WO2001019638A1 - Dispositif de pedale d'accelerateur - Google Patents

Dispositif de pedale d'accelerateur Download PDF

Info

Publication number
WO2001019638A1
WO2001019638A1 PCT/JP2000/006188 JP0006188W WO0119638A1 WO 2001019638 A1 WO2001019638 A1 WO 2001019638A1 JP 0006188 W JP0006188 W JP 0006188W WO 0119638 A1 WO0119638 A1 WO 0119638A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction member
movable friction
pedal
accelerator pedal
return spring
Prior art date
Application number
PCT/JP2000/006188
Other languages
English (en)
French (fr)
Inventor
Masato Kumamoto
Yuichiro Tokai
Takumi Oikawa
Mitsuru Sekiya
Original Assignee
Mikuni Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corporation filed Critical Mikuni Corporation
Priority to JP2001523241A priority Critical patent/JP4724340B2/ja
Publication of WO2001019638A1 publication Critical patent/WO2001019638A1/ja
Priority to US10/096,938 priority patent/US6745642B2/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/30Controlling members actuated by foot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/02Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements
    • B60K26/021Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements with means for providing feel, e.g. by changing pedal force characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/02Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by hand, foot, or like operator controlled initiation means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20528Foot operated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20528Foot operated
    • Y10T74/20534Accelerator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20528Foot operated
    • Y10T74/2054Signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20576Elements
    • Y10T74/20888Pedals

