WO2001008210A1 - Procede de stockage de plaquette, contenant de stockage destine a cet effet et procede de transfert de plaquette dans ce contenant - Google Patents

Procede de stockage de plaquette, contenant de stockage destine a cet effet et procede de transfert de plaquette dans ce contenant Download PDF

Info

Publication number
WO2001008210A1
WO2001008210A1 PCT/JP2000/004366 JP0004366W WO0108210A1 WO 2001008210 A1 WO2001008210 A1 WO 2001008210A1 JP 0004366 W JP0004366 W JP 0004366W WO 0108210 A1 WO0108210 A1 WO 0108210A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
storage container
ppm
container
transferring
Prior art date
Application number
PCT/JP2000/004366
Other languages
English (en)
French (fr)
Inventor
Hitoshi Misaka
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Priority to US09/806,235 priority Critical patent/US6467626B1/en
Priority to EP00942431A priority patent/EP1119039A1/en
Priority to KR1020017003880A priority patent/KR20010075387A/ko
Publication of WO2001008210A1 publication Critical patent/WO2001008210A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6735Closed carriers
    • H01L21/67376Closed carriers characterised by sealing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support

Definitions

  • the present invention relates to a method of storing a wafer after mirror-polishing, washing and drying the surface, and a method of transferring the storage container to the storage container and the storage container, and particularly to a method of transporting the silicon wafer after the mirror-polishing.
  • the present invention relates to a method of storing an A8 in order to reduce the adhesion of particles to an aerial machine, and a method of transferring a wafer to the storage container and the storage container.
  • a single crystal manufacturing process for generally manufacturing a single crystal silicon ingot from polycrystalline silicon, and an a wafer processing process for slicing the ingot and mirror-polishing a thin plate-shaped wafer.
  • the device is roughly divided into device manufacturing processes for manufacturing various devices on the mirror-polished wafer, and each of the processes is further divided into various batch processes.
  • Each of these processes and processes is carried out in batches or by moving places, and with a certain time interval. For this reason, during the production or between the above-mentioned processes or processes, when the a wafer is stored in a container or the like, or stored or transported. There is.
  • the process up to mirror polishing by A8 processing and the device manufacturing process to manufacture various devices on the aeh are mostly performed by completely different companies. Therefore, after processing the wafer until it is mirror-polished, when transporting the wafer to a device manufacturer, the wafer is stored in a container (sometimes called a shipping box) that holds many wafers simultaneously.
  • a container sometimes called a shipping box
  • the surface of the wafer is required to be free of particles, organic substances and ions, so the wafer is stored at the end of the wafer processing process in the previous process, that is, in the shipping container. Before that, cleaning to remove those particles Is being done.
  • JP-A-8-64666 a pure water bubbling section is provided in the middle of a dry gas supply system as a storage container that has little degassing and removes the effects of particulate contamination, gaseous contamination, and the like.
  • a technique has been proposed in which ultra-high-purity steam obtained from the pure water publishing section is filled into a container containing wafers and transported.
  • hydrofluoric anhydride treatment in Japanese Patent Application Laid-Open No. 8-64666, this is referred to as hydrofluoric anhydride treatment.
  • hydrofluoric anhydride treatment Although it has the effect of reducing the amount of nitrogen purge of purity, it is not very useful in preventing the adhesion of particles generated from the container according to the experimental results of the applicant, and when the wafer after mirror polishing is transported to the device manufacturing process It turned out to be unsuitable for storage and transfer methods.
  • the storage container (shipping box) is subjected to various vibrations during transportation.
  • Particles are a general term for ultra-fine substance particles that float in the natural space or adhere to the surface of an object, and are composed of metals, inorganic substances, and organic substances.
  • Particle generation during transportation in such storage containers is not so problematic in low-integration generations where the design rules of the LSI manufacturing process do not require much fineness.
  • management The particle size of the elephant particles becomes smaller, and the increase of particles during transportation becomes a problem that cannot be ignored.
  • the particle size of particles has been reduced from around 0.16 / xm to 0.10111 due to the narrowing of the design rule in sub-micron units accompanying high integration.
  • the particle size is managed up to 0.08 ⁇ .
  • the present invention provides a method for storing an A-eight that can prevent the particles from adhering to the surface of the A-E as much as possible even if particles are generated during transportation, and a method for storing the A-eight, and a storage container for the A-eight.
  • Transfer eha The purpose is to provide an eha transfer method.
  • vacuum-dried wafer After mirror polishing the wafer and cleaning the surface, vacuum-dried wafer can be hermetically sealed.
  • high humidity for example, relative humidity of about 40%, absolute moisture concentration of 6.5 to 8 ppm
  • the space When the space is vibrated in a dry state (for example, when the relative humidity is 10% or less, the absolute moisture concentration is 2 ppm or less, preferably 1 ppm or less), the latter is better It has been found by the present inventors that the adhesion of particles is significantly suppressed.
  • the A-A-8 when the particles accelerated by vibration hit the A-A-8, the A-A-8 is in a dry state without moisture, and if the particles collide with the surface of the wafer, they repel simply by repulsion. Does not adsorb.
  • the wettability is generated on the surface of the A8, and it is considered that particles are adsorbed on the A8 by the action of the surface moisture.
  • the present invention has been made based on such knowledge, and the storage method according to the present invention is characterized in that a mirror-polished wafer whose surface has been cleaned and dried is cleaned with a highly purified dry gas having a relative humidity of 10% or less. It is characterized in that it is stored in a filled airtight space, and more specifically, it is mirror-polished, and its surface is washed and dried.
  • a storage method of A8 which is stored in an airtight space filled with highly clean and dry gas maintained below.
  • the wafer storage container of the present invention is a sealed container for storing a wafer after mirror polishing and washing and drying the surface, wherein the gas in the container is a dry gas, and the moisture in the gas is 2%. ppm, preferably maintained at 1 ppm or less.
  • the wafer after mirror polishing, washing the surface, and drying is housed in a housing container body whose upper opening is closed by a lid. In the transfer method to the storage container,
  • the wafer after mirror polishing, washing and drying the surface is stored in a storage container body whose front opening is closed by a lid.
  • the present invention proposes a method of transferring wafers to a storage container, characterized in that all of the above steps are performed under a high-purity dry gas.
  • the high-purity dry gas is, for example, high-purity dry air, a gas containing as little moisture as possible and containing almost no particles or other impurities, specifically having a particle size of 0.2 m or more. Is less than 200 cc, preferably less than 150 Z cc, and the moisture in the gas is maintained at 2 pm, preferably 1 ppm or less.
  • the upper opening has a direction other than upward. It is preferable that the water be turned downward or obliquely downward.
  • the water in the atmosphere in the space is maintained at 2 ppm, preferably 1 ppm or less.
  • it is a clean dry gas (eg, air or nitrogen).
  • FIG. 1 is a schematic view showing a wafer transfer device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a procedure for transferring the wafer according to the embodiment of the present invention.
  • FIG. 3 is an exploded perspective view showing a wafer storage container according to the embodiment of the present invention. You.
  • FIG. 4 is an enlarged view of the glasses of the seal portion of the wafer storage container of FIG.
  • reference numeral 1 denotes a wafer
  • 50 denotes a main body of the wafer storage container
  • 52 denotes an upper lid
  • 56 and 57 denote seal packings, respectively.
  • FIG. 5 is an exploded perspective view showing a conventional precision substrate storage container. BEST MODE FOR CARRYING OUT THE INVENTION
  • the e-house storage container includes an e-a basket 53 provided with an e-a support groove 55 for accommodating a large number of e-a1s in parallel, and an e-basket 53 for accommodating the basket 53.
  • Such wafer storage containers are generally formed of polypropylene, polycarbonate, or other organic resins.
  • the seal packings 56, 57 interposed between the upper lid 52 and the container body 50 have a double structure in order to particularly enhance the sealing performance. That is, conventionally, the outer periphery of the lower end of the upper lid 52 is formed in an inverted U-shape 52 a, and the outer periphery 50 a of the upper end is projected so as to fit the outer periphery of the upper end of the container body 50 into the inverted U-shaped recess.
