WO2001044342A1 - Sealing agent for liquid-crystal display cell, composition for sealing agent for liquid-crystal display cell, and liquid-crystal display element - Google Patents

Sealing agent for liquid-crystal display cell, composition for sealing agent for liquid-crystal display cell, and liquid-crystal display element Download PDF

Info

Publication number
WO2001044342A1
WO2001044342A1 PCT/JP2000/008814 JP0008814W WO0144342A1 WO 2001044342 A1 WO2001044342 A1 WO 2001044342A1 JP 0008814 W JP0008814 W JP 0008814W WO 0144342 A1 WO0144342 A1 WO 0144342A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
composition
sealant
display cell
Prior art date
Application number
PCT/JP2000/008814
Other languages
English (en)
French (fr)
Inventor
Tadashi Kitamura
Sunao Maeda
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to KR1020017010352A priority Critical patent/KR20010102160A/ko
Priority to EP00981684A priority patent/EP1153952A4/en
Publication of WO2001044342A1 publication Critical patent/WO2001044342A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Liquid crystal display cell sealant composition for liquid crystal display cell sealant, and liquid crystal display element
  • the present invention relates to a liquid crystal display cell sealant, a liquid crystal display cell sealant composition, a liquid crystal display element, and a method for producing the same.
  • liquid crystal display panels having the characteristics of light weight and thin type have been widely used as display panels of various devices including personal computers.
  • the usage environment is becoming severer, and large, uniform and high-quality liquid crystal display devices are desired.
  • a composition for a liquid crystal display cell sealant is a liquid crystal sealed between a transparent glass substrate or a transparent plastic substrate on which an important transparent electrode or an alignment film is appropriately disposed as a component of the liquid crystal display cell.
  • a thermosetting resin used to form cells that are sealed to prevent leakage to the outside refers to a cured product of the liquid crystal display cell sealant composition.
  • thermosetting liquid crystal display cell sealant composition for example, a one-component thermosetting liquid crystal display cell sealant composition comprising an epoxy resin base material and a dihydrazide-based curing agent appropriately containing a solvent is proposed.
  • a one-component thermosetting liquid crystal display cell sealant composition comprising an epoxy resin base material and a dihydrazide-based curing agent appropriately containing a solvent is proposed.
  • These compositions satisfy the basic performances related to the sealing properties of liquid crystal cells, such as adhesive sealability under normal conditions, heat resistance, electrical insulation, and non-contamination of liquid crystal.
  • a high-quality and high-durability liquid crystal display cell sealant composition that can further improve the display quality of liquid crystal display devices. That is, in recent years, a liquid crystal display device having particularly high quality and excellent durability has been required.
  • the emergence of a composition for a liquid crystal display cell sealant that is compatible with a method of manufacturing a liquid crystal display element by a single-wafer hot-press bonding method is also eagerly desired.
  • the high quality means that the display function is high-definition, there is no display disturbance, and the display function is secured up to the vicinity of the seal.
  • durability means that the display element can be secured for a long period of time even in an environment where the display function is severe.
  • composition for a liquid crystal display cell sealant More specifically, it is possible to manufacture liquid crystal display panels that maintain stable liquid crystal display element functions for a long time even in a high-temperature, high-humidity environment.
  • the composition for sealants that can be used with any of the hot press and heat bonding methods, especially the cured product of the composition for sealants is rich in low water absorption and has a low free ion concentration derived from the composition, it is cured.
  • a novel liquid crystal display cell sealant composition that is rich in water vapor gas barrier properties (low moisture permeability), high in rigidity and high in toughness, excellent in adhesive seal durability, liquid crystal non-contamination, and especially excellent in dimensional stability.
  • a method for manufacturing a liquid crystal display element using the composition for a liquid crystal display cell sealant In order to do so, it is necessary to investigate the properties essential for a highly durable liquid crystal display cell sealant. Is required. Disclosure of the invention
  • a sealant for a liquid crystal display element comprising a cured product of a composition for a liquid crystal display cell sealant, wherein the cured product has a water absorption of 2% by mass or less.
  • a composition for a liquid crystal display cell sealant comprising a curing accelerator comprising a seed.
  • composition for a liquid crystal display cell sealant according to the above (6) comprising 0.1 to 20 parts by mass of a curing accelerator comprising at least one selected from an alkyl urea derivative and a phosphazene compound.
  • the aqueous solution obtained by mixing the composition with the same mass of pure water has an ion conductivity of 1
  • the specific resistance of the liquid crystal after contacting for 145, 1 hour is 250 times or less the specific resistance of the liquid crystal before the contact.
  • the rubber-like polymer particles having a softening point temperature of 0 "C or less and an average primary particle size of 5 m or less are 1 to 25% by mass in the composition for a liquid crystal display cell sealant.
  • the curing agent is a phenol nopolak resin, a phenol aralkyl resin, a naphthol nopolak resin, a naphthol aralkyl resin, an 11-ring compound-modified phenol nopolak resin, an alicyclic compound-modified naphthol nopolak resin, Polycyclic aromatic compound-modified nopolak resin, polyhydric phenol monomer, polyvinylphenol, vinylphenol copolymer, polyisopropenylphenol, polyisopropenylphenol copolymer, esterified phenol nopolak resin, esterified phenol aralkyl Resin, esterified naphthol nopolak resin, esterified naphthol aralkyl resin, esterified alicyclic compound modified phenol nopolak resin, esterified alicyclic compound modified naphthol novolak resin, esterified polycyclic aromatic compound Novolac resins, esterified polyhydric phenols monomer, esterified Poribin
  • the alkyl urea derivative is 3_ (p-chlorophenyl) -1,1-dimethylurine, 3- ( ⁇ , ⁇ -dichlorophenyl) -1,1-dimethylurea, 2,4- [Bis (1,1-dimethylurea)] toluene> 2,6_ [bis (1,1-dimethylurea)] toluene is at least one member selected from the group consisting of (6) and (7).
  • Composition for liquid crystal display cell sealant is 3_ (p-chlorophenyl) -1,1-dimethylurine, 3- ( ⁇ , ⁇ -dichlorophenyl) -1,1-dimethylurea, 2,4- [Bis (1,1-dimethylurea)] toluene> 2,6_ [bis (1,1-dimethylurea)] toluene is at least one member selected from the group consisting of (6) and (7).
  • Composition for liquid crystal display cell sealant
  • R a to R f represent a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, or an aryl or aralkyl group having 6 to 10 carbon atoms, all of which are the same) Or different.
  • a composition for a liquid crystal display cell sealant further comprising 1 to 15 parts by mass of conductive beads with respect to 100 parts by mass of the composition according to (6) or (7).
  • a liquid crystal display device obtained by using the composition for a liquid crystal display cell sealant according to any one of (6) to (16).
  • liquid crystal display cell sealant according to any one of (6) to (16) above, wherein the liquid crystal display element is manufactured using any of TN liquid crystal, STN liquid crystal, ferroelectric liquid crystal, and antiferroelectric liquid crystal.
  • Glass composition or plastic substrate for liquid crystal cell After printing or dispensing on the bonding seal components, pre-curing at a temperature of 50 to 120 ° C, aligning the other substrate and superimposing it, and temporarily fixing the substrate to 80 to Heat-pressing at 200 ° C, bonding and fixing the substrate to a uniform thickness in the range of 1 to 7 m to create a liquid crystal display cell, injecting liquid crystal material into the cell, and photo-curing the injection hole
  • a method for producing a liquid crystal display device characterized in that pores are sealed with a liquid crystal sealant composition or a two-liquid crystal sealant composition.
  • Print or dispense the composition for bonding on the glass or plastic liquid crystal cell substrate for liquid crystal cell pre-cure at a temperature of 50 to 120, then drop the liquid crystal to prevent air from being trapped.
  • the substrates are overlapped, aligned and temporarily fixed, the substrates are hot-pressed at 80 to 150, and the substrates are bonded and fixed to a uniform thickness in the range of 1 to 7 im.
  • the sealant for a liquid crystal display cell of the present invention is a sealant for a liquid crystal display element, and is (a) a sealant for a liquid crystal display cell in which the cured product has a water absorption of 2% by mass or less.
  • the water absorption is a water absorption expressed as a weight gain after the liquid crystal display cell sealant is immersed in boiling water for 30 minutes.
  • the moisture permeability per unit is obtained by the following conversion formula.
  • Moisture permeability measured moisture permeability X [film thickness of sample (m) / 100] More preferably,
  • the sealant for a liquid crystal display cell of the present invention has the above property (a), and preferably one or two properties selected from (mouth) and (c) are simultaneously secured.
  • a liquid crystal display cell sealant comprising:
  • the sealant for liquid crystal display cells of the present invention it is extremely important that the cured product has a water absorption of 2% by mass or less after being immersed in boiling water for 30 minutes. This is because the liquid crystal display element obtained by doing so can maintain a high display quality for a long time even when used in a severe environment of high temperature and high humidity.
  • the cured product of the composition for a liquid crystal display cell sealant of the present invention has the property (a) described above.
  • the sealing agent for liquid crystal display cells of the present invention preferably has a water absorption of less than 1.7% by mass, more preferably less than 1.3% by mass, particularly preferably 0% after 30 minutes of immersion of the cured product in boiling water. It is desirably less than 6% by mass.
  • the sealant for a liquid crystal display cell of the present invention in addition to the above (a), (mouth) water vapor permeation amount for 24 hours under an environment of 80 and 95% relative humidity passing through a cured film having a thickness of 100 m. More preferably, the water vapor permeability at 80 ° C. represented by the following formula is 200 g / m 2 ⁇ 24 hrs or less.
  • moisture permeability is 100 g / m 2 ⁇ 24 hrs or less, particularly preferably 5 g / m 2 ⁇ 24 hrs or less. 0 g / m 2 ⁇ 24 hrs or less.
  • the sealant for a liquid crystal display cell of the present invention in addition to the above (a), (a) and (port), (8) 0.1 part by mass of the liquid crystal display cell sealant and 1 part by mass of the liquid crystal.
  • the specific resistance value of the liquid crystal after contacting at 145 ° C. for one hour is 250 times or less the specific resistance value of the liquid crystal before contact. This is because long-term display reliability of the obtained liquid crystal display element can be ensured. More preferably, it is 100 times or less, even more preferably 50 times or less.
  • an epoxy resin is cured with a curing agent composed of a polyvalent phenol compound, a polyvalent phenol resin, and an ester thereof.
  • the composition be cured using at least one curing accelerator selected from an alkyl urea derivative and a phosphazene compound.
  • the sealant for a liquid crystal display cell of the present invention in addition to the above-mentioned properties (a) to (8), at least one or two or more selected from the following (2) to (g): It is particularly preferable that the sealant for a liquid crystal display cell also has properties.
  • the glass transition temperature (T g) is 85 or more.
  • thermomechanical analyzer (E) The coefficient of linear expansion from 0 to 80 obtained from the thermomechanical analyzer (TMA) is 9 X 10— thing.
  • the glass transition temperature (T g) determined by a thermomechanical analyzer (TMA) is 85 ° C or higher. This is preferable because the obtained liquid crystal display element can secure and improve long-term display quality stability in a high temperature range exceeding 6 Ot :. More preferably, T g is 90 or more, and particularly preferably, T g is in the range of 100 to 18 Ot :. If the coefficient of linear expansion from 0 to 80 ° C obtained from a thermomechanical analyzer (TMA) is 9 ⁇ 10—Smm / mmZ or less, the dimensional stability of the obtained liquid crystal display element and, consequently, the gap width stability It is preferable because the property can be secured. It is more preferably less than 7 ⁇ 10 5 mmZmm / t, particularly preferably less than 5 ⁇ 10 5 S mm / mm //.
  • the 1 0 0 to 1 5 0 ° C the storage modulus determined from dynamic viscoelasticity measurement is in the range of 1 X 1 0 5 to 1 X 1 0 8 P a, reservoir modulus 1 if X 1 0 5 P a or obtained liquid crystal display device, for example 6 0 to 8 O t: the secured seal rigidity when it is further to high temperatures, preferred.
  • the wealth seal layer toughness in a 1 X 1 0 8 P a less and child, by force liquid crystal display device is obtained becomes excellent in high durability.
  • the cured product has a Shore hardness D of 7 at 20.
  • the liquid crystal display cell obtained thereby can secure a high level of shear adhesive strength.
  • the properties described in the above (2) to (g) are at least one selected from the above-mentioned epoxy resin, polyhydric phenolic compound, polyhydric phenolic resin and a curing agent composed of an ester thereof, an alkyl urea derivative and a phosphazene compound. This can be achieved by adding, if necessary, an inorganic filler and rubber-like polymer fine particles at a different quantitative ratio to the seed curing accelerator.
  • the composition for a liquid crystal display cell sealant of the present invention comprises: (1) a curing agent comprising at least one selected from an epoxy resin and (2) a polyhydric phenol compound, a polyhydric phenol resin and an ester thereof.
  • a composition for a liquid crystal display cell sealant comprising at least one curing accelerator selected from sphazene compounds.
  • curing accelerator selected from sphazene compounds.
  • inorganic fillers, silane coupling agents, rubber-like polymer fine particles, solvents, etc. can be added to improve primary adhesive sealability, non-contamination of liquid crystal, balance of toughness and heat resistance rigidity, etc.
  • cured products of thermosetting liquid crystal display cell sealant compositions that could not be achieved until now. Water absorption rate of 2% by mass or less in nature, and moisture permeability of 200 g / m at 80
  • composition for a liquid crystal display cell sealant of the present invention has a water absorption of 2.0% by mass or less, preferably less than 1.7% by mass after 30 minutes of immersion of the cured product in boiling water. This is because the liquid crystal display element obtained by doing so can maintain a high display quality for a long time even when used in a severe environment of high temperature and high humidity. Immersion of the cured product in boiling water
  • the water absorption after 30 minutes is more preferably less than 1.3% by mass, particularly preferably less than 0.6% by mass.
  • the cured film is expressed as a water vapor permeation amount for 24 hours under a 95% relative humidity environment at 80 which passes through a cured film having a thickness of 100 m. It is more preferable that the water vapor transmission rate be equal to or less than 200 g / m 2 ⁇ 24 hrs. By doing so, it is possible to secure the display quality and the effect of suppressing the reduction of the response speed in a high temperature and high humidity environment. More preferably, the water vapor transmission rate is 100 gZm 2 ⁇ 24 hrs or less, particularly preferably 50 g / m 2 ⁇ 24 hrs or less.
  • the ionic conductivity of an aqueous solution obtained by mixing the same mass of pure water is more preferably 10 mS Zm or less.
  • the ionic conductivity is more preferably at most 2 mSZm, particularly preferably at most 0.1 SmSZm.
  • the composition for a liquid crystal display cell sealant of the present invention has a cured product of the composition in a ratio of 0.1 part by mass to 1 part by mass of liquid crystal when contacted at 145 ° C. for 1 hour.
  • the specific resistance value of the liquid crystal is preferably 250 times or less the specific resistance value of the original liquid crystal (the specific resistance value of the liquid crystal after being treated for 144 hours), and the liquid crystal display obtained by doing so is preferable. This is preferable because the display reliability of the element can be ensured. It is more preferably 100 times or less, and most preferably 50 times or less.
  • the cured product has a glass transition temperature (T g) of 85 ° C. or more determined by TME (Termomechanical analyzer).
  • T g glass transition temperature
  • TME Terminal electromechanical analyzer
  • the coefficient of linear expansion from 0 to 80 obtained from the thermomechanical analyzer (TMA) of the cured product is 9 X 10 to 15 mmZmmZ: This is preferable because the dimensional stability of the obtained liquid crystal display element and, consequently, the gap width stability can be ensured. More preferably 7 X 1 0- 5 mmZmmZ ° C less than, particularly preferably 5 X 1 0- SmmZmm / t: less than.
  • a differential thermal peak curve of differential scanning calorimetry (DSC) obtained by heating 10 mg of the uncured composition at a constant rate of 5 at 5 min. It is preferable that the exothermic onset temperature obtained is in the range of 5 Ot: to 13 Ot :.
  • the heat generation start temperature is 50 ° C. or higher, viscosity stability when the obtained composition for a liquid crystal display cell sealant is handled near room temperature can be ensured. The low-temperature fast-curing property when applied to the hot press-type adhesive heating method can be secured.
  • a differential thermal peak curve of differential scanning calorimetry (DSC) obtained by heating 1 O mg of the uncured composition at a constant rate of 5 min / min. It is preferable that the maximum exothermic peak temperature thus obtained is 100 ° C to 180 ° C. New When the exothermic peak temperature is at least 100, the low-temperature quick-curing property when applied to the single-wafer hot-press type adhesive heating method can be secured. Can be prevented from becoming severe.
  • the cured product has a 20 X: Shore hardness D of 70 or more.
  • the liquid crystal display cell obtained by doing so can secure a high level of shear adhesive strength and is preferable.
  • 1 0 0-1 5 0 storage modulus 1 X 1 0 5 to 1 X 1 0 8 P obtained from the dynamic viscoelasticity measurement of the cured body is preferably in the range of a, reservoir modulus liquid crystal display device obtained if 1 X 1 0 5 P a or, for example Ichiru when exposed to a high temperature of 6 0-8 0 Tsuyoshi Nature can be secured. Further, it is preferable that the thickness be less than 1 ⁇ 10 8 Pa, since the seal layer is rich in toughness, and the obtained liquid crystal display element is excellent in high durability.
  • compositions for a liquid crystal display cell sealant include epoxy resins, polyphenol compounds, polyphenol resins and esters thereof.
  • Tg strongly depends on the type and amount ratio of the epoxy resin and the type and amount ratio of the above-mentioned curing agent, curing conditions and the like.
  • Shore hardness D strongly depends on the type and amount ratio of the epoxy resin, the type and amount ratio of the above-mentioned curing agent, hardening conditions, the filler amount ratio and the like.
  • the elastic modulus strongly depends on the type and amount ratio of the epoxy resin, the type and amount ratio of the above-mentioned curing agent, the amount ratio of rubber, the curing conditions and the like.
  • the coefficient of linear expansion strongly depends on the amount ratio of the inorganic filler and the curing conditions.
  • the composition for a liquid crystal display cell sealant of the present invention the so-called B-staged composition of 90 ° CE after heat treatment at 80 ° C. for 20 minutes when the composition is applied to a thickness of 50 m.
  • the mold viscosity is in the range of 5 to 1000 Pa ⁇ s.
  • the 90 E type viscosity of the B-staged composition exceeds 5 Pa ⁇ s
  • the generation of through bubbles can be suppressed at the time of single-wafer type hot press heat press bonding
  • 100 P A value of a ⁇ s or less is preferable since a desired gap control can be performed at the time of single-wafer hot press type heat press bonding. More preferably, it is in the range of 10 to 500 Pa ⁇ s, and particularly preferably, it is in the range of 20 to 100 Pa ⁇ s.
  • composition for a liquid crystal display cell sealant of the present invention preferably comprises a polyhydric phenol compound, a polyhydric phenol resin, and an esterified product thereof with respect to one equivalent of the epoxy group of the epoxy resin in order to satisfy the above properties.
  • the active phenolic hydroxyl group and Z or its ester-modified group of the stiffening agent are in the range of 0.5 to 1.2 equivalents, preferably 0.5 to 1.2 equivalents.
  • a curing agent is blended so as to have a range of 7 to 1.1 equivalents, particularly preferably 0.85 to 1 equivalent, and a curing accelerator comprising at least one selected from an alkyl urea derivative and a phosphazene compound. Is preferably in the range of 0.1 to 20% by mass, more preferably 0.1 to 10% by mass.
  • the most preferred composition for a liquid crystal display cell sealing agent of the present invention has a softening point temperature of 0 ° C. or less, and a rubber-like polymer fine particle having an average primary particle size of 5 im or less.
  • the composition contains 1 to 25% by mass of the composition.
  • composition for a liquid crystal display cell sealant of the present invention As a more preferred embodiment of the composition for a liquid crystal display cell sealant of the present invention,
  • a hardener comprising at least one selected from a polyhydric phenol compound, a polyhydric phenol resin and an ester thereof (hereinafter, simply referred to as a polyhydric phenol hardener) 10 to 50% by mass;
  • a hardening accelerator composed of at least one selected from an alkyl urea derivative and a phosphazene compound, 0.1 to 10% by mass
  • epoxy resin 2.0 to 83.8 mass%
  • composition for a liquid crystal display cell sealant containing the following.
  • composition for a liquid crystal display cell sealant of the present invention (7) it is further compatible with the epoxy resin and has a boiling point in the range of 150 to 220, if necessary, as long as the effect is not impaired.
  • a solvent inert to a certain epoxy group (8) high-softening point acryl polymer particles having a softening point temperature of 50 ° C or more and an average primary particle size of 2 m or less (hereinafter simply referred to as High-softening point polymer-fine particles), (9) Gear (10) Conductive beads, (11) Waxes, leveling agents, pigments, dyes, plasticizers, defoaming agents, and other sealants for liquid crystal display cells containing appropriate additives Compositions are also preferably included.
  • the components of the composition for a liquid crystal display cell sealant of the present invention will be specifically described below in order.
  • the epoxy resin (1) used in the present invention is not particularly limited, and a mixture of a monofunctional epoxy resin and a polyfunctional epoxy resin or a single or a mixture of polyfunctional epoxy resins can be used.
  • cresol nopolak One or two or more selected from the group consisting of a type epoxy resin, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a triphenylphenol type epoxy resin, and a triphenylphenol type epoxy resin can be used.
  • the mixture may be the same or different.
  • the epoxy resin preferably has a weight average of 1.7 or more epoxy groups in one molecule, more preferably has a weight average of 1.9 or more epoxy groups in one molecule, and particularly preferably has a weight average of 2.
  • the epoxy resin (1) when used alone or as a mixture of a plurality of types, preferably has an ionic conductivity of 1 OmSZm or less, more preferably 5 mS / m or less, more preferably ZmSZm or less, and particularly preferably within the measurement limit, thereby preventing the transfer of free ions to the liquid crystal phase when the cured composition for a liquid crystal display cell sealant of the present invention comes into contact with the liquid crystal. it can.
  • the above requirements may be satisfied as an index of the total content of free ions in the mixture.
  • epoxy resin (1) has a high concentration of chloride ions in water extracted with boiling water for 24 hours. It is preferable that the concentration of hydrolyzable chlorine in the epoxy resin calculated from the degree is not more than 3 OO ppm. When the concentration of hydrolyzable chlorine is 300 ppm or less, migration of chloride ions to the liquid crystal phase can be suppressed when the cured composition for a liquid crystal display cell sealant of the present invention comes into contact with liquid crystals. More preferably, it should be below 100 ppm, even more preferably below 50 ppm, most preferably below the detection limit for chloride ions.
  • the epoxy resin (1) is preferably a mixture of (1-1) an epoxy resin that is liquid at room temperature (25) and (1-2) an epoxy resin that is solid at room temperature. More preferably, the mixture becomes liquid at 0 ° C. to 12 Ot :.
  • the epoxy resin (1) preferably has a mass average molecular weight in terms of polystyrene of 7000 or less, as determined by gel permeation chromatography (hereinafter simply referred to as GPC), more preferably 150 to 5000. Preferably, those in the range of 350 to 3500 are most preferred.
  • GPC gel permeation chromatography
  • the mass average molecular weight in terms of polystyrene by GPC is 7000 or less, the E-type viscosity value of the liquid crystal display cell sealant composition after the B-stage can be reduced to 1000 P a It is preferable because compatibility with the press heating bonding method can be ensured. Further, it is preferable that the mass average molecular weight in terms of polystyrene is 150 or more, since both the Tg suitability and the B-stage suitability of the obtained cured product can be achieved.
  • the content of the epoxy resin (1) is 20 to 88.9% by mass, preferably 20 to 83.8% by mass in the composition for a liquid crystal display cell sealant.
  • the following epoxy resin (1) must be purified or purified in advance by a known dehydrolytic chlorine reduction method and a purification method mainly using Z or desorbable ions.
  • a highly purified product can be used as appropriate.
  • water purification- Examples include a solvent extraction purification method, an ultra-portion method, and a distillation purification method.
  • the method for determining the type and amount of the epoxy resin (1) in the composition for a liquid crystal display cell sealing agent of the present invention is not particularly limited.
  • a solvent is extracted, and the extract is separated by GPC. It is common to determine and quantify each fraction with NMR (nuclear magnetic resonance spectrum), etc., and quantify each fraction.
  • Means for determining the type and amount of the epoxy resin in the liquid crystal display cell sealant, which is a cured product thereof, is not particularly limited.
  • infrared absorption spectroscopy, pyrolysis-chromatography Preparative methods, wet decomposition-chromatography preparative methods, pyrolysis gas chromatography methods, pyrolysis-mass spectrometry methods, solid NMR methods, and the like can be appropriately combined.
  • the monofunctional epoxy resin used in the present invention includes, for example, an aliphatic monodaricidyl ether compound, an alicyclic monoglycidyl ether compound, an aromatic monodaricidyl ether compound, an aliphatic monoglycidyl ester compound, and an aromatic monodaricidyl ester compound. And monocyclic glycidyl ester compounds, nitrogen-containing monoglycidyl ether compounds, monoglycidyl propyl polysiloxane compounds, monodaricidyl alkanes, and the like. It goes without saying that a monofunctional epoxy resin other than these may be used.
  • an aliphatic monodaricidyl ether compound obtained by reacting a polyoxyalkylene monoalkyl ether having an alkyl group or an alkenyl group represented by an integer of 1 to 6 with epichlorohydrin
  • aliphatic monodaricidyl ether compounds obtained by the reaction of fl fatty alcohols with epichlorohydrin.
  • Polyalkylene monoalkyl ethers having an alkyl group or an alkenyl group represented by an integer having 1 to 6 carbon atoms include ethylene glycol monoalkyl ether, diethylene glycol monoalkyl ether, and triethylene glycol. Examples thereof include alcohol monoalkyl ethers, polyethylene glycol monoalkyl ethers, propylene glycol monoalkyl ethers, dipropylene glycol monoalkyl ethers, tripropylene glycol monoalkyl ethers, and polypropylene glycol monoalkyl ethers.
  • Examples of the aliphatic alcohols include n-butanol, isobutanol, n-octanol, 2-ethylhexyl alcohol, dimethylolpropane monoalkyl ether, methylolpropane dialkyl ether, glycerin dialkyl ether, Examples include methylolpropane monoalkyl ester, trimethylolpropane dialkyl ester, dariserin dialkyl ester, and the like.
  • an alicyclic monoglycidyl ether compound obtained by a reaction between an alicyclic alcohol having a saturated cyclic alkane group represented by an integer of 6 to 9 and epichlorohydrin, and the like.
  • Examples of the alicyclic alcohol used in the reaction include cyclohexanol.
  • an aromatic monodaricidyl ether compound obtained by the reaction of an aromatic alcohol with epichlorohydrin and the like can be mentioned.
  • aromatic alcohol used in the reaction examples include phenol, methylphenol, ethylphenol, n-propylphenol, isopropylphenol, n-butylphenol, benzyl alcohol, t-butylphenol, xylenol and naphthol.
  • an aliphatic monoglycidyl ester compound or an aromatic monodaricidyl ester compound obtained by reacting an aliphatic dicarboxylic acid monoalkyl ester or an aromatic dicarboxylic acid monoalkyl ester with epichlorohydrin, and the like.
  • the polyfunctional epoxy resin is usually an epoxy resin having 2 to 6 epoxy groups on average in one molecule, but any epoxy group having a weight average of 2 to 6 epoxy groups may be used as long as the effect of the present invention is not impaired. May be used.
  • Polyfunctional epoxy resins include, for example, aliphatic polyglycidyl ether compounds, aromatic polyglycidyl ether compounds, trisphenol-type polyvalent glycidyl ether compounds, hydrid quinone-type polyvalent daricidyl ether compounds, and resorcinol-type polyfunctional resins.
  • Polyvalent daricidyl ether compound aliphatic polyvalent daricidyl ester compound, aromatic polyvalent glycidyl ester compound, aliphatic polyvalent daricidyl ether ester compound, aromatic polyvalent daricidyl ether ester compound, alicyclic polyvalent glycidyl Ether compound, aliphatic polyvalent glycidylamine compound, aromatic polyvalent glycidylamine compound, hydantoin type polyvalent glycidyl compound, biphenyl type polyvalent daricidyl compound, novolak type polyvalent daricidyl ether compound, epoxidation Coalescence And the like.
  • Examples thereof include aliphatic polyhydric daricidyl ether compounds obtained by reacting polyoxyalkylene glycols or polyhydric alcohols with epichlorohydrin.
  • polyoxyalkylene glycols used in the reaction include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol and the like.
  • polyhydric alcohol used in the reaction examples include dimethylolpropane, trimethylolpropane, spiroglycol, glycerin and the like. (Aromatic polyvalent daricidyl ether compound)
  • an aromatic polyvalent daricidyl ether compound obtained by a reaction of an aromatic diol with epichlorohydrin and the like can be mentioned.
  • aromatic diol used in the reaction examples include bisphenol A, bisphenol, bisphenol F, bisphenol AD, and the like.
  • a trisphenol-type polyvalent glycidyl ether compound obtained by the reaction of trisphenols with epichlorohydrin can be mentioned.
  • the trisphenols used in the reaction include 4,4 ', 4'-methylidene risphenol, 4,4', 4'-methylidenetris (2-methylphenol), 4,4 '-[(2-hydroxy Phenyl) methylene] bis [2,3, .6-trimethylphenol], 4,4 ', 4 "-ethylidenetrisphenol, 4,4'-[(2-hydroxyphenyl) methylene] bis [ 2-Methylphenol], 4,4 '-[(2-Hydroxyphenyl) ethylene] bis [2-methylphenol], 4,4'-[(4-Hydroxyphenyl) methylene] bis [2-methylphenol ], 4,4 '-[(4-Hydroxyphenyl) ethylene] bis [2-methylphenol], 4,4'-[(4-Hydroxyphenyl) ethylene] bis [2-methylphenol], 4,4'-[(4-Hydroxyphenyl) ethylene] bis [2-methylphenol], 4,4'
  • hydroquinone-type polyvalent daricidyl ether compound obtained by a reaction between hydroquinone and epichlorohydrin and the like can be mentioned.
  • a resorcinol-type polyvalent glycidyl ether compound obtained by a reaction between resorcinol and epichlorohydrin and the like can be mentioned.
  • Examples thereof include aliphatic polyhydric glycidyl ester compounds obtained by the reaction of an aliphatic dicarboxylic acid represented by adipic acid and epichlorohydrin.
  • an aromatic polyvalent daricidyl ester compound obtained by a reaction of an aromatic dicarboxylic acid with epichlorohydrin and the like can be mentioned.
  • aromatic dicarboxylic acid used in the reaction examples include isofluoric acid, terephthalic acid, and pyromellitic acid.
  • Aliphatic or aromatic polyvalent glycidyl ether compound examples thereof include aliphatic polyhydric glycidyl ether ester compounds and aromatic polyhydric glycidyl ether ester compounds obtained by reacting a hydroxydicarboxylic acid compound with epichlorohydrin.
  • alicyclic polyvalent glycidyl ether compounds represented by dicyclopentene-type polyvalent glycidyl ether compounds and the like can be mentioned.
  • an aliphatic polyvalent glycidylamine compound obtained by a reaction of an aliphatic diamine represented by ethylenediamine and the like with epichlorohydrin and the like can be mentioned.
  • an aromatic polyvalent glycidylamine compound obtained by a reaction of an aromatic amine represented by diaminodiphenylmethane, aniline, and metaxylylenediamine with epichlorohydrin and the like can be mentioned.
  • Examples thereof include hydantoin-type polyvalent daricidyl compounds obtained by reacting hydantoin and its derivative with epichlorohydrin.
  • a novolak-type polyvalent daricidyl ether compound obtained by reacting a nopolak resin derived from an aromatic alcohol represented by phenol, cresol, naphthol, and formaldehyde with epichlorohydrin, and the like are exemplified.
  • a modified aralkyl resin in which a phenol nucleus and / or a naphthol nucleus derived from phenol and / or naphthol and P-xylylene dichloride and a para-xylene nucleus are bonded by a methylene bond, and epichlorohydrin
  • the modified nopolak-type polyvalent glycidyl ether compound obtained by the above reaction is also included in the representative examples.
  • Examples include epoxidized polybutadiene and epoxidized polyisoprene. You.
  • the polyphenol curing agent (2) used in the composition for a liquid crystal display cell sealant of the present invention is a curing agent composed of a polyphenol compound, a polyphenol resin and an ester thereof.
  • the polyhydric phenol curing agent (2) For the polyhydric phenol curing agent (2), select and use a curing agent that has an ion conductivity of 2 mS Zm or less in an aqueous solution obtained by mixing the curing agent with 10 times the mass of pure water.
  • a curing agent that has an ion conductivity of 2 mS Zm or less in an aqueous solution obtained by mixing the curing agent with 10 times the mass of pure water.
  • It is preferably at most lmS / m, more preferably at most 0.2 mS / m.
  • the curing agent (2) is not particularly limited, but preferably has a softening point temperature of 30 or higher, preferably 75 or higher, more preferably 75 or higher, as determined by the ring and ball method specified in JIS K7234. Select and use those that are less than 180. It is preferable to use a polyhydric phenol curing agent having a high softening point, since the hardness, Tg, viscosity, and heat resistance of the obtained liquid crystal display cell sealant can be improved. Further, the weight average molecular weight in terms of polystyrene obtained by GPC is in the range of 300 to 10,000, preferably in the range of 500 to 7500.
  • the preferable blending equivalent ratio of the polyhydric phenol curing agent is, as described above, the active phenolic property of the polyhydric phenol curing agent with respect to 1 equivalent of the epoxy group of the epoxy resin.
  • the hydroxyl group and Z or its ester-modifying group are in the range of 0.5 to 1.2 equivalents, preferably in the range of 0.7 to 1.1 equivalents, and particularly preferably in the range of 0.85 to 1 equivalent. 0.5 equivalents or more If less than 1.2 equivalents, manufacture a high-quality and highly durable liquid crystal display element by using the resulting liquid crystal display cell sealing compound composition or a liquid crystal cell sealing agent that is a cured product thereof.
  • the polyhydric phenol curing agent (2) is not particularly limited, but includes, for example, the following (2-1-a) to (2-12-a) and / or (2-1-b) to ( 2-12-b).
  • polyvalent phenol curing agent at least one or two selected from the above (2-1-a) to (2-12-a) and / or (2-1-b) to (2-12-b) Above, preferably at least one or two or more selected from (2-1-a) to (2-7-a) and Z or (2-1-b) to (2-7-b) force .
  • More preferred polyhydric phenol curing agents include at least one or two or more selected from (2-1-a) to (2-2-a) and Z or (2-1-b) to (2_2_b) force. And particularly preferably at least one selected from (2-1-b) to (2-2-b).
  • a 1 represents a hydrogen atom, an aromatic acyl group, or an aliphatic acyl group.
  • R 1 represents a hydrogen atom, a halogen atom, a hydroxyl group, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms.
  • And represents an alkoxy group or a phenyl group having 1 to 10 carbon atoms, which may be the same or different, and
  • m 1 represents an integer of 1 to 3, which may be the same or different
  • the phenol novolak resin (2-1-a) is represented by a compound in which A 1 in the formula is a hydrogen atom.
  • esterified phenol novolak resin (2-1 I) b) means that A 1 in the formula represented by the chemical formula (1) is a hydrogen atom, an aromatic acyl group, or an aliphatic acyl group, and all of A 1 are not hydrogen atoms. It is represented by those having a molar ratio of the acyl group in the range of 90Z10 to 0100.
  • Preferred specific examples of the phenol nopolak resin (2-1-a) include, but are not particularly limited to, those obtained by addition condensation of the following phenols and formaldehyde under acidic conditions. And preferably has a softening point temperature of 50 or more, more preferably 75 or more, according to a ring and ball method.
  • phenols include, for example, phenol, cresol, xylenol, octaidoquinone, methylhydroquinone, catechol, resorcinol, ethyl phenol, getyl phenol, n-propyl phenol, isopyl pyrphenol, n-butyl phenol And one or more selected from t-butylphenol, 2-ethylhexylphenol, phenylphenol and the like. More preferred are phenol and Z or cresol.
  • esterified phenol novolak resin (2-1-b) include those obtained by subjecting 10 to 100 mol% of the phenolic hydroxyl groups contained in the phenol nopolak resin to aromatic and / or aliphatic acylation modification. Is mentioned.
  • the polyhydric phenol curing agent (2) is the phenol nopolak resin (2-1-a) and / or the esterified phenol nopolak resin (2_l_b).
  • More preferred polyhydric phenol curing agents include a phenol novolak resin (2-1_a) and an esterified phenol nopolak resin (2-1-b) in a mixing mass ratio of 1:99 to 99: 1. It is preferably in the range of 10:90 to 99: 1.
  • a 2 represents a hydrogen atom, an aromatic acyl group, or an aliphatic acyl group.
  • R 2 represents a hydrogen atom, a halogen atom, a hydroxyl group, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms. , an alkoxy group or a phenylene Le group of 1 to 10 carbon atoms
  • R 3 represents a hydrogen atom or a methyl group, even R 2 and R 3 are respectively the same may be different dates.
  • the phenol aralkyl resin (2-2-a) is represented by a compound in which A 2 in the formula is a hydrogen atom.
  • the esterified phenol aralkyl resin (2-2-1 b) is a compound represented by the chemical formula (2) in which A 2 is a hydrogen atom, an aromatic acyl group, or an aliphatic acyl group; 2 is not a hydrogen atom, and is represented by those having a hydrogen atom acyl group molar ratio in the range of 90Z10 to 0Z100.
  • Preferred examples of the phenol aralkyl resin (2-2-a) include, but are not particularly limited to, the following phenols and a xylylene dichloride compound or a xylylene dialkyl ether in the presence of a Friedel-Crafts catalyst. Compounds derived from the above compound and free phenol are removed under reduced pressure to 0.01% by mass or less. More preferably, the phenol aralkyl resin has a softening point temperature in the range of 50 to 120 ° C by a ring and ball method.
  • Preferred examples of the esterified phenol aralkyl resin (2-2-b) include aromatic and / or aliphatic acylation-modified 10 to 100 mol% of the phenolic hydroxyl groups contained in the phenol aralkyl resin. Things.
  • Preferred examples of the phenols include, for example, phenol, cresol, xylenol, hydroquinone, methylhydroquinone, catechol, resorcin, ethyl phenol, getyl phenol, n-propyl phenol, isopropyl phenol, n-butyl phenol, t-butyl phenol, One or more selected from 2-ethylhexylphenol, fuelphenol, and the like. More preferred are phenol and / or cresol.
  • the xylylene dichloride compound includes, for example, 1,2-xylylene dichloride, 1,3_xylylene dichloride, 1,4-xylylene dichloride, 2-methyl-1,3-xylylene dichloride, 3-methyl-1,4-xylylene dichloride, 2,4-dimethyl-1,3-xylylene dichloride, 2,4,5-trimethyl-1,3-xylylene dichloride, 2,3-dimethyl—1, 4-xylylene dichloride, 2,3,5_trimethyl-1,4_xylylene dichloride, 2, ethyl_1,3_xylylene dichloride, 2,4-diethyl-1,3-xylylene dichloride, 2, There are 4,5_triethyl-1,3-xylylene dichloride, 2,3-getyl-1,4-xylylene dichloride, 2,3,5-triethyl-1,4-xylylene dichloride and the like.
  • Xylylenedialkyl ether compounds include, for example, HI, '-dimethoxy-P-xylene, HI, ⁇ -Jetoxy-p-xylene, a, —Dimethoxyoxy-o-xylene,, a-Jetoxy_
  • o-xylene, hi, '-cimethoxyl-m-xylene and ⁇ ,'-diethoxy-1m-xylene and preferably, hi, '-dimethoxy-1-p-xylene.
  • the phenol aralkyl resin (2-2-a) and Z or the esterified phenol aralkyl resin (2-2-b) may be used as the polyvalent phenol resin.
  • the polyvalent phenol resin those having a mixing mass ratio of (2-2-a) and (2-2_b) in the range of 1:99 to 99: 1 are preferable, and more preferable. 10:90 to 99: 1.
  • a 3 represents a hydrogen atom, an aromatic acyl group, or an aliphatic acyl group.
  • R 4 and R 5 each represent a hydrogen atom, a halogen atom, a hydroxyl group, a linear, branched, or cyclic C 1-10 carbon atom.
  • R 4 and R 5 may be the same or different, and m 4 and m 5 each represent an integer of 1 to 3.
  • the naphtho-lnopolak resin (2_3-a) is represented by a compound in which A 3 in the formula is a hydrogen atom.
  • the esterified naphthol Bruno Pollack resin (2 three to b) Formula (3) A 3 is a hydrogen atom or an aromatic Ashiru group in the formula represented, an aliphatic Ashiru group, A 3 are not all hydrogen atoms, and are represented by those in which the molar ratio of the hydrogen atom to the Zacyl group is in the range of 90/10 to 0100.
  • the naphthol novolak resin (2-3-a) is not particularly limited, but preferred examples thereof include those obtained by subjecting the following naphthols and formaldehyde to addition condensation under acidic conditions. . More preferably, the naphthol nopo has a softening point temperature of 50 or more, more preferably 75 to 150 ° C, determined by the ring and ball method. It is a rack resin.
  • Preferred examples of the naphthols include ⁇ -naphthol, ⁇ -naphthol, methylnaphthol, dimethylnapth] ⁇ -yl, trimethylnaphthol, and methylethylnaph! ⁇ Il, Echilnahu] ⁇ Il, Jechilnahu! ⁇ ⁇ ⁇ ⁇ ⁇ l whose whoses dos of do, of which, which which which which which which which which which which which which which which which which which which which which which which which which which which which which which which which which is which is possible-tries to have! ⁇ Il, methyl getyl naphle], ⁇ -propyl naph!
  • Preferred examples of the esterified naphthol nopolak resin (2-3-b) include those obtained by subjecting 10 to 100 mol% of the naphthol hydroxyl groups of the naphthol resin to aromatic and / or aliphatic acylation modification. .
  • the polyvalent phenol resin is (2-3-a) and Z or (2-3-b).
  • those having a mass ratio of (2-3_a) :( 2-3-b) in the range of 1:99 to 99: 1 are preferable, and those having a mass ratio of 90:10 to 1:99 are more preferable. It is.
  • a 4 represents a hydrogen atom, an aromatic acyl group, or an aliphatic acyl group.
  • R 6 and R 7 represents a hydrogen atom, a halogen atom, a hydroxyl group, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an alkoxy group or a phenyl group having 1 to 10 carbon atoms, and R 8 represents a hydrogen atom.
  • it represents a methyl group
  • R 6 , R 7 and R 8 may be the same or different.
  • m 6 , m 7 and m 8 each represent an integer of 1 to 3, and may be the same or different.
  • the naphthol aralkyl resin (2-4-a) is represented by a compound in which A 4 in the formula is a hydrogen atom.
  • the esterified naphthol aralkyl resin (2-4-b) means that A 4 in the formula represented by the chemical formula (4) is a hydrogen atom, an aromatic acyl group, or an aliphatic acyl group; 4 are not all hydrogen atoms, and are represented by those in which the molar ratio of the hydrogen atom Z-acyl group is in the range of 90 to 10 to 100.
  • Preferred examples of the naphthol aralkyl resin (2-4-a) include, but are not particularly limited to, naphthols and the xylylene dichloride compound or the xylylene dialkyl compound in the presence of a Friedel-Crafts catalyst. And those obtained by removing free naphthol under reduced pressure to 0.01% by mass or less.
  • Preferred examples of the esterified naphthol aralkyl resin (2-4_b) include, for example, 100 to 100 mol% of the naphthol hydroxyl group contained in the naphthol aralkyl resin, which is aromatic and / or fatty. And those modified by acylation.
  • Preferred examples of the naphthols include, for example, ⁇ -naphthol,] 3-naphthol, methylnaphthyl, dimethylnaphthol, trimethylnaphthol, methylethylnaphyl, ethylethylnaphthol, and getylnapht!
  • ⁇ Yl triethyl naphthol, methyl ethynyl naphthyl, ⁇ -propyl naphthol, di- ⁇ -propyl naphl) ⁇ yl, isopropyl naphthol, diisopropyl naphthyl
  • cinaphthalene, trihydroxynaphthalene and the like can be mentioned, and naphthol and Z or methyl naphthol are more preferred.
  • the polyvalent phenol resin is preferably (2-141a) and Z or (2-4-b). Among them, those having a mass ratio of (2-4-a) :( 2-4_b) in the range of 1:99 to 99: 1, more preferably 90:10 to 1:99.
  • a 5 represents a hydrogen atom, an aromatic acyl group, or an aliphatic acyl group.
  • R 9 represents a hydrogen atom, a halogen atom, a hydroxyl group, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms. And represents an alkoxy group or a phenyl group having 1 to 10 carbon atoms, which may be the same or different, and m 9 represents an integer of 1 to 3, which may be the same or different
  • the alicyclic compound-modified phenol novolak resin (2-5-a) is represented by a compound in which A 5 in the formula is represented by a hydrogen atom.
  • the esterified alicyclic compound-modified phenol nopolak resin (2-5-b) is represented by the chemical formula (5), wherein A 5 is a hydrogen atom or an aromatic or aliphatic acyl group. Wherein A 5 is not all 7 atoms and the molar ratio of hydrogen atom / acyl group is in the range of 90 ⁇ 10 to 0100.
  • alicyclic compound-modified nopolak resin in which X in the formula (5) is represented by the formula (6) include, for example, a phenol and a dicyclopentene dichloride compound or a dicyclopentene compound in the presence of a Friedel Crafts catalyst. It is derived from a dialkyl ether compound, and is represented by those obtained by removing free phenol to 0.01% by mass or less under reduced pressure.
  • phenols include, for example, phenol, cresol, xylenol, hydroquinone, methylhydroquinone, catechol, resorcin, ethyl phenol, getyl phenol, ⁇ -propyl phenol, isopropyl phenol, ⁇ _butyl phenol, t-butyl phenol, One or more selected from 2-ethylhexylphenol, phenylphenol, and the like. More preferred are phenol and / or cresol.
  • dicyclopentene dialkyl ether compound examples include dicyclopentene dimethyl ether, dicyclopentene diethyl ether, dicyclopentene dipropyl ether, and dicyclopentene methyl methyl ether.
  • esterified alicyclic compound-modified novolak resin examples include: Examples include those obtained by subjecting 10 to 100 mol% of the phenolic hydroxyl groups contained in the alicyclic compound-modified nopolak resin to aromatic and / or aliphatic acylation modification.
  • X in the formula (5) is, for example, the phenols described above in the presence of a Friedel-Crafts catalyst, and optionally Derived from a cyclohexane dichloride compound or a cyclohexane dimethoxy ether compound and a cyclohexyl dialkyl ether represented by Z or cyclohexane getyl ether in the presence of the naphthols, Representatively, free phenol is removed under reduced pressure to 0.01% by mass or less.
  • esterified alicyclic compound-modified nopolak resin examples include aromatic and / or aliphatic acylation-modified 10 to 100 mol% of the phenolic hydroxyl groups contained in the alicyclic compound-modified nopolak resin. Things.
  • the polyvalent phenol resin is preferably (2-5-a) and Z or (2_5-b). Among them, those having a mass ratio of (2-5-a) :( 2-5-b) in the range of 1:99 to 99: 1, more preferably 90:10 to 1:99. .
  • a 6 represents an elementary atom, an aromatic acyl group, or an aliphatic acyl group.
  • R 1G and R 11 represents a hydrogen atom, a halogen atom, a hydroxyl group, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an alkoxy group or a phenyl group having 1 to 10 carbon atoms, and R 1Q and R 11 each represent They may be the same or different.
  • m 1 Q and m 11 each represent an integer of 1 to 3, and may be the same or different.
  • the fl-ring compound modified naphthol nopolak resin (2-6-a) is represented by a compound in which A 6 in the formula is a hydrogen atom.
  • the esterified alicyclic compound-modified naphthanol polylac resin (2-6-b) means that A 6 in the formula represented by the chemical formula (8) is a hydrogen atom, an aromatic acyl group, or an aliphatic acyl group. In this case, all of A 6 are not hydrogen atoms, and the molar ratio of the hydrogen atom to the acyl group is in the range of 90Z10 to 0Z100.
  • Preferred specific examples of the alicyclic compound-modified naphthol nopolak resin in which Z in the formula (8) is represented by the formula (9) include, for example, the above-mentioned naphthols and the above-mentioned dicyclopentene in the presence of a Friedel Crafts catalyst. It is derived from a dichloride compound or the above-mentioned dicyclopentadiene dialkyl ether compound, and is represented by those obtained by removing free phenol to 0.01% by mass or less under reduced pressure.
  • esterified alicyclic compound-modified naphthol novolak resin Is a preferable example in which 10 to 100 mol% of the phenolic hydroxyl groups contained in the alicyclic compound-modified resin are modified by aromatic and / or aliphatic acylation.
  • Preferred specific examples of the alicyclic compound-modified naphthol novolak resin in which Z in the formula (8) is represented by the formula (10) include, for example, the naphthols described above in the presence of a Friedel Crafts catalyst, and In the presence of the above-mentioned phenols, the above-mentioned cyclohexane dichloride compound or the above-mentioned cyclohexane dimethoxy ether compound and a cyclohexyl dialkyl ether represented by Z or cyclohexane dimethyl ether are used. Induced and represented by free naphthol removed under reduced pressure to 0.01% by mass or less.
  • esterified alicyclic compound-modified naphthol nopolak resin examples include aromatic and / or aliphatic acylation-modified 10 to 100 mol% of the phenolic hydroxyl groups contained in the alicyclic compound-modified resin. Things.
  • a resin in which (2-6-a) and (2-6-b) are used in an arbitrary ratio is also included in the present invention, and (2-6_a): (2—
  • the mass ratio of 6-b) is in the range of 1:99 to 99: 1, more preferably 90:10 to 1:99.
  • Examples of the polycyclic aromatic compound-modified nopolak resin (2-7-a) include 3- to 4-rings derived from a light and heavy oil fraction distilled from a high-pressure steam catalytic cracking plant in the petroleum industry. Phenols and formaldehyde are allowed to act in the presence of an acid catalyst in the presence of a condensed polycyclic aromatic hydrocarbon compound of the formula: wherein the condensed polycyclic aromatic nucleus and the phenol nucleus are randomly tertiary formed by a methylene bond. It is represented by a condensed polycyclic aromatic compound-modified nopolak resin bonded in an original configuration.
  • the esterified polycyclic aromatic compound-modified novolak resin (2-7-b) is, for example, 10 to 100 mol% of the phenolic hydroxyl group of (2-7-a). Represented by aromatic and / or aliphatic acylation modification.
  • Examples of the condensed polycyclic aromatic hydrocarbon compound having 3 or 4 rings derived from the light oil fraction include, for example, the number of aromatic carbon atoms calculated from 13 C—NMR in the light and heavy oil / the number of carbon atoms in the light and heavy oil in represented by aromatic carbon fraction (fa value) 0.4 to the 0.95 range, preferably those in the 0.7 to 0.8, and, determined by 1 H- NMR of the light and heavy matter in the oil
  • the aromatic ring hydrogen fraction (Ha value) expressed by the number of aromatic ring hydrogens / the number of hydrogens in light heavy oil is in the range of 0.2 to 0.8, preferably 0.35 to 0.6. Is typical.
  • the polyvalent phenol resin a resin in which (2-7-a) and (2-7-b) are used in an arbitrary ratio is also included in the present invention, and among them, (2-7-a):
  • the mass ratio of 2-7-b) is in the range of 1:99 to 99: 1, more preferably 90:10 to 1:99.
  • the polyhydric phenol monomer (2-8-a) is not particularly limited.
  • Typical examples thereof include a monomer and the following trisphenol monomer.
  • Trisphenol monomers include, for example, 4,4 ', 4'-methylidenetrisphenol, 4,4', 4 "-methylidenetris (2-methylphenol), 4,4 '_ [(2-hydroxyphenyl ) Methylene] bis [2,3,6-trimethyl phenol], 4,4 ', 4 "ethylidenetrisphenol, 4,4' —
  • (2_8-a) is preferably represented by the following chemical formula (11)
  • a 7 represents a hydrogen atom, an aromatic acyl group, or an aliphatic acyl group.
  • R 12 represents a hydrogen atom, an acyloxy group, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, or a carbon number.
  • R 13 represents hydrogen or an alkyl group having 10 or less carbon atoms, and R 12 and R 13 may be the same or different, and Y represents hydrogen or methyl.
  • 111 12 and 111 13 each represent an integer of 1 to 3 and may be the same or different.
  • a 7 in the formula is represented by a hydrogen atom. Be represented.
  • esterified polyhydric phenol monomer those obtained by subjecting 10 to 100 mol% of the phenolic hydroxyl group contained in the above (2-8-a) to aromatic and Z or aliphatic acylation modification are preferable.
  • it is represented by the chemical formula (11), wherein A 7 is a hydrogen atom, an aromatic acyl group or an aliphatic acyl group, and all A 7 are not hydrogen atoms; It is represented by those in which the molar ratio of a hydrogen atom Z acyl group is in the range of 90/10 to 0Z100.
  • polyvalent phenol resin a resin in which (2-8-a) and (2-80b) are used in an arbitrary ratio is also included in the present invention, and in particular, (2-8-a): (2 The mass ratio of -8-b) is preferably in the range of 1:99 to 99: 1, more preferably 90:10 to 1:99. (2-9-a) Polyvinylphenol and (2-9-b) its esterified polyvinylphenol
  • Polyvinyl phenol (2-9_a) is represented by, for example, a homopolymer of p-vinyl phenol. Although not particularly limited, those having a mass average molecular weight in terms of polystyrene by GPC in the range of 300 to 20000 are preferred, and those in the range of 500 to 10,000 are more preferably used.
  • the esterified polyvinyl phenol (2-9_b) is represented by, for example, a compound obtained by subjecting 10 to 100 mol% of the phenolic hydroxyl group of (2-9-a) to aromatic and / or aliphatic acylation. You.
  • the vinylphenol copolymer (2-10-a) include, for example, a binary copolymer of p-vinylphenol and another vinyl monomer copolymerizable with the copolymer, or a terpolymer of three or more. Although not particularly limited, it is represented by a copolymer or the like, but preferably has a mass average molecular weight in terms of polystyrene by GPC of 500 to 20000, more preferably 500 to 10,000.
  • vinyl monomers copolymerizable with p-vinylphenol include, for example, styrene, acrylonitrile, methyl acrylate, methyl methacrylate, butyl acrylate, butyl methyl acrylate, and hydroxy acrylate.
  • the esterified vinyl phenol copolymer (2-10-b) is typically a product obtained by subjecting 10 to 100 mol% of the phenolic hydroxyl group of the above (2-1-10-a) to aromatic and / or aliphatic acylation modification. Is done.
  • polyisopropenyl phenol (2-11-a) examples include, for example, Examples thereof include, but are not particularly limited to, poly-P-isopropenyl phenol, etc., but those having a mass average molecular weight in terms of polystyrene by GPC of 300 to 20000 are preferable, and those having a mass average molecular weight of 500 to 10,000 are selected. It is more preferable to use.
  • the esterified polyisopropenyl phenol (2-11-b) is, for example, an aromatic and / or aliphatic acylated modification of 10 to 100 mol% of the phenolic hydroxyl group of (2-11-a). Represented by things.