Definitions

  • the present invention relates to an accelerator pedal device applied to a vehicle or the like, and particularly to an accelerator pedal device applied to a vehicle employing a drive-by-wire system.
  • Electronically controlled throttle systems i.e., drive-by-wire systems
  • This electronically controlled throttle system converts the amount of depression of the accelerator pedal into an electric signal instead of connecting the accelerator pedal and the throttle valve with the accelerator wire, and converts the converted electric signal.
  • the output of the engine is controlled based on the signal.
  • the operating load of the throttle valve does not act on the accelerator pedal as a pedal load. Therefore, when the vehicle or the like is driven at a constant speed (the accelerator pedal is kept at a fixed position), a mechanism is required to compensate for this load so that the driver does not get tired. Further, if the acceleration of the vehicle fluctuates due to fluctuations in the output of the engine and the like, and the driver easily changes the depression amount of the accelerator pedal due to the influence of the resonance system, longitudinal vibration of the vehicle will be caused. Therefore, in order to prevent this vibration, etc., the force that resists the depression of the accelerator pedal Is required.
  • an accelerator pedal device for coping with these for example, an accelerator pedal device described in Japanese Patent Application Laid-Open No. Hei 11-23959 is known.
  • the accelerator pedal device disclosed in this publication includes a pedal arm that can be moved from a rest position to a maximum depressed position by a pedaling force from an accelerator pedal, a return spring that returns the pedal arm toward the rest position, and a pedal arm.
  • a return spring for returning the movable friction member to its original position a housing for slidably guiding the movable friction member, and the like.
  • the movable friction member, the housing and the like constitute a frictional force generating mechanism for generating a predetermined frictional force.
  • a constant frictional force acts when the accelerator pedal is depressed, exerting a pedal load on the accelerator pedal, while a constant frictional force antagonizing the urging force of the return spring when returning the accelerator pedal.
  • the force acts to reduce the return force of the accelerator pedal.
  • a predetermined operation load acts on the accelerator pedal, so that the accelerator pedal can be held at a desired position when traveling at a constant speed, thereby reducing driver fatigue. be able to.
  • the accelerator pedal depression force (pedal load) and the accelerator pedal travel (stroke) The hysteresis has a fixed width from the throttle fully closed (starting to depress the accelerator pedal) to fully open (maximum depressed position). Therefore, as shown in Fig. 28, if the pedaling force (pedal load) required on the fully open side of the throttle is matched, the return force is insufficient at the fully closed position and the accelerator response (axel filling) is poor. There is a risk of becoming. On the other hand, as shown in Fig. 29, when the pedaling force (pedal load) required on the fully closed side is There was a possibility that the driver or the accelerator pedal would resonate with the vibration of, and the drivability would deteriorate.
  • the present invention has been made in view of the above points, and a purpose thereof is to provide a pedaling force (operating load) required when the throttle is fully closed and fully opened, that is, a moving range of the accelerator pedal. It is an object of the present invention to provide an accelerator pedal device that satisfies the hysteresis characteristics of the pedaling force required in the entire region, simplifies the structure and reduces the size, and contributes to good driving performance. Disclosure of the invention
  • An accelerator pedal device includes a pedal arm movable from a rest position to a maximum depressed position by a pedaling force transmitted from an accelerator pedal, a pedal shaft for swingably supporting the pedal arm, and a pedal position for resting the pedal arm in the rest position.
  • An accelerator pedal device comprising: a return spring for biasing toward a rearward position; and a frictional force generating mechanism for generating a frictional force as the pedal arm moves, wherein the frictional force generating mechanism comprises: A sliding guideway that defines a sliding surface that generates frictional force, and the frictional force generated when the pedal arm moves toward the maximum depressed position is increased according to the amount of movement, and the pedal arm is moved to the rest position.
  • the frictional force is arranged in the sliding guideway and moves in accordance with the movement of the pedal arm.
  • a frictional force variation means for varying is characterized by.
  • the frictional force variable means when the accelerator pedal is depressed and the pedal arm moves from the rest position to the maximum depressed position, the frictional force variable means is generated in the sliding guide path according to the amount of movement.
  • the amount of the biasing force of the return spring plus the frictional force that increases with the amount of depression of the accelerator pedal acts as the pedal load, while the pedal arm
  • the frictional force variable means reduces the frictional force generated in the sliding guideway according to the amount of movement, so the accelerator is depressed from the biasing force of the return spring.
  • the reduced frictional force that accompanies the amount of pedal return acts as the pedal load.
  • the characteristic of the pedal load is to provide a hysteresis in which the minimum width is obtained at the rest position and the maximum width is obtained at the maximum depressed position.
  • the generated frictional force is determined by the sliding force in the sliding guideway. ⁇ ⁇ ⁇ ⁇ Since the direction of the reaction received by the pedal arm matches the direction in which the pedal arm acts on the frictional force generating mechanism (180 ° opposite direction), for example, a pedal that supports the pedal arm No unreasonable force is applied to components such as shafts, and operation reliability is improved.
  • the frictional force varying means is movable in the sliding guide path by a load applied from the pedal arm and is pressed against the sliding surface to be displaced in a direction orthogonal to the moving direction in accordance with the load.
  • a friction member and a sliding surface for generating an urging force for urging the movable friction member in a direction opposite to the load of the pedal arm and displacing in the direction perpendicular to the moving direction in accordance with the urging force.
  • a return spring that presses the movable friction member back to the original position while pressing the movable friction member.
  • the biasing force of the return spring increases in accordance with the amount of the movement, so that the movable friction member has a sliding guide.
  • the pressing force against the road (sliding surface), that is, the frictional force, also increases according to the amount of movement.
  • the movable friction member has a first inclined surface and a second inclined surface inclined on both sides in a direction guided by the sliding guide path so as to approach each other toward a center portion thereof.
  • a first contact member having an inclined surface that contacts the first inclined surface is disposed between the dynamic friction member and the free end of the pedal arm, and a second inclined member is disposed between the movable friction member and the return spring. It is possible to adopt a configuration in which a second contact member having an inclined surface contacting the surface is arranged.
  • the stepping load acts on the first contact member from the pedal arm, and the maximum depression position is obtained.
  • the movable friction member moves in tandem with the biasing force of the return spring to increase the friction force.
  • the biasing force acts on the second contact member from the return spring and moves toward the rest position, the movable friction member decreases the friction force while moving.
  • the sliding guide path has a substantially circular cross-sectional shape
  • the movable friction member has a substantially annular shape that is in close contact with the inner peripheral surface of the sliding guide path and is cut at least partially in a direction crossing the circumferential direction. Configuration can be adopted.
  • the movable friction member reciprocates in the cylindrical sliding guide path, and the movable friction member is pressed radially outward to generate a frictional force.
  • the frictional force varying means includes a first inclined surface which can be moved in the sliding guide path by a load of a pedal arm and has a predetermined angle with respect to the moving direction.
  • the compression amount (biasing force) of the return spring is also changed according to the return amount (movement amount). Because of the decrease, the pressing force of the first movable friction member and the second movable friction member pressed against the sliding guide path, that is, the friction force also decreases in accordance with the return amount (movement amount).
  • the biasing force of the return spring is smaller between the first movable friction member and the second movable friction member in a direction in which the first movable friction member and the second movable friction member are moved away from each other.
  • Adopt a configuration in which a spring for play load that generates a biasing force and applies a play load is arranged. Can be.
  • the load characteristics to be used can be appropriately set.
  • the return spring includes a plurality of coil springs having different diameters.
  • the frictional force varying means has a first inclined surface which can be moved in the sliding guide path by a load of a pedal arm and forms a predetermined angle with respect to the moving direction.
  • a second movable friction member, and a second movable friction member which is disposed to face the first movable friction member in the moving direction and has a second inclined surface which can be moved in the sliding guide path and can contact the first inclined surface.
  • a return spring that urges the second movable friction member in a direction opposing the load of the pedal arm and returns the second movable friction member to its original position; and wherein the first movable friction member and the second movable friction member are predetermined. It is possible to adopt a configuration in which the sliding guide path comprises a curved path having an arc-shaped curvature centered on the predetermined axis.
  • the maximum stepping force is caused by the stepping load of the pedal arm.
  • the first movable friction member and the second movable friction member move in an arc toward the position, the first movable friction member and the second movable friction member are formed by the wedge action of the first inclined surface and the second inclined surface. Is pressed against the arcuate sliding guideway. Since this pressing force increases with the amount of depression of the accelerator pedal, that is, the compression amount (biasing force) of the return spring, the friction force also increases with the depression amount (movement amount).
  • the compression amount (the urging force) of the return spring is determined according to the return amount (movement amount).
  • the pressing force by which the first movable friction member and the second movable friction member are pressed against the arc-shaped sliding guide path, that is, the friction force also decreases according to the return amount (movement amount).
  • the return spring comprises a torsion spring disposed around the pedal shaft, or the return spring comprises a torsion spring disposed around the pedal shaft, or the return spring and the return spring comprise the pedal shaft.
  • a configuration comprising a torsion spring disposed around the return spring and the return spring disposed inside the return spring.
  • the components are concentrated in the vicinity of the pedal shaft, so that the size of the device can be reduced.
  • a configuration may be employed in which the return spring and the center of the return spring are provided at positions offset from the pedal axis. According to this configuration, a space can be secured between the pedal shaft and the return spring and the return spring, and this space can be effectively used to arrange other components.
  • the load characteristics to be used can be appropriately set.
  • FIG. 1 is a front view showing an embodiment of an accelerator pedal device according to the present invention.
  • FIG. 2 is a right side view of the accelerator pedal device according to one embodiment.
  • FIG. 3 is a cross-sectional view showing a frictional force generating mechanism that forms a part of the accelerator pedal device.
  • FIG. 4 is a longitudinal sectional view showing a frictional force generating mechanism forming a part of the accelerator pedal device.
  • FIG. 5 is a cross-sectional view showing a movable friction member, a first contact member, and a second contact member forming a frictional force varying unit.
  • FIG. 6 is a view for explaining the operation of the frictional force varying means.
  • FIG. 7 is a graph showing the relationship between the frictional force in the frictional force varying means and the stroke of the accelerator pedal.
  • FIG. 8 is a graph showing the hysteresis of the pedaling force in the accelerator pedal device.
  • FIG. 9 is a side view showing another embodiment of the accelerator pedal device according to the present invention.
  • FIG. 10 is a longitudinal sectional view showing a frictional force generating mechanism forming a part of the accelerator pedal device.
  • FIG. 11 is a longitudinal sectional view showing a frictional force generating mechanism forming a part of the accelerator pedal device.
  • FIG. 12 is a perspective view showing a first movable friction member.
  • FIG. 13 is a perspective view showing a second movable friction member.
  • FIG. 14 is a diagram for explaining the operation of the frictional force varying means.
  • FIG. 15 is a graph showing the hysteresis of the pedal effort in the accelerator pedal device.
  • FIG. 16 is a side view showing still another embodiment of the accelerator pedal device according to the present invention.
  • FIG. 17 is a cross-sectional view of the accelerator pedal device shown in FIG.
  • FIG. 18 is a cross-sectional view of the accelerator pedal device shown in FIG.
  • FIG. 19 is a plan view of the return spring.
  • FIG. 20 is a side view of the return spring.
  • FIG. 21 is a plan view showing the pedal arm.
  • FIG. 22 is an exploded perspective view showing a first movable friction member, a second movable friction member, and a spring for play load.
  • FIG. 23 is a plan view of the return spring.
  • FIG. 24 is a side view of the return spring.
  • FIG. 25 is a view for explaining the operation of the frictional force varying means.
  • FIG. 26 is a sectional view showing still another embodiment of the accelerator pedal device according to the present invention.
  • FIG. 27 is an exploded perspective view showing a first movable friction member, a second movable friction member, and a play load spring.
  • FIG. 28 is a graph showing the hysteresis of the pedaling force in the conventional accelerator pedal device.
  • FIG. 29 is a graph showing the hysteresis of the pedaling force in the conventional accelerator pedal device.
  • the accelerator pedal device includes a bracket 10 fixed to a vehicle body such as an automobile, a pedal shaft 11 fixed to the bracket 10, ⁇ ⁇ ⁇ A pedal arm 12 slidably supported by a double shaft 11, an accelerator pedal 13 to which the driver exerts a pedaling force, and a pedal provided around the pedal shaft 11.
  • Return spring 14 upper end (free end) 12 2 of pedal arm 1 2 Friction force generating mechanism 20 arranged in area of 2 a, and accelerator position sensor for detecting the amount of depression of accelerator pedal 13 30 etc. as its basic configuration.
  • the pedal arm 12 has an accelerator pedal 13 fixed to the lower end thereof with the pedal shaft 11 as a pivot point, and the upper end thereof is a free end 1 2a acting on the frictional force generating mechanism 20. Is formed.
  • the pedal arm 12 swings around the pedal axis 11, and the rest position (the position shown by the solid line in FIG. 2) It moves between the maximum depression position and the load applied to the frictional force generating mechanism 20 is adjusted.
  • the free end portion 12a of the pedal arm 12 is used to securely engage and disengage with a first contact member 24 described later.
  • the dedicated member 12 a ′ is attached, and the depression load of the pedal arm 12 is transmitted through the dedicated member 12 a ′.
  • the position indicated by the two-dot chain line in FIGS. 2 and 4 indicates a position halfway between the rest position and the maximum depression position.
  • the return spring 14 has one end hooked on the bracket 10 and the other end hooked on the pedal arm 12 around the pedal shaft 11, so that the return spring 14 moves from the rest position to the maximum depressed position side. It exerts an urging force to return the pedal arm 12 (accelerator pedal 13) depressed toward the original rest position.
  • the accelerator position sensor 30 is fixed to the bracket 10, and the lever 31 fixed to the rotating shaft is connected to a part of the pedal arm 12.
  • the pedal arm 12 swings, the swing displacement is converted into a rotational displacement via the lever 31 and the accelerator position sensor
  • Two Numeral 30 detects the amount of depression of the accelerator pedal 13 as the angular displacement of the rotation axis.
  • the accelerator position sensor 30 is of a contact resistance type, and its structure is known, so that the description is omitted here.
  • the frictional force generating mechanism 20 generates a frictional force in accordance with the movement of the pedal arm 12, and as shown in FIG. 3 (transverse section) and FIG. 4 (longitudinal section), the bracket 1 A cylindrical housing 21 fitted and fixed to the cylindrical portion 10a of the cylinder 0, a movable friction member 22 reciprocally mounted in the housing 21 and a movable friction member 22 A return spring 23 for urging it to return to its original position (to the position shown in Fig. 3) and a second spring disposed between the free end 12a of the pedal arm 12 and the movable friction member 22
  • the first contact member 24 includes a second contact member 25 disposed between the movable friction member 22 and the return spring 23.
  • the housing 21 is made of a material having strength and waterproof properties, such as stainless steel, so as to have a substantially circular cross-sectional shape, and its cylindrical inner peripheral surface (inner wall surface) 21 a slides. It acts as a surface to form a sliding guide path for guiding the movable friction member 22 to the sliding position.
  • a long notch (slit) 21 b is formed on the lower side of the housing 21. Through 2 lb, the free end portion 12a of the dull arm 12 is reciprocally inserted into the housing 21.
  • the movable friction member 22 is formed in a substantially annular shape from a highly slidable material such as oil-impregnated polyacetal, and has two semicircular arcs cut at two locations in a direction crossing the circumferential direction.
  • the outer peripheral surface 22 c is made of a member, and when inserted into the housing 21, the outer peripheral surface 22 c is in close contact with the inner peripheral surface (inner wall surface) 21 a.
  • the annular movable friction members 22 approach each other toward the center thereof on both sides in the direction guided by the housing 21 (sliding guide path 2 la).
  • the first inclined surface 22 a and the second inclined surface 22 b are inclined as described above. In other words, the first inclined surface 22a and the second inclined surface 22b have a surface shape consisting of only the skirt of the surface of the cone, and the cross-sectional shape is such that the thickness increases from the center to the outside. It has a shape.
  • the annular movable friction member 22 is configured as two semicircular members by cutting at two locations, but is not limited to this. It may be configured, or may be configured by a plurality of arc members by cutting a plurality of locations.
  • the movable friction member 22 is shown as an annular member, but is not limited to this, and may be a divided square member (square member).
  • the first contact member 24 is formed in a disk-shaped plate, and at one side thereof, matches the first inclined surface 22 a of the movable friction member 22.
  • an inclined surface 24a having a surface shape consisting of only the skirt of the surface of the cone is formed. That is, when the inclined surface 24a of the first contact member 24 is pressed against the first inclined surface 22a, the wedge action of the inclined surface 24a causes the annular movable friction member to move. 22 will be pushed radially outward.
  • the second contact member 25 is formed substantially in the shape of a cap, and at one side thereof is fitted (contacts) with the second inclined surface 22 of the movable friction member 22.
  • the inclined surface 25a having a surface shape consisting only of the skirt portion of the surface of the cone is formed, and the concave portion 25b for accommodating one end of the return spring 23 is formed on the other side. That is, the inclined surface 25a of the second contact member 25 is pressed against the second inclined surface 22b. As a result, the wedge action of the inclined surface 25a causes the annular movable friction member 22 to be pushed radially outward.
  • the first contact member 24 and the second contact member 25 are assembled with the movable friction member 22 sandwiched from both sides as shown by the two-dot chain line in FIG. 5 and as shown in FIG. As a result, both move in a state of contact without moving away from the movable friction member 22.
  • the angle between the normal line of the first inclined surface 22 a and the inclined surface 24 a and the moving direction of the movable friction member 22 is 01, and the second inclined surface 22 b and the inclined surface 2
  • the angle between the normal line of 5a and the moving direction of the movable friction member 22 is set so that 6> 2.
  • N 1 F tan 0 1
  • the friction force f 1 ⁇ N 1 + N 2 acts in the direction opposite to the moving direction (to the right in Fig. 6).
  • the depression load F and the urging force F are expressed as a linear function of the depression amount (X) of the accelerator pedal 13, and therefore go from the rest position to the maximum depression position.
  • the frictional force f 1 is
  • a frictional force varying means for reducing the generated frictional force f2 according to the amount of movement, that is, changing the frictional force according to the movement of the pedal arm 12 is provided.
  • the acceleration pedal 13 The pedaling force characteristic is obtained as a hysteresis as shown in FIG. That is, the hysteresis becomes smaller (narrower) at the rest position and the hysteresis becomes larger (wider) at the rest position on the forward path toward the maximum depressed position and the return path returning to the rest position.
  • the pedal arm 12 can be freely moved. Since the end 12a (12a ') is configured to be able to engage and disengage from the first contact member 24, the urging force of the return spring 14 allows the accelerator pedals 13 and The pedal arm 12 will always be returned to the rest position.
  • Hysteresis characteristics of pedaling force can be freely set by appropriately selecting the angle 01 of the inclined surfaces 22a and 24a and the angle 02 of the second inclined surfaces 22b and 25a.
  • the operation feeling of the accelerator pedal 13 can be improved, and an accelerator pedal device with easy accelerator control can be obtained.
  • the structure is simple, assembling is easy and the manufacturing cost can be reduced.
  • FIGS. 9 to 15 show another embodiment of the accelerator pedal device according to the present invention.
  • FIGS. 9 to 13 are structural diagrams, FIGS. 14 and 15. The figure is a diagram for explaining the operation and the pedaling force characteristics.
  • the accelerator pedal device includes a bracket 50 fixed to a vehicle body 49 such as an automobile, and a bracket 50 fixed to the bracket 50, as shown in FIG.
  • a frictional force generating mechanism 60 arranged in the area 55a and an accelerator position sensor (not shown) for detecting the amount of depression of an accelerator pedal 53 are provided as its basic configuration.
  • the pedal arm 52 has an accelerator pedal 53 fixed to the lower end thereof with the pedal shaft 51 as a swinging fulcrum, and the upper end thereof, that is, the upper end 55 a of the lever 55 is provided with a frictional force generating mechanism.
  • a free end acting on 60 is formed.
  • the pedal arm 52 swings around the pedal shaft 51, and the rest position (the position indicated by the solid line in FIG. 9) and the maximum It moves between the depressed position and the load applied to the frictional force generating mechanism 60 is adjusted.
  • the free end portion 55a of the pedal arm 52 is securely engaged with and disengaged from a first movable friction member 63 described later.
  • a contact member 56 is attached, and the load of the pedal arm 52 is transmitted via the contact member 56.
  • the position indicated by the two-dot chain line in FIG. 9 indicates a position halfway between the rest position and the maximum depression position.
  • the accelerator position sensor is fixed to the bracket 50, and the sensor drive pin 70 is connected to the free end of the lever 55 together with the contact member 56 as shown in FIGS. 9 to 11.
  • the part (upper end) is connected to 55a.