  • the inner peripheral seal packing 57 is fitted into the fitting space 58, but in the present embodiment, as shown in FIG. 4, the inner peripheral seal packing 57 is further bent toward the outer periphery of the container body 50.
  • One packing 56 is added.
  • the seal packings 56 and 57 are formed of a polyolefin-based elastomer, silicone rubber, or the like to further enhance the sealing performance.
  • The one that can set 25 wafers is used, and the material of the container bodies 50 and 52 and the top lid are those that do not easily adsorb moisture such as polypropylene, ultra-high purity polyethylene, and fluorine resin. As described above, a double rubber packing structure is used to further enhance the sealing performance.
  • the mirror-polished silicon wafer is subjected to RCA cleaning (a method generally used for cleaning silicon wafers. After cleaning with ammonia, hydrogen peroxide, and water (SC-1)), diluted hydrofluoric acid, Next, as described in detail below, a method of using a cleaning solution of hydrochloric acid, hydrogen peroxide, and water (SC-2)) and vacuum drying at room temperature are described below.
  • the relative humidity is set to about 40% (water content in the gas phase: 6.5 to 8 ppm). In other words, the moisture in the air in the container is transferred under the above conditions.
  • the container body 50 is sealed with the top lid 52 sealed (Comparative Example 1).
  • the air in the container is adjusted to a temperature of 20: and a relative humidity of 10% (moisture in the gas phase: 2 ppm).
  • the moisture in the air in the container was set at 20 and the relative humidity was 5% (moisture in the gas phase: l (p pm)
  • three kinds of hermetically sealed containers were prepared, in which the bottle was transferred and sealed (Example 2).
  • the particle level on the wafer before transferring the wafer was the same in both the comparative example and the example. After applying the same vibration for 5 hours as a large truck running on a paved road using a shaker in a clean room with a temperature of 20 ° C, open the storage container and remove particles The number of occurrences was evaluated.
  • Example 1 the average number of particles with a particle size of 0.10 or more (the number of particles newly added on the wafer) was 30 on average, and 5 particles with a particle size of 0.2 m or more (per 8 inch wafer).
  • Example 1 the average of particles having a particle size of 0.10 im or more is about 0.3, and in Example 2, the particles having a particle size of 0.10 / m or more is about 0.1 on average. In each of the examples, it was confirmed that the adherence to the ewa was significantly suppressed.
  • FIG. 1 is a schematic diagram showing the wafer transfer device
  • FIG. 2 is a flowchart showing the transfer procedure.
  • the transfer device is highly clean and dry in the space inside the device through the dry air inlet 42.
  • ⁇ air is configured to be introduced
  • third container body as shown in FIG introduced from entrance (A) is ( ⁇ , ( ⁇ 2) was reversed downward in the area, vertical from below to the reversing position
  • the ordinary air in the container body is sucked and exhausted by the pump 46 through the pipe 43 and the three-way valve 44 provided, and then the three-way valve 44 is switched to dry air from the blower 47. It is introduced into the container body to remove adhering water and replace dry air.
  • suction and exhaust suction means 43, 46
  • introduction of dry air may be performed on separate lines.
  • the high-purity dry air is controlled by a dedicated manufacturing unit so that the relative humidity is 10% or less, or the moisture in the gas phase is 1 ppm or less.
  • Supply to the site At this time, a supply pipe (inlet) to supply the whole inside of the transfer device, a pipe to directly supply air into the storage container 1, and a passage through which dry air is continuously introduced even when transferring wafers. It is particularly preferable to provide them.
  • the wafer is stored in the container main body using the transfer means 45.
  • the wafer used is a mirror-polished A8 that has been cleaned by general RCA cleaning and dried by vacuuming at room temperature.
  • This wafer is packed in a cassette or wafer basket in the transfer device, and is transferred from the cassette or wafer basket into the container body by the transfer means 45.
  • a wafer basket 53 is set in the container body 50 in advance, and then the wafers are placed one by one into the wafer basket from the cassette. It is also possible to transfer the method of transfer or the washing and drying of the A8 to the wafer basket in the transfer device, and transfer the entire eAbasket to the container body. Next, the operation procedure will be described again with reference to FIG.
  • blow dry air directly from means 4 3 and 4 7 It is blown into the contact container body 50, and the inside of the container body 50 is completely dried.
  • the inside of the container body is filled with dry air (B 2 ).
  • the number of particles having a particle diameter of 0.1 or more increased in one out of ten sheets, and the particles did not increase in almost all particles.
  • the particles immediately after washing the wafer (before putting them in the container body) had about 0 to 10 particles with a particle size of 0.10 im or more. I was able to maintain almost the same level.
  • Particles in the container body were simultaneously evaluated by a submerged particle counter using a method disclosed in JP-A-9-52227.
  • Particles in the container body before packing A-A were 150 particles cc with a particle size of 2 // m or more, but the particles after vibration were 500 particles Zcc, which is quite It has increased.
  • the particles in the container body are increasing, but the particles adhering to the wafer surface have not changed, and storage and transport in this atmosphere are not possible. It turned out to be favorable.
  • around the container body for example, aluminum foil composite film or transparent film (laminated film)
  • the atmospheric gas inside these packaging materials should also have a moisture of 2 ppm or less, preferably 1 ppm or less. This is particularly preferable when storing for a long time.
  • an aluminum-based packaging material intrusion of moisture from the outside can be prevented, and a favorable atmosphere can be maintained.
  • the entire transfer device be placed in a completely dry atmosphere, for example, with an absolute moisture concentration of about 0.1 lppm, and it is preferable that the wafer can be transferred to a storage container.
  • the entire transfer device should be kept dry (less than 10% relative humidity) than usual, and only the supply portion in the storage container should be dried at a concentration of, for example, 0.2 ppm or less, preferably 0 ppm or less. It may be stored simply by replacing it with a dry gas at about 1 ppm.
  • the relative humidity changes depending on the temperature, it is only necessary that the moisture in the gas that eventually comes into contact with the ⁇ A8 can be kept as low as possible, and the absolute moisture concentration should be 2 ppm or less.
  • the opening of the A8 storage container body is provided at the upper part, recently, in particular, as a wafer storage container with a diameter of 300 mm or more, F ⁇ SB (Front Ope ni ng Ship Box (ng Ship Box), which has an opening at the front of the container, is used.
  • F ⁇ SB Front Ope ni ng Ship Box (ng Ship Box)
  • the FO SB has an ⁇ Ea storage container body 150 in which ⁇ Ea supporting grooves 155 for accommodating a large number of ⁇ Ea in parallel are stacked and arranged therein, and a ⁇ E8 holder in the inside.
  • the main body is provided with a seal packing provided therearound and covers a front opening 152 and the like for covering a front opening of the main body of the storage container.
  • Such F ⁇ SB is also generally formed of polypropylene ⁇ polycarbonate and other organic resins.
  • a storage container 150 for storing a plurality of semiconductors A8 (hereinafter abbreviated as A8) W, a pod door 152 for detachably covering the opening front of the storage container 150, And a bottom plate 159 attached to the bottom surface of the storage container 150.
  • the storage container 150 is formed in a box structure with an open front, and a plurality of locking holes (not shown) are respectively formed on upper and lower inner peripheral surfaces of the front.
  • a rear retainer (not shown) is mounted on the inner rear surface of the storage container 150, and opposed wafer support grooves 150 are mounted on both left and right inner sides, respectively. These carrier retainers and a pair of wafer supports are provided. Grooves 155 align multiple wafers W in the vertical direction.
  • the pod door 152 has a built-in opening / closing lock mechanism 158 for moving a plurality of latch plates up and down based on a disk rotation operation.
  • Each latch plate of the opening / closing lock mechanism 158 has a locking claw that protrudes and retracts from the through hole of the pod door 152.
  • the pod door 152 is firmly fitted and covered on the front of the container 150.
  • the wafer transfer method of the present invention is applicable to such a FSB as well, and is almost the same as the wafer transfer method shown in FIG. 2 using the wafer transfer apparatus shown in FIG. It can be performed in the same manner.
  • the present invention when a wafer after mirror polishing is transferred to a device manufacturing process, adhesion of particles to the wafer surface during the transfer is prevented. As a result, the particle inspection in the device manufacturing process after the wafer transport and the wafer cleaning can be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

