevens Gary C High Thermal Conductivity Mica Paper Tape
US20080066942A1 (en) * 2006-09-19 2008-03-20 Siemens Power Generation, Inc. High thermal conductivity dielectric tape
WO2008042076A2 (en) * 2006-09-28 2008-04-10 Siemens Energy, Inc. Nano and meso shell-core control of physical properties and performance of electrically insulating composites
US20080146716A1 (en) * 2006-12-14 2008-06-19 Ppg Industries Ohio, Inc. Organic-Inorganic Polymer Composites and their Preparation By Liquid Infusion
US7655295B2 (en) 2005-06-14 2010-02-02 Siemens Energy, Inc. Mix of grafted and non-grafted particles in a resin
US20100140222A1 (en) * 2008-12-10 2010-06-10 Sun Jennifer Y Filled polymer composition for etch chamber component
US7781063B2 (en) 2003-07-11 2010-08-24 Siemens Energy, Inc. High thermal conductivity materials with grafted surface functional groups
US7837817B2 (en) 2004-06-15 2010-11-23 Siemens Energy, Inc. Fabrics with high thermal conductivity coatings
US7846853B2 (en) 2005-04-15 2010-12-07 Siemens Energy, Inc. Multi-layered platelet structure
US20110127461A1 (en) * 2008-11-12 2011-06-02 Nitto Denko Corporation Thermally conductive composition and method for producing them
US7955661B2 (en) 2005-06-14 2011-06-07 Siemens Energy, Inc. Treatment of micropores in mica materials
US8039530B2 (en) 2003-07-11 2011-10-18 Siemens Energy, Inc. High thermal conductivity materials with grafted surface functional groups
WO2012076103A2 (en) 2010-12-10 2012-06-14 Voith Patent Gmbh Insulation system for a conductor of a high-voltage machine
DE102010054179A1 (en) * 2010-12-10 2012-06-14 Voith Patent Gmbh Insulation system for a conductor of a high voltage machine
US20120211480A1 (en) * 2011-02-23 2012-08-23 Yazaki Corporation Resin molded product
DE102011006680A1 (en) * 2011-04-01 2012-10-04 Aloys Wobben Core assembly
US8313832B2 (en) 2004-06-15 2012-11-20 Siemens Energy, Inc. Insulation paper with high thermal conductivity materials
US8357433B2 (en) 2005-06-14 2013-01-22 Siemens Energy, Inc. Polymer brushes
US20140061235A1 (en) * 2008-08-14 2014-03-06 Vladimir Ankudinov Package for paste-like products
US8685534B2 (en) 2004-06-15 2014-04-01 Siemens Energy, Inc. High thermal conductivity materials aligned within resins
WO2015017321A1 (en) * 2013-07-29 2015-02-05 University Of South Alabama Method for manufacturing nano-structurally aligned multi-scale composites
US20160059998A1 (en) * 2011-02-03 2016-03-03 Vladimir Ankudinov Package for paste-like products
CN113249009A (en) * 2021-05-08 2021-08-13 国网浙江省电力有限公司湖州供电公司 Efficient heat dissipation insulating coating for busbar and preparation method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110061891A1 (en) * 2009-04-10 2011-03-17 Rensselaer Polytechnic Institute Diblock copolymer modified nanoparticle-polymer nanocomposites for electrical insulation
DE102013204706A1 (en) * 2013-03-18 2014-09-18 Siemens Aktiengesellschaft Resistance lining for a DC insulation system
FR3035203B1 (en) 2015-04-16 2018-06-15 Valeo Vision HEAT DISSIPATING DEVICE FOR OPTICAL MODULE WITH HIGH THERMAL EFFICIENCY
US10123412B2 (en) 2016-01-28 2018-11-06 Rogers Corporation Thermosetting polymer formulations, circuit materials, and methods of use thereof
CN107523013B (en) * 2016-06-22 2020-01-17 鑫润昌电子有限公司 Resin composite material, preparation method and application thereof, heat conducting element and electric appliance

Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996106A (en) * 1957-03-13 1961-08-15 Synthetic Mica Corp Method of manufacturing inorganically bonded micaceous sheet
US3069302A (en) * 1955-06-13 1962-12-18 Westinghouse Electric Corp Insulated conductors and processes for producing them
US3207641A (en) * 1960-10-11 1965-09-21 Exxon Research Engineering Co Process for coating a reinforcing element with a polyfunctional monomer, applying a resinifiable mixture and laminating
US3427189A (en) * 1965-03-10 1969-02-11 Atomic Energy Commission Radiation resistant insulation
US3868613A (en) * 1971-10-14 1975-02-25 Westinghouse Electric Corp Solventless epoxy resin composition and an electrical member impregnated therewith
US3960803A (en) * 1973-06-22 1976-06-01 Westinghouse Electric Corporation Flexible nontacky prepreg for bonding coils in high voltage devices and method of making said prepreg
US4398476A (en) * 1980-09-19 1983-08-16 Shinryo Air Conditioning Co., Ltd. Method for incinerating sewage sludge
US4491618A (en) * 1980-11-08 1985-01-01 Hitachi Chemical Company, Ltd. Reconstituted mica materials, reconstituted mica prepreg materials, reconstituted mica products and insulated coils
US5106294A (en) * 1988-04-16 1992-04-21 Conel Ag Method and arrangement for reducing the effect of disturbances on the combustion of a fan burner system
US5225471A (en) * 1989-11-01 1993-07-06 Polyplastics, Co., Ltd. Filled thermoplastic resin compositions having an interpenetrating phase forming a three-dimensional network structure and melt-blending methods for forming the same
US5288769A (en) * 1991-03-27 1994-02-22 Motorola, Inc. Thermally conducting adhesive containing aluminum nitride
US5409968A (en) * 1992-11-06 1995-04-25 Minnesota Mining And Manufacturing Company Controlled conductivity antistatic articles
US5433906A (en) * 1993-07-09 1995-07-18 General Motors Corporation Composite of small carbon fibers and thermoplastics and method for making same
US5688382A (en) * 1994-03-01 1997-11-18 Applied Science And Technology, Inc. Microwave plasma deposition source and method of filling high aspect-ratio features on a substrate
US5710475A (en) * 1995-11-22 1998-01-20 General Electric Company Insulation of high thermal conductivity and apparatus containing same
US6103882A (en) * 1997-06-27 2000-08-15 Takeda Chemical Industries, Ltd. Method of producing a 19P2 ligand
US6162849A (en) * 1999-01-11 2000-12-19 Ferro Corporation Thermally conductive thermoplastic
US6251978B1 (en) * 1999-01-29 2001-06-26 Chip Coolers, Inc. Conductive composite material
US6313219B1 (en) * 1996-05-02 2001-11-06 Lucent Technologies, Inc. Method for hybrid inorganic/organic composite materials
US6369183B1 (en) * 1998-08-13 2002-04-09 Wm. Marsh Rice University Methods and materials for fabrication of alumoxane polymers
US6384152B2 (en) * 1999-07-19 2002-05-07 Siemens Westinghouse Power Corporation Insulating resin of epoxy resin, epoxy diluent, phenolic accelerator and organotin catalyst
US6426578B1 (en) * 1998-11-25 2002-07-30 Hitachi, Ltd. Electric rotating machine
US20020146562A1 (en) * 2001-02-08 2002-10-10 Showa Denko K.K. Electrical insulating vapor grown carbon fiber and method for producing the same, and use thereof
US6510059B2 (en) * 1999-12-17 2003-01-21 Matsushita Electric Industrial Co., Ltd. Conductive resin, electronic module using conductive resin, and method of manufacturing electronic module
US20030139510A1 (en) * 2001-11-13 2003-07-24 Sagal E. Mikhail Polymer compositions having high thermal conductivity and dielectric strength and molded packaging assemblies produced therefrom
US6620497B2 (en) * 2000-01-11 2003-09-16 Cool Options, Inc. Polymer composition with boron nitride coated carbon flakes
US20040000712A1 (en) * 2002-06-28 2004-01-01 Lord Corporation Interface adhesive
US20040102529A1 (en) * 2002-11-22 2004-05-27 Campbell John Robert Functionalized colloidal silica, dispersions and methods made thereby
US20040102597A1 (en) * 2002-11-27 2004-05-27 Masayuki Tobita Thermally-conductive epoxy resin molded article and method of manufacturing the same
US20040122153A1 (en) * 2002-12-20 2004-06-24 Hua Guo Thermoset composite composition, method, and article
US20050010014A1 (en) * 2003-07-11 2005-01-13 Siemens Westinghouse Power Corporation LCT-epoxy polymers with HTC-oligomers and method for making the same
US20050049350A1 (en) * 2003-08-25 2005-03-03 Sandeep Tonapi Thin bond-line silicone adhesive composition and method for preparing the same
US20050277351A1 (en) * 2004-06-15 2005-12-15 Siemens Westinghouse Power Corporation Structured resin systems with high thermal conductivity fillers
US20050276977A1 (en) * 2004-06-15 2005-12-15 Siemens Westinghouse Power Corporation Diamond like coating on nanofillers
US20050277349A1 (en) * 2004-06-15 2005-12-15 Siemens Westinghouse Power Corporation High thermal conductivity materials incorporated into resins
US20070026221A1 (en) * 2005-06-14 2007-02-01 Siemens Power Generation, Inc. Morphological forms of fillers for electrical insulation
US7189778B2 (en) * 2002-07-22 2007-03-13 Polymatech Co., Ltd. Thermally conductive polymer molded article and method for producing the same
US20070222307A1 (en) * 2005-09-29 2007-09-27 Fumio Sawa Mica tape, electrical rotating machine coil, and electrical rotating machine comprising the electrical rotating machine coil
US7294788B2 (en) * 2001-04-27 2007-11-13 Kabushiki Kaisha Toshiba Coil for electric rotating machine, and mica tape and mica sheet used for the coil insulation
US7547847B2 (en) * 2006-09-19 2009-06-16 Siemens Energy, Inc. High thermal conductivity dielectric tape
US20090238959A1 (en) * 2004-06-15 2009-09-24 Smith James D Fabrics with high thermal conductivity coatings