  • the frictional force generating mechanism 60 generates a frictional force in accordance with the movement of the pedal arm 52 (the lever 55), and as shown in the vertical cross sections of FIGS. 10 and 11, A cylindrical housing 61 and an end plate 62 fixed to the bracket 50, and a first movable friction member 63 and a second movable friction member reciprocally mounted in the housing 61. 64, a return spring 65 that urges the second movable friction member 64 back to its original position (to the position shown in Fig. 10), a first movable friction member 63, and a second movable friction member. It is constituted by a play load spring 66 and the like arranged between the dynamic friction member 64 and the like.
  • the housing 61 is formed to have a substantially rectangular cross-sectional shape using a material having strength and barrier properties such as stainless steel, and a closed wall 6 la is formed at the left end thereof.
  • the right end has an opening 6 lb.
  • the first movable friction member 63, the play load spring 66, the second movable friction member 64, and the return spring 65 are sequentially housed in the housing 61. In this state, the end plate 62 is attached so as to close the opening 6 lb.
  • the inner wall surface 61c of the housing 61 acts as a sliding surface to form a sliding guide path for slidably guiding the first movable friction member 63 and the second movable friction member 64. .
  • a long notch (slit) 61 d is formed, and through this notch 61 d, the free end of the pedal arm 52, that is, The free end 55 a of the lever 55 and the contact member 56 are inserted into the housing 61 in a reciprocating manner.
  • a cutout (not shown) is formed on the side wall of the housing 61 to allow the sensor drive pin 70 to be mounted and moved.
  • the first movable friction member 63 is made of a highly slidable material such as oil-impregnated polyacetate, and has a substantially rectangular main body 6 as shown in FIG.
  • the first inclined surface 63c formed so that the angle formed by the normal with respect to the extension direction of the main body 63a, the concave portion 63d formed at the approximate center of the main body 63a, etc. Is formed.
  • the second movable friction member 64 is made of a highly slidable material such as oil-impregnated polyacetal, and has a substantially rectangular main body 6 as shown in FIG.
  • the play load spring 66 is composed of a compression type coil spring, and as shown in FIGS.
  • the biasing force of the play load spring 66 is the maximum in the most compressed state. Is set to be smaller than or equal to the biasing force of the return spring 65 in the extended state.
  • the return spring 65 is composed of a compression type coil spring having a large diameter and a first return spring 65a, and a compression type coil spring having a small diameter.
  • a second return spring 65 b is provided between the second movable friction member 64 and the end plate 62.
  • the first movable friction member 63 and the second movable friction member 64 are provided on the sliding guide path (inner wall surface) 61c of the housing 61.
  • the first inclined surface 63c and the second inclined surface 64c are arranged to face each other so that they can come into contact with each other. That is, when the first movable friction member 63 and the second movable friction member 64 are pressed against each other, the first movable friction member 63 and the second inclined surface 64 c cause the first movable friction member to wedge.
  • the member 63 is directed downward and the second movable friction member 64 is directed upward, that is, away from each other in a direction orthogonal to the direction of movement guided by the sliding guide path (inner wall surface) 61c. It will be pressed against the inner wall surface 6 1 c of the housing 61.
  • the load F of the pedal arm 52 and the urging force (reaction force) F of the return spring 65 are the depression amount of the accelerator pedal 53 (X). Therefore, the frictional force f 1 from the rest position to the maximum depression position is
  • the first movable friction member 63, the second movable friction member 64, the return spring 65, etc. disposed in the sliding guide path (inner wall surface) 61c of the housing 61.
  • the frictional forces f 1 and f 2 obtained by the above-described frictional force varying means, the urging force of the return spring 54, the urging force of the play load spring 66, and the urging force of the return spring 65 are When superimposed, the pedaling force (pedal load) characteristic of the accelerator pedal 53 is obtained as a hysteresis as shown in FIG. That is, the hysteresis becomes smaller (narrower) at the rest position on the outgoing route toward the maximum depressed position and the return route returning to the rest position, and the response and operation feeling are improved. The margin for return failure can be increased. On the other hand, at the maximum depression position, the hysteresis becomes large (wide), and the controllability of the vehicle (engine) becomes good.
  • the pedal arm 52 (and the accelerator pedal 53) is at the rest position (the position corresponding to the fully closed state of the throttle valve).
  • the biasing force of the return spring 54 and the play load spring 66 acts on the pedal arm 52, and the contact member 56 of the pedal arm 52 closes the housing 61 as shown in FIG. It abuts the chain wall 6 1 a and stops at the rest position.
  • the second movable friction member 64 is urged by the urging force of the return spring 65, and one end of the arm portion 64b closes the housing 61. It comes into contact with the horn 6 1 a ′ formed on the wall 61 a and stops at the rest position. Further, the first movable friction member 63 is urged by the play load spring 66 to separate from the second movable friction member 64, abut against the contact member 56, and stop at the rest position. .
  • the first movable friction member 63 slides on the sliding guide path (inner wall surface) 61c of the housing 61, and the frictional force due to this sliding is set to be as small as possible. ing.
  • the first movable friction member 63 and the second movable friction member 64 begin to move rightward in FIG.
  • the wedge action of the first inclined surface 63c and the second inclined surface 64c of the second movable friction member 64 causes the arm 63b of the first movable friction member 63 and the second movable friction member 64.
  • a friction force f 1 starts to act leftward in FIG. 11 between the arm 6 4 b and the sliding guideway (inner wall surface) 6 1 c of the housing 61.
  • the pedaling force of the accelerator pedal 53 increases along the line of f1 + F0, and when reaching the maximum depression position P2, the pedaling force becomes f1 (max) + F0 (max), It will show the maximum value.
  • the frictional force f2 at point P3 in FIG. 15 is f2 (max) + F0 (0). Then, the pedaling force of the accelerator pedal 53 decreases along the line of f 2 + F 0, and when the arm 64 c of the second movable friction member 64 comes into contact with the stop 6 la ′ and stops ( At point P4 in Fig. 15), the frictional force f2 stops working. Then, through P5 in FIG. 15, the accelerator pedal 53 reaches the rest position.
  • the accelerator pedal device With the simple structure of the first movable friction member 63, the second movable friction member 64, the housing 61, etc., the angle 0 of the first inclined surface 63c and the second inclined surface 64c is appropriately selected. By doing so, the hysteresis characteristic of the pedaling force (pedal load) can be freely set, the operation feeling of the accelerator pedal 53 can be improved, and an accelerator pedal device with an easy accelerator control can be obtained. be able to. Further, it is possible to easily prevent the occurrence of vibration or abnormal noise in the vehicle. Further, since the structure is simple, the assembling is easy and the manufacturing cost can be reduced.
  • FIGS. 16 to 25 show still another embodiment of the accelerator pedal device according to the present invention, wherein FIGS. 16 to 24 are configuration diagrams and FIG. 25 is an operation diagram.
  • FIG. 16 to 24 are configuration diagrams and FIG. 25 is an operation diagram.
  • the accelerator pedal device is, as shown in FIGS. 16 to 18, integrally provided with a bracket 100 fixed to a vehicle body 90 such as an automobile and the bracket 100
  • a housing 110 formed, a cover 120 covering the housing 110, a pedal shaft 130 rotatably supported by the housing 110 and the cover 120, a pedal shaft Pedal arm 140 fixed to 130 and supported swingably, accelerator pedal 150 to exert driver's depressing force, and return spring 16 arranged around pedal axis 130 0, a frictional force generating mechanism 170 located in the area of the free end 144 of the pedal arm 140, an accelerator position sensor 180 for detecting the amount of depression of the accelerator pedal 150, a sensor connector 190 is provided as its basic configuration.
  • the housing 110 has a fitting hole (bearing hole) 1 1 1 for fitting the pedal shaft 130 and supporting it rotatably.
  • arc-shaped grooves 115 with a radius of curvature centered at point C are formed.
  • the center of the arc-shaped groove 1 15 is set to the point C, it can be formed as close as possible to the outer annular groove 1 13, whereby the size of the device can be reduced.
  • the center of the arc-shaped groove 1 15 can be made coincident with the pedal shaft 1 30. In this case, the movement trajectory of the free end 14 1 of the pedal arm 14 0 Since the curvature coincides with the curvature of 5, a more reliable engagement operation is performed.
  • the arc-shaped groove 115 is formed so that the left side is wide and the right side is narrow from the substantially middle part, and the step part 115a is formed at the boundary part.
  • the outer annular groove 1 13 has a locking groove 1 13 a extending radially outward from a part thereof, and locks one end 1 ⁇ 3 a of a return spring 17 3 described later. You can do it.
  • the inner annular groove 1 1 2 is formed with a locking groove 1 12 a extending radially inward from a part thereof so that one end 16 1 of the return spring 16 can be locked. I have.
  • the return spring 160 is, as shown in FIGS. 19 and 20, a torsion spring formed of a material such as stainless steel, and is housed in the inner annular groove 112 of the housing 110.
  • a torsion spring formed of a material such as stainless steel, and is housed in the inner annular groove 112 of the housing 110.
  • one end 16 1 that is hooked into the hook groove 1 12 a and the other end that is hooked in the hook hole 14 2 of the pedal arm 140 (see Fig. 21) 1 and 2 are provided.
  • an urging force is exerted for returning the pedal arm 140 (accelerator pedal 150) depressed from the rest position to the maximum depressed position side to the original rest position.
  • the pedal arm 140 has a fitting hole 140a for fixing the pedal shaft 140 by press-fitting, and a frictional force generating mechanism 1. ⁇
  • the free end 141 which is bent at a substantially right angle to act on 0, the hook hole 142, which hooks the other end 162 of the return spring 160, and the accelerator pedal 150, It is formed as a long plate-shaped member provided with a lower connecting portion 144 connecting the holding pad 150a.
  • the pedal arm 140 swings around the pedal shaft 130, and the rest position (the position indicated by the solid line in FIG. 16) It moves between the maximum depression position (the position indicated by the two-dot chain line in FIG. 16) and the load applied to the frictional force generating mechanism 170 is adjusted.
  • the free end portion 141 of the pedal arm 140 is disposed so as to abut a first movable friction member 171, which will be described later, so that engagement and disengagement with the first movable friction member 171 can be ensured.
  • the contact is made with the rubber member 200 buried in the housing 110 to stop at the rest position.
  • the accelerator position sensor 180 is located in the sensor space 114 of the housing 110, and is fixed to the housing 110, which rotates integrally with the pedal arm 140. It is a non-contact type sensor consisting of a permanent magnet, a permanent magnet, and a hall element. When the pedal arm 140 swings, the swing displacement is detected as a change in the magnetic flux passing through the Hall element, and the depression amount of the accelerator pedal 150 is detected.
  • the frictional force generating mechanism 170 generates a frictional force in accordance with the movement of the pedal arm 140 (accelerator pedal 150), and as shown in FIG.
  • a return spring 173 that urges the friction members 172 back to their original position (to the position shown in Fig. 17), a first movable friction member 171, and a second movable friction member 172 And a spring for play load 174 and the like arranged between them.
  • the inner wall surface of the arc-shaped groove 1 15 of the housing 110 acts as a sliding surface, and guides the first movable friction member 17 1 and the second movable friction member 1 and 2 to slide independently.
  • a sliding guideway is formed.
  • a long slit (slit) 110a is formed on the lower side of the housing 110, as shown in Fig. 18, and is integrated with the pedal arm 140. With the fixed pedal axle 130 attached and covered by the cover 120, the lower connecting part 144 of the pedal arm 140 is housed through this notch 110a. 10 is exposed to the outside.
  • the first movable friction member 1 7 1 is formed of a highly slidable material such as oil-impregnated polyacetal, and as shown in FIG. 2, has an arc-shaped surface 1 having the same curvature as the arc-shaped groove 1 1 5. 7 1 a, 17 lb, and a first inclined surface 17 1 c formed so that the angle formed by the normal to the tangent to the arc surface 17 la, 17 1 b becomes 0, A back surface 1 ⁇ 1 d formed on the opposite side to the first inclined surface 17 1 c, and a cylindrical hole 17 1 e formed to open on the first inclined surface 17 1 c, etc. I have.
  • the second movable friction member 17 2 is formed of a highly slidable material such as oil-impregnated polyacetal, and as shown in FIG. 2, an arc-shaped surface 1 having the same curvature as the arc-shaped groove 115. 7 2 a, 17 2 b and a second inclined surface 17 2 c formed such that the angle between the tangent of the arc surface 17 2 a, 17 2 b and the normal line is 0. And a back surface 17 2 d formed on the opposite side to the second inclined surface 17 2 c, and a cylindrical hole 17 2 e formed to open on the second inclined surface 17 2 c.
  • the spring for play load 174 is composed of a compression type coil spring as shown in Fig.
  • a biasing force is generated in a direction to move away from.
  • the biasing force of the play load spring 174 is set to be smaller than or equal to the biasing force of the return spring 1773 in the most compressed state in the most compressed state. .
  • the return spring 173 is a torsion spring formed of a material such as stainless steel as shown in FIGS. 23 and 24, and is housed in the outer annular groove 113 of the housing 110. In this state, one end 1 7 3 a hooked on the hook groove 1 13 a and the other end 1 7 3 b hooked on the back 17 2 d of the second movable friction member 17 2 It has. Then, an urging force is exerted to return the second movable friction member 17 2 to the original rest position (toward the position shown in FIG. 17).
  • the first movable friction member 17 1 and the second movable friction member 17 2 are formed by an arc-shaped groove 115 of the housing 110, that is, a sliding guide path (inner wall).
  • the first inclined surface 17 1 c and the second inclined surface 17 2 c are arranged to face each other in a direction in which the first inclined surface 17 1 c and the second inclined surface 17 2 c can contact each other.
  • the wedge action of the first inclined surface 17 1 c and the second inclined surface 17 2 c causes The first movable friction member 1 ⁇ 1 is guided radially inward (downward) and the second movable friction member 17 2 is guided radially outward (upward), that is, guided by the arc-shaped groove 1 15.
  • the second movable friction member 17 1 is moved toward the inner wall surface inside the arc-shaped groove 1 15 Dynamic friction member 1 7 2
  • the arc surface 1 7 2 b is pressed toward the inner wall surface outside the arc groove 1 15.
  • the first movable friction member 1 ⁇ 1 Since the first movable friction member 1 and the second movable friction member 1 ⁇ 2 move toward the left side in a contact state without separating, at the moment of the movement, the outside of the second movable friction member 1 ⁇ 2 (the second From the left side in the figure), the biasing force F of the return spring 173 acts as a reaction force in a direction that antagonizes this load F.
  • the load F of the pedal arm 140 and the urging force (reaction force) F of the return spring 173 are expressed as functions of the amount of depression (X) of the accelerator pedal 150.
  • the friction force f1 when going from the rest position to the maximum depression position is
  • the frictional force f2 generated when the pedal arm 140 moves toward the rest position is increased.
  • the frictional force varying means is configured to decrease the frictional force according to the amount of movement of the pedal arm, that is, change the frictional force according to the movement of the pedal arm 140.
  • the pedaling force (pedal load) characteristics of the accelerator pedal 150 are as shown in Fig. 15 above. It will be obtained as steresis. That is, the hysteresis becomes smaller (narrower) at the rest position on the outgoing route toward the maximum depressed position and the return route returning to the rest position, and the response and operation feeling are improved. The margin for return failure can be increased. On the other hand, at the maximum depression position, the hysteresis becomes large (wide), and the controllability of the vehicle (engine) becomes good.
  • the pedal arm 140 (and the accelerator pedal 150) is located at the rest position (the position corresponding to the fully closed state of the throttle valve). I have. At this time, the biasing force of the return spring 160 and the play load spring 174 acts on the pedal arm 140, and as shown in FIG. 17, the free end portion 141 is housed. The rubber member 200 buried in 110 is brought into contact with and stopped at the rest position.
  • the second movable friction member 17 2 is urged by the urging force of the return spring 17 3, and the upper end of the second inclined surface 17 2 c has a stepped portion 1 of the arc-shaped groove 1 15. Abuts 15 a and stops at rest position. Further, the first movable friction member 17 1 is urged by a play load spring 17 4 so as to be separated from the second movable friction member 1 2 and the rear surface 1 1 b of the first movable friction member 1 4 0 abuts free end 1 4 1 and stops at rest position.
  • the first movable friction member 17 1 starts moving (to the left in FIG. 17) while compressing the play load spring 1 74, and when it moves a predetermined distance, that is, the first movable friction member 17 1 At point PI in FIG. 5, it comes into contact with the second movable friction member 17 2.
  • the first movable friction member 17 1 is formed by the arc-shaped groove 1 of the housing 110.
  • the first movable friction member 17 1 and the second movable friction member 17 2 begin to move leftward in FIG. 7 Wedge action of the first inclined surface 1 7 1 c of 1 and the second inclined surface 1 2 c of the second movable friction member 1 ⁇ ⁇ 2, the arc surface 1 1 of the first movable friction member 1 7 1 A friction force f1 starts to act rightward in FIG. 17 between the arc surface 1 72 b of the first movable friction member 17a and the inner wall surface of the arc groove 1 15.
  • the pedaling force of the accelerator pedal 150 increases along the line of f1 + F0, and when reaching the maximum depression position P2, the pedaling force is f1 (max) + F0 (max)
  • a part of the outer circular surface 17 lb of the first movable friction member 17 1 becomes an arc-shaped groove 1 15 It moves away from the inner wall surface of the outside, but can be moved stably because it is pressed against the inner wall surface inside the arc-shaped groove 115 by the wedge action.
  • the frictional force f 2 at the point P 3 in FIG. 15 is f 2 (max) + F 0 (0). Then, the pedaling force of the accelerator pedal 150 decreases along the line of f 2 + F 0, and the upper end of the second inclined surface 17 2c of the second movable friction member 17 2 becomes a stepped portion 1 15 At the point when it comes into contact with a and stops (point P4 in Fig. 15), the frictional force f2 stops acting. Then, through P5 in FIG. 15, the accelerator pedal 150 reaches the rest position.
  • the free end of the pedal arm 140 can be used. Since the first movable friction member 141 is configured to be able to engage and disengage with the first movable friction member 1 ⁇ 1, the accelerator pedal 150 and the pedal arm 140 are provided by the urging force of the return spring 160. Will always be returned to the rest position.
  • the first movable friction member 17 1, the second movable friction member 17 2, the arc-shaped groove 1 15 of the housing 110, and the like can be simplified.
  • the hysteresis characteristics of the treading force (pedal load) can be set freely by appropriately selecting the angle 0 of the first inclined surface 17 1 c and the second inclined surface 17 2 c according to the simple structure.
  • the operation feeling of the accelerator pedal 150 can be improved, and an accelerator pedal device with easy accelerator control can be obtained.
  • the structure is simple, the assembling is easy and the manufacturing cost can be reduced.
  • FIGS. 26 and 27 show an accelerator pedal device according to still another embodiment, which differs from the embodiment shown in FIGS. 16 to 25 in that The configuration is the same except that the arrangement of 60 is changed. Therefore, the same components are denoted by the same reference numerals and description thereof will be omitted.
  • the arc-shaped groove 215 formed in the housing 110 is located at a position on the right side of the substantially central portion.
  • the first movable friction member 27 1 and the second movable friction member are formed with a wide groove on the left side and a narrow groove on the right side, bordering the step portion 2 15 a.
  • a sliding guide path is formed to guide 272 slidably.
  • the first movable friction member 2 71 is formed of a highly slidable material such as oil-impregnated polyacetal, and as shown in FIG. 27, has an arc surface 2 having the same curvature as the arc-shaped groove 2 15. 7 1 a, 27 lb, and the first inclined surface 2 7 1 c formed so that the angle between the tangents of the arc surfaces 27 la, 27 1 b and the normal is (9) , A back surface 27 1 d formed on the opposite side to the first inclined surface 27 1 c, and a cylindrical hole 27 1 e formed to open in the back surface 27 1 d. .
  • the second movable friction member 272 is formed of a highly slidable material such as oil-impregnated polyacetal, and as shown in FIG. 27, has an arcuate surface 2 having the same curvature as the arcuate groove 215. 7 2 a, 27 2 b and a second inclined surface 2 7 2 formed such that the angle formed by the normal to the tangent line of the arc surface 27 2 a, 27 2 b is 6> c and a back surface 27 2 d formed on the side opposite to the second inclined surface 27 2 c.
  • the operation of the accelerator pedal device will be described. First, in a state where the accelerator pedal 150 is not depressed, the second movable friction member 272 is urged by the urging force of the return spring 173.
  • the second inclined surface 271-2c abuts on the first inclined surface 271-1c of the first movable friction member 271, and further, the first movable friction member 271-1 has a back surface 271-2.
  • the upper end of d comes into contact with the step 2 a of the arcuate groove 2 15 and stops at the rest position.
  • the ⁇ ⁇ ⁇ dull arm 140 is urged by the urging force of the play load spring 170 and the return spring 160, and its free end 141 contacts the rubber member 200 and the rest position. Has stopped.
  • the outer arc surface 27 lb of the first movable friction member 27 1 When moving toward the maximum stepping position, the outer arc surface 27 lb of the first movable friction member 27 1 always moves along the inner wall surface of the outer side of the arc-shaped groove 2 15. It can move more stably.
  • the frictional force variable means a movable frictional member, a sliding guide path, a return spring, and the like have been described.However, the present invention is not limited to this, and when the accelerator pedal is depressed, Any configuration that increases the generated frictional force in proportion to the increase in the stroke, while reducing the generated frictional force in inverse proportion to the return stroke when returning the accelerator pedal, The configuration described above can also be adopted. As described above, according to the accelerator pedal device of the present invention, as the frictional force generating mechanism, the pedal arm is directed toward the maximum depression position in the sliding guide path that defines the sliding surface that generates the frictional force.
  • Frictional variable means for increasing the frictional force generated when the pedal arm moves in accordance with the amount of movement and reducing the frictional force generated when the pedal arm moves toward the rest position in accordance with the amount of movement.
  • the hysteresis of the pedal load characteristics is small (narrow) at the rest position and large (wide) at the maximum depressed position.
  • the frictional force varying means is constituted by a first movable friction member and a second movable friction member which can reciprocate in an arc shape, an arc-shaped sliding guide path, a return spring formed of a torsion spring, and the like.
  • the components can be integrated, and the size of the device can be further reduced.
  • the accelerator pedal device according to the present invention is useful as an accelerator pedal device applied to a vehicle such as an automobile, and is particularly used as an accelerator pedal device for an automobile or the like employing a drive-by-wire system. Suitable for.