明 細 書 ゥエー八の収納方法とその収納容器及び該収納容器にゥエーハを移載するゥエー 八移載方法 技術分野
本発明は、 鏡面研磨し、 表面を洗浄乾燥後のゥエー八の収納方法とその収納容 器及び該収納容器に移載する移載方法に係り、 特に前記鏡面研磨後のシリコンゥ エーハを搬送する時などに生じるゥエーハ上へのパーティクルの付着を少なくす るためのゥエー八の収納方法とその収納容器及び該収納容器にゥェ一ハを移載す る移載方法に関する。 背景技術
半導体デバイス、 例えばメモリーや L S Iの製造工程として、 一般的に多結晶 シリコンより単結晶シリコンインゴットを製造する単結晶製造工程、 及び該イン ゴットをスライスし、 薄板状のゥエーハを鏡面研磨するゥエーハ加工工程、 該鏡 面研磨されたゥエーハ上に様々なデバイスを製造するデバイス製造工程に大別さ れ、 前記各工程の中は更に種々のバッチ処理に分割化される。 そしてこれらの各 処理 ·工程はバッチ的に若しくは場所を移動してさらには時間を置いて行なわれ、 このため前記処理間若しくは工程間で製造途中ゥエーハを容器等に収納または保 管、 搬送する場合がある。
特にゥエー八加工により鏡面研磨するまでの工程と、 ゥエーハ上に様々なデバ イスを製造するデバイス製造工程はほとんどの場合、全く別な会社で行なわれる。 そこでゥエーハを鏡面研磨するまで加工した後、 デバイス製造会社にゥエーハを 搬送する場合、 ゥェ一八を多数枚同時に保持する収納容器 (出荷用ボックスとも いうことがある) に収納し出荷する。
一方、 デバイス製造工程ではゥェ一八表面にパーティクル、 有機物やイオンの 無い状態が要求される為、 前工程でのゥェ一八加工プロセスの最後、 つまり出荷 用の収納容器にゥエーハを保管する前に、 それらパーティクルを除去する洗浄が 行なわれている。
又、 出荷用ボックスの影響も調査され、 ボックスから排出される塩素や有機物 が問題となることがわかり、 ボックスの材質などの改善が行われている。 また、 ゥエー八上のいわゆるカスミ発生を防止する目的からボックス中の雰囲気を窒素 により置換する方法などがある。 (例えば特開平 1 0— 9 2 9 1 8号)
このようにゥェ一八をデバイス製造会社に出荷する場合には、 ゥエーハ表面の 汚染源からの保護について極力注意しなければならないが、 これまで、 ゥエー八 表面へのパーティクルの付着を防止できる有効な方法はなかった。
例えば特開平 8— 6 4 6 6 6号においては、 脱ガスが少なく微粒子汚染、 ガス 状汚染等の影響を除去する収納容器として、 乾燥気体供給系の途中に純水バブリ ング部を設け、 該純水パブリング部より得られた超高純度水蒸気を、 ゥェ一ハを 収納した容器内に満たして搬送する技術が提案されている。
しかしながらかかる技術は、 次工程にフッ酸処理 (特開平 8— 6 4 6 6 6号で は無水フッ酸処理といっている) 工程を有する場合に有効であり、 又雰囲気純度 の向上のために高純度の窒素パージ量を削減できるという効果は有するが、 本出 願人の実験結果では容器より発生するパーティクルの付着防止にはあまり役立た ず、 又鏡面研磨後のゥエーハをデバイス製造工程に搬送する場合の収納方法や移 載方法には向かないことが判明した。
即ち、 前記ゥェ一八等の薄板を多数枚収納容器内に収納支持して保管、 運搬等 を行なう際に、 この収納容器 (出荷用ボックス) は、 搬送中に様々な振動が与え られる。
この振動による摩擦により、 ボックス接触部の削れゃボックス内に付着してい た塵のはがれによる発塵 (パーティクルの発生) が起き、 これらのパーティクル が振動及び静電的な作用によりゥエー八に付着する。 尚、 パーティクルとは、 本 来空間に浮遊したり、 物の表面に付着している極微小な物質粒の総称であり、 金 属ゃ無機物、 有機物からなる。
このような収納容器内の運搬中での発塵は L S I製造プロセスのデザィンルー ルがそれほど微細さを要求されない集積度の低い世代ではそれほど問題ではなか つた力 高集積化が益々進み 1ギガレベルの L S Iを作るようになると、 管理対 象となるパーティクルの粒径も小さくなり、 搬送中のパーティクルの増加も無視 できない問題となる。 すなわち、 高集積化に伴うデザインルールのサブミクロン 単位の細狭化により、 パーティクルの粒径は 0 . 1 6 /x m位から 0 . 1 0 111に 管理対象が下がってきているが、今後、 0 . 1 3 mデザインルールの世代では、 前記粒径は 0 . 0 8 πιまでが管理対象となる。
つまり、 デバイスプロセス中においてパーティクルがゥエー八に付着してしま うと、 微細配線のショートや断線を招くばかりか、 金属や有機物のパーティクル のようにデバイス特性の劣化を引き起こすものもあり、 デバイスプロセスの歩留 低下につながる。
従って、 このようなパーティクルは検査の項目として取り上げられており、 デ バイス工程ではゥェ一ハ加工工程から送られてきたゥエーハを検査するが、 この 時パーティクルの粒径と数で合否判定がなされる。
このパーティクルを除くためゥエーハ加工工程で洗浄したにもかかわらず、 多 くのデバイスメーカーでは再度デゾ'イス工程の受入段階でも洗浄しているが、 パ —ティクルの粒径が小さいものまで洗浄するには洗浄レベルの向上も必要となり、 工数の増加にもなる。
しかし、 搬送中に発生するパーティクルのゥエー八への付着を完全に抑えるこ とは難しい。 特にトラックでの陸送、 飛行機などでの空輸では輸送時にどのよう な振動が加えられるか、より具体的には車輛構造、道路事情、取り扱われ方が夫々 異なるために、 それを防ぐ方法も多様であり、 なかなか有効にパーティクルの発 生を防止する手段がなかった。 発明の開示
本発明はかかる課題に鑑み、 輸送中にパーティクルが発生したとしても、 ゥェ 一八表面に該パーティクルが付着するのを極力防ぐことのできるゥエー八の収納 方法とその収納容器及び該収納容器にゥエーハを移載するゥエーハ移載方法を提 供することを目的とする。
本発明に至った経過を順を追って説明する。