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB881036A (en) 1957-02-27 1961-11-01 Mc Graw Edison Co Improvements relating to insulated electrical conductors
US3246271A (en) 1965-04-16 1966-04-12 Westinghouse Electric Corp Paper insulation for transformers
JPS5232062B2 (en) 1972-12-25 1977-08-19
CA1016586A (en) 1974-02-18 1977-08-30 Hubert G. Panter Grounding of outer winding insulation to cores in dynamoelectric machines
US3974302A (en) 1974-11-26 1976-08-10 Westinghouse Electric Corporation Method of making patterned dry resin coated sheet insulation
CH579844A5 (en) 1974-12-04 1976-09-15 Bbc Brown Boveri & Cie
US4160926A (en) 1975-06-20 1979-07-10 The Epoxylite Corporation Materials and impregnating compositions for insulating electric machines
US4013987A (en) * 1975-08-22 1977-03-22 Westinghouse Electric Corporation Mica tape binder
US4760296A (en) 1979-07-30 1988-07-26 General Electric Company Corona-resistant insulation, electrical conductors covered therewith and dynamoelectric machines and transformers incorporating components of such insulated conductors
US4335367A (en) 1979-08-17 1982-06-15 Tokyo Shibaura Denki Kabushiki Kaisha Electrically insulated coil
US4361661A (en) 1980-05-22 1982-11-30 Western Electric Company, Incorporated Thermal backfill composition method
US4400226A (en) 1981-07-16 1983-08-23 General Electric Company Method of making an insulated electromagnetic coil
FR2517460A1 (en) 1981-12-02 1983-06-03 Alsthom Atlantique GUIPAGE TAPE FOR ELEMENTARY INSULATION OF CONDUCTORS
US4427740A (en) 1982-04-09 1984-01-24 Westinghouse Electric Corp. High maximum service temperature low cure temperature non-linear electrical grading coatings resistant to V.P.I. resins containing highly reactive components
DE3411473A1 (en) 1984-03-28 1985-10-10 Siemens AG, 1000 Berlin und 8000 München MOLDING AND COATING MEASURES
US4634911A (en) 1985-04-16 1987-01-06 Westinghouse Electric Corp. High voltage dynamoelectric machine with selectively increased coil turn-to-turn insulation strength
US4694064A (en) 1986-02-28 1987-09-15 The Dow Chemical Company Rod-shaped dendrimer
US4704322A (en) 1986-09-22 1987-11-03 Essex Group, Inc. Resin rich mica tape
SE455246B (en) 1986-10-22 1988-06-27 Asea Ab MANUFACTURER FOR SAVING IN A STATOR OR ROTOR IN AN ELECTRIC MACHINE AND MANUFACTURING A MANUFACTURING
US5011872A (en) 1987-12-21 1991-04-30 The Carborudum Company Thermally conductive ceramic/polymer composites
FI105605B (en) 1989-04-27 2000-09-15 Siemens Ag Planar dielectric
US5126192A (en) 1990-01-26 1992-06-30 International Business Machines Corporation Flame retardant, low dielectric constant microsphere filled laminate
US5352493A (en) 1991-05-03 1994-10-04 Veniamin Dorfman Method for forming diamond-like nanocomposite or doped-diamond-like nanocomposite films
US5490319A (en) 1992-01-29 1996-02-13 Ebara Corporation Thermotropic liquid crystal polymer composition and insulator
US5281388A (en) 1992-03-20 1994-01-25 Mcdonnell Douglas Corporation Resin impregnation process for producing a resin-fiber composite
DE4244298C2 (en) 1992-12-28 2003-02-27 Alstom Electrical tape and process for its manufacture
US5510174A (en) 1993-07-14 1996-04-23 Chomerics, Inc. Thermally conductive materials containing titanium diboride filler
US5578901A (en) 1994-02-14 1996-11-26 E. I. Du Pont De Nemours And Company Diamond fiber field emitters
US5723920A (en) 1994-10-12 1998-03-03 General Electric Company Stator bars internally graded with conductive binder tape
NL9500509A (en) 1995-03-14 1996-10-01 Vicair B V Support device such as, for example, a cushion.
US5801334A (en) 1995-08-24 1998-09-01 Theodorides; Demetrius C. Conductor (turn) insulation system for coils in high voltage machines
KR100465267B1 (en) 1995-12-01 2005-04-06 이.아이,듀우판드네모아앤드캄파니 Diamond-coated aramid fibers with improved mechanical properties and methods of making them
US5780119A (en) 1996-03-20 1998-07-14 Southwest Research Institute Treatments to reduce friction and wear on metal alloy components
US6130495A (en) 1996-05-15 2000-10-10 Siemens Aktiengesellschaft Supporting element for an electric winding, turbogenerator and method of producing a corona shield
JP3201262B2 (en) 1996-05-30 2001-08-20 株式会社日立製作所 Thermosetting resin composition, electric insulated wire loop, rotating electric machine, and method of manufacturing the same