Description

明 細 書 アクセルペダル装置 技術分野
本発明は、 車両等に適用されるアクセルペダル装置に関し、 特に、 ド ライブバイワイヤーシステムを採用した車両に適用されるアクセルぺダ ル装置に関する。 背景技術
車両、 特に自動車に搭載されるエンジンの燃焼状態、 出力、 回転制御 等を、 運転者の意図するアクセルコントロール以上に高精度かっきめ細 かに制御する手法として、 電子制御スロヅ トルシステムすなわち ドライ ブバイワイヤ一システムが知られている。 この電子制御ス口ヅ トルシス テム (ドライブバイワイヤ一システム) は、 アクセルペダルとスロッ ト ルバルブとをアクセルワイヤーで接続するのではなく、 アクセルペダル の踏み込み量を電気信号に変換し、 この変換された電気信号に基づいて エンジンの出力制御を行なうものである。
このドライブバイワイヤ一システムにおいては、 スロッ トルバルブの 操作荷重がペダル荷重としてアクセルペダルに作用しない。 したがって 、 車両等を一定の速度で走行させる (アクセルペダルを一定の位置に保 持する) 場合、 運転者が疲労しないようにこの荷重を補うような機構が 要求される。 また、 エンジンの出力変動等により車両の加速度が変動し 、 運転者がその共振系の影響を受けてアクセルペダルの踏み込み量が容 易に変動すると、 車両の前後振動等を招く ことになる。 したがって、 こ の振動等を防止するためにも、 アクセルペダルの踏み込みに抵抗する力 を発生する機構が要求される。
これらに対処するアクセルペダル装置として、 例えば、 特閧平 1 1 一 2 3 5 9 3 6号公報等に記載されたものが知られている。 この公報に開 示のアクセルペダル装置は、 アクセルペダルからの踏力により休止位置 から最大踏み込み位置まで摇動させられるペダルアームと、 ぺダルア一 ムを休止位置に向けて復帰させるリターンスプリングと、 ペダルアーム により移動させられる可動摩擦部材と、 この可動摩擦部材を元の位置に 戻す戻しスプリングと、 可動摩擦部材を摺動自在に案内するハウジング 等により構成されている。 そして、 これら可動摩擦部材、 ハウジング等 により所定の摩擦力を発生する摩擦力発生機構が構成されている。 この摩擦力発生機構によれば、 アクセルペダルを踏み込む際に一定の 摩擦力が作用してアクセルペダルにペダル荷重を及ぼし、 一方、 ァクセ ルペダルを戻す際にリターンスプリングの付勢力に拮抗する一定の摩擦 力が作用してアクセルペダルの復帰力を低減させるように機能するもの である。 これによれば、 アクセルペダルには所定の操作荷重 (ペダル荷 重) が作用するため、 一定速度で走行する場合にアクセルペダルを所望 の位置に保持することができ、 運転者の疲労を軽減することができる。 ところで、 上記摩擦力発生機構を備えたアクセルペダル装置において は、 第 2 8図及び第 2 9図に示すように、 アクセルペダルの踏力 (ぺダ ル荷重) とアクセルペダルの移動量 (ス トローク) との関係が、 スロヅ トルの全閉 (アクセルペダルの踏み始め) から全開 (最大踏み込み位置 ) に至るまで一定幅のヒステリシスとなっている。 したがって、 第 2 8 図に示すように、 スロッ トルの全開側で要求される踏力 (ペダル荷重) に合わせると、 全閉位置で復帰力が不足してアクセルレスポンス (ァク セルフィ一リング) が悪くなる虞がある。 一方、 第 2 9図に示すように 、 全閉側で要求される踏力 (ペダル荷重) に合わせると、 全開側で車両 の振動に対して運転者あるいはアクセルペダルが共振して、 運転性が悪 くなる可能性があった。
本発明は、 上記の点に鑑みて成されたものであり、 その目的とすると ころは、 スロッ トルの全閉及び全開で要求される踏力 (操作荷重)、 す なわち、 アクセルペダルの移動範囲全域で要求される踏力のヒステリシ ス特性を満たすと共に、 構造の簡化、 小型化を図れ、 良好な運転性に寄 与するアクセルペダル装置を提供することにある。 発明の開示
本発明のアクセルペダル装置は、 アクセルペダルから伝わる踏力によ り休止位置から最大踏み込み位置まで移動可能なペダルアームと、 この ペダルアームを揺動自在に支持するペダル軸と、 ペダルアームを休止位 置に向けて復帰させるベく付勢する復帰スプリングと、 ペダルアームの 移動に伴なつて摩擦力を発生する摩擦力発生機構とを備えたアクセルべ ダル装置であって、 上記摩擦力発生機構は、 摩擦力を発生する摺動面を 画定する摺動案内路と、 ペダルアームが最大踏み込み位置に向けて移動 する際に発生する摩擦力をその移動量に応じて増加させると共にペダル アームが休止位置に向けて移動する際に発生する摩擦力をその移動量に 応じて減少させるベく、 摺動案内路内に配置されかつペダルアームの移 動に応じて摩擦力を変化させる摩擦力可変手段とを有する、 ことを特徴 としている。
この構成によれば、 アクセルぺダルが踏まれてペダルアームが休止位 置から最大踏み込み位置に移動する際には、 摩擦力可変手段がその移動 量に応じて摺動案内路内にて発生する摩擦力を増加させるため、 復帰ス プリングの付勢力にアクセルペダルの踏み込み量に伴なつて増加する摩 擦力を加えた分がペダル荷重として作用し、 一方、 ペダルアームが最大 踏み込み位置から休止位置に移動する (戻る) 際には、 摩擦力可変手段 がその移動量に応じて摺動案内路内にて発生する摩擦力を減少させるた め、 復帰スプリングの付勢力からアクセルペダルの戻し量に伴なつて減 少する摩擦力を減じた分がペダル荷重として作用することになる。 これにより、 ペダル荷重の特性としては、 休止位置で最小幅になりか つ最大踏み込み位置で最大幅となるヒステリシスが得られることになる また、 発生する摩擦力は、 摺動案内路内の摺動面に対して作用し、 ぺ ダルアームが摩擦力発生機構に作用する方向に対して、 ペダルアームの 受ける反作用の方向が一致 ( 1 8 0 ° 反対の方向) するため、 例えばべ ダルアームを支持するペダル軸等の構成部品に無理な力が加わることも なく、 作動の信頼性が高まる。
上記構成において、 摩擦力可変手段は、 ペダルアームから加えられる 荷重により摺動案内路内を移動させられると共にこの荷重に応じてその 移動方向と直交する方向に変位するべく摺動面に押し付けられる可動摩 擦部材と、 可動摩擦部材をペダルアームの荷重と拮抗する向きに付勢す る付勢力を発生すると共にこの付勢力に応じてその移動方向と直交する 方向に変位させるベく摺動面に可動摩擦部材を押し付けつつ元の位置に 戻す戻しスプリングとを有する、 構成を採用することができる。
この構成によれば、 ペダルアームの踏み込み荷重により最大踏み込み 位置に向けて可動摩擦部材が移動するとき、 その移動量に応じて戻しス プリングの付勢力も大きくなるため、 可動摩擦部材が摺動案内路 (摺動 面) に押し付けられる押付力、 すなわち、 摩擦力もその移動量に応じて 増加する。
一方、 戻しスプリングの付勢力により休止位置に向けて可動摩擦部材 が移動するとき、 その移動量に応じて戻しスプリングの付勢力も小さく なるため、 可動摩擦部材が摺動案内路 (摺動面) に押し付けられる押付 力、 すなわち、 摩擦力もその移動量に応じて減少する。
上記構成において、 可動摩擦部材は、 摺動案内路により案内される方 向の両側において、 その中央部に向けてお互いに近づくように傾斜する 第 1傾斜面及び第 2傾斜面を有し、 可動摩擦部材とペダルアームの自由 端部との間には、 第 1傾斜面に当接する傾斜面を有する第 1当接部材が 配置され、 可動摩擦部材と戻しスプリングとの間には、 第 2傾斜面に当 接する傾斜面を有する第 2当接部材が配置されている、 構成を採用する ことができる。
この構成によれば、 第 1当接部材と第 2当接部材との間に可動摩擦部 材が挟持された状態で、 ペダルアームから第 1当接部材に踏み込み荷重 が作用して最大踏み込み位置に向け移動するとき、 戻しスプリングの付 勢力に杭して可動摩擦部材が移動しつつ摩擦力を増加させる。 一方、 戻 しスプリ ングから第 2当接部材に付勢力が作用して休止位置に向け移動 するとき、 可動摩擦部材が移動しつつ摩擦力を減少させる。
上記構成において、 摺動案内路は略円形の断面形状をなし、 可動摩擦 部材は、 摺動案内路の内周面に密接する略環状をなしかつ少なく とも一 部が周方向を横切る向きに切断されている、 構成を採用することができ る。
この構成によれば、 可動摩擦部材は円筒状の摺動案内路内を往復動し 、 可動摩擦部材が径方向外側に向けて押し付けられることで摩擦力を発 生する。
上記構成において、 ペダルアームの自由端部は、 第 1当接部材に対し て係合及び離脱自在となっている、 構成を採用することができる。
この構成によれば、 ペダルアームが休止位置に向けて戻る際に、 仮に 可動摩擦部材、 第 1当接部材、 あるいは第 2当接部材がスティ ックして 元の位置に戻らない場合が生じても、 ペダルアームは確実に休止位置に 戻ることになる。
また、 本発明のアクセルペダル装置において、 上記摩擦力可変手段は 、 ペダルアームの荷重により摺動案内路内を移動させられると共にその 移動方向に対して所定の角度をなす第 1傾斜面を有する第 1可動摩擦部 材と、 この第 1可動摩擦部材と上記移動方向において対向して配置され て摺動案内路内を移動させられると共に第 1傾斜面に当接し得る第 2傾 斜面を有する第 2可動摩擦部材と、 第 2可動摩擦部材をペダルアームの 荷重と拮抗する向きに付勢して元の位置に戻す戻しスプリングとを有す る、 構成を採用することができる。
この構成によれば、 ペダルアームの踏み込み荷重により最大踏み込み 位置に向けて第 1可動摩擦部材及び第 2可動摩擦部材が移動するとき、 第 1傾斜面と第 2傾斜面とのくさび作用により、 第 1可動摩擦部材及び 第 2可動摩擦部材が摺動案内路に向けて押し付けられる。 この押付力は 、 アクセルペダルの踏み込み量すなわち戻しスプリングの圧縮量 (付勢 力) の増加に伴なつて増加するため、 摩擦力も踏み込み量 (移動量) に 応じて増加する。
一方、 戻しスプリングの付勢力により休止位置に向けて第 1可動摩擦 部材及び第 2可動摩擦部材が移動するとき、 その戻り量 (移動量) に応 じて戻しスプリングの圧縮量 (付勢力) も減少するため、 第 1可動摩擦 部材及び第 2可動摩擦部材が摺動案内路に向けて押し付けられる押付力 、 すなわち、 摩擦力もその戻り量 (移動量) に応じて減少する。
上記構成において、 第 1可動摩擦部材と第 2可動摩擦部材との間には 、 第 1可動摩擦部材と第 2可動摩擦部材とをお互いに遠ざける向きにお いて、 戻しスプリングの付勢力よりも小さい付勢力を発生して遊び荷重 を与える遊び荷重用スプリングが配置されている、 構成を採用すること ができる。
この構成によれば、 休止位置から最大踏み込み位置に向かう始めの領 域で、 アクセルペダルからの踏力がペダルアームに作用してもスロッ ト ルバルブが作動しない遊びの領域を、 あるいは、 所望の操作フィーリン グとする荷重特性を適宜設定することができる。
上記構成において、 戻しスプリングは、 直径が異なる複数のコイルス プリングからなる、 構成を採用することができる。
この構成によれば、 戻しスプリングにより付勢力を設定する際の自由 度が増加し、 又、 装置の小型化にも寄与する。
上記構成において、 ペダルアームの自由端部は、 第 1可動摩擦部材に 対して係合及び離脱自在となっている、 構成を採用することができる。 この構成によれば、 ペダルアームが休止位置に向けて戻る際に、 仮に 第 1可動摩擦部材あるいは第 2可動摩擦部材がスティ ックして元の位置 に戻らない場合が生じても、 ペダルアームは確実に休止位置に戻ること になる。
さらに、 本発明のアクセルペダル装置において、 上記摩擦力可変手段 は、 ペダルアームの荷重により摺動案内路内を移動させられると共にそ の移動方向に対して所定の角度をなす第 1傾斜面を有する第 1可動摩擦 部材と、 第 1可動摩擦部材と上記移動方向において対向して配置されて 摺動案内路内を移動させられると共に第 1傾斜面に当接し得る第 2傾斜 面を有する第 2可動摩擦部材と、 第 2可動摩擦部材をペダルアームの荷 重と拮抗する向きに付勢して元の位置に戻す戻しスプリングとを有し、 第 1可動摩擦部材及び第 2可動摩擦部材は、 所定の軸を中心として円弧 状に往復動自在であり、 摺動案内路は、 上記所定の軸を中心とした円弧 状の曲率をなす湾曲路からなる、 構成を採用することができる。
この構成によれば、 ペダルアームの踏み込み荷重により最大踏み込み 位置に向けて第 1可動摩擦部材及び第 2可動摩擦部材が円弧状に移動す るとき、 第 1傾斜面と第 2傾斜面とのくさび作用により、 第 1可動摩擦 部材及び第 2可動摩擦部材が円弧状の摺動案内路に向けて押し付けられ る。 この押付力は、 アクセルペダルの踏み込み量すなわち戻しスプリン グの圧縮量 (付勢力) の増加に伴なつて増加するため、 摩擦力も踏み込 み量 (移動量) に応じて増加する。
一方、 戻しスプリングの付勢力により休止位置に向けて第 1可動摩擦 部材及び第 2可動摩擦部材が円弧状に移動するとき、 その戻り量 (移動 量) に応じて戻しスプリングの圧縮量 (付勢力) も減少するため、 第 1 可動摩擦部材及び第 2可動摩擦部材が円弧状の摺動案内路に向けて押し 付けられる押付力、 すなわち、 摩擦力もその戻り量 (移動量) に応じて 減少する。
特に、 第 1可動摩擦部材及び第 2可動摩擦部材が所定の軸 (例えば、 戻しスプリングの中心軸あるいはペダル軸等) の回りに円弧状に移動す るため、 構成部品がこの軸近傍に集約されて装置の小型化が行なえる。 上記構成において、 戻しスプリングがペダル軸の周りに配置された捩 りスプリングからなり、 又は、 復帰スプリングがペダル軸の周りに配置 された捩りスプリングからなり、 あるいは、 戻しスプリング及び復帰ス プリングがペダル軸の周りに配置された捩りスプリングからなりかつ復 帰スプリングが戻しスプリングの内側に配置されている、 構成を採用す ることができる。
これらの構成によれば、 構成部品がペダル軸近傍に集約されて装置の 小型化が行なえる。
上記構成において、 戻しスプリング及び復帰スプリングの中心は、 ベ ダル軸から偏倚した位置に設けられている、 構成を採用することができ る。 この構成によれば、 ペダル軸と戻しスプリング及び復帰スプリングと の間に空間を確保することができ、 この空間を有効に利用して他の構成 部品を配置することができる。
上記構成において、 第 1可動摩擦部材と第 2可動摩擦部材との間に、 第 1可動摩擦部材と第 2可動摩擦部材とをお互いに遠ざける向きにおい て、 戻しスプリングの付勢力よりも小さい付勢力を発生して遊び荷重を 与える遊び荷重用スプリングを配置した、 あるいは、 第 1可動摩擦部材 とペダルアームの自由端部との間に、 第 1可動摩擦部材とペダルアーム の自由端部とをお互いに遠ざける向きにおいて、 戻しスプリングの付勢 力よりも小さい付勢力を発生して遊び荷重を与える遊び荷重用スプリン グを配置した、 構成を採用することができる。
この構成によれば、 休止位置から最大踏み込み位置に向かう始めの領 域で、 アクセルペダルからの踏力がペダルアームに作用してもスロッ ト ルバルブが作動しない遊びの領域を、 あるいは、 所望の操作フィーリン グとする荷重特性を適宜設定することができる。
上記構成において、 ペダルアームの自由端部は、 第 1可動摩擦部材に 対して係合及び離脱自在となっている、 構成を採用することができる。 この構成によれば、 ペダルアームが休止位置に向けて戻る際に、 仮に 第 1可動摩擦部材あるいは第 2可動摩擦部材がスティ ックして元の位置 に戻らない場合が生じても、 ペダルアームは確実に休止位置に戻ること になる。 図面の簡単な説明
第 1図は、 本発明に係るアクセルペダル装置の一実施形態を示す正面 図である。
第 2図は、 一実施形態に係るアクセルペダル装置の右側面図である。 第 3図は、 アクセルペダル装置の一部をなす摩擦力発生機構を示す横 断面図である。
第 4図は、 アクセルペダル装置の一部をなす摩擦力発生機構を示す縦 断面図である。
第 5図は、 摩擦力可変手段を形成する可動摩擦部材、 第 1当接部材、 及び第 2当接部材を示す断面図である。
第 6図は、 摩擦力可変手段の動作を説明する図である。
第 7図は、 摩擦力可変手段における摩擦力とアクセルペダルのス ト口 ークとの関係をを示すグラフである。
第 8図は、 アクセルペダル装置における踏力のヒステリシスを示すグ ラフである。
第 9図は、 本発明に係るアクセルペダル装置の他の実施形態を示す側 面図である。
第 1 0図は、 アクセルペダル装置の一部をなす摩擦力発生機構を示す 縦断面図である。
第 1 1図は、 アクセルペダル装置の一部をなす摩擦力発生機構を示す 縦断面図である。
第 1 2図は、 第 1可動摩擦部材を示す斜視図である。
第 1 3図は、 第 2可動摩擦部材を示す斜視図である。
第 1 4図は、 摩擦力可変手段の動作を説明する図である。
第 1 5図は、 アクセルペダル装置における踏力のヒステリシスを示す グラフである。
第 1 6図は、 本発明に係るアクセルペダル装置のさらに他の実施形態 を示す側面図である。
第 1 7図は、 第 1 6図に示すアクセルペダル装置の断面図である。 第 1 8図は、 第 1 6図に示すアクセルペダル装置の断面図である。 第 1 9図は、 復帰スプリングの平面図である。
第 2 0図は、 復帰スプリングの側面図である。
第 2 1図は、 ペダルアームを示す平面図である。
第 2 2図は、 第 1可動摩擦部材、 第 2可動摩擦部材、 及び遊び荷重用 スプリングを示す分解斜視図である。
第 2 3図は、 戻しスプリングの平面図である。
第 2 4図は、 戻しスプリングの側面図である。
第 2 5図は、 摩擦力可変手段の動作を説明する図である。
第 2 6図は、 本発明に係るアクセルペダル装置のさらに他の実施形態 を示す断面図である。
第 2 7図は、 第 1可動摩擦部材、 第 2可動摩擦部材、 及び遊び荷重用 スプリングを示す分解斜視図である。
第 2 8図は、 従来のアクセルペダル装置における踏力のヒステリシス を示すグラフである。
第 2 9図は、 従来のアクセルペダル装置における踏力のヒステリシス を示すグラフである。 発明を実施するための最良の形態 以下、 本発明の実施の形態について、 添付図面を参照しつつ説明する 。 第 1図ないし第 7図は、 本発明に係るアクセルペダル装置の一実施形 態を示すものであり、 第 1図ないし第 5図は構成図、 第 6図及び第 7図 は作動を説明するための図である。 この実施形態に係るアクセルペダル 装置は、 第 1図及び第 2図に示すように、 自動車等の車体に固定される ブラケッ ト 1 0と、 ブラケッ ト 1 0に固定されたペダル軸 1 1 と、 ぺダ ル軸 1 1により揺動自在に支持されたペダルアーム 1 2と、 運転者が踏 力を及ぼすアクセルペダル 1 3と、 ペダル軸 1 1の周りに配置された復 帰スプリング 1 4と、 ペダルアーム 1 2の上端部 (自由端部) 1 2 aの 領域に配置された摩擦力発生機構 2 0と、 アクセルペダル 1 3の踏み込 み量を検知するアクセルポジションセンサ 3 0等を、 その基本構成とし て備えている。
ペダルアーム 1 2は、 ペダル軸 1 1を摇動支点として、 その下端部に 固着されたアクセルペダル 1 3を有し、 その上端部が摩擦力発生機構 2 0に作用する自由端部 1 2 aを形成している。 そして、 このアクセルべ ダル 1 3の踏み込み量を調整することにより、 ペダルアーム 1 2がぺダ ル軸 1 1回りに揺動して、 休止位置 (第 2図中の実線にて示す位置) と 最大踏み込み位置との間を移動し、 摩擦力発生機構 2 0に及ぼす荷重が 調整されるようになっている。 また、 ペダルアーム 1 2の自由端部 1 2 aには、 第 3図及び第 4図に示すように、 後述する第 1当接部材 2 4に 対する係合及び離脱を確実に行なわせるための専用部材 1 2 a 'が取り 付けられており、 この専用部材 1 2 a ' を介して、 ペダルアーム 1 2の 踏み込み荷重が伝達されるようになっている。 尚、 第 2図及び第 4図中 の二点鎖線にて示す位置は、 休止位置と最大踏み込み位置との間の途中 の位置を示す。
復帰スプリング 1 4は、 ペダル軸 1 1の周りにおいて、 その一端部が ブラケッ ト 1 0に掛止され、 その他端部がペダルアーム 1 2に掛止され ており、 休止位置から最大踏み込み位置側に向けて踏み込まれたペダル アーム 1 2 (アクセルペダル 1 3 ) を元の休止位置に復帰させるための 付勢力を及ぼすものである。
アクセルポジションセンサ 3 0は、 ブラケヅ ト 1 0に固定されており 、 その回転軸に固着されたレバ一 3 1が、 ペダルアーム 1 2の一部に連 結されている。 そして、 ペダルアーム 1 2が揺動すると、 この揺動変位 がレバー 3 1を介して回動変位に変換され、 アクセルポジションセンサ