  • polyisopropenylphenol copolymer (2-12-a) examples include, for example, a binary copolymer or a ternary copolymer of poly (p-isopropenylphenol) with another copolymerizable vinyl monomer.
  • vinyl monomers copolymerizable with p-isopropenylphenol include, for example, styrene, acrylonitrile, methyl acrylate, methyl methacrylate, butyl acrylate, butyl methacrylate, and hydroxy acrylate. No.
  • esterified isopropenylphenol copolymer (2-12_b) refers to a product obtained by modifying 10 to 100 mol% of the phenolic hydroxyl group of (2-12-a) with aromatic, Z or aliphatic acylation. Be represented.
  • nopolak resins derived from bisphenols represented by bisphenol, bisphenol F, and bisphenol S for example, nopolak resins derived from bisphenols represented by bisphenol, bisphenol F, and bisphenol S, 4, 4 ′ — Novolak resin derived from biphenylphenols represented by biphenylphenol, etc., and phenols having a fluorene skeleton represented by 1,1-di-4-hydroxyphenylfluorene, etc. -Novolak resins derived from phenols can also be used.
  • the most preferred embodiment of the polyhydric phenol curing agent (2) is one or two selected from phenol novolak resin, phenol aralkyl resin, esterified phenol novolak resin, and esterified phenol aralkyl resin. More than a species.
  • the polyvalent phenol curing agent (2) is a sealing agent for liquid crystal display cells containing an epoxy resin, a polyvalent phenol curing agent, and a curing accelerator comprising at least one selected from alkyl urea derivatives and phosphazene compounds. Although it does not restrict
  • the content is 10% by mass or more, the storage stability and thermosetting property of the epoxy resin composition are well-balanced, and a highly durable liquid crystal display device can be manufactured. Further, the content is preferably 65% by mass or less, because it is possible to suppress the unreacted material of the curing agent from remaining and to maintain the cross-linking density of the cured product and the seal adhesion reliability well.
  • the above-described polyvalent phenol curing is performed. It is desirable to use the agent which has been manufactured through a deionization purification method in advance. Examples of the deionization purification method include free ion water extraction separation purification method, solvent extraction purification method, and ultra-portion overpurification method. Etc. are good, and there are no particular restrictions. '
  • esterifying agent used when esterifying the above-mentioned phenolic hydroxyl group or naphthol hydroxyl group (hereinafter, the phenolic hydroxyl group and the naphthol hydroxyl group are sometimes collectively referred to simply as phenolic hydroxyl group)
  • Any of organic carboxylic acid anhydrides, organic carboxylic acid halides and organic carboxylic acids may be used, and a convenient one may be selected according to the characteristics of the esterifying agent according to the carbon number of the ester to be derived.
  • esterifying agent examples include acetic anhydride, acetyl chloride, acetyl bromide, acetic acid, propionic anhydride, propionic chloride, and propion.
  • esterifying agents can be used alone or in combination of two or more.
  • the amount used may be 10 mol% or more based on the hydroxyl group, and the upper limit is not particularly limited.
  • the excess esterifying agent is removed after the completion of the reaction.
  • it is practically 10 mol or less, preferably 5 mol or less, more preferably 3 mol or less with respect to the hydroxyl group.
  • the specific reaction varies depending on the type of the esterifying agent. However, as described above, a reaction generally used for an organic carboxylic acid anhydride may be used.
  • the phenolic hydroxyl group is reacted with an arbitrary amount of organic sulfonic acid anhydride to be esterified, and then the by-produced organic carboxylic acid and excess organic carboxylic acid anhydride are distilled under normal pressure and reduced pressure.
  • the desired ester compound can be obtained by removing by any method such as washing with water, washing with a weak base such as carbonate, or a combination thereof. That is, in the case of a partially esterified compound, it is preferable to use an esterified compound in which an arbitrary amount, preferably 10 mol% or more, of the phenolic hydroxyl group is esterified.
  • the upper limit is not particularly limited as long as it is a solvent and more than equimolar to the phenolic hydroxyl group, but the economic efficiency and the volumetric efficiency of the reaction are taken into consideration.
  • the esterification is carried out using, for example, 10 times mol% or less. This amount is the same in the case of a reaction using an organic carboxylic acid described later.
  • the esterification reaction temperature ranges from 60 ° C to 200 ° C, preferably from 80 ° C to 1 ° C. It is in the range of 800C, particularly preferably in the range of 1000C to 160C.
  • esterification reaction time largely depends on the type of the reaction substrate and the reaction temperature, but is generally in the range of 1 hour to 25 hours.
  • esterification is performed by high performance liquid chromatography or gas chromatography. It is desirable to determine the end point while tracking the disappearance of the agent and the disappearance of the hydroxyl group.
  • the solvent in the esterification reaction may or may not be used. If the phenolic hydroxyl group-containing substance as the raw material is sufficiently molten at the reaction temperature and the esterifying agent is liquid, or if it is molten at the reaction temperature or dissolved in the resin and does not hinder the reaction The reaction may be performed without a solvent.
  • any solvent that is inert to the reaction can be used.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • halogenated benzenes such as benzene, o-dichlorobenzene, N, N-dimethylformamide, and N, N-dimethylacetate.
  • Aprotic polar solvents such as amide, N-methyl-2-pyrrolidone, N, N-dimethyl-2-imidazolidinone, dimethyl sulfoxide, sulfolane, diphenyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether And the like, and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone can be used alone or in any combination.
  • the esterification reaction may be carried out at normal pressure, under pressure (in a autoclave) or under reduced pressure, and the atmosphere of the reaction system may be any of air, inert gas such as nitrogen, argon, helium, etc. Preferably, it is under a nitrogen atmosphere.
  • the reaction when an organic carboxylic acid halide is used as the esterifying agent will be described.
  • a generally used technique can be used. That is, an arbitrary amount of organic sulfonic acid halide to be esterified with the phenolic hydroxyl group may be reacted.
  • the by-produced hydrogen halide is A method in which a required amount of an inactive base such as pyridine, piperazine, and triethylamine is trapped in the system in the presence of a necessary amount, and a gas is sequentially and quickly released out of the system as a gas during the reaction and installed outside the reaction system.
  • the amount of the organic carboxylic acid halide to be used is, in the case of the partially esterified product, an arbitrary amount, preferably 10 mol% or more, of the phenolic hydroxyl group.
  • An organic carboxylic acid halide may be used, and in the case of a completely esterified compound, an equimolar or small excess with respect to the phenolic hydroxyl group may be used, and a large excess may be used, but the economic efficiency, the volumetric efficiency of the reaction, and the Taking into account the complexity of the treatment step, esterification may be carried out in an amount of 10 moles or less, preferably 5 moles, more preferably 3 moles, of the hydroxyl group.
  • reaction temperature the use of a solvent in the reaction, and the form of the reaction may be in accordance with the case of the organic carboxylic anhydride.
  • an organic carboxylic acid when used as the esterifying agent, it may be substantially similar to an organic carboxylic anhydride, but an acid catalyst is required for the reaction.
  • the acid catalyst examples include mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, and polyphosphoric acid; organic sulfonic acids such as p-toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, dimethylsulfonic acid, and getylsulfonic acid; Examples thereof include a super strong acid represented by trifluoromethane sulfonic acid, an acidic ion exchange resin represented by alkane sulfonic acid type, and a super strong acid ion exchange resin represented by perfluoro alkane sulfonic acid type.
  • mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, and polyphosphoric acid
  • organic sulfonic acids such as p-toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, dimethylsulfonic acid, and getylsulfonic acid
  • examples thereof include
  • the amount of the superacid used is 0.001 to 5% by mass, preferably 0.001 to 1% by mass, more preferably 0.001 to 1% by mass, based on the weight of the raw material.
  • the esterification rate of the esterified product is in the range of 10 mol% to 100 mol%, preferably 50 mol% to 100 mol%, more preferably 90 mol% to 10 mol%. It is in the range of 0 mol%.
  • the method for determining the content of the polyhydric phenol curing agent (2) in the sealant composition for a liquid crystal display element is not particularly limited, but includes, for example, a chromatographic preparative method, an infrared absorption spectrum method (IR Method), functional group analysis, and solid-state solution NMR (nuclear magnetic resonance spectrum).
  • the method for determining the content of the polyhydric phenol curing agent (2) in the sealant for liquid crystal display cells is not particularly limited, but examples thereof include a thermal decomposition-chromatography method, a wet decomposition-chromatography method, What is necessary is just to carry out the combination of solid-state NMR method, infrared absorption spectrum method and the like as appropriate.
  • composition for a liquid crystal display cell sealant of the present invention there is no problem if a known latent epoxy curing agent is used in combination with the polyvalent phenol curing agent (2) as long as the purpose of the present invention is not impaired. Absent.
  • any substance capable of substantially curing the epoxy resin by heating at 50 or more can be preferably used.
  • the latent epoxy curing agent include, but are not limited to, disocyandiamide and its derivatives, dihydrazide compounds, 4,4-diaminodiphenylmethane, 4,4-diaminodiphenylsulfone, imidazole compounds and epoxy resin adducts. And complexes thereof, polyamine compound-epoxy resin adducts, poly7min-diisocyanate compound adducts, boron trifluoride-amine complex, organic acid anhydrides, and the like. The above can be used.
  • Preferred latent epoxy curing agents are one or more selected from dihydrazide compounds, imidazole compounds and epoxy resin adducts, complexes thereof, and organic acid anhydrides.
  • dihydrazide compound examples include a saturated fatty acid skeleton having 4 to 22 carbon atoms such as succinic acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, azelaic acid dihydrazide, decanic acid dihydrazide, dodecanic acid dihydrazide and the like.
  • Aromatic dibasic acid dihydrazides represented by dibasic acid dihydrazides, isofluoric acid dihydrazide and the like, and dihydrazides having a valine hydantoin skeleton are exemplified.
  • dihydrazide compound a dihydrazide compound derived from a dicarboxylic acid compound having 4 to 22 carbon atoms is more preferable.
  • the adduct of an imidazole compound and an epoxy resin include, for example, a polyfunctional epoxy compound, an imidazole compound, and a phenol nopolak resin in an amount not exceeding twice the mass of the polyfunctional epoxy compound.
  • the ratio of the epoxy group to the molecule of the imidazole compound in the polyepoxy compound is in the range of (0.8: 1) to (2.2: 1) in the range of 70 to 150.
  • a curing agent exhibiting a softening point temperature can be exemplified.
  • the adduct of the polyamine compound and the epoxy resin is not particularly limited, but is represented by an adduct derived from a known polyamine compound and an epoxy resin.
  • a specific example is an adduct obtained by reacting an addition reaction product of an epoxy resin and a polyamine with a compound having two or more acidic hydroxyl groups.
  • the compound having two or more acidic hydroxyl groups include a phenol resin, a polyphenol resin, and a polycarboxylic acid.
  • An adduct of an amine compound and a diisocyanate compound is represented by an adduct obtained by reacting a known primary or secondary amine compound with a diisocyanate.
  • Examples of the modified derivative of the adduct of an amine compound and a diisocyanate compound include, for example, an adduct obtained by heat-reacting N, N-dialkylaminoalkylamine, cyclic amine and diisocyanate. I can do it.
  • a composition obtained by uniformly contacting the diisocyanate compound with the particle surface of the powdery adduct having a softening point of 6 O: or more and having a tertiary amino group in the adduct can be exemplified.
  • organic acid anhydrides are: anhydrous anhydride, maleic anhydride, trimellitic anhydride, ethylene glycol bistrimellitate, pyromellitic anhydride, dodecyl succinic anhydride, hexahydrofuranic anhydride, Examples thereof include tetrahydrophthalic anhydride, anhydrous methylnadic acid, nadic anhydride, and dtaltaric anhydride.
  • a part of the latent epoxy curing agent may be selected and used as a curing accelerator described below.
  • the curing accelerator (3) used in the composition for a liquid crystal display cell sealant of the present invention is at least one selected from an alkylurea derivative and a phosphazene compound.
  • alkyl urea derivatives include, for example, 3- (p-chlorophenyl) -1,1-dimethylurea, 3_ (o, p-dichlorophenyl) -1,1-dimethylurea, tolylene diisocyanate 2,4_ [bis (1,1-dimethylurea)] toluene and Z or 2,6- [bis (1,1-dimethylurea)] toluene and isophorone diisocyana derived from naphthalene and dimethylamine 3,5-di (1,1-dimethylperia) _5-methyl-2-cyclohexene-1-one, an alkyl urea derivative with an isophorone skeleton derived from mono- and dimethylamine, norbornane diisocy
  • Representative examples include alkyl urine derivatives having a norpolnane skeleton derived from anatate and dimethylamine.
  • the phosphazene compound is represented by a compound represented by the following chemical formula (12).
  • R a to R f are a hydrogen atom, a linear, branched or cyclic Represents an alkyl group or an aryl or aralkyl group having 6 to 10 carbon atoms, which may be the same or different.
  • R a to R f represented by the chemical formula (12) is a hydrogen atom, methylcarbamoyl group, Echiru group, n- propyl group, an isopropyl group, n- butyl group, sec- Bed ethyl group, tert-butyl group, 1-pentyl group, 2-pentyl group, 3-pentyl group, 2-methyl-1-butyl group, isopentyl group, tert-pentyl group, 3-methyl-2-butyl group, neopentyl group, n —Hexyl group, 4-methyl-2-pentyl group, cyclopentyl group, cyclohexyl group, 1-heptyl group, 3-heptyl group, 1-octyl group, 2-octyl group, 2-ethyl group— 1 —Examples include aliphatic hydrocarbon groups such as hexyl group, nonyl group and decyl
  • aliphatic hydrocarbon groups having 1 to 6 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and cyclohexyl group.
  • Preferred are a methyl group and an ethyl group.
  • the phosphazene compound is substituted with three molecules of iminotrisamino (unsubstituted, monosubstituted, Disubstituted) It can be synthesized by reacting phosphorane. Further, if purification is necessary, it can be purified by a commonly used method such as column chromatography, distillation and recrystallization.
  • the phosphazene compound thus obtained is usually a solid.
  • Preferred examples of the phosphazene compound include those represented by the following chemical formula (13).
  • (13) In the composition for a liquid crystal display cell sealant of the present invention, it is important to contain the curing accelerator (3) in a range of 0.1 to 20% by mass. When the content is 0.1% by mass or more, the curing activity of the curing agent (2) can be sufficiently brought out during heating and curing. When used within 20% by mass, the object of the present invention can be solved without deteriorating the storage stability of the obtained epoxy resin composition in 25.
  • curing accelerator (3) for the composition for a liquid crystal display cell sealant of the present invention are 3- (p-chlorophenol) -1,1-dimethylurea, 2,4-bis [bis] (1,1-dimethylurea)] toluene, 2,6_ [bis (1, tridimethylurea)] toluene, or one selected from the phosphazene compounds represented by the chemical formula (12) And most preferably a phosphazene compound represented by the chemical formula (13).
  • the curing accelerator (3) should have a total alkali metal content of 50 ppm or less, preferably 30 ppm or less, more preferably 15 ppm or less, as determined by flame elemental analysis of wet decomposition products. . By doing so, it is possible to suppress unnecessary transfer of free ions to the liquid crystal phase when the composition for a liquid crystal display cell sealant of the present invention or the liquid crystal display cell sealant as a cured product thereof comes into contact with the liquid crystal.
  • the purification method for reducing the total content of metal alloy to 50 ppm or less and a known method such as a solvent extraction purification method can be applied.
  • the method for determining the type and amount of the curing accelerator (3) in the composition for a liquid crystal display cell sealant of the present invention is not particularly limited.
  • a method is used in which the extract is separated by GPC and specified and identified and quantified by infrared absorption spectrum or NMR (nuclear magnetic resonance spectrum), elemental analysis, and the like.
  • Means for determining the type and amount of the curing accelerator in the liquid crystal display cell sealant, which is the cured product is not particularly limited.
  • pyrolysis-chromatography preparative method wet decomposition What is necessary is just to carry out the chromatographic preparative method, the pyrolysis gas chromatography method, the pyrolysis-mass spectrum method, the solid-state NMR method, etc. suitably combining.
  • curing accelerator (3) other curing accelerators described below may be used in combination as appropriate as long as the effect of the composition for a liquid crystal display cell sealant of the present invention is not impaired.
  • Other curing accelerators include imidazole compounds and salts thereof, tris-dimethylaminomethylphenol salts, 1,8-diazabicyclo (5,4,0) indene-17 salts, 1,8-diazabicyclo (5,4) , 0) pendene-7 salt, 1,5-diazabicyclo (4,3,0) -nonene monopentasalt, 6-dibutylamino-1, 8-diazabicyclo (5,4,0) pendene-7 selected from salts One or two or more of them.
  • imidazole compound are not particularly limited, but may be represented by, for example, 2-cyanoethyl-2-ethyl-4-methylimidazole.
  • imidazole salts include, for example, isocyanuric acid adducts of imidazole compounds, polyvalent carboxylic acid adducts of imidazole compounds, and the like.
  • trisdimethylaminomethylphenol salt examples include trisdimethylaminomethylphenoloctylate, trisdimethylaminomethylphenololeate, and trisdimethylaminomethylphenolformate.
  • DBU 1,8-diazabicyclo (5,4,0) ndene-7 salt
  • DBU Representative examples thereof include a DBU phenol salt, a DBU polyvalent phenol compound salt, a DBU polyphenol salt, a DBU octylate, a DBU oleate, and a DBU formate.
  • DBN salt 1,5-Diazabicyclo (4,3,0) -nonene monopentasalt
  • DBN salt includes, for example, DBN phenol salt, DBN polyvalent phenol compound salt, DBN polyphenol salt, DBN octylic acid Salt, DBN oleate, DBN formate, DBN paratoluene sulfonate are typical examples.
  • 6-Dibutylamino-1,8-diazabicyclo (5,4,0) -ndecene 17 salt includes, for example, DB phenol salt, DB polyvalent phenol compound salt, DB polyphenol Salt, DB octylate, DB oleate, DB formate, DB paratoluenesulfonate are typical examples.
  • a softening point temperature determined by T 0 rsinal Braid Analyzer (hereinafter simply referred to as TBA) called a torsional pendulum method.
  • Rubber-like polymer fine particles with a softening point temperature of 0 ° C or less and an average primary particle diameter of 5 m or less determined by electron microscopic observation (4) (hereinafter simply referred to as rubber-like polymer fine particles) ) Is preferably contained in an amount of 1 to 25% by mass.
  • the average particle diameter of the primary particles of the rubber-like polymer fine particles is preferably 0.01 to 5 m, more preferably 0.05 to 2 m.
  • the proportion of the rubber-like polymer fine particles (4) in the composition for a liquid crystal display cell sealing agent is more preferably from 1 to 20% by mass, particularly preferably from 1 to 15% by mass.
  • the softening point temperature of the rubber-like polymer fine particles (4) is 0 or less, the adhesion reliability at low temperature tends to be further improved, which is preferable. Further, by setting the primary particle diameter of the rubber-like polymer fine particles (4) to 5 m or less, the gap of the liquid crystal cell can be reduced, the amount of expensive liquid crystal used can be suppressed, and the liquid crystal can be suppressed. The display response speed can also be improved.
  • rubber-like polymer fine particles (4) include silicon rubber fine particles having a softening point temperature of 130 or less and a primary particle size in the range of 0.01 to 2, and Z or acryl rubber fine particles or polyolefin. More preferably, the rubber-like polymer fine particles (4) are cross-linkable rubber particles.
  • the rubber-like polymer fine particles (4) have a softening point temperature of 0 or less, the following known rubber-like polymers can be appropriately selected and used.
  • acrylic rubber rubber polymer silicone rubber rubber polymer, conjugated rubber rubber polymer, olefin rubber rubber polymer, polyester rubber rubber polymer, urethane rubber rubber polymer, composite rubber.
  • a rubber-like polymer having a functional group that reacts with an epoxy group can be exemplified.
  • those having a functional group that reacts with an epoxy group are preferable.
  • the rubber-like polymer fine particles (4) used in the composition for a liquid crystal display cell sealant can be used alone or as a mixture of two or more of them.
  • acryl rubber-based rubber-like polymer fine particles include, for example, particles obtained by drying a core shell type emulsion whose core portion is made of acrylic rubber, and non-aqueous dispersion polymerization of an acrylic monomer in an epoxy resin. After separately preparing a resin composition, and further, an acrylic rubber polymer solution having a functional group reactive with an epoxy group introduced therein, and then pouring or dropping it into the epoxy resin, mechanically mixing and removing the solvent or There is a resin composition in which acryl rubber fine particles are stably dispersed in an epoxy resin by grafting.
  • silicon rubber-based rubber-like polymer fine particles include, for example, powdery silicon rubber fine particles, and an epoxy resin having a acrylate group at one end capable of introducing a double bond and reacting with the double bond.
  • an epoxy resin having a acrylate group at one end capable of introducing a double bond and reacting with the double bond.
  • conjugated rubber-based rubber-like polymer fine particles include, for example, a polymerized or copolymerized monomer such as 1,3-butadiene, 1,3-pentanedene, isoprene, 1,3-hexadiene, and chloroprene.
  • conjugated rubber-like polymer fine particles obtained by polymerization which may be already known ones and are not particularly limited. Commercial products can be used as they are.
  • More specific examples of conjugated diene rubbers include copolymers of butadiene and acrylonitrile, copolymers of butadiene and acrylonitrile having a terminal lipoxyl group, and amino groups at the terminal There is a copolymer of bushugen and acrylonitrile.
  • olefin rubber-based rubber-like polymer fine particles include single amorphous polymers such as ethylene, propylene, 1-butene, 2-butene, and isobutene.
  • examples thereof include copolymers with other copolymerizable monomers, fine particles made of Yuichi Polymer, and compositions thereof.
  • a good example is a resin composition obtained by dehydrating a commercially available product such as an olefin rubber latex in an epoxy resin to stabilize the dispersion of the olefin rubber in the epoxy resin.
  • the polyester rubber-based rubber-like polymer fine particles are fine particles made of a rubber-like polymer having a polymer skeleton containing a polyester bond, and are not particularly limited.
  • Specific examples of the polyester rubber include, for example, at least one diol component selected from liquid polysiloxane diol, liquid polyolefin diol, polypropylene glycol, polybutylene glycol, and the like, and if necessary, triol or more.
  • examples thereof include a low softening point polyester resin using an acid anhydride instead of an acid, or a low softening point polyester resin derived from a hydroxy polycarboxylic acid or the like.
  • the urethane rubber-based rubber-like polymer fine particles are fine particles made of a rubber-like polymer having a rubber-like polymer skeleton containing a urethane bond and a Z or urea bond, and are not particularly limited.
  • Specific examples of urethane rubber include, for example, a diol component composed of at least one selected from liquid polysiloxane diol, liquid polyolefin diol, polypropylene glycol, polybutylene glycol, and, if necessary, triol or more. Hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, norpornandiisocyanate, etc.
  • Rubber-like polyurethane obtained by reacting with a known diisocyanate compound, for example, liquid polysiloxane diamine, liquid polyolefin diene, etc. Isocyanate, diphenylmethane diisocyanate, norbornane diamine, and at least one long-chain diamine component selected from amine, polypropyleneglycoldiamine, etc., and, if necessary, a triamine or higher polyamine compound. Examples thereof include a rubber-like polyurethane obtained by reacting with a known diisocyanate compound represented by isocyanate or the like.
  • the composite rubber particles include, for example, graft polymers and / or block polymers or core-shell polymers, multi-layer polymers, and the like of the above-mentioned acrylic, silicon, conjugated gen, olefin, polyester, and urethane-based two or more types. Can be exemplified.
  • a functional group that reacts with an epoxy group is introduced into the acrylic, silicon, conjugated gen, olefin, polyester, or urethane particles described above. Is a typical example.
  • the repeating structure derived from the monomer having a functional group that reacts with the epoxy group has a weight ratio of 0.1 to 25 in the rubber-like polymer. It is preferable that the content is mass%.
  • the adhesiveness of the composition for a liquid crystal display cell sealant obtained by adjusting the content of the repeating structure derived from a monomer having a functional group that reacts with an epoxy group to 0.1% by mass or more and 25% by mass or less is obtained. Significantly improved.
  • Examples of the functional group capable of reacting with the epoxy group include a mercapto group, an amino group, an imino group, a carboxyl group, an acid anhydride group, an epoxy group, and a hydroxyl group.
  • the rubbery polymer contains at least one of these functional groups in a range from 0.01 to 2 Preferably, 5% by mass is introduced, and more preferably, 0.1 to 10% by mass is introduced.
  • the rubber-like polymer fine particles (4) maintain the shape as particles in the epoxy resin.
  • Means for discriminating the presence of rubber-like polymer fine particles (4) as particles in the epoxy resin are not particularly limited, but, for example, a mixture of a non-turbid epoxy resin and rubber-like polymer fine particles.
  • a method of sensitizing the fractured surface of the microscopic section of the cured product to staining with osmium acid and observing it with a scanning electron microscope to confirm the presence of particles can be employed as appropriate.
  • the rubber-like polymer fine particles (4) may or may not be grafted in advance with the epoxy resin (1).
  • the method for grasping the type, amount and particle size of the rubber-like polymer fine particles (4) in the composition for a liquid crystal display cell sealant and the sealant for a liquid crystal display cell of the present invention there is no particular limitation on the method for grasping the type, amount and particle size of the rubber-like polymer fine particles (4) in the composition for a liquid crystal display cell sealant and the sealant for a liquid crystal display cell of the present invention.
  • a method of analyzing a scanning electron microscope image (SEM) of a fragment of the cured product, or a method of sensitizing the fragment with osmic acid staining and then confirming a particle image with a transmission electron microscope (TEM) A method for identifying and quantifying by comparing with an elemental analysis image simultaneously with SEM observation; A method to determine the layer by measuring the infrared absorption spectrum of the micro layer, a method to identify and determine the gas components generated by decomposition by irradiating the micro layer with heat rays, and a mass by converting from the
  • any one can be used as long as it can be used as an inorganic filler in the field of ordinary electronic materials.
  • Preferred inorganic fillers (5) are high-purity silica and / or high-purity alumina or titanium oxide.
  • high purity silica having a total alkali metal content of 50 ppm or less, more preferably 30 ppm or less, particularly preferably 15 pm or less, as determined by atomic absorption spectrometry of wet decomposition products And Z or high-purity alumina or titanium oxide.
  • the purification method for reducing the total alkali metal content to 50 ppm or less can be obtained at the stage of the production raw material, and it can be obtained by a purification method such as an ion exchange purification method. You.
  • 8 nm wavelength of a laser method particle size measurement device by 9 9 wt% particles on the weight integration curve determined diameter value (d 9 9) is 5 / m or less those in the preferred, and mass integration curve on 5 0 wt% values shown are weight average particle size value (d 5 Q) to zero. 0 0 5 to which it is more preferably in the range of 1 m.
  • d 9 9 there is further improved preferred dimensional stability of formic Yap width used when the liquid crystal panel of inorganic filler is less than 5 m.
  • the inorganic filler (5) is used as needed, but the preferable content is 5 to 45% by mass.
  • the content is 5% by mass or more, the workability of screen printing or dispenser application can be improved, and when the content is 45% by mass or less, the fluidity of the composition can be ensured, and blurring or clogging of the dispenser frequently occurs during screen printing. It is preferable because the coating operation can be performed without any problems.
  • the range is preferably from 10 to 40% by mass.
  • the inorganic filler (5) is not particularly limited, but it is preferable to use it after being graft-modified with an epoxy resin (1) and a silane coupling agent (6) in advance.
  • a part or all of the inorganic filler (5) may be graft modified.
  • the grafting ratio is represented by the mass increase rate obtained by the repeated solvent washing method.
  • the amount of the epoxy resin (1) and the silane coupling agent (6) per 100 parts by mass of the inorganic filler (5) is used. It is preferable that 1 to 50 parts by mass of one or both of them is chemically bonded.
  • the method for determining the type and amount of the inorganic filler (5) in the composition for a liquid crystal display cell sealant of the present invention is not particularly limited.
  • a filtration fractionation method, an X-ray diffraction spectrum method , Elemental analysis, heat incineration residue method, wet pyrolysis-atomic absorption method, electron microscopy image analysis method, etc. may be appropriately combined.
  • the means for determining the type and amount of the inorganic filler in the liquid crystal display cell sealant, which is the cured product is not particularly limited.
  • Method, heat incineration residue method, wet pyrolysis-atomic absorption method, electron microscopic observation image analysis method, etc. may be combined as appropriate, and there is no particular limitation.
  • Silane coupling agent (6) is used as necessary, and the preferable content thereof is 0.1 to 5% by mass. Adhesion to a glass substrate can be ensured by using 0.1% by mass or more, and even more than 5% by mass does not bring out any more remarkable effects. Preferably, it is 0.5 to 3% by mass.
  • silane coupling agent (6) any of those usually used can be used, and examples thereof include trialkoxysilane compounds and methyldialkoxysilane compounds.
  • the method for determining the type and amount of the silane coupling agent (6) in the composition for a liquid crystal display cell sealant of the present invention is not particularly limited. For example, a solvent extraction preparative method, NMR spectrum identification Method, a gas chromatography method, a distillation fractionation method, or the like may be appropriately combined.
  • Means for determining the type and amount of the silane coupling agent in the liquid crystal display cell sealant, which is a cured product thereof, are not particularly limited.
  • pyrolysis gas chromatographic mass spectrometry, solid NM It can be performed by appropriately combining the R method and the like, and there is no particular limitation.
  • an epoxy group having a boiling point in the range of 150 to 220 which is further compatible with the epoxy resin, relative to 100 parts by mass of the composition.
  • the solvent (7) inert to the solvent may be contained in the range of 1 to 25 parts by mass.
  • the suitability for screen printing and the wettability to the adherend can be improved.
  • a high-boiling solvent having a boiling point in the range of 160 to 20 Ot is used.
  • the solvent (7) include, but are not particularly limited to, ketone solvents such as cyclohexanone, ether solvents, and acetate solvents.
  • ether solvent examples include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monophenyl ether, ethylene glycol dimethyl ether, and ethylene glycol monoethyl ether.
  • Tyl ether ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, ethylene glycol diphenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol Examples thereof include ethylene glycol monophenyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, and diethylene glycol diphenyl ether.
  • Preferred examples of the acetate solvent include ethylene glycol monoacetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mo / propyl ether acetate, ethylene glycol monobutyl ether acetate, and ethylene glycol.
  • Particularly preferred solvents (7) include ethylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether. It is at least one selected from acetate and propylene glycol diacetate.
  • the method of determining the type of solvent and the amount ratio of the solvent in the composition for a liquid crystal display cell sealant For example, a drying loss method, a gas chromatography method, a distillation method, a gas mass method, and infrared absorption. What is necessary is just to carry out combining the spectrum method, the NMR method, etc. suitably.
  • High softening point polymer fine particles having a softening point temperature of 50 ° C or more and a primary average particle diameter of primary particles of 2 ⁇ m or less
  • the composition 100 High softening point polymer fine particles (8) may be contained in the range of 0.1 to 25 parts by mass with respect to parts by mass. By using more than 0.1 parts by mass together, it is possible to further ensure the seal bonding without the occurrence of penetration bubbles and bleeding in the primary bonding process of the vacuum sheet heat press or rigid sheet heat press. It is preferable to use 25% by mass or less, since the gap operability can be sufficiently ensured.
  • High softening point polymer fine particles (8) are high softening point polymers with a softening point temperature of 50 or more as determined from TB A and an average primary particle diameter of 2 m or less observed by electron microscope.
  • Acrylic polymer fine particles (8) (hereinafter sometimes simply referred to as high softening point polymer fine particles).
  • the average particle diameter of the primary particles of the high softening point acrylic polymer fine particles (8) is preferably in the range of 0.01 to 1 m, and more preferably in the range of 0.2 to 0.5 m.
  • the high softening point acrylic polymer fine particles (8) can be used in either a crosslinked type or a non-crosslinked type, but a crosslinked type is preferable, and a high softening point acrylic polymer fine particle having a finely crosslinked structure is more preferable.
  • the acryl polymer particles having a high softening point having a finely crosslinked structure can be obtained by adjusting the amount of the crosslinkable monomer in the range of 0.1 to 5% by mass, preferably 1 to 3% by mass, in the production of the polymer. Can be manufactured.
  • One of the indicators of the degree of microcrosslinking is the gel fraction. This is accomplished by dispersing 10 g of high softening point polymer fine particles in 50 g of methyl carbitol solvent, stirring at 25 for 1 hour, filtering, and determining the filtrate amount and the polymer content (dissolved amount) in the filtrate.
  • the gel fraction index is preferably in the range of 0 to 50%, more preferably 0 to 5%.
  • the high-softening point acrylyl polymer fine particles preferably have a wetting index calculated from the chemical structural formula in the range of 9 to 11, more preferably 9.3 to 10.5.
  • the high softening point acrylic polymer fine particles (8) include, for example, a finely crosslinked polymethacrylic acid methyl ester-based polymer obtained by copolymerizing 0.1 to 5% by mass of a crosslinkable monomer, and an ionomer. Examples thereof include a polymethacrylic acid methyl ester polymer having a structure in the range of 0.1 to 5% by mass.
  • the high softening point acrylic polymer fine particles it is more preferable that one type of functional group such as an epoxy group, an amino group, an imino group, a mercapto group, and a hydroxyl group is introduced into the particle surface.
  • it has a softening point temperature of 60 to 150 and a primary particle size in the range of 0.01 to 1 / m.
  • the rubber-like polymer fine particles (4) and the high softening point acrylic polymer-fine particles (8) may be previously compounded.
  • (4) and (8) are core-shell type composite fine particles (A) in which the fine polymer particles (4) form a core phase and the high softening point acrylic polymer fine particles (8) form a shell phase.
  • a preferred example is an embodiment in which the core-shell type composite fine particles (B) having the high softening point acrylic polymer fine particles (8) as the core phase and the rubber-like polymer fine particles (4) as the shell phase are used.
  • the former embodiment using the core-shell type composite fine particles (A) is preferable.
  • the core: shell mass ratio is desirably in the range of (1: 0.3) to (1: 2). .
  • composition for a liquid crystal display cell sealant of the present invention a composition in which the above-mentioned epoxy resin composition further contains a gap control agent (9) is a more preferred embodiment. Gap-out control agent (9) is used to reduce the gap width of the liquid crystal display element.
  • the gap-out control agent (9) is appropriately contained in a proportion of 0.1 to 5 parts by mass with respect to 100 parts by mass of the composition for a liquid crystal display cell sealant of the present invention, if necessary. . More preferably, it is in the range of 0.5 to 2.5 parts by mass.
  • Examples of the gap control agent (9) include, for example, spheres, rugby ball-shaped particles, rod-shaped fibers, etc., which are not deformed, dissolved, or swollen by an epoxy resin (1) or a solvent (7) used as required.
  • Examples include inorganic particles or thermosetting polymer particles.
  • Examples of the inorganic particles of the gap formation controlling agent (9) include spherical silica particles, spherical alumina particles, short glass fibers, short metal fibers, and metal powders.
  • Examples of the organic gap control agent (9) include thermosetting polystyrene spherical particles, phenol resin-based thermosetting particles, and benzoguanamine-based thermosetting particles.
  • Inorganic particles are a particularly preferred example because they can control the gap accuracy with high accuracy.
  • the method for determining the type of the gap control agent in the composition for a liquid crystal display cell sealant or the sealant for a liquid crystal display cell or the quantitative ratio thereof is not particularly limited. Observation image analysis method, separation filtration method, thermal decomposition gas chromatography method, heating residue X-ray diffraction method, elemental analysis method, etc. (10) Conductive beads
  • the conductive beads (1) are added to 100 parts by mass of the epoxy resin composition for the purpose of simultaneously imparting an anisotropic conductivity function together with a sealing function.
  • 0) is also included in a preferred embodiment as a composition containing 1 to 15 parts by mass in combination.
  • an anisotropic conductivity function can be provided.
  • the use of 1 part by mass or more is preferable because a vertical conductivity function can be imparted, and when the amount is less than 15 parts by mass, insulation properties between both lateral (left and right) electrodes can be secured.
  • the conductive beads (10) are not particularly limited, but for example, have an average particle diameter of 3 to 10 m, a maximum particle diameter of 10 im or less, and a minimum particle diameter of 0.1 m. The above conductive beads are preferred.
  • the kind of the conductive beads is not particularly limited, but specific examples are shown below.
  • noble metal particles, noble metal alloy particles, base metal particles, base metal alloy particles, other metal-coated organic particles, and metal-coated insulating inorganic particles may be used.
  • gold, silver, platinum and the like can be exemplified.
  • silver-copper alloy gold-copper alloy, gold-silver alloy, platinum-silver alloy, gold-platinum alloy, gold-nickel alloy, silver-nickel alloy, etc.
  • silver-copper alloy gold-copper alloy
  • gold-silver alloy gold-silver alloy
  • platinum-silver alloy platinum-silver alloy
  • gold-platinum alloy gold-nickel alloy
  • silver-nickel alloy etc.
  • copper, nickel, tin, tungsten and the like can be exemplified.
  • a copper-nickel alloy, a copper-tin alloy, a solder and the like can be exemplified.
  • a typical example is obtained by forming the conductive metal film on organic polymer particles represented by polystyrene / polymethyl methacrylate.
  • organic polymer particles represented by polystyrene / polymethyl methacrylate.
  • the product name “Micropearl AU Series” is known from Sekisui Fine Chemical Co., Ltd. and can be used favorably.
  • a typical example is formed by forming the conductive metal film on highly insulating inorganic particles represented by mica or glass beads.
  • the conductive beads (10) have an organic polymer as a core, and may be made of gold, silver, gold, copper alloy, silver-copper alloy, nickel, or an alloy thereof. It is preferable to use conductive beads made of at least one selected metal-coated phase.
  • the average particle size of the conductive beads is preferably in the above range. If the average particle size is 1 m or less, it is difficult to obtain good vertical conduction characteristics even with conductive particles between the electrodes. If the average particle diameter or the maximum particle diameter exceeds 10 m, a short circuit is likely to occur.
  • the method for determining the type of conductive beads (conductive particles) in the composition for a liquid crystal display cell sealant or the sealant for a liquid crystal display cell or the ratio thereof is not particularly limited. TEM or SEM image analysis methods, filtration fractionation methods, and the like can be combined as appropriate. Other additives
  • composition for a liquid crystal display cell sealant of the present invention if necessary, a wax, a wax, a pigment, a dye, a plasticizer, and an antifoaming agent can be used.
  • Wax (11) can be used for the main purpose of improving performance and further improving low water absorption.
  • the wax (11) is preferably used in an amount of 0.1 to 5% by mass of the wax based on 100 parts by mass of the composition for a liquid crystal display cell sealant of the present invention.
  • the cured product can be used in a high temperature and high humidity environment with a relative humidity of 95% or more.
  • 8 Ot The moisture permeability of the cured product can be further reduced. Along with this, it becomes possible to manufacture highly durable liquid crystal display cells.
  • the wax (11) is not particularly limited, and any wax can be used.
  • any wax can be used.
  • animal-based natural waxes, plant-based natural waxes, mineral-based natural waxes, petroleum-based waxes, synthetic hydrocarbon-based waxes, modified waxes, hydrogenated waxes, and the like can be given.
  • waxes having a melting point of 70 to 150 ° C. are preferred, and carnano wax, microcrystalline phosphorus wax, Fischer-Tropx wax, and modified Fischer-Tropsch wax are more preferred.
  • the wax exists as independent primary particles in a state before the liquid crystal display cell sealant composition is cured.
  • the average particle diameter of the primary particles by electron microscope or optical microscope observation is preferably in the range of 0.01 to 5 zm, and more preferably in the range of 0.01 to 3 / m. Is more preferred.
  • beeswax whale wax, shellac wax and the like can be mentioned.
  • carnauba wax olicury wax, candelilla wax, wood wax, cane wax and the like can be mentioned.
  • candelilla wax olicury wax
  • wood wax candelilla wax
  • cane wax can be mentioned.
  • montan wax for example, montan wax, ozokerite, ceresin and the like can be mentioned.
  • paraffin wax microcrystalline wax and the like can be mentioned.
  • Examples include Fischer-Tropsch wax and its derivatives, polyethylene wax and its derivatives, polypropylene wax and its derivatives, and the like.
  • an acidified wax for example, there may be mentioned an acidified wax, a montan wax, an acid-modified wax and the like.
  • composition for liquid crystal display cell sealant comprises the steps of (1) epoxy resin, (2) polyvalent phenol curing agent, (3) alkyl urea derivative and phosphazene compound.
  • a hardening accelerator comprising at least one selected from the group consisting of: (4) rubber-like polymer fine particles having a softening point temperature of 0 or lower and an average primary particle size of 5 / zm or lower; Inorganic filler, (6) silane coupling agent, (7) solvent, (8) high softening point polymer fine particles, (9) gap control agent, (10) conductive beads, (11) wax, Other additives such as a ring agent, a pigment, a dye, a plasticizer, and an antifoaming agent may be appropriately added and mixed, and there is no particular limitation.
  • the mixing may be performed using a known machine such as a double-arm stirrer, a roll kneader, a twin-screw extruder, and the like. Be transported. Physical properties of composition for liquid crystal display cell sealant
  • the viscosity of the composition for a liquid crystal display cell sealant before curing is not particularly limited, and is determined by a Brookfield viscometer (B-type viscometer) or an E-type viscometer. 25: Viscosity of 1 to 1000 Pa ⁇ s It is preferably in the range of 5 to 500 Pa's, and most preferably in the range of 10 to 200 Pa * s.
  • the composition for a sealant of a liquid crystal display cell of the present invention is manufactured by adjusting the viscosity in the above range in advance by a method such as heat curing.
  • the ratio of the 1 rpm viscosity value obtained from the shear speed of 1 rotation per minute and the 10 rpm viscosity value at a shear speed of 10 rotations when the rotor number of the B-type viscometer or the E-type viscometer is the same.
  • the thixotropic index represented by (1 rpm viscosity value 10 rpm viscosity value) is not particularly limited, but is preferably in the range of 1 to 3. Manufacturing method of liquid crystal display element
  • the method for producing a liquid crystal display element of the present invention is a method for producing a liquid crystal display element using TN liquid crystal, STN liquid crystal, ferroelectric liquid crystal, and antiferroelectric liquid crystal.
  • another method of manufacturing a liquid crystal display element of the present invention is a method for manufacturing a liquid crystal display element using TN liquid crystal, STN liquid crystal, ferroelectric liquid crystal, and antiferroelectric liquid crystal.
  • the composition is printed or dispensed on the bonding seal components of a glass or plastic liquid crystal cell substrate, and pressed at a temperature of 50 to 120 ° C. After curing, the other substrate is overlapped so that the liquid crystal is dropped and air is not trapped, aligned, temporarily fixed, and then heat-pressed at 80 to 150 ° C. After treatment, the substrate is bonded and fixed to a uniform thickness in the range of 3 to 7 m, and then the breathing holes are sealed with a photocurable liquid crystal sealant composition or a two-liquid crystal sealant composition. It is a manufacturing method characterized by the above-mentioned.
  • the pre-curing is required in advance.
  • a solvent content of 100 at least 95% by mass or more can be desolvated, and a heating and drying temperature below the thermal activation temperature of the contained curing agent is selected.
  • 70 to 120 is preferable.
  • the precuring temperature is in the range of 8 Ot: to 100, and the heat treatment time is 30 to 5 minutes. The higher the temperature, the shorter the drying time. Solvent removal is possible even with a pre-cured resin exceeding 120, but care must be taken because the precision of the gap width tends to decrease as the curing reaction proceeds.
  • liquid crystal cell substrate to be used examples include a glass substrate and a plastic substrate.
  • these substrate groups include a transparent electrode represented by indium oxide, an alignment film represented by polyimide, etc., and other inorganic ion shielding films, etc., which are applied to necessary parts.
  • the same plastic substrate is used.
  • the method for applying the composition for a liquid crystal display cell sealant to a substrate is not particularly limited, and may be, for example, a screen printing application method or a dispenser application method. Also, after application, after pre-drying as necessary, bonding and bonding by heat and pressure bonding are used.
  • the heat curing conditions at this time are not particularly limited, but may be from 100 to 2 It is desirable that the heating time is 24 to 0.5 hours at 100 ° C., preferably 24 to 1 hour at 110 to 180 ° C.
  • the single-sheet heat press means a heat press machine of a specification for joining one set at a time
  • a single-sheet heat press machine capable of applying heat under vacuum is a vacuum single-sheet heat press and an atmospheric pressure.
  • Liquid crystal display device
  • the liquid crystal display element of the present invention means that the composition for a liquid crystal display cell sealant of the present invention is printed or dispensed on a bonding seal constituting portion of a glass or plastic liquid crystal cell substrate, and 70 to 12 Ot : After pre-curing, the other uncoated object After positioning with a pair with the same substrate, the substrate is heat-pressed at 100 to 200, and the substrate is A liquid crystal display element obtained by bonding and fixing to a uniform thickness in the range of 7, a liquid crystal material is injected into the cell, and the injection hole is sealed with a two-liquid type liquid crystal sealant composition, or The composition for a liquid crystal display cell sealant of the present invention is printed or dispensed on the bonding seal constituent part of a glass or plastic liquid crystal cell substrate, and after pre-curing at a temperature of 50 to 120, the other is used.
  • the liquid crystal is dropped and bonded so as not to trap the air.
  • the substrate is heat-pressed at 80 to 150, and the substrate is homogenized in the range of 3 to 7 ⁇ .
  • the breathing hole is obtained by sealing with a photocurable liquid crystal sealing compound composition or a two-liquid type liquid crystal sealing compound composition.
  • the photocurable liquid crystal sealant composition is not particularly limited, for example, a composition containing a polyvalent acrylate resin and a photoinitiator, and a composition containing an epoxy resin and an ultraviolet photoinitiator.
  • the two-liquid crystal sealant composition for example, a two-liquid crystal sealant composition comprising an epoxy resin and a polyamide curing agent, and a two-liquid crystal liquid comprising an epoxy resin and a polythiol curing agent
  • a sealant composition for example, a two-liquid crystal sealant composition comprising an epoxy resin and a polyamide curing agent, and a two-liquid crystal liquid comprising an epoxy resin and a polythiol curing agent
  • examples thereof include a sealant composition, a two-liquid crystal sealant composition comprising an epoxy resin and a polymer curing agent, and the like.
  • the liquid crystal material is not limited, and for example, a nematic liquid crystal or a ferroelectric liquid crystal can be suitably used.
  • liquid crystal display device examples include a TN (Twisted Nematic) liquid crystal proposed by M. Schadt and W. He1frich. Element or STN (Super Twisted Nematic) liquid crystal element or Clark (N.
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • Preferred examples include a ferroelectric liquid crystal element proposed by A. Clark and Lagawell (ST Lagerwa 11), and a liquid crystal display element in which a thin film transistor (TFT) is provided in each pixel.
  • TFT thin film transistor
  • B-type viscosity value is set to 100, expressed as the change rate of the same viscosity value after _10 / 30 days .
  • composition for a liquid crystal display cell sealing agent hermetically sealed and stored in a polyethylene container below the freezing point was taken out and returned to room temperature 25 over 2 hours.
  • the 25t: B-type viscosity value at that time is defined as 100, and the viscosity change rate after standing at 25 for 12 hours is shown.
  • the liquid crystal sealant composition of each example was coated on a smooth release film to a thickness of 10 to 50 ⁇ , and 0.6 parts of the B-staged composition mass obtained under the B-stage condition of each example was removed. Samples are collected quickly, and the temperature is raised at a constant speed from 40 to 12 minutes with an E-type viscometer (cone cup viscometer) to 120 (temperature) — (0.5 rpm rotational viscosity). The curve was determined. The 90 ° C viscosity was determined from the viscosity curve.
  • Viscosity is 301 ⁇ l O O OPa 's
  • the liquid crystal sealant composition of each example is applied to a smooth release film to a thickness of 70 to 120, heat-treated at 8 Ot: for 30 minutes, and further heat-cured at 150 ° C for 90 minutes to obtain a cured product.
  • a membrane is cut out and subjected to a moisture permeability test according to JIS-Z-0208, a moisture permeability test method for moisture-proof packaging materials of Japanese Industrial Standards (JIS), at 60 and 80 ° C for 24 hours. The amount of water vapor per 100 m of the wet film thickness (unit: g / m 2 ⁇ 24 hrs) was determined.
  • the moisture permeability is less than 35 g / m 2 ⁇ 24 hrs, and the composition for liquid crystal display cell sealant is particularly excellent in low moisture permeability.
  • liquid crystal display cell sealant composition has excellent low moisture permeability
  • the liquid crystal display cell seal composition lacks low moisture permeability.
  • -XX 60 "C 251 g / m 2 ⁇ 24h rs with moisture permeability. Above, the liquid crystal sealant composition lacks low moisture permeability
  • the moisture permeability is 100 gZm 2 ⁇ 24 h rs or less, and the composition for liquid crystal display cell sealant is particularly excellent in low moisture permeability.
  • liquid crystal display Cell sealant composition has excellent low moisture permeability
  • the moisture permeability is 151 to 200 g / m 2 ⁇ 24 hrs, and the low moisture permeability of the liquid crystal display cell sealant composition is very low.
  • the composition for liquid crystal display cell seals lacks low moisture permeability.
  • the liquid crystal sealant composition of each example was applied on a smooth release film to a thickness of 70 to 120, heat-treated at 80 for 30 minutes, and thermally cured at 150 for 90 minutes.
  • a small piece (15 mm square) of the cured film obtained as described above was cut out, and the cured body was subjected to TMA measurement from 30 to 18 at a temperature rise of 5 per minute.
  • the linear expansion coefficient per unit was determined by dividing the strain amount of 80 by 30 and then by 50.
  • the liquid crystal sealant composition of each example was applied on a smooth release film to a thickness of 70 to 120 /, heat-treated at 80 for 30 minutes, and thermally cured at 150 for 90 minutes.
  • a small piece (15 mm square) of the obtained cured film was cut out, and the cured product was subjected to TMA measurement from 40 to 18 at a temperature rise of 5 T / min.
  • the inflection point of the strain was defined as the heat distortion temperature (T g) of the cured product.
  • the liquid crystal sealant composition of each example was applied on a smooth release film to a thickness of 70 to 12 and heat-treated at 80 for 30 minutes, and further heat-cured at 150 for 90 minutes.
  • the cured film thus obtained was cut into a square of 100 mm, and the cured product was immersed in boiling water for 30 minutes, 3 hours or 5 hours, and the weight increase was calculated.
  • the value multiplied by 00 was taken as the water absorption. That is,
  • Shore D hardness is 70 or more and less than 80, and the cured body is rich in rigidity
  • the liquid crystal sealant composition of each example was coated on a smooth release film to a thickness of 70 to 120, heat-treated at 80 ° C for 30 minutes, and heat-cured at 150 to 90 minutes to obtain a cured film of 100 mm