US6344271B1 (en) 1998-11-06 2002-02-05 Nanoenergy Corporation Materials and products using nanostructured non-stoichiometric substances
US6255738B1 (en) 1996-09-30 2001-07-03 Tessera, Inc. Encapsulant for microelectronic devices
US5904984A (en) 1996-10-17 1999-05-18 Siemens Westinghouse Power Corporation Electrical insulation using liquid crystal thermoset epoxy resins
US6359232B1 (en) 1996-12-19 2002-03-19 General Electric Company Electrical insulating material and stator bar formed therewith
US5878620A (en) 1997-01-23 1999-03-09 Schlege Systems, Inc. Conductive fabric sensor for vehicle seats
US6103382A (en) 1997-03-14 2000-08-15 Siemens Westinghouse Power Corporation Catalyzed mica tapes for electrical insulation
US6160042A (en) 1997-05-01 2000-12-12 Edison Polymer Innovation Corporation Surface treated boron nitride for forming a low viscosity high thermal conductivity polymer based boron nitride composition and method
DE19720555A1 (en) 1997-05-16 1998-11-19 Abb Research Ltd Stator winding insulation
RU2114210C1 (en) 1997-05-30 1998-06-27 Валерий Павлович Гончаренко Process of formation of carbon diamond-like coat in vacuum
US6821672B2 (en) 1997-09-02 2004-11-23 Kvg Technologies, Inc. Mat of glass and other fibers and method for producing it
EP1029352A1 (en) 1997-11-13 2000-08-23 Bp Amoco Corporation Heat pipe thermal management apparatus
US6015597A (en) 1997-11-26 2000-01-18 3M Innovative Properties Company Method for coating diamond-like networks onto particles
US6265068B1 (en) 1997-11-26 2001-07-24 3M Innovative Properties Company Diamond-like carbon coatings on inorganic phosphors
US6130496A (en) 1997-12-18 2000-10-10 Mitsubishi Denki Kabushiki Kaisha Stator coil for rotary electric machine
US5938934A (en) 1998-01-13 1999-08-17 Dow Corning Corporation Dendrimer-based nanoscopic sponges and metal composites
US6153721A (en) 1998-02-26 2000-11-28 Honeywell International Inc. Preparation of polyindanebisphenols and polymers derived therefrom
JP3458693B2 (en) 1998-02-27 2003-10-20 株式会社日立製作所 Insulation and electric winding
US6288341B1 (en) 1998-02-27 2001-09-11 Hitachi, Ltd. Insulating material windings using same and a manufacturing method thereof
JP2002505249A (en) 1998-03-03 2002-02-19 ピーピージー インダストリーズ オハイオ, インコーポレイテッド Glass fiber strand coated with thermally conductive inorganic particles and articles containing the same
IL137977A0 (en) 1998-03-03 2001-10-31 Ppg Ind Ohio Inc Glass fiber-reinforced laminates, electronic circuit boards and methods for assembling a fabric
US6396864B1 (en) 1998-03-13 2002-05-28 Jds Uniphase Corporation Thermally conductive coatings for light emitting devices
DE69925528T2 (en) 1998-03-19 2006-01-26 Hitachi, Ltd. Thermally conductive, electrically non-conductive composition
DE19850826A1 (en) 1998-11-04 2000-05-11 Basf Ag Composite bodies suitable as separators in electrochemical cells
ATE464339T1 (en) 1999-02-16 2010-04-15 Dendritic Nanotechnologies Inc CORE-SHELL TECTODENDRIMERS
US6572935B1 (en) 1999-03-13 2003-06-03 The Regents Of The University Of California Optically transparent, scratch-resistant, diamond-like carbon coatings
US6238790B1 (en) 1999-05-26 2001-05-29 Siemens Westinghouse Power Corporation Superdielectric high voltage insulation for dynamoelectric machinery
EP1220240B1 (en) 1999-08-27 2009-11-25 Hitachi, Ltd. Insulating material, electric winding, and method of manufacture thereof
WO2001040537A1 (en) 1999-11-30 2001-06-07 The Regents Of The University Of California Method for producing fluorinated diamond-like carbon films
AU2001237064B2 (en) 2000-02-16 2005-11-17 Fullerene International Corporation Diamond/carbon nanotube structures for efficient electron field emission
US6190775B1 (en) 2000-02-24 2001-02-20 Siemens Westinghouse Power Corporation Enhanced dielectric strength mica tapes
TW555794B (en) 2000-02-29 2003-10-01 Shinetsu Chemical Co Method for the preparation of low specific gravity silicone rubber elastomers
WO2001068749A1 (en) 2000-03-16 2001-09-20 Ppg Industries Ohio, Inc. Impregnated glass fiber strands and products including the same
FR2808622B1 (en) 2000-05-04 2006-09-08 Bollore ELECTROCHEMICAL GENERATOR WITH POLYMERIC ELECTROLYTE COMPRISING FLUORINATED POLYMERS
US20020058140A1 (en) 2000-09-18 2002-05-16 Dana David E. Glass fiber coating for inhibiting conductive anodic filament formation in electronic supports
JP3662499B2 (en) 2001-01-17 2005-06-22 トヨタ自動車株式会社 Inorganic organic hybrid material