2 3 0は、 その回転軸の角度変位としてアクセルペダル 1 3の踏み込み量 を検知するようになっている。 尚、 アクセルポジションセンサ 3 0は接 触抵抗式のものであり、 その構造は既知であるため、 ここでの説明は省 略する。
摩擦力発生機構 2 0は、 ペダルアーム 1 2の移動に伴なつて摩擦力を 発生するものであり、 第 3図 (横断面) 及び第 4図 (縦断面) に示すよ うに、 ブラケッ ト 1 0の筒状部 1 0 aに嵌合されて固着された円筒状の ハウジング 2 1 と、 このハウジング 2 1内に往復動自在に取り付けられ た可動摩擦部材 2 2 と、 可動摩擦部材 2 2を元の位置へ (第 3図に示す 位置へ) 戻すように付勢する戻しスプリング 2 3と、 ペダルアーム 1 2 の自由端部 1 2 aと可動摩擦部材 2 2との間に配置された第 1当接部材 2 4と、 可動摩擦部材 2 2 と戻しスプリング 2 3との間に配置された第 2当接部材 2 5等により構成されている。
ハウジング 2 1は、 ステンレス等の強度及び防鲭性のある材料を用い て略円形の断面形状をなすように形成されており、 その円筒状の内周面 (内壁面) 2 1 aが摺動面として作用して、 可動摩擦部材 2 2を摺動自 在に案内する摺動案内路を形成している。 また、 ハウジング 2 1の下側 には、 第 3図及び第 4図に示すように、 長尺な切り欠き (スリ ッ ト) 2 1 bが形成されており、 この切り欠き (スリ ッ ト) 2 l bを通して、 ぺ ダルアーム 1 2の自由端部 1 2 aがハウジング 2 1の内部に往復動自在 に揷入されている。
可動摩擦部材 2 2は、 第 5図に示すように、 含油ポリアセタール等の 高摺動性材料により略環状に形成され、 かつ、 その周方向を横切る向き に 2箇所で切断された 2つの半円弧部材からなり、 ハウジング 2 1に揷 入された状態でその外周表面 2 2 cが内周面 (内壁面) 2 1 aに密接す るようになっている。 また、 この環状の可動摩擦部材 2 2は、 第 5図に示すように、 ハウジ ング 2 1 (摺動案内路 2 l a ) により案内される方向の両側において、 その中央部に向けてお互いに近づくように傾斜する第 1傾斜面 2 2 a及 び第 2傾斜面 2 2 bを有している。 すなわち、 これら第 1傾斜面 2 2 a 及び第 2傾斜面 2 2 bは、 円錐の表面のうち裾部のみからなる表面形状 をなし、 中心側から外側に向かうにつれて厚みが厚くなるような断面形 状となっている。
尚、 ここでは、 環状の可動摩擦部材 2 2は、 2箇所を切断して 2つの 半円弧部材として構成したが、 これに限定されるものではなく、 1箇所 を切断して 1つの環状部材として構成しても良く、 又、 複数箇所を切断 して複数の円弧部材により構成しても良い。 また、 ここでは、 可動摩擦 部材 2 2 として環状のものを示したが、 これに限らず分割された角形 ( 四角) のものでも良い。
第 1当接部材 2 4は、 第 5図に示すように、 円板状のプレートに形成 されると共にその一側部において、 可動摩擦部材 2 2の第 1傾斜面 2 2 aと適合 (当接) するように、 円錐の表面のうち裾部のみからなる表面 形状をなす傾斜面 2 4 aが形成されている。 すなわち、 この第 1当接部 材 2 4の傾斜面 2 4 aが第 1傾斜面 2 2 aに当接されて押し付けられる と、 この傾斜面 2 4 aのくさび作用により、 環状の可動摩擦部材 2 2は 径方向外側に向かって押し広げられることになる。
第 2当接部材 2 5は、 第 5図に示すように、 略キャップ状に形成され ると共にその一側部において、 可動摩擦部材 2 2の第 2傾斜面 2 2 と 適合 (当接) するように、 円錐の表面のうち裾部のみからなる表面形状 をなす傾斜面 2 5 aが形成され、 その他側部において戻しスプリング 2 3の一端側を収容する凹部 2 5 bが形成されている。 すなわち、 第 2当 接部材 2 5の傾斜面 2 5 aが第 2傾斜面 2 2 bに当接されて押し付けら れると、 この傾斜面 2 5 aのくさび作用により、 環状の可動摩擦部材 2 2は径方向外側に向かって押し広げられることになる。
第 1当接部材 2 4及び第 2当接部材 2 5は、 第 5図中の二点鎖線にて 及び第 6図にて示すように、 可動摩擦部材 2 2を両側から挟持する状態 で組み付けられ、 両者は可動摩擦部材 2 2から離れることなく当接した 状態で移動することになる。
したがって、 その移動の瞬間において、 第 1当接部材 2 4の外側 (第 6図中の右側) からペダルアーム 1 2の踏み込み荷重 Fが作用すると、 この荷重 Fに拮抗する向きに、 第 2当接部材 2 5の外側 (第 6図中の左 側) から戻しスプリング 2 3の付勢力 Fが反力として作用することにな る。
ここで、 上記第 1傾斜面 2 2 a及び傾斜面 2 4 aの法線と可動摩擦部 材 2 2の移動方向とのなす角度が 0 1、 上記第 2傾斜面 2 2 b及び傾斜 面 2 5 aの法線と可動摩擦部材 2 2の移動方向とのなす角度が 6> 2 とな るように設定されている。
したがって、 アクセルペダル 1 3 (ペダルアーム 1 2 ) が踏み込まれ るとき、 可動摩擦部材 2 2は最大踏み込み位置に向けて (第 6図中の左 側に向けて) 移動することになり、 このとき、 可動摩擦部材 2 2には、 移動方向と直交する方向に変位させるベく押し付ける (ハウジング 2 1 の内周面 (内壁面) 2 1 aに向けて押し付ける) 押付力として、 N 1 = F t a n 0 1、 N 2 = F t a n 0 2が作用する。 すなわち、 アクセルぺ ダル 1 3が踏み込まれて、 可動摩擦部材 2 2が最大踏み込み位置に (第 6図中の左側に) 向けて移動する際に、 摺動面の動摩擦係数を//とする と、 移動方向と反対の向きに (第 6図中の右向きに) 摩擦力 f 1 =〃N 1 + N 2が作用することになる。
一方、 アクセルペダル 1 3 (ペダルアーム 1 2 ) が踏み込む前の休止 位置に向けて戻されるとき、 可動摩擦部材 2 2は休止位置に向けて (第 6図中の右側に向けて) 移動することになり、 このとき、 可動摩擦部材 2 2には、 移動方向と直交する方向に変位させるベく押し付ける (ハウ ジング 2 1の内周面 (内壁面) 2 1 aに向けて押し付ける) 押付力とし て、 同様に N l = F t a n 0 1、 N 2 = F t a n 0 2が作用する。
すなわち、 アクセルペダル 1 3が戻されて、 可動摩擦部材 2 2が休止 位置に (第 6図中の右側に) 向けて移動する際に、 摺動面の動摩擦係数 を/ とすると、 移動方向と反対の向きに (第 6図中の左向きに) 摩擦力 f 2 = - ( zN 1 + /N 2 ) が作用することになる。
この力関係を第 7図に基づいて説明すると、 踏み込み荷重 F及び付勢 力 Fはアクセルペダル 1 3の踏込み量 (X ) の 1次関数として表される ため、 休止位置から最大踏み込み位置に向かう際の摩擦力 f 1は、
f 1 =U F (x) ( t a n 0 1 + t a n 0 2 )
で表される。 したがって、 休止位置 (x = 0 ) の時点では、
f l ( 0 ) = μ.¥ ( O ) ( t a n 0 1 + t a n ^ 2 ) の摩擦力が作用し、 一方、 最大踏み込み位置 (x = ma x) に至る時点 では、
f 1 (max)
Figure imgf000018_0001
2 ) の摩擦力が作用することになる。 このとき、
f 1 (max) > f 1 ( 0 )
の関係にあるため、 ペダルアーム 1 2が最大踏み込み位置に向けて移動 する際にその移動量 (X ) に応じて、 発生する摩擦力 f 1は直線的に増 加することになる。
一方、 アクセルペダル 1 3すなわちペダルアーム 1 2が、 最大踏み込 み位置から休止位置に向かう際の摩擦力 f 2は、
ΐ 2 = - F (x ) ( t a n ^ l + t a n 0 2 ) で表される。 したがって、 最大踏み込み位置 (x = m a x) の時点では f 2 (max) =- uF (max) ( t a n 0 1 + t a n ^ 2 ) の摩擦力が作用し、 一方、 休止位置 (x = 0 ) に至る時点では、
f 2 ( 0 ) = - j F ( O ) ( t a n 0 1 + t a n 0 2 ) の摩擦力が作用することになる。 このとき、
I f 2 (max) I > I f 2 ( 0 ) |
の関係にあるため、 ペダルアーム 1 2が休止位置に向けて移動する際に その移動量 (X ) に応じて、 発生する摩擦力: f 2は直線的に減少するこ とになる。
上記の説明から明らかなように、 ハウジング 2 1の摺動案内路 2 1 a 内に配置された可動摩擦部材 2 2、 第 1当接部材 2 4、 第 2当接部材 2 5、 戻しスプリング 2 3等により、 ペダルアーム 1 2が最大踏み込み位 置に向けて移動する際に、 発生する摩擦力 f 1をその移動量に応じて増 加させると共に、 ペダルアーム 1 2が休止位置に向けて移動する際に、 発生する摩擦力 f 2をその移動量に応じて減少させる、 すなわち、 ぺダ ルアーム 1 2の移動に応じて摩擦力を変化させる摩擦力可変手段が構成 されている。
さらに、 上記摩擦力可変手段により得られる摩擦力 f 1 , f 2と、 復 帰スプリング 1 4の付勢力及び戻しスプリング 2 3の付勢力の合力 F 0 とを重ね合わせると、 アクセルペダル 1 3の踏力特性は、 第 8図に示す ようなヒステリシスとして得られることになる。 すなわち、 最大踏み込 み位置に向かう往路と休止位置に戻る復路とにおいて、 休止位置側では ヒステリシスが小さく (幅狭) になり、 最大踏み込み位置側ではヒステ リシスが大きく (幅広) になる。
したがって、 従来のワイヤー付きアクセルペダル装置の場合と類似し た踏力特性が得られ、 これにより、 好ましい操作フィーリング、 レスポ ンス特性、 車両の制御性等が得られる。
次に、 上記アクセルペダル装置の動作について、 第 8図に基づいて説 明する。
先ず、 アクセルペダル 1 3が踏み込まれていない状態で、 ぺダルア一 ム 1 2 (及びアクセルペダル 1 3 ) は休止位置 (スロッ トルバルブの全 閉状態に対応する位置) に位置している。 このとき、 ペダルアーム 1 2 には、 復帰スプリング 1 4の付勢力及び戻しスプリング 2 3の付勢力の 合力 F 0 ( 0 ) が休止位置に向けて作用している。
この休止位置にある状態から、 アクセルペダル 1 3が踏まれてペダル アーム 1 2が最大踏み込み位置に向けて移動し始めると、 ペダルアーム 1 2の自由端部 1 2 a ( 1 2 a ' ) から第 1当接部材 2 4に踏み込み荷 重 Fが作用すると共に、 第 2当接部材 2 5に戻しスプリング 2 3の付勢 力 Fが反力として作用する。 と同時に、 摩擦力 f 1が作用し始める。 こ のとき、 P 1の位置における踏力 (ペダル荷重) は、 f 1 ( 0 ) + F 0 ( 0 ) となる。
続いて、 アクセルペダル 1 3がさらに踏み込まれると、 踏力は f 1 + F 0の線に沿って増加し、 最大踏み込み位置 P 2に達した時点で、 その 踏力は f 1 (max) + F 0 (max)となり、 最大値を示すことになる。 次に、 この最大踏み込み位置にアクセルペダル 1 3が位置する状態か ら踏カを弱めて戻し始めると、 今度は逆向きに摩擦力 f 2が作用し始め る。 このとき、 P 3の位置における踏力は、 f 2 (max) + F 0 (max ) となる。
続いて、 アクセルペダル 1 3が戻され続けると、 踏力は f 2 + F 0の 線に沿って減少し、 休止位置 P 4に達した時点で、 その踏力は f 2 ( 0 ) + F 0 ( 0 ) となり、 最小値を示すことになる。 アクセルペダル 1 3の踏み込み及び戻し動作が行なわれると、 踏力は 上記ヒステリシスに沿って変化することになる。
ところで、 可動摩擦部材 2 2、 第 1当接部材 2 4、 あるいは第 2当接 部材 2 5が、 仮にハウジング 2 1内でスティ ックして戻らなくなった場 合でも、 ペダルアーム 1 2の自由端部 1 2 a ( 1 2 a ' ) は、 第 1当接 部材 2 4に対して係合及び離脱自在に構成されているため、 復帰スプリ ング 1 4の付勢力により、 アクセルペダル 1 3及びペダルアーム 1 2は 、 必ず休止位置に戻されることになる。
したがって、 アクセルポジションセンサ 3 0によりァクセルペダル 1 3の作動状態を検知する際のフヱ一ルセーフ機能が確保されることにな る。
以上述べたように、 この実施形態に係るアクセルペダル装置によれば 、 可動摩擦部材 2 2、 第 1当接部材 2 4、 第 2当接部材 2 5等の簡単な 構造により、 又、 第 1傾斜面 2 2 a及び傾斜面 2 4 aの角度 0 1及び第 2傾斜面 2 2 b及び傾斜面 2 5 aの角度 0 2を適宜選定することにより 、 踏力 (ペダル荷重) のヒステリシス特性を自由に設定することができ 、 アクセルペダル 1 3の操作フィーリングを向上させることができ、 ァ クセルコントロールの容易なアクセルペダル装置を得ることができる。 また、 車両における振動あるいは異常音等の発生を容易に防止すること ができる。 さらに、 構造が簡単である故に、 組み付けが容易で、 製造コ ス トを低減することができる。
第 9図ないし第 1 5図は、 本発明に係るアクセルペダル装置の他の実 施形態を示すものであり、 第 9図ないし第 1 3図は構成図、 第 1 4図及 び第 1 5図は動作及び踏力特性を説明するための図である。
この実施形態に係るアクセルペダル装置は、 第 9図に示すように、 自 動車等の車体 4 9に固定されるブラケッ ト 5 0 と、 ブラケッ ト 5 0に固 定されたペダル軸 5 1 と、 ペダル軸 5 1により揺動自在に支持されたべ ダルアーム 5 2 と、 運転者が踏力を及ぼすアクセルペダル 5 3と、 ぺダ ル軸 5 1の周りに配置された復帰スプリング 5 4と、 ペダル軸 5 1より も上方の領域においてペダルアーム 5 2に固着されたレバー 5 5 と、 レ バー 5 5の上端部 (ペダルアーム 5 2の自由端部に相当する部分) 5 5 aの領域に配置された摩擦力発生機構 6 0と、 アクセルペダル 5 3の踏 み込み量を検知するアクセルポジションセンサ (不図示) 等を、 その基 本構成として備えている。
ペダルアーム 5 2は、 ペダル軸 5 1を揺動支点として、 その下端部に 固着されたアクセルペダル 5 3を有し、 その上端部すなわちレバ一 5 5 の上端部 5 5 aが摩擦力発生機構 6 0に作用する自由端部を形成してい る。 そして、 このアクセルペダル 5 3の踏み込み量を調整することによ り、 ペダルアーム 5 2がペダル軸 5 1回りに揺動して、 休止位置 (第 9 図中の実線にて示す位置) と最大踏み込み位置との間を移動し、 摩擦力 発生機構 6 0に及ぼす荷重が調整されるようになっている。 また、 ぺダ ルアーム 5 2の自由端部 5 5 aには、 第 9図ないし第 1 1図に示すよう に、 後述する第 1可動摩擦部材 6 3に対する係合及び離脱を確実に行な わせるための当接部材 5 6が取り付けられており、 この当接部材 5 6を 介して、 ペダルアーム 5 2の荷重が伝達されるようになっている。 尚、 第 9図中の二点鎖線にて示す位置は、 休止位置と最大踏み込み位置との 間の途中の位置を示す。
復帰スプリング 5 4は、 ペダル軸 5 1の周りにおいて、 その一端部が ブラケッ ト 5 0に掛止され、 その他端部がペダルアーム 5 2に掛止され ており、 休止位置から最大踏み込み位置側に向けて踏み込まれたペダル アーム 5 2 (アクセルペダル 5 3 ) を元の休止位置に復帰させるための 付勢力を及ぼすものである。 アクセルポジションセンサは、 ブラケッ ト 5 0に固定されており、 そ のセンサ駆動ピン 7 0が、 第 9図ないし第 1 1図に示すように、 当接部 材 5 6と共にレバー 5 5の自由端部 (上端部) 5 5 aに連結されている 。 そして、 ペダルアーム 5 2が揺動すると、 この揺動変位がセンサ駆動 ピン 7 0を介してアクセルポジションセンサへ取り込まれ、 アクセルぺ ダル 5 3の踏み込み量を検知するようになっている。 尚、 アクセルポジ ションセンサは接触抵抗式のものであり、 その構造は既知であるため、 ここでの説明は省略する。
摩擦力発生機構 6 0は、 ペダルアーム 5 2 (レバ一 5 5 ) の移動に伴 なって摩擦力を発生するものであり、 第 1 0図及び第 1 1図の縦断面に 示すように、 ブラケッ ト 5 0に固着された筒状のハウジング 6 1及びェ ン ドプレート 6 2と、 このハウジング 6 1内に往復動自在に取り付けら れた第 1可動摩擦部材 6 3及び第 2可動摩擦部材 6 4と、 第 2可動摩擦 部材 6 4を元の位置へ (第 1 0図に示す位置へ) 戻すように付勢する戻 しスプリング 6 5と、 第 1可動摩擦部材 6 3と第 2可動摩擦部材 6 4と の間に配置された遊び荷重用スプリング 6 6等により構成されている。 ハウジング 6 1は、 ステンレス等の強度及び防鯖性のある材料を用い て略矩形の断面形状をなすように形成されており、 その左側端部には閉 鎖壁部 6 l aが形成され、 その右側端部には開口部 6 l bが形成されて いる。 そして、 第 1 0図に示すように、 このハウジング 6 1内に、 第 1 可動摩擦部材 6 3、 遊び荷重用スプリング 6 6、 第 2可動摩擦部材 6 4 、 及び戻しスプリング 6 5が順次に収容された状態で、 開口部 6 l bを 塞ぐようにエン ドプレート 6 2が取り付けられている。
したがって、 ハウジング 6 1の内壁面 6 1 cが摺動面として作用し、 第 1可動摩擦部材 6 3及び第 2可動摩擦部材 6 4を摺動自在に案内する 摺動案内路を形成している。 また、 ハウジング 6 1の下側には、 第 1 0 図及び第 1 1図に示すように、 長尺な切り欠き (スリ ッ ト) 6 1 dが形 成されており、 この切り欠き 6 1 dを通して、 ペダルアーム 5 2の自由 端部、 すなわち、 レバ一 5 5の自由端部 5 5 a及び当接部材 5 6がハウ ジング 6 1の内部に往復動自在に挿入されている。 尚、 ハウジング 6 1 の側壁には、 センサ駆動ピン 7 0の取り付け及び移動を許容するための 切り欠き (不図示) が形成されている。
第 1可動摩擦部材 6 3は、 含油ポリアセ夕一ル等の高摺動性材料によ り形成されており、 第 1 2図に示すように、 略矩形形状をなす本体部 6
3 aと、 この本体部 6 3 aの下側に一体的に形成されてハウジング 6 1 の内壁面 6 1 cに沿う方向に伸長する 2本の接触アーム 6 3 bと、 接触 アーム 6 3 bの伸長方向に対してその法線のなす角度が 6>となるように 形成された第 1傾斜面 6 3 cと、 本体部 6 3 aの略中央部に形成された 凹部 6 3 d等により形成されている。
第 2可動摩擦部材 6 4は、 含油ポリアセタール等の高摺動性材料によ り形成されており、 第 1 3図に示すように、 略矩形形状をなす本体部 6
4 aと、 この本体部 6 4 aの上側に一体的に形成されてハウジング 6 1 の内壁面 6 1 cに沿う方向に伸長する 2本の接触アーム 6 4 bと、 接触 アーム 6 4 bの伸長方向に対してその法線のなす角度が 6>となるように 形成された第 2傾斜面 6 4 cと、 本体部 6 4 aの略中央部において先端 が閉鎖するように形成された筒状部 6 4 d等により形成されている。 遊び荷重用スプリング 6 6は、 圧縮型のコイルスプリングからなり、 第 1 0図及び第 1 1図に示すように、 その一端部が第 1可動摩擦部材 6 3の凹部 6 3 dに収容され、 又、 その他端部が第 2可動摩擦部材 6 4の 筒状部 6 4 d内に収容されて、 第 1可動摩擦部材 6 3と第 2可動摩擦部 材 6 4とをお互いに遠ざける向きに付勢力を発生している。 尚、 この遊 び荷重用スプリング 6 6の付勢力は、 最も圧縮された状態において、 最 も伸びた状態にある戻しスプリング 6 5の付勢力よりも小さいか若しく は同等となるように設定されている。
戻しスプリング 6 5は、 第 1 0図及び第 1 1図に示すように、 圧縮型 のコイルスプリングで直径の大きい第 1戻しスプリング 6 5 aと、 同様 に圧縮型のコイルスプリングで直径の小さい第 2戻しスプリング 6 5 b とにより構成され、 第 2可動摩擦部材 6 4とエン ドプレート 6 2との間 に配置されている。 このように、 戻しスプリング 6 5を、 二つのコイル スプリングにより構成することで、 付勢力を設定する際の自由度が増加 し、 又、 装置の小型化も行なうことができる。