ゥェ一八を鏡面研磨し表面を洗浄後、 真空乾燥したゥエーハを、 密閉できる収 納容器内に入れ、 該収納容器内空間を高湿度 (例えば相対湿度が約 4 0 %、 絶対 水分濃度で 6 . 5〜8 p p m) に置いた状態で振動させた場合と、 又前記容器内 空間を乾燥状態 (例えば相対湿度が 1 0 %以下、 絶対水分濃度で 2 p p m以下、 好ましくは 1 p p m以下) に置いた状態で振動させた場合とで、後者の方がゥェ 一八上のパーティクルの付着が大幅に抑制されていることが本発明者によって知 見された。
このように気密空間空気中の水分が低い状態でゥエーハ表面にパーティクル が付きにくくなる理由を説明する。
即ち、 振動により加速されたパーティクルがゥエー八にぶっかる際、 水分のな い乾燥状態にあるゥエー八では、 パーティクルがゥェ一ハ表面に衝突しても単に 反発するだけでゥェ一八には吸着しない。
一方、 高湿度状態ではゥエー八表面に濡れ性が生じ、 その表面水分の働きによ りゥエー八にパーティクルが吸着するためと思われる。
本発明はかかる知見に基づいてなされたもので、 本発明のゥェ一八の収納方法 は、 鏡面研磨し、 表面を洗浄乾燥後のゥエーハを相対湿度が 1 0 %以下の高清浄 乾燥気体が充填された気密空間で保管することを特徴とし、 より具体的には、 鏡 面研磨し、 表面を洗浄乾燥後のゥエーハを、 ゥエー八と接触する気相中の水分を 2 p p m好ましくは 1 p p m以下に維持した高清浄乾燥気体が充填された気密空 間で保管することを特徴とするゥエー八の収納方法を提案する。
また、 本発明のゥエーハ収納容器は、 鏡面研磨し、 表面を洗浄乾燥後のゥエー ハを収納する密閉容器であって、 該容器中の気体が乾燥気体であって、 該気体中 の水分が 2 p p m好ましくは 1 p p m以下に維持されていることを特徴とする。 さらに、 本発明のゥェ一八移載方法の第 1の態様は、 鏡面研磨し、 表面を洗浄 乾燥後のゥェ一ハを、 上部開口が蓋体により密閉される収納容器本体に収納する 収納容器への移載方法において、
前記上部開口が上向き以外の向きになるように前記容器本体を配置した状態で、 該上部開口より乾燥気体を供給して容器本体内を乾燥空気に置換する工程と、 前記乾燥空気の置換状態を維持したまま上部開口をゥエーハ供給位置に対面さ せてゥェ一ハを収納する工程と、 ゥェ一ハ収納後の上部開口に蓋体を取り付ける工程とを有し、
前記工程がいずれも高清浄乾燥気体下において行なわれることを特徴とする収 納容器へのゥエーハ移載方法を提案する。
また、 本発明のゥェ一八移載方法の第 2の態様は、 鏡面研磨し、 表面を洗浄乾 燥後のゥエーハを、 前部開口が蓋体により密閉される収納容器本体に収納する収 納容器への移載方法において、
前記前部開口が上向き以外の向きになるように前記容器本体を配置した状態で、 該前部開口より乾燥気体を供給して容器本体内を乾燥空気に置換する工程と、 前記乾燥空気の置換状態を維持したまま前部開口をゥエー八供給位置に対面さ せてゥエーハを収納する工程と、
ゥエーハ収納後の前部開口に蓋体を取り付ける工程とを有し、
前記工程がいずれも高清浄乾燥気体下において行われることを特徴とする収納 容器へのゥエーハ移載方法を提案する。
ここで、 高清浄乾燥気体とは、 例えば高清浄乾燥空気であり、 含まれる水分量 をできるだけ少なくし、 パ一ティクルその他の不純物をほとんど含まない気体、 具体的には粒径 0 . 2 m以上のパーティクルが、 2 0 0個 c c以下、 好まし くは 1 5 0個 Z c c以下であって気体中の水分が 2 p m好ましくは 1 p p m以 下に維持されている気体である。
この場合、 前記容器本体内を乾燥空気に置換するには容器内に残存している普 通の空気 (含水残存空気) を効率よく排出するために、 上部開口は、 上向き以外 の向き、 具体的には下向き若しくは斜め下向きにするのがよく、 更に、 前記各ェ 程を一つの閉空間に維持するとともに、 該空間内の雰囲気の水分が 2 p p m好ま しくは 1 p p m以下に維持されている高清浄乾燥気体 (例えば空気や窒素) であ るのが好ましい。 図面の簡単な説明
第 1図は、 本発明の実施形態にかかるゥエーハ移載装置を示す概略図である。 第 2図は、本発明の実施形態にかかるゥエーハ移載手順を示すフロー図である。 第 3図は、 本発明の実施形態にかかるゥエーハ収納容器を示す分解斜視図であ る。
第 4図は、 第 3図のゥェ一ハ収納容器のシール部分のメガネ拡大図である。 そして前記図中の符号の説明として、 1はゥェ一ハ、 5 0はゥエーハ収納容器 本体、 5 2は上蓋、 5 6 , 5 7はシールパッキンを夫々示す。
第 5図は、 従来の精密基板収納容器を示す分解斜視図である。 発明を実施するための最良の形態
以下、 図面を参照して本発明の好適な実施形態を例示的に詳しく説明する。 但 しこの実施形態に記載されている構成部品の寸法、 材質、 形状、 その相対的配置 等は特に特定的な記載がないかぎりは、 この発明の範囲をそれに限定する趣旨で はなく、 単なる説明例にすぎない。
ゥエーハ収納容器は、 例えば第 3図に開示されているように、 多数のゥエー八 1を並列に収納するためのゥエーハ支持溝 5 5を備えたゥエーハバスケット 5 3 と、 該バスケット 5 3を収納するゥエーハ収納容器本体 5 0と、 該ゥエーハ収納 容器本体 5 0の上方開口部を覆蓋する上蓋 5 2と、 ゥエーハバスケッ卜 5 3内の ゥエー八 1を押さえて保持するためのゥェ一八押さえ 5 4等により構成され、 か かるゥェ一ハ収納容器は一般にポリプロピレンやポリカーボネートその他の有機 樹脂で形成されている。
かかる形状は実開平 1一 1 2 9 8 3 6号にも開示され、 公知である。
そして本実施形態では、 特に密封性を高めるために、 上蓋 5 2と容器本体 5 0 間に介在するシールパッキン 5 6, 5 7を二重構造としている。 即ち従来は上蓋 5 2下端外周を逆 U字状 5 2 aに形成するとともに、 前記容器本体 5 0上端外周 部を前記逆 U字状凹部に嵌合するように上端周縁 5 0 aを凸設させ、 その嵌合空 間 5 8に内周側シールパッキン 5 7を嵌入させる構造にしているが、 本実施形態 においては第 4図に示すように、 容器本体 5 0外周側にさらに囲撓する一のパッ キン 5 6を追加している。