  • the cured product was heated at a constant speed of 5 per minute under an air atmosphere at a frequency of 1 Hz using a dynamic viscosity tester manufactured by Rheometrics to obtain a viscosity curve.
  • storage elastic modulus in the range of 100 to 150.
  • a liquid crystal display cell manufactured by performing adhesive curing under the conditions shown in each example is magnified with a 20x magnifying glass and observed with the naked eye to see if there is any disturbance in the seal line and defective sealing due to the generation of through bubbles. The presence or absence of the location was measured.
  • a wedge is driven into a liquid crystal display cell manufactured through a sheet press hardening process under the conditions shown in each example under a 60 environment, and the adhesive force of the liquid crystal display cell sealing material composition in the peeled state at that time is measured.
  • the liquid crystal display cell manufactured through the sheet-fed press hardening process under the conditions shown in each example was exposed to a 1 2 1 pressure cooker for 2 hours, then taken out and driven into a wedge at room temperature. Represents the adhesive strength of the sealing material composition for liquid crystal display cells in the peeled state.
  • RC4087 liquid crystal material manufactured by Chisso Co., Ltd. was injected into the liquid crystal display cell manufactured through the single-wafer press hardening process under the conditions shown in each example from the liquid crystal filling port. — Sealed with 302 [Mitsui Chemicals, Inc.] to produce a liquid crystal panel. After leaving the LCD panel in an atmosphere of 65: / RH 95% for 250 hours, 500 hours, and 1,000 hours, remove the LCD panel, attach a polarizing plate to the front side, and attach a polarizing plate with a reflector to the rear side. Attached. Thereafter, a drive circuit and the like were mounted on the unit, and changes in the display function were observed.
  • Display unevenness is seen in the range from 151 to less than 500 im at the distance from the seal around the cell periphery
  • the monofunctional epoxy resin has an ionic conductivity of 1.5 mS / m (hereinafter simply referred to as ionic conductivity of extracted water) extracted and separated and extracted by contact mixing with pure water of the same mass for 1 hour.
  • 2-ethylhexyl monoglycidyl ether abbreviation: 2EHMG
  • t-butylphenol monoglycidyl purified to 1.2 mSZm (12 S / cm) or less in ionic conductivity of extracted water Ether (abbreviation: t_BPMG) was prepared.
  • bifunctional aliphatic epoxy resin 1,6-hexanediol diglycidyl ether (abbreviation 6-HGDE) purified to 0.2 mS / m (2 fiS / cm) by extraction water ion conductivity is used.
  • bifunctional bisphenol A-type epoxy resin Mitsui Chemicals Co., Ltd.'s product name “Epomic R_140P” (average molecular weight 370), Yuka Shell Co., Ltd. Product name “Epicoat 1007” (average molecular weight 4000), Mitsui Chemicals Co., Ltd.
  • the phenol novolak resin is a product of Mitsui Chemicals Co., Ltd.'s trade name “Mirex VR93 i5” (resin consisting of phenol nucleus with methylene bond), especially with softening point temperature of 114.9, free phenol content of 0.03 %, The chlorine atom content is 0.01% or less, and the ionic conductivity of the extraction water is 0.5 mS / m (5 ⁇ S / cm). Simply called FP resin).
  • esterified phenol novolak resin As another phenol novolak resin, Nopolak PSM-4261 manufactured by Gunei Chemical Co., Ltd., and as esterified phenol novolak resin, Nopolak PSM—manufactured by Gunei Chemical Co., Ltd. as shown in Synthesis Example 1 below. 4261 phenolic hydroxyl A resin in which 98 mol% of the groups were benzoyl esterified (hereinafter referred to as esterified PSM-4261) was prepared.
  • esterification-modified products shown below were obtained by esterification-modification according to Synthesis Example 1.
  • esterified trisphenol monomer which is a high-melting substance, was produced according to Synthesis Example 2.
  • the phenol aralkyl resin is manufactured by Mitsui Chemicals, Inc., “Xyloc XL C-225L” (resin in which a phenol nucleus is bonded to a p-xylene nucleus via a methylene bond). It has a mass average molecular weight of 7150, a softening point of 84, free phenol of 0.01% or less, a chlorine atom content of 0.01% or less, and an ionic conductivity of 0.3 mSZm (3 SZcm) of extracted water. (In the following examples, simply referred to as XP resin).
  • a phenol nucleus is bonded to a p-xylene nucleus via a methylene bond, and has a mass average molecular weight of about 1750 in terms of polystyrene by GPC, a softening point of 76 ⁇ , Free phenol with a content of 0.01% or less, chlorine atom content of 0.01% or less, and ionic conductivity of extracted water of 0.3 mS / m (3 SZcm) (hereinafter simply referred to as XLP resin)
  • XLP resin ionic conductivity of extracted water of 0.3 mS / m
  • the esterified phenol aralkyl resin 99 mol% of the active phenolic hydroxyl groups of the XLP resin is benzoyl-esterified, and the ion conductivity of the extracted water is 1.1 lmSZm (11 Pi S / cm).
  • esterified aralkyl resin (Hereinafter, simply referred to as esterified aralkyl resin).
  • the alicyclic compound-modified phenol nopolak resin has a weight average molecular weight in terms of polystyrene derived from purified phenol and a, a-dimethyl ether_2,5-dicyclopentene of 969, and has an ion conductivity of extracted water.
  • DCN resin dicyclopentene-modified phenol nopolak resin
  • DCN resin dicyclopentene-modified phenol nopolak resin
  • CHN resin so-called cyclohexane-modified phenol nopolak resin
  • esterified alicyclic compound-modified phenol novolak resin the dicyclopentene-modified phenol nopolak resin.
  • esterified DCN resin 100% by mole of active phenolic hydroxyl groups in the cyclohexane-modified phenol nopolak resin are benzoyl-esterified, and the ionic conductivity of the extracted water is 0.6 mSZm (6 S / cm) Esterified CHN resin) was prepared.
  • the polycyclic aromatic compound-modified nopolak resin is FP I from Kashima Oil Co., Ltd.
  • the compound-modified nopolak resin is a resin in which 95 mol% of the active phenolic hydroxyl groups of FPI_5136 are benzoyl-esterified and the ionic conductivity of the extracted water is 0.
  • the naphthol nopolak resin has a mass average molecular weight of 878 in terms of polystyrene derived from 0-naphthol and formaldehyde, and the ionic conductivity of the extracted water is 0.3 mSZm (3 ⁇ (S / cm) resin (hereinafter simply referred to as NN resin) is used as the esterified naphthol nopolak resin.
  • Esterified NN resin in which 50 mol% of the phenolic hydroxyl groups of the NN resin is benzoyl ester It I prepared each.
  • the naphthol aralkyl resin has a polystyrene equivalent mass average molecular weight of 555 derived from / 3- naphthol and ⁇ , dimethyl ether mono-xylylene, and has an ion conductivity of 0.
  • a 7mSZm (7 ⁇ S / cm) resin (hereinafter simply referred to as an NA resin) is used as its esterified naphthol aralkyl resin. 50 mol% of the phenolic hydroxyl groups of the NA resin are converted into benzoyl esters. Each of the esterified NA resins was prepared.
  • the alicyclic compound-modified naphthol nopolak resin has a polystyrene-equivalent weight average molecular weight of 1240 derived from j3-naphthol and a, a-dimethyl ether-1,2,5-dicyclopentene, and has an ion conductivity of extracted water.
  • 0.7 mS / ⁇ 1 nS / c) resin (hereinafter simply referred to as DC-NN resin) is used as an ester of the ester obtained by benzoyl esterifying 50 mol% of the phenolic hydroxyl groups of DC-NN resin.
  • a DC—NN resin was prepared.
  • Tris P compound 4,4 '-[(2-hydroxyphenyl) methylene] bis [2,3] purified to an ion conductivity of 0.3 mS / m (3 S / cm) , 6-trimethylphenol] (hereinafter simply referred to as Tris P compound), and has a maximum particle size of 4 ⁇ m or less by a fine pulverizer.
  • the 99.9% maximum particle diameter of the calculated weighted product curve was 4 m or less.
  • esterified polyhydric phenol monomer As the esterified polyhydric phenol monomer, according to Synthesis Example 2, 99.3 mol% of the active phenolic hydroxyl group of the Tris P compound was converted into a benzoyl ester, and the ion conductivity of the extracted water was 0%. Prepare 6mS / m (6S / cm), hereinafter simply referred to as esterified Tris P compound. ..
  • Another polycyclic aromatic compound-modified phenol nopolak resin is Kashima Oil Co., Ltd. product name “PPF resin; FP I-5127” (derived from the light fraction from phenol nucleus and catalytic cracking plant).
  • the resin has a free phenol content of 0.01% or less, a softening point of 80, and a GPC polystyrene equivalent number average molecular weight from a resin in which a 3 or 4 ring polycyclic aromatic hydrocarbon nucleus is randomly bonded with a methylene bond. 650 and the ion conductivity of the extracted water was less than 2 mS nom (20 ⁇ S / cm).
  • Adipic dihydrazide (abbreviation ADH) was selected as the dihydrazide compound.
  • phenol nopolak resin (trade name: PSM-4216, hydroxyl equivalent 107 g / eq: manufactured by Gunei Chemical Co., Ltd.) It was charged and the internal temperature was raised to 125. While maintaining the internal temperature at the same temperature, 140.6 g of benzoyl chloride was added dropwise over 2 hours while stirring. Thereafter, the reaction was performed for 2 hours while maintaining the temperature at 125 ° C, and the temperature was further increased to 140 ° C. After aging at 140 to 150 for 2 hours, the generated hydrochloric acid gas was distilled off under reduced pressure at a maximum of 15 ° C./1 OmmHg.
  • the resin obtained here is dissolved in 1000 g of toluene, washed with hot water at 60 to 70 ° C until the wastewater becomes neutral, and the toluene is distilled off at a maximum of 150 ° C / 5mmHg.
  • 210 g of a so-called esterified phenol novolak resin (esterified PSM-4216) in which 98 mol% of the hydroxyl groups were benzoylated was obtained.
  • the compound obtained here was dropped and precipitated in 1000 g of toluene, and the obtained crystal component was dissolved again in a 5% water-acetone mixture, and the precipitation was repeated five times with a toluene solvent to obtain aqueous acetone wastewater. Is recrystallized until neutral, and the crystals are dried under a condition of Z5mmHg at a maximum of 150, and 99.3 mol% of ⁇ acid groups are benzylated, so-called esterification. There was obtained 110 g of a trisphenol monomer (esterified trisphenol compound).
  • a curing accelerator represented by the following general formula (13) (hereinafter, simply referred to as PZO) is produced by the production method described in Journal of gene ralch emistry of the USSR, 55, p 1453 (1985). It was used.
  • SO-E1-6 dry-processed filler
  • SO-A805 dry-processed filler
  • Admafine SO-A800 amorphous As silica, Nippon AEROSIL INDUSTRY CO., LTD.
  • Product name “AEROSIL # 200” (primary average particle size 0.08 ⁇ m determined by electron microscopy), also Shin-Etsu Chemical Co., Ltd.
  • MU-120 primary primary average particle size of 0.07 m, determined by electron microscopy
  • Product name “UA-5105” hereinafter simply Called standard alumina 1 A, as titanium oxide, Ishihara Sangyo Co., Ltd.
  • Product name “CR-EL” average with the 50% particle size of the weighted product curve obtained by the laser irradiation type particle size distribution measurement method at 632.8 nm wavelength as the primary average particle size 1 m was used for each size.
  • the grafted modified alumina has a 50% average particle size of 0.1 / m and a 99.5% particle size obtained from a weighted product curve obtained by a laser irradiation type particle size distribution measuring method at 632.8 nm wavelength.
  • the dried sample obtained by washing 10 parts of the grafted modified alumina with 100 parts of toluene solvent five times also had a 1.7% loss on heating as an organic component when the dried sample was baked in a rutupo. It was found that about 2.4% of ⁇ -glycidoxypropyltrimethoxysilane was grafted.
  • epoxysilane N-phenyl-aminopropyltrimethoxysilane
  • aminosilane N-phenyl-aminopropyltrimethoxysilane
  • isocyanatopropyltrimethoxysilane Ethoxysilane was selected and used.
  • compositions prepared through the following Synthesis Examples 3 to 4 were used.
  • Epoxy containing rubber-like polymer fine particles finely crosslinked acrylic rubber fine particles; abbreviated as S1
  • Bisphenol F-type epoxy resin (Epiclone 830 S, manufactured by Dainippon Ink and Chemicals, Inc.) as a bifunctional epoxy resin in a 2000 ml four-necked flask equipped with a stirrer, gas inlet tube, thermometer, and cooling tube 600 g, 12 g of acrylic acid, 1 g of dimethylethanolamine and 50 g of toluene were added, and the mixture was reacted at 11 for 5 hours while introducing air to introduce a double bond.
  • Bisphenol F-type epoxy resin (Epiclone 830 S, manufactured by Dainippon Ink and Chemicals, Inc.) as a bifunctional epoxy resin in a 2000 ml four-necked flask equipped with a stirrer, gas inlet tube, thermometer, and cooling tube 600 g, 12 g of acrylic acid, 1 g of dimethylethanolamine and 50 g of toluene were added, and the mixture was reacted at 11 for 5 hours while introducing air to introduce a double
  • the softening point of the finely-crosslinked acrylic rubber microparticles (S1) determined by subjecting the epoxy resin composition (a) to TBA was -42.
  • composition (b) was rapidly cured at a low temperature in the presence of a photocuring catalyst, and the average particle size obtained by measuring the dispersed rubber particle size by observing the fracture surface morphology of the cured product with an electron microscope.
  • This is an epoxy resin composition (b) in which finely-crosslinked silicon rubber fine particles (S 2) having a value of 1.5 m are uniformly dispersed.
  • the content of finely crosslinked silicon rubber fine particles (S2) calculated from the charged amount is 30.0%. Further, the softening point temperature of the finely crosslinked silicone rubber fine particles (S2) determined by subjecting the epoxy resin composition (b) to TBA was -65.
  • a 2000ml four-lot flask equipped with a stirrer, gas inlet tube, thermometer and reflux condenser was charged with 420.5 g of ion-exchanged water, 10 g of itaconic acid, and sodium alkyl diphenyl ether disulfonate as a surfactant ( 2.6 g of “Pelex SS_L” from Kao Corporation was added, and the temperature was raised to 70 ° C while introducing nitrogen.
  • an aqueous initiator solution prepared by dissolving 1.2 g of potassium persulfate in 10 g of ion-exchanged water was added, followed by 5 g of n-butyl acrylate and methyl A mixed solution consisting of 5 g of methacrylate and 0.5 g of hydroxyethyl methyl acrylate was added all at once, and seed polymerization was carried out at 70 for 20 minutes.
  • the average primary particle size of the dispersed particles obtained by using an electron microscope with Em-1 was 170 nm (0.17 m).
  • the micro-crosslinking degree index of the high softening point acrylic polymer fine particles (P1) has a micro-crosslinking degree of 0.5% by mass as expressed by the content ratio of the cross-linking monomer in all the monomers. From the TBA information using the hot melt film, the softening point temperature of the high softening point acrylic polymer fine particles (P1) was 8 O :.
  • Zero F 351 a product of Zeon Kasei Co., Ltd., which is known as a composite particle having a core-shell mass ratio of 1: 1 with rubber-like polymer particles (4) as a core phase and high softening point polymer particles (8) as a shell phase (Obtain an average particle size of 0.
  • the composition for liquid crystal display cell sealant (E1) has an epoxy resin content of 20.7%, a rubber-like polymer fine particle content of 10.2%, an inorganic filler content of 22.7%, and a solvent content of 18. 7%, coupling agent content 1.6%, curing agent content 24.6%, curing accelerator content 1.5%.
  • Table 2 shows the physical properties of the sealant composition (E1) for liquid crystal display cell sealants.
  • a composition for liquid crystal display cell sealant (E1) 100 parts of a 5 m-thick short glass fiber gap control agent 5 parts was blended and mixed well, and the composition obtained was first aligned with the transparent electrode On a film-treated glass substrate for liquid crystal cells (hereinafter simply referred to as ITO substrate), a pattern consisting of a total of four cells (one cell size of 1 inch), one each for the top, bottom, left and right, is printed by screen.
  • An ITO substrate having a width of about 0.5 mm and a sealant applied thickness of about 20 to 22 was obtained.
  • composition for liquid crystal display cell sealant (E2) has an epoxy resin content of 26.
  • Table 2 shows the physical properties of the sealant composition (E2) for liquid crystal display cell sealants.
  • a composition obtained by blending 5 parts of a gap control agent for a short glass fiber with a thickness of 5 with 100 parts of the composition for a liquid crystal display cell sealant (E2), and thoroughly mixing the mixture, A total of 4 cells (1 inch in cell size) are screen-printed on the TO substrate, one each for the top, bottom, left and right, with a width of about 0.5 mm and a sealant applied thickness of about 20 to 22 m.
  • An ITO substrate was obtained. Then, after 3 0 min treatment in a hot air dryer at 80, put another I TO substrate to be paired, after the alignment, pressing pressure 0.
  • the composition for liquid crystal display cell sealant (E3) has an epoxy resin content of 20.18%, a rubber-like polymer fine particle content of 6.82%, an inorganic filler content of 22%, a solvent content of 15%, and a coupling agent.
  • the content is 1%, the content of the curing agent is 33.5%, and the content of the curing accelerator is 1.5%.
  • Table 2 shows the physical properties of the sealant composition (E3) for liquid crystal display cell sealants.
  • Liquid crystal display cell sealant composition (E3) 100 parts of 2 parts of a 6 m short fiber glass gap control agent were added and mixed well.
  • the composition for liquid crystal display cell sealant (E4) has an epoxy resin content of 21.3%, a rubbery polymer / fine particle content of 10.4%, an inorganic filler content of 23.3%, and a solvent content of 17. %, Coupling agent content 1.7%, curing agent content 24.3%, and curing accelerator content 1.6%.
  • Table 2 shows the physical properties of the sealant composition (E4) for liquid crystal display cell sealants.
  • a composition for liquid crystal display cell sealant (E4) 100 parts was mixed with 2 parts of a 5 m-thick short glass fiber gap control agent and mixed thoroughly.
  • ITO board with a width of about 0.5mm and a sealant applied thickness of about 22 to 24m by screen printing a pattern consisting of a total of 4 cells (1 inch in cell size), one each for the top, bottom, left and right, per board I got After that, after treating with a 90 ° C hot air dryer for 15 minutes, another ITO substrate to be paired is placed, and after alignment, press pressure is set to 0.03 MPa / cm 2 and 180 minutes by rigid single-plate press heating.
  • Epoxy resin composition in which 20 parts of cresol nopolak-type epoxy resin “Epototo Y DCN” which is a solid epoxy resin and 2 parts of bisphenol A-type epoxy resin flep “Epomic R 367” are dissolved in 9 parts of methyl carbitol 31 parts
  • Resin composition in which finely divided acrylic rubber fine particles (S1) having an average particle diameter of 0.05 m are uniformly dispersed (a) 15.5 parts, XP resin (phenolic aralkyl resin) as a curing agent 25 parts of hardener solution pre-dissolved in 10 parts of methyl carbitol 35 parts, hard Ul part of the accelerator, 2 parts of amorphous silica “MU-120”, 14.6 parts of amorphous alumina “UA-5105J”, 10.6 parts, and 0.9 part of aminosilane as the silane coupling agent were mixed together.
  • composition for liquid crystal display cell sealant (E5) is composed of an epoxy resin having 3.5 epoxy groups in one molecule by mass average. Its content is 31.73% and the content of rubbery polymer fine particles is 5.87%, inorganic filler content 16.6%, solvent content 19%, silane coupling agent content 0.9%, curing agent content 25%, curing accelerator content 1% .
  • Table 4 shows the physical properties of the sealant composition for the liquid crystal display cell sealant composition (E5).
  • a substrate was obtained.
  • the composition for liquid crystal display cell sealant (E6) is composed of an epoxy resin having a weight average of three epoxy groups in one molecule, and has a content of 29.2% and a rubbery polymer—fine particle content of 3 .8%, high softening point polymer fine particle content 9.5%> inorganic filler content 16%, solvent content 22%, silane coupling agent content 1.5%, hardener content 16%, curing
  • the accelerator content is 2%.
  • the initial viscosity was 65 Pa ⁇ s at 25 measured by an E-type viscometer.
  • Table 4 shows the physical properties of the sealant for the liquid crystal display cell sealant composition (E6).
  • E6 To 100 parts of the composition for liquid crystal display cell sealant (E6), 5 parts of a 5 m-thick short glass fiber gap control agent was blended and thoroughly mixed.
  • a screen consisting of a total of 4 cells (each cell size is 1 inch) is printed by screen on a single board, and the width is about 0.5 mm and the thickness of the sealant applied is about 20 to 22 m.
  • a substrate was obtained. Then, after treating with a 90 X hot air dryer for 15 minutes, another ITO substrate to be paired is placed, and after positioning, press pressure is 0. O SMP aZcm 2 , 180: Z.
  • the test was repeatedly put into a 150-heated oven for 90 minutes, and the bonding test for permanent curing was repeated 10 times. As a result, there was no seal failure and no disturbance of the seal line due to the generation of bubbles penetrating the seal, and the desired liquid crystal display cell substrate could be manufactured in all lots.
  • the liquid crystal display cell seal described in Table 3 was prepared in the same manner as in Example 6 except that the high softening point acrylic polymer fine particles (P1) were replaced with the high softening point polymer fine particles (P2).
  • a composition for preparation (E7) was obtained.
  • the composition for liquid crystal display cell sealant (E7) is composed of an epoxy resin having three epoxy groups on a weight average in one molecule, and has a content of 29.2% and a rubber-like polymer / fine particle content of 8 55%, high softening point polymer fine particle content 4.75%, inorganic filler content 16%, solvent content 22%, silane coupling agent content 1.5%, hardener content 16%, curing acceleration Agent content of 2%.
  • the 25 initial viscosity measured by an E-type viscometer was 68 Pa ⁇ s.
  • Table 4 shows the physical properties of the sealant for the liquid crystal display cell sealant composition (E7).
  • a gap control agent of spherical silica having a particle size of 5 im was blended, and the mixture obtained by thorough mixing was first applied to an ITO substrate.
  • a screen consisting of a total of 4 cells (cell size of 1 inch) is printed by screen printing on each substrate, and the ITO substrate is about 0.5 mm wide and has a sealant coating thickness of about 20 to 22 m. Obtained.
  • the liquid crystal display cell sealant composition (E8) has an epoxy resin content of 35%, an inorganic filler content of 16.6%, a solvent content of 19%, a silane coupling agent content of 0.9%, and a curing agent content. 27.5% and 1% of curing accelerator content.
  • the initial viscosity was 25 Pa ⁇ s with an E-type viscometer at 25 t.
  • Table 4 shows the physical properties of the sealant for the liquid crystal display cell sealant composition (E8).
  • a gap control agent of spherical silica having a particle diameter of 5 m was blended, and the mixture obtained by thorough mixing was first applied to an ITO substrate.
  • each cell is cut individually, and a cell wedge peeling test is performed, and a cell wedge peeling test is performed after a 2-hour pressure cooker test at 121 ° C.
  • the linearity of the seal line and the seal line were observed with a magnifying glass, and the results are shown in Table 4. Also, the sealing performed using the obtained cell Table 4 also shows the results of the functional durability test.
  • the composition for liquid crystal display cell sealant (E9) has a weight average of 2.5 It consists of an epoxy resin having an epoxy group, its content is 37%, the content of rubber-like polymer particles is 3.9%, the content of inorganic filler is 10.8%, the content of high softening point polymer particles is 3.5%, It consists of 2% silane coupling agent content, 16.6% curing agent content, 2.2% curing accelerator content, 23% solvent content, and 1% wax content.
  • the 25 initial viscosity measured by an E-type viscometer was 64 Pa ⁇ s. Table 6 shows the physical properties of the sealing agent composition (E 9) for the liquid crystal display cell sealing agent.
  • composition for liquid crystal display cell sealant E9
  • 3 parts of a gap control agent of spherical silica having a particle size of 5 m was blended and thoroughly mixed.
  • a screen consisting of a total of 4 cells (1 inch in cell size) is printed on each substrate, one each for the top, bottom, left and right, to obtain an ITO substrate with a width of about 0.5mm and a sealant coating thickness of about 2073 ⁇ 422.
  • each cell is individually cut> a cell wedge peeling test, and a cell wedge peeling test after a Z3 hour pressure cooker test at 120.
  • the linearity was observed with a magnifying glass, and the results are shown in Table 6.
  • Table 6 also shows the results of a seal function durability test performed using the obtained cells.
  • composition (E10) for a liquid crystal display cell sealing agent of the present invention was obtained.
  • the composition for liquid crystal display cell sealant (E10) is composed of an epoxy resin having a weight average of 2.2 epoxy groups in one molecule, the content is 45.58%, and the content of rubber-like polymer fine particles is 5. 51%, inorganic filler content 8%, high softening point polymer Fine particle content 1.85%, silane coupling agent content 1.48%, curing agent content 35.73%, curing accelerator content 1. 85%, solventless type.
  • the 25 "initial viscosity measured by an E-type viscometer was 102 Pa ⁇ s.
  • Table 6 shows the physical properties of the sealant for the liquid crystal display cell sealant composition (E10).
  • composition for liquid crystal display cell sealant E10
  • 3 parts of a gap control agent of spherical silica having a particle diameter of 5 / zm were blended, and the composition obtained by thorough mixing was first applied to the IT0 substrate.
  • a screen consisting of a total of 4 cells (cell size of 1 inch) is printed on each board, each consisting of 4 cells (1 inch each).
  • the width is about 0.5mm and the thickness of the sealant coating is about 20 to 22 ⁇ m.
  • An ITO substrate was obtained. Then, after heat treatment with 95 hot air drier for 15 minutes, another IT ⁇ substrate to be paired is placed, and after positioning, press pressure is 0.05MPaZcm 2 and 170/5 minutes by rigid single-wafer press heating method.
  • the joint seal test was further repeated 10 times, where the adhesive was fully cured in a heating oven at 150 for 80 minutes. As a result, there was no seal failure due to the generation of bubbles penetrating the seal, and the desired liquid crystal display cell substrate could be manufactured in all lots.
  • Example 11 According to the formulation shown in Table 5, in the same manner as in Example 5, a composition (E11) for a liquid crystal display cell sealant of the present invention was obtained.
  • composition for a liquid crystal display cell sealant (El1) is composed of an epoxy resin having a weight average of 2.8 epoxy groups in one molecule. 9.66%, inorganic filler content 16.6%, solvent content 14%, silane coupling agent content 1.9%, hardener content 25%, hardening accelerator content 5% .
  • Table 6 shows the physical properties of the sealant composition for the liquid crystal display cell sealant composition (E11).
  • a liquid crystal display cell sealant composition (E11) 100 parts was mixed with 5 parts of a 5 im thick glass short fiber gap control agent, and mixed thoroughly.
  • a polyethylene terephthalate plastic substrate (hereinafter simply referred to as an ITO plastic substrate) for liquid crystal cells that has been treated with an alignment film has a pattern consisting of a total of 4 cells (1 inch in cell size), one each for the top, bottom, left and right, per substrate. Screen printing was performed to obtain an ITO plastic substrate having a width of about 0.5 mm and a coating thickness of a sealant of about 20 to 22.
  • a spherical silica gap control agent having a particle diameter of 5 m was blended with 100 parts of the composition for liquid crystal display cell sealant (E11), and the resulting mixture was thoroughly mixed.
  • a total of 4 cells (1 inch in cell size) are printed by screen printing on each substrate, and the ITO substrate has a width of about 0.5mm and a sealant applied thickness of about 20 to 22m. Obtained.
  • heat at 95 ° C After heat treatment for 15 minutes in an air dryer, another ITO substrate to be paired was placed, and after alignment, temporary bonding was performed by a rigid single-wafer press heating method with a pressing pressure of 0.05 MPa / cm 2 , 170 5 minutes.
  • the liquid crystal was prepared in exactly the same manner as in Example 11 except that the curing agent FP15127 (PPF resin) in Example 11 was replaced with 25 parts, and instead of 10 parts of marcaline S-1 and 15 parts of marcaline CBA.
  • a composition for display cell sealant (E12) was prepared. Table 6 shows the physical properties of the sealant relating to the liquid crystal display cell sealant composition (E12).
  • a composition obtained by blending 5 parts of a 5 / zm glass short fiber gap control agent with 100 parts of a liquid crystal display cell sealant composition (E12) and thoroughly mixing the mixture was used as an ITO substrate.
  • a TO substrate was obtained. After that, after processing for 20 minutes in a hot air dryer at 80 ° C, another ITO substrate to be paired is placed, and after alignment, press pressure 0.03MPaZcm 2 , 180 ⁇ : rigid single-wafer heating in 5 minutes After temporary bonding by the press method, the joint seal test was performed 10 times, which was fully cured at 150 ° C / 80 minutes. As a result, defective seals and seal lines No disturbance occurred. In addition, the results of the seal function durability test performed using the obtained cells were good even after 1000 hours as shown in Table 6.
  • Example (11) instead of 25 parts of the curing agent FP 15127 (PPF resin),
  • a liquid crystal display cell sealant composition (E13) was prepared in exactly the same manner as in Example 11, except that 5 parts of P resin and 15 parts of Milex SP resin were used.
  • Table 6 shows the physical properties of the sealant for the liquid crystal display cell sealant composition (E13).
  • a liquid crystal display cell sealant composition (E13) was mixed with 100 parts by weight and 5 parts of a glass short fiber gap control agent of 5 parts was blended, and the mixture obtained by thorough mixing was first applied to an IT0 substrate. Screen printing of a pattern consisting of a total of 4 cells (cell size of 1 inch), 1 top, bottom, left and right, 1 board per board, and an ITO board with a width of about 0.5 mm and a sealant coating thickness of about 20 to 22 Obtained. Then, after processing for 20 minutes in an 80 hot air dryer, place another ITO substrate to be paired, and after positioning, press pressure 0.03MPa / cm 2 , 18 (TCZ 5min.
  • the joint seal test was further repeated 10 times, in which the final hardening was performed at 150/80 minutes, and as a result, there were no seal failure spots or seal line disturbances due to the generation of seal penetration bubbles. I didn't.
  • Table 6 shows the results of the joint seal test and the seal function durability test.
  • Example No. Example 9 Example 10
  • Example 13 Sealant composition for liquid crystal display cell E9 E10 E11 E12 E13 Constituent raw materials Epoxy resin raw material
  • the composition for a liquid crystal display cell sealant (F1) is composed of an epoxy resin having a weight average of 2.5 epoxy groups in one molecule, and has a content of 68%, an inorganic filler of 11.9%, Consists of 1% silane coupling agent, 9% latent epoxy curing agent, 0.1% curing accelerator, and 10% solvent.
  • the initial viscosity was 29 Pa * s at 25 measured by an E-type viscometer, and the thixotropic index expressed by the ratio of 1 rotation / 0 rotation viscosity was 1.7.
  • Table 8 shows the physical properties of the sealant for the liquid crystal display cell sealant composition (F1).
  • a substrate was obtained. Then, after 20 minutes treatment with 80 hot air drier, put another I TO glass substrate to be paired, after the alignment, pressing pressure 0.
  • composition for a liquid crystal display cell sealant (F1) was mixed with 5 parts of a 5 m-thick short glass fiber gap control agent, and the mixture was thoroughly mixed.
  • a screen consisting of a total of 6 cells (1 inch in cell size), 1 top, bottom, left and right, is printed on each board, and the width is about 0.5mm and the thickness of the sealant applied is about 20 to 22 / zm.
  • a glass substrate was obtained. After that, the 4 cells are treated with 80 hot air dryer for 20 minutes, another ITO substrate to be paired is placed, and after alignment, press pressure is 0.03MPaZcm 2 , and 180 ⁇ rigid single sheet heat press is heated for 4 minutes Temporary bonding revealed bubbles penetrating the seal and defective seal lines.
  • composition (F1) for a liquid crystal display cell sealing agent lacked the sheet heat press suitability.
  • the remaining 2 cells are treated with an 80 hot air dryer for 20 minutes, another ITO substrate to be paired is placed, and after alignment, pressure is fixed at 0.03 MP cm 2 and the temperature is raised at 2 per minute. After the temperature reached 130, it was left at the same temperature for 90 minutes to prepare a liquid crystal display cell.
  • Table 8 shows the wedge opening test results and the non-leaching test results of the cells obtained here. Comparative Example 2
  • the composition for a liquid crystal display cell sealant (F2) comprises 45% of an epoxy resin, 25% of an inorganic filler, 1% of a silane coupling agent, 12% of a latent epoxy curing agent, 2% of a curing accelerator, and 15% of a solvent.
  • the 25 initial viscosity measured by an E-type viscometer was 35 Pa * s, and the thixotropic index expressed by the ratio of 1 rotation / 10 rotation viscosity was 1.6.
  • Table 8 shows the physical properties of the sealant relating to the liquid crystal display cell sealant composition (F2).
  • To 100 parts of the composition for liquid crystal display cell sealant (F2) 3 parts of a gap control agent for short glass fiber with a thickness of 5 / m were blended and thoroughly mixed.
  • a pattern consisting of a total of 6 cells (each cell size is 1 inch) is printed by screen on each substrate, and the width is about 0.5 mm and the thickness of the sealant applied is about 20 to 22 jum. ⁇ A glass substrate was obtained. After that, the four cells were treated in an 80 ⁇ hot air drier for 2.0 minutes, another ITO substrate to be paired was placed thereon, and after alignment, the degree of vacuum was 980 hPa, 18 Ot: 10 minutes using a vacuum single-wafer heat press As a result of heat temporary bonding, generation of bubbles penetrating the seal and failure of the seal line were observed.
  • the composition (F1) for a liquid crystal display cell sealing agent lacked the vacuum single-wafer heat press suitability.
  • the remaining two cells, 8 O After a hot air dryer 20 minutes treatment, put another I TO substrate to be paired, after crimped at 0. 03 MP aZ cm 2 after alignment, every from room After the temperature was raised to 150 ° C in 2T :, the liquid crystal display cell was prepared by being left at the same temperature for 90 minutes.
  • Table 8 also shows the observation results of the liquid crystal display function of the obtained cells.
  • the result of the sealing function durability test performed using the obtained cells showed that the display was significantly uneven within 250 hours and the display function was deteriorated.
  • Epoxy VG3101 L 43 1 part of a resin solution obtained by dissolving 1 part in propylene glycol monomethyl ether acetate 25 parts, 68. 1 part, NA resin (naphtho aralkyl resin) 111. 2 parts and DCN (dicyclopentene modified pheno) 111.2 parts and a curing agent solution obtained by dissolving 2 parts in advance in 150 parts of propylene glycol monomethyl ether acetate 372.4 parts, epoxy resin composition containing silicone rubber (b) 250 parts, curing acceleration 5302 T 21.
  • the liquid crystal display cell sealant composition (E14) excluding the gap control agent had an epoxy resin content of 21.81%, a solvent content of 17.5%, a rubbery polymer fine particle content of 7.5%, and an inorganic material. Filler content 27.5%, curing agent content 22.24%, curing accelerator content 2.59%, silane coupling agent content 0.86%.
  • Table 10 shows the physical properties of the sealant composition (E14) for liquid crystal display cell sealants. Using a composition for a liquid crystal display cell sealing agent (E14), a bonding seal test was performed in the same manner as in Example 1. Table 10 shows the results of the bonding seal test and the seal durability test. In both the wedge opening test of the cell and the same test after the pressure cooker, the obtained cell was found to have complete cohesive failure of the adhesive and excellent adhesion reliability. The display function after 1000 hours of the seal function durability test was good.
  • the liquid crystal display cell sealant composition (E15) excluding the gap control agent has an epoxy resin content of 21.15%, a solvent content of 16%, a rubbery polymer fine particle content of 9.85%, and an inorganic filler. 23.5%, hardener content 26.5%, It consists of a curing accelerator content of 1% and a silane coupling agent content of 2%.
  • Table 10 shows the physical properties of the sealant composition (E15) for liquid crystal display cell sealants.
  • the obtained cell was found to be a complete cohesive failure of the adhesive in a cell wedge opening test, and was found to be excellent in adhesion reliability.
  • the seal function durability test 1 The seal function durability test 1
  • the liquid crystal display cell sealant composition (E16) excluding the gap control agent had an epoxy resin content of 35.15%, a rubbery polymer fine particle content of 9.85%, and an inorganic filler content of 21.3%. , A curing agent content of 29%, a curing accelerator content of 3.2%, and a silane coupling agent content of 1.5%.
  • Table 10 shows the physical properties of the liquid crystal display cell sealing composition (E16). Using the composition for a liquid crystal display cell sealing agent (E16), a bonding seal test was carried out in the same manner as in Example 5. Table 10 shows the results of the bonding seal test and the seal durability test. The obtained cell was found to have complete cohesive failure of the adhesive in the cell wedge opening test, and was found to have excellent adhesion reliability. The display function after 1000 hours of the seal function durability test was good.
  • composition for liquid crystal display cell sealant (E17) excluding the roll agent Epoxy resin content 35.15%, rubber-like polymer fine particle content 9.85%, inorganic filler content 21.3%, curing agent content 29%, curing accelerator content 3.2%, silane cup
  • the content of the ring agent is 1.5%.
  • Table 10 shows the physical properties of the sealant composition (E17) for liquid crystal display cell sealants.
  • a bonding seal test was performed in the same manner as in Example 5 using the composition for liquid crystal display cell sealing agent (E17).
  • the results of the bonding seal test and the seal durability test are shown in Table 10.
  • the obtained cell was found to have complete cohesive failure of the adhesive in the cell wedge opening test, and was found to have excellent adhesion reliability.
  • the display function after 1000 hours of the seal function durability test was good.
  • the composition for liquid crystal display cell sealant (E18) excluding the gap control agent had an epoxy resin content of 35.15%, a rubbery polymer fine particle content of 9.85%, and an inorganic filler * content of 21.3%. , A curing agent content of 25.5%, a curing accelerator content of 3.2%, a silane coupling agent content of 1.5%, and a high softening point polymer / fine particle content of 3.5%.
  • Table 10 shows the physical properties of the sealant composition (E18) for liquid crystal display cell sealants.
  • a bonding seal test was performed in the same manner as in Example 5 using the composition for liquid crystal display cell sealing agent (E18).
  • Table 10 shows the results of the bonding seal test and the seal durability test. The obtained cell was found to be a complete cohesive failure of the adhesive in a cell wedge opening test, and was found to be excellent in adhesion reliability. The display function after 1,000 hours of the seal function durability test was good.
  • Example 19 According to the formulation shown in Table 9, in the same manner as in Example 14, a liquid crystal display cell sealing composition (E19) was obtained.
  • composition for liquid crystal display cell sealant (E 19) excluding the gap control agent had an epoxy resin content of 34.57%, a solvent content of 19.2%, a rubber-like polymer fine particle content of 5.13%, and a content of 7.13%. Consists of 17% inorganic filler content, 19% curing agent content, 2.1% curing accelerator content, and 1% silane coupling agent content.
  • Table 10 shows the physical properties of the sealant composition (E19) for liquid crystal display cell sealants. Using a composition for a liquid crystal display cell sealing agent (E19), a bonding seal test was carried out in the same manner as in Example 5. Table 10 shows the results of the bonding seal test and the seal W durability test. The obtained cell was found to have complete cohesive failure of the adhesive in the cell wedge opening test, and was found to have excellent adhesion reliability. The display function after 1000 hours of the seal function durability test was good.
  • Example 20 shows the physical properties of the sealant composition (E19) for liquid crystal display cell sealants. Using a composition for a liquid crystal display cell sealing agent (E19), a bonding seal test was carried out in the same manner as in Example 5. Table 10 shows the results of the bonding seal test and the seal W durability test. The obtained cell was found to have complete cohesive failure of the adhesive in the cell wedge opening test, and was found to have excellent adhesion reliability. The display function after 1000 hours of the seal function durability test was good.
  • Example 20
  • the liquid crystal display cell of the present invention was prepared in the same manner as in Example 14.
  • a composition (E20) was obtained.
  • the composition for liquid crystal display cell sealant (E20) excluding the gap control agent has an epoxy resin content of 28.54%, a solvent content of 13.2%, a rubber-like polymer fine particle content of 8.26%, It consists of 17.3% inorganic filler content, 28% hardener content, 3.2% hardening accelerator content, and 1.5% silane coupling agent content.
  • Table 10 shows the physical properties of the sealant composition (E20) for liquid crystal display cell sealants.
  • a composition for a liquid crystal display cell sealing agent (E20) was used in the same manner as in Example 5, and the results of the bonding seal test and the seal durability test are shown in Table 10.
  • the obtained cell had a complete cohesive failure 5 of the adhesive in the cell opening test, which proved to be excellent in adhesion reliability.
  • the display function after 1000 hours of the seal function durability test was good.
  • a composition for a liquid crystal display cell sealant (F3) was obtained.
  • the F3 composition is an example that does not contain a curing accelerator.
  • Table 12 shows the results of measuring the physical properties of the sealant other than the water absorption, TMA measurement (Tg, coefficient of linear expansion), moisture permeability, and surface hardness characteristics.
  • TMA measurement Tg, coefficient of linear expansion
  • moisture permeability moisture permeability
  • surface hardness characteristics The film obtained when cured by heat for 150 ⁇ 90 minutes forms only an uncured cured film that shows strong adhesiveness in the 80 to 150 ° C range, and easily swells in acetone solvents. showed that.
  • the composition can be said to be a composition with extremely slow thermosetting properties.Evaluation of water absorption properties and TMA measurement cannot be performed substantially, and the water absorption, Tg, moisture permeability and water absorption in Table 12 cannot be measured. Atsu / ko.
  • a composition for a liquid crystal display cell sealant (F 4) was obtained in the same manner as in Example 1.
  • the F4 composition is an example in which an imidazole monomer is used as a curing accelerator.
  • Table 12 shows the properties of the sealant composition for liquid crystal display cell sealant (F 4).
  • the F 4 composition clearly has a fatal problem in pot life at room temperature, and lacks coating workability. There was found.
  • a composition for a liquid crystal display cell sealant (F5) was obtained.
  • the F5 composition is an example using triphenylphosphine as a curing accelerator.
  • Table 12 shows the physical properties of the sealant composition (F5) for liquid crystal display cell sealant.
  • the F5 composition had a serious problem in pot life at room temperature and lacked coating workability. ing.
  • the sealant coating film obtained when cured by heat for 150 minutes only forms an uncured cured film showing strong adhesiveness in the range of 80 to 150, and is easily formed in acetone solvent. It showed swelling properties. Therefore, there is a problem that an F 6 sealant composition to which a hardener is added in an excessively small amount gives only a hardened material which is fragile at room temperature and lacks in heat-resistant stiffness. Since a smooth film-like cured product without tack was not obtained, the evaluation of moisture permeability and water absorption properties could not be performed substantially, and the water absorption and moisture permeability in Table 12 were not measured.
  • a composition for a liquid crystal display cell sealing agent (F7) was obtained in the same manner as in Example 1.
  • the blending amount of the polyvalent phenol curing agent was 52% by mass, and the curing agent equivalent ratio to the epoxy resin was too large (the equivalent ratio of the epoxy group to the active phenolic hydroxyl group was 1%. : 4) is an example.
  • Table 12 shows the physical properties of the sealant composition for liquid crystal display cell sealant (F7).
  • the sealant has a fatal problem of producing only a hardened material that is fragile when bent about 10 °. . Therefore, each test of surface hardness, TMA (Tg, coefficient of linear expansion), moisture permeability and water absorption It is qualitatively impossible, and is shown in Table 12 as unmeasurable.
  • the F8 composition is a composition comprising an epoxy resin and an esterified polyhydric phenol resin curing agent, a silane coupling agent, an inorganic filler, and a high-boiling solvent.As is clear from the properties of the sealing agent shown in Table 12, As with the F 3 composition of Comparative Example 3, it is clear that the F 8 composition has a remarkable lack of thermosetting properties, and further has a marked lack of suitability for cell formation.
  • the sealant coating film obtained when heat-cured at 150 for 90 minutes is in a substantially uncured state, forms only a brittle and fragile cured film, and easily dissolves and swells in an acetone solvent. showed that.
  • the sealing agent (F8) composition lacks thermosetting properties.
  • the F9 composition is a composition containing a phosphazene compound (PZO) as a curing accelerator and an imidazole epoxy adduct (PN-23) in a total amount of 16% by mass.
  • PZO phosphazene compound
  • PN-23 imidazole epoxy adduct
  • the liquid crystal display cell of the present invention was prepared in the same manner as in Example 1. Thus, a composition (E21) was obtained.
  • the composition for liquid crystal display cell sealant (E21) excluding the gap control agent has an epoxy resin content of 29.44%, a solvent content of 13.2%, a rubbery polymer fine particle content of 8.26%, and an inorganic filler.
  • the content is 18%, the content of curing agent is 27.8%, the content of curing accelerator is 2%, and the content of silane coupling agent is 1.3%.
  • Table 14 shows the physical properties of the sealant composition (E21) for liquid crystal display cell sealants.
  • a bonding seal test was performed using the liquid crystal display cell sealing compound composition (E21) in the same manner as in Example 1.
  • Table 14 shows the results of the bonding seal test and the seal durability test. The obtained cells showed partial cohesive failure of the adhesive in the cell wedge opening test, and it was found that the adhesion reliability was good. The display function after 1000 hours of the seal function durability test was good.
  • the composition for liquid crystal display cell sealant (E22) excluding the gap control agent had an epoxy resin content of 21.1%, a rubbery polymer / fine particle content of 6.9%, and an inorganic filler content of 25.5%. , A curing agent content of 24.5%, a curing accelerator content of 1.5%, a silane coupling agent content of 2%, and a solvent content of 18.5%.
  • Table 14 shows the physical properties of the sealant composition (E22) for liquid crystal display cell sealants. Using the liquid crystal display cell sealing compound composition (E22), a bonding seal test was performed in the same manner as in Example 1. Table 14 shows the results of the bonding seal test and the seal durability test. The obtained cell was found to have complete cohesive failure of the adhesive in the cell wedge opening test, and was found to have excellent adhesion reliability. The display function after 1000 hours of the seal function durability test was good.
  • Example 23 shows the physical properties of the sealant composition (E22) for liquid crystal display cell sealants.
  • the liquid crystal display cell sealant composition (E23) excluding the gap control agent had an epoxy resin content of 22.5%, a rubber-like polymer fine particle content of 7.5%, an inorganic filler content of 24.5%, It consists of a curing agent content of 23%, a curing accelerator content of 2%, a silane coupling agent content of 2.5%, and a solvent content of 18%.
  • Table 14 shows the physical properties of the sealant composition (E23) for liquid crystal display cell sealants. Using the composition for a liquid crystal display cell sealing agent (E23), a bonding seal test was performed in the same manner as in Example 1. Table 14 shows the results of the bonding seal test and the seal durability test. The obtained cell was partially cohesive failure of the adhesive in the cell open test, which proved that the adhesion reliability was good. The display function after 1000 hours of the seal function durability test was good.
  • Example 24
  • the composition for liquid crystal display cell sealant (E24) excluding the gap control agent has an epoxy resin content of 22.5%, a rubber-like polymer fine particle content of 7.5%, and an inorganic filler content of 24.5%. , A curing agent content of 23%, a curing accelerator content of 2%, a silane coupling agent content of 2.5%, and a solvent content of 18%.
  • Table 14 shows the physical properties of the sealant composition (E24) for liquid crystal display cell sealants. Using a composition for a liquid crystal display cell sealing agent (E24), a bonding seal test was conducted in the same manner as in Example 1. Table 14 shows the results of the bonding seal test and the seal durability test. The obtained cells showed partial cohesive failure of the adhesive in the cell wedge opening test, and it was found that the adhesion reliability was good. The seal function durability test 1 The display function after 000 hours passed was good.
  • Example 25 shows the physical properties of the sealant composition (E24) for liquid crystal display cell sealants.
  • the composition for liquid crystal display cell sealant (E25) excluding the gap control agent had an epoxy resin content of 22.5%, a rubber-like polymer fine particle content of 7.5%, an inorganic filler content of 24.5%, It consists of a curing agent content of 23%, a curing accelerator content of 2%, a silane coupling agent content of 2.5%, and a solvent content of 18%.
  • Table 14 shows the physical properties of the sealant composition (E25) for liquid crystal display cell sealants. Using the composition for a liquid crystal display cell sealing agent (E25), a bonding seal test was performed in the same manner as in Example 1. Table 14 shows the results of the bonding seal test and the seal durability test. The obtained cells showed partial cohesive failure of the adhesive in the cell wedge opening test, and it was found that the adhesion reliability was good. The display function after 1000 hours of the seal function durability test was good.
  • the composition for liquid crystal display cell sealant (E26) excluding the gap control agent had an epoxy resin content of 37.2%, a rubber-like polymer fine particle content of 7.8%, an inorganic filler content of 21.3%, It has a curing agent content of 29%, a curing accelerator content of 3.2%, and a silane coupling agent content of 1.5%.
  • Table 14 shows the physical properties of the sealant composition (E26) for liquid crystal display cell sealants.
  • E26 liquid crystal display cell sealant composition
  • Composition comprising conductive beads manufactured by Sekisui Fine Chemical Co., Ltd. and 100 parts of liquid crystal display cell sealant composition (E5) of the present invention prepared in Example 5, and 5.28 parts of trade name "Micropearl AU_205”. (E27) was obtained.
  • Table 14 shows the physical properties of the sealant composition (E27) for liquid crystal display cell sealants.
  • a bonding seal test was performed using the composition for liquid crystal display cell sealing agent (E27) in the same manner as in Example 1.
  • Table 14 shows the results of the bonding seal test and the seal durability test. The obtained cell was found to have excellent adhesion reliability due to partial cohesive failure of the adhesive in a cell wedge opening test. In addition, the display function was good after 1000 hours of the seal function durability test.
  • Table 14 shows the physical properties of the sealant composition (E28) for liquid crystal display cell sealants.
  • a bonding seal test was performed using the liquid crystal display cell sealing compound composition (E28) in the same manner as in Example 1.
  • Table 14 shows the bonding seal test results and the seal durability test results. The obtained cells showed partial cohesive failure of the adhesive in the cell wedge opening test, which proved to be excellent in adhesion reliability. Also, the seal function durability test The display function after 1000 hours of the experiment was good.
  • the composition for a liquid crystal display cell sealant of the present invention has a low water absorption of 2% or less as measured by immersing the cured product in boiling water for 30 minutes. It is clear that it has features. Also,
  • the cured product has 80 low moisture permeability
  • the liquid crystal display device manufactured using the composition for a liquid crystal display cell sealant of the present invention has high functionality in which the sealing function durability exceeds 100 hours.
  • the composition for a liquid crystal display cell sealant containing a large amount of free ions lacks the display function durability and, at the same time, uses dihydrazide as a main curing agent.
  • the epoxy resin composition has a problem of having a high water absorption exceeding 2%, and Comparative Example 3 does not contain the curing accelerator of the present invention as a component of the composition for a liquid crystal display cell sealant of the present invention. However, only uncured or brittle cured products are obtained.
  • Comparative Example 4 is an example using 2-ethyl-4-methylimidazole well known as a curing accelerator, but the sealant has no pot life aptitude and has a fatal problem in coating workability. Furthermore, in Comparative Example 5, triphenylphosphine, which is well known as a hardening accelerator, was used. However, as in Comparative Example 4, the pot life was extremely short, and there was a fatal problem in coating workability. It became clear. Comparative Examples 6 and 7 are examples in which the amount of the curing agent is too small or too large.Either of them shows poor curing or poor adhesion, and is clearly not suitable for manufacturing a liquid crystal display cell. It is. In Comparative Examples 8 and 9, there were no or excessive hardening accelerators, but the former had poor curing and lacked adhesiveness, and the latter had hard and brittle hardened products, and had gaps. It is clear that controllability and adhesiveness are significantly lacking.
  • the liquid crystal display element using the liquid crystal display cell sealing agent of the present invention or the liquid crystal display element manufactured using the liquid crystal display cell sealing agent composition can ensure long-term display stability in a high-temperature and high-humidity environment. Is the feature. Industrial applicability
  • the composition for a liquid crystal display cell sealant of the present invention enables the production of a liquid crystal display panel which maintains a stable liquid crystal display element function for a long time even under high temperature and high humidity, and is applicable to a single-wafer press heat bonding method.
  • the liquid crystal display device manufactured using the device can be preferably used as a display used in watches, desk calculators, televisions, mobile phones, various mopile devices, personal computers, electronic notebooks, vehicles, and the like.
  • liquid crystal display cell sealant composition having an anisotropic conductive function of the present invention may be applied to, for example, a metal terminal and a semiconductor element of a microfabricated circuit board, and on a substrate on which the IC is mounted.
  • a sealant for forming an organic EL element, a sealant for forming a flat panel display employing an in-brain electrophoresis method, a sealant for forming a paper-like display using a film type liquid crystal, an organic solar cell panel It can be widely used as a sealant for manufacturing and electrical insulating paint.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Epoxy Resins (AREA)