上記第 1可動摩擦部材 6 3と第 2可動摩擦部材 6 4とは、 第 1 0図及 び第 1 1図に示すように、 ハウジング 6 1の摺動案内路 (内壁面) 6 1 cに沿って移動する方向において、 第 1傾斜面 6 3 cと第 2傾斜面 6 4 cとが当接し得るように、 お互いに対向して配置されている。 すなわち 、 第 1可動摩擦部材 6 3と第 2可動摩擦部材 6 4とがお互いに押し付け られると、 第 1傾斜面 6 3 cと第 2傾斜面 6 4 cとのくさび作用により 、 第 1可動摩擦部材 6 3が下向きにかつ第 2可動摩擦部材 6 4が上向き に、 すなわち摺動案内路 (内壁面) 6 1 cに案内されて移動する方向に 対して直交する方向にお互いに遠ざかるように、 ハウジング 6 1の内壁 面 6 1 cに押し付けられることになる。
例えば、 第 1 4図に示すように、 第 1可動摩擦部材 6 3の外側 (第 1 4図中の左側) からペダルアーム 5 2 (レバー 5 5 ) の荷重 Fが作用す ると、 第 1可動摩擦部材 6 3と第 2可動摩擦部材 6 4とは離れることな く当接した状態で移動することから、 その移動の瞬間においては、 第 2 可動摩擦部材 6 4の外側 (第 1 4図中の右側) から、 この荷重 Fと拮抗 する向きに戻しスプリング 6 5の付勢力 Fが反力として作用することに なる。 したがって、 アクセルペダル 1 3 (ペダルアーム 1 2) が踏み込まれ るとき、 第 1可動摩擦部材 63及び第 2可動摩擦部材 64は最大踏み込 み位置に向けて (第 14図中の右側に向けて) 移動することになり、 こ のとき、 第 1可動摩擦部材 63を下向きにかつ第 2可動摩擦部材 64を 上向きに、 お互いを遠ざけるようにハウジング 6 1の内壁面 6 1 cに向 けて押し付ける押付力として、 N = F t an0が作用する。
すなわち、 アクセルペダル 53が踏み込まれて、 第 1可動摩擦部材 6 3及び第 2可動摩擦部材 64が最大踏み込み位置に (第 14図中の右側 に) 向けて移動する際に、 第 1可動摩擦部材 63及び第 2可動摩擦部材 64と摺動案内路 (内壁面) 6 1 cとの間には、 摺動面の動摩擦係数を 〃とすると、 移動方向と反対の向きに (第 14図中の左向きに) 摩擦力 f l = /N、 すなわち、 f l = F t an0が作用することになる。 一方、 アクセルペダル 53 (ペダルアーム 52) が踏み込む前の休止 位置に向けて戻されるとき、 第 1可動摩擦部材 63及び第 2可動摩擦部 材 64は、 戻しスプリング 65の付勢力 Fにより休止位置に向けて (第 14図中の左側に向けて) 移動することになり、 このとき、 前述同様に 第 1可動摩擦部材 63を下向きにかつ第 2可動摩擦部材 64を上向きに 、 それそれを押し付ける押付力として、 N二 F t an0が作用する。 すなわち、 アクセルペダル 53の踏み込みが戻されて、 第 1可動摩擦 部材 63及び第 2可動摩擦部材 64が休止位置に (第 14図中の左側に ) 向けて移動する際に、 第 1可動摩擦部材 63及び第 2可動摩擦部材 6 4と摺動案内路 (内壁面) 6 1 cとの間には、 摺動面の動摩擦係数を〃 とすると、 移動方向と反対の向きに (第 14図中の右向きに) 摩擦力 f 2 =_ /N、 すなわち、 f 2 =—〃F t an6>が作用することになる。 この力関係を説明すると、 ペダルアーム 52の荷重 F及び戻しスプリ ング 65の付勢力 (反力) Fはアクセルペダル 53の踏み込み量 (X ) の 1次関数として表されるため、 休止位置から最大踏み込み位置に向か う際の摩擦力 f 1は、
f l = F ( X ) t a n d
で表される。 したがって、 休止位置 (x = 0 ) の時点では、
Figure imgf000027_0001
の摩擦力が作用し、 一方、 最大踏み込み位置 (x = max) に至る時点 では、
f 1 (max) = μ. Έ (max; t a. Ώ. θ
の摩擦力が作用することになる。 このとき、
f 1 (max) > f 1 ( 0 )
の関係にあるため、 ペダルアーム 5 2が最大踏み込み位置に向けて移動 する際にその移動量 (X ) に応じて、 発生する摩擦力 f 1は直線的に増 加することになる。
一方、 アクセルペダル 5 3すなわちペダルアーム 5 2が、 最大踏み込 み位置から休止位置に向かう際の摩擦力 f 2は、
f 2 =- JUL Y \ (X ) t a η Θ
で表される。
したがって、 最大踏み込み位置 (x =max) の時点では、 f 2 (max) // F (max; t a n 0
の摩擦力が作用し、 一方、 休止位置 (x= 0 ) に至る時点では、
Figure imgf000027_0002
の摩擦力が作用することになる。 このとき、
I f 2 (max) I > I f 2 ( 0 ) |
の関係にあるため、 ペダルアーム 5 2が休止位置に向けて移動する際に その移動量 (X ) に応じて、 発生する摩擦力 f 2は直線的に減少するこ とになる。 すなわち、 前述の第 7図に示すものと同様の摩擦力が得られ ることになる。
上記の説明から明らかなように、 ハウジング 6 1の摺動案内路 (内壁 面) 6 1 c内に配置された第 1可動摩擦部材 6 3、 第 2可動摩擦部材 6 4、 戻しスプリング 6 5等により、 ペダルアーム 5 2が最大踏み込み位 置に向けて移動する際に、 発生する摩擦力 f 1をその移動量に応じて増 加させると共に、 ペダルアーム 5 2が休止位置に向けて移動する際に、 発生する摩擦力 f 2をその移動量に応じて減少させる、 すなわち、 ぺダ ルアーム 5 2の移動に応じて摩擦力を変化させる摩擦力可変手段が構成 されている。
さらに、 上記摩擦力可変手段により得られる摩擦力 f 1, f 2 と、 復 帰スプリ ング 5 4の付勢力、 遊び荷重用スプリ ング 6 6の付勢力、 及び 戻しスプリング 6 5の付勢力とを重ね合わせると、 アクセルペダル 5 3 の踏力 (ペダル荷重) 特性は、 第 1 5図に示すようなヒステリシスとし て得られることになる。 すなわち、 最大踏み込み位置に向かう往路と休 止位置に戻る復路とにおいて、 休止位置側ではヒステリシスが小さく ( 幅狭) なり、 レスポンス、 操作フィーリング等が良好になり、 又、 ァク セルペダル 5 3の戻り不良に対する余裕代を大きくすることができる。 一方、 最大踏み込み位置側ではヒステリシスが大きく (幅広) になり、 車両 (エンジン) の制御性が良好になる。
次に、 上記アクセルペダル装置の動作について、 第 1 5図に基づいて 説明する。
先ず、 アクセルペダル 5 3が踏み込まれていない状態で、 ぺダルア一 ム 5 2 (及びアクセルペダル 5 3 ) は休止位置 (スロッ トルバルブの全 閉状態に対応する位置) に位置している。 このとき、 ペダルアーム 5 2 には、 復帰スプリング 5 4及び遊び荷重用スプリング 6 6の付勢力が作 用し、 第 1 0図に示すように、 その当接部材 5 6がハウジング 6 1の閉 鎖壁部 6 1 aに当接し、 休止位置に停止している。
また、 第 1 0図に示すように、 第 2可動摩擦部材 6 4は、 戻しスプリ ング 6 5の付勢力により付勢されて、 その腕部 6 4 bの一端部がハウジ ング 6 1の閉鎖壁部 6 1 aに形成されたス トツノ 6 1 a ' に当接し、 休 止位置に停止している。 さらに、 第 1可動摩擦部材 6 3は、 遊び荷重用 スプリング 6 6により付勢されて、 第 2可動摩擦部材 6 4から離脱する と共に当接部材 5 6に当接し、 休止位置に停止している。
この休止位置にある状態から、 アクセルペダル 5 3が踏み込まれてぺ ダルアーム 5 2が最大踏み込み位置に向けて移動し始めると、 ぺダルア —ム 5 2の自由端部 5 2 a (レバー 5 5の上端部 5 5 aに取り付けられ た当接部材 5 6 ) から加わる荷重 Fにより、 第 1可動摩擦部材 6 3は、 遊び荷重用スプリング 6 6を圧縮させつつ (第 1 0図中右向きに) 移動 し始め、 所定の距離だけ移動した時点すなわち第 1 5図中の P 1点で、 第 1 1図に示すように、 第 2可動摩擦部材 6 4に当接する。
この移動行程においては、 第 1可動摩擦部材 6 3はハウジング 6 1の 摺動案内路 (内壁面) 6 1 cを摺動するが、 この摺動による摩擦力は極 力小さくなるように設定されている。
さらに、 アクセルペダル 5 3が踏み込まれると、 第 1可動摩擦部材 6 3及び第 2可動摩擦部材 6 4は、 第 1 1図中右向きに移動し始めると共 に、 第 1可動摩擦部材 6 3の第 1傾斜面 6 3 cと第 2可動摩擦部材 6 4 の第 2傾斜面 6 4 cとのくさび作用により、 第 1可動摩擦部材 6 3の腕 部 6 3 b及び第 2可動摩擦部材 6 4の腕部 6 4 bとハウジング 6 1の摺 動案内路 (内壁面) 6 1 cとの間には、 第 1 1図中左向きに摩擦力 f 1 が作用し始める。 そして、 アクセルペダル 5 3の踏力は、 f 1 + F 0の 線に沿って増加し、 最大踏み込み位置 P 2に達した時点で、 その踏力は f 1 ( max) + F 0 ( max)となり、 最大値を示すことになる。 次に、 この最大踏み込み位置にアクセルペダル 5 3が位置する状態か ら踏カを弱めて戻し始めると、 戻しスプリング 6 5の付勢力 Fにより、 第 2可動摩擦部材 6 4及び第 1可動摩擦部材 6 3は休止位置に向けて ( 第 1 1図中の左側に向けて) 移動し始める。 と同時に、 第 2可動摩擦部 材 6 4の第 2傾斜面 6 4 cと第 1可動摩擦部材 6 3の第 1傾斜面 6 3 c とのくさび作用により、 第 2可動摩擦部材 6 4の腕部 6 4 13及び第 1可 動摩擦部材 6 3の腕部 6 3 bとハウジング 6 1の摺動案内路 (内壁面) 6 1 cとの間には、 第 1 1図中右向きに摩擦力 f 2が作用し始める。 こ こで、 第 1 5図中の P 3点における摩擦力 f 2は、 f 2 ( max) + F 0 ( 0 ) となる。 そして、 アクセルペダル 5 3の踏力は、 f 2 + F 0の線 に沿って減少し、 第 2可動摩擦部材 6 4の腕部 6 4 cがス トツバ 6 l a ' に当接して停止した時点 (第 1 5図中の P 4点) で、 摩擦力 f 2は作 用しなくなる。 そして、 第 1 5図中の P 5を通って、 アクセルペダル 5 3は休止位置に至る。
アクセルペダル 5 3の踏み込み及び戻し動作が行なわれると、 踏力は 上記第 1 5図に示すヒステリシスに沿って変化することになる。
ところで、 第 2可動摩擦部材 6 4あるいは第 1可動摩擦部材 6 3が、 仮にハウジング 6 1内でスティ ックして戻らなくなつた場合でも、 ぺダ ルアーム 5 2の自由端部 5 2 aすなわちレバ一 5 5の上端部 5 5 aに取 り付けられた当接部材 5 6は、 第 1可動摩擦部材 6 3に対して係合及び 離脱自在に構成されているため、 復帰スプリング 5 4の付勢力により、 アクセルペダル 5 3及びペダルアーム 5 2は、 必ず休止位置に戻される ことになる。
したがって、 アクセルポジションセンサによりァクセルペダル 5 3の 作動状態を検知する際のフェールセーフ機能が確保されることになる。 以上述べたように、 この実施形態に係るアクセルペダル装置によれば 、 第 1可動摩擦部材 6 3、 第 2可動摩擦部材 6 4、 ハウジング 6 1等の 簡単な構造により、 又、 第 1傾斜面 6 3 c及び第 2傾斜面 6 4 cの角度 0を適宜選定することにより、 踏力 (ペダル荷重) のヒステリシス特性 を自由に設定することができ、 アクセルペダル 5 3の操作フィ一リング を向上させることができ、 アクセルコン トロールの容易なアクセルぺダ ル装置を得ることができる。 また、 車両における振動あるいは異常音等 の発生を容易に防止することができる。 さらに、 構造が簡単である故に 、 組み付けが容易で、 製造コス トを低減することができる。
第 1 6図ないし第 2 5図は、 本発明に係るアクセルペダル装置のさら に他の実施形態を示すものであり、 第 1 6図ないし第 2 4図は構成図、 第 2 5図は動作を説明するための図である。
この実施形態に係るアクセルペダル装置は、 第 1 6図ないし第 1 8図 に示すように、 自動車等の車体 9 0に固定されるブラケッ ト 1 0 0と、 ブラケヅ ト 1 0 0に一体的に形成されたハウジング 1 1 0と、 ハウジン グ 1 1 0を覆うカバ一 1 2 0と、 ハウジング 1 1 0及びカバ一 1 2 0に 回動自在に支持されたペダル軸 1 3 0と、 ペダル軸 1 3 0に固着されて 揺動自在に支持されたペダルアーム 1 4 0と、 運転者が踏力を及ぼすァ クセルペダル 1 5 0と、 ペダル軸 1 3 0の周りに配置された復帰スプリ ング 1 6 0と、 ペダルアーム 1 4 0の自由端部 1 4 1の領域に配置され た摩擦力発生機構 1 7 0と、 アクセルペダル 1 5 0の踏み込み量を検知 するアクセルポジションセンサ 1 8 0、 センサコネクタ 1 9 0等を、 そ の基本構成として備えている。
ハウジング 1 1 0には、 第 1 Ί図及び第 1 8図に示すように、 ペダル 軸 1 3 0を嵌合して回動自在に支持するための嵌合穴 (軸受穴) 1 1 1 と、 この嵌合穴 1 1 1の中心から距離 Dだけ偏倚した位置にある C点を 中心とした曲率半径をもつ内側環状溝 1 1 2と、 同様に C点を中心とし た曲率半径をもつ外側環状溝 1 1 3と、 内側環状溝 1 1 2のさらに内側 において上側に偏倚した位置に形成されたセンサ用空間部 1 1 4と、 外 側環状溝 1 1 3のさらに外側において C点を中心とした曲率半径をもつ 円弧状溝 1 1 5等が形成されている。
ここでは、 円弧状溝 1 1 5の中心を C点としたため、 外側環状溝 1 1 3にできるだけ近付けて形成でき、 これにより、 装置の小型化を行なう ことができる。 尚、 円弧状溝 1 1 5の中心をペダル軸 1 3 0と一致させ ることも可能であり、 この場合、 ペダルアーム 1 4 0の自由端部 1 4 1 の移動軌跡が円弧状溝 1 1 5の曲率と一致するため、 より確実な係合動 作が行なわれる。
また、 円弧状溝 1 1 5は、 第 1 7図に示すように、 略中間部分から左 側が幅広くかつ右側が幅狭に形成されて、 その境界部分において段差部 1 1 5 aが形成されている。 外側環状溝 1 1 3には、 その一部から径方 向外側に向かう掛止溝 1 1 3 aが形成されており、 後述する戻しスプリ ング 1 7 3の一端部 1 Ί 3 aを掛止できるようになつている。 内側環状 溝 1 1 2には、 その一部から径方向内側に向かう掛止溝 1 1 2 aが形成 されており、 復帰スプリング 1 6 0の一端部 1 6 1を掛止できるように なっている。
復帰スプリング 1 6 0は、 第 1 9図及び第 2 0図に示すように、 ステ ンレス等の材料により形成された捩りスプリングであり、 ハウジング 1 1 0の内側環状溝 1 1 2に収容された状態で、 掛止溝 1 1 2 aに掛止さ れる一端部 1 6 1と、 ペダルアーム 1 4 0の掛止孔 1 4 2 (第 2 1図参 照) に掛止される他端部 1 6 2 とを備えている。 そして、 休止位置から 最大踏込み位置側に向けて踏込まれたペダルアーム 1 4 0 (アクセルべ ダル 1 5 0 ) を元の休止位置に復帰させるための付勢力を及ぼすもので ある。 ペダルアーム 1 4 0は、 第 1 8図及び第 2 1図に示すように、 ペダル 軸 1 3 0を圧入嵌合により固着するための嵌合孔 1 4 0 aと、 摩擦力発 生機構 1 Ί 0に作用するべく略直角に折り曲げられた自由端部 1 4 1 と 、 復帰スプリング 1 6 0の他端部 1 6 2を掛止する掛止孔 1 4 2と、 ァ クセルペダル 1 5 0を保持する口ッ ド 1 5 0 aを連結する下側連結部 1 4 3等を備えた板状の長尺な部材として形成されている。
そして、 アクセルペダル 1 5 0の踏み込み量を調整することにより、 ペダルアーム 1 4 0がペダル軸 1 3 0回りに揺動して、 休止位置 (第 1 6図中の実線にて示す位置) と最大踏み込み位置 (第 1 6図中の二点鎖 線にて示す位置) との間を移動し、 摩擦力発生機構 1 7 0に及ぼす荷重 が調整されるようになっている。 また、 ペダルアーム 1 4 0の自由端部 1 4 1は、 後述する第 1可動摩擦部材 1 7 1に当接するように配置され て、 第 1可動摩擦部材 1 7 1に対する係合及び離脱が確実に行なわれる ようになつており、 又、 ハウジング 1 1 0に埋設されたゴム部材 2 0 0 に当接して、 休止位置に停止するようになっている。
アクセルポジションセンサ 1 8 0は、 ハウジング 1 1 0のセンサ用空 間部 1 1 4に配置されており、 ペダルアーム 1 4 0と一体的に回動する ロー夕、 ハウジング 1 1 0に固定されたステ一夕、 永久磁石、 ホール素 子等からなる非接触式のセンサである。 そして、 ペダルアーム 1 4 0が 揺動すると、 この揺動変位がホール素子を通過する磁束の変化として検 出され、 アクセルペダル 1 5 0の踏み込み量を検知するようになつてい る。
摩擦力発生機構 1 7 0は、 ペダルアーム 1 4 0 (アクセルペダル 1 5 0 ) の移動に伴なつて摩擦力を発生するものであり、 第 1 7図に示すよ うに、 ハウジング 1 1 0の円弧状溝 1 1 5内に往復動自在に取り付けら れた第 1可動摩擦部材 1 Ί 1及び第 2可動摩擦部材 1 7 2 と、 第 2可動 摩擦部材 1 7 2を元の位置へ (第 1 7図に示す位置へ) 戻すように付勢 する戻しスプリング 1 7 3と、 第 1可動摩擦部材 1 7 1 と第 2可動摩擦 部材 1 7 2との間に配置された遊び荷重用スプリング 1 74等により構 成されている。
ここで、 ハウジング 1 1 0の円弧状溝 1 1 5の内壁面は摺動面として 作用し、 第 1可動摩擦部材 1 7 1及び第 2可動摩擦部材 1 Ί 2を摺動自 在に案内する摺動案内路を形成している。 尚、 ハウジング 1 1 0の下側 には、 第 1 8図に示すように、 長尺な切り欠き (スリ ッ ト) 1 1 0 aが 形成されており、 ペダルアーム 1 4 0に一体的に固着されたペダル軸 1 3 0が取り付けられ、 カバー 1 2 0により覆われた状態で、 この切り欠 き 1 1 0 aを通して、 ペダルアーム 1 4 0の下側連結部 1 4 3がハウジ ング 1 1 0の外部に露出するようになっている。
第 1可動摩擦部材 1 7 1は、 含油ポリァセタール等の高摺動性材料に より形成されており、 第 2 2図に示すように、 円弧状溝 1 1 5と同一の 曲率をなす円弧面 1 7 1 a , 1 7 l bと、 この円弧面 1 7 l a, 1 7 1 bの接線に対してその法線のなす角度が 0となるように形成された第 1 傾斜面 1 7 1 cと、 第 1傾斜面 1 7 1 cと反対側に形成された背面 1 Ί 1 dと、 第 1傾斜面 1 7 1 cに開口するように形成された筒状穴 1 7 1 e等により形成されている。
第 2可動摩擦部材 1 7 2は、 含油ポリアセタール等の高摺動性材料に より形成されており、 第 2 2図に示すように、 円弧状溝 1 1 5 と同一の 曲率をなす円弧面 1 7 2 a, 1 7 2 bと、 この円弧面 1 7 2 a, 1 7 2 bの接線に対してその法線のなす角度が 0となるように形成された第 2 傾斜面 1 7 2 cと、 第 2傾斜面 1 7 2 cと反対側に形成された背面 1 7 2 dと、 第 2傾斜面 1 7 2 cに開口するように形成された筒状穴 1 7 2 e等により形成されている。 遊び荷重用スプリング 1 7 4は、 第 2 2図に示すように、 圧縮型のコ ィルスプリングからなり、 その一端部が第 1可動摩擦部材 1 7 1の筒状 穴 1 7 1 eに収容され、 又、 その他端部が第 2可動摩擦部材 1 7 2の筒 状穴 1 7 2 eに収容されて、 第 1可動摩擦部材 1 7 1 と第 2可動摩擦部 材 1 7 2 とをお互いに遠ざける向きに付勢力を発生している。 尚、 この 遊び荷重用スプリング 1 7 4の付勢力は、 最も圧縮された状態において 、 最も伸びた状態にある戻しスプリング 1 7 3の付勢力よりも小さいか 若しくは同等となるように設定されている。