JP4665336B2 (en) 2001-04-26 2011-04-06 住友ベークライト株式会社 Epoxy resin composition manufacturing method and semiconductor device
US20030040563A1 (en) 2001-08-23 2003-02-27 Sagal E. Mikhail Substantially non-abrasive thermally conductive polymer composition containing boron nitride
CN1321232C (en) 2001-09-20 2007-06-13 昭和电工株式会社 Fine carbon fiber mixture and composition thereof
EP1300439A1 (en) 2001-09-26 2003-04-09 Abb Research Ltd. Filler and its use in isolating assemblies
WO2003040445A1 (en) 2001-11-07 2003-05-15 Showa Denko K.K. Fine carbon fiber, method for producing the same and use thereof
US6746758B2 (en) 2002-02-25 2004-06-08 Hitachi, Ltd. Insulating material and electric machine winding and method for manufacturing the same
AU2003225839A1 (en) 2002-03-15 2003-09-29 Nanomix. Inc. Modification of selectivity for sensing for nanostructure device arrays
US7524557B2 (en) 2002-07-04 2009-04-28 Kabushiki Kaisha Toshiba Highly heat conductive insulating member, method of manufacturing the same and electromagnetic device
DE60326072D1 (en) 2002-07-04 2009-03-19 Toshiba Kk INSULATING ELEMENT WITH HIGH THERMAL CONDUCTIVITY, PROCESS FOR THE PRODUCTION THEREOF, ELECTROMAGNETIC COIL AND ELECTROMAGNETIC DEVICE
JP2006509088A (en) 2002-12-10 2006-03-16 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Flakes like pigments based on aluminum
JP2004250665A (en) 2003-01-30 2004-09-09 Suzuka Fuji Xerox Co Ltd Heat-resistant and heat-conductive material
JP4068983B2 (en) 2003-02-13 2008-03-26 株式会社タイカ Thermally conductive sheet
JP2004256687A (en) 2003-02-26 2004-09-16 Polymatech Co Ltd Thermally conductive reaction-curing resin molding and its manufacturing method
US7013965B2 (en) 2003-04-29 2006-03-21 General Electric Company Organic matrices containing nanomaterials to enhance bulk thermal conductivity
JP3843967B2 (en) 2003-06-11 2006-11-08 三菱電機株式会社 Insulating coil manufacturing method
US7781063B2 (en) 2003-07-11 2010-08-24 Siemens Energy, Inc. High thermal conductivity materials with grafted surface functional groups
US7042346B2 (en) 2003-08-12 2006-05-09 Gaige Bradley Paulsen Radio frequency identification parts verification system and method for using same
US20050116336A1 (en) 2003-09-16 2005-06-02 Koila, Inc. Nano-composite materials for thermal management applications
US7255912B2 (en) 2003-09-23 2007-08-14 Eastman Kodak Company Antistatic conductive grid pattern with integral logo
JP4599063B2 (en) 2004-01-15 2010-12-15 株式会社東芝 Coil winding insulation tape
US20050236606A1 (en) 2004-04-26 2005-10-27 Certainteed Corporation Flame resistant fibrous insulation and methods of making the same
US7553438B2 (en) 2004-06-15 2009-06-30 Siemens Energy, Inc. Compression of resin impregnated insulating tapes
US20050277721A1 (en) 2004-06-15 2005-12-15 Siemens Westinghouse Power Corporation High thermal conductivity materials aligned within resins
US20080050580A1 (en) 2004-06-15 2008-02-28 Stevens Gary C High Thermal Conductivity Mica Paper Tape
WO2005124790A2 (en) 2004-06-15 2005-12-29 Siemens Power Generation, Inc. High thermal conductivity materials aligned within resins
US7776392B2 (en) 2005-04-15 2010-08-17 Siemens Energy, Inc. Composite insulation tape with loaded HTC materials
US7592045B2 (en) 2004-06-15 2009-09-22 Siemens Energy, Inc. Seeding of HTC fillers to form dendritic structures
US20050274774A1 (en) 2004-06-15 2005-12-15 Smith James D Insulation paper with high thermal conductivity materials
US7268293B2 (en) 2004-06-15 2007-09-11 Siemen Power Generation, Inc. Surface coating of lapped insulation tape
US7180409B2 (en) 2005-03-11 2007-02-20 Temic Automotive Of North America, Inc. Tire tread wear sensor system
US7651963B2 (en) 2005-04-15 2010-01-26 Siemens Energy, Inc. Patterning on surface with high thermal conductivity materials
US7846853B2 (en) 2005-04-15 2010-12-07 Siemens Energy, Inc. Multi-layered platelet structure
US20060234027A1 (en) 2005-04-18 2006-10-19 Huusken Robert W Fire retardant laminate
US8357433B2 (en) 2005-06-14 2013-01-22 Siemens Energy, Inc. Polymer brushes
US7955661B2 (en) 2005-06-14 2011-06-07 Siemens Energy, Inc. Treatment of micropores in mica materials
US7781057B2 (en) 2005-06-14 2010-08-24 Siemens Energy, Inc. Seeding resins for enhancing the crystallinity of polymeric substructures
US7655295B2 (en) 2005-06-14 2010-02-02 Siemens Energy, Inc. Mix of grafted and non-grafted particles in a resin