Description

明 細 書 液晶表示セル用シール剤、 液晶表示セルシール剤用組成物及び液晶表示素子 技術分野
本発明は、 液晶表示セル用シール剤、 液晶表示セルシール剤用組成物および液晶 表示素子とその製造方法に関する。 背景技術
近年、 パーソナルコンピュータ一をはじめ各種機器の表示パネルとして軽量薄 型の特徴を有した液晶表示パネルが広く使用されるようになった。 そして、 その 使用環境も厳しくなつていると共に、 液晶表示素子は大型、 均質かつ高品位な物 が望まれている。
ところで、 液晶表示セルシール剤用組成物とは、 液晶表示セルを構成する部材 として重要な透明電極や配向膜を適宜配した透明なガラス基板又は透明プラスチ ック基板の間に液晶を封入し、 それが外部に漏れないように封じ込めたセルを形 成するために用いられる熱硬化性樹 JI旨組成物を言う。 また、 液晶表示セル用シー ル剤とは液晶表示セルシール剤用組成物の硬化物を言う。
1液型熱硬化性の液晶表示セルシール剤用組成物として、 例えば溶剤を適宜含 むエポキシ樹脂主剤とジヒドラジド系硬化剤とからなる 1液型熱硬化性の液晶表 示セルシール剤用組成物が提案されている。 これらの組成物群は、 液晶セルのシ ール特性に関する基本的な性能、 すなわち常態下の接着シール性、 耐熱性、 電気 絶緣性、 液晶非汚染性等は満足するが、 さらに高温多湿環境下で液晶表示素子の 表示品位を更に向上させることが可能な高品位かつ高耐久性の液晶表示セルシ一 ル剤用組成物が強く求められている実態がある。 すなわち、 近年では、 特に高品 位かつ高耐久性に優れた液晶表示素子が必要とされている。 また同時に、 液晶表 示素子の信頼性確保の点から、 枚葉型熱プレス加熱接着方式による液晶表示素子 の製造方法に適合可能な液晶表示セルシール剤用組成物の出現も熱望されている。 ここで、 高品位とは、 高精彩で、 かつ表示乱れの無い、 シール際近傍まで表示 機能が確保されていることなどを意味する。 また、 耐久性とは、 該表示素子をそ れらの表示機能が過酷な環境下においても長期間確保できるという意味である。 前記のような社会的背景から、 解決すべき課題とは、 従来以上に高品位、 かつ 高耐久性の液晶表示素子を製造可能ならしめる液晶表示セル用シール剤に欠く事 が出来ない物性の究明であり、 新規な液晶表示セルシール剤用組成物の提供であ る。 より詳しくは、 高温多湿環境下においても長時間安定した液晶表示素子機能 を保持した液晶表示パネルの製造を可能とすると共に、 多段熱プレス方式はもと より真空枚葉型または剛体枚葉型のいずれかの熱プレス加熱接着方式にも対応可 能なシール剤用組成物、 特にシール剤用組成物の硬化体が低吸水性に富むことは もとより、 組成物由来の遊離イオン濃度が少なく、 硬化体が水蒸気ガスバリヤ一 性 (低透湿性) に富み、 高剛性かつ高靱性で、 接着シール耐久性、 液晶非汚染性、 特に寸法安定性に優れた新規な液晶表示セルシール剤用組成物を提供すること、 ならびにその液晶表示セルシール剤用組成物を用いてなる液晶表示素子の製造方 法の提供であり、 そのためには、 高耐久性の液晶表示セル用シール剤に必須な物 性の究明が必要である。 発明の開示
本発明者等は、 鋭意研究の結果、 エポキシ樹脂、 特定の硬化剤、 特定の硬化促 進剤、 必要に応じて特定のゴム状ポリマー微粒子、 無機質充填剤、 シランカップ リング剤、 更に必要に応じて、 特定の溶剤、 特定の高軟化点アクリルポリマー微 粒子、 特定の導電性ビーズ、 特定のギャップ出しコントロール剤とをそれぞれ特 定範囲で含有するエポキシ樹脂樹脂組成物とすることによって、 上記課題が解決 されることを見いだし、 本発明を完成した。 すなわち、 下記 <1>乃至ぐ 21>を提供するものである。
( 1 ) 液晶表示セルシール剤用組成物の硬化体からなる液晶表示素子のシール剤 であって、 該硬化体の吸水率が 2質量%以下であることを特徴とする液晶表示セ ル用シール剤。
(2) 厚み 100 mの硬化膜を通過する 80 透湿度が 200 g/m2 · 24 h r s以下であることを特徴とする上記 (1) 記載の液晶表示セル用シール剤。 (3) シール剤 0. 1質量部に対し、 液晶 1質量部の割合で、 145で、 1時間 接触させた後の液晶の比抵抗値が、 接触前の液晶の比抵抗値の 250倍以下であ ることを特徴とする上記 (1) 又は (2) 記載の液晶表示セル用シール剤。
(4) エポキシ樹脂を多価フエノール化合物、 多価フエノール樹脂及びそれらの エステル化物から選んだ少なくとも一種からなる硬化剤で硬化したものであるこ とを特徴とする上記 (1) 乃至 (3) のいずれかに記載の液晶表示セル用シール 剤。
(5) アルキル尿素誘導体及びフォスファゼン化合物から選ばれる少なくとも 1 種からなる硬化促進剤を用いたものであることを特徴とする上記 (4) 記載の液 晶表示セル用シール剤。
(6) (1) エポキシ樹脂と (2) 多価フエノール化合物、 多価フエノール樹脂 及びそれらのエステル化物から選んだ少なくとも一種からなる硬化剤及び (3) アルキル尿素誘導体、フォスファゼン化合物から選ばれる少なくとも 1種からなる 硬化促進剤とを含有してなる液晶表示セルシール剤用組成物。
(7) (1) エポキシ樹脂 20乃至 88. 9質量部と (2) 多価フエノール化合 物、 多価フエノール樹脂及びそれらのエステル化物から選んだ少なくとも一種か らなる硬化剤 10乃至 50質量部及び (3) アルキル尿素誘導体、 フォスファゼ ン化合物から選ばれる少なくとも 1種からなる硬化促進剤 0. 1乃至 20質量部と を含有してなる上記 (6) 記載の液晶表示セルシール剤用組成物。
( 8 ) 組成物と同質量の純水とを混和させて得られる水溶液のィォン伝導度が 1 OmSZm以下であることを特徴とする上記 (6) 又は (7) 記載の液晶表示セル シール剤用組成物。
(9)組成物の硬化体の吸水率が 2質量%以下であることを特徴とする上記(6) 又は (7) 記載の液晶表示セルシール剤用組成物。
(10) 組成物の硬化膜の厚み 100 mを通過する 80で透湿度が 200 g m2 · 24h r s以下であることを特徴とする上記 (6) 又は (7) 記載の液晶 表示セルシール剤用組成物。
(11) 組成物0. 1質量部に対し、 液晶 1質量部の割合で、 145 、 1時間 接触させた後の液晶の比抵抗値が、 接触前の液晶の比抵抗値の 250倍以下であ ることを特徴とする上記 (6)又は (7) 記載の液晶表示セルシール剤用組成物。
(12) 0"C以下の軟化点温度を持ち、 その一次粒子の平均粒子径が 5 m以下 であるゴム状ボリマ一微粒子を液晶表示セルシール剤用組成物中に占める割合で 1及至 25質量%含有してなる上記 (6) 又は (7) 記載の液晶表示セルシール 剤用組成物。
(13) 硬化剤が、 フエノールノポラック樹脂、 フエノールァラルキル樹脂、 ナ フトールノポラック榭脂、 ナフトールァラルキル樹脂、 11旨環化合物変性フエノー ルノポラック樹脂、 脂環化合物変性ナフトールノポラック樹脂、 多環芳香族化合 物変性ノポラック樹脂、 多価フエノール単量体、 ポリビニルフエノール、 ビニル フエノール共重合体、 ポリイソプロぺニルフエノール、 ポリイソプロぺニルフエ ノール共重合体、 エステル化フエノールノポラック樹脂、 エステル化フエノール ァラルキル樹脂、 エステル化ナフトールノポラック樹脂、 エステル化ナフトール ァラルキル樹脂、 エステル化脂環化合物変性フエノールノポラック樹脂、 エステ ル化脂環化合物変性ナフトールノボラック樹脂、 エステル化多環芳香族化合物変 性ノボラック樹脂、 エステル化多価フエノール単量体、 エステル化ポリビニルフ ェノール、 エステル化ビニルフエノール共重合体、 エステル化ポリイソプロべ二 ルフエノール、 エステル化ポリィソプロぺニルフェノール共重合体から選んだ少 なくとも一種である上記(6) 又は(7)記載の液晶表示セルシール剤用組成物。
(14) アルキル尿素誘導体が、 3 _(p—クロ口フエ二ル)— 1, 1ージメチル尿 素、 3— (ο,ρ—ジクロロフエ二ル)— 1, 1—ジメチル尿素、 2, 4— [ビス(1, 1 ージメチル尿素)]トルエン > 2, 6_[ビス(1, 1—ジメチル尿素)]トルエンから 選ばれる少なくとも 1種であることを特徴とする上記(6) 又は(7)記載の液晶 表示セルシール剤用組成物。
(15) フォスファゼン化合物が一般式 (12)で示される少なくとも 1種である ことを特徴とする上記 (6) 又は (7) 記載の液晶表示セルシール剤用組成物。
Figure imgf000006_0001
(但し、 式中 Raは乃至 Rfは水素原子、 炭素数 1乃至 10の直鎖、 分岐または環 状のアルキル基、または炭素数 6乃至 10のァリールまたはァラルキル基を表し、 全て同一であっても異なっていてもよい。 )
(16) 上記 (6) 又は (7) 記載の組成物 100質量部に対し、 さらに、 導電 性ビーズ 1乃至 15質量部を含有してなる液晶表示セルシール剤用組成物。
(17) 上記 (1) 乃至 (5) のいずれかに記載の液晶表示セル用シール剤を用 いた液晶表示素子。
(18) 上記 (6) 乃至 (16) のいずれかに記載の液晶表示セルシール剤用組 成物を用いて得られる液晶表示素子。
(19) TN液晶、 STN液晶、 強誘電液晶、 反強誘電液晶のいずれかを用いて なる液晶表示素子の製造に際し、 上記 (6) 乃至 (16) のいずれかに記載の液 晶表示セルシール剤用組成物をガラス製またはプラスチック製の液晶セル用基板 の接合シール構成部位に印刷またはデイスペンス塗布し、 50乃至 120°Cの温 度でプレキュア一後、 もう一方の対基板を位置合わせを行って重ね合わせ、 仮固 定後、 その対基板を 80乃至 200°Cで熱圧締処理し、 該対基板を 1乃至 7 m の範囲で均質な厚みに接合固定して液晶表示セルを作り、 該セル内に液晶材料を 注入し、 注入孔を光硬化型液晶シール剤組成物または 2液型液晶シール剤組成物 で封孔させることを特徴とする液晶表示素子の製造方法。
(20) TN液晶、 STN液晶、 強誘電液晶、 反強誘電液晶のいずれかを用いて なる液晶表示素子の製造に際し、 上記 (6) 乃至 (16) のいずれかに記載の液 晶表示セルシール剤用組成物をガラス製またはプラスチック製の液晶セル用基板 の接合シール構成部位に印刷またはデイスペンス塗布し、 50乃至 120 の温 度でプレキュア一後、 液晶を滴下させて空気を閉じ込めない様にもう一方の対基 板を重ね合わせ、 位置合わせして仮固定後、 その対基板を 80乃至 150 で熱 圧締処理し、 該対基板を 1乃至 7 imの範囲で均質な厚みに接合固定させた後、 呼吸孔を光硬化型液晶シール剤組成物または 2液型液晶シール剤組成物で封孔さ せることを特徴とする液晶表示素子の製造方法。
(21) 上記 (19) 又は (20) 記載の液晶表示素子の製造方法によって得ら れる液晶表示素子。 発明を実施するための最良の形態
本発明の液晶表示セル用シール剤とは、液晶表示素子のシール剤であって、(ィ) 該硬化体の吸水率が 2質量%以下である液晶表示セル用シール剤である。
ここで、 吸水率とは、 液晶表示セル用シール剤を煮沸水に 30分浸漬後の重量増 加率で表わされる吸水率である。
また、 本発明の液晶表示セル用シール剤では、 前記 (ィ) の性質と共に、 (口) 該液晶表示セル用シール剤の厚み 100; mを通過する 80°C透湿度が 2
00 g/m2 · 24h r s以下であることを併せ持つことが好ましい。 該 100 当たりの透湿度は下記の換算式より求められる。
透湿度 =実測透湿度 X [検体のフィルム膜厚 ( m) / 1 0 0 ] 更に好ましくは、
(八) 液晶表示セル用シール剤 0 . 1質量部に対し、 液晶 1質量部の割合で、 1 4 5 T:、 1時間接触させた後の液晶の比抵抗値が、 接触前の液晶の比抵抗値の 2 5 0倍以下であることが望ましい。
すなわち、 本発明の液晶表示セル用シール剤は、 前記 (ィ) の性質を有するも のであり、 好ましくは (口) 又は (ハ) から選ばれた 1種または 2種の性質が同 時に確保されて成る液晶表示セルシール剤である。
本発明の液晶表示セル用シール剤では、 該硬化体を煮沸水に 3 0分浸漬後の吸 水率が 2質量%以下であることが極めて肝要なことである。 そうすることで得ら れる液晶表示素子は、 高温多湿の過酷な環境下で使用されても表示品位を高い状 態に長期間保つことが可能となるからである。
より詳しくは、 高品位、 力つ高耐久性の液晶表示素子を製造可能ならしめる液 晶表示セル用シール剤の具備すべき必須な性質のひとつが、 前記 (ィ) であると いうことである。 同様に、 本発明の液晶表示セルシール剤用組成物の硬化体の性 質として前記 (ィ) の性質を具備していることが好ましいということである。 本願発明の液晶表示セル用シール剤は、 好ましくは該硬化体の煮沸水浸漬 3 0 分後の吸水率が 1 . 7質量%未満、 より好ましくは 1 . 3質量%未満、 特に好ま しくは 0 . 6質量%未満であることが望ましい。
また、 本発明の液晶表示セル用シール剤では、 上記 (ィ) と共に、 (口) 1 0 0 m厚みの硬化膜を通過する 8 0 、 9 5 %相対湿度環境下、 2 4時間水蒸気 透過量で表される 8 0 °C透湿度が 2 0 0 g /m 2 · 2 4 h r s以下であることが 一層好ましい。 そうすることで得られる液晶表示素子の高温多湿環境下での表示 品位ならびに応答速度の低下抑制効果を確保できるからである。 さらに好ましく は 8 O t:透湿度が、 1 0 0 g /m2 · 2 4 h r s以下であり、 特に好ましくは 5 0 g /m2 · 2 4 h r s以下である。
また、 本発明の液晶表示セル用シール剤では、 上記 (ィ) 又は (ィ) 、 (口) に加えて、 (八) 液晶表示セル用シール剤 0 . 1質量部に対し液晶 1質量部の割 合で、 1 4 5 °C、 1時間接触させた後の液晶の比抵抗値が、 接触前の液晶の比抵 抗値の 2 5 0倍以下であることが好ましい。 そうすることで得られる液晶表示素 子の長期の表示信頼性が確保できるからである。より好ましくは、 1 0 0倍以下、 さらに好ましくは 5 0倍以下であることである。
このような性質を満たす液晶表示セル用シール剤として、 本発明ではエポキシ 樹脂を多価フエノ一ル化合物、 多価フエノ一ル榭脂及びそれらのエステル化物か らなる硬化剤で硬化したものであること、 さらにそれに加えて、 アルキル尿素誘 導体及びフォスファゼン化合物から選ばれる少なくとも 1種からなる硬化促進剤 を用いて硬化したものであることが良いことを見出した。 そうすることで高品位 ならびに高耐久性に富む液晶表示素子が製造可能になる。
また、 更に本発明の液晶表示セル用シール剤では、 前記した (ィ) 乃至 (八) の性質と共に、 さらに下記の (二) 乃至 (ト) から選ばれた少なくとも一つまた は二つ以上の性質を併せて有する液晶表示セル用シール剤であることが特に好ま しい。
(二) ガラス転移温度 (T g ) が 8 5で以上であること。
(ホ) サ一モメカニカルアナライザ一 (TMA) から求めた 0 乃至 8 0での線 膨張係数が 9 X 1 0—
Figure imgf000009_0001
こと。
(へ) 2 O t:ショァ一硬度 Dが 7 0以上であること。
(ト) 動的粘弾性測定から求めた 1 0 0乃至 1 5 0 °Cの貯蔵弾性率が 1 X 1 0 5 乃至 1 X 1 0 8 P aの範囲にあること。
これらの特性について詳しく述べる。
サーモメカニカルアナライザー (Thennomechanical analyser: TMA) より 求められたガラス転移温度 (T g) が 8 5 °C以上にあることが好ましく、 そうす ることで、 得られる液晶表示素子が 6 O t:を越える高温域での長期間の表示品位 安定性が確保、 向上するから好ましい。 より好ましくは、 T gが 9 0 以上であ ること、 特に好ましくは T gが 1 0 0乃至 1 8 O t:の範囲であることである。 また、 サーモメカニカルアナライザー (TMA) から求めた 0で乃至 8 0 °Cの 線膨張係数が 9 X 1 0— Smm/mmZで以下であれば、 得られる液晶表示素子の 寸法安定性ひいてはギャップ幅安定性が確保でき、 好ましい。 より好ましくは 7 X 1 0 5mmZmm/t:未満、特に好ましくは 5 X 1 0 S mm/mm/^未満で ある。
さらに、 動的粘弾性測定から求めた 1 0 0乃至 1 5 0 °Cの貯蔵弾性率が 1 X 1 0 5乃至 1 X 1 0 8 P aの範囲にあること好ましく、 該貯蔵弾性率が 1 X 1 0 5 P a以上であれば、 得られる液晶表示素子が、 例えば 6 0乃至 8 O t:の高温にさら された際のシール剛性が確保でき、 好ましい。 また 1 X 1 0 8 P a以下とするこ とでシール層が靱性に富み、 しいては得られる液晶表示素子が高耐久性に優れる ものとなる。
また、 本発明の液晶表示用シール剤では、 硬化体の 2 0でショァ一硬度 Dが 7
0以上であることが好ましい。 それによつて得られる液晶表示セルは、 高レベル の剪断接着力が確保できる。
前記 (二) 乃至 (ト) に示す性質は、 前記のエポキシ樹脂、 多価フエノール化 合物、 多価フエノール樹脂及びそれらのエステル化物からなる硬化剤、 アルキル 尿素誘導体及びフォスファゼン化合物から選ばれる少なくとも 1種からなる硬化 促進剤に、 必要に応じて、 更に無機質充填剤、 ゴム状ポリマー微粒子を量比をか えて加えることにより達成することができる。 次に、本発明の液晶表示セルシール剤用組成物とは、 (1 )エポキシ樹脂と(2 ) 多価フエノール化合物、 多価フエノール樹脂及びそれらのエステル化物から選ら ばれる少なくとも 1種からなる硬化剤および (3 ) アルキル尿素誘導体及びフォ スファゼン化合物から選ばれる少なくとも 1種からなる硬化促進剤とを含有して なる液晶表示セルシール剤用組成物である。さらに必要に応じて、無機質充填剤、 シランカップリング剤、ゴム状ポリマー微粒子、溶剤等を含有させることにより、 一次接着シール性、 液晶非汚染性、 靱性性と耐熱剛性バランスなど、 基本的に高 品位、 力つ高耐久性の表示セル用シール剤組成物として必要される特性はもとよ り、 特にこれまで達し得なかった熱硬化性の液晶表示セルシール剤用組成物の硬 化体に関わる性質で吸水率 2質量%以下、 ならびに 8 0で透湿度が 2 0 0 g /m
2 · 2 4時間以下という高機能化が可能となった。
本発明の液晶表示セルシール剤用組成物は、 その硬化体の沸縢水浸漬 3 0分 後の吸水率が 2 . 0質量%以下、 好ましくは 1 . 7質量%未満である。 そうする ことで得られる液晶表示素子は、 高温多湿の過酷な環境下で使用されても表示品 位を高い状態で長期間保つことが可能となるからである。 該硬化体の煮沸水浸漬
3 0分後の吸水率が 1 . 3質量%未満であることがより好ましく、 特に好ましく は 0 . 6質量%未満である。
さらに、 本発明の液晶表示セルシール剤用組成物では、 その硬化膜 1 0 0 m 厚みの硬化膜を通過する 8 0で、 9 5 %相対湿度環境下、 2 4時間の水蒸気透過 量で表される 8 0 透湿度が 2 0 0 g /m2 · 2 4 h r s以下であることは一層 好ましい。 そうすることで高温多湿環境下での表示品位ならびに応答速度の低下 抑制効果を確保できる。 さらに好ましくは 8 0 透湿度が、 1 0 0 gZm2 · 2 4 h r s以下であること、 特に好ましくは 5 0 g /m2 · 2 4 h r s以下である ことである。
また、 本発明の液晶表示セルシール剤用組成物では、 同質量の純水とを混和さ せて得られる水溶液のイオン伝導度が 1 0 m S Zm以下であることがより一層好 ましい。イオン伝導度を 1 O m S Zm以下とすることにより、最終的に得られる液 晶表示素子の長期間表示機能性の保持が確保できる。より好ましくは 2 m S Zm以 下、 特に好ましくは 0 . S m S Zm以下である。 前記要件と合わせ、 本発明の液晶表示セルシール剤用組成物では、 液晶 1質量 部に対し該組成物の硬化体 0 . 1質量部の割合で 1 4 5 °Cで 1時間接触させた際 の液晶の比抵抗値が、 元の液晶の比抵抗値 (液晶単独を 1 4 5 1時間処理後の 比抵抗値) の 2 5 0倍以下であることが好ましく、 そうすることで得られる液晶 表示素子の表示信頼性が確保でき、 好ましい。 より好ましくは 1 0 0倍以下、 最 も好ましくは 5 0倍以下である。
本発明の液晶表示セルシール剤用組成物では、 更にその硬化体の TM A (Term omechanical analyser) より求められたガラス転移温度 (T g) が 8 5 °C以上で ある榭 ϋ旨組成物とすることが好ましく、 そうすることで、 最終的に得られる液晶 表示素子が 6 0 を越える高温域での長期間の表示品位安定性がより一層確保さ れ、 向上する。 より好ましくは、 T gが 9 0 以上、 特に好ましくは T gがュ 0 0乃至 1 8 0 の範囲である。
また、 本発明の液晶表示セルシール剤用組成物では、 硬化体のサーモメカ二力 ルアナライザ一 (TMA) から求めた 0で乃至 8 0での線膨張係数が 9 X 1 0一5 mmZmmZ :以下であれば、 得られる液晶表示素子の寸法安定性ひいてはギヤ ップ幅安定性が確保でき好ましい。 より好ましくは 7 X 1 0— 5mmZmmZ°C未 満、 特に好ましくは 5 X 1 0— SmmZmm/t:未満である。
さらに、 本発明の液晶表示セルシール剤用組成物では、 未硬化の該組成物 1 0 m gを 5で毎分で等速昇温させて得た示差走差熱分析 (D S C) の示差熱ピーク 曲線より求めた発熱開始温度が 5 O t:乃至 1 3 O t:にあることが好ましい。 該発 熱開始温度が 5 0 °C以上であれば、 得られる液晶表示セルシール剤用組成物を室 温付近で取り扱う際の粘度安定性を確保でき、 1 3 0 ^未満とすることで枚葉熱 プレス型接着加熱方式に適用した時の低温速硬化性が確保できる。
また更に、 本発明の液晶表示セルシール剤用組成物では、 未硬化の該組成物 1 O m gを 5 毎分で等速昇温させてえた示差走差熱分析 (D S C) の示差熱ピー ク曲線より求めた最大発熱ピーク温度が 1 0 0 °C乃至 1 8 0 であることが好ま しい。 該発熱ピーク温度が 1 0 0で以上であれば、 枚葉熱プレス型接着加熱方式 に適用した時の低温速硬化性が確保でき、 1 8 0 °C未満であれば必要以上に液晶 表示素子の製造条件が過酷となることを回避できる。
また更に、 本願発明の液晶表示セルシール剤用組成物では、 硬化体の 2 0 X:シ ョァー硬度 Dが 7 0以上であることが大いに好ましい。 そうすることで得られる 液晶表示セルは高レベルの剪断接着力が確保でき好ましい。
また更に、 本発明の液晶表示セルシール剤用組成物では、 硬化体の動的粘弾性 測定から求めた 1 0 0乃至 1 5 0 の貯蔵弾性率が 1 X 1 0 5乃至 1 X 1 0 8 P aの範囲にあることが好ましく、 該貯蔵弾性率が 1 X 1 0 5 P a以上であれば得 られる液晶表示素子が、 例えば 6 0乃至 8 0 の高温にさらされた際のシ一ル剛 性が確保できる。 また、 1 X 1 0 8 P a未満とすることでシール層が靱性に富み、 しいては得られる液晶表示素子が高耐久性に優れるから好ましい。
前記の液晶表示セルシール剤用組成物に関わる性質として、 T g、 ショァ一硬 度 D、 弾性率、 線膨張係数等の性質は、 エポキシ樹脂、 多価フエノール化合物、 多価フエノール樹脂及びそれらのエステル化物から選ばれる少なくとも一種から なる硬化剤、 アルキル尿素誘導体及びフォスファゼン化合物から選ばれる少なく とも 1種からなる硬化促進剤に、必要に応じて更に無機質充填剤、ゴム状ポリマー 微粒子を量比をかえて加えることで達成できる。
特に限定するものではないが >例えば T gはエポキシ樹脂の種類とその量比な らびに上記の硬化剤の種類とその量比、硬化条件等に強く依存する。ショァ一硬度 Dはエポキシ樹脂の種類とその量比ならびに上記の硬化剤の種類とその量比、 硬 化条件、 充填剤量比等に強く依存する。 弾性率はエポキシ樹脂の種類とその量比 ならびに上記の硬化剤の種類とその量比、ゴムの量比、硬化条件等に強く依存する。 線膨張係数は無機質充填剤の量比ならびに硬化条件などに強く依存する。 以上の 事実を考慮して、 それぞれ好ましい範囲となる様に量比や硬化条件を選定または 決定することによって達成すれば良い。 ところで、. 本発明の液晶表示セルシール剤用組成物では、 該組成物を 5 0 m 厚みに塗布した際の 8 0 °C 2 0分熱処理後の、 いわゆる Bステージ化組成物の 9 0 °C E型粘度が 5及至 1 0 0 0 P a · sの範囲にあることが好ましい。 それによ つて多段熱プレス接着方式はもとより、 高生産性を発揮するとされる各種の枚葉 型熱プレス加熱接着方式にも十分適合可能なシール剤として機能することから好 ましい。 より詳しくは、 該 Bステージ化組成物の 9 0 E型粘度が 5 P a · sを 上回ることで枚葉型熱プレス加熱圧締接着時に貫通泡の発生が抑制でき、 また 1 0 0 0 P a · s以下とすることにより、 枚葉熱プレス式加熱圧締接着時に所望の ギャップコントロールが可能となることから好ましい。 より好ましくは 1 0乃至 5 0 0 P a · sの範囲、 特に好ましくは 2 0乃至 1 0 0 P a · sの範囲とするこ と望ましい。
本発明の液晶表示セルシール剤用組成物は、 前記特性を満足する為に、 好まし はエポキシ樹脂のエポキシ基 1当量に対し、 多価フエノール化合物、 多価フエ ノール樹脂及びそれらのエステル化物からなる硬ィ匕剤の活性フエノール性水酸基 及び Z又はそのエステル変性基が 0 . 5乃至 1 . 2当量の範囲、 好ましくは 0 .
7乃至 1 . 1当量の範囲、 特に好ましくは 0 . 8 5乃至 1当量の範囲となる様に 硬化剤を配合し、 かつアルキル尿素誘導体及びフォスファゼン化合物から選ばれ る少なくとも 1種からなる硬化促進剤を 0 . 1乃至 2 0質量%、好ましくは 0 . 1 乃至 1 0質量%の範囲で含有させてなるエポキシ樹脂組成物であることが望まし い。
最も好ましい本願発明の液晶表示セルシール剤用組成物は、 0 °C以下の軟化点 温度を持ち、 その一次粒子の平均粒子径が 5 i m以下であるゴム状ポリマー微粒 子を、 液晶表示セルシール剤用組成物中に 1及至 2 5質量%含有してなるものが 挙げられる。 そうすることによって、 高品位かつ高耐久性の液晶表示素子を歩留 り良く製造可能となり、 しかも経済的かつ高生産性を確保できる。 更には、 得ら れる液晶表示素子が耐熱性ならびに耐寒性のバランスに優れるのみならず、 耐衝 撃シール信頼性に優れた表示素子の提供が可能になる。
本発明の液晶表示セルシール剤用組成物のより好ましい態様としては、
(1) エポキシ樹脂 20乃至 88. 9質量%、
(2) 多価フエノール化合物、 多価フエノール樹脂及びそれらのエステル化物か ら選ばれる少なくとも一種からなる硬化剤 (以下、 単に多価フエノール硬 化剤と総称する。 ) 10乃至 50質量%、
( 3 ) アルキル尿素誘導体及びフォスファゼン化合物から選ばれる少なくとも 1 種からなる硬化促進剤 0. 1乃至 10質量%、
(4) 0 以下の軟化点温度を持ち、 その一次粒子の平均粒子径が 5 m以下で あるゴム状ポリマー微粒子 1乃至 25質量%
とを含有してなるエポキシ樹脂組成物とすることである。
さらに好ましくは、
(1) エポキシ樹脂 2.0乃至 83. 8質量 %、
(2) 多価フエノール硬化剤 10乃至 45質量%
(3) アルキル尿素誘導体及びフォスファゼン化合物から選ばれる少なくとも 1 種からなる硬化促進剤 0. 1乃至 5質量%
(4) Ot:以下の軟化点温度を持ち、 その一次粒子の平均粒子径が 5^ m以下で あるゴム状ポリマー微粒子 1乃至 15質量%
( 5 ) 無機質充填剤 5乃至 45質量%
(6) シランカップリング剤 0. 1乃至 5質量%
とを含有してなる液晶表示セルシール剤用組成物が挙げられる。
さらに、本発明の液晶表示セルシール剤用組成物では、その作用効果を害さない 範囲で、 必要に応じて更に、 (7) エポキシ榭脂と相溶し、 かつ沸点が 150乃 至 220 の範囲にあるエポキシ基に対して不活性な溶剤, (8) 50°C以上の軟 化点温度を持ち、 その一次粒子の平均粒子径が 2 m以下である高軟化点ァクリ ルポリマ一微粒子 (以下、 単に高軟化点ポリマ一微粒子ど呼ぶ) 、 (9) ギヤッ プ出しコントロール剤、 (10) 導電性ビ一ズ、 (1 1) ワックス、 レべリング 剤、 顔料、 染料、 可塑剤、 消泡剤、 その他添加剤を適宜含有させた液晶表示セル 用シール剤組成物も好ましく包含される。 以下、 本発明の液晶表示セルシール剤用組成物の構成成分について以下に順に 具体的に説明する。
(1) エポキシ樹脂
本発明に用いられるエポキシ樹脂 (1) は、 特に制限はなく、 単官能性ェポキ シ樹脂と多官能性エポキシ樹脂の混合物または多官能エポキシ樹脂の単独または 混合物を用いることができ、 例えばクレゾールノポラック型エポキシ樹脂、 ビス フエノール A型エポキシ樹脂、 ビスフエノール F型エポキシ樹脂、 トリフエノー ルメ夕ン型エポキシ樹脂、 トリフエノ一ルェ夕ン型エポキシ樹脂の群から選ばれ た一種または二種以上が使用できる。 混合物は同種または異種の混合物であって も良い。
エポキシ樹脂としては、 好ましくは、 1分子中にエポキシ基を質量平均 1. 7 個以上、 より好ましくは 1分子中にエポキシ基を質量平均 1. 9個以上、 特に好 ましくは質量平均 2. 0個以上 6個以下有するエポキシ榭脂である。 1分子中に エポキシ基を質量平均 1. 7個以上とすることにより耐熱性が向上する。
エポキシ樹脂 (1) は、 その単体または複数種の混合物に於いて、 同質量の純 水と混合してなる水溶液のイオン伝導度が 1 OmSZm以下であることが好まし く、 より好ましくは 5mS/m以下、 さらに好ましくは ZmSZm以下、 特に好ま しくは測定限界以内とすることで、 本発明の液晶表示セルシール剤用組成物硬化 体が液晶接触時に於いて、 液晶相への遊離イオンの移行を抑止できる。 異なる種 類のエポキシ樹脂を 2種以上用いる場合にはその混合物中の遊離イオンの含有量 の総和の指標として、 前記の要件を満たせば良い。
また、 エポキシ樹脂 (1) は、 煮沸水で 24時間抽出した水中の塩素イオン濃 度より換算して求めたエポキシ樹脂中の加水分解性塩素濃度が 3 O O p pm以下 であることが好ましい。 加水分解性塩素濃度が 300 p pm以下であれば、 本発 明の液晶表示セルシール剤用組成物硬化体が液晶接触時に於いて、 液晶相への塩 素イオンの移行を抑止できる。 より好ましくは 100 ppm以下、 さらに好まし くは 50 ppm以下、 最も好ましくは塩素イオンを検出限度以内であることが望 ましい。
異なる種類のエポキシ樹脂を 2種以上用いる場合には、 その混合物中の遊離性 塩素イオンの含有量の総和の指標として、 前記の要件を満たせば良い。
エポキシ樹脂(1) は(1— 1)室温(25 ) で液体のエポキシ樹脂と、 (1 -2) 室温で固形のエポキシ樹脂との混合物であることが好ましい。 そして該混 合物は 0°C乃至 12 Ot:で液体となることがより好ましい。
また、 エポキシ樹脂 (1) としては、 ゲルパーミエ一シヨンクロマトグラフィ 一 (以下、 単に GPCと呼ぶ) により求められた、 ポリスチレン換算質量平均分 子量が 7000以下のものが好ましく、 150乃至 5000の範囲がより好まし く、 350乃至 3500の範囲にあるものが最も好ましい。
GPCによるポリスチレン換算質量平均分子量が 7000以下であれば、 液晶 表示セルシール剤用組成物の Bステージ化後の熱時 E型粘度値を 1000 P a · s以下とすることができ、 枚葉型熱プレス加熱接着方式への適合性が確保でき好 ましい。また、ポリスチレン換算質量平均分子量を 150以上とすることにより、 得られる硬化体の Tg適性と Bステージ化適性を両立できるので好ましい。
エポキシ樹脂 (1) の含有量は、 液晶表示セルシール剤用組成物中、 20乃至 88. 9質量%であり、 好ましくは 20乃至 83. 8質量%である。
また、 下記のエポキシ樹脂 (1) では、 前記の要件を満たすように、 事前に、 既に公知の脱加水分解性塩素低減化法及び Z又は脱遊離性イオンを主目的とした 精製方法により精製または高純度化させたものを適宜使用することができる。 す でに公知の精製方法としては、 特に制約するものではないが、 例えば、 水洗浄— 溶剤抽出精製法、 限外口過法や蒸留精製法などが挙げられる。
本発明の液晶表示セルシール剤用組成物中のエポキシ樹脂 (1 ) の種類とその 量を把握する方法としては、特に限定するものではないが、例えば溶剤抽出して、 該抽出液を G P Cで分取定量すると共に各フラクションを NM R (核磁気共鳴ス ぺクトル) 等で特定 ·同定し定量する方法が一般的である。 また、 その硬化体で ある液晶表示セル用シール剤中のエポキシ樹脂の種類とその量を把握する手段と しては、 特に限定するものではないが、 例えば赤外吸収スペクトル法、 熱分解— クロマト分取法、 湿式分解一クロマト分取法、 熱分解ガスクロ法、 熱分解一マス スペクトル法、 固体 NM R法等を適宜組み合わせて行うことができる。
<単官能性エポキシ樹脂 >
本発明に用いられる単官能性エポキシ樹脂としては、 例えば、 脂肪族モノダリ シジルエーテル化合物、 脂環族モノグリシジルエーテル化合物、 芳香族モノダリ シジルエーテル化合物、 脂肪族モノグリシジルエステル化合物、 芳香族モノダリ シジルエステル化合物、 11旨環族モノグリシジルエステル化合物、 窒素元素含有モ ノグリシジルエーテル化合物、 モノグリシジルプロピルポリシロキサン化合物、 モノダリシジルアルカン等が挙げられる。 これら以外の単官能性エポキシ樹脂を 用いても良いことは言うまでもない。
(脂肪族モノダリシジルエーテル化合物)
例えば、 炭素数が 1乃至 6の整数で表されるアルキル基又はアルケニル基を有 するポリオキシアルキレンモノアルキルエーテル類とェピクロルヒドリンとの反 応で得られた脂 族モノダリシジルエーテル化合物や、 fl旨肪族アルコール類とェ ピクロルヒドリンとの反応で得られた脂肪族モノダリシジルエーテル化合物等が 挙げられる。
炭素数が 1乃至 6の整数で表されるアルキル基又はアルケニル基を有するポリ ォキシアルキレンモノアルキルエーテル類としては、 エチレングリコールモノア ルキルエーテル、 ジエチレングリコールモノアルキルエーテル、 トリエチレング リコールモノアルキルエーテル、ポリエチレンダリコールモノアルキルエーテル、 プロピレングリコールモノアルキルエーテル、 ジプロピレングリコールモノアル キルエーテル、 トリプロピレングリコールモノアルキルエーテル、 ポリプロピレ ングリコールモノアルキルエーテル等が挙げられる。
脂肪族アルコール類としては、 例えば n—ブ夕ノール、 イソブ夕ノール、 n— ォク夕ノール、 2—ェチルへキシルアルコール、 ジメチロールプロパンモノアル キルエーテル、 メチロールプロパンジアルキルエーテル、 グリセリンジアルキル エーテル、 ジメチロールプロパンモノアルキルエステル、 トリメチロールプロパ ンジアルキルエステル、 ダリセリンジアルキルエステル等が挙げられる。
(脂環族モノダリシジルエーテル化合物)
例えば、 炭素数が 6乃至 9の整数で表される飽和型環式アルカン基を有する脂 環族アルコ一ル類とェピクロルヒドリンとの反応で得られた脂環族モノグリシジ ルエーテル化合物等が挙げられる。
反応の用いられる脂環族アルコール類としては、 シクロへキサノール等が挙げ られる。
(芳香族モノダリシジルエーテル化合物)
例えば、 芳香族アルコール類とェピクロルヒドリンとの反応で得られた芳香族 モノダリシジルエーテル化合物等が挙げられる。
反応の用いられる芳香族アルコール類としては、 フエノール、 メチルフエノー ル、 ェチルフエノール、 n—プロピルフエノール、 イソプロピルフエノール、 n 一ブチルフエノール、 ベンジルアルコール、 t—ブチルフエノール、 キシレノー ル、 ナフトール等が挙げられる。
(脂肪族又は芳香族モノグリシジルエステル化合物)
例えば、 脂肪族ジカルボン酸モノアルキルエステルまたは芳香族ジカルボン酸 モノアルキルエステルとェピクロルヒドリンとの反応で得られた脂肪族モノグリ シジルエステル化合物または芳香族モノダリシジルエステル化合物等が挙げられ る。
<多官能性エポキシ樹脂 >
多官能性エポキシ樹脂としては、 通常 1分子中に質量平均 2乃至 6個のェポキ シ基を有するエポキシ樹脂であるが、 本発明の効果を阻害しない範囲であればそ れ以上のエポキシ基を.有する樹脂を用いることもできる。 多官能性エポキシ樹脂 とレては、 例えば脂肪族多価グリシジルエーテル化合物、 芳香族多価グリシジル エーテル化合物、 トリスフエノール型多価グリシジルエーテル化合物、 ハイド口 キノン型多価ダリシジルエーテル化合物、 レゾルシノール型多価ダリシジルエー テル化合物、 脂肪族多価ダリシジルエステル化合物、 芳香族多価グリシジルエス テル化合物、 .脂肪族多価ダリシジルエーテルエステル化合物、 芳香族多価ダリシ ジルエーテルエステル化合物、 脂環族多価グリシジルエーテル化合物、 脂肪族多 価グリシジルァミン化合物、 芳香族多価グリシジルァミン化合物、 ヒダントイン 型多価グリシジル化合物、 ビフエ二ル型多価ダリシジル化合物、 ノボラック型多 価ダリシジルエーテル化合物、 エポキシ化ジェン重合体等が挙げられる。
なお、 これら以外の多官能性エポキシ樹脂でも用いることができることは言う までもない。
(脂肪族多価ダリシジルエーテル化合物)
例えば、 ポリオキシアルキレングリコール類又は多価アルコール類とェピクロ ルヒドリンとの反応で得られた脂肪族多価ダリシジルエーテル化合物等が挙げら れる。
反応に用いられるポリオキシアルキレングリコール類としては、 例えばェチレ ングリコール、 ジエチレングリコール、 トリエチレングリコール、 ポリエチレン グリコール、 プロピレングリコール、 ジプロピレングリコール、 トリプロピレン グリコール、 ポリプロピレングリコール等が挙げられる。
反応に用いられる多価アルコール類としては、 ジメチロールプロパン、 トリメ チロールプロパン、 スピログリコール、 グリセリン等が挙げられる。 (芳香族多価ダリシジルエーテル化合物)
例えば、 芳香族ジオール類とェピクロルヒドリンとの反応で得られた芳香族多 価ダリシジルエーテル化合物等が挙げられる。
反応に用いられる芳香族ジオールとしては、 例えばビスフエノール A、 ビスフ エノ一ル 、 ビスフエノール F、 ビスフエノール AD等が挙げられる。
(トリスフエノール型多価グリシジルエーテル化合物)
例えば、 トリスフエノール類とェピクロルヒドリンとの反応で得られたトリス フエノール型多価グリシジルエーテル化合物が挙げられる。
反応に用いられるトリスフエノ一ル類としては 4, 4' , 4〃 —メチリデント リスフエノール、 4, 4' , 4〃 ーメチリデントリス (2—メチルフエノール) 、 4, 4' — [ (2—ヒドロキシフエニル) メチレン] ビス [2, 3, .6—トリメ チルフエノール] 、 4, 4' , 4" —ェチリデントリスフエノール、 4, 4' — [ (2—ヒドロキシフエニル) メチレン] ビス [2—メチルフエノール] 、 4, 4' - [ (2—ヒドロキシフエニル) エチレン] ビス [2—メチルフエノール] 、 4, 4' - [ (4—ヒドロキシフエニル) メチレン] ビス [2—メチルフエノ一 ル] 、 4, 4' — [ (4—ヒドロキシフエニル) エチレン] ビス [2—メチルフ ェノール] 、 4, 4' - [ (2—ヒドロキシフエニル) メチレン] ビス [2, 6 —ジメチルフエノール] 、 4, 4' — [ (2—ヒドロキシフエニル) エチレン] ビス [2, 6—ジメチルフエノール] 、 4, 4' 一 [ (4—ヒドロキシフエニル) メチレン] ビス [2, 6—ジメチルフエノール] 、 4, 4' — [ (4ーヒドロキ シフエニル) エチレン] ビス [2, 6—ジメチルフエノール] 、 4, 4' — [ (2 —ヒドロキシフエニル) メチレン] ビス [3, 5—ジメチルフエノール] 、 4, 4' — [ (2—ヒドロキシフエニル) エチレン] ビス [3, 5—ジメチルフエノ —ル] 、 4, 4' 一 [ (3—ヒドロキシフエニル) メチレン] ビス [2, 3, 6 —トリメチルフエノール] 、 4, 4' 一 [ (4—ヒドロキシフエニル) メチレン] ビス [2, 3, 6—トリメチルフエノール] 、 4, 4' 一 [ (2—ヒドロキシフ ェニル) メチレン] ビス [2—シクロへキシル _ 5—メチルフエノール] 、 4, 4' - [ (3—ヒドロキシフエニル) メチレン] ビス [2—シクロへキシルー 5 一メチルフエノール] 、 4, 4 ' 一 [ (4—ヒドロキシフエニル) メチレン] ビ ス [2—シクロへキシル— 5 _メチルフエノール] 、 4, 4' — [1 - [4一 [1 _ (4—ヒドロキシフエニル) 一 1—メチルェチル] フエノールェチリデン] ビ スフエノール] 、 4, 4' — [ (3, 4—ジヒドロキシフエニル) メチレン] ビ ス [2—メチルフエノール] 、 4, 4' — [ (3, 4—ジヒドロキシフエニル) メチレン] ビス [2, 6—ジメチルフエノール] 、 4, 4' _ [ (3, 4—ジヒ ドロキシフエニル) メチレン] ビス [2, 3, 6—トリメチルフエノール] 、 4 一 [ビス (3—シクロへキシル 4—ヒドロキシ一 6—メチルフエニル) メチル] - 1, 2—ベンゼンジオール等が挙げられる
(ハイドロキノン型多価ダリシジルエーテル化合物)
例えば、 ハイドロキノンとェピクロルヒドリンとの反応で得られたハイドロキ ノン型多価ダリシジルエーテル化合物等が挙げられる。
(レゾルシノール型多価グリシジルエーテル化合物)
例えば、 レゾルシノールとェピクロルヒドリンとの反応で得られたレゾルシノ ール型多価グリシジルエーテル化合物等が挙げられる。
(脂肪族多価ダリシジルエステル化合物)
例えば、 アジピン酸等で代表される脂肪族ジカルボン酸とェピクロルヒドリン との反応で得られた脂肪族多価グリシジルエステル化合物等が挙げられる。
(芳香族多価グリシジルエステル化合物)
例えば、 芳香族ジカルボン酸とェピクロルヒドリンとの反応で得られた芳香族 多価ダリシジルエステル化合物等が挙げられる。
反応に用いられる芳香族ジカルボン酸としては例えば、 イソフ夕ル酸、 テレフ タル酸、 ピロメリット酸等が挙げられる。
(脂肪族又は芳香族多価グリシジルエーテルエステル化合物) ヒドロキシジカルボン酸化合物とェピクロルヒドリンとの反応で得られた脂肪 族多価グリシジルエーテルエステル化合物または芳香族多価グリシジルエーテル エステル化合物等が挙げられる。
(脂環族多価ダリシジルエーテル化合物)
例えば、 ジシクロペン夕ジェン型多価グリシジルエーテル化合物等で代表され る脂環族多価グリシジルエーテル化合物等が挙げられる。
(脂肪族多価グリシジルァミン化合物)
例えば、 エチレンジアミン等に代表される脂肪族ジァミンとェピクロルヒドリ ンとの反応で得られた脂肪族多価グリシジルァミン化合物等が挙げられる。
(芳香族多価グリシジルァミン化合物)
例えば、 ジアミノジフエニルメタン、 ァニリン、 メタキシリレンジァミン等で 代表される芳香族ァミンとェピクロルヒドリンとの反応で得られた芳香族多価グ リシジルァミン化合物等が挙げられる。
(ヒダントイン型多価グリシジル化合物)
例えば、 ヒダントインならびにその誘導体とェピクロルヒドリンとの反応で得 られたヒダントイン型多価ダリシジル化合物等が挙げられる。
(ノボラック型多価グリシジルエーテル化合物)
例えば、 フエノール、 クレゾール、 ナフトール等で代表される芳香族アルコー ル類とホルムアルデヒドとから誘導されるノポラック樹脂とェピクロルヒドリン との反応で得られるノボラック型多価ダリシジルエーテル化合物等が挙げられる。 また、 例えば、 フエノール及びまたはナフトールと P—キシリレンジクロライ ドとから誘導されるフエノール核及びまたはナフトール核とパラキシレン核がメ チレン結合で結合して成る変性ァラルキル樹脂とェピクロルヒドリンとの反応で 得られる変性ノポラック型多価グリシジルエーテル化合物等も代表例に含まれる。
(エポキシ化ジェン重合体)
例えば、 エポキシ化ポリブタジエン、 エポキシ化ポリイソプレン等が挙げられ る。
(2) 多価フエノール硬化剤
本発明の液晶表示セルシール剤用組成物で用いる多価フエノール硬化剤 (2) とは、 多価フエノール化合物、 多価フエノール樹脂及びそれらのエステル化物か らなる硬化剤である。
多価フエノール硬化剤 (2) では、 硬化剤と 10倍質量の純水とを混合してな る水溶液のィォン伝導度が 2 m S Zm以下である硬化剤を選定使用する。それによ つて、 本発明の液晶表示セルシール剤用組成物の硬化体が液晶接触した時に、 液 晶相に不必要に遊離イオンが移行するのを抑止できる。好ましくは lmS/m以下、 より好ましくは 0. 2mS/m以下とする。 また、 硬化剤 (2) では、 特に制約す るものではないが、 好ましくは J I S K7234に規定される環球法から求め た軟化点温度が 30で以上、 好ましくは 75 以上、 より好ましくは 75で以上 180で未満であるものを選定使用する。 高軟化点の多価フエノール硬化剤を使 用することにより、 得られる液晶表示セル用シール剤の硬度ならびに Tg、 弹性 率、 耐熱性を向上出来るので好ましい。 また、 GPCより得られたポリスチレン 換算質量平均分子量で 300乃至 10000の範囲、 好ましくは 500乃至 75 00の範囲のものであることが望ましい。
本発明の液晶表示セルシール剤用組成物において、 多価フエノール硬化剤の好 ましい配合当量比率としては、 前記の様に、 エポキシ樹脂のエポキシ基 1当量に 対し多価フエノール硬化剤の活性フェノール性水酸基及び Z又はそのエステル変 性基が 0. 5乃至 1. 2当量の範囲、 好ましくは 0. 7乃至 1. 1当量の範囲、 特に好ましくは 0. 85乃至 1当量の範囲である。 0. 5当量以上 1. 2当量未 満であれば、 得られる液晶表示セルシール剤用組成物またはその硬化体である液 晶表示セル用シール剤によって高品位かつ高耐久性の液晶表示素子の製造が可能 となる。 多価フエノール硬化剤 (2) としては、 特に制約するものではないが、 例えば、 以下の (2— 1— a) 乃至 (2— 12— a) 及び/又は (2— 1— b) 乃至 (2 - 12-b) に代表される。
(2— 1— a) フエノールノボラック樹脂
(2-2-a) フエノールァラルキル樹脂
(2-3-a) ナフトールノポラック樹脂
(2-4-a) ナフトールァラルキル樹脂
( 2— 5— a ) 脂環化合物変性フエノールノポラック樹脂
(2— 6— a) 脂環化合物変性ナフトールノポラック樹脂
(2— 7— a) 多環芳香族化合物変性ノポラック樹脂
(2-8 -a) 多価フエノール単量体
(2-9-a) ポリビニルフエノール
(2— 10— a) ビニルフエノール共重合体
(2— 1 1 -a) ポリイソプロぺニルフエノール
(2- 12-a) ポリイソプロぺニルフエノール共重合体
(2-1 -b) エステル化フエノールノボラック樹月
(2-2-b) エステル化フエノールァラルキル樹脂
(2-3-b) エステル化ナフトールノポラック樹脂
(2-4-b) エステル化ナフトールァラルキル樹脂
(2— 5— b) エステル化脂環化合物変性フエノールノポラック樹脂
(2-6-b) エステル化脂環化合物変性ナフトールノポラック樹脂
(2-7-b) エステル化多環芳香族化合物変性ノポラック樹脂
(2 - 8 -b) エステル化多価フエノール単量体
(2 - 9 -b) エステル化ポリビニルフエノール
(2 _ 10— b) エステル化ビニルフエノール共重合体
(2— 1 1—b) エステル化ポリイソプロぺニルフエノール (2- 12-b) エステル化ポリイソプロぺニルフエノール共重合体
多価フエノール硬化剤としては、 前記 (2— l_a) 乃至 (2— 12— a) 及 び 又は (2— 1— b) 乃至 (2— 12— b) から選ばれる少なくとも 1種また は 2種以上、 好ましくは (2— 1— a) 乃至 (2— 7— a) 及び Z又は (2— 1 -b) 乃至 (2— 7— b) 力 ら選ばれる少なくとも 1種または 2種以上である。 より好ましい多価フエノール硬化剤としては、 (2— 1— a) 乃至 (2— 2— a) 及び Z又は (2— l_b) 乃至 (2_2_b) 力、ら選ばれる少なくとも 1種また は 2種以上が挙げられ、 特に好ましくは (2— 1— b) 乃至 (2— 2— b) から 選ばれる少なくとも 1種である。
(2— 1— a) フエノールノポラック樹脂と (2— 1— b) そのエステル化ノ ポラック樹脂
下記化学式 (1)
Figure imgf000026_0001
(式中、 A 1は水素原子または芳香族ァシル基、 脂肪族ァシル基を表す。 R1は水 素原子、 ハロゲン原子、 水酸基、 炭素数 1乃至 10の直鎖、 分岐または環状のァ ルキル基、 炭素数 1乃至 10のアルコキシ基あるいはフエ二ル基を表し、 同じで あっても異なっていても良い。 m1は 1乃至 3の整数を表し、 同じであっても異 なっていても良い。 繰り返し単位数 pは 0乃至 100の範囲の整数である。 p = 0であるときはビスフエノール誘導体を表す。 )
で表され、 フエノールノボラック樹脂 (2— 1— a) とは、 式中の A 1が水素原 子である物に代表される。 一方、 エステル化フエノールノボラック樹脂 (2— 1 一 b) とは、 化学式 (1) で表される式中の A1が水素原子または芳香族ァシル 基、 脂肪族ァシル基であって、 A 1がすべて水素原子でないものであり、 水素原 子 ァシル基のモル比が 90Z10乃至 0 100の範囲である物で代表される。 フエノールノポラック樹脂 (2— 1— a) の好ましい具体例としては、 特に制 約する物ではないが、 例えば、 下記フエノール類とホルムアルデヒドとを酸性下 で付加縮合させて得られたものが代表的であり、 好ましくは環球法による軟化点 温度が 50 以上、 より好ましくは 75 以上からなるものである。
前記フエノール類の好ましい例としては、 例えば、 フエノール、 クレゾ一ル、 キシレノール、 八イドロキノン、 メチルハイドロキノン、 カテコール、 レゾルシ ン、 ェチルフエノール、 ジェチルフエノール、 n—プロピルフエノール、 イソプ 口ピルフエノール、 n—ブチルフエノール、 t—ブチルフエノール、 2—ェチル へキシルフェノール、 フエニルフエノール等から選ばれた 1種または 2種以上が 挙げられる。 より好ましくはフエノール及び Zまたはクレゾールである。
エステル化フエノールノボラック榭脂 (2— 1— b) の具体例としては、 前記 フエノールノポラック樹脂に内在するフエノール性水酸基の 10乃至 100モ ル%を芳香族及び/又は脂肪族ァシル化変性したものが挙げられる。
本発明の液晶表示セルシール剤用組成物では、 多価フエノール硬化剤 (2) が 前記フエノールノポラック樹脂 (2— 1— a) 及び/又は前記エステル化フエノ ールノポラック榭脂 (2_ l _b) であることが好ましい。 より好ましい多価フ エノ一ル硬化剤としては、 フエノールノボラック樹脂 (2_ 1— a) とエステル 化フエノールノポラック樹脂(2— 1—b)との混合質量比で 1: 99乃至 99 : 1の範囲のもの、 特に好ましくは 10 : 90乃至 99 : 1であるものである。
(2-2-a) フエノールァラルキル樹脂と (2— 2— b) そのエステル化フ エノールァラルキル樹脂
下記化学式 (2)
Figure imgf000028_0001
(式中、 A2は水素原子または芳香族ァシル基、 脂肪族ァシル基を表す。 R2は水 素原子、 ハロゲン原子、 水酸基、 炭素数 1乃至 10の直鎖、 分岐または環状のァ ルキル基、 炭素数 1乃至 10のアルコキシ基あるいはフエ二ル基を表し、 R3は 水素原子あるいはメチル基を表し、 R2及び R3はそれぞれ同じであっても異なつ ていても良い。 m2及び m3はそれぞれ 1乃至 3の整数を表し、 それぞれ同じであ つても異なっていても良い。 繰り返し単位数 Qは 0乃至 100の範囲の整数であ る。 Q = 0であるときはビスフエノール誘導体を表す。 )
で表され、 フエノールァラルキル樹脂 (2— 2— a) とは、 式中の A 2が水素原 子である物に代表される。 一方、 エステル化フエノールァラルキル樹脂 (2— 2 一 b) とは、 化学式 (2) で表される式中の A2が水素原子または芳香族ァシル 基、 脂肪族ァシル基であって、 A 2がすべて水素原子でないものであり、 水素原 子 アシル基のモル比が 90Z10乃至 0Z100の範囲である物で代表される。 フエノールァラルキル樹脂 (2— 2— a) の好ましい例としては、 特に制約す るものではないが、 例えば、 フリーデルクラフツ触媒存在下に下記のフエノール 類とキシリレンジクロライド化合物またはキシリレンジアルキルエーテル化合物 とから誘導され、 遊離フエノールを 0. 01質量%以下まで減圧除去してなるも のが挙げられる。 より好ましくは環球法による軟化点温度で 50乃至 120°Cの 範囲にある該フエノールァラルキル樹脂である。
エステル化フエノールァラルキル樹脂 (2— 2— b) の好ましい例としては、 前記フエノールァラルキル樹脂に内在するフエノール性水酸基の 10乃至 100 モル%を芳香族及び/又は脂肪族ァシル化変性したものが挙げられる。 フエノール類の好ましい例としては、 例えば、 フエノール、 クレゾール、 キシ レノール、 ハイドロキノン、 メチルハイドロキノン、 カテコール、 レゾルシン、 ェチルフエノール、 ジェチルフエノール、 n—プロピルフエノール、 イソプロピ ルフエノール、 n—ブチルフエノール、 t—ブチルフエノール、 2—ェチルへキ シルフエノ一ル、 フエエルフェノール等から選ばれた 1種または 2種以上が挙げ られる。 より好ましくはフエノール及び/またはクレゾールである。
また、 前記のキシリレンジクロライド化合物には、 例えば、 1, 2—キシリレ ンジクロライド、 1, 3_キシリレンジクロライド、 1, 4一キシリレンジクロ ライド、 2—メチル一 1, 3—キシリレンジクロライド、 3—メチル一 1, 4— キシリレンジクロライド、 2, 4—ジメチル一 1, 3—キシリレンジクロライド、 2, 4, 5—トリメチル一 1, 3—キシリレンジクロライド、 2, 3—ジメチル — 1, 4—キシリレンジクロライド、 2, 3, 5_トリメチル一 1, 4_キシリ レンジクロライド、 2,ェチル_1, 3 _キシリレンジクロライド、 2, 4—ジ ェチルー 1, 3—キシリレンジクロライド、 2, 4, 5_トリェチル— 1, 3— キシリレンジクロライド、 2, 3—ジェチル一 1, 4—キシリレンジクロライド、 2, 3, 5—トリェチル一 1, 4—キシリレンジクロライド等がある。
キシリレンジアルキルエーテル化合物には、 例えば、 ひ, ' —ジメトキシ— P—キシレン、 ひ, α —ジェ卜キシ一 p—キシレン、 a, —ジメ卜キシ一 o—キシレン、 , a —ジェ卜キシ _ o—キシレン、 ひ, ' —シメ卜キシ一 m—キシレン、 α, ' —ジエトキシ一 m—キシレンがあり、好ましくはひ, ' —ジメトキシ一 p—キシレンが挙げられる。
本発明の液晶表示セルシール剤用組成物では、 多価フエノール樹脂として前記 フエノールァラルキル樹脂 (2— 2— a) 及び Z又は前記エステル化フエノール ァラルキル樹脂 (2— 2— b) とすることが好ましい態様のひとつである。 その なかでも多価フエノール樹脂として、 (2— 2— a) と (2— 2_b) との混合 質量比で 1 : 99乃至 99 : 1の範囲であるものが好ましく、 さらに好ましくは 10 : 90乃至 99 : 1であるものである。
(2-3-a) ナフトールノボラック樹脂とその (2— 3— b) そのエステル 化ナフトールノボラック樹脂
下記化学式 (3)
Figure imgf000030_0001
(式中、 A 3は水素原子または芳香族ァシル基、 脂肪族ァシル基を表す。 R4及び R 5はそれぞれ水素原子、 ハロゲン原子、 水酸基、 炭素数 1乃至 10の直鎖、 分 岐または環状のアルキル基、 炭素数 1乃至 10のアルコキシ基あるいはフエニル 基を表し、 R4及び R5はそれぞれ同じであっても異なっていても良い。 m4及び m5はそれぞれ 1乃至 3の整数を表し、 それぞれ同じであっても異なっていても 良い。 繰り返し単位数 rは 0乃至 100の範囲の整数である。 r = 0であるとき はビスナフトール誘導体を表す。 )
で表され、 ナフト一ルノポラック樹脂 (2_3— a) とは、 式中の A3が水素原 子である物に代表される。 一方、 エステル化ナフトールノポラック樹脂 (2— 3 一 b) とは、 化学式 (3) で表される式中の A3が水素原子または芳香族ァシル 基、 脂肪族ァシル基であって、 A3がすべて水素原子ではないものであり、 水素 原子 Zァシル基のモル比が 90/10乃至 0 100の範囲である物で代表され る。
ナフトールノボラック樹脂 (2— 3— a) は、 特に制約するものではないが、 好ましい例として、 例えば、 下記のナフ! ^一ル類とホルムアルデヒドを酸性下に 付加縮合させて得られるものが挙げられる。 より好ましくは環球法で求めた軟化 点温度が 50 以上、 さらに好ましくは 75乃至 150°Cにあるナフトールノポ ラック樹脂である。
前記ナフトール類には、 好ましい例として、 例えば、 α—ナフトール、 β—ナ フトール、 メチルナフトール、 ジメチルナフ ] ^一ル、 トリメチルナフトール、 メ チルェチルナフ! ^一ル、 ェチルナフ ] ^一ル、 ジェチルナフ! ^一ル、 トリェチルナ フ! ^一ル、 メチルジェチルナフ] ル、 η—プロピルナフ! ^一ル、 ジ— η—プロ ピルナフトール、 イソプロピルナフトール、 ジイソプロピルナフトール、 ジヒド ロキシナフタレン、 トリヒドロキシナフ夕レン等の 1種または 2種以上が挙げら れ、 より好ましくはナフトール及び Ζ又はメチルナフトールである。
また、 エステル化ナフトールノポラック樹脂 (2— 3— b) の好ましい例とし ては、 前記ナフトール樹脂のナフトール性水酸基の 10乃至 100モル%を芳香 族及びまたは脂肪族ァシル化変性したものが挙げられる。
本発明の液晶表示セルシール剤用組成物では、 多価フエノール樹脂として (2 - 3- a) 及び Z又は (2— 3— b) とすること好ましい態様のひとつである。 そのなかでも、 (2— 3_a) : (2— 3— b) の質量比で 1 : 99乃至 99 : 1の範囲であるものが好ましく、 さらに好ましくは 90 : 10乃至 1 : 99であ るものである。
(2-4-a) ナフトールァラルキル樹脂と (2— 4— b) そのエステル化ナ フト一ルァラルキル樹脂
下記化学式 (4)
Figure imgf000031_0001
(式中、 A4は水素原子または芳香族ァシル基、 脂肪族ァシル基を表す。 R6及び R 7はそれぞれ水素原子、 ハロゲン原子、 水酸基、 炭素数 1乃至 1 0の直鎖、 分 岐または環状のアルキル基、 炭素数 1乃至 1 0のアルコキシ基あるいはフエニル 基を表し、 R 8は水素原子あるいはメチル基を表し、 R 6、 R 7及び R 8はそれぞれ 同じであっても異なっていても良い。 m6、 m 7及び m8はそれぞれ 1乃至 3の整 数を表し、 それぞれ同じであっても異なっていても良い。 繰り返し単位数 sは 0 乃至 1 0 0の範囲の整数である。 s = 0であるときはビスナフトール誘導体を表 す。 )
で表され、 ナフトールァラルキル樹脂 (2— 4— a ) とは、 式中の A4が水素原 子である物に代表される。 一方、 エステル化ナフトールァラルキル樹脂 (2— 4 - b ) とは、 化学式 (4 ) で表される式中の A 4が水素原子または芳香族ァシル 基、 脂肪族ァシル基であって、 A 4がすべて水素原子ではないものであり、 水素 原子 Zァシル基のモル比が 9 0ノ 1 0乃至 0 Z 1 0 0の範囲で表した物で代表さ れる。
ナフトールァラルキル樹脂 (2— 4— a ) の好ましい例としては、 特に制約す るものではないが、 例えば、 フリーデルクラフツ触媒存在下にナフトール類と前 記キシリレンジクロライド化合物または前記キシリレンジアルキルエーテル化合 物とから誘導され、 遊離ナフトールを 0. 0 1質量%以下まで減圧除去したもの が挙げられる。
エステル化ナフトールァラルキル樹脂 (2— 4 _ b ) の好ましい例としては、 例えば、 前記ナフトールァラルキル樹脂に内在するナフトール性水酸基の 1 0乃 至 1 0 0モル%を芳香族及びまたは脂肪族ァシル化変性したものが挙げられる。 前記ナフトール類の好ましい例として、 例えば、 α—ナフトール、 ]3—ナフト ール、 メチルナフ] ^一ル、 ジメチルナフトール、 卜リメチルナフトール、 メチル ェチルナフ] ^一ル、 ェチルナフトール、 ジェチルナフ! ^一ル、 トリェチルナフト ール、 メチルジェチルナフ] ル、 η—プロピルナフトール、 ジ— η—プロピル ナフ) ^一ル、 イソプロピルナフトール、 ジイソプロピルナフ] ^一ル、 ジヒドロキ シナフタレン、 トリヒドロキシナフタレン等の 1種または 2種以上が挙げられ、 より好ましくはナフトール及び Z又はメチルナフトールである。