戻しスプリング 1 7 3は、 第 2 3図及び第 2 4図に示すように、 ステ ンレス等の材料により形成された捩りスプリングであり、 ハウジング 1 1 0の外側環状溝 1 1 3に収容された状態で、 掛止溝 1 1 3 aに掛止さ れる一端部 1 7 3 aと、 第 2可動摩擦部材 1 7 2の背面 1 7 2 dに掛止 される他端部 1 7 3 bとを備えている。 そして、 第 2可動摩擦部材 1 7 2を元の休止位置に向けて (第 1 7図に示す位置に向けて) 復帰させる ための付勢力を及ぼしている。
上記第 1可動摩擦部材 1 7 1 と第 2可動摩擦部材 1 7 2とは、 第 1 7 図に示すように、 ハウジング 1 1 0の円弧状溝 1 1 5すなわち摺動案内 路 (内壁面) に沿って移動する方向において、 第 1傾斜面 1 7 1 cと第 2傾斜面 1 7 2 cとが当接し得るように、 お互いに対向して配置されて いる。 すなわち、 第 1可動摩擦部材 1 7 1 と第 2可動摩擦部材 1 7 2と がお互いに押し付けられると、 第 1傾斜面 1 7 1 cと第 2傾斜面 1 7 2 cとのくさび作用により、 第 1可動摩擦部材 1 Ί 1が径方向内側に (下 向きに) かつ第 2可動摩擦部材 1 7 2が径方向外側に (上向きに)、 す なわち円弧状溝 1 1 5に案内されて移動する方向に対して直交する方向 にお互いに遠ざかるように、 第 1可動摩擦部材 1 7 1の円弧面 1 7 1 a が円弧状溝 1 1 5の内側の内壁面に向けて、 第 2可動摩擦部材 1 7 2の 円弧面 1 7 2 bが円弧状溝 1 1 5の外側の内壁面に向けてそれそれ押し 付けられることになる。
例えば、 第 2 5図に示すように、 第 1可動摩擦部材 1 Ί 1の外側 (第 2 5図中の右側) からペダルアーム 1 4 0の荷重 Fが作用すると、 第 1 可動摩擦部材 1 Ί 1 と第 2可動摩擦部材 1 Ί 2 とは離れることなく当接 した状態で左側に向かって移動することから、 その移動の瞬間において は、 第 2可動摩擦部材 1 Ί 2の外側 (第 2 5図中の左側) から、 この荷 重 Fと拮抗する向きに戻しスプリング 1 7 3の付勢力 Fが反力として作 用することになる。
したがって、 アクセルペダル 1 5 0 (ペダルアーム 1 4 0 ) が踏み込 まれるとき、 第 1可動摩擦部材 1 7 1及び第 2可動摩擦部材 1 Ί 2は最 大踏み込み位置に向けて (第 2 5図中の左側に向けて) 移動することに なり、 このとき、 第 1可動摩擦部材 1 Ί 1を下向きにかつ第 2可動摩擦 部材 1 7 2を上向きに、 お互いを遠ざけるように押し付ける (円弧状溝 1 1 5の内壁面に向けて押し付ける) 押付力として、 N = F t a n 0が 作用する。
すなわち、 アクセルペダル 1 5 0が踏み込まれて、 第 1可動摩擦部材 1 7 1及び第 2可動摩擦部材 1 7 2が最大踏み込み位置に (第 2 5図中 の左側に) 向けて移動する際に、 第 1可動摩擦部材 1 7 1及び第 2可動 摩擦部材 1 Ί 2 と円弧状溝 1 1 5の内壁面との間には、 摺動面の動摩擦 係数を//とすると、 移動方向と反対の向きに (第 2 5図中の右向きに) 摩擦力 f 1 = / N、 すなわち、 f l = F t a n 0が作用することにな る o
一方、 アクセルペダル 1 5 0 (ペダルアーム 1 4 0 ) が踏み込む前の 休止位置に向けて戻されるとき、 第 1可動摩擦部材 1 7 1及び第 2可動 摩擦部材 1 7 2は、 戻しスプリング 1 7 3の付勢力 Fにより休止位置に 向けて (第 2 5図中の右側に向けて) 移動することになり、 このとき、 前述同様に第 1可動摩擦部材 1 7 1を下向きにかつ第 2可動摩擦部材 1 7 2を上向きに、 それそれを押し付ける押付力として、 N= F t a n0 が作用する。
すなわち、 アクセルペダル 1 5 0の踏み込みが戻されて、 第 1可動摩 擦部材 1 7 1及び第 2可動摩擦部材 1 7 2が休止位置に (第 2 5図中の 右側に) 向けて移動する際に、 第 1可動摩擦部材 1 7 1及び第 2可動摩 擦部材 1 Ί 2と円弧状溝 1 1 5の内壁面との間には、 摺動面の動摩擦係 数を〃とすると、 移動方向と反対の向きに (第 2 5図中の左向きに) 摩 擦力 f 2 =_〃N、 すなわち、 f 2 =—〃 F t a n 6>が作用することに なる。
この力関係を説明すると、 ペダルアーム 1 4 0の荷重 F及び戻しスプ リング 1 7 3の付勢力 (反力) Fはアクセルペダル 1 5 0の踏込み量 ( X) の関数として表されるため、 休止位置から最大踏み込み位置に向か う際の摩擦力 f 1は、
Figure imgf000037_0001
で表される。 したがって、 休止位置 (x= 0 ) の時点では、
f 1 ( 0) = JJL Y ( 0 ) t a n 0
の摩擦力が作用し、 一方、 最大踏み込み位置 (x = max) に至る時点 では、
f 1 、max) = JLL F (max) t a n θ
の摩擦力が作用することになる。 このとき、
f 1 (max) > f 1 ( 0 )
の関係にあるため、 ペダルアーム 1 40が最大踏み込み位置に向けて移 動する際にその移動量 (X) に応じて、 発生する摩擦力 f 1は直線的に 増加することになる。 一方、 アクセルペダル 1 5 0すなわちペダルアーム 1 4 0が、 最大踏 み込み位置から休止位置に向かう際の摩擦力 f 2は、
f 2 = - / F 1 ( X ) t a n 6>
で表される。 したがって、 最大踏込み位置 (x = m a x ) の時点では、 f 2 ( max) =— ju F ( max) t a. n θ
の摩擦力が作用し、 一方、 休止位置 (x = 0 ) に至る時点では、
Figure imgf000038_0001
の摩擦力が作用することになる。 このとき、
I f 2 ( max) I > I f 2 ( 0 ) |
の関係にあるため、 ペダルアーム 1 4 0が休止位置に向けて移動する際 にその移動量 (X ) に応じて、 発生する摩擦力 f 2は直線的に減少する ことになる。 すなわち、 前述の第 7図に示すものと同様の摩擦力が得ら れることになる。
上記の説明から明らかなように、 ハウジング 1 1 0の摺動案内路とし ての円弧状溝 1 1 5内に配置された第 1可動摩擦部材 1 7 1、 第 2可動 摩擦部材 1 7 2、 戻しスプリング 1 7 3 (尚、 戻しスプリング 1 7 3は 、 その他端部 1 7 3 bのみが円弧状溝 1 1 5内に配置されている) 等に より、 ペダルアーム 1 4 0が最大踏み込み位置に向けて移動する際に、 発生する摩擦力 f 1をその移動量に応じて増加させると共に、 ペダルァ ーム 1 4 0が休止位置に向けて移動する際に、 発生する摩擦力 f 2をそ の移動量に応じて減少させる、 すなわち、 ペダルアーム 1 4 0の移動に 応じて摩擦力を変化させる摩擦力可変手段が構成されている。
さらに、 上記摩擦力可変手段により得られる摩擦力 f 1 , f 2と、 復 帰スプリング 1 6 0の付勢力、 遊び荷重用スプリング ί 7 4の付勢力、 及び戻しスプリング 1 7 3の付勢力とを重ね合わせると、 アクセルぺダ ル 1 5 0の踏力 (ペダル荷重) 特性は、 前述の第 1 5図に示すようなヒ ステリシスとして得られることになる。 すなわち、 最大踏み込み位置に 向かう往路と休止位置に戻る復路とにおいて、 休止位置側ではヒステリ シスが小さく (幅狭) なり、 レスポンス、 操作フィーリング等が良好に なり、 又、 アクセルペダル 1 5 0の戻り不良に対する余裕代を大きくす ることができる。 一方、 最大踏み込み位置側ではヒステリシスが大きく (幅広) になり、 車両 (エンジン) の制御性が良好になる。
次に、 上記アクセルペダル装置の動作について、 第 1 5図に基づいて 説明する。
先ず、 アクセルペダル 1 5 0が踏み込まれていない状態で、 ぺダルア ーム 1 4 0 (及びアクセルペダル 1 5 0 ) は休止位置 (スロッ トルバル ブの全閉状態に対応する位置) に位置している。 このとき、 ペダルァー ム 1 4 0には、 復帰スプリング 1 6 0及び遊び荷重用スプリング 1 7 4 の付勢力が作用し、 第 1 7図に示すように、 その自由端部 1 4 1がハウ ジング 1 1 0に埋設されたゴム部材 2 0 0に当接し、 休止位置に停止し ている。
また、 第 2可動摩擦部材 1 7 2は、 戻しスプリング 1 7 3の付勢力に より付勢されて、 その第 2傾斜面 1 7 2 cの上端部が円弧状溝 1 1 5の 段差部 1 1 5 aに当接し、 休止位置に停止している。 さらに、 第 1可動 摩擦部材 1 7 1は、 遊び荷重用スプリング 1 7 4により付勢されて、 第 2可動摩擦部材 1 Ί 2から離脱すると共にその背面 1 Ί 1 bがべダルア ーム 1 4 0の自由端部 1 4 1に当接し、 休止位置に停止している。
この休止位置にある状態から、 アクセルペダル 1 5 0が踏み込まれて ペダルアーム 1 4 0が最大踏み込み位置に向けて移動し始めると、 ぺダ ルアーム 1 4 0の自由端部 1 4 1から加わる荷重 Fにより、 第 1可動摩 擦部材 1 7 1は、 遊び荷重用スプリング 1 7 4を圧縮させつつ (第 1 7 図中左向きに) 移動し始め、 所定の距離だけ移動した時点すなわち第 1 5図中の P I点で、 第 2可動摩擦部材 1 7 2に当接する。 この移動行程 においては、 第 1可動摩擦部材 1 7 1はハウジング 1 1 0の円弧状溝 1
1 5を摺動するが、 この摺動による摩擦力は極力小さくなるように設定 されている。
さらに、 アクセルペダル 1 5 0が踏み込まれると、 第 1可動摩擦部材 1 7 1及び第 2可動摩擦部材 1 7 2は、 第 1 7図中左向きに移動し始め ると共に、 第 1可動摩擦部材 1 7 1の第 1傾斜面 1 7 1 cと第 2可動摩 擦部材 1 Ί 2の第 2傾斜面 1 Ί 2 cとのくさび作用により、 第 1可動摩 擦部材 1 7 1の円弧面 1 7 1 a及び第 2可動摩擦部材 1 7 2の円弧面 1 7 2 bと円弧状溝 1 1 5の内壁面との間には、 第 1 7図中右向きに摩擦 力 f 1が作用し始める。 そして、 アクセルペダル 1 5 0の踏力は、 f 1 + F 0の線に沿って増加し、 最大踏み込み位置 P 2に達した時点で、 そ の踏力は f 1 ( max) + F 0 ( max)となり、 最大値を示すことになる 尚、 最大踏み込み位置に向けて移動する際に、 第 1可動摩擦部材 1 7 1の外側の円弧面 1 7 l bは、 その一部が円弧状溝 1 1 5の外側の内壁 面から離れることになるが、 くさび作用により円弧状溝 1 1 5の内側の 内壁面に向けて押し付けられているため、 安定して移動することができ る。
次に、 この最大踏み込み位置にアクセルペダル 1 5 0が位置する状態 から踏力を弱めて戻し始めると、 戻しスプリング 1 7 3の付勢力 Fによ り、 第 2可動摩擦部材 1 7 2及び第 1可動摩擦部材 1 7 1は休止位置に 向けて (第 1 7図中の右側に向けて) 移動し始める。 と同時に、 第 2可 動摩擦部材 1 7 2の第 2傾斜面 1 7 2 cと第 1可動摩擦部材 1 7 1の第 1傾斜面 1 Ί 1 cとのくさび作用により、 第 2可動摩擦部材 1 7 2の円 弧面 1 7 2 b及び第 1可動摩擦部材 1 Ί 1の円弧面 1 7 1 aと円弧状溝 1 1 5の内壁面との間には、 第 1 7図中左向きに摩擦力 f 2が作用し始 める。 ここで、 第 1 5図中の P 3点における摩擦力 f 2は、 f 2 ( max ) + F 0 ( 0 ) となる。 そして、 アクセルペダル 1 5 0の踏力は、 f 2 + F 0の線に沿って減少し、 第 2可動摩擦部材 1 7 2の第 2傾斜面 1 7 2 cの上端部が段差部 1 1 5 aに当接して停止した時点 (第 1 5図中の P 4点) で、 摩擦力 f 2は作用しなくなる。 そして、 第 1 5図中の P 5 を通って、 アクセルペダル 1 5 0は休止位置に至る。
アクセルペダル 1 5 0の踏み込み及び戻し動作が行なわれると、 踏力 は第 1 5図に示すヒステリシスに沿って変化することになる。
ところで、 第 2可動摩擦部材 1 Ί 2あるいは第 1可動摩擦部材 1 7 1 が、 仮に円弧状溝 1 1 5内でスティ ックして戻らなくなった場合でも、 ペダルアーム 1 4 0の自由端部 1 4 1は、 第 1可動摩擦部材 1 Ί 1に対 して係合及び離脱自在に構成されているため、 復帰スプリング 1 6 0の 付勢力により、 アクセルペダル 1 5 0及びペダルアーム 1 4 0は、 必ず 休止位置に戻されることになる。
したがって、 アクセルポジションセンサ 1 8 0によりアクセルぺダル 1 5 0の作動状態を検知する際のフヱ一ルセーフ機能が確保されること になる。
以上述べたように、 この実施形態に係るアクセルペダル装置によれば 、 第 1可動摩擦部材 1 7 1、 第 2可動摩擦部材 1 7 2、 ハウジング 1 1 0の円弧状溝 1 1 5等の簡単な構造により、 又、 第 1傾斜面 1 7 1 c及 び第 2傾斜面 1 7 2 cの角度 0を適宜選定することにより、 踏力 (ぺダ ル荷重) のヒステリシス特性を自由に設定することができ、 アクセルべ ダル 1 5 0の操作フィ一リングを向上させることができ、 アクセルコン トロールの容易なアクセルペダル装置を得ることができる。 また、 車両 における振動あるいは異常音等の発生を容易に防止することができる。 さらに、 構造が簡単である故に、 組み付けが容易で、 製造コス トを低減 することができる。
第 2 6図及び第 2 7図は、 さらに他の実施形態に係るアクセルペダル 装置を示すものであり、 上記第 1 6図ないし第 2 5図に示す実施形態に 対して、 遊び荷重用スプリング 1 6 0の配置を変更した以外は同様の構 成となっている。 それ故に、 同一の構成については同一の符号を付して その説明を省略する。
この実施形態に係るアクセルペダル装置においては、 第 2 6図及び第 2 7図に示すように、 ハウジング 1 1 0に形成された円弧状溝 2 1 5が 、 略中央部よりも右寄りに位置において段差部 2 1 5 aを有し、 この段 差部 2 1 5 aを境に、 左側が幅広かつ右側が幅狭の溝に形成され、 第 1 可動摩擦部材 2 7 1及び第 2可動摩擦部材 2 7 2を摺動自在に案内する 摺動案内路を形成している。
第 1可動摩擦部材 2 7 1は、 含油ポリアセタール等の高摺動性材料に より形成されており、 第 2 7図に示すように、 円弧状溝 2 1 5と同一の 曲率をなす円弧面 2 7 1 a, 2 7 l bと、 この円弧面 2 7 l a , 2 7 1 bの接線に対してその法線のなす角度が (9となるように形成された第 1 傾斜面 2 7 1 cと、 第 1傾斜面 2 7 1 cと反対側に形成された背面 2 7 1 dと、 この背面 2 7 1 dに開口するように形成された筒状穴 2 7 1 e 等により形成されている。
第 2可動摩擦部材 2 7 2は、 含油ポリアセタール等の高摺動性材料に より形成されており、 第 2 7図に示すように、 円弧状溝 2 1 5と同一の 曲率をなす円弧面 2 7 2 a, 2 7 2 bと、 この円弧面 2 7 2 a, 2 7 2 bの接線に対してその法線のなす角度が 6>となるように形成された第 2 傾斜面 2 7 2 cと、 第 2傾斜面 2 7 2 cと反対側に形成された背面 2 7 2 d等により形成されている。 次に、 上記アクセルペダル装置の動作について説明すると、 先ず、 ァ クセルペダル 1 5 0が踏まれていない状態で、 第 2可動摩擦部材 2 7 2 は戻しスプリング 1 7 3の付勢力により付勢されて、 その第 2傾斜面 2 7 2 cが第 1可動摩擦部材 2 7 1の第 1傾斜面 2 7 1 cに当接し、 さら に、 第 1可動摩擦部材 2 7 1は、 その背面 2 7 1 dの上端部が円弧状溝 2 1 5の段差部 2 1 5 aに当接し、 休止位置に停止している。 また、 ぺ ダルアーム 1 4 0は、 遊び荷重用スプリング 1 7 4及び復帰スプリング 1 6 0の付勢力により付勢されて、 その自由端部 1 4 1がゴム部材 2 0 0に当接し、 休止位置に停止している。
この休止位置にある状態から、 アクセルペダル 1 5 0が踏み込まれて ペダルアーム 1 4 0が最大踏込み位置に向けて移動し始めると、 ペダル アーム 1 4 0の自由端部 1 4 1が、 遊び荷重用スプリング 1 7 4を圧縮 させつつ (第 2 6図中左向きに) 移動し始め、 所定の距離だけ移動した 時点で第 1可動摩擦部材 2 7 1の背面 2 7 1 dに当接する。
さらに、 アクセルペダル 1 5 0が踏み込まれると、 第 1可動摩擦部材 2 7 1及び第 2可動摩擦部材 2 7 2は、 第 2 6図中左向きに移動し始め ると共に、 第 1可動摩擦部材 2 7 1の第 1傾斜面 2 7 1 cと第 2可動摩 擦部材 2 7 2の第 2傾斜面 2 7 2 cとのくさび作用により、 第 1可動摩 擦部材 2 7 1の円弧面 2 7 1 a及び第 2可動摩擦部材 2 7 2の円弧面 2 7 2 bと円弧状溝 2 1 5の内壁面との間には、 第 2 6図中右向きに摩擦 力 ΐ 1が作用し始める。
尚、 最大踏み込み位置に向けて移動する際に、 第 1可動摩擦部材 2 7 1の外側の円弧面 2 7 l bは、 常に円弧状溝 2 1 5の外側の内壁面に沿 つて移動するため、 より一層安定して移動することができる。
次に、 最大踏み込み位置にアクセルペダル 1 5 0が位置する状態から 踏力を弱めて戻し始めると、 戻しスプリング 1 Ί 3の付勢力 Fにより、 第 2可動摩擦部材 2 7 2及び第 1可動摩擦部材 2 7 1は休止位置に向け て (第 2 6図中の右側に向けて) 移動し始める。 と同時に、 第 2可動摩 擦部材 2 7 2の第 2傾斜面 2 7 2 cと第 1可動摩擦部材 2 7 1の第 1傾 斜面 2 7 1 cとのくさび作用により、 第 2可動摩擦部材 2 7 2の円弧面 2 7 2 b及び第 1可動摩擦部材 2 7 1の円弧面 2 7 1 aと円弧状溝 2 1 5の内壁面との間には、 第 2 6図中左向きに摩擦力 f 2が作用し始める 。 そして、 第 1可動摩擦部材 2 7 2の背面 2 7 1 dの上端部が段差部 2 1 5 aに当接して停止した時点で、 摩擦力 f 2は作用しなくなる。
尚、 その他の動作及び踏力ヒステリシスについては、 前述の実施形態 と同様であるため説明を省略する。
上記実施形態においては、 摩擦力可変手段として、 可動摩擦部材、 摺 動案内路、 戻しスプリング等により構成されるものを示したが、 これに 限定されるものではなく、 アクセルペダルを踏み込む際に、 発生する摩 擦力をそのス トロークの増加に比例して増加させ、 一方、 アクセルぺダ ルを戻す際に、 発生する摩擦力をその戻しス トロークに反比例して減少 させる構成であれば、 いずれの構成であっても採用することができる。 以上述べたように、 本発明のアクセルペダル装置によれば、 摩擦力発 生機構として、 摩擦力を発生する摺動面を画定する摺動案内路内におい て、 ペダルアームが最大踏み込み位置に向けて移動する際に発生する摩 擦力をその移動量に応じて増加させると共にペダルアームが休止位置に 向けて移動する際に発生する摩擦力をその移動量に応じて減少させる摩 擦力可変手段を設けたことにより、 ペダル荷重の特性としては、 休止位 置側で小さく (幅狭) でかつ最大踏み込み位置側で大きく (幅広に) な るヒステリシスが得られる。
これにより、 アクセルペダルのレスポンス、 操作フィーリング、 車両 制御性等を向上させることができ、 又、 振動等を防止することができる 。 特に、 発生する摩擦力は、 摺動案内路内においてのみ作用するため、 例えばペダルアームを支持するペダル軸等の如く摺動案内路の外部にあ る構成部品に対して負荷荷重として作用することはない。 したがって、 ぺダル軸等に無理な力が加わることはなく、 装置における作動の信頼性 が向上する。
また、 アクセルペダルの戻り不良に対する余裕代を大きく とることが でき、 これにより、 確実な動作を保証することができる。
さらに、 摩擦力可変手段を、 円弧状に往復動自在な第 1可動摩擦部材 及び第 2可動摩擦部材、 円弧状の摺動案内路、 捩りスプリング等かなら る戻しスプリング等により構成することにより、 構成部品の集約化が行 なえ、 より一層の装置の小型化を達成することができる。 産業上の利用可能性
以上のように、 本発明に係るアクセルペダル装置は、 自動車等の車両 に適用されるアクセルペダル装置として有用であり、 特に、 ドライブバ ィワイヤーシステムを採用した自動車等のアクセルペダル装置として用 いるのに適している。