そして前記シールパッキン 5 6 , 5 7は、 ポリオレフイン系のエラストマ一や シリコーンゴム等で形成され、 更に密封性の強化を図る。
次にかかる収納容器を用いて次のような実験を行った。 まず収納容器には、 ゥ エーハを 25枚セットできるものを使用し、 又容器本体 50、 52及び上蓋の材 質は、 ポリプロピレンゃ超高純度ポリエチレンゃフッ素榭脂等の水分の吸着がす くないものを用いている。 更により密封性を強化するために、 2重ゴムパッキン 構造にした点は前記したとおりである。
そして鏡面研磨されたシリコンゥエーハを RCA洗浄 (シリコンゥェ一八の洗 浄で一般的に用いられる方法で、 アンモニア、 過酸化水素、 水 (SC— 1) の洗 浄液で洗浄後に希フッ酸、 次に塩酸、 過酸化水素、 水 (SC— 2) の洗浄液を用 いる方法)、常温真空乾燥したものを後記に詳細に説明するように、移載装置内の 環境空間を、 日常環境下、 例えば温度 20T:、 相対湿度を約 40% (気相中の水 分: 6. 5〜8 p pm) にして、 言い換えれば容器内の空気中水分が前記条件に してゥエー八を移載して容器本体 50に上蓋 52を封止して密閉したもの (比較 例 1)、 容器内の空気中水分を温度 20 :、 相対湿度 10% (気相中の水分: 2 p pm) にしてゥエーハを移載して密閉したもの (実施例 1)、 容器内の空気中水分 を温度 20で、 相対湿度 5% (気相中の水分: l p pm) にしてゥェ一八を移載 して密閉したもの (実施例 2) の 3種類の密閉容器を用意した。 ゥェ一ハを移載 する前のゥェ一ハ上のパーティクルレベルは、比較例、実施例とも同じであった。 温度 20°Cのクリーンルーム内で加振機を利用して舗装道路を走行している大型 トラックとほぼ同様な振動を 5時間付与した後、 前記収納容器を開蓋してゥエー 八上のパーティクルの発生数を評価した。
この結果比較例 1では、 粒径 0. 10 以上の発生パーティクル数 (ゥエー ハ上にあらたに増加したパーティクルの数) が平均 30個、 粒怪 0. 2 m以上 で 5個 (8インチウエーハ当たり) であるのに対し、 実施例 1では粒径 0. 10 im以上のパーティクルが平均 0. 3個程度、 実施例 2では粒径 0. 10 / m以 上のパーティクルが平均 0. 1個程度と、 夫々各実施例において大幅にゥエーハ への付着が抑制されることが確認された。
以下本発明のゥエー八移載手順を示す実施形態を詳細に説明する。
第 1図はゥエーハ移載装置を示す概略図、 第 2図はその移載手順を示すフロー 図である。
第 1図において、 移載装置は乾燥空気導入口 42より、 装置内空間に高清浄乾 燥空気が導入可能に構成され、 搬入口 (A) より導入された第 3図に示すような 容器本体が (Β 、 ( Β 2) 区域で下向きに反転した後、 該反転位置に下方より垂 設している管路 4 3及び三方弁 4 4を介してポンプ 4 6により先ず容器本体内の 普通空気を吸引排気した後、 前記三方弁 4 4を切り替えてブロワ 4 7より乾燥空 気を前記容器本体内に導入し、 付着水分の除去と乾燥空気の置換を行なう。
尚、 吸引排気 (吸引手段 4 3 , 4 6 ) と乾燥空気の導入 (吹き込み手段 4 3, 4 7 ) は別ラインで行なってもよい。
尚、高清浄乾燥空気は、専用の製造ュニッ卜より相対湿度を 1 0 %以下または、 気相中の水分が 1 p p m以下になるように制御され、 夫々の管路より移載装置内 の所定部位に供給する。 この時、 移載装置内全体に供給する供給管路 (導入口) と収納容器 1内に空気を直接供給する管路、 及びゥェ一ハ移載時においても乾燥 空気を導入し続ける通路を設けると特に好ましい。
次に (C) の位置で前記容器本体を横置きに再反転させた後、 移載手段 4 5を 利用してゥエーハを容器本体内に収納する。
この際ゥエーハは、 鏡面研磨されたゥエー八を一般的に行われている R C A洗 浄により洗浄し、 常温真空引きにより乾燥したものを用いる。 このゥエーハは移 載装置内のカセット又はゥェ一ハバスケットに詰められており、 このカセット又 はゥェ一ハバスケッ卜より移載手段 4 5により容器本体内に移載する。
容器本体 5 0にゥエーハを移載する方法としては、 あらかじめゥェ一ハバスケ ット 5 3を容器本体 5 0内にセッ卜し、 その後ゥエーハを 1枚ずつゥェ一ハバス ケット内へカセッ卜から移す方法や、 洗浄乾燥後のゥエー八を移載装置内のゥェ ーハバスケッ卜に移し、そのゥエーハバスケットごと容器本体に移載してもよい。 次にかかる実施手順を第 2図に基づいて再度説明するに、 先ず移載装置外部
(A) から供給された容器本体のなかの空気を吸引する (Β 。 これは外部から 供給した容器本体内には水分が多くある可能性もあるためで、 容器本体の開口部 を下向きにし、 下部より吸引手段 4 3及び 4 6を用いて吸引する。 これは、 水分 を含んでいると移載装置内の空気より重いため下向きにすることで吸引 (置換) しゃすくなるためである。
同時に若しくは時間差を持たせて、 乾燥空気を吹き込み手段 4 3、 4 7より直 接容器本体 5 0内に吹き込み、 完全に容器本体 5 0内を乾燥させる。 このように して、 容器本体内を乾燥空気で充満させる (B2)。
次に、 出荷用容器本体を横向きにした (C) 後、 ゥエー八詰め替え位置に移動 させ、 ゥエーハを詰める (D)。
今回の実施形態では、 上記容器に鏡面研磨されたシリコンゥエーハ 1 0枚をェ 程内力セットに入れ、 R C A洗浄、 常温真空乾燥したものを移載装置内の所定位 置にセッ卜した後、 工程内力セッ卜からゥエーハバスケッ卜 5 3をセッ卜した容 器本体 5 0にゥエーハを、 移載手段 4 5の搬送アームを利用して詰め替えた。 このようにゥエーハを保管した容器は上向きに戻した後(E.)、上蓋を覆蓋する のと同時に容器本体と上蓋の接合部にテープをまき、 密封性を増した状態でラミ ネートとアルミニウム箔をベースとしたフィルムの包装材で包装した (F )。 本発明の効果を確認するため、 上記のように保管した状態で、 加振機により振 動を繰り返し与えた。 その後容器本体からゥエーハを出しゥエーハ上に付着して いるパーティクルの数をカウントした。 パーティクルは、 パーティクルカウンタ 一 (L S - 6 0 3 0 ; 日立電子エンジニアリング社製) により評価した。