本発明の液晶表示セルシール剤用組成物では、 多価フエノール樹脂として (2 一 4一 a)及び Z又は(2— 4_b)とすることが好ましい態様のひとつである。 そのなかでも (2— 4— a) : (2— 4_b) の質量比で 1 : 99乃至 99 : 1 の範囲のもの、 さらに好ましくは 90 : 10乃至 1 : 99のものである。
(2-5-a) 脂環化合物変性フエノールノポラック樹脂と (2— 5— b) そ のエステル化脂環化合物変性フエノールノポラック樹脂
下記化学式 (5)
Figure imgf000033_0001
(式中、 A 5は水素原子または芳香族ァシル基、 脂肪族ァシル基を表す。 R9は水 素原子、 ハロゲン原子、 水酸基、 炭素数 1乃至 10の直鎖、 分岐または環状のァ ルキル基、 炭素数 1乃至 10のアルコキシ基あるいはフエ二ル基を表し、 同じで あっても異なっていても良い。 m9は 1乃至 3の整数を表し、 同じであっても異 なっていても良い。 Xは下記化学式 (6) あるいは下記化学式 (7) で示される ような脂肪族環を表し、 繰り返し単位数 tは 0乃至 100の範囲の整数である。 t = 0であるものはビスフエノール誘導体を表す。 )
Figure imgf000033_0002
Figure imgf000034_0001
で表され、 脂環化合物変性フエノールノボラック樹脂 (2— 5— a ) とは、 式中 の A 5が水素原子で表される物に代表される。 一方、 そのエステル化脂環化合物 変性フエノールノポラック樹脂 (2— 5— b ) とは、 化学式 ( 5 ) で表され式中 の A 5が水素原子または芳香族ァシル基、 脂肪族ァシル基であって、 A 5がすべて 7 素原子でないものであり、 水素原子/ァシル基のモル比が 9 0 Ζ 1 0乃至 0 1 0 0の範囲である物で代表される。
式 (5 ) 中の Xが式 (6 ) で示される脂環化合物変性ノポラック樹脂の好まし い具体例としては、 例えば、 フリーデルクラフツ触媒存在下にフエノール類とジ シクロペン夕ジェンジクロライド化合物またはジシクロペン夕ジェンジアルキル エーテル化合物とから誘導され、 遊離フエノールを 0 . 0 1質量%以下まで減圧 除去したものに代表される。
フエノール類の好ましい例としては、 例えば、 フエノール、 クレゾール、 キシ レノール、 ハイドロキノン、 メチルハイドロキノン、 カテコール、 レゾルシン、 ェチルフエノール、 ジェチルフエノール、 η—プロピルフエノール、 イソプロピ ルフエノール、 η _ブチルフエノール、 t—ブチルフエノール、 2—ェチルへキ シルフエノ一ル、 フエニルフエノール等から選ばれた 1種または 2種以上が挙げ られる。 より好ましくはフエノール及び/またはクレゾールである。
また、 ジシクロペン夕ジェンジアルキルエーテル化合物には、 例えば、 ジシク 口ペン夕ジェンジメチルエーテル、 ジシクロペン夕ジェンジェチルエーテル、 ジ シクロペン夕ジェンジプロピルエーテル、 ジシクロペン夕ジェンメチルェチルェ 一テル等がある。
そのエステル化脂環化合物変性ノボラック樹脂の好ましい例としては、 前記の 脂環化合物変性ノポラック樹脂に内在するフエノール性水酸基の 10乃至 100 モル%を芳香族及び又は脂肪族ァシル化変性させたものが挙げられる。
また、 式 (5) 中の Xが式 (7) で示される脂環化合物変性ノポラック樹脂の 好ましい具体的な例としては、 例えば、 フリーデルクラフツ触媒存在下に前記の フエノール類と、 必要に応じて前記のナフトール類との併存下に、 シクロへキサ ンジクロライド化合物またはシクロへキサンジメトキシエーテル化合物及び Z又 はシクロへキサンジェチルエーテルで代表されるシクロへキシルジアルキルエー テル類とから誘導され、 遊離フエノールを 0. 01質量%以下まで減圧除去した ものに代表される。
そのエステル化脂環化合物変性ノポラック樹脂の好ましい具体例としては、 前 記脂環化合物変性ノポラック樹脂に内在するフエノール性水酸基の 10乃至 10 0モル%を芳香族及び/又は脂肪族ァシル化変性したるものが挙げられる。
本発明の液晶表示セルシール剤用組成物では、 多価フエノール樹脂として (2 - 5- a)及び Z又は(2_5— b) とすることが好ましい態様のひとつである。 なかでも (2— 5— a) : (2-5-b) の質量比で 1 : 99乃至 99 : 1の範 囲であるもの、 さらに好ましくは 90 : 10乃至 1 : 99であるものである。
(2-6-a) 脂環化合物変性ナフトールノポラック樹脂と (2— 6— b) そ のエステル化脂環化合物変性ナフトールノポラック樹脂
下記化学式 (8)
Figure imgf000035_0001
(式中、 A6は素原子または芳香族ァシル基、 脂肪族ァシル基を表す。 R1G及び R 11はそれぞれ水素原子、 ハロゲン原子、 水酸基、 炭素数 1乃至 10の直鎖、 分 岐または環状のアルキル基、 炭素数 1乃至 10のアルコキシ基あるいはフエニル 基を表し、 R1Q及び R11はそれぞれ同じであっても異なっていても良い。 m1 Q 及び m 11はそれぞれ 1乃至 3の整数を示し、 それぞれ同じであっても異なってい ても良い。 Zは下記化学式 (9) あるいは下記化学式 (10) に示されるような 脂肪族環を表し、 繰り返し単位数 uは 0乃至 100の範囲の整数である。 u = 0 であるときはビスナフトール誘導体を表す。 )
0)
Figure imgf000036_0001
Figure imgf000036_0002
で表され、 fl旨環化合物変性ナフトールノポラック樹脂 (2— 6— a) とは、 式中 の A6が水素原子である物に代表される。 一方、 エステル化脂環化合物変性ナフ ト一ルノポラック樹脂 (2— 6— b) とは、 化学式 (8) で表さる式中の A6が 水素原子または芳香族ァシル基、 脂肪族ァシル基であって、 A 6がすべて水素原 子でないものであり、 水素原子 ァシル基のモル比が 90Z10乃至 0Z100 の範囲である物で代表される。
式 (8) 中の Zが式 (9) で示される脂環化合物変性ナフトールノポラック榭 脂の好ましい具体例としては、 例えば、 フリーデルクラフツ触媒存在下に前記の ナフトール類と前記のジシクロペン夕ジェンジクロライド化合物または前記のジ シクロペンタジェンジアルキルエーテル化合物とから誘導され、 遊離フエノール を 0. 01質量%以下まで減圧除去したものに代表される。
そのエステル化脂環化合物変性ナフトールノボラック樹脂の好ましい例として は、 前記の脂環化合物変性樹脂に内在するフエノール性水酸基の 10乃至 100 モル%を芳香族及びまたは脂肪族ァシル化変性したものが好ましい例である。 式 (8) 中の Zが式 (10) で示される脂環化合物変性ナフトールノボラック 樹脂の好ましい具体的な例としては、 例えば、 フリーデルクラフツ触媒存在下に 前記のナフトール類と、 必要に応じて前記のフエノール類との併存下に、 前記の シクロへキサンジクロライド化合物または前記のシクロへキサンジメトキシエー テル化合物及び Z又はシクロへキサンジェチルエーテルで代表されるシク口へキ シルジアルキルエーテル類とから誘導され、 遊離ナフトールを 0. 0 1質量%以 下まで減圧除去したものに代表される。
また、 そのエステル化脂環化合物変性ナフトールノポラック樹脂の好ましい具 体例としては、 前記脂環化合物変性樹脂に内在するフエノール性水酸基の 10乃 至 100モル%を芳香族及びまたは脂肪族ァシル化変性したものが挙げられる。 多価フエノール樹脂として (2— 6— a) と (2— 6— b) を任意の割合で併 用する態様であるものも本発明に包含され、 なかでも (2— 6_a) : (2— 6 -b) の質量比で 1 : 99乃至 99 : 1の範囲であるものが好ましく、 より好ま しくは 90 : 10乃至 1 : 99であるものである。
(2-7-a) 多環芳香族化合物変性ノポラック樹脂と (2_7— b) そのェ ステル化多環芳香族化合物変性ノポラック樹脂
多環芳香族化合物変性ノポラック樹脂 (2— 7— a) としては,例えば、石油ェ 業に於ける高圧水蒸気接触分解プラント等から留出される軽重質油留分に由来す る 3乃至 4環の縮合多環芳香族炭化水素化合物の存在下にフエノール類とホルム アルデヒドとを酸触媒存在下に作用させて得られ、 前記縮合多環芳香核とフエノ ール核とがメチレン結合でランダムに三次元配置で結合してなる縮合多環芳香族 化合物変性ノポラック樹脂に代表される。
また、 そのエステル化多環芳香族化合物変性ノボラック樹脂 (2— 7— b) と は、 例えば、 前記 (2— 7— a) のフエノール性水酸基の 10乃至 100モル% を芳香族及びまたは脂肪族ァシル化変性した物に代表される。
軽質油留分に由来する 3乃至 4環の縮合多環芳香族炭化水素化合物としては、 例えば、 軽重質油中の 13 C— NM Rより求めた芳香族炭素数/軽重質油中の炭素 数で表される芳香族炭素分率 (f a値) が 0. 4乃至 0. 95の範囲、 好ましく は 0. 7乃至 0. 8にあるもの、 及び、 軽重質油中の1 H— NMRより求めた芳 香環水素数/軽重質油中の水素数で表される芳香環水素分率 (Ha値) が 0. 2 乃至 0. 8の範囲、 好ましくは 0. 35乃至 0. 6にある物が代表的である。 多価フエノール樹脂として、 (2— 7— a) と (2— 7— b) を任意の割合で 併用する態様であるものも本発明に包含され、 なかでも (2— 7— a) : (2- 7— b) の質量比で 1 : 99乃至 99 : 1の範囲であるものが好ましく、 より好 ましくは 90 : 10乃至 1 : 99であるものである。
(2 - 8 - a) 多価フエノール単量体と (2— 8— b) そのエステル化多価フ エノール単量体
多価フエノール単量体(2— 8— a) としては、 特に制約するものではないが、 例えば、 ビスフエノール A、 ビスフエノール F、 ビスフエノール S、 ビスフエノ ール AD等で代表されるビスフエノ一ル単量体や、 以下のトリスフエノ一ル単量 体が代表的な例として挙げられる。
トリスフエノ一ル単量体としては、 例えば、 4, 4' , 4〃 一メチリデントリ スフエノール、 4, 4' , 4" —メチリデントリス (2—メチルフエノール) 、 4, 4' _ [ (2—ヒドロキシフエニル) メチレン] ビス [2, 3, 6—卜リメ チルフエノール] 、 4, 4' , 4" ーェチリデントリスフエノール、 4, 4' —
[ (2—ヒドロキシフエニル) メチレン] ビス [2—メチルフエノール] 、 4, ■ 4' - [ (2—ヒドロキシフエニル) エチレン] ビス [2—メチルフエノール] 、 4, 4' - [ (4ーヒドロキシフエニル) メチレン] ビス [2—メチルフエノー ル] 、 4, 4' 一 [ (4—ヒドロキシフエニル) エチレン] ビス [2—メチルフ エノ一ル] 、 4, 4' — [ (2—ヒドロキシフエニル) メチレン] ビス [2, 6 —ジメチルフエノール] 、 4, 4' — [ (2—ヒドロキシフエニル) エチレン] ビス [2, 6—ジメチルフエノール] 、 4, 4' — [ (4—ヒドロキシフエニル) メチレン] ビス [2, 6—ジメチルフエノール] 、 4, 4' 一 [ (4—ヒドロキ シフエ二ル) エチレン] ビス [2, 6—ジメチルフエノール] 、 4, 4' - [ (2 —ヒドロキシフエニル) メチレン] ビス [3, 5—ジメチルフエノール] 、 4, 4' 一 [ (2—ヒドロキシフエニル) エチレン] ビス [3, 5—ジメチルフエノ ール] 、 4, 4' - [ (3—ヒドロキシフエニル) メチレン] ビス [2, 3, 6 一トリメチルフエノール] 、 4, 4' 一 [ (4—ヒドロキシフエニル) メチレン] ビス [2, 3, 6—トリメチルフエノール] 、 4, 4' 一 [ (2—ヒドロキシフ ェニル) メチレン] ビス [2—シクロへキシル一 5—メチルフエノール] 、 4, 4' — [ (3—ヒドロキシフエニル) メチレン] ビス [2—シクロへキシル _ 5 —メチルフエノール] 、 4, 4' 一 [ (4—ヒドロキシフエニル) メチレン] ビ ス [2—シクロへキシル—5—メチルフエノール] 、 4, 4 ' - [1 - [4- [1 - (4ーヒドロキシフエニル) —1ーメチルェチル] フエノールェチリデン] ビ スフエノール] 、 4, 4' - [ (3, 4ージヒドロキシフエニル) メチレン] ビ ス [2—メチルフエノール] 、 4, 4' — [ (3, 4ージヒドロキシフエニル) メチレン] ビス [2, 6—ジメチルフエノール] 、 4, 4' _ [ (3, 4—ジヒ ドロキシフエニル) メチレン] ビス [2, 3, 6—トリメチルフエノール] 、 4 - [ビス (3—シクロへキシル 4—ヒドロキシ一 6—メチルフエニル) メチル] — 1, 2—ベンゼンジオール等が好ましく挙げられる。
特に (2_8— a) として好ましくは、 下記化学式 (11)
Figure imgf000040_0001
(式中、 A7は水素原子または芳香族ァシル基、 脂肪族ァシル基を表す。 R12 は水素原子、 ァシルォキシ基、 炭素数 1乃至 10の直鎖、 分岐または環状のアル キル基、 炭素数 1乃至 10のアルコキシ基あるいはフエ二ル基を表し、 R13は水 素または炭素数 10以下のアルキル基を表し、 R 12及び R 13はそれぞれ同じでも 異なっていても良い。 Yは水素、 メチル基またはェチル基を表す。 11112及び11113 はそれぞれ 1及至 3の整数を表し、 それぞれ同じでも異なっていても良い。 ) で表され、 式中の A7が水素原子で表された物に代表される。
一方、 エステル化多価フエノール単量体としては、 前記 (2— 8— a) に内在 するフエノール性水酸基の 10乃至 100モル%を芳香族及び Z又は脂肪族ァシ ル化変性したものが好ましい例として挙げられる。 特に好ましくは、 化学式 (1 1) で表され、 式中の A7が水素原子または芳香族ァシル基、 脂肪族ァシル基で あるものであって、 A 7がすべて水素原子ではないものであり、 水素原子 Zァシ ル基のモル比が 90/10乃至 0Z100の範囲であるものに代表される。
多価フエノール樹脂として、 (2— 8— a) と (2— 80 b) を任意の割合で 併用する態様であるものも本発明に包含され、 なかでも (2— 8— a) : (2- 8 -b) の質量比で 1 : 99乃至 99 : 1の範囲であるものが好ましく、 より好 ましくは 90 : 10乃至 1 : 99のものである。 (2-9-a) ポリビニルフエノールと (2— 9— b) そのエステル化ポリビ ニルフエノール
ポリビニルフエノール (2— 9_a) としては、 例えば、 p—ビニルフエノー ルのホモポリマー等で代表される。 特に制約するものではないが、 GPCによる ポリスチレン換算質量平均分子量で 300乃至 20000の範囲のものが好まし く、 500乃至 10000にある物を選定使用することがより好ましい。
また、 そのエステル化ポリビニルフエノール(2— 9_b) とは、 例えば、 (2 -9-a) のフエノール性水酸基の 10乃至 100モル%を芳香族及びまたは脂 肪族ァシル化変性したもので代表される。
(2 - 10 - a) ビニルフエノール共重合体とその (2— 10— b) エステル 化ビニルフエノ一ル共重合体
ビニルフエノール共重合体 (2— 10— a) の具体的な例としては、 例えば、 p -ビニルフエノ一ルと共重合可能な他のビニルモノマーとの 2元共重合体また は 3元以上の多元共重合体等に代表され、 特に制約するものではないが、 GPC によるポリスチレン換算質量平均分子量で 500乃至 20000の範囲のものが 好ましく、 500乃至 10000の物がより好ましい。
p -ビニルフェノ一ルと共重合可能な他のビニルモノマーとしては、 例えば、 スチレン、 アクリロニトリル、 メチルァクリレート、 メチルメタクリレート、 ブ チルァクリレート、 プチルメ夕クリレート、 ヒドロキシァクリレート等が挙げら れる。
そのエステル化ビニルフエノール共重合体 (2- 10-b) とは前記 (2— 1 0— a) のフエノール性水酸基の 10乃至 100モル%を芳香族及びまたは脂肪 族ァシル化変性した物に代表される。
(2 - 11 - a) ポリイソプロぺニルフエノールと (2 _ 11— b) そのエス テル化ポリイソプロぺニルフエノール
ポリイソプロぺニルフエノール (2— 1 1 - a) の具体的な例としては、 例え ば、 ポリ— P—イソプロぺニルフエノール等に代表され、 特に制約するものでは ないが、 G PCによるポリスチレン換算質量平均分子量で 300乃至 20000 の範囲のものが好ましく、 500乃至 10000である物を選定使用することが より好ましい。
また、 エステル化ポリイソプロぺニルフエノール (2— 11— b) とは、 例え ば、 (2— 11— a) のフエノール性水酸基の 10乃至 100モル%を芳香族及 びまたは脂肪族ァシル化変性したもので代表される。
(2- 12-a) ポリイソプロぺニルフエノール共重合体と (2— 12— b) そのエステル化ポリィソプロぺニルフエノール共重合体
ポリイソプ ΠΪぺニルフエノール共重合体 (2— 12— a) の具体例としては、 例えば、 ポリ一 p—イソプロぺニルフエノールと共重合可能な他のビニルモノマ —との 2元共重合体または 3元共重合体等で代表され、 GPCによるポリスチレ ン換算質量平均分子量で 500乃至 20000の範囲であるものが好ましく、 5 00乃至 10000である物がより好ましい。
p—イソプロぺニルフエノ一ルと共重合可能な他のビニルモノマーとしては、 例えば、 スチレン、 アクリロニトリル、 メチルァクリレート、 メチルメタクリレ —ト、 ブチルァクリレート、 ブチルメタクリレート、 ヒドロキシァクリレート等 が挙げられる。
また、 エステル化イソプロぺニルフエノール共重合体 (2— 12_b) とは、 (2 - 12 - a) のフエノール性水酸基の 10乃至 100モル%を芳香族及び Z 又は脂肪族ァシル化変性した物に代表される。
本発明では、 多価フエノール硬化剤 (2) としては前記した以外に、 例えばビ スフエノール 、 ビスフエノール F、 ビスフエノール Sで代表されるビスフエノ ール類から誘導されるノポラック樹脂、 4, 4' —ビフエニルフエノール等に代 表されるビフエエルフェノール類から誘導されるノボラック榭脂、 1, 1—ジ— 4—ヒドロキシフエニルフルオレン等に代表されるフルオレン骨格を持つフエノ —ル類から誘導されるノボラック樹脂でも使用できる。
最も好ましい多価フエノール硬化剤 (2 ) の態様例としてはフエノールノボラ ック樹脂、 フエノールァラルキル榭脂、 エステル化フエノールノボラック樹脂、 エステル化フエノールァラルキル樹脂から選ばれた 1種または 2種以上である。 多価フエノール硬化剤 (2 ) は、 エポキシ榭脂と多価フエノール硬化剤ならび にアルキル尿素誘導体及びフォスファゼン化合物から選ばれる少なくとも 1種か らなる硬化促進剤を含有してなる液晶表示セル用シール剤用のエポキシ樹脂組成 物中に占める割合として、 特に制約するものではないが、 1 0乃至6 5質量%の 範囲であることが好ましい。 1 0質量%以上で、 該エポキシ樹脂組成物の保存安 定性と熱硬化性とのバランスが良好であり、 高耐久性の液晶表示素子の製造が可 能になる。 また、 6 5質量%以下とすることが、 硬化剤の未反応物の残留を抑制 することができると共に、 硬化物の架橋密度ならびにシール接着信頼性を良好に 保つことができるので好ましい。
また、 多価フエノール硬化剤に対し、 1 0倍質量の 4 0 乃至 8 0 の純水で 抽出した抽出水溶液のイオン伝導度を 2 m S Zm以下とする為に、前記の多価フエ ノール硬化剤は、 あらかじめ脱イオン精製方法を経て製造したものを使用するこ とが望ましく、 その脱イオン精製方法としては、 例えば、 遊離イオン水抽出分離 精製法、 溶剤抽出精製法、 限外口過精製法等が良く、 特に制約はない。'
ところで、上述のようなフエノール性水酸基またはナフトール性水酸基(以下、 フエノール性水酸基ならびにナフトール性水酸基を一括総称して単にフエノール 性水酸基と呼ぶことがある)をエステル化する際に用いるエステル化剤としては、 有機カルボン酸無水物、 有機カルボン酸ハライド、 有機カルボン酸のいずれでも 良く、 誘導したいエステルの炭素数によるエステル化剤の特徴により都合の良い ものを選択すればよい。
エステル化剤を具体的に例示すれば、 無水酢酸、 ァセチルクロライド、 ァセチ ルブロマイド、 酢酸、 無水プロピオン酸、 プロピオン酸クロライド、 プロピオン 酸ブロマイド、 プロピオン酸、 無水酪酸、 酪酸クロライド、 酪酸、 無水吉草酸、 吉草酸クロライド、 吉草酸ブロマイド、 吉草酸、 ピバリン酸クロライド、 ピバリ ン酸、 フエニル酢酸、 フエニル酢酸クロライド、 2 —フエニルプロピオン酸、 3 —フエニルプロピオン酸、 o _トリル酢酸、 m—トリル酢酸、 p—卜リル酢酸、 クメン酸等を挙げることが出来る。
これらのエステル化剤は単独あるいは任意の 2種類以上を併用して用いること も可能である。
その使用量は、 水酸基に対して 1 0モル%以上用いればよく、 上限は特に限定 されず、 過剰に用いて充分にエステル化を進行させた場合、 過剰のエステル化剤 は反応終了後除去すればよいが、現実的には反応容積効率、 コスト等の観点から、 水酸基に対し 1 0倍モル以下、 好ましくは 5倍モル以下、 さらに好ましくは 3倍 モル以下が良い。
具体的な反応は、 エステル化剤の種類によって異なるが、 それぞれについて述 ベれば、 有機カルボン酸無水物については一般に用いちれる反応で良い。
すなわち、 フエノール性水酸基に対し、 エステル化するべき任意の量の有機力 ルボン酸無水物を反応させたのち、 副生する有機カルボン酸、 過剰の有機カルボ ン酸無水物を常圧蒸留、 減圧蒸留、 水洗、 炭酸塩等の弱塩基水洗浄等任意の方法 もしくはそれらの組み合わせによって除去することにより、 目的とするエステル 化合物を得るものである。 すなわち、 部分エステル化物では、 フエノール性水酸 基に対して任意の量、 好ましくは 1 0モル%以上がエステル化されたエステル化 物を用いる事が好ましいことから、 1 0モル%以上の有機カルボン酸無水物を用 い、 完全ステル化物では、 フエノール性水酸基に対して等モル以上、 溶剤を兼ね ればその上限は特に制限されるものではないが、 経済効率、 反応の容積効率を考 慮すれば 1 0倍モル%以下用いてエステル化する。 なお、 この使用量は後述の有 機カルボン酸を用いた反応の際でも同様である。
エステル化反応温度は、 6 0 °C乃至 2 0 0 °Cの範囲、 望ましくは 8 0 °C乃至 1 8 0 °Cの範囲、 特に望ましくは 1 0 0 °C乃至 1 6 0 °Cの範囲である。
エステル化反応時間は、 反応基質の種類や反応温度に大きく左右されるが、 お よそ 1時間乃至 2 5時間の範囲であり、 現実的には高速液体クロマ卜グラフィ一 やガスクロマトグラフィ一等でエステル化剤の消失や水酸基の消失などを追跡し つつ終点を決定することが望ましい。
該エステル化反応における溶媒は、 用いても用いなくても良い。 原料とするフ ェノール性水酸基を有する物質が、 反応温度に於いて充分溶融し、 且つエステル 化剤が液体である場合、 また反応温度において溶融、 あるいは樹脂に溶解し反応 に支障がない場合には無溶媒で反応を行えばよい。
溶媒を必要とする場合、 反応に不活性な溶媒であれば全て使用することが出来 る。 それらを例示すれば、 ベンゼン、 トルエン、 キシレン等の芳香族炭化水素類、 クロ口ベンゼン、 o—ジクロ口ベンゼン等のハロゲン化ベンゼン類、 N, N—ジ メチルホルムアミド、 N, N—ジメチルァセトアミド、 N—メチルー 2—ピロリ ドン、 N, N—ジメチルー 2 _イミダゾリジノン、 ジメチルスルホキシド、 スル ホラン等の非プロトン性極性溶媒類、 ジフエニルエーテル、テトラヒドロフラン、 ジォキサン、 エチレングリコールジメチルエーテル、 ジエチレングリコールジメ チルエーテル等のエーテル類、 アセトン、 メチルェチルケトン、 メチルイソプチ ルケトン等のケトン類等を単独で、 あるいは任意の組み合わせで用いることが出 来る。
エステル化反応は、 常圧、 加圧 (ォ一トクレーブ中) 、 減圧のいずれでもよく、 また反応系の雰囲気は空気中、 窒素、 アルゴン、 ヘリウム等の不活性ガス中のい ずれでも良いが、 好ましくは窒素雰囲気下である。
次に、 エステル化剤として有機カルボン酸ハライドを用いる場合における反応 について説明する。 この場合も一般に用いられる手法を用いることが出来る。 すなわち、 フエノール性水酸基に対してエステル化するべき任意の量の有機力 ルボン酸ハライドを反応させれば良い。 この場合、 副生するハロゲン化水素は、 ピリジン、 ピぺラジン、 トリェチルァミン等の反応に不活性な塩基を必要量存在 させて系内においてトラップする方法と、 ガスとして反応中に順次速やかに系外 に放出し、 反応系外に設置された水またはアルカリトラップを用いて捕捉する方 法があるが、 先に示した理由により、 含窒素化合物、 イオン性化合物の混入を避 けるため、 ハロゲン化水素ガスは、 反応中速やかに系外に放出する方法が好まし い。 この時、 反応に不活性なガスの気流下において反応を行うとより好ましい。 有機カルボン酸ハライドの使用量は、 部分エステル化物では、 フエノール性水 酸基に対して任意の量、 好ましくは 1 0モル%以上がエステル化されたエステル 化物を用いるので、 1 0モル%以上の有機カルボン酸ハライドを用い、 完全エス テル化物では、 フエノール性水酸基に対して等モルもしくは小過剰を用いればよ く、 大過剰用いてもよいが、 経済効率、 反応の容積効率、 さらに反応後の処理ェ 程の煩雑さを考慮すれば、水酸基に対して 1 0倍モル以下、好ましくは 5倍モル、 さらに好ましくは 3倍モルの範囲で用いてエステル化すればよい。
反応温度、 反応における溶媒の使用、 反応の形態に関しては先の有機カルボン 酸無水物の場合に準じればよい。
また、 エステル化剤として有機カルボン酸を用いる場合に関しては、 ほぼ有機 カルボン酸無水物に準じればよいが、 反応に際して酸触媒を必要とする。
酸触媒を例示すれば、 塩酸、 硫酸、 リン酸、 ポリリン酸等の鉱酸類、 p—トル エンスルホン酸、 メタンスルホン酸、 エタンスルホン酸、 ジメチルスルホン酸、 ジェチルスルホン酸等の有機スルホン酸類、 トリフルォロメタンスルホン酸に代 表される超強酸、 アルカンスルホン酸型に代表される酸性イオン交換樹脂、 パー フルォロアルカンスルホン酸型に代表される超強酸型イオン交換樹脂等が挙げら れる。
その使用量は、原料の重量に対して超強酸の場合が 0 . 0 0 0 0 1乃至 5質量%、 好ましくは 0 . 0 0 0 1乃至 1質量%、 より好ましくは 0 . 0 0 1乃至 0 . 1質 量%の範囲、 イオン交換樹脂類の場合が 1乃至 1 0 0質量%、 好ましくは 1 0乃 至 5 0質量%の範囲、 その他の場合は 0 . 0 1乃至1 0質量%、 好ましくは 0 .
1乃至 5質量%の範囲である。 この範囲を下まわると反応速度が低下し、 現実的 な反応時間では完結しない。 また、 この範囲より大きくなると、 副反応が無視で きなくなり、あるいは触媒除去の行程の煩雑さ等を含めてコストの増大に繫がる。 以上、 3種類のエステル化剤についてその反応を説明してきたが、 いずれの場 合もより精製度の高いエステル化物を得る必要のある場合には、 反応終了後、 水- 洗行程を導入すればよい。 その場合はトルエン、 キシレン、 メチルイソプチルケ トン、 メチルェチルケトン、 酢酸ェチル等の水洗可能な溶媒を用いてエステル化 反応を行い、 洗浄廃本に酸性成分、 イオン性不純物が混入しなくなるまで洗浄す ればよい。
また、 エステル化物のエステル化率は、 1 0モル%乃至 1 0 0モル%の範囲で あるが、 好ましくは 5 0モル%乃至 1 0 0モル%、 より好ましくは 9 0モル%乃 至 1 0 0モル%の範囲である。
液晶表示素子用シール剤組成物中の多価フエノール硬化剤 (2 ) の含有量を求 める方法としては、 特に制約するものではないが、 例えば、 クロマト分取法、 赤 外吸収スペクトル法 (I R法) 、 官能基分析法、 溶液ノ固体 NMR (核磁気共鳴 スぺクトル) 法を適宜組み合わせて行えば良い。
液晶表示セル用シール剤中の多価フヱノール硬化剤 (2 ) の含有量を求める方 法としては、 特に制約するものではないが、 例えば、 熱分解—クロマト分取法、 湿式分解一クロマト分取法、 固体 NMR法、 赤外吸収スペクトル法等を適宜組み 合わせて行えば良い。
本発明の液晶表示セルシール剤用組成物では、 多価フエノール硬化剤 (2 ) と して本発明の目的を害さない範囲で、 適宜、 公知の潜在性エポキシ硬化剤を併用 使用レても何ら問題ない。
潜在性エポキシ硬化剤としては、 5 0 以上の加熱でエポキシ樹脂を実質的に 硬化させうる物質であれば好ましく使用できる。 潜在性エポキシ硬化剤としては、 特に制約するものではないが、 例えば、 ジシ アンジアミドならびにその誘導体、 ジヒドラジド化合物、 4 , 4—ジアミノジフ ェニルメタン、 4, 4ージアミノジフエニルスルフォン、 イミダゾール化合物— エポキシ樹脂ァダクト体ならびにその錯体、 ポリアミン化合物—エポキシ榭脂ァ ダクト体、 ポリ 7ミン—ジイソシアナート化合物付加体、 三フッ化ホウ素一アミ ンコンプレックス、 有機酸無水物等が挙げられ、 それらの 1種または 2種以上が 使用できる。
好ましい潜在性エポキシ硬化剤としては、 ジヒドラジド化合物、 イミダゾール 化合物一エポキシ樹脂ァダクト体ならびにその錯体、 有機酸無水物から選ばれた 1種または 2種以上である。
(ジヒドラジド化合物)
ジヒドラジド化合物の好ましい具体例としては、 例えば、 コハク酸ジヒドラジ ド、 アジピン酸ジヒドラジド、 セバシン酸ジヒドラジド、 ァゼライン酸ジヒドラ ジド、 デカンニ酸ジヒドラジド、 ドデカンニ酸ジヒドラジド等の炭素数 4乃至 2 2の飽和脂肪酸骨格からなる二塩基酸ジヒドラジド類、 イソフ夕ル酸ジヒドラジ ド等に代表される芳香族二塩基酸ジヒドラジド類、 更にはバリンヒダントイン骨 格を持つジヒドラジド類等が挙げられる。
ジヒドラジド化合物としては、 炭素数 4乃至 2 2のジカルボン酸化合物から誘 導されたジヒドラジド化合物がより好ましい。
(イミダゾール化合物一エポキシ樹脂ァダク卜体)
イミダゾ一ル化合物とエポキシ樹脂とのァダクト体の具体例としては、 例えば 多官能エポキシ化合物と、 イミダゾール化合物と、 多官能エポキシ化合物の質量 の 2倍量を越さない量のフエノールノポラック榭脂との反応生成物よりなり、 多 価エポキシ化合物中のエポキシ基対イミダゾール化合物の分子の比が (0. 8 : 1 ) 乃至 (2 . 2 : 1 ) の範囲である 7 0乃至 1 5 0での軟化点温度を示す硬化 剤が例示出来る。 また該ァダクト体にさらに中和可能な量の多価フエノール単量 体及び Z又は多価フエノール樹脂を混合してなるァダクト体等も含まれる。
(ポリアミン化合物とエポキシ樹脂とのァダクト体)
ポリアミン化合物とエポキシ樹脂とのァダクト体としては、 特に制約するもの ではないが、 既に公知のポリアミン化合物とエポキシ樹脂とから誘導されるァダ クト体で代表される。 具体例としては、 例え【ま'エポキシ樹脂とポリアミンとの付 加反応物に酸性水酸基を 2個以上有する化合物を反応させて得られるァダクト体 が挙げられる。 酸性水酸基を 2個以上有する化合物としてはフヱノール樹脂、 ポ リフエノール樹脂、 ポリカルボン酸等がある。
(ァミン化合物とジイソシアナ一ト化合物とのァダクト体またはその変性誘導 体)
ァミン化合物とジイソシアナ一ト化合物とのァダクト体としては、 既に公知の 第 1乃至第 2級ァミン化合物とジィソシアナ一トとを反応させて得られるァダク ト体で代表される。 また、 ァミン化合物とジイソシアナ一ト化合物とのァダクト 体の変性誘導体としては、 例えば、 N, N—ジアルキルアミノアルキルァミンと、 環状ァミンと、 ジイソシアナ一卜とを加熱反応させてなるァダクト体が例示出来 る。 さらに、 該ァダクト体で軟化点 6 O :以上、 かつ 3級アミノ基を持つ粉末状 ァダクト体の粒子表面に均一にジイソシアナ一卜化合物を接触させて得られる組 成物等が例示出来る。
(有機酸無水物)
有機酸無水物の例としては、 無水フ夕ル酸、 無水マレイン酸、 無水トリメリッ ト酸、 エチレングリコールビストリメリテート、 無水ピロメリット酸、 ドデシ二 ルコハク酸無水物、 へキサヒドロ無水フ夕ル酸、 テトラヒドロ無水フタル酸、 無 水メチルナジック酸、 無水ナジック酸、 無水ダルタル酸等を例示できる。
なお、 前記潜在性エポキシ硬化剤の一部を下記の硬化促進剤として選定使用し ても良い。 (3) 硬化促進剤
本発明の液晶表示セルシール剤用組成物で用いる硬化促進剤 (3) とは、 アル キル尿素誘導体及びフォスファゼン化合物から選ばれる少なくとも 1種である。
(アルキル尿素誘導体)
アルキル尿素誘導体の具体例としては、例えば、 3— (p—クロ口フエニル)一 1, 1—ジメチル尿素、 3_(o, p—ジクロロフエ二ル)— 1, 1—ジメチル尿素、 ト リレンジイソシアナ一卜とジメチルァミンとから誘導された 2, 4_ [ビス(1, 1—ジメチル尿素)]トルエン及び Z又は 2, 6— [ビス(1, 1—ジメチル尿素)] トルエン、 イソフォロンジィソシアナ一トとジメチルァミンから誘導されたィソ フォロン骨格を有するアルキル尿素誘導体である 3, 5—ジ (1, 1—ジメチル ゥレア) _ 5—メチル—2—シクロへキセン一 1 _オン、 ノルボルナンジイソシ アナートとジメチルァミンから誘導されたノルポルナン骨格を有するアルキル尿 素誘導体等が代表例である。
特に好ましいものとして、 3— (p—クロ口フエ二ル)一 1, 1—ジメチル尿素、 2, 4_[ビス(1, 1—ジメチル尿素)]トルエン及び/又は 2, 6— [ビス(1, 1—ジメチル尿素)]トルエンが挙げられる。
(フォスファゼン化合物)
フォスファゼン化合物としては、 下記化学式 (12) で表されるものに代表され る。
Figure imgf000050_0001
(式中、 Ra乃至 Rfは、 水素原子、 炭素数 1乃至 10の直鎖、 分岐または環状の アルキル基、 または炭素数 6乃至 10のァリール基またはァラルキル基を表し、 全て同一であっても異なっていても良い。 )
上記化学式 (12) で表される Ra乃至 Rfの具体的例としは、 水素原子、 メチ ル基、 ェチル基、 n—プロピル基、 イソプロピル基、 n—ブチル基、 s e c—ブ チル基、 t e r t—ブチル基、 1—ペンチル基、 2 _ペンチル基、 3—ペンチル 基、 2—メチル—1—ブチル基、 イソペンチル基、 t e r t—ペンチル基、 3— メチル—2—ブチル基、 ネオペンチル基、 n—へキシル基、 4—メチル—2—ぺ ンチル基、 シクロペンチル基、 シクロへキシル基、 1_ヘプチル基、 3—へプチ ル基、 1—ォクチル基、 2 _ォクチル基、 2_ェチル— 1—へキシル基、 ノニル 基またはデシル基等の脂肪族炭化水素基、 フエニル基、 トルィル基、 ベンジル基、 1—フエニルェチル基または 2—フエニルェチル基等の含芳香族炭化水素基を挙 げることが出来る。
これらのうち、 好ましいものはメチル基、 ェチル基、 n—プロピル基、 イソプ 口ピル基、 n—ブチル基またはシクロへキシル基の様な炭素数 1乃至 6の脂肪族 炭化水素基であり、 より好ましくはメチル基、 ェチル基である。
フォスファゼン化合物は、 G.N.Koian et al. Journal of General Chemist ry of The USSR, 55, 1453(1985)に記載されているように、ォキシ三塩化リンに 3分子のイミノトリスアミノ (無置換、 一置換、 二置換) ホスホランを反応させ て合成することができる。更に、精製が必要であればカラムクロマトグラフィー、 蒸留、 再結晶等の汎用される方法により精製することが出来る。
この様にして得られるフォスファゼン化合物は、 通常固体である。
フォスファゼン化合物の好ましい例として、 下記化学式 (13) で示されたも のを挙げることができる。 (13)
Figure imgf000052_0001
本発明の液晶表示セルシール剤用組成物では、 硬化促進剤 (3 ) を 0 . 1乃至 2 0質量%の範囲で含有させることが肝要である。 0 . 1質量%以上であれば、 硬化剤 (2 ) の硬化活性を加熱硬化時に十分引き出すことが出来る。 また、 2 0 質量%以内で使用すれば、 得られるエポキシ樹脂組成物の 2 5 での保存安定性 を悪化させることなく、 本発明の課題を解決できる。
本発明の液晶表示セルシール剤用組成物の硬化促進剤 (3 ) として特に好まし い例は、 3— (p—クロ口フエ二ル)— 1, 1—ジメチル尿素、 2, 4一 [ビス(1, 1—ジメチル尿素)]トルエン、 2 , 6 _ [ビス(1,卜ジメチル尿素)]トルエンの 1 種、 または、 前記化学式 (1 2 ) で示されたフォスファゼン化合物から選ばれた 1種であり、 最も好ましくは化学式 (1 3 ) で示されるフォスファゼン化合物で ある。
硬化促進剤 (3 ) は、 湿式分解物の炎光元素分析法で求めたアルカリ金属の総 和含有量が 5 0 p pm以下、 好ましくは 3 0 p p m以下、 より好ましくは 1 5 p p m以下とする。 そうすることで、 本発明の液晶表示セルシール剤用組成物また はその硬化体である液晶表示セル用シール剤の液晶接触時に於いて、 液晶相への 不必要な遊離イオンの移行を抑止できる。 アル力リ金属の総和含有量を 5 0 p p m以下とする為の精製方法には特に制約はなく、 例えば溶剤抽出精製法等の既に 公知の方法が適用できる。
本発明の液晶表示セルシール剤用組成物中の硬化促進剤 (3 ) の種類とその量 を把握する方法としては、 特に限定するものではないが、 例えば溶剤抽出して、 その抽出液を G PCで分取すると共に赤外吸収スぺクトルまたは NMR (核磁気 共鳴スぺクトル)等で特定 ·同定し定量する方法、 元素分析法等が一般的である。 また、 その硬化体である液晶表示セル用シール剤中の硬化促進剤の種類とその量 を把握する手段としては、 特に限定するものではないが、 例えば熱分解一クロマ ト分取法、 湿式分解一クロマト分取法、 熱分解ガスクロ法、 熱分解一マススぺク トル法、 固体 NMR法等を適宜組み合わせて行えば良い。
硬化促進剤 (3) としては、 本発明の液晶表示セ Λ^.シール剤用組成物の作用効 果を害しない範囲で、 下記に示すその他の硬化促進剤を適宜併用しても良い。 その他の硬化促進剤としては、 イミダゾ一ル化合物とその塩類、 トリスジメチ ルァミノメチルフエノール塩類、 1, 8—ジァザビシクロ (5, 4, 0) ゥンデ セン一 7塩類、 1, 8—ジァザビシクロ (5, 4, 0) ゥンデセン一 7塩類、 1, 5—ジァザビシクロ (4, 3, 0) —ノネン一 5塩類、 6—ジブチルァミノ一 1, 8—ジァザビシクロ (5, 4, 0) —ゥンデセン— 7塩類等から選ばれた 1種ま たは 2種以上が挙げられる。
(イミダゾール化合物)
イミダゾール化合物の具体例としては、 特に制約はないが、 例えば、 Ν—シァ ノエチル— 2ーェチルー 4—メチルイミダゾール等で代表できる。
(イミダゾール塩類)
ィミダゾ一ル塩類としては、 例えばィミダゾール化合物のィソシァヌ一ル酸付 加物、 イミダゾ一ル化合物の多価カルボン酸付加物等が例示される。
(トリスジメチルァミノメチルフエノール塩)
トリスジメチルァミノメチルフエノール塩には、 例えばトリスジメチルァミノ メチルフエノールォクチル酸塩、 トリスジメチルァミノメチルフエノールォレイ ン酸、 トリスジメチルァミノメチルフエノール蟻酸塩等が例示できる。
(1, 8—ジァザビシクロ (5, 4, 0) ゥンデセン一 7塩)
1, 8—ジァザビシクロ (5, 4, 0) ゥンデセン— 7塩 (以下、 単に DBU 塩と呼ぶ) には、 例えば、 DBUフエノール塩、 DBU多価フエノール化合物塩、 DBUポリフエノール塩、 DBUォクチル酸塩、 DBUォレイン酸塩、 DBU蟻 酸塩等が代表的な例である。
(1, 5—ジァザビシクロ (4, 3, 0) —ノネンー 5塩)
1, 5—ジァザビシクロ (4, 3, 0) —ノネン一 5塩 (以下、 単に DBN 塩と呼ぶ) には、 例えば、 DBNフエノール塩、 DBN多価フエノール化合物塩、 DBNポリフエノール塩、 DBNォクチル酸塩、 DBNォレイン酸塩、 DBN蟻 酸塩、 DBNパラトルエンスルフォン酸塩等が代表的な例である。
(6—ジブチルアミノー 1, 8—ジァザビシクロ (5, 4, 0) —ゥンデセン —7塩)
6—ジブチルァミノ— 1, 8—ジァザビシクロ (5, 4, 0) —ゥンデセン一 7塩(以下、 単に DB塩と呼ぶ) には、 例えば、 DBフエノール塩、 DB多価フ ェノール化合物塩、 DBポリフエノール塩、 DBォクチル酸塩、 DBォレイン酸 塩、 DB蟻酸塩、 DBパラトルエンスルフォン酸塩等が代表的な例である。
(4) Ot:以下の軟化点温度を持ちその一次粒子の平均粒子径が 5; m以下のゴ ム状ポリマー微粒子
本発明の液晶表示セルシール剤用組成物においては、 必要に応じて、 捩り振子 法と言われる T 0 r s i n a l B r a i d An a l yz e r (以下、 単に T BAと呼ぶ。 ) で求めた軟化点温度で 0°C以下の軟化点温度を持ち、 かつ電子顕 微鏡観察から求めた一次粒子の平均粒子径が 5 m以下のゴム状ポリマ一微粒子 (4) (以下、単にゴム状ポリマー微粒子と呼ぶ事がある。 ) を 1乃至 25質量% 含有させることが好ましい。 その際、 ゴム状ポリマー微粒子は一次粒子の平均粒 子径として、 0. 01乃至 5 mが好ましく、 0. 05乃至 2 mがより好まし い。
本発明の液晶表示セルシール剤用組成物中にゴム状ポリマー微粒子を 1質量% 以上使用することで、 本発明の液晶表示セルシール剤用組成物を用いて製造され る液晶表示素子自体のプレッシャークッカーテスト後の接着信頼性を向上させる ことかでき、 2 5質量%以下とすることで硬化体に必要な耐熱剛性を確保でき、 好ましい。 特に、 ゴム状ポリマー微粒子 (4 ) を液晶表示セルシール剤用組成物 中に占める割合で、 1乃至 2 0質量%の範囲とすることがより好ましく、 1乃至 1 5質量%とすること特に好ましい。
また、 ゴム状ポリマー微粒子(4 ) の軟化点温度が 0 以下であることにより、 低温下での接着信頼性がより向上する傾向にあり好ましい。 更に、 ゴム状ポリマ 一微粒子 (4 ) の一次粒子径を 5 m以下とすることにより、 液晶セルのギヤッ プを薄くすることができ、 高価な液晶の使用量を抑制することができると共に液 晶表示応答速度をも向上することができる。
更により好ましいゴム状ポリマー微粒子 (4 ) としては、 一 3 0 以下の軟化 点温度を持ち、 その一次粒子径が 0 . 0 1乃至 2 の範囲のシリコンゴム微粒 子、 及び Z又はァクリルゴム微粒子またはポリオレフインゴム微粒子であること が挙げられ、 さらに好ましくはそのゴム状ポリマー微粒子 (4 ) が架橋性ゴム粒 子であることである。
これらのゴム状ポリマ一微粒子 (4 ) は軟化点温度が 0 以下であれば、 既に 公知の以下ようなゴム状ポリマーを適宜選定使用できる。
例えば、アクリルゴム系のゴム状ポリマー、シリコンゴム系のゴム状ポリマー、 共役ジェンゴム系のゴム状ポリマー、 ォレフィンゴム系ゴム状ポリマー、 ポリエ ステルゴム系ゴム状ポリマー、 ウレタンゴム系ゴム状ポリマー、 複合化ゴムゃェ ポキシ基と反応する官能基を有するゴム状ポリマーが例示できる。 特にこれらの ゴム状ポリマーのなかでエポキシ基と反応する官能基を有するものが好ましい。 これら液晶表示セルシール剤用組成物に用いるゴム状ポリマー微粒子 (4 ) は 前記したものの中から 1種または 2種以上混合して使用することができる。
これらゴム状ポリマー微粒子の具体例を以下に示す。 くァクリルゴム系のゴム状ポリマー微粒子〉
ァクリルゴム系のゴム状ポリマー微粒子の具体的な例としては、 例えばコァ部 がアクリルゴムからなるコア シエル型ェマルシヨンを乾燥して得られる粒子、 また、 エポキシ樹脂中でアクリル系モノマーを非水分散重合させてなる樹脂組成 物、 更には、 エポキシ基と反応する官能基を導入してなるアクリルゴムポリマー 溶液を別個に調整後、 エポキシ樹脂中に投入または滴下して、 機械的に混合し、 脱溶剤またはグラフト化させてァクリルゴム微粒子をエポキシ樹脂中に安定的に 分散させた樹脂組成物などがある。
ぐシリコンゴム系のゴム状ポリマー微粒子 >
シリコンゴム系のゴム状ポリマー微粒子の具体的な例としては、 例えば粉末状 のシリコンゴム微粒子、 また、 エポキシ樹脂に二重結合を導入してその二重結合 と反応可能な片末端ァクリレート基を持つシリコンマク口モノマーを反応させた 後、 ビニルシリコンとハイドロジェンシリコンとを仕込み、 分散重合させた樹脂 組成物がある。
<共役ジェンゴム系のゴム状ポリマ一微粒子〉
共役ジェンゴム系のゴム状ポリマー微粒子の具体的な例としては、 例えば 1 , 3—ブタジエン、 1, 3 —ペン夕ジェン、 イソプレン、 1, 3—へキサジェン、 クロ口プレン等のモノマーを重合または共重合して得られた共役ジェンゴム状ポ リマ一微粒子が例示でき、 すでに公知の物で良く、 特に制約はない。 市販品をそ のまま使用することが きる。 より具体的な共役ジェンゴムの例としては、 ブ夕 ジェンとァクリロニトリルとの共重合体、 末端に力ルポキシル基を有するブ夕ジ ェンとァクリロ二トリルとの共重合体、 末端にアミノ基を有するブ夕ジェンとァ クリロニトリルとの共重合体等がある。
<ォレフィンゴム系ゴム状ポリマー微粒子 >
ォレフィンゴム系ゴム状ポリマー微粒子の具体的な例としては、 例えばェチレ ン、 プロピレン、 1ーブテン、 2—ブテン、 イソブテン等の単独非晶質重合体ま たは共重合可能な他のモノマーとの共重合体や夕一ポリマーからなる微粒子また はその組成物が例示できる。 ォレフインゴムラテックス等の形で市販されている 物を、 エポキシ樹脂中で脱水処理し、 ォレフィンゴムをエポキシ樹脂中に分散安 定化させてなる樹脂組成物も良い例である。
くポリエステルゴム系ゴム状ポリマー微粒子〉
ポリエステルゴム系ゴム状ポリマー微粒子とは、 ポリマー骨格にポリエステル 結合が含有されているゴム状ポリマーからなる微粒子であり、 特に制約はない。 具体的なポリエステルゴムの例を挙げれば、例えば液状ポリシロキサンジオール、 液状ポリオレフインジオール、 ポリプロピレングリコール、 ポリブチレングリコ ール等から選ばれた少なくとも 1種のジオール成分と、 必要に応じてトリオ一ル 以上の多価アルコール化合物の共存下に、 アジピン酸、 マレイン酸、 コハク酸、 フタル酸等から選ばれた少なくとも 1種の二塩基酸とから誘導される低軟化点ポ リエステル樹脂、 また、 前記二塩基酸の代わりに酸無水物を用いた低軟化点ポリ エステル樹脂、 またはヒドロキシ多価カルボン酸等から誘導される低軟ィ匕点ポリ エステル樹脂が例示できる。
<ウレタンゴム系ゴム状ポリマ一微粒子 >
ウレ夕ンゴム系ゴム状ポリマー微粒子とは、 ゴム状ポリマー骨格にウレ夕ン結 合及び Z又は尿素結合が含有されているゴム状ポリマーからなる微粒子であり、 特に制約はない。 具体的なウレタンゴムの例を挙げれば、 例えば液状ポリシロキ サンジオール、 液状ポリオレフインジオール、 ポリプロピレングリコール、 ポリ ブチレングリコール等から選ばれた少なくとも 1種からなるジオール成分と、 必 要に応じてトリオール以上の多価アルコール化合物の共存下に、 へキサメチレン ジィソシアナ一卜、イソフォロンジイソシアナート、 トリレンジィソシアナ一卜、 ジフエ二ルメタンジィソシアナ一ト、 ノルポルナンジィソシアナ一ト等で代表さ れるすでに公知のジイソシアナ一ト化合物とを作用させて得られるゴム状ポリウ レタン、 更には、 例えば液状ポリシロキサンジァミン、 液状ポリオレフインジァ ミン、 ポリプロピレングリコ一ルジァミン等から選ばれた少なくとも 1種の長鎖 ジァミン成分と、 必要に応じて卜リアミン以上の多価アミン化合物の共存下に、 イソシアナート、 ジフエニルメタンジイソシアナート、 ノルボルナンジイソシァ ナート等で代表されるすでに公知のジイソシアナ一ト化合物とを作用させて得ら れるゴム状ポリウレタン等を例示出来る。
<複合化ゴム粒子 >
複合化ゴム粒子としては、 例えば前記のアクリル系、 シリコン系、 共役ジェン 系、 ォレフィン系、 ポリエステル系、 ウレタン系の 2種以上からなるグラフトポ リマ一及び/又はブロックポリマーまたはコアシェルポリマー、 複層ポリマー等 からなる微粒子が例示できる。
<エポキシ基と反応する官能基を有するゴム状ポリマ一 >
エポキシ基と反応する官能基を有するゴム状ポリマーとしては、 例えば前記の アクリル系、 シリコン系、 共役ジェン系、 ォレフィン系、 ポリエステル系、 ウレ タン系の粒子にエポキシ基と反応する官能基を導入してなるものが代表的な例で ある。
このエポキシ基と反応する官能基を有するゴム状ポリマーでは、 エポキシ基と 反応する官能基を有する単量体に由来する繰り返し構造がゴム状ポリマー中に占 める重量割合で 0 . 1乃至 2 5質量%であることが好ましい。
エポキシ基と反応する官能基を有する単量体に由来する繰り返し構造の含有量 を 0 . 1質量%以上、 2 5質量%以下とすることで得られる液晶表示セルシール 剤用組成物の接着性が著しく向上する。
エポキシ基と反応しうる官能基としては、 例えば、 メルカプト基、 アミノ基、 イミノ基、 カルボキシル基、 酸無水物基、 エポキシ基、 ヒドロキシル基等が挙げ られる。
ゴム状ポリマーには、 これらの官能基のうち少なくとも 1種を 0 . 0 1乃至 2 5質量%導入されているものが好ましく、 0 . 1乃至 1 0質量%導入されている ものがより好ましい。
官能基の導入方法には、 特に限定はなく、 官能基含有モノマーと主鎖ポリマー を構成するモノマーとのランダム共重合法、 交互共重合法、 縮合重合法、 付加重 合法、 コア一シェル重合法による導入方法、 イオン吸着導入法、膨潤含浸導入法、 ゴム状粒子を形成するポリマーへグラフト重合する方法等いずれの方法でもよい。 このなかでも共重合したり、 グラフト重合方法が、 少ない量で効率良くゴム状 ポリマー微粒子表面近傍に必要な官能基を配置導入出来るので好ましい。
本発明の液晶表示セルシ一ル剤用組成物では、 ゴム状ポリマー微粒子 (4 ) が エポキシ樹脂中に粒子として形状を保持するものが好ましい。
エポキシ樹脂中にゴム状ポリマー微粒子 (4 ) が粒子として存在していること を判別する手段としては、 特に制約するものではないが、 例えば濁りの無いェポ キシ樹脂とゴム状ポリマー微粒子との混合物を作り、 同組成物を光学顕微鏡で観 察し、 該ゴム状ポリマー微粒子が粒子として存在することを確認する方法、 また 同組成物にポリメルカブタン系硬化剤の所定量を加えて硬化させて得た硬化体の 微小切片の破断面をォスミゥム酸染色増感して走査型電子顕微鏡にて観察し粒子 の存在を確認する方法等が適宜採用できる。
本発明の液晶表示セルシール剤用組成物中では、 ゴム状ポリマー微粒子 (4 ) がエポキシ樹脂 (1 ) と事前にグラフトしていても良く、 グラフトしていなくて も良い。
本発明の液晶表示セルシール剤用組成物中ならびに液晶表示セル用シール剤中 のゴム状ポリマー微粒子 (4 ) の種類とその量ならびに粒子径を把握する方法と しては、 特に限定するものではないが、 例えばその硬化体の断片について走査型 電子顕微鏡像 (S E M) を解析する方法、 または該断片をオスミウム酸染色増感 させた後、 透過型電子顕微鏡 (T E M) にて粒子像を確認する方法、 また S E M 観察と同時に元素分析解析像とを比較して同定ならびに定量する方法、 該ミクロ 層を顕微赤外吸収スぺクトル測定して判別する方法、 ミクロ層を熱線照射させて 分解発生してくるガス成分を同定して判別する方法、 ミクロ層の体積比容から換 算して質量比を求める方法等適宜組み合わせて行うことができる。 ( 5 ) 無機質充填剤
無機質充填剤 (5 ) としは、 通常電子材料分野で無機充填剤として使用可能な のものであればいずれでもよい。 具体的には、 例えば炭酸カルシウム、 炭酸マグ ネシゥム、 硫酸バリウム、 硫酸マグネシウム、 珪酸アルミニウム、 珪酸ジルコニ ゥム、 酸化鉄、 酸化チタン、 酸化アルミニウム (アルミナ) 、 酸化亜鉛、 二酸化 珪素、 チタン酸カリウム、 カオリン、 アスベスト粉、 非晶質シリカ粉、 石英粉、 雲母、 ガラス繊維、 カーボンブラック、 窒化珪素、 窒化アルミ、 三窒化チタン等 が挙げられ、 それらの 1種または 2種以上を混合して使用できる。
好ましい無機充填剤 (5 ) は、 高純度シリカ及び/又は高純度アルミナまたは 酸化チタンである。
より好ましくは、 湿式分解物の原子吸光分析法で求めたアルカリ金属の含有量 の総和量が 5 0 p pm以下、 さらに好ましくは 3 0 p p m以下、 特に好ましくは 1 5 p m以下である高純度シリカ及び Z又は高純度アルミナまたは酸化チタン が挙げられる。 これらを使用することで本発明の液晶表示素子用シール剤組成物 硬化体から液晶相へ遊離イオンが移行するのを抑止できる。 アルカリ金属の含有 量の総和を 5 0 p p m以下とする為の精製方法には、 特に制約はなく、 例えば製 造原料の段階で水溶液とし、 イオン交換法精製法等の精製方法で得ることができ る。
また、 無機質充填剤 (5 ) は、 6 3 2 . 8 n m波長のレーザー法粒子径測定器 により求めた重量加積曲線上の 9 9重量%粒子径値 (d 9 9) が 5 / m以下にある ものが好ましく、 さらに質量加積曲線上の 5 0重量%値で示される重量平均粒子 径値 (d 5 Q) が 0 . 0 0 5乃至 1 mの範囲であるものがより好ましい。 一般的には、 d 9 9が 5 m以下である無機質充填剤を用いると液晶パネルのギ ヤップ幅の寸法安定性が一層向上し好ましい。
本発明の液晶表示素子用シール剤組成物では、 無機質充填剤 (5 ) は必要に応 じて用いられるが、好ましい含有割合としては 5乃至 4 5質量%である。 5質量% 以上含有させる事でスクリーン印刷またはディスペンサー塗布作業性を向上でき、 また、 4 5質量%以下とすることで組成物の流動性を確保でき、 スクリーン印刷 時のカスレ又はディスペンサー詰まりを多発することなく塗布作業でき好ましい。 特に 1 0乃至 4 0質量%の範囲が好ましい。
また、 無機質充填剤 (5 ) は特に制約するものではないが、 事前にエポキシ榭 脂 (1 ) ゃシランカップリング剤 ( 6 ) でグラフト化変性させたのち使用するこ とが好ましい。
グラフト化変性は、 無機充填 ( 5 ) の一部または全部に対してグラフト化変 性されていてよい。 その際、 グラフト化率は、 繰り返し溶剤洗浄法で求めた質量 増加率で表され、通常無機質充填剤( 5 )の 1 0 0質量部当たりエポキシ樹脂( 1 )、 シランカップリング剤 (6 ) のいずれか又は双方の 1乃至 5 0質量部が化学的に 結合されていることが好ましい。
本発明の液晶表示セルシール剤用組成物中の無機質充填剤 ( 5 ) の種類とその 量を把握する方法としては、 特に限定するものではないが、 例えば濾過分取法、 X線回折スぺクトル法、元素分析法、加熱焼却残渣法、 湿式熱分解 -原子吸光法、 電子顕微鏡観察像解析法等を適宜組み合わせて行えば良い。 また、 その硬化体で ある液晶表示セル用シール剤中の無機質充填剤の種類とその量を把握する手段と しては、 特に限定するものではないが、 例えば X線回析スペクトル法、 元素分析 法、 加熱焼却残渣法、 湿式熱分解 -原子吸光法、 電子顕微鏡観察像解析法等を適 宜組み合わせて行って良く、 特に限定はない。
( 6 ) シランカップリング剤 本発明の液晶表示素子用シール剤組成物では、 必要に応じてシラン力ップリン グ剤 (6 ) を用いるが、 その好ましい含有割合は 0 . 1乃至 5質量%である。 0 . 1質量%以上の使用でガラス基板に対する接着性が確保でき、 また 5質量%以上 を越えて使用してもそれ以上顕著な作用効果を引き出せない。 好ましくは 0 . 5 乃至 3質量%である。
シランカップリング剤 (6 ) としては、 通常用いるものはいずれでも使用する ことができるが、 例えばトリアルコキシシラン化合物またはメチルジアルコキシ シラン化合物等を挙げることができる。 好ましくは、 ァ—グリシドキシプロピル メチルジメトキシシラン、 —グリシドキシプロビルトリメトキシシラン、 ァ一 グリシドキシプロピルメチルジェトキシシラン、 ァーグリシドキシプロピルトリ エトキシシラン、 ァーァミノプロピルメチルジメトキシシラン、 ァ一ァミノプロ ピルトリメトキシシラン、 ァーァミノプロピルメチルジェトキシシラン、 ァーァ ミノプロピルトリエトキシシシラン、 N—ァミノェチル一ァ一ァミノプロピルメ チルジメトキシシラン、 N—アミノエチル一 τ—ァミノプロビルトリメトキシシ ラン、 N—アミノエチル一ァ一ァミノプロピルメチルジェトキシシラン、 N—フ ェニルーァーァミノプロピルトリメトキシシラン、 N—フエ二ルーァ一アミノプ 口ピルトリエトキシシラン、 N—フェニル一ァ一ァミノプロピルメチルジメトキ シシラン、 N—フエ二ル―ァ一ァミノプロピルメチルジェトキシシラン、 ァ一メ ルカプトプロピルメチルジメトキシシラン、 r一メルカプトプロビルトリメトキ シシラン、 ァ—メルカプトプロピルメチルジェトキシシラン、 ァ—メルカプトプ 口ピルトリエトキシシラン、 ァ_イソシァナートプロピルメチルジェトキシシラ ン、 ァ—イソシアナートプロピルトリエトキシシラン等が例示出来る。 なかでも アーグリシドキシプロピルトリメトキシシラン、 ァーグリシドキシプロピルトリ エトキシシラン、 N—フエニル一ァ一ァミノプロピルトリメトキシシラン、 Ύ— イソシアナ一トプロピルトリェトキシシランから選ばれた 1種または 2種以上が より好ましい。 本発明の液晶表示セルシール剤用組成物中のシランカップリング剤 (6 ) の種 類とその量を把握する方法としては、 特に限定するものではないが、 例えば溶剤 抽出分取法、 NM Rスペクトル同定法、 ガスクロマト法、 蒸留分取法法等を適宜 組み合わせて行えば良い。 またその硬化体である液晶表示セル用シール剤中のシ ランカップリング剤の種類とその量を把握する手段としては、 特に限定するもの ではないが、 例えば熱分解ガスクロ一マススペクトル法、 固体 NM R法等を適宜 組み合わせて行うことができ、 特に限定はない。
( 7 ) 溶剤
本発明の液晶表示セルシール剤用組成物では、 該組成物 1 0 0質量部に対し、 さらにエポキシ樹脂と相溶し、 かつ沸点が 1 5 0乃至 2 2 0での範囲にあるェポ キシ基に対して不活性な溶剤(7 ) を 1乃至 2 5質量部の範囲で含有させて良い。 溶剤を含有させることでスクリーン印刷適性や接着被着体への濡れ性の向上が図 れる。 好ましくは、 沸点が 1 6 0乃至 2 0 O tの範囲にある高沸点溶剤が挙げら れる。
溶剤 (7 ) の具体的な例としては、 特に制約するものではないが、 例えば、 シ クロへキサノンの如きケトン溶剤、 エーテル溶剤、 アセテート溶剤が好ましい例 である。
エーテル溶剤の具体的な例として、 エチレングリコールモノメチルエーテル、 エチレングリコールモノェチルエーテル、 エチレングリコールモノプロピルェ一 テル、 エチレングリコールモノブチルエーテル、 エチレングリコールモノフエ二 ルェ一テル、 エチレングリコールジメチルエーテル、 エチレングリコールジェチ ルエーテル、 エチレングリコールジプロピルエーテル、 エチレングリコールジブ チルエーテル, エチレングリコールジフエニルエーテル、 ジエチレングリコール モノメチルエーテル、 ジエチレングリコールモノェチルエーテル、 ジエチレング リコールモノプロピルエーテル、 ジエチレングリコールモノブチルェ一テル、 ジ エチレングリコ一ルモノフエニルエーテル、 ジェチレングリコールジメチルエー テル、 ジエチレングリコールジェチルエーテル、 ジエチレングリコールジプロピ ルエーテル、 ジエチレングリコールジブチルエーテル、 ジエチレングリコールジ フエニルエーテルが挙げられる。
また、 アセテート溶剤として好ましくは、 例えばエチレングリコールモノァセ テート、 エチレングリコールモノメチルエーテルアセテート、 エチレングリコー ルモノェチルエーテルァセテ一ト、 エチレングリコールモ /プロピルエーテルァ セテート、 エチレングリコールモノブチルエーテルアセテート、 エチレングリコ ールモノフエニルエーテルアセテート、 エチレングリコールジアセテート、 ジェ チレンダリコールモノメチルアセテート、 ジエチレンダリユールモノェチルァセ テート、 ジエチレングリコールモノブチルエーテルアセテート、 ジエチレングリ コールジァセテート等が挙げられる。
特に好ましい溶剤 (7 ) としては、 エチレングリコールモノブチルエーテル、 エチレングリコールモノメチルエーテルァセテ一ト、 ジエチレンダリコ一ルジメ チルエーテル、 プロピレングリコールモノメチルエーテル、 プロピレングリコー ルモノメチルエーテルアセテート、 プロピレンダリコールモノェチルエーテルァ セテート、 プロピレングリコールジアセテートから選ばれた少なくとも 1種であ る。
液晶表示セルシール剤用組成物中の溶剤の種類やその量比を知る方法としては 特に制約はないが、 例えば乾燥減量法、 ガスクロマト (分取) 法、 蒸留分取法、 ガスマス法、赤外吸収スぺクトル法、 NM R法等を適宜組み合わせて行えば良い。