Claims

請 求 の 範 囲
1 . アクセルペダルから伝わる踏力により休止位置から最大踏み込 み位置まで移動可能なペダルアームと、 前記ペダルアームを揺動自在に 支持するペダル軸と、 前記ペダルアームを休止位置に向けて復帰させる ベく付勢する復帰スプリングと、 前記ペダルアームの移動に伴なつて摩 擦力を発生する摩擦力発生機構とを備え、
前記摩擦力発生機構は、 摩擦力を発生する摺動面を画定する摺動案内 路と、 前記ペダルアームが前記最大踏み込み位置に向けて移動する際に 発生する摩擦力をその移動量に応じて増加させると共に前記ペダルァー ムが前記休止位置に向けて移動する際に発生する摩擦力をその移動量に 応じて減少させるベく、 前記摺動案内路内に配置されかつ前記ペダルァ ームの移動に応じて摩擦力を変化させる摩擦力可変手段と、 を有する、 ことを特徴とするアクセルペダル装置。
2 . 前記摩擦力可変手段は、 前記ペダルアームから加えられる荷重 により前記摺動案内路内を移動させられると共に前記荷重に応じてその 移動方向と直交する方向に変位するべく前記摺動面に押し付けられる可 動摩擦部材と、 前記可動摩擦部材を前記ペダルアームの荷重と拮抗する 向きに付勢する付勢力を発生すると共に前記付勢力に応じてその移動方 向と直交する方向に変位させるベく前記摺動面に前記可動摩擦部材を押 し付けつつ元の位置に戻す戻しスプリングと、 を有する、
ことを特徴とする請求の範囲第 1項記載のアクセルペダル装置。
3 . 前記可動摩擦部材は、 前記摺動案内路により案内される方向の 両側において、 その中央部に向けてお互いに近づくように傾斜する第 1 傾斜面及び第 2傾斜面を有し、
前記可動摩擦部材と前記ペダルアームの自由端部との間には、 前記第 1傾斜面に当接する傾斜面を有する第 1当接部材が配置され、 前記可動摩擦部材と前記戻しスプリングとの間には、 前記第 2傾斜面 に当接する傾斜面を有する第 2当接部材が配置されている、
ことを特徴とする請求の範囲第 2項記載のアクセルペダル装置。
4 . 前記摺動案内路は、 略円形の断面形状をなし、
前記可動摩擦部材は、 前記摺動案内路の内周面に密接する略環状をな し、 かつ、 少なく とも一部が周方向を横切る向きに切断されている、 ことを特徴とする請求の範囲第 3項記載のアクセルペダル装置。
5 . 前記ペダルアームの自由端部は、 前記第 1当接部材に対して係 合及び離脱自在となっている、
ことを特徴とする請求の範囲第 3項記載のアクセルペダル装置。
6 . 前記摩擦力可変手段は、 前記ペダルアームの荷重により前記摺 動案内路内を移動させられると共にその移動方向に対して所定の角度を なす第 1傾斜面を有する第 1可動摩擦部材と、 前記第 1可動摩擦部材と 前記移動方向において対向して配置されて前記摺動案内路内を移動させ られると共に前記第 1傾斜面に当接し得る第 2傾斜面を有する第 2可動 摩擦部材と、 前記第 2可動摩擦部材を前記ペダルアームの荷重と拮抗す る向きに付勢して元の位置に戻す戻しスプリングと、 を有する、 ことを特徴とする請求の範囲第 1項記載のアクセルペダル装置。
7 . 前記第 1可動摩擦部材と前記第 2可動摩擦部材との間には、 前 記第 1可動摩擦部材と前記第 2可動摩擦部材とをお互いに遠ざける向き において、 前記戻しスプリングの付勢力よりも小さい付勢力を発生して 遊び荷重を与える遊び荷重用スプリングが配置されている、
ことを特徴とする請求の範囲第 6項記載のアクセルペダル装置。
8 . 前記戻しスプリングは、 直径が異なる複数のコイルスプリング からなる、 ことを特徴とする請求の範囲第 6項記載のアクセルペダル装置。
9 . 前記ペダルアームの自由端部は、 前記第 1可動摩擦部材に対し て係合及び離脱自在となっている、
ことを特徴とする請求の範囲第 6項記載のアクセルペダル装置。
1 0 . 前記摩擦力可変手段は、 前記ペダルアームの荷重により前記 摺動案内路内を移動させられると共にその移動方向に対して所定の角度 をなす第 1傾斜面を有する第 1可動摩擦部材と、 前記第 1可動摩擦部材 と前記移動方向において対向して配置されて前記摺動案内路内を移動さ せられると共に前記第 1傾斜面に当接し得る第 2傾斜面を有する第 2可 動摩擦部材と、 前記第 2可動摩擦部材を前記ペダルアームの荷重と拮抗 する向きに付勢して元の位置に戻す戻しスプリングと、 を有し、 前記第 1可動摩擦部材及び第 2可動摩擦部材は、 所定の軸を中心とし て円弧状に往復動自在であり、
前記摺動案内路は、 前記所定の軸を中心とした円弧状の曲率をなす湾 曲路からなる、
ことを特徴とする請求の範囲第 1項記載のアクセルペダル装置。
1 1 . 前記戻しスプリングは、 前記ペダル軸の周りに配置された捩 りスプリングからなる、 α
ことを特徴とする請求の範囲第 1 0項記載のアクセルペダル装置。
1 2 . 前記復帰スプリ ングは、 前記ペダル軸の周りに配置された捩 りスプリングからなる、
ことを特徴とする請求の範囲第 1 0項記載のアクセルペダル装置。
1 3 . 前記戻しスプリング及び復帰スプリングは、 前記ペダル軸の 周りに配置された捩りスプリングからなり、
前記復帰スプリングは、 前記戻しスプリングの内側に配置されている ことを特徴とする請求の範囲第 1 0項記載のアクセルペダル装置。
1 4 . 前記戻しスプリング及び前記復帰スプリ ングの中心は、 前記 ぺダル軸から偏倚した位置に設けられている、
ことを特徴とする請求の範囲第 1 3項記載のアクセルペダル装置。
1 5 . 前記第 1可動摩擦部材と前記第 2可動摩擦部材との間には、 前記第 1可動摩擦部材と前記第 2可動摩擦部材とをお互いに遠ざける向 きにおいて、 前記戻しスプリングの付勢力よりも小さい付勢力を発生し て遊び荷重を与える遊び荷重用スプリングが配置されている、 ことを特徴とする請求の範囲第 1 0項記載のアクセルペダル装置。
1 6 . 前記第 1可動摩擦部材と前記ペダルアームの自由端部との間 には、 前記第 1可動摩擦部材と前記ペダルアームの自由端部とをお互い に遠ざける向きにおいて、 前記戻しスプリングの付勢力よりも小さい付 勢力を発生して遊び荷重を与える遊び荷重用スプリングが配置されてい る、
ことを特徴とする請求の範囲第 1 0項記載のアクセルペダル装置。
1 7 . 前記ペダルアームの自由端部は、 前記第 1可動摩擦部材に対 して係合及び離脱自在となっている、
ことを特徴とする請求の範囲第 1 0項記載のアクセルペダル装置。
PCT/JP2000/006188 1999-09-14 2000-09-11 Dispositif de pedale d'accelerateur WO2001019638A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001523241A JP4724340B2 (ja) 1999-09-14 2000-09-11 アクセルペダル装置
US10/096,938 US6745642B2 (en) 1999-09-14 2002-03-14 Accelerator pedal assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP26096799 1999-09-14
JP11/260967 1999-09-14
JP11/305212 1999-10-27
JP30521299 1999-10-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/096,938 Continuation-In-Part US6745642B2 (en) 1999-09-14 2002-03-14 Accelerator pedal assembly

Publications (1)

Publication Number Publication Date
WO2001019638A1 true WO2001019638A1 (fr) 2001-03-22

Family

ID=26544839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006188 WO2001019638A1 (fr) 1999-09-14 2000-09-11 Dispositif de pedale d'accelerateur

Country Status (3)

Country Link
US (1) US6745642B2 (ja)
JP (2) JP4724340B2 (ja)
WO (1) WO2001019638A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003068549A1 (fr) * 2002-02-13 2003-08-21 Mikuni Corporation Module de pedale d'accelerateur
JP2007253869A (ja) * 2006-03-24 2007-10-04 Denso Corp アクセルペダル装置
JP2007302220A (ja) * 2006-04-12 2007-11-22 Denso Corp アクセルペダル装置
JP2009040161A (ja) * 2007-08-07 2009-02-26 Denso Corp アクセル装置
KR101050775B1 (ko) * 2009-02-19 2011-07-21 (주)오앤케이테크 차량용 전자식 가속페달 장치
WO2012029503A1 (ja) 2010-08-31 2012-03-08 本田技研工業株式会社 反力ペダル装置
WO2013018642A1 (ja) * 2011-08-02 2013-02-07 株式会社ミクニ アクセルペダル装置
WO2015049823A1 (ja) * 2013-10-04 2015-04-09 本田技研工業株式会社 アクセルペダル反力制御装置
JP2015071378A (ja) * 2013-10-04 2015-04-16 本田技研工業株式会社 車両用アクセルペダル装置
US9229469B2 (en) 2011-12-27 2016-01-05 Honda Motor Co., Ltd. Reactive force pedal device
CN106314145A (zh) * 2015-06-29 2017-01-11 长城汽车股份有限公司 一种车辆及其踏板总成
JP2020124934A (ja) * 2019-02-01 2020-08-20 株式会社ミクニ アクセルペダル装置

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6622589B1 (en) * 1999-11-19 2003-09-23 Aptek Williams, Inc. Manual control apparatus
US6360631B1 (en) * 2000-01-12 2002-03-26 Dura Global Technologies, Inc. Electronic throttle control accelerator pedal mechanism with mechanical hysteresis provider
US6982635B2 (en) * 2000-09-21 2006-01-03 American Calcar Inc. Technique for assisting a vehicle user to make a turn
US8990367B2 (en) * 2006-09-29 2015-03-24 Dell Products L.P. Consistent binding of shared storage across clustered servers
JP4743948B2 (ja) * 2000-10-10 2011-08-10 株式会社ミクニ アクセルペダル装置
KR100471863B1 (ko) * 2002-10-04 2005-03-08 현대자동차주식회사 답력 조절 기능을 갖춘 전자식 가속 페달 장치
CN101934734B (zh) 2003-05-29 2013-10-30 Cts公司 用于机动车辆的加速踏板
US8042430B2 (en) * 2004-05-27 2011-10-25 Cts Corporation Accelerator pedal for a vehicle
US8266982B2 (en) * 2005-01-18 2012-09-18 Kongsberg Automotive Holding Asa, Inc. Method and apparatus for pedal hysteresis
US20060230875A1 (en) * 2005-04-15 2006-10-19 Jiyuan Ouyang Pedal assembly having a hysteresis generating structure
JP2007045286A (ja) * 2005-08-09 2007-02-22 Denso Corp アクセル装置
US7793566B2 (en) * 2005-10-31 2010-09-14 Grand Haven Stamped Products Company, Division Of Jsj Corporation Pedal with hysteresis mechanism
US20080053265A1 (en) * 2006-09-01 2008-03-06 Bannon Sean A Pedal assembly
KR100844561B1 (ko) * 2006-12-08 2008-07-08 현대자동차주식회사 가속 페달 시스템
KR101057967B1 (ko) * 2007-05-09 2011-08-22 시티에스 코포레이션 차량용 가속 페달
WO2008153204A1 (ja) * 2007-06-12 2008-12-18 Toyota Jidosha Kabushiki Kaisha 足踏み式操作装置
ITTO20070740A1 (it) * 2007-10-19 2009-04-20 Sistemi Comandi Meccanici S C Pedale di comando per il controllo elettrico od elettronico di un attuatore di un autoveicolo.
US20110100153A1 (en) * 2008-05-08 2011-05-05 Murray Kaijala Accelerator Pedal Assembly
JP5452108B2 (ja) * 2008-10-06 2014-03-26 株式会社ミクニ アクセルペダル装置
JP5371147B2 (ja) 2009-05-20 2013-12-18 株式会社ミクニ アクセルペダル装置
KR100930662B1 (ko) * 2009-10-27 2009-12-09 주식회사 동희산업 차량용 전자식 가속페달의 히스테리시스 발생장치
EP2508958A1 (en) * 2009-12-03 2012-10-10 Toyota Jidosha Kabushiki Kaisha Pivot-arm type manipulator device
CN102822020B (zh) * 2010-02-04 2015-04-01 Ksr智财控股公司 用于电子制动系统的踏板组件
US8534157B2 (en) * 2010-02-17 2013-09-17 Ksr Technologies Co. Electronic throttle control pedal assembly with hysteresis
JP5789656B2 (ja) * 2010-03-18 2015-10-07 シーティーエス・コーポレーションCts Corporation 車両用アクセルペダルおよびそのための取付けラック
KR101957135B1 (ko) * 2011-10-07 2019-07-04 시티에스 코포레이션 히스테리시스 조립체를 갖는 차량 페달 조립체
JP5641370B2 (ja) * 2012-10-31 2014-12-17 株式会社デンソー アクセル装置
WO2014170126A1 (en) * 2013-04-15 2014-10-23 Kongsberg Power Products Systems Ltd. Bidirectional pedal assembly
DE102015113679A1 (de) * 2015-08-18 2017-02-23 Ab Elektronik Gmbh Pedalvorrichtung mit Dämpfung der Betätigung
DE112017000712A5 (de) * 2016-02-09 2018-10-31 Schaeffler Technologies AG & Co. KG Hystereseelement zur Erzeugung einer definierten Reibkraft und Vorrichtung zur Kraftsimulation an einem Betätigungselement eines Fahrzeuges
SE540815C2 (en) * 2016-05-17 2018-11-20 Cj Automotive Ab A pedal feel simulating system for a motor vehicle
FR3052886B1 (fr) * 2016-06-16 2019-06-21 Peugeot Citroen Automobiles Sa Systeme de pedale pour commande d’un actionneur automatise, comportant une hysteresis
JP6948127B2 (ja) * 2016-12-28 2021-10-13 株式会社ミクニ アクセルペダル装置
DE102017104278A1 (de) * 2017-03-01 2018-09-06 HELLA GmbH & Co. KGaA Pedalemulator für ein Kraftfahrzeug
CN117268778B (zh) * 2023-08-23 2024-04-02 扬州东博电子科技有限公司 一种汽车加速踏板耐久度测试设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083224A (ja) * 1996-09-09 1998-03-31 Denso Corp 車両用アクセルペダル装置
JPH11235936A (ja) * 1998-02-20 1999-08-31 Mikuni Corp 車両用アクセルペダル機構

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635385Y2 (ja) * 1977-05-27 1981-08-20
DE4426549C2 (de) * 1994-07-27 1999-05-20 Mannesmann Vdo Ag Fahrpedal mit Sollwertgeber
US5768946A (en) * 1994-10-11 1998-06-23 Cts Corporation Pedal with integrated position sensor
GB9420957D0 (en) * 1994-10-18 1994-12-07 Lucas Ind Plc Improvements in pedal assemblies for vehicle braking systems
DE19536699A1 (de) * 1995-09-30 1997-04-03 Bosch Gmbh Robert Fahrpedalmodul
GB9604039D0 (en) * 1996-02-26 1996-04-24 Rearsby Automotive Ltd Damped pedal mounting
DE19755098A1 (de) * 1997-12-11 1999-06-17 Mannesmann Vdo Ag Pedal
DE10020486A1 (de) * 2000-04-26 2001-10-31 Bosch Gmbh Robert Fahrpedalmodul
DE10212904A1 (de) * 2001-03-23 2002-10-24 Aisin Seiki Beschleunigerpedalvorrichtung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083224A (ja) * 1996-09-09 1998-03-31 Denso Corp 車両用アクセルペダル装置
JPH11235936A (ja) * 1998-02-20 1999-08-31 Mikuni Corp 車両用アクセルペダル機構

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003068549A1 (fr) * 2002-02-13 2003-08-21 Mikuni Corporation Module de pedale d'accelerateur
JP2007253869A (ja) * 2006-03-24 2007-10-04 Denso Corp アクセルペダル装置
JP2007302220A (ja) * 2006-04-12 2007-11-22 Denso Corp アクセルペダル装置
JP2009040161A (ja) * 2007-08-07 2009-02-26 Denso Corp アクセル装置
KR101050775B1 (ko) * 2009-02-19 2011-07-21 (주)오앤케이테크 차량용 전자식 가속페달 장치
WO2012029503A1 (ja) 2010-08-31 2012-03-08 本田技研工業株式会社 反力ペダル装置
WO2013018642A1 (ja) * 2011-08-02 2013-02-07 株式会社ミクニ アクセルペダル装置
JP2013032090A (ja) * 2011-08-02 2013-02-14 Mikuni Corp アクセルペダル装置
US9229469B2 (en) 2011-12-27 2016-01-05 Honda Motor Co., Ltd. Reactive force pedal device
WO2015049823A1 (ja) * 2013-10-04 2015-04-09 本田技研工業株式会社 アクセルペダル反力制御装置
JP2015071378A (ja) * 2013-10-04 2015-04-16 本田技研工業株式会社 車両用アクセルペダル装置
CN106314145A (zh) * 2015-06-29 2017-01-11 长城汽车股份有限公司 一种车辆及其踏板总成
JP2020124934A (ja) * 2019-02-01 2020-08-20 株式会社ミクニ アクセルペダル装置
JP7197389B2 (ja) 2019-02-01 2022-12-27 株式会社ミクニ アクセルペダル装置

Also Published As

Publication number Publication date
US20020100341A1 (en) 2002-08-01
US6745642B2 (en) 2004-06-08
JP4724340B2 (ja) 2011-07-13
JP2011031884A (ja) 2011-02-17
JP5060608B2 (ja) 2012-10-31

Similar Documents

Publication Publication Date Title
WO2001019638A1 (fr) Dispositif de pedale d'accelerateur
US8042430B2 (en) Accelerator pedal for a vehicle
EP2390752B1 (en) Accelerator Pedal For A Vehicle
EP1154347B1 (en) Pedal mechanism
EP0943835B1 (en) pedal device for vehicle having a friction damper
JP5452108B2 (ja) アクセルペダル装置
US9457660B2 (en) Accelerator pedal apparatus
JP4148553B2 (ja) 車両用アクセルペダル機構
US20060185469A1 (en) Pedal for motorized vehicle
JP2002036904A (ja) アクセルペダル装置
US20120125142A1 (en) Accelerator pedal for vehicle
JP2004314677A (ja) アクセル装置
JPH1083224A (ja) 車両用アクセルペダル装置
US8281682B2 (en) Accelerator operating device
JP4465703B2 (ja) アクセル装置
JP5664922B2 (ja) アクセル装置
JP4318790B2 (ja) 自動車用アクセルペダル装置
JP4724382B2 (ja) アクセルペダル装置
JP2003237405A (ja) アクセルペダルモジュール
KR20000029163A (ko) 작동 요소를 위한 베어링 모듈
JP4877139B2 (ja) アクセル装置
JP4078826B2 (ja) ダンパ及びこのダンパを用いたアクセルペダル装置
JP2002012052A (ja) 自動車のアクセルペダル装置
JP2001082184A (ja) アクセル装置
JP2747157B2 (ja) 内燃機関の絞り弁制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 523241

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10096938

Country of ref document: US

122 Ep: pct application non-entry in european phase