その結果、 粒径 0 . 1 以上のパーティクルの増加したゥエーハは、 1 0枚 中 1枚であり、 ほとんどのゥエー八でパーティクルの増加がみられなかった。 ま た、 パーティクルの数についても、 ゥエーハを洗浄した直後のパーティクル (容 器本体に入れる前) は、 粒径 0 . 1 0 i m以上のパーティクルが 0〜 1 0個程度 であつたが、 この状態とほぼ同レベルを維持できた。
また、 容器本体中のパーティクルも同時に、 特開平 9— 5 2 2 7号で開示され ているような方法を用い、 液中パーティクルカウンタ一により評価した。 ゥエー 八を詰める前の容器本体中のパーティクルは、 粒径 2 // m以上で 1 5 0個 c cであったが、 振動を与えた後のパーティクルは 5 0 0個 Z c cであり、 かな り増加している。
以上のように、 振動を加えることにより、 容器本体中のパーティクルは増加し ているにもかかわらず、 ゥエーハ表面上に付着しているパーティクルは変化して おらず、 この雰囲気での保管、 搬送が好ましいことがわかった。 また、 容器本体 の回りに、例えばアルミ箔複合フィルムや透明性フィルム(ラミネートフィルム) で包装する場合、 これら包装材料内側の雰囲気ガスも水分が 2 p pm以下、 好ま しくは 1 p pm以下にすることが好ましいことも確認された。 これは長時間保管 する時に特に好ましく、 特にアルミニウム系の包装材料を使用することによって 外部からの水分の侵入も防ぐことができ、 良好な雰囲気を維持できる。
また、 移載装置全体を完全な乾燥雰囲気中、 例えば絶対水分濃度を 0. l pp m程度とし、ゥエーハを収納容器に移載できれば好ましいが、移載装置全体を 0. l ppmの乾燥状態にし、 維持することは、 設備的な負担 ·維持費が大きくなる 可能性がある。 従って、 移載装置全体では通常より乾燥した状態 (相対湿度で 1 0%以下程度) に維持し、 収納容器中の供給する部分のみ、 さらに乾燥した空気 を例えば 0. 2 ppm以下、 好ましくは 0. 1 p pm程度に乾燥気体にするよう に置換するだけで保管してもよい。
相対湿度は気温によつて変化してしまうが、 最終的にゥエー八と接触する気体 中の水分を極力少なく維持できれば良く、 絶対水分濃度で 2 p pm以下にすれば 良い。
以上の説明はゥエー八収納容器本体の開口部が上部に設けられたものについて 行ったが、 最近では特に直径が 300mm以上のゥェ一ハ収納容器として、 F〇 SB (F r on t Ope n i ng Sh i p i ng Box) と呼ばれる収 納容器の前部に開口部が設けられたゥエーハ収納容器が用いられている。
この FO SBは第 5図に開示されているように、 多数のゥエーハを並列に収納 するためのゥエーハ支持溝 155をその内部に積層配列させたゥエーハ収納容器 本体 150と、 内側にゥエー八押さえが設けられ、 周囲にシールパッキンを設け られて、 該ゥエー八収納容器本体の前部開口部を覆蓋する前蓋 152等により構 成される。 こうした F〇 SBも一般にポリプロピレンゃポリカーボネートその他 の有機樹脂で形成されている。
より具体的に説明するに、 複数枚の半導体ゥエー八 (以下、 ゥエー八と略称す る) Wを収納する収納容器 150と、 この収納容器 150の開口正面を着脱自在 に被覆するポッドドア 152と、 収納容器 150の底面に装着されるボトムプレ ート 159とを備えている。 収納容器 150は、 その正面が開口した箱構造に成 形され、正面の内周面上下には複数の係止穴 (不図示)がそれぞれ成形されている。 この収納容器 1 5 0の内部背面にはリャリテーナ (不図示)が装着され、 内部左右 両面には相対向するゥエーハ支持溝 1 5 5がそれぞれ装着されており、 これらリ ャリテーナ、 及び一対のゥエーハ支持溝 1 5 5が複数枚のゥエーハ Wを上下方向 に整列させる。
ポッドドア 1 5 2は、 ディスクの回転操作に基いて複数のラッチプレートを上 下動させる開閉ロック機構 1 5 8が内蔵されている。 この開閉ロック機構 1 5 8 の各ラッチプレートにはポッドドア 1 5 2の貫通孔から出没する係止爪が形成さ れ、 各係止爪が各係止穴に嵌合係止することにより、 収納容器 1 5 0の正面にポ ッドドア 1 5 2が強固に嵌合覆着される。
本発明のゥェ一八移載方法はこのような F〇 S Bにも適用可能なものであり、 第 1図に示すゥエーハ移載装置を用いて第 2図に示すゥエーハ移載方法とほぼ同 様の方法で行うことができる。
F O S Bの場合に異なる点を以下に挙げる。 第 2図の (A) では容器本体の開 口部は上を向いておらず、同図の(C )のように横方向を向いている。従って、(A) から (B への操作は反転ではなく、 前部開口部を下向きにする回転操作とな る。 また、 (D)でゥエー八を収納容器本体に移載した後には、収納容器本体の向 きを回転させずに前蓋を収納容器本体に装着することができる。 こうした点は軽 微な変更であり、 これによつて、 F O S Bのような開口部が収納容器本体の前部 に設けられた収納容器でも本発明のゥエーハ移載方法が適用可能となる。
尚、 鏡面研磨し、 表面を洗浄乾燥後のゥエーハを搬送することが一般的である 力 その後、 ェピタキシャル成長などの処理を行ったゥエー八やデバイス形成後 のゥエー八であっても、 同様にパーティクルの付着は問題であり、 このようなゥ ェ一ハでも、 本発明のような雰囲気の条件で保管することによりパーティクルの 増加を抑制できる。 つまり、 鏡面研磨し、 表面を洗浄乾燥後のゥエー八とは、 パ —ティクルの付着を極力抑えなくてはいけない状態のゥェ一八の事である。 発明の効果
以上記載のごとく本発明によれば、 鏡面研磨後のゥエーハをデバイス製造工程 に搬送する場合において、 該搬送中のゥェ一八表面へのパーティクルの付着を防 止出来、 これによりゥエーハ搬送後のデバイス製造工程におけるパーティクル検 査ゃゥエーハ洗浄を省略する事ができる。