( 8 ) 5 0 °C以上の軟化点温度を持ちその一次粒子の一次平均粒子径が 2 ^ m以 下である高軟化点ポリマー微粒子
本発明の液晶表示セルシール剤用組成物では、 必要に応じて、 該組成物 1 0 0 質量部に対して、 高軟化点ポリマー微粒子 (8) を 0. 1乃至 25質量部の範囲 で含有させて良い。 0. 1質量部以上併用使用することで、 真空枚葉熱プレスま たは剛性枚葉熱プレス一次接着工程で貫通泡や滲み出しの発生の無いシール接着 をより一層確実なものとすることができ、 また、 25質量%以下の併用使用でギ ャップ出し作業性を十分確保できることから好ましい。
高軟化点ポリマー微粒子 (8) とは、 TB Aから求めた軟化点温度で 50 以 上の軟化点温度を持ち、 かつ電子顕微鏡観察による一次粒子の平均粒子径が 2 m以下の高軟ィ匕点アクリルポリマー微粒子 (8) (以下、 単に高軟化点ポリマー 微粒子と呼ぶ事がある。 ) である。
高軟化点アクリルポリマー微粒子 (8) の一次粒子の平均粒子径を、 2 m以 下とすることでギヤップ出し作業性が確保できる。 一次粒子の平均粒子径は 0. 01乃至 1 mの範囲とすることが好ましく、 0. 2乃至 0. 5 mの範囲とす ることがより好ましい。
高軟化点アクリルポリマー微粒子 (8) は架橋型、 非架橋型いずれでも使用す ることができるが、 架橋型が好ましく、 特に微架橋構造を持つ高軟化点アクリル ポリマー微粒子がより好ましい。
微架橋構造を持つ高軟化点ァクリルポリマー微粒子は、 ポリマーを製造する際 に架橋性モノマーを全モノマー中に 0. 1乃至 5質量%の範囲、 好ましくは 1乃 至 3質量%にすることにより製造することができる。
微架橋度の指標の一つとしては、 ゲル分率がある。 これは、 10 gの高軟化点 ポリマー微粒子を 50 gのメチルカルビトール溶剤中に分散し、 25で 1時間攪 拌後に濾過、 濾液量とその濾液中のポリマー含有量 (溶解量) を求め、
ゲル分率 (%) = (溶解量ノ 10 g) X 100
とする指標である。
このゲル分率指標で 0乃至 50%の範囲が好ましく、 0乃至 5%であることが 更に好ましい。 高軟化点ァクリルポリマー微粒子は、 化学構造式から算出される濡れ指数で 9 乃至 11の範囲にあるものが好ましく、 9. 3乃至 10. 5の範囲に有るものが より好ましい。
高軟化点アクリルポリマー微粒子 (8) の具体的な例としては、 例えば 0. 1 乃至 5質量%の架橋性モノマーを共重合させてなる微架橋型のポリメタクリル酸 メチルエステル主成分型ポリマー、 アイオノマー構造を 0. 1乃至 5質量%の範 囲で持つポリメタァクリル酸メチルエステルポリマーが例示できる。 この高軟化 点アクリルポリマー微粒子では、 その粒子表面にエポキシ基、 アミノ基、 ィミノ 基、 メルカプト基、 力ルポキシル基等の 1種の官能基を導入されていることが一 層好ましい。
更に好ましくは、 60乃至 150 の軟化点温度を持ち、その一次粒子径が 0. 01乃至 1 / mの範囲にあるものである。
ところで、 本発明の液晶表示セルシール剤用組成物では、 前記のゴム状ポリマ 一微粒子 (4) と高軟化点アクリルポリマ一微粒子 (8) とが事前に複合化され ていても良く、 例えば、 ゴム状ポリマー微粒子 (4) がコア相をなし高軟化点ァ クリルポリマー微粒子 (8) がシェル相を形成してなるいわゆる (4) と (8) のコアシェル型複合微粒子 (A) とする態様挙げられる。 また、 その逆の高軟化 点アクリルポリマー微粒子 (8) をコア相とし、 ゴム状ポリマ一微粒子 (4) を シェル相とするコアシェル型複合微粒子 (B) を用いる態様例も好ましい例であ る。 特に前者のコアシェル型複合微粒子 (A) を使用する態様例が好ましい。 コア相としてゴム状ポリマー微粒子 (4) を内包するコアシェル型複合微粒子 (A) では、 コア:シェルの質量比が (1 : 0. 3) 乃至 (1 : 2) の範囲にあ ることが望ましい。
液晶表示セルシール剤用組成物中または液晶表示セル用シール剤中の高軟化点 ポリマー微粒子の種類またはその量比を求める方法としては、 特に限定はなく、 前記ゴム状ポリマー微粒子の測定方法と同様な方法で行うことができる。 ( 9 ) ギャップ出しコントロール剤
本発明の液晶表示セルシール剤用組成物では、 前記のエポキシ樹脂組成物に更 にギャップコントロール剤(9 )を含有させた組成物がより好ましい態様である。 ギャップ出しコントロール剤 (9 ) とは、 液晶表示素子のギャップ幅をおよそ
3乃至 7 / mの幅で任意かつ正確に調節するための物質であり、 そのような調節 ができるものであれば有機質または無機質のいずれでも使用することができる。 ギャップ出しコントロール剤 (9 ) は、 必要に応じて本発明の液晶表示セルシ —ル剤用組成物 1 0 0質量部に対して 0 . 1乃至 5質量部の割合で適宜含有させ ることが好ましい。 より好ましくは 0 . 5乃至 2 . 5質量部の範囲である。
ギャップ出しコントロール剤 (9 ) としては、 例えばエポキシ樹脂 (1 ) 又は 必要に応じて用いる溶剤 (7 ) などによって変形や溶解、 膨潤されない真球状、 ラグビーボール状粒子、 棒状繊維等の上下左右対象の無機質粒子または熱硬化性 のポリマー粒子が挙げられる。
ギャップ出しコントロール剤 (9 ) の無機質粒子の例としては、 真球シリカ粒 子、 真球アルミナ粒子、 ガラス短繊維、 金属短繊維、 金属粉等が挙げられる。 また、 有機質のギャップ出しコントロール剤 (9 ) としては、 熱硬化性のポリ スチレン真球状粒子や、 その他、 フエノール樹脂系熱硬化粒子、 ベンゾグァナミ ン樹脂系熱硬化粒子等が挙げられる。
無機質粒子はギヤップ精度を高精度で制御可能であるので、 特に好ましい例で ある。
液晶表示セルシール剤用組成物中または液晶表示セル用シール剤中のギャップ コントロール剤の種類またはその量比を求める方法としては、特に限定はないが、 例えば硬化体の S E M観察像解析法、 同 T E M観察像解析法、 分離濾別法、 熱分 解ガスクロ法、 加熱残渣 X線回析法、 元素分析法等が挙げられる。 ( 1 0 ) 導電性ビーズ
本発明の液晶表示セルシール剤用組成物では、 シール機能と合わせ異方導電 性の機能を同時に付与する目的で、 前記のエポキシ樹脂組成物 1 0 0質量部に対 し、 更に導電性ビーズ (1 0 ) を 1乃至 1 5質量部を併用して含有させてなる組 成物も好ましい態様として包含される。 導電性ビーズを 1乃至 1 5質量部の割合 で含有させることで、 異方導電性の機能を付与できる。 1質量部以上の使用で、 上下導通性機能を付与でき、 1 5質量部未満とすることで両横 (左右) 電極間の 絶縁特性の確保ができるので好ましい。
導電性ビーズ (1 0 ) としては、 特に制約するものではないが、 例えば平均粒 子径が 3乃至 1 0 mで、 かつ最大粒子径が 1 0 ii m以下、 最小粒子径が 0 . 1 m以上の導電性ビーズが好ましい。
導電性ビーズ種としては、特に制約するものではないが、以下に具体例を示す。 例えば、 貴金属粒子、 貴金属合金粒子、 卑金属粒子、 卑金属合金粒子、 その他 金属被覆型有機物粒子や金属被覆型絶縁性無機粒子などであつても良い。 例えば金、 銀、 白金等が例示できる。
(貴金属合金)
例えば、 銀 ·銅合金、 金 ·銅合金、 金 ·銀合金、 白金 ·銀合金、 金 ·白金合金、 金 ·ニッケル合金、 銀 ·ニッケル合金等が例示できる。
(卑金属)
例えば、 銅、 ニッケル、 錫、 タングステン等を例示できる。
(卑金属合金)
例えば、 銅 ·ニッケル合金、 銅'錫合金、 ハンダ等を例示できる。
(金属被覆型有機物粒子)
例えば、 ポリスチレンゃポリメタクリル酸メチルで代表される有機ポリマー粒 子に、 前記導電性金属皮膜を形成させたものが代表的な例である。 市販品として 積水ファインケミカル社より商品名 「ミクロパール A Uシリーズ」 が知られ、 好 ましく使用できる。
(金属被覆型絶縁性無機粒子)
例えば、 雲母やガラスビーズで代表される高絶縁性の無機質粒子に前記導電性 金属皮膜を形成させたものが代表的な例である。
導電性ビーズとして、 その一次分散安定性が確保しやすい点で、 金属被覆型有 機物粒子を本発明の液晶表示セルシール剤用組成物中に占める割合で 3乃至 7体 積%含有させた態様が好ましい。 特に、 本発明の液晶表示セルシール剤用組成物 では、 導電性ビーズ (1 0 ) が有機ポリマーを芯に持ち、 金、 銀、 金,銅合金、 銀 ·銅合金、 ニッケルまたはそれらの合金等から選ばれた少なくとも 1種の金属 被覆相からなっている導電性ビーズを使用するものが好ましい。
導電性ビーズの平均粒子径は、 前記の範囲とすることが良く、 平均粒子径が 1 m以下のものの使用では電極間に導電性粒子があつても良好な上下導通特性が 得られにくく、 一方、 平均粒子径または最大粒子径が 1 0 mを超えたものを使 用するとショート原因となりやすい。
なお、 液晶表示セルシール剤用組成物中または液晶表示セル用シール剤中の導 電性ビーズ (導電粒子) の種類またはその量比を求める方法としては、 特に限定 はなく、 元素分析法、 硬化体の T E Mまたは S E M像解析法、 濾過分別法等を適 宜組み合わせて行うことができる。 その他添加剤
本発明の液晶表示セルシール剤用組成物では、 必要に応じて、 更にワックス、 ブ剤、 顔料、 染料、 可塑剤、 消泡剤の使用が可能である。
( 1 1 ) ワックス
本発明の液晶表示セルシール剤用組成物では、 接着性を保持しつつ低透湿性機 能の向上ならびに低吸水性のより一層の向上を主目的として、 ワックス (11) を使用することができる。 そのワックス (1 1) の使用割合としては、 本発明の 液晶表示セルシール剤用組成物の 100質量部に対してワックス 0. 1乃至 5質 量%含有するのが良い。
液晶表示セルシール剤用組成物 100質量部に対してワックスを 0. 1質量部 以上、 5質量部以下とすることで、 該硬化体の 80 、 相対湿度 95%以上の高 温高湿環境下で、 その硬化物の 8 Ot:透湿度をよりいっそう小さくできる。 それ に伴って、 高耐久性に富む液晶表示セルの製造可能になる。
ワックス (11) としては特に限定はなく、 いずれのワックスでも使用するこ とができる。 例えば、 動物系天然ワックス、 植物系天然ワックス、 鉱物系天然ヮ ックス、 石油系ワックス、 合成炭化水素系ワックス、 変性ワックス、 水素化ヮッ クス等が挙げられる。
このなかでも、 融点が 70で以上 150°C以下のワックスが好ましく、 カルナ ノ ワックス、 マイクロクリス夕リンワックス、 フィッシャートロプッシュヮック ス、 変性フィッシャートロプッシュワックスがより好ましい。
また、 ワックス (11) を含有させてなる本発明の液晶表示セルシール剤用組 成物では、 その液晶表示セルシール剤用組成物の硬化前の状態に於いて、 ヮック スは独立した一次粒子として存在していることが好ましく、 電子顕微鏡や光学顕 微鏡観察による一次粒子の平均粒子径は、 0. 01乃至 5 zmの範囲にあること が好ましく、 0. 01乃至 3 /mの範囲にあることがより好ましい。
以下にヮッグス (11) のより具体的な例を示す。
(動物系天然ワックス)
例えば、 蜜ロウ、 鯨ロウ、 セラックロウ等が挙げられる。
(植物系天然ワックス)
例えば、 カルナバワックス、 オリキュリーワックス、 キャンデリラワックス、 木ロウ、 ケーンワックス等が挙げられる。 (鉱物系天然ワックス)
例えば、 モンタンワックス、 ォゾケライト、 セレシン等が挙げられる。
(石油系ワックス)
例えば、パラフィンワックス、マイクロクリスタリンワックス等が挙げられる。
(合成炭化水素系ワックス)
例えば、 フィッシャートロプッシュワックス及びその誘導体、 ポリエチレンヮ ックス及びその誘導体、ポリプロピレンワックス及びその誘導体等が挙げられる。
(変性ワックス)
例えば、 酸ィ匕ワックス、 モンタンワックス、 酸変性ワックス等が挙げられる。
(水素化ワックス)
例えば、 ステアリン酸アミドワックス等のアミドワックス、 ポリエステルヮッ クス、 オパールワックス等が挙げられる。 液晶表示セルシール剤用組成物の調整方法 - 本発明の液晶表示セルシール剤用組成物の調整は、 (1 ) エポキシ樹脂、 ( 2 ) 多価フエノール硬化剤、 (3 ) アルキル尿素誘導体及びフォスファゼン化合物か ら選ばれる少なくとも 1種からなる硬化促進剤、 必要に応じて更に (4 ) 0 以下 の軟化点温度を持ち、 その一次粒子の平均径が 5 /z m以下であるゴム状ポリマー 微粒子、 (5 ) 無機質充填剤、 (6 ) シランカップリング剤、 (7 ) 溶剤、 (8 ) 高軟化点ポリマー微粒子、 (9 ) ギャップ出しコントロール剤、 (1 0 ) 導電性 ビーズ、 (1 1 ) ワックス、 レべリング剤、 顔料、 染料、 可塑剤、 消泡剤等のそ の他添加剤等を適宜添加し、 混合すれば良く特に限定はない。
混合には、 例えば、 双腕式攪拌機、 ロール混練機、 2軸押出機等すでに公知の 機械を用いて行って良く、 最終的に真空脱泡処理後にガラス瓶やポリ容器に密封 充填され、 貯蔵、 輸送される。 液晶表示セルシール剤用組成物の物性
液晶表示セルシール剤用組成物の硬化前の粘度としては、 特に限定はないが、 ブルックフィールド型粘度計 (B型粘度計) や E型粘度計による 25 :粘度が 1 乃至 1000 P a · sの範囲が好ましく、 5乃至 500Pa ' sの範囲がより好 ましく、 10乃至 200P a * sの範囲が最も好ましい。 本発明の液晶表示セル シール剤用組成物は、 事前に加熱養生等の方法で前記の範囲に粘度調製をして製 造される。
また、 B型粘度計または E型粘度計のローター番号を同一とする毎分 1回転の ズリ速度から求められた 1 r pm粘度値と 10回転のズリ速度の時の 10 r pm 粘度値の比 (1 r pm粘度値 10 r pm粘度値) であらわされるチクソ指数に は、 特に制約はないが、 好ましくは 1乃至 3の範囲であることが望ましい。 液晶表示素子の製造方法
本発明の液晶表示素子の製造方法は、 TN液晶、 STN液晶、 強誘電液晶、 反 強誘電液晶を用いてなる液晶表示素子の製造において、 本発明の液晶表示セルシ 一ル剤用組成物をガラス製またはプラスチック製の液晶セル用基板の接合シール 構成部位に印刷またはデイスペンス塗布し、 50乃至 120 の温度でプレキュ ァー後、 もう一方の対基板とで位置合わせを行って重ね合わせて仮固定後、 その 対基板を 80乃至 200°Cで熱圧締処理し、 該対基板を 3乃至 7 mの範囲で均 質な厚みに接合固定した後、 該セル内に液晶材料を注入し、 注入孔を光硬化型液 晶シール剤組成物または 2液型液晶シール剤組成物で封孔させて得る事を特徴と する製造方法である。
また、 本発明の別の液晶表示素子の製造方法は、 TN液晶、 STN液晶、 強誘 電液晶、 反強誘電液晶を用いてなる液晶表示素子の製造に、 本発明の液晶表示セ ルシール剤用組成物をガラス製またはプラスチック製の液晶セル用基板の接合シ ール構成部位に印刷またはデイスペンス塗布し、 50乃至 120°Cの温度でプレ キュア一後、 液晶を滴下させて空気を閉じ込めない様にもう一方の対基板を重ね 合わせ、 位置合わせをして、 仮固定後、 その対基板を 8 0乃至 1 5 0 °Cで熱圧締 処理し、 該対基板を 3乃至 7 mの範囲で均質な厚みに接合固定させた後、 呼吸 孔を光硬化型液晶シール剤組成物または 2液型液晶シール剤組成物で封孔させて 得ることを特徴とする製造方法である。
その際、 溶剤を含有している液晶表示セルシール剤用組成物を完全硬化させて 接着シールするには、 事前にプレキュア一が必要である。 プレキュア一条件には 特に制約はないが、 含有する溶剤分を 1 0 0としてその少なくとも 9 5質量%以 上が脱溶剤化でき、 かつ含有する硬化剤の熱活性温度以下の加熱乾燥温度を選択 することが一般的であり、 7 0乃至 1 2 0 が好ましい。 一般的なプレキュア一 条件として、 より好ましくはプレキュア一温度が 8 O t:乃至 1 0 0での範囲、 熱 処理時間として 3 0乃至 5分である。 高温ィヒするほど短時間乾燥にすることが好 ましい。 1 2 0でを超えたプレキュア一であっても脱溶剤化は可能であるが、 硬 化反応の進行でギヤップ幅の精度が低下する傾向にあり注意が必要である。 用いられる液晶セル用基板としては、 例えば、 ガラス基板、 プラスチック基板 が挙げられる。 これらの基板群では、 当然の事として酸化インジウムで代表され る透明電極やポリイミド等で代表される配向膜、 その他無機質イオン遮蔽膜等が 必要部に施工されてなる、 いわゆる液晶セル構成用ガラス基板または同プラスチ ック基板が用いられる。
基板に液晶表示セルシール剤用組成物を塗布する方法には、 特に限定はなく、 例えばスクリーン印刷塗布方法またはディスペンサー塗布方法などで行うことが できる。 また、 塗布後は、 必要に応じてプレ乾燥した後、 張り合わせ、 加熱圧締 接着シールする方法で接合するが、 その際の加熱硬化条件としては特に制約する ものではないが、 1 0 0乃至 2 0 0 °Cで 2 4乃至 0 . 5時間、 好ましくは 1 1 0 乃至 1 8 0 °Cで 2 4乃至 1時間とすることが望ましい。
また、 熱圧締*接着工程を枚葉熱プレスでもって実施する際は、 仮接着性を確 保出来る条件、 特に制約するものではないが、 好ましくは 1 1 0乃至 1 8 0 °Cで 1 0乃至 2分程度接合後、 圧を開放、 取り出し、 引き続き同温度下に調整された 加熱オーブン中で完全硬化養生させるなどの 2段または複数の加熱工程や養生ェ 程を経て製造する。
ここで、 枚葉熱プレスとは、 一セット枚づっ接合する仕様の熱プレス機を意味 し、 真空下に熱を加えることが出来る枚葉熱プレス機器を真空枚葉熱プレス、 お よび大気圧下で熱板を介して強制的に加熱圧締接着するタイプの剛体枚葉熱ブレ スとが知られている。 いずれの枚葉熱プレス方式であってもよい。
また熱圧締 ·接着工程を前記枚葉熱プレス等とは別に、 多段熱プレスを用いて も何ら問題ない。 液晶表示素子
本発明の液晶表示素子とは、 本発明の液晶表示セルシール剤用組成物をガラス 製またはプラスチック製の液晶セル用基板の接合シール構成部位に印刷またはデ イスペンス塗布し、 7 0乃至 1 2 O t:でプレキュア一後、 もう一方の未塗布対象 同基板との対で位置合わせを行った後、 その対基板を 1 0 0乃至 2 0 0でで熱圧 締処理し、 該対基板を 3乃至 7 の範囲で均質な厚みに接合固定させることに よって得られ、 該セル内に液晶材料を注入し、 注入孔を 2液型液晶シール剤組成 物で封孔して得られる液晶表示素子、 または本発明の液晶表示セルシール剤用組 成物をガラス製またはプラスチック製の液晶セル用基板の接合シール構成部位に 印刷またはデイスペンス塗布し、 5 0乃至 1 2 0 の温度でプレキュア一後、 も う一方の対基板を重ね合わせ、 液晶を滴下させて空気を閉じ込めない様に張り合 わせ、 適宜仮固定後、 その対基板を 8 0乃至 1 5 0 で熱圧締処理し、 該対基板 を 3乃至 7 μ πιの範囲で均質な厚みに接合固定させた後、 呼吸孔を光硬化型液晶 シール剤組成物または 2液型液晶シール剤組成物で封孔して得ることを特徴とす る液晶表示素子の製造方法によって得られる液晶表示素子である。 光硬化型液晶シール剤組成物としては、 特に制約するものではない力 例えば 多価ァクリレ一ト樹脂と光開始剤とを含有してなる組成物、 エポキシ樹脂と紫外 線光開始剤とを含有してなる樹脂組成物、 ォキセ夕ン化合物と紫外線光開始剤と を含有してなる組成物、 エポキシ樹脂とォキセタンと光開始剤とを含有してなる 樹脂組成物等であって良い。
2液型液晶シール剤組成物としては、 特に制約するものではないが、 例えばェ ポキシ樹脂とポリアミド硬化剤からなる 2液型液晶シール剤組成物、 エポキシ樹 脂とポリチオール硬化剤からなる 2液液晶シール剤組成物、 エポキシ榭脂とポリ ァミン硬化剤とからなる 2液型液晶シール剤組成物等が例示できる。
液晶材料にも制約はなく、 例えばネマチック液晶や強誘電液晶等が好適に使用 できる。
本発明で得られた液晶表示素子としては、 例えば、 ェム シャット (M. S c h ad t) とダブリュ ヘルフリツヒ (W. He 1 f r i c h) らが提唱した T N型 (Twi s t ed N e m a t i c ) の液晶素子あるいは S TN型 (S u p e r Twi s t ed N e m a t i c ) の液晶素子、 または、 クラーク (N.
A. C l a r k) とラガウエル (S. T. L a g e rwa 1 1 ) により提唱され た強誘電型液晶素子、 また薄膜トランジスター (TFT) を各画素に設けた液晶 表示素子等が好ましい例として挙げられる。
実施例
以下、 代表的な実施例及び比較例により本発明を詳細に説明するが、 本発明は これに限定されるものではない。 例中の%及び部は、 それぞれ質量%、 質量部を 表す。
また、 各例で用いた原材料種 (略記号) は以下の通りである。 ' 試験方法
実施例、 比較例で液晶表示セルシール剤用組成物及びその硬化体について行う 評価試験の方法を示す。
(貯蔵安定性試験)
液晶表示セルシール剤用組成物 100部をポリエチレン製容器に入れ、 密封し た後、 密封時の 20t:B型粘度値を 100とし、 _ 10 /30日経過後の同粘 度値の変化率で表す。
0 : 10 %未満の変化率で、 貯蔵安定性が良好
△: 10乃至 50%の変化率で、 貯蔵安定性にやや問題あり
X: 50%を超える変化があり、 貯蔵安定性不良
(塗付作業性試験)
氷点下以下のポリエチレン製容器に密封保存された液晶表示セルシール剤用組 成物を取り出し、 2時間かけて室温 25 に戻した。 その時点の 25t:B型粘度 値を 100とし、 25 で 12時間放置後の粘度変化率で表す。
0 : 15 %未満の変化率で、 塗付作業性は良好
△: 15乃至 50%の変化率で、 塗付作業性にやや欠ける
X: 50%を超える変化があり、 塗付作業適性に著しく欠ける
(Bステージ化組成物の 80乃至 10 O E型粘度特性)
各例の液晶シール剤組成物を平滑な離型フィルム上に厚さ 10乃至 50 ^に塗 布し、 各例の Bステージ化条件で得られた Bステージ化組成物塊 0. 6部をすば やく採取し、 E型粘度計 (コーンカップ粘度計) にて、 40でから 1 2分で 等速昇温させて 120でまでの (温度) — (0. 5 r pm回転粘度) の粘度曲線 を求めた。 その粘度曲線から、 90°C粘度を求めた。
X (-) : 90°C粘度が 5 P a · s未満
〇: 90で粘度が 5乃至 300 P a · s
◎ : 901:粘度が 301乃至 l O O OPa ' s
x ( + ) : 90°C粘度が 1000 P a · sを越える
(透湿度特性) 各例の液晶シール剤組成物を平滑な離型フィルム上に厚さ 70乃至 120 に 塗布し、 8 Ot:で 30分熱処理後、 更に 1 50°Cで 90分熱硬化させて得られた 硬化膜を切り出し、 日本工業規格( J I S)の防湿包装材料の透湿度試験方法(力 ップ法) J I S— Z— 0208に準じた透湿度試験を実施し、 60 および 80°C で 24時間に透湿した膜厚 100 m当たりの水蒸気量 (単位; g/m2 · 24 h r s ) を求めた。
◎: 6 O :透湿度特性が 35 g/m2 · 24 h r s未満で、 液晶表示セルシ一 ル剤用組成物が低透湿性に特に優れる
〇: 6 透湿度特性が 35乃至 80 g/m2 · 24 h r sで、 液晶表示セル シール剤用組成物が低透湿性に優れる
△: 6 O :透湿度特性が 81乃至 150 g/m2 · 24 h r sで、 液晶表示セ ルシール剤用組成物の低透湿性がかなり低い
X : 60 透湿度特性が 151乃至 250 g/m2 · 24 h r sで、 液晶表示 セルシール用組成物が低透湿性にやや欠ける - XX : 60"C透湿度特性が 251 g/ m2 · 24h r s以上で、 液晶シール剤 組成物が低透湿性に欠ける
また、 80 透湿度特性について、
◎: 80 透湿度特性が 100 gZm2 · 24h r s以下で、 液晶表示セルシ 一ル剤用組成物が低透湿性に特に優れる
〇: 80で透湿度特性が 101乃至 1 50 g/m2 · 24 h r sで、 液晶表示 セルシール剤用組成物が低透湿性に優れる
△: 80 透湿度特性が 151乃至 200 g/m2 · 24 h r sで、 液晶表示 セルシール剤用組成物の低透湿性がかなり低い
X : 80 透湿度特性が 20 1乃至 350 g/m2 · 24 h r sで、 液晶表示 セルシール用組成物が低透湿性にやや欠ける
XX : 8 Ot:透湿度特性が 351 g/ m2 · 24h r s以上で、 液晶シール剤 組成物が低透湿性に欠ける
(硬化体の線膨張係数)
各例の液晶シール剤組成物を平滑な離型フィルム上に厚さ 7 0乃至 1 2 0 に 塗布し、 8 0でで 3 0分熱処理後、 更に 1 5 0でで 9 0分熱硬化させて得られた 硬化膜の小片 (1 5 mm角) を切り出し、 該硬化体を 3 0でから 1 8 まで毎 分 5での昇温下に TMA測定した。 3 0でから 8 0 の歪み量を 5 0で割って 1 当たりの線膨張係数を求めた。
(硬化体の熱変形温度)
各例の液晶シール剤組成物を平滑な離型フィルム上に厚さ 7 0乃至 1 2 0 /に 塗布し、 8 0 で 3 0分熱処理後、 更に 1 5 0 で 9 0分熱硬化させて得られた 硬化膜の小片 (1 5 mm角) を切り出し、 該硬化体を 4 0 から 1 8 まで毎 分 5 T:の昇温下に TMA測定した。 歪み量変曲点をその硬化体の熱変形温度 (T g ) とした。
(硬化体の吸水率)
各例の液晶シール剤組成物を平滑な離型フィルム上に厚さ 7 0乃至 1 2 に 塗布し、 8 0 で 3 0分熱処理後、 更に 1 5 0でで 9 0分熱硬化させて得られた 硬化膜を 1 0 0 mm角に切り出し、 該硬化体を煮沸水に 3 0分、 3時間または 5 時間浸漬後の重量増加量を求め、 その値を元の質量で割った値に 1 0 0を乗じた 値を吸水率とした。 すなわち、
吸水率 (%) = (煮沸水浸漬後の質量増加量/試験前の質量) X 1 0 0 で示す。
(硬化体の硬度)
各例の液晶シール剤組成物を平滑な離型フィルム上で真空下に 8 0 で 3 0分 熱処理後、 その組成物を l c m四方、 高さ 2 mmのアルミ製セルに充填し、 更に 1 5 0 °Cで 9 0分熱硬化させて得られた硬化体の表面硬度を室温 2 3 °C下でショ ァー D硬度計を用いて測定した。 ◎: ショァ一 D硬度が 80以上で、 剛性性に優れる
O:ショァ一 D硬度が 70以上 80未満で、 硬化体が剛性に富む
X : ショァ一 D硬度が 70未満で、 剛性性に欠ける
(硬化体の貯蔵弾性率)
各例の液晶シール剤組成物を平滑な離型フィルム上に厚さ 70乃至 120 に 塗布し、 80°Cで 30分熱処理後、 更に 150 で 90分熱硬化させて得られた 硬化膜を 100mm角に切り出し、 該硬化体をレオメトリックス社製の動的粘弹 性試験機にて、 周波数 1ヘルツ、 空気雰囲気下、 毎分 5でで等速昇温させて粘弹 性曲線を得た後、 100乃至 150 領域の貯蔵弾性率を求めた。
〇:貯蔵弾性率が l X 1 05Pa乃至 l X 1 08P a
X :貯蔵弾性率が 9. 9 X 1 04Pa以下
(遊離イオン濃度)
各例の液晶表示セルシール剤用組成物 100質量部と同質量の超純水とを室温 下に 30分攪拌混和させた水溶液のイオン伝導度を測定-した。
◎:伝導度が 2mS/m以下
0 : 2. 1乃至 1 OmS/m
X : 10. 1乃至 5 OmSZm
XX : 5 lmSZm以上 、
(接合シール試験)
各例に示された条件下で接着硬化を行って製造した液晶表示用セルを 20倍拡 大鏡で拡大して肉眼で観察し、 シールラインの乱れの有無、 および貫通泡の発生 によるシール不良箇所の有無を測定した。
(セルのくさび引き剥がし試験)
各例に示された条件下の枚葉プレス硬化工程を経て製造された液晶表示用セルに 6 0 環境下でくさびを打ち込み、 その時の剥離状態で液晶表示セル用シール材 組成物の接着力を表す。 ◎:基板の破壊である場合で、 耐熱接着性に優れる
〇:液晶表示セルシール剤用組成物の凝集破壊を一部伴う場合で、 耐熱接着性 が良好
X:界面剥離を伴う破壊が認められる場合で、 耐熱接着力に問題がある (プレッシャークッカー試験後のセルのくさび引き剥がし試験)
各例に示された条件下の枚葉プレス硬化工程を経て製造された液晶表示用セル を 1 2 1 プレッシャークッ力一試験機に 2時間さらした後、 取り出し、 常温下 でくさびを打ち込み、 その時の剥離状態で液晶表示セル用シール材組成物の接着 力を表す。
◎:基板の破壊である場合で、 耐熱接着性に優れる
〇:液晶表示セルシール剤用組成物の凝集破壊を一部伴う場合で、 耐熱接着性 が良好
X:界面剥離を伴う破壊が認められる場合で、 耐熱接着力に問題がある (液晶シール剤用組成物の非滲みだし性) - 各例に示された条件下の枚葉プレス硬化工程を経て製造された液晶表示用セル に、 液晶封入口から液晶のしきい値電圧が 1 . 3 8ボルト、 液晶の Δ εが 1 2 . 4である R C 4 0 8 7液晶材料 [チッソ (株) 製] を真空法で封入した後、 その 封入口をストラクトボンド E S— 3 0 2 [三井化学 (株) 製] で封口し、 フロン ト側に偏向板を貼り付け、 リャ側には反射板つき偏向板を取り付けた。 その後、 該ュニットに駆動回路等を実装させて液晶パネルを作製した。 その液晶パネルの シール剤近傍の液晶表示機能が駆動初期から正常に機能するか否かで非滲み出し 性の評価判定を行った。
〇:シール際まで液晶表示機能が発揮出来ている場合で、 非滲み出し性が確保 されている△:シール際の近傍の l mm以内が正常に液晶表示されない場合で、 やや非滲み出し性に欠ける
X:シール際の近傍 1 . l mmを超えて表示機能の異常が見られるで、 非滲み 出し性に著しく欠ける
(シール機能耐久性試験)
各例に示された条件下の枚葉プレス硬化工程を経て製造された液晶表示用セル に、 液晶封入口から RC4087液晶材料 [チッソ (株) 製] を注入し、 その封 入口をストラクトポンド ES— 302 [三井化学 (株) 製] で封口し、 液晶パネ ルを作製した。その液晶パネルを、 65 :/RH95%の雰囲気下に 250時間、 同 500時間、 同 1, 000時間それぞれ放置後に取り出し、 フロント側に偏向 板を貼り付け、 リャ側には反射板つき偏向板を取り付けた。 その後、 該ユニット に駆動回路等を実装させて表示機能の変化を観察した。
◎:表示ムラの発生が見られない
〇:表示ムラがセル周辺部のシール際からの距離で 150 im以内に僅かに見 られる
△:表示ムラがセル周辺部のシール際からの距離で 151乃至 500 im未満 の範囲で見られる
X:表示ムラがシール際 500 以上に及び著しく表示機能の低下が発生して いる場合
(硬化開始温度)
各例の液晶表示セルシール剤用組成物 1 Omgを大気圧下の示差走差熱分析 (DSC) にて 30でから 220でまで毎分 5 で等速昇温させて得られた示差 熱曲線から、 発熱ピーク開始変曲点温度を硬化開始温度として求めた。
(硬化発熱ピーク温度)
各例の液晶表示セルシール剤用組成物 1 Omgを大気圧下の示差走差熱分析 (DSC) にて 30 から 220でまで毎分 5T:で等速昇温させて得られた示差 熱曲線から、 最高発熱ピーク変曲点を最大発熱ピーク温度として求めた。
(硬化体の液晶に与える影響)
各例の液晶シール剤組成物を平滑な離型フィルム上に厚さ 70乃至 120 に 塗布し、 80°Cで 30分熱処理後、 更に 150°Cで 90分熱硬化させて得られた 硬化膜片 0. 1質量部を密閉型ガラス容器内に測り採り、 さらに RC4087液 晶材料 [チッソ (株) 製] 1質量部を加えて窒素雰囲気下に密閉し、 容器ごと 1 25でで 1時間加熱後に取り出し、 内容物を小型セラミック製濾過機を内蔵する 注射器にて吸い出して液晶を採取し、 比抵抗測定器により、 液晶の比抵抗を測定 し、 液晶のみによる該試験で得られた比抵抗値 (元の液晶比抵抗と呼ぶ) に対す る変化量で表す。
◎:元の液晶比抵抗に対して 50倍未満の変化
〇:元の液晶比抵抗に対して 50倍乃至 250倍の範囲の変化がある場合で、 該液晶表示セルシール剤用組成物の硬化体が液晶に与える影響はかなり小さい
X:元の液晶比抵抗に対して 251倍以上の変化が認められる場合で、 該液晶 表示セルシール剤用組成物の硬化体が液晶に与える影響が比較的大きい 使用原材料
1. エポキシ樹脂 (1)
単官能性エポキシ樹脂としては、 同質量の純水と 1時間接触混合させて分離抽 出した抽出水のイオン伝導度 (以下単に抽出水のイオン伝導度と呼ぶ) で 1. 5 mS/m (15 S/cm)以下まで精製した 2 _ェチルへキシルモノグリシジル エーテル (略記号; 2EHMG) 、 抽出水のイオン伝導度で 1. 2mSZm (12 S/cm)以下まで精製した t一ブチルフエノールモノグリシジルエーテル(略 記号; t _BPMG) を用意した。
2官能性以上の多価エポキシ樹脂としては以下のものを使用した。
2官能性脂肪族エポキシ樹脂としては、抽出水のィオン伝導度で 0.2 m S /m( 2 fi S/cm) まで精製した 1, 6—へキサンジオールジグリシジルエーテル (略 記号 6— HGDE) を、 2官能性ビスフエノール A型エポキシ樹脂としては、 三井化学 (株) 製品 '商品名 「ェポミック R_ 140P」 (平均分子量 370) 、 油化シェル (株) 製品 '商品名 「ェピコート 1007」 (平均分子量 4000) 、 三井化学 (株) 製品'商品名 「ェポミック R 367」 (平均分子量 2600) を、 また 2官能性ビスフエノール F型エポキシ樹脂としては、 大日本インキ (株) 製 品 '商品名 「ェピクロン 830— S」 (平均分子量約 350乃至 370) を、 2 官能性水添ビスフエノール A型エポキシ樹脂としては、 東都化成 (株) 製品 '商 品名 「ェポトート ST— 1000」 (平均分子量 400〜440) を選定使用し た。
3官能性ノボラックエポキシ樹脂としては、 東都化成 (株) 製品 ·商品名 「ェポ トート YDCN」 (GPCによるポリスチレン換算質量平均分子量約 1000) を、 トリフエノールェ夕ン型エポキシ樹脂としては、 三井化学 (株) 製品 「ェポ ミック VG3101」 を、 3官能性ァミノエポキシ樹脂としては、 住友化学(株) 製品 「スミカ ELM— 100」 を、 4官能性ァミノエポキシ樹脂としては、 東都 化成 (株) 製品 '商品名 「ェポトート YH— 434」 ( GPCによるポリスチレ ン換算質量平均分子量約 460) を使用した。 - また、 変性エポキシ樹脂としては、 下記の合成例 6で得た樹脂組成物 (EPA— 005と略称) を用いた。
2. 硬化剤 (2)
フエノールノボラック樹脂としては、 三井化学 (株) 製品 '商品名 「ミレック ス VR93 i 5」 (フエノール核がメチレン結合してなる樹脂) から、 特に軟化 点温度 114. 9 、 遊離フエノール含有量 0. 03%以下、 塩素原子の含有量 0. 01%以下、 抽出水のイオン伝導度が 0. 5mS/m (5 ^S/cm) であ るものを選定使用した (以下の例中ではこの樹脂を単に FP樹脂と呼ぶ) 。
別のフエノールノボラック樹脂としては、 群栄化学 (株) 製ノポラック PSM— 4261を、 エステル化フエノールノボラック樹脂としては、 下記の合成例 1に 示したように群栄化学 (株) 製ノポラック P SM—4261のフエノール性水酸 基の 98モル%をベンゾィルエステル化した樹脂 (以下エステル化 P SM— 42 61と呼ぶ) を用意した。
また、 以下に示すエステル化変性物は、 全て合成例 1に準じたエステル化変性 をして得たものである。 ただし、 高融点物質であるエステル化トリスフエノ一ル 単量体は、 合成例 2によって製造した。
フエノールァラルキル樹脂としては、 三井化学 (株) 製品 「ザィロック XL C ー225 L」 (フエノール核が p—キシレン核とメチレン結合を介して結合され て成る樹脂) から、 特に GPCによるポリスチレン換算の質量平均分子量が 71 50で、 かつ軟化点 84 、 遊離フエノール 0. 01%以下、 塩素原子の含有量 0. 01 %以下、 抽出水のイオン伝導度が 0. 3mSZm (3 SZcm) であ るものを選定使用した (以下の例中では単に XP樹脂と呼ぶ) 。
別のフエノールァラルキル樹脂としては、 フエノ一ル核が p—キシレン核とメチ レン結合を介して結合されてなり、 GPCによるポリスチレン換算の質量平均分 子量が約 1750、 軟化点 76^、 遊離フエノール 0. 01%以下、 塩素原子の 含有量 0. 01 %以下、 抽出水のイオン伝導度が 0. 3mS/m (3 SZcm) であるもの (以下、 単に XL P樹脂と呼ぶ) を、 またそのエステル化フエノール ァラルキル樹脂としては、 該 XL P樹脂の活性フエノール性水酸基の 99モル% をベンゾィルエステル化し、 その抽出水のイオン伝導度が 1. lmSZm (1 1 Pi S/cm) の樹脂(以下、 単にエステル化ァラルキル樹脂と呼ぶ) を用意した。 脂環化合物変性フエノールノポラック樹脂としては、 精製フエノールと a, a ージメチルエーテル _ 2, 5ージシクロペン夕ジェンとから誘導されたポリスチ レン換算質量平均分子量が 969で、 かつその抽出水のイオン伝導度が 0. 7m S/m (7 S/cm) である、 いわゆるジシクロペン夕ジェン変性フエノール ノポラック樹脂 (以下、 単に DCN樹脂と呼ぶ) 、 または、 フエノールとひ, ひ —ジメチルエーテル _p—シクロへキサンとから誘導されたポリスチレン換算質 量平均分子量が 1084で、 その抽出水のイオン伝導度が lmSZm (10 S /cm)である、 いわゆるシクロへキサン変性フエノールノポラック樹脂(以下、 単に CHN樹脂と呼ぶ) を、 またそのエステル化脂環化合物変性フエノールノボ ラック樹脂としては、 該ジシクロペン夕ジェン変性フエノールノポラック樹脂中 の活性フエノール性水酸基の 91モル%をベンゾィルエステル化し、 その抽出水 のイオン伝導度が lmS/m (10 SZcm) であるもの (以下、 単にエステ ル化 DC N樹脂と呼ぶ) 、 または、 該シクロへキサン変性フエノールノポラック 樹脂中の活性フエノール性水酸基の 100モル%をベンゾィルエステル化し、 そ の抽出水のイオン伝導度が 0. 6mSZm (6 S/cm) であるもの (以下、 単にエステル化 CHN樹脂と呼ぶ) を用意した。
多環芳香族化合物変性ノポラック榭脂としては、 鹿島石油 (株) 製品の FP I
-5136 (軟化点 75 :、数平均分子量 640、遊離フエノール含有量 0. 1 % 以下、 抽出水のイオン伝導度が 0. 8mSZm ( 8 S / c m) ) を、 またその エステル化多環芳香族化合物変性ノポラック樹脂としては、 FP I _ 5136の 活性フエノール性水酸基の 95モル%をベンゾィルエステル化し、 その抽出水の イオン伝導度が 0. emSZm (6 z S/cm) であるもの (以下、 単にエステ ル化 FP I樹脂と呼ぶ) 、 ナフトールノポラック樹脂としては、 0—ナフトール とホルムアルデヒドから誘導されたポリスチレン換算質量平均分子量が 878で、 その抽出水のイオン伝導度が 0. 3mSZm (3^S/cm) の樹脂 (以下、 単 に NN樹脂と呼ぶ) を、 そのエステル化ナフトールノポラック榭脂としては、 N N樹脂のフエノール性水酸基の 50モル%をベンゾィルエステル.化したエステル 化 N N樹脂をそれぞれ用意した。
ナフトールァラルキル榭脂としては、 /3—ナフトールと α, ひ—ジメチルエー テル一 Ρ—キシリレンとから誘導されたポリスチレン換算質量平均分子量が 55 5で、 その抽出水のイオン伝導度が 0. 7mSZm (7^S/cm) の樹脂 (以 下では単に NA樹脂と呼ぶ) を、 そのエステル化ナフトールァラルキル樹脂とし ては、 該 N A樹脂のフエノール性水酸基の 50モル%をベンゾィルエステル化し たエステル化 N A樹脂をそれぞれ用意した。
脂環化合物変性ナフトールノポラック樹脂としては、 j3—ナフトールと a, a —ジメチルエーテル一 2, 5ージシクロペン夕ジェンとから誘導されたポリスチ レン換算質量平均分子量が 1240で、 その抽出水のイオン伝導度が 0. 7mS / {1 nS/c ) の樹脂 (以下、 単に D C— NN樹脂と呼ぶ) を、 そのエス テル化物として、 DC—NN樹脂のフエノール性水酸基の 50モル%をべンゾィ ルエステル化したエステル化 D C— NN樹脂を用意した。
多価フエノール単量体としては、 抽出水のイオン伝導度が 0. 3mS/m (3 S/cm) まで精製した 4, 4' 一 [ (2—ヒドロキシフエニル) メチレン] ビス [2, 3, 6—トリメチルフエノール] (以下、 単にトリス P化合物と呼ぶ) を用意し、 微粉砕機により最大粒子径が 4 ;um以下 (632. 8 nm波長のレー ザ一照射式粒子径分布測定法により求めた重量加積曲線の 99. 9 %最大粒子径 で 4 m以下) のものを用いた。
また、 エステル化多価フエノール単量体としては、 合成例 2に従って、 前記ト リス P化合物の活性フエノール性水酸基の 99. 3.モル%をベンゾィルエステル 化し、 その抽出水のイオン伝導度が 0. 6mS/m ( 6 S / c m) であるもの を用意し、 以下単にエステル化トリス P化合物と言う。 .. 別の多環芳香族化合物変性フエノールノポラック樹脂としては、鹿島石油(株) 製品,商品名 「PPF樹脂; FP I— 5127」 (フエノール核と接触分解ブラ ントからの軽質留分に由来する 3乃至 4環多環芳香族炭化水素核とがメチレン結 合でランダムに結合した樹脂) から、 遊離フエノール含有量 0. 01 %以下、 軟 化点 80で、 GPCのポリスチレン換算の数平均分子量で約 650、 抽出水のィ オン伝導度が 2mSノ m (20 ^S/cm) 以下のものを選定使用した。
ポリビニルフエノールとしては、 丸善石油化学 (株) 社製品,商品名 「マル力 リンカ一 M (S-2) 」 から、 抽出水のイオン伝導度が 2 m SZm (20 ^ S/ cm)以下のものを、ポリビニルフエノール共重合体としては、丸善石油化学(株) 製品 '商品名 「マルカリンカ一 CBA」 (pビニルフエノールとプチルァクリレ —卜とのランダム共重合体であり、 GPCによる質量平均分子量が 1万) から、 抽出水のイオン伝導度が 2 mSZm (2 0 S/cm) 以下のものを、 ポリイソ プロぺニルフェノールとしては、 p—イソプロぺニルフエノールのホモポリマー で GPCによる重量平均分子量で 3350で、 抽出水のイオン伝導度が 2 mSZ m (20 iS/cm) 以下のもの (以下、 単に OP樹脂と呼ぶ) を用意した。 ま たポリイソプロぺニルフエノール共重合体としては、 三井化学 (株) 製品 ·商品 名 「ミレックス SP」 (p—イソプロぺニルフエノールとスチレンとのランダム 共重合体であり、 GPCによるポリスチレン換算質量平均分子量が約 4000) から、 抽出水のイオン伝導度が 2 mSZm (20 S/cm) 以下のものをそれ ぞれ選定用意した。
また、 ジヒドラジド化合物としてはアジピン酸ジヒドラジド (略記号 ADH) を選定した。
イミダゾールーエポキシ樹脂ァダクト型潜在性エポキシ硬化剤としては、 三井 化学 (株) 製品 「Ca t Z— 15」 、 または味の素製品 「アミキュア一 PN23 J を選定使用した。 合成例 1
エステル化ノボラック樹脂の製造
温度計、 攪拌器、 滴下ロートおよび還流冷却器を備えたガラス製容器に、 フエ ノールノポラック樹脂 (商品名: PSM— 4216、 水酸基当量 107g/eq:群 栄化学 (株) 製) 107 gを装入し、 内温を 125でまで昇温した。 内温を同温 度に保ち、 攪拌を行いながら塩化ベンゾィル 140· 6 gを 2時間で滴下した。 その後、 125°Cに保ちながら 2時間反応を行った後、 更に 140°Cまで昇温し た。 140乃至 150でにおいて 2時間熟成したのち、 発生塩酸ガスを最高 15 °C/ 1 OmmHgの条件で減圧留去した。 ここで得られた樹脂を、 トルエン 1000 gに溶解し、 廃水が中性になるまで 60乃至 70°Cにおいて湯洗を行った後、 トルエンを最高 150°C/5mmHg の条件で留去して水酸基の 98モル%がベンゾィル化された、 いわゆるエステル ィ匕フエノ一ルノボラック樹脂 (エステル化 PSM— 4216) 210 gを得た。 合成例 2
エステル化トリスフヱノール化合物の製造
温度計、 攪拌器、 滴下ロートおよび還流冷却器を備えたガラス製容器に、 4, 4' ― [ (2—ヒドロキシフエニル) メチレン] ビス [2, 3, 6_トリメチル フエノール] 143部とァセトフエノン 100部とを装入し、 内温を 125°Cま で昇温した。 内温を同温度に保ち、 攪拌を行いながら塩化ベンゾィル 126. 5 gを 2時間で滴下した。 その後、 125でに保ちながら 2時間反応を行った後、 更に 140°Cまで昇温した。 140乃至15 において 2時間熟成したのち、 発生塩酸ガスを最高 150°CZ1 OmmHgの条件で減圧留去した。
ここで得られた化合物を、 トルエン 1000 gに滴下-させて析出させ、 得られ た結晶成分を再度 5%水一アセトン混和液に溶解、 トルエン溶剤にて析出を 5回 繰り返して、 含水アセトン廃水が中性になるまで再結晶化を行った後、 該結晶を 最高 150で Z5mmHgの条件で乾燥して、 τΚ酸基の 99. 3モル%がべンゾ ィル化された、 いわゆるエステル化トリスフエノ一ル単量体 (エステル化トリス フエノール化合物) 1 10 gを得た。
3. 硬化促進剤 (3)
純度 99. 7%からなる 3— P—クロ口フエ二ルー 1, 1—ジメチル尿素 (以 下、 促進剤 Uと略称する) 、 2, 4_ [ビス (1, 1—ジメチル尿素) ] トルェ ンとして、 サンァプロ社製品 Uc a t - 3502T (以下、 単に 3502Tと略 称する) 、 3, 5—ジ (1, 1ージメチルゥレア) — 5—メチル— 2—シクロへ キセン— 1—オンとして、 サンァプロ社製品 Uc a t— 3503 N (以下、 単に 3503Nと略称する) 、 2—ェチルー 4—メチルイミダゾールとして、 四国化 成 (株) 製品である 2 E4MZならびにトリフエニルフォスフィン (試薬) を用 意し、 それを微粉砕機で最大粒子径が 4/ m以下 (632. 8 nm波長のレーザ 一照射式粒子径分布測定法により求めた重量加積曲線の 99. 9 %最大粒子径で 4 m以下) としたものをそれぞれ用いた。
また、 J ou r na l o f gene r a l c h emi s t ry o f t h e USSR, 55, p 1453 (1985) に記載の製造方法により下記一 般式 (13) で表される硬化促進剤 (以下、 単に PZOと呼ぶ) を使用した。
(13)
Figure imgf000089_0001
4. 無機質充填剤 (5)
球状シリカとして、 龍森社製 '商品名 「アドマファイン SO— E 1」 のァ—ダリ シドキシプロピルトリメトキシシラン 6質量%乾式処理フィラー (以下、 単に S O— E 1— 6と呼ぶ) を、 球状アルミナとして、 龍森社製,商品名 「アドマファ イン SO— A 800」 のァーグリシドキシプロビルトリメトキシシラン 5質量% 乾式処理フィラー (以下単に SO— A805と呼ぶ) を、 また無定型シリカとし て、 日本ァエロジル工業 (株) 製品 '商品名 「ァエロジル # 200」 (電子顕微 鏡観察法で求めた一次平均粒子サイズ 0. 08^m) 、 同じく信越化学 (株) 製 品 ·商品名 「MU— 120」 (電子顕微鏡観察法で求めた一次一次平均粒子サイ ズ 0. 07 m) を、 無定型アルミナとして、 昭和電工 (株) 製品 ·商品名 「U A— 5105」 (以下、 単に無定型アルミナ 1と呼ぶ) を、 酸化チタンとして、 石原産業 (株) 製品 '商品名 「CR— EL」 (632. 8 nm波長のレーザー照 射式粒子径分布測定法により求めた重量加積曲線の 50 %粒子径を一次平均粒子 サイズとする平均サイズで 1 m) をそれぞれ使用した。
またグラフト化変性アルミナとして以下のものを使用した。
グラフト化変性アルミナとしては、 632. 8 nm波長のレーザー照射式粒度分 布測定法によって得た重量加積曲線から求めた 50 %平均粒子径が 0. 1 / m、 かつ 99. 5%粒子径が 2// mの無定型ァ—アルミナを用意し、 その無定型ァー アルミナ l kgに対し、 ァ―グリシドキシプロビルトリメトキシシラン (信越化 学 (株) 製品 '商品名 KBM403) 30. 3 gの割合で、 100^雰囲気下に 噴霧処理し、 更に 80 で 48時間熟成させたものを使用した (以下、 単にグラ フト化変性アルミナと呼ぶ) 。
なお、 グラフト化変性アルミナ 10部をトルエン溶剤 100部で 5回洗浄した後 の乾燥試料においても、 その乾燥試料をルツポ中で焼くと有機分として 1. 7 % の加熱減量があつたことから、 ァ一グリシドキシプロピ-ルトリメチキシシランと して、 およそ 2. 4%がグラフト化していることが判明した。
5. カップリング剤 (6)
ァーグリシドキシプロビルトリメトキシシラン (以下、 単にエポキシシランと呼 ぶ) 、 N—フエニル—ァーァミノプロピルトリメトキシシラン (以下、 単にアミ ノシランと呼ぶ) 、 ァ—イソシアナ一トプロピルトリエトキシシラン (以下、 単 にイソシアナ一トシランと呼ぶ) を選定使用した。
6. ゴム状ポリマー微粒子 (4) は以下に示す合成例 3乃至合成例 4をそれぞれ 経て調整した組成物を用いた。
合成例 3
ゴム状ポリマー微粒子 (微架橋型アクリルゴム微粒子; S 1と略称) 含有ェポキ シ樹脂組成物 (a) の合成
攪拌機、 気体導入管、 温度計、 冷却管を備えた 2000mlの四つ口フラスコ中 に、 2官能性エポキシ樹脂としてビスフエノール F型エポキシ樹脂 (ェピクロン 830 S ·大日本インキ化学工業 (株) 製) 600 g、 アクリル酸 12 g、 ジメ チルエタノールァミン 1 g、トルエン 50 gを加え、空気を導入しながら 11 で 5時間反応させ二重結合を導入した。 次に、 ブチルァクリレート 350 g、 グ リシジルメタクリレー卜 20 g、 ジビニルベンゼン l g、 ァゾビスジメチルバレ ロニトリル 1 g及びァゾビスイソプチロニトリル 2 gを加え、 反応系内に窒素を 導入しながら 7 Ot:で 3時間反応させ、更に 90でで 1時間反応させた。次いで、 1 10 の減圧下で脱トルエンを行い、 該組成物を光硬化触媒の存在化に低温で 速硬化させて、 その硬化物の破断面モルフォロジ一を電子顕微鏡で観察して分散 ゴム粒子径を測定する方法で得た最小粒子径が 0. 02//m、 最大粒子径が 1 mからなる微架橋型アクリルゴム微粒子 (S 1) が均一に分散したエポキシ樹脂 組成物 (a) を得た。 - なお、 モノマー仕込量と残存モノマ一とから算出される微架橋型アクリルゴム微 粒子 (S 1) 含有量は 37. 9重量%と判明した。
また、 エポキシ樹脂組成物 (a) を TB Aにかけて求めた微架橋型アクリルゴ ム微粒子 (S 1) の軟化点温度は— 42 であった。
合成例 4
シリコン系のゴム状ポリマー微粒子 (架橋型シリコンゴム微粒子; S 2) 含有ェ ポキシ樹脂組成物 (b) の合成
攪拌機、 気体導入管、 温度計、 冷却管を備えた 200 Omlの四つ口フラスコを 用意し、 2官能性エポキシ樹脂としてビスフエノール F型エポキシ樹脂 (ェピク ロン 83 O S '大日本インキ化学工業 (株) 製) 600 g、 アクリル酸 12 g、 ジメチルエタノールァミン 1 g、 トルエン 50 gを加え、 空気を導入しながら 1 10°Cで 5時間反応させ二重結合を導入した。 次に、 ヒドロキシァクリレート 5 g、ブチルァクリレート 10 g、ァゾビスイソプチロニトリル 1 gを加え、 70°C で 3時間反応させ、 更に 90°Cで 1時間反応させた。 次いで、 1 10°Cの減圧下 で脱トルエンを行った。 次に、 分子中にメトキシ基を有するシリコーン中間体 7 0 g、 ジブチルスズジラウレート 0. 3 gを加え、 150でで 1時間反応を行い、 生成メタノールを除去するため更に 1時間反応を続行した。 このグラフト体に常 温硬化型 2液タイプのシリコンゴムを 1/1で混合したものを 300 g加え、 2 時間反応させて、 微架橋型シリコンゴム微粒子 (S 2) が均一に分散したェポキ シ樹脂組成物 (b) を得た。
該組成物 (b) は、 光硬化触媒の存在化に低温で速硬化させ、 その硬化物の破 断面モルフォロジ一を電子顕微鏡で観察して分散ゴム粒子径を測定する方法で得 た平均粒子径値が 1. 5 mの微架橋型シリコンゴム微粒子 (S 2) が均一に分 散したエポキシ樹脂組成物 (b) である。
また、 仕込量から算出される微架橋型シリコンゴム微粒子(S 2)含有量は 30. 0%である。 さらに、 エポキシ樹脂組成物 (b) を TBAにかけて求めた微架橋 型シリコンゴム微粒子 (S 2) の軟化点温度は— 65でであった。
7. 高軟化点ポリマー微粒子 (8) は以下に示す合成例 5で調整した組成物を用 いた。
合成例 5
高軟化点アクリルポリマー微粒子 (P 1) の合成
攪拌機、 気体導入管、 温度計、 還流冷却管を備えた 2000mlの四つロフラス コにイオン交換水 420. 5 g、 ィタコン酸 10 g、 界面活性剤としてアルキル ジフエニルエーテルジスルフォン酸ナトリウムである (株) 花王製品の 「ペレツ クス SS_L」 2. 6 gを加え、 窒素を導入しながら 70°Cまで昇温させた。 同 温度に達した段階で、 過硫酸カリウム 1. 2 gをイオン交換水 10 gに溶解させ た開始剤水溶液 11. 2 gを加え、 さらに n—プチルァクリレート 5 g、 メチル メタクリレート 5 gとヒドロキシェチルメ夕クリレート 0. 5 gからなる混合液 を一括添加し、 70 で 20分間シード重合を行った。 その後、 同温度雰囲気下 に、 メチルメタクリレート 339 g、 グリシジルメ夕クリレート 20 g、 n—ブ チルァクリレート 40 g、 1, 6—へキサンジオールジメ夕クリレート 2 gとの 混合モノマー液を、 イオン交換水 160 gに前記の 「ペレックス S S—L」 1.
8 g含有する水溶液で、 機械的に乳化させた乳化液を約 4時間かけて連続滴下し た。 滴下終了後、 更に同温度下に 1時間残モノマー重合を完結させて、 固形分 3 9. 9重量%のエマルシヨン溶液 (Em— 1) を得た。 引き続き、 該 (Em_ l) 溶液を純水を用いた限外口過装置に 4.8時間かけて水溶性成分を除去精製した。 その限外口過処理後の Em_ 1エマルシヨン溶液 1, 000 gを噴霧乾燥器にか けて、 0. 1%以下の水分含有量からなる高軟化点アクリルポリマー微粒子 (P
1) 粉末を 388 g得た。
なお、 Em— 1を電子顕微鏡にかけて分散粒子の一次平均粒子サイズを求めた 結果、 170nm (0. 17 m) であった。
高軟化点アクリルポリマー微粒子 (P 1) の微架橋度指数は、 全モノマー中に占 める架橋性モノマーの含有比率で表して 0. 5質量%の微架橋度を持つものであ る。 また、 その熱溶融フィルムを用いた TB A情報からは、 高軟化点アクリルポ リマー微粒子 (P 1) の軟化点温度は 8 O :であった。
合成例 6
ェポト一ト YDCN42部とェピクロン 830 Sの 133部と、 溶剤としてトル ェン 250部とを事前に 500ml容積の反応フラスコに仕込み、 攪拌下に、 ァ ミン価が 1500の両末端一級アミノ基を持つポリジメチルシロキサン (信越シ リコン社製品; X— 22— 161 B) 100部を加え、 120°Cで 2時間反応さ せた後、 同温度下で減圧脱溶剤処理して変性エポキシ樹脂 275部を得た。 この 変性エポキシ樹脂組成物を EPA— 005と呼ぶ。 8. ゴム状ポリマー微粒子 (4) をコア相、 高軟化点ポリマー微粒子 (8) をシ エル相とする複合粒子
ゴム状ポリマー微粒子 (4) をコア相、 高軟化点ポリマー微粒子 (8) をシェル 相とするコア—シェルの質量比で 1 : 1からなる複合粒子として知られるゼオン 化成株式会社製品 「ゼオン F 351」 (平均粒子径 0. を入手し、 その
50%水溶液を純水による限外口過器に 48時間かけて脱イオン化した後、 噴霧 乾燥器で粉体化させたものを用いた。 以下、 単に 「高軟化点ポリマ一微粒子 P 2」 と呼ぶ。 実施例 1
固形ェポキシ樹脂であるクレゾ一ルノポラック型ェポキシ樹脂 「ェポトート Y DCN」 4. 1部をメチルカルビトール 5部に溶解したエポキシ榭脂組成物 9. 1部と平均粒子径が 0. 05 の微架橋型アクリルゴム微粒子 (S 1) が均一 に分散したエポキシ樹脂組成物 (a) 26. 8部、 硬化剤としてエステル化 PS M4261 (ベンゾィル化ノポラック樹脂) 13. 3部と XL P樹脂 (フエノー ルァラルキル樹脂であるミレックス XL— 2 L) 1 1. 3部をメチルカルビトー ル 13. 7部に事前に溶解した硬化剤溶液 28. 3部、 硬化促進剤として PZO 1. 5部、 無定形シリカ 「MU_ 120」 2· 1部、 球状シリカ 「SO— E 1— 6」 20. 6部、 カップリング剤として KBM403の 1. 6部とを一括混合し、 ダルトンミキサーで予備混練し、 次に 3本ロールで固体原料が 5 m以下になる まで混練した混練物を真空脱泡処理して、液晶表示セルシール剤用組成物(E 1) を得た。
液晶表示セルシール剤用組成物 (E 1) は、 エポキシ樹脂の含有量として 20. 7 %、 ゴム状ポリマー微粒子含有量 10. 2%、 無機質充填剤含有量 22. 7%、 溶剤含有量 18. 7 %、 カップリング剤含有量 1. 6%、硬化剤含有量 24. 6%、 硬化促進剤含有量 1. 5%とからなる。 液晶表示セルシール剤用組成物(E 1)に関するシール剤物性を表 2に示した。 液晶表示セルシール剤用組成物 (E 1) 100部に、 太さ 5 mのガラス短繊 維のギャップコントロール剤 5部を配合し、 十分混合して得た組成物を、 まず、 透明電極と配向膜処理された液晶セル用ガラス基板 (以下、 単に I TO基板と呼 ぶ) に、 1基板当たり、 上下左右各 1の合計 4セル (セルサイズが 1インチ) か らなるパターンをスクリーン印刷し、 幅約 0. 5mm、 シール剤の塗布厚みが約 20乃至 22 からなる I TO基板を得た。 その後、 90で熱風乾燥器で 15 分処理後、 対になるべき別の I TO基板を乗せ、 位置合わせ後に、 プレス圧 0. 03MP a/ cm2, 180 / 4分で剛体枚葉プレス加熱により仮接着をした後、 引き続き 150でに加熱したオーブン中に 90分投入して、 本硬化接着させる接 合シール試験を 10回繰り返し実施した。その結果、シール貫通泡の発生によるシ ール不良箇所やシールラインの乱れは、 1サンプルも無ぐ所望の液晶表示用セル 基板がすべてのロットで製造可能であった。
次いで、各セルは個々に切断後,セルのくさび引き剥がし試験、 シール機能耐久 性試験を行い、 結果を表 2に示した。 実施例 2
表 1に示した処方に従って、 実施例 1と同様にして液晶表示セルシール剤用組 成物 (E2) を得た。
液晶表示セルシール剤用組成物 (E2) はエポキシ樹脂の含有量として 26.
2%、 ゴム状ポリマ一微粒子含有量 6. 5%、 無機質充填剤含有量 16. 5%、 溶剤含有量 19. 7 %、 カップリング剤含有量 1. 2%、硬化剤含有量 28. 4%、 硬化促進剤含有量 1. 5%とからなる。
液晶表示セルシール剤用組成物(E 2)に関するシール剤物性を表 2に示した。 液晶表示セルシール剤用組成物 (E2) 100部に、 太さ 5 のガラス短繊 維のギャップコントロール剤 5部を配合し、 十分混合して得た組成物を、 まず I TO基板に、 1基板当たり、 上下左右各 1の合計 4セル(セルサイズが 1インチ) からなるパターンをスクリーン印刷し、 幅約 0. 5mm、 シール剤の塗布厚みが 約 20乃至 22 mからなる I TO基板を得た。 その後、 80で熱風乾燥器で 3 0分処理後、 対になるべき別の I TO基板を乗せ、 位置合わせ後に、 プレス圧 0. 03MPaZcm2、 180で/4分で剛体枚葉プレス加熱により仮接着をした後、 引き続き 150でに加熱したオーブン中に 90分投入して、 本硬化接着させる接 合シール試験を 10回繰り返し実施した。その結果、シール貫通泡の発生によるシ ール不良箇所やシールラインの乱れは、 1サンプルも無ぐ所望の液晶表示用セル 基板がすべてのロットで製造可能であった。
次いで、各セルは個々に切断後,セルのくさび引き剥がし試験、 シール機能耐久 性試験を行い、 結果を表 2に示した。 実施例 3
表 1に示した処方に従って、 実施例 1同様にして本発明の液晶表示セルシール 剤用組成物 (E3) を得た。
液晶表示セルシール剤用組成物 (E3) はエポキシ樹脂の含有量として 20. 18%、 ゴム状ポリマー微粒子含有量 6. 82%、 無機質充填剤含有量 22 %、 溶剤含有量 15%、 カップリング剤含有量 1%、 硬化剤含有量 33. 5%, 硬化 促進剤含有量 1. 5%とからなる。