Patent Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3069302A (en) * 1955-06-13 1962-12-18 Westinghouse Electric Corp Insulated conductors and processes for producing them
US2996106A (en) * 1957-03-13 1961-08-15 Synthetic Mica Corp Method of manufacturing inorganically bonded micaceous sheet
US3207641A (en) * 1960-10-11 1965-09-21 Exxon Research Engineering Co Process for coating a reinforcing element with a polyfunctional monomer, applying a resinifiable mixture and laminating
US3427189A (en) * 1965-03-10 1969-02-11 Atomic Energy Commission Radiation resistant insulation
US3868613A (en) * 1971-10-14 1975-02-25 Westinghouse Electric Corp Solventless epoxy resin composition and an electrical member impregnated therewith
US3960803A (en) * 1973-06-22 1976-06-01 Westinghouse Electric Corporation Flexible nontacky prepreg for bonding coils in high voltage devices and method of making said prepreg
US4398476A (en) * 1980-09-19 1983-08-16 Shinryo Air Conditioning Co., Ltd. Method for incinerating sewage sludge
US4491618A (en) * 1980-11-08 1985-01-01 Hitachi Chemical Company, Ltd. Reconstituted mica materials, reconstituted mica prepreg materials, reconstituted mica products and insulated coils
US5106294A (en) * 1988-04-16 1992-04-21 Conel Ag Method and arrangement for reducing the effect of disturbances on the combustion of a fan burner system
US5225471A (en) * 1989-11-01 1993-07-06 Polyplastics, Co., Ltd. Filled thermoplastic resin compositions having an interpenetrating phase forming a three-dimensional network structure and melt-blending methods for forming the same
US5288769A (en) * 1991-03-27 1994-02-22 Motorola, Inc. Thermally conducting adhesive containing aluminum nitride
US5409968A (en) * 1992-11-06 1995-04-25 Minnesota Mining And Manufacturing Company Controlled conductivity antistatic articles
US5433906A (en) * 1993-07-09 1995-07-18 General Motors Corporation Composite of small carbon fibers and thermoplastics and method for making same
US5688382A (en) * 1994-03-01 1997-11-18 Applied Science And Technology, Inc. Microwave plasma deposition source and method of filling high aspect-ratio features on a substrate
US5710475A (en) * 1995-11-22 1998-01-20 General Electric Company Insulation of high thermal conductivity and apparatus containing same
US6313219B1 (en) * 1996-05-02 2001-11-06 Lucent Technologies, Inc. Method for hybrid inorganic/organic composite materials
US6103882A (en) * 1997-06-27 2000-08-15 Takeda Chemical Industries, Ltd. Method of producing a 19P2 ligand
US6369183B1 (en) * 1998-08-13 2002-04-09 Wm. Marsh Rice University Methods and materials for fabrication of alumoxane polymers
US6426578B1 (en) * 1998-11-25 2002-07-30 Hitachi, Ltd. Electric rotating machine
US6162849A (en) * 1999-01-11 2000-12-19 Ferro Corporation Thermally conductive thermoplastic
US6251978B1 (en) * 1999-01-29 2001-06-26 Chip Coolers, Inc. Conductive composite material
US6384152B2 (en) * 1999-07-19 2002-05-07 Siemens Westinghouse Power Corporation Insulating resin of epoxy resin, epoxy diluent, phenolic accelerator and organotin catalyst
US6510059B2 (en) * 1999-12-17 2003-01-21 Matsushita Electric Industrial Co., Ltd. Conductive resin, electronic module using conductive resin, and method of manufacturing electronic module
US6620497B2 (en) * 2000-01-11 2003-09-16 Cool Options, Inc. Polymer composition with boron nitride coated carbon flakes
US20020146562A1 (en) * 2001-02-08 2002-10-10 Showa Denko K.K. Electrical insulating vapor grown carbon fiber and method for producing the same, and use thereof
US7294788B2 (en) * 2001-04-27 2007-11-13 Kabushiki Kaisha Toshiba Coil for electric rotating machine, and mica tape and mica sheet used for the coil insulation
US20030139510A1 (en) * 2001-11-13 2003-07-24 Sagal E. Mikhail Polymer compositions having high thermal conductivity and dielectric strength and molded packaging assemblies produced therefrom
US20040000712A1 (en) * 2002-06-28 2004-01-01 Lord Corporation Interface adhesive
US7189778B2 (en) * 2002-07-22 2007-03-13 Polymatech Co., Ltd. Thermally conductive polymer molded article and method for producing the same
US20040102529A1 (en) * 2002-11-22 2004-05-27 Campbell John Robert Functionalized colloidal silica, dispersions and methods made thereby
US20040102597A1 (en) * 2002-11-27 2004-05-27 Masayuki Tobita Thermally-conductive epoxy resin molded article and method of manufacturing the same
US20040122153A1 (en) * 2002-12-20 2004-06-24 Hua Guo Thermoset composite composition, method, and article
US20050010014A1 (en) * 2003-07-11 2005-01-13 Siemens Westinghouse Power Corporation LCT-epoxy polymers with HTC-oligomers and method for making the same
US20050049350A1 (en) * 2003-08-25 2005-03-03 Sandeep Tonapi Thin bond-line silicone adhesive composition and method for preparing the same
US20050276977A1 (en) * 2004-06-15 2005-12-15 Siemens Westinghouse Power Corporation Diamond like coating on nanofillers
US20050277349A1 (en) * 2004-06-15 2005-12-15 Siemens Westinghouse Power Corporation High thermal conductivity materials incorporated into resins
US20050277351A1 (en) * 2004-06-15 2005-12-15 Siemens Westinghouse Power Corporation Structured resin systems with high thermal conductivity fillers
US20090238959A1 (en) * 2004-06-15 2009-09-24 Smith James D Fabrics with high thermal conductivity coatings
US20070026221A1 (en) * 2005-06-14 2007-02-01 Siemens Power Generation, Inc. Morphological forms of fillers for electrical insulation
US20070222307A1 (en) * 2005-09-29 2007-09-27 Fumio Sawa Mica tape, electrical rotating machine coil, and electrical rotating machine comprising the electrical rotating machine coil
US7547847B2 (en) * 2006-09-19 2009-06-16 Siemens Energy, Inc. High thermal conductivity dielectric tape