Claims

請 求 の 範 囲
1 . 鏡面研磨し、 表面を洗浄乾燥後のゥェ一八を、 相対湿度が 1 0 %以下の高清 浄乾燥気体が充填された気密空間で保管することを特徴とするゥェ一八の収納方 法。
2 . 鏡面研磨し、 表面を洗浄乾燥後のゥエーハを、 ゥエーハと接触する気相中の 水分を 2 p p m好ましくは 1 p p m以下に維持した高清浄乾燥気体が充填された 気密空間で保管することを特徴とするゥエー八の収納方法。
3 . 鏡面研磨し、 表面を洗浄乾燥後のゥエーハを収納する密閉容器であって、 該 容器中の気体が乾燥気体であって、 該気体中の水分が 2 p m好ましくは 1 p p m以下に維持されていることを特徴とするゥエーハ収納容器。
4. 鏡面研磨し、 表面を洗浄乾燥後のゥエーハを、 上部開口が蓋体により密閉さ れる収納容器本体に収納する収納容器への移載方法において、
前記上部開口が上向き以外の向きになるように前記容器本体を配置した状態で、 該上部開口より乾燥気体を供給して容器本体内を乾燥空気に置換する工程と、 前記乾燥空気の置換状態を維持したまま上部開口をゥエー八供給位置に対面さ せてゥェ一八を収納する工程と、
ゥェ一八収納後の上部開口に蓋体を取り付ける工程とを有し、
前記工程がいずれも高清浄乾燥気体下において行なわれることを特徴とする収 納容器へのゥェ一ハ移載方法。
5 . 鏡面研磨し、 表面を洗浄乾燥後のゥェ一ハを、 前部開口が蓋体により密閉さ れる収納容器本体に収納する収納容器への移載方法において、
前記前部開口が上向き以外の向きになるように前記容器本体を配置した状態で、 該前部開口より乾燥気体を供給して容器本体内を乾燥空気に置換する工程と、 前記乾燥空気の置換状態を維持したまま前部開口をゥェ一八供給位置に対面さ せてゥェ一八を収納する工程と、
ゥエー八収納後の前部開口に蓋体を取り付ける工程とを有し、
前記工程がいずれも高清浄乾燥気体下において行われることを特徴とする収納 容器へのゥエー八移載方法。
6 . 前記各工程を一つの閉空間に維持するとともに、 該空間内の雰囲気中の水分 が 2 p p m好ましくは 1 p p m以下に維持されている高清浄乾燥気体であること を特徴とする請求の範囲第 4項または請求の範囲第 5項記載の収納容器へのゥェ 一八移載方法。
7、 前記高清浄乾燥気体が、 粒径 0 . 2 m以上のパーティクルが、 2 0 0個 c c以下、 好ましくは 1 5 0個ノ c c以下であって気体中の水分が 2 p p m好ま しくは 1 p p m以下に維持されている気体であることを特徴とする請求の範囲第 4項または請求の範囲第 5項記載の収納容器へのゥエーハ移載方法。
PCT/JP2000/004366 1999-07-28 2000-06-30 Procede de stockage de plaquette, contenant de stockage destine a cet effet et procede de transfert de plaquette dans ce contenant WO2001008210A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/806,235 US6467626B1 (en) 1999-07-28 2000-06-30 Wafer storing method and storing container therefor and wafer transferring method for transferring wafer to the storing container
EP00942431A EP1119039A1 (en) 1999-07-28 2000-06-30 Wafer storing method and storing container therefor and wafer transferring method for transferring wafer to the storing container
KR1020017003880A KR20010075387A (ko) 1999-07-28 2000-06-30 웨이퍼 수납방법및 그 수납용기와 상기 수납용기에웨이퍼를 이재하는 웨이퍼 이재방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP21349899 1999-07-28
JP11/213498 1999-07-28

Publications (1)

Publication Number Publication Date
WO2001008210A1 true WO2001008210A1 (fr) 2001-02-01