液晶表示セルシール剤用組成物(E 3)に関するシール剤物性を表 2に示した。 液晶表示セルシール剤用組成物 (E 3) 100部に 6 mのガラス短繊維のギ ヤップコントロール剤 2部を加え、 十分混合して得た組成物を、 まず I TO基板 に、 1基板当たり、 上下左右各 1の合計 4セル (セルサイズが 1インチ) からな るパターンをスクリーン印刷し、 幅約 0. 5mm、 シール剤の塗布厚みが約 20 乃至 22 mからなる I TO基板を得た。 その後、 95で熱風乾燥器で 15分熱 処理後、 対になるべき別の I TO基板を乗せ、 位置合わせ後に、 プレス圧 0. 0 5MP a/cm2, 170 °CZ 5分で剛体熱プレス加熱方式により仮接着した後、 更に 150で加熱オーブン中で 80分本硬化する接合シール試験を 10回繰り返 し実施した。その結果、シール貫通泡の発生によるシール不良箇所やシールライン の乱れは 1サンプルも無ぐ所望の液晶表示用セル基板がすべてのロッ卜で製造 可能であった。
次いで、 各セルは個々に切断後,セルのくさび引き剥がし試験、 シール機能耐久性 試験を行い、 結果を表 2に示した。 実施例 4
表 1に示した処方に従って、 実施例 1と同様にして本発明の液晶表示セルシー ル剤用組成物 (E4) を得た。
液晶表示セルシール剤用組成物(E 4)はエポキシ樹脂の含有量として 21. 3%、 ゴム状ポリマ一微粒子含有量 10. 4 %、 無機質充填剤含有量 23. 3 %、 溶剤 含有量 17. %、 カップリング剤含有量 1. 7%、 硬化剤含有量 24. 3%、 硬化促進剤含有量 1. 6%とからなる。
液晶表示セルシール剤用組成物(E4)に関するシール剤物性を表 2に示した。 液晶表示セルシール剤用組成物 (E4) 100部に対し、 太さ 5 mのガラス短 繊維のギャップコントロール剤 2部を配合し、 十分混合して得た組成物を、 まず I TO基板に、 1基板当たり、 上下左右各 1の合計 4セル (セルサイズが 1イン チ) からなるパターンをスクリーン印刷し、 幅約 0. 5mm, シール剤の塗布厚 みが約 22乃至 24 mからなる I TO基板を得た。 その後、 90°C熱風乾燥器 で 15分処理後、 対になるべき別の I TO基板を乗せ、 位置合わせ後に、 プレス 圧 0. 03MPa/cm2、 180 4分で剛体枚葉プレス加熱により仮接着し た後、 引き続き 150°C加熱オーブン中に 90分投入して本硬化接着する接合シ ール試験を 10回繰り返し実施した。その結果,シール貫通泡の発生によるシール 不良箇所やシールラインの乱れは 1サンプルも無く >所望の液晶表示用セル基板 JP00/08814
がすべてのロッ卜で製造可能であった。
次いで、各セルは個々に切断後 >セルのくさび引き剥がし試験、 シール機能耐久 性試験を行い、 結果を表 2に示した。 表 1
Figure imgf000098_0001
表 2
Figure imgf000099_0001
実施例 5
固形エポキシ樹脂であるクレゾールノポラック型エポキシ樹脂 「ェポトート Y DCN」 20部とビスフエノール A型エポキシ樹 fl旨 「ェポミック R 367」 2部 をメチルカルビトール 9部に溶解したェポキシ榭脂組成物 31部と平均粒子径が 0. 05 mの微架橋型アクリルゴム微粒子 (S 1) が均一に分散したエポキシ 樹脂組成物 (a) 15. 5部、 硬化剤として XP樹脂 (フエノールァラルキル樹 脂) 25部をメチルカルビトール 10部に事前に溶解した硬化剤溶液 35部、 硬 化促進剤として促進剤 Ul部、 無定形シリカ 「MU— 120」 2部、 無定型アル ミナ 「UA— 5105J 14. 6部、 シランカップリング剤としてアミノシラン 0. 9部とを一括混合し、 さらにダルトンミキサーで予備混合し、 次に 3本ロー ルで固体原料が 5 /m以下になるまで混練し、 混練物を真空脱泡処理して表 3記 載の液晶表示セルシール剤用組成物 (E5) を得た。
液晶表示セルシール剤用組成物 (E5) は、 一分子中に質量平均で 3. 5個のェ ポキシ基を有するエポキシ樹脂からなり、 その含有量 31. 73%と、 ゴム状ポ リマー微粒子含有量 5. 87%, 無機質充填剤含有量 16. 6%、 溶剤含有量 1 9%、 シランカップリング剤含有量 0. 9%、 硬化剤含有量 25%、 硬化促進剤 含有量 1%とからなる。
液晶表示セルシール剤用組成物(E 5)に関わるシール剤物性は表 4に示した。 液晶表示セルシール剤用組成物 (E 5) 100部に対し、 太さ 5 mのガラス 短繊維のギャップコントロール剤 5部を配合し、 十分混合して得た組成物を、 ま ず I TO基板に、 1基板当たり、 上下左右各 1の合計 4セル (セルサイズが 1ィ ンチ) からなるパターンをスクリーン印刷し、 幅約 0. 5mm、 シール剤の塗布 厚みが約 20乃至 22 zmからなる I TO基板を得た。 その後、 80で熱風乾燥 器で 30分処理後、 対になるべき別の I TO基板を乗せ、 位置合わせ後に、 プレ ス圧 0. 03MP aZcm2, 180 °CZ 4分で剛体枚葉プレス加熱により仮接着 した後、 引き続き 150°C加熱オーブン中に 90分投入して本硬化接着する接合 シール試験を 10回繰り返し実施した。その結果、シール貫通泡の発生によるシー ル不良箇所やシールラインの乱れは 1サンプルも無ぐ所望の液晶表示用セル基 板がすべてのロットで製造可能であった。 .
次いで、 各セルは個々に切断後 >セルのくさび引き剥がし試験、 12 1 2 時間プレッシャークッカー試験後のセルのくさび引き剥がし試験、 更に、 得られ たセルの液晶表示機能の観察を行い、 結果を併せて表 4に示した。 また、 得られ たセルを用いて行ったシール機能耐久性試験の結果も表 4に示した。 実施例 6
表 3に示した処方に従って、 実施例 5と同様にして本発明の液晶表示セルシー ル剤用組成物 (E6) を得た。
液晶表示セルシール剤用組成物 (E6) は、 一分子中に質量平均で 3個のェポ キシ基を有するエポキシ樹脂からなり、 その含有量 29. 2%と、 ゴム状ポリマ —微粒子含有量 3. 8%、 高軟化点ポリマー微粒子含有量 9. 5%> 無機質充填 剤含有量 16%、 溶剤含有量 22%、 シランカップリング剤含有量 1. 5%、 硬 化剤含有量 16%、 硬化促進剤含有量 2%とからなる。 なお、 E型粘度計による 25で初期粘度は 65 P a · sであった。
液晶表示セルシール剤用組成物 (E6) に関わるシール剤物性を表 4に示した。 液晶表示セルシール剤用組成物 (E 6) 100部に対し、 太さ 5 mのガラス 短繊維のギャップコントロール剤 5部を配合し、 十分混合して得た組成物を、 ま ず I TO基板に、 1基板当たり、 上下左右各 1の合計 4セル (セルサイズが 1ィ ンチ) からなるパターンをスクリーン印刷し、 幅約 0. 5mm、 シール剤の塗布 厚みが約 20乃至 22 mからなる I T〇基板を得た。 その後、 90 X熱風乾燥 器で 15分処理後、 対になるべき別の I TO基板を乗せ、 位置合わせ後に、 プレ ス圧 0. O SMP aZcm2, 180 :Z 4分で剛体枚葉プレス加熱により仮接 着した後、 引き続き 150 加熱オーブン中に 90分投入して本硬化接着する接 合シール試験を 10回繰り返し実施した。その結果,シール貫通泡の発生によるシ ール不良箇所やシールラインの乱れは 1サンプルも無く,所望の液晶表示用セル 基板がすべてのロッ卜で製造可能であった。
次いで、 各セルは個々に切断後、セルのくさび引き剥がし試験、 12 1°CZ2 時間プレッシャークッカー試験後のセルのくさび引き剥がし試験、 更に、 得られ たセルの液晶表示機能の観察を行い、 結果を併せて表 4に示した。 また、 得られ たセルを用いて行ったシール機能耐久性試験の結果も表 4に示した。 実施例 7
実施例 6に於いて、 高軟化点アクリルポリマー微粒子 (P 1) に替えて高軟化 点ポリマー微粒子 (P2) を同部とした以外は、 実施例 6と同様にして表 3記載 の液晶表示セルシール剤用組成物 (E7) を得た。
液晶表示セルシール剤用組成物 (E7) は、 一分子中に重量平均で 3個のェポ キシ基を有するエポキシ樹脂からなり、 その含有量 29. 2%と、 ゴム状ポリマ 一微粒子含有量 8. 55%、 高軟化点ポリマー微粒子含有量 4. 75%、 無機質 充填剤含有量 16%、溶剤含有量 22%、 シランカップリング剤含有量 1. 5%、 硬化剤含有量 16%、 硬化促進剤含有量 2%とからなる。 なお、 E型粘度計によ る 25 初期粘度は 68 P a · sであった。
液晶表示セルシール剤用組成物 (E7) に関わるシール剤物性を表 4に示した。 液晶表示セルシール剤用組成物 (E7) 100部に対し、 粒子径 5 imの球状 シリカのギャップコントロール剤 3部を配合し、 十分混合して得た組成物を、 ま ず I TO基板に、 1基板当たり、 上下左右各 1の合計 4セル (セルサイズが 1ィ ンチ) からなるパターンをスクリーン印刷し、 幅約 0. 5mm、 シール剤の塗布 厚みが約 20乃至 22 mからなる I TO基板を得た。 その後、 80^熱風乾燥 器で 15分処理後、 対になるべき別の I TO基板を乗せ、 位置合わせ後に、 —9 80へクトパスカル, 150 10分で真空枚葉プレス加熱方式により仮接着 をし、 更に 150 加熱オーブン中で 80分放置して本硬化接着する接合シール 試験を 10回繰り返し実施した。その結果、シール貫通泡の発生によるシール不良 は 1サンプルも無ぐ所望の液晶表示用セル基板がすべてのロットで製造可能で あつ/こ。
次いで、 各セルは個々に切断後、セルのくさび引き剥がし試験、 12 1°CZ2 時間プレッシャークッカー試験後のセルのくさび引き剥がし試験を行い、 さらに 得られたセルのシール貫通不良箇所の有無やシールラインの直線性を拡大鏡で観 察し、 それらの結果を表 4に示した。 また、 得られたセルを用いて行ったシール 機能耐久性試験の結果も表 4に示した。 実施例 8
表 3に示した処方に従って、 実施例 5と同様にして本発明の液晶表示セルシー ル剤用組成物 (E8) を得た。
液晶表示セルシール剤用組成物 (E8) はエポキシ樹脂含有量として 35 %、 無機質充填剤含有量 16. 6%、 溶剤含有量 19%、 シランカップリング剤含有 量 0. 9%、 硬化剤含有量 27. 5%、 硬化促進剤含有量 1 %とからなる。 なお、 E型粘度計による 25t:初期粘度は 39 P a · sであった。
液晶表示セルシール剤用組成物 (E8) に関わるシール剤物性を表 4に示した。 液晶表示セルシール剤用組成物 (E8) 100部に対し、 粒子径 5 mの球状 シリカのギャップコントロール剤 3部を配合し、 十分混合して得た組成物を、 ま ず I TO基板に、 1基板当たり、 上下左右各 1の合計 4セル (セルサイズが 1ィ ンチ) からなるパターンをスクリーン印刷し、 幅約 0. 5mm、 シール剤の塗布 厚みが約 20乃至 22 imからなる I TO基板を得た。 その後、 95 "C熱風乾燥 器で 25分処理後、 対になるべき別の I TO基板を乗せ、 位置合わせ後に、 プレ ス圧 0. 03MPaZcm2, 165 / 5分で剛体枚葉プレス加熱により仮接着 した後、 更に 150 加熱オーブン中で 90分放置して本硬化接着する接合シー ル試験を 10回繰り返し実施した。その結果、シール貫通泡の発生によるシール不 良は 1サンプルも無ぐ所望の液晶表示用セル基板がすべてのロッ卜で製造可能 であった。
次いで、 各セルは個々に切断後,セルのくさび引き剥がし試験、 12 1°Cノ 2 時間プレッシャークッカー試験後のセルのくさび引き剥がし試験を行い、 さらに 得られたセルのシール貫通不良箇所の有無やシールラインの直線性を拡大鏡で観 察し、 それらの結果を表 4に示した。 また、 得られたセルを用いて行ったシール 機能而 ί久性試験の結果も表 4に示した。
表 3 実施例番号 実施例 5 実施例 6 実施例 7 実施例 8 液晶表示セル用シ-ル剤組成物 E5 E6 E7 E8 杳
4$ i!H
構成原料 ェ' ヤン ia fl日照科
丄本トート YDGN 20 12 12 20 エホ ック R— 367 2 2
It Jート 1 007 11 1 1 ェ Cヮ ノ BviUt) 1 «3 コム分散エホキン樹 B 組成物
(a) 15.5 10 10 硬化剤
XP (サ 'ィロック XLC225) 25 16 16 ミレックス 4L 27.5 硬化促進剤
促進剤 U 1 2 2 1 シランカップリング剤
アミノシラン 0.9
Y9030 1.5 1.5
KBM403 0.9 充填剤成分
#200 1 1
MU 1 20 2 2
UA— 51 05アルミナ 14.6 14.6 ク'ラフト化変性アルミナ 15 15 溶剤
メチルカルビト―ル 19 19
PGDA 22 22 高軟化点ポリマー微粒子原料
P1 9.5
P2 9.5 口 B+ Γ 100.0 100.0 100.0 100.0 表 4
Figure imgf000105_0001
実施例 9
表 5に示した処方に従って、 実施例 5と同様にして本発明の液晶表示セルシー ル剤用組成物 (E9) を得た。
液晶表示セルシール剤用組成物 (E9) は、 一分子中に重量平均 2. 5個の エポキシ基を有するエポキシ樹脂からなり、 その含有量 37%と、 ゴム状ポリマ 一 微粒子含有量 3. 9%、 無機質充填剤含有量 10. 8 %、 高軟化点ポリマー 微粒子含有量 3. 5 %、 シランカップリング剤含有量 2 %、 硬化剤含有量 16. 6%、 硬化促進剤含有量 2. 2%、 溶剤含有量 23%、 ワックス含有量 1%とか らなる。 なお、 E型粘度計による 25 初期粘度は 64P a · sであった。 液晶表示セルシール剤用組成物 (E 9 )に関わるシール剤物性を表 6に示した。 液晶表示セルシール剤用組成物 (E9) 100部に対し、 粒子計 5 mの球 状シリカのギヤップコントロール剤 3部を配合し、十分混合して得た組成物を、 まず I TO基板に、 1基板当たり、 上下左右各 1の合計 4セル(セルサイズが 1 インチ) からなるパターンをスクリーン印刷し、 幅約 0. 5mm、 シール剤の塗 布厚みが約 207¾至 22 からなる I TO基板を得た。その後、 90 熱風乾 燥器で 20分乾燥し、 対になるべき別の I TO基板を乗せ、 位置合わせ後に、 プ レス圧 0. 05MP a/cm2, 150 6分で剛体枚葉プレス加熱方式によ り仮接着した後、更に 150で加熱オーブン中で 80分本硬化する接合シール試 験を 10回繰り返し実施した。 その結果、シール貫通泡の発生によるシール不良 は 1サンプルも無ぐ所望の液晶表示用セル基板がすべてのロットで製造可能で あった。
次いで、 各セルは個々に切断後 >セルのくさび引き剥がし試験、 120で Z3 時間プレッシャークッカー試験後のセルのくさび引き剥がし試験を行い、さらに 得られたセルのシール貫通不良箇所の有無やシールラインの直線性を拡大鏡で 観察し、 結果を表 6に示した。 また、 得られたセルを用いて行ったシール機能耐 久性試験の結果も表 6に示した。 実施例 10
表 5に示した処方に従って、 実施例 5と同様にして本発明の液晶表示セルシ一 ル剤用組成物 (E 10) を得た。 液晶表示セルシール剤用組成物 (E 10) は、 一分子中に重量平均 2. 2個の エポキシ基を有するエポキシ樹脂からなり、 その含有量 45. 58%と、 ゴム状 ポリマー微粒子含有量 5. 51%、 無機質充填剤含有量 8 %、 高軟化点ポリマー 微粒子含有量 1. 85%、 シランカップリング剤含有量 1. 48%、 硬化剤含有 量 35. 73%、 硬化促進剤含有量 1. 85%、 無溶剤型からなる。 なお、 E型 粘度計による 25 " 初期粘度が 102 P a · sであった。
液晶表示セルシール剤用組成物 (E 10) に関わるシール剤物性を表 6に示し た。
液晶表示セルシール剤用組成物 (E 10) 100部に対し、 粒子径 5 /zmの球 状シリカのギヤップコントロール剤 3部を配合し、 十分混合して得た組成物を、 まず I T 0基板に、 1基板当たり、 上下左お各 1の合計 4セル (セルサイズが 1 インチ) からなるパターンをスクリーン印刷し、 幅約 0. 5mm、 シール剤の塗 布厚みが約 20乃至 22 ^mからなる I TO基板を得た。 その後、 95 熱風乾 燥器で 15分熱処理後、 対になるべき別の I T〇基板を乗せ、 位置合わせ後に、 プレス圧 0. 05MPaZcm2, 170 / 5分で剛体枚葉プレス加熱方式によ り仮接着した後、 更に 150で加熱オーブン中で 80分本硬化する接合シール試 験を 10回繰り返し実施した。その結果、シール貫通泡の発生によるシール不良は 1サンプルも無く、所望の液晶表示用セル基板がすべてのロッ卜で製造可能であ つた。
次いで、 各セルは個々に切断後 >セルのくさび引き剥がし試験、 120 3 時間プレッシャークッカー試験後のセルのくさび引き剥がし試験を行い、 さらに 得られたセルのシール貫通不良箇所の有無やシールラインの直線性を拡大鏡で観 察し、 結果を表 6に示した。 また、 得られたセルを用いて行ったシール機能耐久 性試験の結果も表 6に示した。 実施例 11 表 5に示した処方に従って、 実施例 5と同様にして本発明の液晶表示セルシー ル剤用組成物 (E 11) を得た。
液晶表示セルシール剤用組成物 (E l 1) は、 一分子中に重量平均で 2. 8個 のエポキシ基を有するエポキシ樹脂からなり、 その含有量 27. 84%と、 ゴム 状ポリマー微粒子含有量 9. 66%, 無機質充填剤含有量 16. 6%、 溶剤含有 量 14%、 シランカップリング剤含有量 1. 9%、 硬化剤含有量 25%、 硬化促 進剤含有量 5%とからなる。
液晶表示セルシール剤用組成物 (E l 1) に関わるシール剤物性を表 6に示し た。
液晶表示セルシール剤用組成物 (E 11) 100部に対し、 太さ 5 imのガラ ス短繊維のギヤップコントロール剤 5部を配合し、 十分混合して得た組成物を、 まず、 透明電極と配向膜処理された液晶セル用ポリエチレンテレフ夕レートブラ スチック基板 (以下、 単に I TOプラスチック基板と呼ぶ) に、 1基板当たり、 上下左右各 1の合計 4セル (セルサイズが 1インチ) からなるパターンをスクリ ーン印刷し、 幅約 0. 5 mm、 シール剤の塗布厚みが約 20乃至 22 からな る I TOプラスチック基板を得た。 その後 85 で 20分加熱処理後、 対になる べき別の I T〇プラスチック基板を乗せ、 位置合わせ後に、 プレス圧 0. 02Μ P a/cm2, 12 20分で多段熱プレス加熱方式により本硬化する接合 シール試験を 10回繰り返し実施した。その結果、シール貫通泡の発生によるシー ル不良は 1サンプルも無ぐ所望の液晶表示用セル基板がすべてのロットで製造 可能であった。
また、 液晶表示セルシール剤用組成物 (E 11) 100部に対し、 粒子径 5 mの球状シリカギヤップコントロール剤 3部を配合し、 十分混合して得た組成物 を、 まず I T〇基板に、 1基板当たり、 上下左右各 1の合計 4セル (セルサイズ が 1インチ) からなるパターンをスクリーン印刷し、 幅約 0. 5mm、 シール剤 の塗布厚みが約 20乃至 22 mからなる I TO基板を得た。 その後、 95°C熱 風乾燥器で 15分熱処理後、 対になるべき別の I TO基板を乗せ、 位置合わせ後 に、 プレス圧 0. 05MP a/cm2, 170 5分で剛体枚葉プレス加熱方式 により仮接着した後、 更に 15 O :加熱オーブン中で 80分本硬化する接合シー ル試験を 10回繰り返し実施した。その結果,シール貫通泡の発生によるシール不 良は 1サンプルも無ぐ所望の液晶表示用セル基板がすべてのロッ卜で製造可能 であった。
次いで、 各セルは個々に切断後 >セルのくさび引き剥がし試験、 120でプレ ッシャ一クッカー後のセルのくさび引き剥がし試験、 さらに得られたセルのシー ル貫通不良箇所の有無やシールラインの直線性を拡大鏡で観察し、 結果を表 6に 示した。 また、 得られたセルを用いて行ったシール機能耐久性試験の結果も表 6 に示した。 実施例 12
実施例 11に於ける硬化剤 F P 15127 (PP F樹脂) 25部に替えて、 マ ルカリン S—1を 10部とマルカリン CBAを 15部とした以外は、 実施例 1 1 と全く同様にして液晶表示セルシール剤用組成物 (E 12) を調製した。 液晶表 示セルシール剤用組成物 (E 12) に関わるシール剤物性を表 6に示した。 液晶表示セルシール剤用組成物 (E 12) 100部に対し、 太さ 5 /zmのガラス 短繊維のギャップコントロール剤 5部を配合し、 十分混合して得た組成物を、 ま ず I TO基板に、 1基板当たり、 上下左右各 1の合計 4セル (セルサイズが 1ィ ンチ) からなるパターンをスクリーン印刷し、 幅約 0. 5mm、 シール剤の塗布 厚みが約 20乃至 22 mからなる I TO基板を得た。 その後、 80°C熱風乾燥 器で 20分処理後、 対になるべき別の I TO基板を乗せ、 位置合わせ後に、 プレ ス圧 0. 03MP aZcm2, 180 ^: 5分で剛体枚葉式熱プレス方式により仮 接着した後、 150°C/80分で本硬化する接合シール試験を 10回繰り返し実 施した。 その結果、 シール貫通泡の発生によるシール不良箇所やシールラインの 乱れは全く発生しなかった。 また得られたセルを用いて行ったシール機能耐久性 試験の結果も表 6の様に 1000時間後でも良好であった。 実施例 13
実施例 (1 1) に於いて硬化剤 FP 15127 (PPF樹脂) 25部に替えて、
〇P樹脂 5部とミレックス SP樹脂 15部とした以外は、 実施例 11と全く同様 にして液晶表示セルシール剤用組成物 (E 13) を調製した。
液晶表示セルシール剤用組成物 (E 13) に関わるシール剤物性を表 6に示し た。
液晶表示セルシール剤用組成物 (E 13) 100部に対し、 太さ 5 のガラ ス短繊維のギヤップコントロール剤 5部を配合し、 十分混合して得た組成物を、 まず I T 0基板に、 1基板当たり、 上下左右各 1の合計 4セル (セルサイズが 1 インチ) からなるパターンをスクリーン印刷し、 幅約 0. 5mm、 シール剤の塗 布厚みが約 20乃至 22 からなる I TO基板を得た。 その後、 80 熱風乾 燥器で 20分処理後、 対になるべき別の I TO基板を乗せ、 位置合わせ後に、 プ レス圧 0. 03MP a/cm2, 18 (TCZ 5分で剛体枚葉式熱プレス方式により 仮接着した後、 更に 150で/80分で本硬化する接合シール試験を 10回繰り 返し実施した。その結果、シール貫通泡の発生によるシール不良箇所やシールライ ンの乱れは全く発生しなかつた。
接合シール試験結果及びシール機能耐久性試験の結果を表 6に示した。
表 5
実施例番号 実施例 9 実施例 10 実施例" 実施例 12 実施例 13 液晶表示セル用シ-ル剤組成物 E9 E10 E11 E12 E13 構成原料 エポキシ樹脂原料
2-EHMG 5.19
1, 6-EGDE 13.34
t-BPMG 0.37
エホ'ミック VG3101L 12 8.9
エホ'トート YDCN 0 10 10 10 エホ'ト-ト ST— 1000 2 2 2 エホ'ミック R— 367 12 8.9
エホ'トート Y.H434 3.9 2.89
コ'ム分散エポキシ樹脂組成物
(a) 9.54
(b) 13 25.5 25.5 25.5 硬化剤
EP (ミレックス VR9315) 16.6
FPI5127 13.57 25
トリス P化合物 22.17
マルカリン S— 1 10 マル リン CBA 15
OP 5
SP 15 硬化促進剤
促進剤 U 2.2 1.85 5 5 5 シランカップリング剤
アミノシラン 1.9 1.9 1.9
KBM403 2 1.47
充填剤成分
CR— Eし Ί.5 1.1
MU120 1 1 1
UA— 5105アルミナ 15.6 15.6 15.6 ゲラフト化変性アルミナ 9.3 7
溶剤
フチセ口/ェチセ口 23
メチルカルビトール 5 5 5
PGMEA 9 9 9 高軟化点ポリマー微粒子原料
P1 3.5
P2 3.71
ワックス
カルナ Aワックス 1
口 αΤ 100.0 100.0 100.0 100.0 95.0 表 6
Figure imgf000112_0001
比較例 1
固形エポキシ榭脂であり、 かつ抽出水のイオン濃度が 6. 2mS/m (62 s/cm) である GPCによる数平均分子量が約 890の未精製のオルソクレゾ ールノポラック型エポキシ樹脂 (表 7中でクルードノポラックエポキシと表す) 30部をメチルカルビトール 20部で溶解した液に、 更に、 加水分解性塩素の含 有量が 350 p p mの液状型ビスフエノール A型エポキシ樹脂 「ェポミック R 1 40特殊グレード」 (表 7中では単にクルード R— 140と表す) 106部、 室 温下ではエポキシ樹脂に非溶解性の潜在性エポキシ硬化剤としてアジピン酸ジヒ ドラジッド (表 7中では ADHと略称する) 18部、 硬化促進剤として N—シァ ノエチル _ 2—ェチルー 4—メチルイミダゾ一ル 0. 2部、 酸化チタン 「CR_ EL」 5部、 球状シリカ 「SO— E 1— 6」 3部、 昭和電工製品無定型アルミナ UA— 5105を 14. 8部、 エポキシシラン 2部を加え、 予備混合し、 次に 3 本ロールで固体原料が 5 /zm以下になるまで混練し、 混練物を真空脱泡処理して 表 7に記載の液晶表示セルシール剤用組成物 (F 1) を得た。
液晶表示セルシール剤用組成物 (F 1) は、 一分子中に重量平均で 2. 5個の エポキシ基を有するエポキシ樹脂からなり、 その含有量 68%と、 無機質充填剤 1 1. 9%、 シランカップリング剤 1%、 潜在性エポキシ硬化剤 9 %、 硬化促進 剤 0. 1%、 溶剤 10%からなる。 なお、 E型粘度計による 25で初期粘度は 2 9Pa * s、 1回転/ 0回転粘度の比で表されるチクソ指数が 1. 7であった。 液晶表示セルシール剤用組成物(F 1)に関わるシール剤物性を表 8に示した。 液晶表示セルシール剤用組成物 (F 1) 100部に対し、 太さ 5 mのガラス 短繊維のギャップコントロール剤 5部を配合し、 十分混合して得た組成物を、 ま ず I T〇基板に、 1基板当たり、 上下左右各 1の合計 4セル (セルサイズが 1ィ ンチ) からなるパターンをスクリーン印刷し、 幅約 0. 5mm、 シール剤の塗布 厚みが約 20乃至 22 mからなる I TO基板を得た。 その後、 80 熱風乾燥 器で 20分処理後、対になるべき別の I TOガラス基板を乗せ、位置合わせ後に、 そのセッ卜で 10セットを多段プレスにてプレス圧 0. 03 MP a cm2下に圧 締保持した状態下で 150 オーブンに 90分放置し、 本硬化接着させた結果、 シール貫通泡の発生によるシール不良箇所やシールラインの乱れは無く、 得られ たセルを用いて行ったシール機能耐久性試験の結果を表 8のシール耐久性の評価 欄に示した。 この液晶表示セルシール剤用組成物 (F 1) は多段プレス方式によ り加熱接着する液晶表示素子の製造適性は良好であることが示された。
また、 液晶表示セルシール剤用組成物 (F 1) 100部に対し、 太さ 5 mの ガラス短繊維のギヤップコントロール剤 5部を配合し、 十分混合して得た組成物 を、 まず I T O基板に、 1基板当たり、 上下左右各 1の合計 6セル (セルサイズ が 1インチ) からなるパターンをスクリーン印刷し、 幅約 0. 5mm、 シール剤 の塗布厚みが約 20乃至 22 /zmからなる I T〇ガラス基板を得た。 その後、 該 4セルは 80 熱風乾燥器で 20分処理後、対になるべき別の I TO基板を乗せ、 位置合わせ後に、 プレス圧 0. 03MPaZcm2、 180^剛体枚葉熱プレスで 4分加熱仮接着したところ、 シール貫通泡の発生やシールラインの不良が見られ た。 よって、 この液晶表示セルシール剤用組成物 (F 1) は枚葉熱プレス適性に は欠けることが判明した。また、残り 2セルは 80 熱風乾燥機で 20分処理後、 対になるべき別の I TO基板を乗せ、 位置合わせ後に 0. 03 MP cm2にて 圧着固定後、 毎分 2でで昇温させて 130でに到達後、 更に同温度下に 90分放 置して液晶表示セルを作成した。 ここで得られたセルのクサビ開き試験結果なら びに非滲み出し性試験結果は表 8にそれぞれ示した。 比較例 2
固形エポキシ樹脂であり、 かつ抽出水のイオン濃度が 6. 2mS/m (62 sZcm) である GPCによる数平均分子量が約 890の未精製のオルソクレゾ 一ルノボラック型エポキシ樹脂 (表 7中ではクルードノポラックエポキシと表す) 25部とェポミック R— 367を 3部とをメチルカルビ! ^一ルの 15部で溶解し た液に、 更に、 加水分解性塩素の含有量が 500 p pmの液状型ビスフエノール F型エポキシ樹脂ェピクロン EP 830の 17部と、 事前にドデカン二酸ジヒド ラジド (表中では DDHと略称する) 12部、 促進剤として卜リス (ジメチルァ ミノメチルフエノール) 塩酸塩 (表 7中では単に DMP— 30塩酸塩) 1部、 ァ ミノシラン 1部、 無定型シリカ 「MU— 120」 2部、 無定型アルミナとして C R— 10を 10部と CR— 125を 13部とを加え、 予備混合し、 次に 3本口一 ルで固体原料が 5 m以下になるまで混練し、 混練物を真空脱泡処理して表 7記 載の液晶表示セルシール剤用組成物 (F 2) を得た。
液晶表示セルシール剤用組成物 (F2) は、 エポキシ樹脂 45%、 無機質充填 剤 25%、 シランカップリング剤 1%、 潜在性エポキシ硬化剤 12 %、 硬化促進 剤 2%、 溶剤 15%からなる。 なお、 E型粘度計による 25 初期粘度は 35 P a * s、 1回転 /10回転粘度の比で表されるチクソ指数が 1. 6であった。 液晶表示セルシール剤用組成物(F 2)に関わるシール剤物性を表 8に示した。 液晶表示セルシール剤用組成物 (F 2) 100部に対し、 太さ 5 / mのガラス 短繊維のギャップコントロール剤 3部を配合し、 十分混合して得た組成物を、 ま ず I TO基板に、 1基板当たり、 上下左右各 1の合計 6セル (セルサイズが 1ィ ンチ) からなるパターンをスクリーン印刷し、 幅約 0. 5mm、 シール剤の塗布 厚みが約 20乃至 22 jumからなる I T〇ガラス基板を得た。 その後、 該 4セル は 80^熱風乾燥器で 2.0分処理後、 対になるべき別の I TO基板を乗せ、 位置 合わせ後に、 真空度— 980ヘクトパスカル、 18 Ot:真空枚葉熱プレスで 10 分加熱仮接着したところ、シール貫通泡の発生やシールラインの不良が見られた。 よってこの液晶表示セルシール剤用組成物 (F 1) は、 真空枚葉熱プレス適性に は欠けることが判明した。 また、 残り 2セルは、 8 O :熱風乾燥機で 20分処理 後、 対になるべき別の I TO基板を乗せ、 位置合わせ後に 0. 03 MP aZ c m2 にて圧着固定後、 室温から毎分 2T:で昇温させ 150°Cに到達後、 更に同温度下 に 90分放置して液晶表示セルを作成した。 得られたセルの液晶表示機能の観察 結果を併せて表 8に示した。 また、 得られたセルを用いて行ったシール機能耐久 性試験の結果は 250時間以内で表示ムラ著しく、 表示機能の低下が発生した。
Figure imgf000116_0001
表 8
Figure imgf000117_0001
実施例 14
ェポミック VG3101 L 43. 1部をプロピレングリコールモノメチルエー テルアセテート 25部に溶解して得た樹脂溶液 68. 1部と、 NA樹脂 (ナフト ールァラルキル樹脂) 111. 2部と DC N (ジシクロペン夕ジェン変性フエノ ールノポラック樹脂) 11 1. 2部とを事前にプロピレングリコールモノメチル ェ一テルアセテート 150部に溶解して得た硬化剤溶液 372. 4部、 シリコン ゴム含有エポキシ樹脂組成物 (b) 250部、硬化促進剤である 5302 T 21. 6部、 同 Ca t Z_ 15を 4. 3部、 KBM403を 8. 6部、 無定形シリカと して MU— 120を 12. 9部、 シランカップリング剤を事前にグラフト処理し てなる真球状アルミナ SO— A805を 262. 1部とを一括ダルトンミキサー で予備混合し、 次に 3本ロールで固体原料が 5 /zm以下になるまで混練し、 さら に該混練物 100部に 6 のガラス短繊維のギャップコントロール剤 2部を加 えて混合、真空脱泡処理して表 9記載の液晶表示セルシール剤用組成物(E 14) を得た。
ギップコントロール剤を除く該液晶表示セルシール剤用組成物 (E 14) は、 エポキシ樹脂の含有量 21. 81%、 溶剤含有量 17. 5%、 ゴム状ポリマー微 粒子含有量 7. 5 %、無機質充填剤含有量 27. 5%、硬化剤含有量 22. 24%、 硬化促進剤含有量 2. 59%, シランカップリング剤含有量 0. 86%とからな る。
液晶表示セルシール剤用組成物 (E 14) のシール剤物性を表 10に示した。 液晶表示セルシール剤用組成物 (E 14) を用い、 実施例 1と同様に接合シー ル試験を実施し、 接合シール試験結果ならびにシール耐久性試験結果を表 10に 示した。 得られたセルは、 セルのクサビ開き試験ならびにプレッシャークッカー 後の同試験のいずれにおいても、 接着剤の完全凝集破壊であり接着信頼性に優れ ていることが判明した。 また、 シール機能耐久性試験 1000時間経過後の表示 機能は良好であった。 実施例 15
表 9に示した処方に従って、 実施例 14と同様にして本発明の液晶表示セルシ ール剤用組成物 (E 15) を得た。 '
ギップコントロール剤を除く該液晶表示セルシール剤用組成物 (E 15) は、 エポキシ樹脂の含有量 21. 15%、 溶剤含有量 16%、 ゴム状ポリマー微粒子 含有量 9. 85%、 無機質充填剤含有量 23. 5%、 硬化剤含有量 26. 5%、 硬化促進剤含有量 1 %、 シランカップリング剤含有量 2 %とからなる。
液晶表示セルシール剤用組成物 (E 15) のシール剤物性を表 10に示した。 液晶表示セルシール剤用組成物 (E 15) を用い、 実施例 5と同様に接合シー ル試験を実施し、 接合シール試験結果なら.びにシール耐久性試験結果を表 10示 した。 得られたセルは、 セルのクサビ開き試験において接着剤の完全凝集破壊で あり、 接着信頼性に優れていることが判明した。 また、 シール機能耐久性試験 1
000時間経過後の表示次機能は良好であった。 実施例 16
表 9に示した処方に従って、 実施例 14と同様にして本発明の液晶表示セルシ ール剤用組成物 (E 16) を得た。
ギップコントロール剤を除く該液晶表示セルシール剤用組成物 (E 16) は、 エポキシ樹脂の含有量 35. 15%、 ゴム状ポリマー微粒子含有量 9. 85%、 無機質充填剤含有量が 21. 3%、 硬化剤含有量 29%、 硬化促進剤含有量 3. 2% シランカップリング剤含有量 1. 5%とからなる。
. 液晶表示セルシール剤用組成物 (E 16) のシール剤物性を表 10に示した。 液晶表示セルシール剤用組成物 (E 16) を用い、 実施例 5と同様に接合シー ル試験を実施し、 接合シール試験結果ならびにシール耐久性試験結果を表 10に 示した。 得られたセルは、 セルのクサビ開き試験において接着剤の完全凝集破壊 であり、 接着信頼性に優れていることが判明した。 また、 シール機能耐久性試験 1000時間経過後の表示機能は良好であった。 実施例 17
表 9に示した処方に従って、 実施例 14と同様にして本発明の液晶表示セルシ 一ル剤用組成物 (E 17) を得た。
ロール剤を除く該液晶表示セルシール剤用組成物 (E 17) は、 エポキシ樹脂の含有量 35. 15 %、 ゴム状ポリマー微粒子含有量 9. 85%、 無機質充填剤含有量 21. 3%、硬化剤含有量 29%、硬化促進剤含有量 3. 2%、 シランカップリング剤含有量 1. 5%とからなる。
液晶表示セルシール剤用組成物 (E 17) のシール剤物性を表 10に示した。 液晶表示セルシール剤用組成物 (E 17) を用い、 実施例 5と同様に接合シー ル試験を実施し、 接合シール試験結果ならびにシール耐久性試験結果を表 10に 示した。 得られたセルは、 セルのクサビ開き試験において接着剤の完全凝集破壊 であり、 接着信頼性に優れていることが判明した。 また、 シール機能耐久性試験 1000時間経過後の表示機能は良好であった。 実施例 18 '
表 9に示した処方に従って、 実施例 14と同様にして本発明の液晶表示セルシ —ル剤用組成物 (E 18) を得た。
ギップコントロール剤を除く該液晶表示セルシール剤用組成物 (E 18) は、 エポキシ樹脂の含有量 35. 15%、 ゴム状ポリマー微粒子含有量 9. 85%、 無機質充 *剤含有量 21. 3 %、 硬化剤含有量 25. 5 %、 硬化促進剤含有量 3. 2%、 シランカップリング剤含有量 1. 5%、 高軟化点ポリマ一微粒子含有量 3. 5%とからなる。
液晶表示セルシール剤用組成物 (E 18) のシール剤物性を表 10に表した。 液晶表示セルシール剤用組成物 (E 18) を用い実施例 5と同様に接合シール 試験を実施し、 接合シール試験結果ならびにシール耐久性試験結果を表 10に示 した。 得られたセルは、 セルのクサビ開き試験において接着剤の完全凝集破壊で あり、 接着信頼性に優れていることが判明した。 また、 シール機能耐久性試験 1 000時間経過後の表示機能は良好であった。 実施例 19 表 9に示した処方に従って、 実施例 14と同様にして本発明の液晶表示セルシ —ル剤用組成物 (E 19) を得た。
ギップコントロール剤を除く該液晶表示セルシール剤用組成物 (E 19) は、 エポキシ樹脂の含有量 34. 57%, 溶剤含有量 19. 2%、 ゴム状ポリマー微 5 粒子含有量 7. 13%、 無機質充填剤含有量 17%、 硬化剤含有量 19%、 硬化 促進剤含有量 2. 1%、 シランカップリング剤含有量 1 %とからなる。
液晶表示セルシール剤用組成物 (E 19) のシール剤物性を表 10に示した。 液晶表示セルシール剤用組成物 (E 19) を用い、 実施例 5と同様に接合シー ル試験を実施し、 接合シール試験結果ならびにシール W久性試験結果を表 10に 0 示した。 得られたセルは、 セルのクサビ開き試験において接着剤の完全凝集破壊 であり、 接着信頼性に優れていることが判明した。 また、 シール機能耐久性試験 1000時間経過後の表示機能は良好であった。 実施例 20
5 表 9に示した処方に従って、 実施例 14と同様にして本発明の液晶表示セルシ
—ル剤用組成物 (E20) を得た。
ギップコントロール剤を除く該液晶表示セルシール剤用組成物 (E20) は、 エポキシ樹脂の含有量 28. 54%、 溶剤含有量 13. 2%、 ゴム状ポリマー微 ' - 粒子含有量 8. 26%、 無機質充填剤含有量 17. 3%、 硬化剤含有量 28%、 0 硬化促進剤含有量 3. 2 %、 シランカップリング剤含有量 1. 5%とからなる。
液晶表示セルシール剤用組成物 (E20) のシール剤物性を表 10に示した。 液晶表示セルシール剤用組成物 (E20) を用い、 実施例 5と同様に接合シー ル試験を実施し、 接合シール試験結果ならびにシール耐久性試験結果を表 10に 示した。 得られたセルは、 セルのクサピ開き試験において接着剤の完全凝集破壊 5 であり、 接着信頼性に優れていることが判明した。 また、 シール機能耐久性試験 1000時間経過後の表示機能は良好であった。 表 9
Figure imgf000122_0001
表 10
Figure imgf000123_0001
比較例 3
表 11に示した処方に従い、 比較例 1と同様にして液晶表示セルシール剤用組 成物 (F 3) を得た。 F 3組成物は、 硬化促進剤を含まない例であり、 吸水率、 TMA測定 (Tg、 線膨張係数) 、 透湿性、 表面硬度特性以外のシール剤物性測 定結果を表 12に示したが、 150^90分熱硬化させた際に得られる塗膜は、 80乃至 150°C領域で強い粘着性を示す未硬化性の硬化膜しか形成せず、 ァセ トン溶剤に容易に膨潤する性質を示した。 従って、 硬化促進剤を含まない該 F 3 組成物は、 熱硬化性が著しく遅い組成物と言え、 吸水特性評価ならびに TMA測 定は実質的に行えず、 表 1 2中の吸水率、 T g、 透湿性、 吸水性は、 測定不可で あつ/こ。
また、 該 F 3組成物 1 0 0部に対し、 6 のガラス短繊維のギャップコント ロール剤 2部を混合し、 実施例 1と同様に接合シール試験に供した。 その結果、 滲み出しやシール貫通泡の発生は殆ど観察されない接合セルを形成出来たが、 耐 熱接着力が低く、 熱プレス板から取り出す際に接着力が低ぐ上下基板の位置ズレ が全ロットで観察されたことより、 枚葉熱プレス適性は不適性であると判断され た。 また、 得られたセルを用いたシール耐久性試験結果は表 1 2に示す様に、 液 晶表示機能耐久性に欠けるものであつた。 比較例 4
表 1 1に示した処方に従い、 実施例 1と同様にして液晶表示セルシール剤用組 成物 (F 4 ) を得た。 F 4組成物は、 硬化促進剤としてイミダゾ一ル単量体を用 いた例である。 液晶表示セルシール剤用組成物 (F 4 ) のシール剤物性を表 1 2 に示したが、明らかに該 F 4組成物は常温のポットライフに致命的な問題があり、 塗布作業性に欠けることが判明した。
製造直後の該 F 4組成物 1 0 0部に対し、 6 のガラス短繊維のギャップコ ントロール剤 2部を混合し、 実施例 1と同様に接合シール試験に供した結果、 プ レ乾燥後の組成物は、 硬くて対基板に対する濡れ性がなく、 接合シール試験で得 られたセルは、 その半数が実質接着しておらず、 枚葉熱プレス適性に欠けるシ一 ル剤であると判明した。 また、 得られたセルの観察結果を表 1 2に示した。
製造後 1 0時間室温 2 3 °Cに放置した該 F 4組成物を用いて、 実施例 1と同様 に接合シール試験を行ったところ、 全数が接着不良を呈し、 著しく枚葉熱プレス 適性に欠けるシール剤であると判明した。
製造直後の該 F 4シール剤を用いて前記の接合シール試験に供されて製造され、 接着がある程度確保されたセルにてシール耐久性試験を実施した結果を表 1 2に 示した。 その結果、 耐久性はほぼ良好と判明したが、 保存安定性に欠けることが 致命的である。 比較例 5
表 1 1に示した処方に従い、 実施例 1と同様にして液晶表示セルシール剤用組 成物 (F 5 ) を得た。 F 5組成物は、 硬化促進剤としてトリフエニルフォスフィ ンを用いた例である。 液晶表示セルシール剤用組成物 (F 5 ) のシール剤物性を 表 1 2に示したが、 明らかに該 F 5組成物は、 常温のポットライフ適性に重大な 問題があり、 塗布作業性に欠けている。
製造直後の該 F 5組成物の 1 0 0部に対し、 6 mのガラス短繊維のギャップ コントロール剤 2部を混合し、 実施例 1と同様に接合シール試験に供した結果、 プレ乾燥後の組成物は硬くて対基板に対する濡れ性が乏しく、 接合シール試験で 得られたセルは、 そのほぼ半数に実質接着欠陥が認められ、 枚葉熱プレス適性に 欠けるシール剤であると判明した。 得られたセルの観察結果を表 1 2に示した。 製造後 1 2時間室温 2 5でに放置した該 F 5組成物を用いて、 実施例 1と同様 に接合シール試練を行ったところ、 全数に接着不良または接着欠陥が認められ、 液晶注入時に漏れや剥離現象が発生、 著しく枚葉熱プレス適性に欠けるシール剤 であると判明した。
製造直後の該 F 5シール剤を用いて前記の接合シール試験に供されて製造され、 接着が認められたセルにて、シール »久性試験を実施した結果を表 1 2に示した。 その結果、 耐久性はほぼ良好と判明したが、 保存安定性に欠けることが致命的で ある。 比較例 6
表 1 1に示した処方に従い、 実施例 1と同様にして液晶表示セルシール剤用組 成物 (F 6 ) を得た。 F 6組成物は、 多価フエノール硬化剤の配合量が 9 . 9質 量%とエポキシ樹脂に対する硬化剤当量比が過少 (エポキシ基:活性フエノール 性水酸基の当量比で 1 : 0 . 3 ) の例である。液晶表示セルシール剤用組成物(F 6 ) のシール剤物性を表 1 2に示した。 明らかに、 耐熱剛性に欠ける硬化体しか 生成しない致命的な問題を持つシール剤と判明した。
1 5 0 9 0分熱硬化させた際に得られるシール剤塗膜は、 8 0乃至 1 5 0で 領域で強い粘着性を示す未硬化性の硬化膜しか形成せず、 アセトン溶剤に容易に 膨潤する性質を示した。 従って、 硬化剤添加量が過少な F 6シール剤組成物は、 . 室温で脆弱な粘着性の強い耐熱剛性に欠ける硬化体しか与えないことが問題であ る。 タックのない平滑なフィルム状硬化体が得られなかったことより、 透湿性、 吸水特性評価は実質的に行えず、 表 1 2中の吸水率、 透湿性は測定不可とした。 該 F 6組成物 1 0 0部に対し、 6 mのガラス短繊維のギャップコントロール 剤 2部を混合し、 実施例 1と同様に接合シール試験に供した。 その結果、 滲み出 しは無いが、 シール貫通泡の発生が 2 5 %の確率で観察された。 接合セルとして はその形を保つものが得られたことから、 枚葉熱プレス適性は、 ほぼ適すと判断 した。 また、 得られたセルをクサビ開き試験ならびにシール耐久性試験に供し、 その'結果を表 1 2に示したが、 液晶表示機能耐久性に欠ける結果であった。 比較例 7
表 1 1に示した処方に従い、 実施例 1と同様にして液晶表示セルシール剤用組 成物(F 7 )を得た。 F 7組成物は、多価フエノール硬化剤の配合量が 5 2質量% であり、 エポキシ樹脂に対する硬化剤当量比が過大 (エポキシ基:活性フエノー ル性水酸基に換算した際の仕込当量比で 1 : 4 ) の例である。 液晶表示セルシー ル剤用組成物 (F 7 ) のシール剤物性を表 1 2に表したが、 明らかに 1 0 ° 程度 曲げると脆く崩れる硬化体しか生成しない致命的な問題を持つシール剤である。 よって、 表面硬度、 TMA (T g、 線膨張係数) 、 透湿性、 吸水性の各試験は実 質的に不可であり、 表 12中では測定不可と表した。
該 F 7組成物の 100部に対し、 6 のガラス短繊維のギャップコントロー ル剤 2部を混合し、 実施例 1と同様に接合シール試験に供した。 その結果、 滲み 出しは無いが、 シール貫通泡の発生が半数以上の確率で観察され、 また、 セルを 取り扱う際に接着剤が脆くて容易に崩れてしまい、 正常なセルは一つとして得ら れなかった。 よって、 枚葉熱プレス適性は不適と判定した。 シール耐久性試験は 実質不可であったので、 表 12中のシール耐久性試験の結果は、 セル製造不可と 表した。 比較例 8
表 11に示した処方に従い、 実施例 1と同様にして液晶表示セルシール剤用組 成物 (F8) を得た。 F 8組成物は、 エポキシ樹脂とエステル化多価フエノール 樹脂硬化剤、 シランカップリング剤、 無機質充填剤ならびに高沸点溶剤からなる 組成物であり、 表 12に示すシール剤物性で明らかな様に、 比較例 3の F 3組成 物と同様、 F 8組成物は熱硬化性に著しく欠けること、 更にはセル化適性に著し く欠けることが明らかである。
特に、 150で 90分熱硬化させた際に得られるシール剤塗膜は、 実質未硬化 状態にあり、 脆く崩れやすい硬化膜しか形成せず、 該塗膜はアセトン溶剤に容易 に溶解膨潤する性質を示した。 以上の結果、 シール剤 (F8) 組成物は、 熱硬化 性に欠けることが最も問題である。
液晶表示セルシール剤用組成物 (F 8) 100部に対し、 太さ 5 mのガラス 短繊維のギャップコントロール剤 5部を配合し、 十分混合して得た組成物を、 ま ず、 I TO基板に、 1基板当たり 1インチサイズ上下左右各 1の合計 4セルから なるパターンをスクリーン印刷し、 幅約 0. 5mm、 厚み約 20乃至 22 か らなる I TO基板を得た。 その後、 120°C熱風乾燥器で 30分処理後、 対にな るべき別の I T O基板を乗せ、 位置合わせ後に、 プレス圧 0. 03MPa/cm2, 250°CZ4分で剛体枚葉プレス加熱により仮接着した後、 引き続き 200°C加 熱オーブン中に 5時間投入して本硬化接着する接合シール試験を 10回繰り返し 実施した。 その結果,シ-ル貫通泡の発生によるシール不良箇所やシールラインの 乱れが 60%の確率で観察された。 よって、 枚葉熱プレス適性に欠けることが判 明した。 また、 シール性がなんとか確保されているセルにて行ったシール耐久性 試験の結果は表 12の様に芳しくなかった。 比較例 9
表 11に示した処方に従い、 実施例 1 2と 7同様にして比較例の液晶表示セルシー ル剤用組成物 (F9) を得た。 F 9組成物は、 硬化促進剤であるフォスファゼン 化合物 (PZO) 及びイミダゾールエポキシァダクト体 (PN-23) の総量で 16質量%含有してなる組成物である。 表 12に示すシール剤物性で明らかな様 に、 その硬化体は低吸水性や低透湿性に富む一方、 硬くて脆い性質である為に接 着シール信頼性に問題がある。
該 F 9組成物 100部に対し、 6 zmのガラス短繊維のギャップコントロール 剤 2部を混合し、 実施例 1と同様に接合シール試験に供した。 その結果、 ギヤッ プ不良やシール欠陥の多発が観察され、 セル化適性が欠けることが判明した。 よ つて表 12中のシール耐久性に関する結果表示は、 セル製造不可と表した。
表 1 1
Figure imgf000129_0001
表 1 2
Figure imgf000130_0001
実施例 2 1
表 1 3に示した処方に従って、 実施例 1と同様にして本発明の液晶表示セルシ 一ル剤用組成物 (E21) を得た。
ギップコントロール剤を除く該液晶表示セルシール剤用組成物 (E21) は、 エポキシ樹脂の含有量 29. 44%、 溶剤含有量 13. 2%、 ゴム状ポリマー微 粒子含有量 8. 26%、 無機質充填剤含有量が 18%、 硬化剤含有量 27. 8%, 硬化促進剤含有量 2 %、 シランカップリング剤含有量 1. 3%とからなる。
液晶表示セルシール剤用組成物 (E21) のシール剤物性を表 14に示した。 液晶表示セルシール剤用組成物 (E21) を用い、 実施例 1と同様に接合シー ル試験を実施し、 接合シール試験結果ならびにシール耐久性試験結果を表 14に 表した。 得られたセルは、 セルのクサビ開き試験において接着剤の一部凝集破壊 であり、 接着信頼性は良好であることが判明した。 また、 シール機能耐久性試験 1000時間経過後の表示機能は良好であった。 実施例 22
表 13に示した処方に従って、 実施例 1と同様にして本発明の液晶表示セルシ 一ル剤用組成物 (E22) を得た。
ギップコントロール剤を除く該液晶表示セルシール剤用組成物 (E22) は、 エポキシ樹脂の含有量 21. 1%、 ゴム状ポリマ一微粒子含有量 6. 9%、 無機 質充填剤含有量 25. 5 %、硬化剤含有量 24. 5 %、硬化促進剤含有量 1. 5%、 シランカップリング剤含有量 2 %、 溶剤含有量 18. 5%とからなる。
液晶表示セルシール剤用組成物 (E22) のシール剤物性を表 14に示した。 液晶表示セルシール剤用組成物 (E22) を用い、 実施例 1と同様に接合シー ル試験を実施し、 接合シール試験結果ならびにシール耐久性試験結果を表 14に 示した。 得られたセルは、 セルのクサビ開き試験において接着剤の完全凝集破壊 であり、 接着信頼性に優れていることが判明した。 また、 シール機能耐久性試験 1000時間経過後の表示機能は良好であった。 実施例 23
表 13に示した処方に従って、 実施例 1と同様にして本発明の液晶表示セルシ 一ル剤用組成物 (E23) を得た。
ギップコントロール剤を除く該液晶表示セルシール剤甩組成物 (E23) は、 エポキシ樹脂の含有量 22. 5%、 ゴム状ポリマー微粒子含有量 7. 5%、 無機 質充填剤含有量 24. 5%、 硬化剤含有量 23%、 硬化促進剤含有量 2 %、 シラ ンカップリング剤含有量 2. 5 %、 溶剤含有量 18%とからなる。
液晶表示セルシール剤用組成物 (E23) のシール剤物性を表 14に示した。 液晶表示セルシール剤用組成物 (E23) を用い、 実施例 1と同様に接合シー ル試験を実施し、 接合シール試験結果ならびにシール耐久性試験結果を表 14に 表した。 得られたセルは、 セルのクサピ開き試験において接着剤の一部凝集破壊 であり、 接着信頼性は良好であることが判明した。 また、 シール機能耐久性試験 1000時間経過後の表示機能は良好であった。 実施例 24
. 表 13に示した処方に従って、 実施例 1と同様にして本発明の液晶表示セルシ 一ル剤用組成物 (E24) を得た。
ギップコントロール剤を除く該液晶表示セルシール剤用組成物 (E24) は、 エポキシ樹脂の含有量 22. 5%、. ゴム状ポリマー微粒子含有量 7. 5%、 無機 質充填剤含有量 24. 5%、 硬化剤含有量 23%、 硬化促進剤含有量 2 %、 シラ ンカップリング剤含有量 2. 5%、 溶剤含有量 18%とからなる。
液晶表示セルシール剤用組成物 (E24) のシール剤物性を表 14に示した。 液晶表示セルシール剤用組成物 (E24) を用い、 実施例 1と同様に接合シー ル試験を実施し、 接合シール試験結果ならびにシール耐久性試験結果を表 14に 示した。 得られたセルは、 セルのクサビ開き試験において接着剤の一部凝集破壊 であり、 接着信頼性は良好である事が判明した。 また、 シール機能耐久性試験 1 000時間経過後の表示機能は良好であった。 実施例 25
表 13に示した処方に従って、 実施例 1と同様にして本発明の液晶表示セルシ —ル剤用組成物 (E25) を得た。
ギップコントロール剤を除く該液晶表示セルシール剤用組成物 (E25) は、 エポキシ樹脂の含有量 22. 5%、 ゴム状ポリマー微粒子含有量 7. 5%、 無機 質充填剤含有量 24. 5%、 硬化剤含有量 23%、 硬化促進剤含有量 2 %、 シラ ンカップリング剤含有量 2. 5%、 溶剤含有量 18%とからなる。
液晶表示セルシール剤用組成物 (E25) のシール剤物性を表 14に示した。 液晶表示セルシール剤用組成物 (E25) を用い、 実施例 1と同様に接合シ一 ル試験を実施し、 接合シール試験結果ならびにシール耐久性試験結果を表 14に 示した。 得られたセルは、 セルのクサビ開き試験において接着剤の一部凝集破壊 であり、 接着信頼性は良好であることが判明した。 また、 シール機能耐久性試験 1000時間経過後の表示機能は良好であった。 実施例 26
表 13に示した処方に従って、 実施例 1と同様にして本発明の液晶表示セルシ 一ル剤用組成物 (E26) を得た。
ギップコントロール剤を除く該液晶表示セルシール剤用組成物 (E26) は、 エポキシ樹脂の含有量 37. 2%、 ゴム状ポリマー微粒子含有量 7. 8%、 無機 質充填剤含有量 21. 3 %、 硬化剤含有量 29 %、 硬化促進剤含有量 3. 2%、 シランカップリング剤含有量 1. 5 %とからなる。
液晶表示セルシール剤用組成物 (E26) のシール剤物性を表 14に示した。 液晶表示セルシール剤用組成物 (E26) を用い、 実施例 1と同様に接合シー ル試験を実施し、 接合シール試験結果ならびにシール耐久性試験結果を表 14に 表した。 得られたセルは、 セルのクサビ開き試験において接着剤の一部凝集破壊 であり、 接着信頼性に優れていることが判明した。 また、 シール機能耐久性試験
1000時間経過後の表示機能は良好であった。 実施例 27
実施例 5で調整した本発明の液晶表示セルシール剤用組成物 (E5) 100部 に対し、 積水ファインケミカル社製の導電ビーズ ·商品名 「ミクロパール AU_ 205」 5. 28部を加えてなる組成物 (E 27) を得た。
液晶表示セルシール剤用組成物 (E27) のシール剤物性を表 14に示した。 液晶表示セルシール剤用組成物 (E27) を用いて、 実施例 1と同様に接合シ ール試験を実施し、 接合シール試験結果ならびにシール耐久性試験結果を表 14 に示した。 得られたセルは、 セルのクサビ開き試験において接着剤の一部凝集破 壊であり、 接着信頼性に優れてい.ることが判明した。 また、 シール機能耐久性試 験 1000時間経過後の表示機能は良好であった。
異方導電性に関わる測定結果も同時に表 14に示したが、 異方導電性とシール 接着適性のいずれも優れていることが判明した。 実施例 28
実施例 12で調整した本発明の液晶表示セルシール剤用組成物 (E 12) 10 0部に対し、 積水ファインケミカル社製の導電ビーズ'商品名 「ミクロパール A U— 205」 7. 52部を加えてなる組成物 (E28) を得た。
液晶表示セルシール剤用組成物 (E28) のシール剤物性を表 14に示した。 液晶表示セルシール剤用組成物 (E28) を用いて、 実施例 1と同様に接合シ ール試験を実施し、 接合シール試験結果ならびにシール耐久性試験結果を表 14 に示した。 得られたセルは、 セルのクサビ開き試験において接着剤の一部凝集破 壊であり、 接着信頼性に優れていることが判明した。 また、 シール機能耐久性試 験 1 0 0 0時間経過後の表示機能は良好であった。
異方導電性に関わる測定結果も同時に表 1 4に示した力 異方導電性とシール 接着適性のいずれも優れていることが判明した。 表 1 3 シール剤
組成物
合計
Figure imgf000135_0001
記号の説明:ミクロ η'-ル AU— 205
S水ファインケミカル社製品(金メッキホ'リスチレンビ-スン平均粒子径 5 最大粒子径 6. 5 M , 最小粒子径 4 /i m) 表 1 4
Figure imgf000136_0001
本発明の液晶表示セルシール剤用組成物は、 実施例 1乃至実施例 2 8で明らか なように、 硬化体を煮沸水に 3 0分浸漬させて測定される吸水率が 2 %以下と低 い特徴を持つことが明らかである。 また、
ィ. 貯蔵安定性ならびに塗布作業性が良好、 ·
口. プレキュア一後の仮接着性が高い、
ハ. 枚葉プレス加熱接着方式に適合すると共に、 非滲み出し性、 非貫通泡性、 シ —ルラインの直線性、 正確なギヤップ幅制御性が優れている、
二. 接着シール信頼性に優れている、
ホ. その硬化体は 8 0 低透湿性に優れている、
へ. 組成物から移行する電気伝導性イオンの存在が低く抑えられている、 よって、
ト. 高温時の接着耐久性や、 得られる液晶表示セルの高温多湿環境下での長時間 表示安定性を確保することができる。
特に、 本発明の液晶表示セルシール剤用組成物で製造された液晶表示素子は、 シール機能耐久性が 1 0 0 0時間を越える高機能性を持つことが明らかである。 一方、 比較例 1または比較例 2で明らかなように、 遊離性イオンを多く含む液 晶表示セルシール剤用組成物では、 表示機能耐久性に欠けることと同時に、 ジヒ ドラジドを主な硬化剤とするエポキシ樹脂組成物は、 2 %を越す高吸水性を持つ という問題があり、 また、 比較例 3では本発明の液晶表示セルシール剤用組成物 成分として本発明の硬化促進剤を含有していない例であるが、 未硬化または脆弱 な硬化物しか得られない。 また、 比較例 4は硬化促進剤として良く知られる 2— ェチルー 4メチルイミダゾールを用いてなる例であるが、 そのシール剤はポット ライフ適性が無く、 塗布作業性に致命的な問題を持つ。 さらに、 比較例 5では硬 化促進剤として良く知られるトリフエニルフォスフィンを用いた例であるが、 比 較例 4と同様、 ポットライフが極めて短く、 塗布作業性に致命的な問題を持つこ とが明らかとなった。 比較例 6及び比較例 7では、硬化剤配合量を過少または過大とした例であるが、 そのいずれにおいても硬化不良または接着不良を呈し、 実質的に液晶表示セル製 造に適さないことが明らかである。 また、 比較例 8ならびに比較例 9では硬化促 進剤なし、 または過大とした例であるが、 前者は硬化不良ならびに接着性に欠け ること、 後者は硬くて脆い硬化体しかえられず、 しかもギャップ制御性や接着付 与性に著しく欠けることが明らかである。
すなわち、 本発明の液晶表示セル用シール剤を用いた液晶表示素子または液晶 表示セルシール剤用組成物を用いて製造された液晶表示素子は、 高温多湿環境下 での長時間表示安定性が確保できることが特徴である。 産業上の利用可能性
本発明の液晶表示セルシール剤用組成物は高温多湿下においても長時間安定し た液晶表示素子機能を保持した液晶表示パネルの製造を可能にすると共に、 枚葉 型プレス加熱接着法式にも対応でき、 これを用いて製造された液晶表示素子は、 時計、 卓上計算機、 テレビ、 携帯電話、 各種のモパイル機器、 パソコン、 電子手 帳、 車両等で使用されるディスプレイとして好ましく用いることができる。
また、 本発明の異方導電性機能を合わせもつ液晶表示セルシール剤組成物は、 その応用利用の可能性として、 例えば微細加工された回路基板の金属端子と半導 体素子ならびにその IC搭載基板上の微細な金属端子間を電気的に接続する異方 導電性接着剤または異方導電性フィルム等が挙げられる。 また、 更には有機 EL 素子形成用シール剤、 イン 'ブレーン型電気泳動方式を採用したフラットパネル ディスプレイ形成用シール剤、 フィルム型液晶を用いたペーパーライクなデイス プレイ形成用シール剤、 有機太陽電池パネル製造用シール剤、 電気絶縁性塗料な どとしてもおおいに利用可能である。