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781063B2 (en) 2003-07-11 2010-08-24 Siemens Energy, Inc. High thermal conductivity materials with grafted surface functional groups
US8039530B2 (en) 2003-07-11 2011-10-18 Siemens Energy, Inc. High thermal conductivity materials with grafted surface functional groups
US7553438B2 (en) 2004-06-15 2009-06-30 Siemens Energy, Inc. Compression of resin impregnated insulating tapes
US20050274450A1 (en) * 2004-06-15 2005-12-15 Smith James B Compression of resin impregnated insulating tapes
US7592045B2 (en) 2004-06-15 2009-09-22 Siemens Energy, Inc. Seeding of HTC fillers to form dendritic structures
US20060280873A1 (en) * 2004-06-15 2006-12-14 Siemens Power Generation, Inc. Seeding of HTC fillers to form dendritic structures
US8685534B2 (en) 2004-06-15 2014-04-01 Siemens Energy, Inc. High thermal conductivity materials aligned within resins
US8313832B2 (en) 2004-06-15 2012-11-20 Siemens Energy, Inc. Insulation paper with high thermal conductivity materials
US20080050580A1 (en) * 2004-06-15 2008-02-28 Stevens Gary C High Thermal Conductivity Mica Paper Tape
US7837817B2 (en) 2004-06-15 2010-11-23 Siemens Energy, Inc. Fabrics with high thermal conductivity coatings
US8216672B2 (en) 2004-06-15 2012-07-10 Siemens Energy, Inc. Structured resin systems with high thermal conductivity fillers
US20050277351A1 (en) * 2004-06-15 2005-12-15 Siemens Westinghouse Power Corporation Structured resin systems with high thermal conductivity fillers
US8277613B2 (en) 2005-04-15 2012-10-02 Siemens Energy, Inc. Patterning on surface with high thermal conductivity materials
US7846853B2 (en) 2005-04-15 2010-12-07 Siemens Energy, Inc. Multi-layered platelet structure
US7776392B2 (en) 2005-04-15 2010-08-17 Siemens Energy, Inc. Composite insulation tape with loaded HTC materials
US20060231201A1 (en) * 2005-04-15 2006-10-19 Siemens Power Generation, Inc. Composite insulation tape with loaded HTC materials
US7651963B2 (en) 2005-04-15 2010-01-26 Siemens Energy, Inc. Patterning on surface with high thermal conductivity materials
US20060234576A1 (en) * 2005-04-15 2006-10-19 Siemens Power Generation, Inc. Patterning on surface with high thermal conductivity materials
US7851059B2 (en) 2005-06-14 2010-12-14 Siemens Energy, Inc. Nano and meso shell-core control of physical properties and performance of electrically insulating composites
US7781057B2 (en) 2005-06-14 2010-08-24 Siemens Energy, Inc. Seeding resins for enhancing the crystallinity of polymeric substructures
US7655295B2 (en) 2005-06-14 2010-02-02 Siemens Energy, Inc. Mix of grafted and non-grafted particles in a resin
US20060281380A1 (en) * 2005-06-14 2006-12-14 Siemens Power Generation, Inc. Seeding resins for enhancing the crystallinity of polymeric substructures
US8383007B2 (en) 2005-06-14 2013-02-26 Siemens Energy, Inc. Seeding resins for enhancing the crystallinity of polymeric substructures
US7955661B2 (en) 2005-06-14 2011-06-07 Siemens Energy, Inc. Treatment of micropores in mica materials
US8357433B2 (en) 2005-06-14 2013-01-22 Siemens Energy, Inc. Polymer brushes
US20070026221A1 (en) * 2005-06-14 2007-02-01 Siemens Power Generation, Inc. Morphological forms of fillers for electrical insulation
EP2002055B2 (en) 2006-04-03 2014-03-19 Siemens Energy, Inc. Patterning on surface with high thermal conductivity materials
US20080066942A1 (en) * 2006-09-19 2008-03-20 Siemens Power Generation, Inc. High thermal conductivity dielectric tape
US7547847B2 (en) 2006-09-19 2009-06-16 Siemens Energy, Inc. High thermal conductivity dielectric tape
WO2008042076A2 (en) * 2006-09-28 2008-04-10 Siemens Energy, Inc. Nano and meso shell-core control of physical properties and performance of electrically insulating composites
KR101124100B1 (en) 2006-09-28 2012-03-21 지멘스 에너지, 인코포레이티드 Nano and Meso Shell Core Control of Physical Properties and Performance of Electrical Insulating Composites
WO2008042076A3 (en) * 2006-09-28 2008-05-22 Siemens Power Generation Inc Nano and meso shell-core control of physical properties and performance of electrically insulating composites
US7589141B2 (en) * 2006-12-14 2009-09-15 Ppg Industries Ohio, Inc. Organic-inorganic polymer composites and their preparation by liquid infusion
US20080146716A1 (en) * 2006-12-14 2008-06-19 Ppg Industries Ohio, Inc. Organic-Inorganic Polymer Composites and their Preparation By Liquid Infusion
US20140061235A1 (en) * 2008-08-14 2014-03-06 Vladimir Ankudinov Package for paste-like products
US20110127461A1 (en) * 2008-11-12 2011-06-02 Nitto Denko Corporation Thermally conductive composition and method for producing them
CN102245689B (en) * 2008-12-10 2014-04-02 应用材料公司 Filled polymer composition for etch chamber component
US20100140222A1 (en) * 2008-12-10 2010-06-10 Sun Jennifer Y Filled polymer composition for etch chamber component
CN103497457A (en) * 2008-12-10 2014-01-08 应用材料公司 Filled polymer composition for etch chamber component
WO2012076103A2 (en) 2010-12-10 2012-06-14 Voith Patent Gmbh Insulation system for a conductor of a high-voltage machine
DE102010054181A1 (en) * 2010-12-10 2012-06-14 Voith Patent Gmbh Insulation system for a conductor of a high voltage machine
WO2012076102A2 (en) 2010-12-10 2012-06-14 Voith Patent Gmbh Insulation system for a conductor of a high-voltage machine
DE102010054179A1 (en) * 2010-12-10 2012-06-14 Voith Patent Gmbh Insulation system for a conductor of a high voltage machine
US20160059998A1 (en) * 2011-02-03 2016-03-03 Vladimir Ankudinov Package for paste-like products
US20120211480A1 (en) * 2011-02-23 2012-08-23 Yazaki Corporation Resin molded product
US9224567B2 (en) * 2011-02-23 2015-12-29 Yazaki Corporation Resin molded product
DE102011006680A1 (en) * 2011-04-01 2012-10-04 Aloys Wobben Core assembly
WO2015017321A1 (en) * 2013-07-29 2015-02-05 University Of South Alabama Method for manufacturing nano-structurally aligned multi-scale composites
US10066065B2 (en) 2013-07-29 2018-09-04 The University Of South Alabama Method for manufacturing nano-structurally aligned multi-scale composites
CN113249009A (en) * 2021-05-08 2021-08-13 国网浙江省电力有限公司湖州供电公司 Efficient heat dissipation insulating coating for busbar and preparation method