Family

ID=16640201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004366 WO2001008210A1 (fr) 1999-07-28 2000-06-30 Procede de stockage de plaquette, contenant de stockage destine a cet effet et procede de transfert de plaquette dans ce contenant

Country Status (5)

Country Link
US (1) US6467626B1 (ja)
EP (1) EP1119039A1 (ja)
KR (1) KR20010075387A (ja)
TW (1) TW471094B (ja)
WO (1) WO2001008210A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045933A (ja) * 2001-08-01 2003-02-14 Semiconductor Leading Edge Technologies Inc ロードポート、基板処理装置および雰囲気置換方法
JP2003110013A (ja) * 2001-09-28 2003-04-11 Toshiba Corp 収納装置および半導体装置の製造方法
JP2005353940A (ja) * 2004-06-14 2005-12-22 Matsushita Electric Ind Co Ltd 半導体基板の保管庫、保管方法及びそれを用いた半導体基板の製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6955382B2 (en) * 2002-01-15 2005-10-18 Entegris, Inc. Wafer carrier door and latching mechanism with c-shaped cam follower
US20030173189A1 (en) * 2002-03-18 2003-09-18 Taiwan Semiconductor Manufacturing Co., Ltd. Stocker conveyor particle removing system
US7185764B2 (en) * 2002-06-24 2007-03-06 Macronix International Co., Ltd. Wafer shipping device and storage method for preventing fluoridation in bonding pads
US20040098949A1 (en) * 2002-11-21 2004-05-27 Taiwan Semiconductor Manufacturing Co., Ltd Packaging method for wafers
CN1307692C (zh) * 2003-04-29 2007-03-28 力晶半导体股份有限公司 稳定材料层性质的方法
TWM240022U (en) * 2003-09-15 2004-08-01 Power Geode Technology Co Ltd Nitrogen refilling system
US20050072121A1 (en) * 2003-10-06 2005-04-07 Texas Instruments Incorporated Method and system for shipping semiconductor wafers
DE102004063912B4 (de) * 2004-04-22 2007-09-20 Siltronic Ag Verfahren zum versandfertigen Verpacken von Halbleiterscheiben
JP2006062704A (ja) * 2004-08-26 2006-03-09 Miraial Kk 薄板支持容器
KR100781723B1 (ko) * 2006-07-31 2007-12-03 에이펫(주) 웨이퍼용 캐리어
DE102006051493A1 (de) * 2006-10-31 2008-05-08 Advanced Micro Devices, Inc., Sunnyvale System und Verfahren zur vertikalen Scheibenhandhabung in einer Prozesslinie
FR2954583B1 (fr) * 2009-12-18 2017-11-24 Alcatel Lucent Procede et dispositif de pilotage de fabrication de semi conducteurs par mesure de contamination
KR20180078419A (ko) * 2016-12-29 2018-07-10 삼성전자주식회사 캐리어

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246354A (ja) * 1996-03-12 1997-09-19 Shinko Electric Co Ltd 可搬式密閉コンテナのガスパージステーション
US5752985A (en) * 1996-09-24 1998-05-19 Mitsubishi Denki Kabushiki Kaisha Clean room having an air conditioning system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171740A (en) * 1976-09-07 1979-10-23 Monsanto Company Wafer packaging system
US4129211A (en) * 1976-09-07 1978-12-12 Monsanto Company Wafer packaging system
JPS6413718A (en) * 1987-07-08 1989-01-18 Sumitomo Electric Industries Method for storing semiconductor substrate
JPH08236605A (ja) * 1995-02-28 1996-09-13 Komatsu Electron Metals Co Ltd 半導体ウェハ収納ケース

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246354A (ja) * 1996-03-12 1997-09-19 Shinko Electric Co Ltd 可搬式密閉コンテナのガスパージステーション
US5752985A (en) * 1996-09-24 1998-05-19 Mitsubishi Denki Kabushiki Kaisha Clean room having an air conditioning system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045933A (ja) * 2001-08-01 2003-02-14 Semiconductor Leading Edge Technologies Inc ロードポート、基板処理装置および雰囲気置換方法
US6817822B2 (en) 2001-08-01 2004-11-16 Semiconductor Leading Edge Technologies, Inc. Load port, wafer processing apparatus, and method of replacing atmosphere
JP2003110013A (ja) * 2001-09-28 2003-04-11 Toshiba Corp 収納装置および半導体装置の製造方法
JP2005353940A (ja) * 2004-06-14 2005-12-22 Matsushita Electric Ind Co Ltd 半導体基板の保管庫、保管方法及びそれを用いた半導体基板の製造方法

Also Published As

Publication number Publication date
US6467626B1 (en) 2002-10-22
KR20010075387A (ko) 2001-08-09
TW471094B (en) 2002-01-01
EP1119039A1 (en) 2001-07-25

Similar Documents

Publication Publication Date Title
WO2001008210A1 (fr) Procede de stockage de plaquette, contenant de stockage destine a cet effet et procede de transfert de plaquette dans ce contenant
JP3880343B2 (ja) ロードポート、基板処理装置および雰囲気置換方法
JP4012190B2 (ja) 密閉容器の蓋開閉システム及び開閉方法
JP3425592B2 (ja) 処理装置
TW570890B (en) Self-evacuating micro-environment system
KR20030007014A (ko) 기판 수납 용기, 기판 반송 시스템, 보관 장치 및 가스치환 방법
JP2001015583A (ja) 基板収納容器
US8999103B2 (en) Substrate processing system, substrate processing method and storage medium
US20060283770A1 (en) Transportation fixture and package for substrate rack
US7308757B2 (en) Intermediate product manufacturing apparatus, and intermediate product manufacturing method
JPH11330037A (ja) 基板処理装置
JP3938233B2 (ja) 密封容器
EP0626724B1 (en) System for transferring wafer
JP2004281475A (ja) 枚葉搬送装置および枚葉搬送方法
JPH08195426A (ja) 真空搬送用インターフェイス装置
JPH07283092A (ja) クリーンボックス及びその使用方法
WO2006093120A1 (ja) 中継ステーション及び中継ステーションを用いた基板処理システム
JPH0615720B2 (ja) 真空処理装置
JPH07130831A (ja) 半導体ウエハの収納・搬送装置
JP4227137B2 (ja) 基板収納容器
JP4322411B2 (ja) 半導体製造装置
JP2002246456A (ja) 基板搬送コンテナ、基板移載装置および基板移載方法
US20090200250A1 (en) Cleanliness-improved wafer container
JP3830478B2 (ja) 基板の搬送システム及び基板の搬送方法
JPH0864666A (ja) 基板収納容器及び基板処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2001 512628

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017003880

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000942431

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09806235

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000942431

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000942431

Country of ref document: EP