Claims

請 求 の 範 囲
1. 液晶表示セルシール剤用組成物の硬化体からなる液晶表示素子のシール剤 であって、 該硬化体の吸水率が 2質量%以下であることを特徴とする液晶表示セ ル用シール剤。
2. 厚み 100 /zmの硬化膜を通過する 80°C透湿度が 200 gZm2 · 24 h r s以下であることを特徴とする請求項 1記載の液晶表示セル用シール剤。
3. シール剤 0. 1質量部に対し、 液晶 1質量部の割合で、 145t:、 1時間 接触させた後の液晶の比抵抗値が、 接触前の液晶の比抵抗値の 250倍以下であ ることを特徴とする請求項 1又は 2記載の液晶表示セル用シール剤。
4. エポキシ樹脂を多価フエノール化合物、 多価フエノール樹脂及びそれらの エステル化物から選んだ少なくとも一種からなる硬化剤で硬化したものであるこ とを特徴とする請求項 1乃至 3のいずれかに記載の液晶表示セル用シール剤。
5. アルキル尿素誘導体及びフォスファゼン化合物から選ばれる少なくとも 1 種からなる硬化促進剤を用いたものであることを特徴とする請求項 4記載の液晶 表示セル用シール剤。
6. (1) エポキシ樹脂と (2) 多価フエノール化合物、 多価フエノール樹脂及 びそれらのエステル化物から選んだ少なくとも一種からなる硬化剤及び (3) ァ ルキル尿素誘導体、フォスファゼン化合物から選ばれる少なくとも 1種からなる硬 化促進剤とを含有してなる液晶表示セルシール剤用組成物。
7. (1) エポキシ樹脂 20乃至 88. 9質量部と (2) 多価フエノール化合物、 多価フエノール樹脂及びそれらのエステル化物から選んだ少なくとも一種からな る硬化剤 10乃至 50質量部及び (3) アルキル尿素誘導体、 フォスファゼン化 合物から選ばれる少なくとも 1種からなる硬化促進剤 0.1乃至 20質量部とを含 有してなる請求項 6記載の液晶表示セルシール剤用組成物。
8. 組成物と同質量の純水とを混和させて得られる水溶液のイオン伝導度が 1 0 mS 以下であることを特徴とする請求項 6又は 7記載の液晶表示セルシー ル剤用組成物。
9 . 組成物の硬化体の吸水率が 2質量%以下であることを特徴とする請求項 6 又は 7記載の液晶表示セルシール剤用組成物。
1 0 . 組成物の硬化膜の厚み 1 0 0 を通過する 8 0 °C透湿度が 2 0 0 g Z m2 · 2 4 h r s以下であることを特徴とする請求項 6又は 7記載の液晶表示セ ルシール剤用組成物。
1 1 . 組成物 0 . 1質量部に対し、 液晶 1質量部の割合で、 1 4 5で、 1時間 接触させた後の液晶の比抵抗値が、 接触前の液晶の比抵抗値の 2 5 0倍以下であ ることを特徴とする請求項 6又は 7記載の液晶表示セルシール剤用組成物。
1 2 . 0 以下の軟化点温度を持ち、 その一次粒子の平均粒子径が 5 m以下 であるゴム状ポリマー微粒子を液晶表示セルシール剤用組成物中に占める割合で 1及至 2 5質量%含有してなる請求項 6又は 7記載の液晶表示セルシール剤用組 成物。
1 3 . 硬化剤が、 フエノールノポラック樹脂、 フエノールァラルキル樹脂、 ナ フトールノポラック樹脂、 ナフトールァラルキル樹脂、 脂環化合物変性フエノー ルノポラック樹脂、 脂環化合物変性ナフトールノポラック樹脂、 多環芳香族化合 物変性ノポラック樹脂、 多価フエノール単量体、 ポリビニルフエノール、 ピニル フエノール共重合体、 ポリイソプロぺニルフエノール、 ポリイソプロぺニルフエ ノール共重合体、 エステル化フエノールノボラック樹脂、 エステル化フエノール ァラルキル樹脂、 エステル化ナフトールノポラック樹脂、 エステル化ナフトール ァラルキル樹脂、 エステル化脂環化合物変性フエノールノボラック樹脂、 エステ ル化脂環化合物変性ナフトールノポラック樹脂、 エステル化多環芳香族化合物変 性ノポラック樹脂、 エステル化多価フエノール単量体、 エステル化ポリビニルフ ェノール、 エステル化ビニルフエノール共重合体、 エステル化ポリイソプロべ二 ルフエノール、 エステル化ポリィソプロぺニルフエノール共重合体から選んだ少 なくとも一種である請求項 6又は 7記載の液晶表示セルシール剤用組成物。
1 4. アルキル尿素誘導体が、 3— (p_クロ口フエ二ル)— 1, 1ージメチル尿 素、 3—(o,p—ジクロロフエニル)一 1, 1—ジメチル尿素、 2, 4一 [ビス(1, 1 —ジメチル尿素)]トルエン、 2, 6— [ビス(1, 1—ジメチル尿素)]トルエンから 選ばれる少なくとも 1種であることを特徴とする請求項 6又は 7記載の液晶表示 セルシール剤用組成物。、
1 5 . フォスファゼン化合物が一般式 ( 1 2 )で示される少なくとも 1種である ことを特徴とする請求項 6又は 7記載の液晶表示セルシール剤用組成物。
Figure imgf000141_0001
(但し、 式中 R aは乃至 R fは水素原子、 炭素数 1乃至 1 0の直鎖、 分岐または環 状のアルキル基、または炭素数 6乃至 1 0のァリールまたはァラルキル基を表し、 全て同一であっても異なっていてもよい )
1 6 . 請求項 6又は 7記載の組成物 1 0 0質量部に対し、 さらに、 導電性ビー ズ 1乃至 1 5質量部を含有してなる液晶表示セルシール剤用組成物。 '
1 7 . 請求項 1乃至 5のいずれかに記載の液晶表示セル用シール剤を用いた液 ffi表示素子。
1 8 . 請求項 6乃至 1 6のいずれかに記載の液晶表示セルシール剤用組成物を 用いて得られる液晶表示素子。
1 9 . T N液晶、 S T N液晶、 強誘電液晶、 反強誘電液晶のいずれかを用いて なる液晶表示素子の製造に際し、 請求項 6乃至 1 6のいずれかに記載の液晶表示 セルシール剤用組成物をガラス製またはプラスチック製の液晶セル用基板の接合 シール構成部位に印刷またはディスペンス塗布し、 5 0乃至 1 2 0での温度でプ レキュア一後、 もう一方の対基板を位置合わせを行って重ね合わせ、 仮固定後、 その対基板を 8 0乃至 2 0 0 °Cで熱圧締処理し、 該対基板を 1乃至 7 mの範囲 で均質な厚みに接合固定して液晶表示セルを作り、該セル内に液晶材料を注入し、 注入孔を光硬化型液晶シール剤組成物または 2液型液晶シール剤組成物で封孔さ せることを特徴とする液晶表示素子の製造方法。
2 0 . TN液晶、 S T N液晶、 強誘電液晶、 反強誘電液晶のいずれかを用いて なる液晶表示素子の製造に際し、 請求項 6乃至 1 6のいずれかに記載の液晶表示 セルシール剤用組成物をガラス製またはプラスチック製の液晶セル用基板の接合 シール構成部位に印刷またはデイスペンス塗布し、 5 0乃至 1 2 0 t の温度でプ レキュア一後、 液晶を滴下させて空気を閉じ込めない様にもう一方の対基板を重 ねあわせ、 位置合わせして仮固定後、 その対基板を 8 0乃至 1 5 0 で熱圧締処 理し、 該対基板を 1乃至 7 u mの範囲で均質な厚みに接合固定させた後、 呼吸孔 を光硬化型液晶シール剤組成物または 2液型液晶シール剤組成物で封孔させるこ とを特徴とする液晶表示素子の製造方法。
2 1 . 請求項 1 9又は 2 0記載の液晶表示素子の製造方法によって得られる液 晶表示素子。
PCT/JP2000/008814 1999-12-14 2000-12-13 Sealing agent for liquid-crystal display cell, composition for sealing agent for liquid-crystal display cell, and liquid-crystal display element WO2001044342A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020017010352A KR20010102160A (ko) 1999-12-14 2000-12-13 액정표시셀용 실링제, 액정표시셀실링제용 조성물 및액정표시소자
EP00981684A EP1153952A4 (en) 1999-12-14 2000-12-13 SEALANT FOR LIQUID CRYSTAL DISPLAY CELL, COMPOSITION FOR SEALING LIQUID CRYSTAL DISPLAY CELLS AND LIQUID CRYSTAL DISPLAY ELEMENT

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/353846 1999-12-14
JP35384699 1999-12-14
JP2000-180661 2000-06-16
JP2000180661 2000-06-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09890564 A-371-Of-International 2001-08-02
US10/682,438 Division US20040075802A1 (en) 1999-12-14 2003-10-10 Sealant for liquid crystal display cell, composition for liquid crystal display cell sealant and liquid crystal display element

Publications (1)

Publication Number Publication Date
WO2001044342A1 true WO2001044342A1 (en) 2001-06-21

Family

ID=26579936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008814 WO2001044342A1 (en) 1999-12-14 2000-12-13 Sealing agent for liquid-crystal display cell, composition for sealing agent for liquid-crystal display cell, and liquid-crystal display element

Country Status (4)

Country Link
EP (1) EP1153952A4 (ja)
KR (1) KR20010102160A (ja)
CN (1) CN1346375A (ja)
WO (1) WO2001044342A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011939A1 (en) * 2001-08-03 2003-02-13 Dsm N.V. Curable compositions for display devices
WO2014148270A1 (ja) * 2013-03-21 2014-09-25 日本化薬株式会社 液晶シール剤及びそれを用いた液晶表示セル
CN112852367A (zh) * 2021-03-08 2021-05-28 南宁珀源能源材料有限公司 一种双组份硅棒拼接胶及其制备方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100859818B1 (ko) * 2001-03-29 2008-09-24 코닌클리케 필립스 일렉트로닉스 엔.브이. 기판의 침투율을 측정하는 방법 및 장치, 배치로부터 기판 세트를 침투율에 대해 테스트하는 방법 및 캡슐화의 침투율을 측정하는 방법
DE10324486A1 (de) * 2003-05-30 2004-12-16 Degussa Ag Verwendung von Harnstoff-Derivaten als Beschleuniger für Epoxidharze
WO2005091064A1 (ja) * 2004-03-22 2005-09-29 Nippon Kayaku Kabushiki Kaisha 液晶シール材及びその製造方法
KR100928926B1 (ko) * 2004-12-29 2009-11-30 엘지디스플레이 주식회사 액정표시장치의 실 경화공정 중 얼룩무늬 발생을감소시키는 랙 바구조를 가지는 실 경화로
JP5268235B2 (ja) * 2006-07-05 2013-08-21 日本化薬株式会社 液晶シール剤およびそれを用いた液晶表示セル
WO2011001895A1 (ja) * 2009-07-01 2011-01-06 日本化薬株式会社 液晶滴下工法用液晶シール剤及びそれを用いた液晶表示セル
CN101630210B (zh) * 2009-08-17 2012-02-22 友达光电股份有限公司 触控式显示面板、用来形成密封胶的组成物以及密封胶
KR101343156B1 (ko) * 2010-03-25 2013-12-19 미쓰이 가가쿠 가부시키가이샤 액정 실링제, 그것을 사용한 액정 표시 패널의 제조방법, 및 액정 표시 패널
CN102971356A (zh) * 2010-04-30 2013-03-13 陶氏环球技术有限责任公司 作为环氧树脂的潜催化剂的磷腈封闭的咪唑
CN103140537B (zh) 2010-08-10 2016-10-12 日立化成株式会社 树脂组合物、树脂固化物、配线板及配线板的制造方法
TWI608062B (zh) * 2011-05-31 2017-12-11 住友電木股份有限公司 樹脂組成物、使用它之半導體裝置及半導體裝置之製造方法
CN102504493B (zh) * 2011-11-18 2014-04-09 江苏华海诚科新材料有限公司 一种适用于预包封内互联框架系统的环氧树脂组合物
CN102585745A (zh) * 2012-02-21 2012-07-18 绵阳艾萨斯电子材料有限公司 封框胶及其制备方法与应用
CN102585744B (zh) * 2012-02-21 2013-12-04 绵阳艾萨斯电子材料有限公司 粘合剂组合物及其制备方法与在丝网印刷中的应用
CN102604046B (zh) * 2012-03-13 2014-09-24 烟台德邦科技有限公司 一种dmp-30的封闭方法及其在环氧胶黏剂的应用
CN103642445B (zh) * 2013-12-06 2015-02-25 弗洛里光电材料(苏州)有限公司 可固化的流动性粘合剂组合物及其用途
CN105706264B (zh) * 2013-12-09 2017-12-19 积水化学工业株式会社 显示元件用密封剂
TWI682991B (zh) * 2015-07-21 2020-01-21 日商日本化藥股份有限公司 液晶密封劑及使用該液晶密封劑的液晶顯示單元
WO2017123595A1 (en) * 2016-01-17 2017-07-20 E Ink California, Llc Polyhydroxy compositions for sealing electrophoretic displays
CN109196413B (zh) * 2016-12-27 2021-03-16 积水化学工业株式会社 液晶显示元件用密封剂、上下导通材料和液晶显示元件
CN107501852B (zh) * 2017-07-24 2020-04-14 仲恺农业工程学院 一种液晶电路保护用组合物及其制备方法
WO2019225473A1 (ja) * 2018-05-25 2019-11-28 積水化学工業株式会社 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
CN109470793A (zh) * 2018-12-21 2019-03-15 中国兵器工业第五九研究所 电子元器件灌封胶贮存环境损伤机理分析方法
KR20220023751A (ko) * 2019-07-01 2022-03-02 세키스이가가쿠 고교가부시키가이샤 표시 소자용 시일제, 상하 도통 재료, 및, 표시 소자

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109405A (ja) * 1993-10-15 1995-04-25 Mitsui Toatsu Chem Inc 液晶封止用セルの製造方法
EP0839820A2 (de) * 1996-11-04 1998-05-06 Daimler-Benz Aktiengesellschaft Aushärtbare Zusammensetzungen mit Phosphazenderivat und Vernetzer
JPH11246743A (ja) * 1998-02-27 1999-09-14 Mitsui Chem Inc 液晶封止用樹脂組成物
JPH11326923A (ja) * 1998-05-11 1999-11-26 Ricoh Co Ltd 液晶表示素子用シール剤およびそれを用いた液晶表示素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1288189C (en) * 1986-01-20 1991-08-27 Glenda C. Young Epoxy resin composition
JPS63349A (ja) * 1986-06-19 1988-01-05 Fujitsu Ltd 半導体封止用エポキシ樹脂組成物
KR0163981B1 (ko) * 1993-06-29 1999-01-15 사또오 아키오 필름제 액정셀 봉지용 수지조성물
DE69612522T2 (de) * 1995-02-27 2002-03-28 Matsushita Electric Works, Ltd. Verfahren zur Herstelllung von Prepregs und Schichtstoffen auf Epoxydharzbasis
JPH08245762A (ja) * 1995-03-13 1996-09-24 Toshiba Chem Corp エポキシ樹脂組成物および半導体封止装置
KR100635710B1 (ko) * 1997-08-01 2007-06-12 니폰 가야꾸 가부시끼가이샤 흑색 액정시일제 및 액정 셀
KR100246035B1 (ko) * 1997-11-22 2000-04-01 성재갑 저온 급속경화성 피복 조성물과 이를 도포한 합성 수지성형품
KR19990025716U (ko) * 1997-12-17 1999-07-05 김영환 액정 패널
JP3543613B2 (ja) * 1998-04-10 2004-07-14 株式会社スリーボンド 一液加熱硬化型水性エポキシ樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109405A (ja) * 1993-10-15 1995-04-25 Mitsui Toatsu Chem Inc 液晶封止用セルの製造方法
EP0839820A2 (de) * 1996-11-04 1998-05-06 Daimler-Benz Aktiengesellschaft Aushärtbare Zusammensetzungen mit Phosphazenderivat und Vernetzer
JPH11246743A (ja) * 1998-02-27 1999-09-14 Mitsui Chem Inc 液晶封止用樹脂組成物
JPH11326923A (ja) * 1998-05-11 1999-11-26 Ricoh Co Ltd 液晶表示素子用シール剤およびそれを用いた液晶表示素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1153952A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011939A1 (en) * 2001-08-03 2003-02-13 Dsm N.V. Curable compositions for display devices
WO2014148270A1 (ja) * 2013-03-21 2014-09-25 日本化薬株式会社 液晶シール剤及びそれを用いた液晶表示セル
JPWO2014148270A1 (ja) * 2013-03-21 2017-02-16 日本化薬株式会社 液晶シール剤及びそれを用いた液晶表示セル
CN112852367A (zh) * 2021-03-08 2021-05-28 南宁珀源能源材料有限公司 一种双组份硅棒拼接胶及其制备方法

Also Published As

Publication number Publication date
CN1346375A (zh) 2002-04-24
EP1153952A1 (en) 2001-11-14
EP1153952A4 (en) 2004-04-28
KR20010102160A (ko) 2001-11-15

Similar Documents

Publication Publication Date Title
WO2001044342A1 (en) Sealing agent for liquid-crystal display cell, composition for sealing agent for liquid-crystal display cell, and liquid-crystal display element
JP4358505B2 (ja) プラスチック製液晶表示セル用シール剤組成物
KR100414698B1 (ko) 액정밀봉제 조성물
US6812065B1 (en) Anisotropic conductive paste
JP3904798B2 (ja) 異方導電性ペースト
US20040075802A1 (en) Sealant for liquid crystal display cell, composition for liquid crystal display cell sealant and liquid crystal display element
JP4531566B2 (ja) 液晶シール剤組成物及びそれを用いた液晶表示パネルの製造方法
JP4753934B2 (ja) エポキシ樹脂用潜在性硬化剤およびエポキシ樹脂組成物
JP2002069160A (ja) 液晶表示セル用シール剤、液晶表示セルシール剤用組成物及び液晶表示素子
JP2002088228A (ja) 液晶表示素子用シール剤組成物ならびに液晶表示素子の製造方法
JP4911981B2 (ja) 高含水含溶剤エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
WO1998015597A1 (en) Phase-separation structure, resin composition comprising said structure, molding material for sealing electronic component, and electronic component device
JP4877717B2 (ja) 緩反応性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JPWO2004090621A1 (ja) 液晶シール剤およびそれを用いた液晶表示セル
JP2007091899A (ja) 高安定性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP4877716B2 (ja) 速硬化性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP4014352B2 (ja) 液晶シール剤組成物
JP2001100224A (ja) 液晶表示セル用シール材組成物
WO2005038519A1 (ja) 液晶シール剤、それを用いた液晶表示装置および該装置の製造方法
JP3933356B2 (ja) 液晶表示セル用シール材、液晶表示セルの製造方法および液晶表示素子
JP2013018810A (ja) 硬化性樹脂組成物
JP4302381B2 (ja) 液晶シール剤組成物、液晶表示セルの製造方法および液晶表示素子
JP4292611B2 (ja) 液晶表示素子用シール材組成物及びそれを用いた液晶表示素子
JP2000072955A (ja) 低温硬化型または高温短時間硬化型液晶シール材組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00806012.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 09890564

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1200100794

Country of ref document: VN

Ref document number: 1020017010352

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000981684

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000981684

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000981684

Country of ref document: EP