Also Published As

Publication number Publication date
US8685534B2 (en) 2014-04-01
US20120118612A1 (en) 2012-05-17

Similar Documents

Publication Publication Date Title
US8685534B2 (en) High thermal conductivity materials aligned within resins
EP1766636B1 (en) High thermal conductivity materials aligned within resins
US8216672B2 (en) Structured resin systems with high thermal conductivity fillers
US7781063B2 (en) High thermal conductivity materials with grafted surface functional groups
US8039530B2 (en) High thermal conductivity materials with grafted surface functional groups
US7592045B2 (en) Seeding of HTC fillers to form dendritic structures
US7655295B2 (en) Mix of grafted and non-grafted particles in a resin
US8030818B2 (en) Stator coil with improved heat dissipation
JP5108511B2 (en) High thermal conductivity material incorporated in resin
US7553438B2 (en) Compression of resin impregnated insulating tapes
US20070026221A1 (en) Morphological forms of fillers for electrical insulation

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS WESTINGHOUSE POWER CORPORATION, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STEVENS, GARY;SURREY, UNIVERSITY OF;SMITH, JAMES DAVID BLACKHALL;AND OTHERS;REEL/FRAME:016704/0984;SIGNING DATES FROM 20050607 TO 20050613

AS Assignment

Owner name: SIEMENS POWER GENERATION, INC.,FLORIDA

Free format text: CHANGE OF NAME;ASSIGNOR:SIEMENS WESTINGHOUSE POWER CORPORATION;REEL/FRAME:017000/0120

Effective date: 20050801

Owner name: SIEMENS POWER GENERATION, INC., FLORIDA

Free format text: CHANGE OF NAME;ASSIGNOR:SIEMENS WESTINGHOUSE POWER CORPORATION;REEL/FRAME:017000/0120

Effective date: 20050801

AS Assignment

Owner name: SIEMENS ENERGY, INC., FLORIDA

Free format text: CHANGE OF NAME;ASSIGNOR:SIEMENS POWER GENERATION, INC.;REEL/FRAME:022488/0630

Effective date: 20081001

Owner name: SIEMENS ENERGY, INC.,FLORIDA

Free format text: CHANGE OF NAME;ASSIGNOR:SIEMENS POWER GENERATION, INC.;REEL/FRAME:022488/0630

Effective date: 20081001

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION