WO2000073518A1 - Procede de production de feuilles d'acier pour masques perfores d'une epaisseur extremement precise dans le sens longitudinal - Google Patents

Procede de production de feuilles d'acier pour masques perfores d'une epaisseur extremement precise dans le sens longitudinal Download PDF

Info

Publication number
WO2000073518A1
WO2000073518A1 PCT/JP2000/003491 JP0003491W WO0073518A1 WO 2000073518 A1 WO2000073518 A1 WO 2000073518A1 JP 0003491 W JP0003491 W JP 0003491W WO 0073518 A1 WO0073518 A1 WO 0073518A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
hot
steel sheet
thickness
rolled
Prior art date
Application number
PCT/JP2000/003491
Other languages
English (en)
French (fr)
Inventor
Satoshi Kodama
Tadashi Inoue
Masaya Morita
Kenji Tahara
Kenichi Mitsuzuka
Kazuhiro Taki
Tetsuo Kawahara
Masazumi Mori
Original Assignee
Nkk Corporation
Nippon Mining & Metals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nkk Corporation, Nippon Mining & Metals Co., Ltd. filed Critical Nkk Corporation
Priority to DE10081707T priority Critical patent/DE10081707C2/de
Publication of WO2000073518A1 publication Critical patent/WO2000073518A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/14Manufacture of electrodes or electrode systems of non-emitting electrodes
    • H01J9/142Manufacture of electrodes or electrode systems of non-emitting electrodes of shadow-masks for colour television tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/07Shadow masks
    • H01J2229/0727Aperture plate
    • H01J2229/0733Aperture plate characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing a steel plate for a shadow mask of an ultra-low carbon aluminum-killed steel used as a color selection mechanism for a brown tube such as a color television or a color display. .
  • a shadow mask is used as a color selection mechanism for brown tubes such as color televisions and color displays.
  • This shadow mask is used for hot rolling, cold rolling, decarburizing annealing in a box furnace, and secondary cold rolling of low-carbon and ultra-low-carbon aluminum steel. No. 2123), or hot rolling, primary cold rolling, continuous annealing, and secondary cold rolling of ultra low carbon steel Al-mild steel (Japanese Patent Application Laid-Open No. Hei 9-15312)
  • a shadow mask steel plate having a desired plate thickness was formed as a shadow mask, and a large number of holes were formed by a photo-etching method. After that, it is manufactured by secondary annealing, leveling, press forming, and blackening.
  • the present invention has been made in view of the above circumstances, and the object of the present invention is to provide a shadow mask steel sheet having an excellent thickness accuracy in the longitudinal direction without increasing the cost. It is to provide a manufacturing method.
  • C 0.1 mass% or less
  • Si 0.05 mass 0 /.
  • M n 0.:! To 0.5 mass. /.
  • P 0.03 Mass 0 /.
  • S 0.001 to 0.05 mass%
  • Sol. A1 0.002 to 0.15 mass%,? ⁇ : 0.08 mass% or less
  • the lower part is characterized in that the steel having substantially the remaining Fe is hot-rolled, the hot-rolled steel sheet is decarburized, and then cold-rolled to a desired thickness. Manufacturing method of steel plates for shadow masks with excellent thickness accuracy in
  • the second invention is the method for producing a steel sheet for shadow mask according to the first invention, wherein the hot rolling is performed by reheating the rough rolled material after the rough rolling and then performing the finish rolling.
  • a fourth invention is a method for producing a steel sheet for a shadow mask according to any one of the first to third inventions, wherein the cold rolling comprises a primary cold rolling step and a secondary cold rolling step.
  • a fifth invention is the method for producing a steel sheet for shadow mask according to any one of the first to third inventions, wherein the cold rolling is performed only by one cold rolling.
  • FIG. 1 is a diagram showing the relationship between the thickness of the primary cold-rolled material and the length of the off-gauge part when the hot-rolled steel sheet is decarburized and annealed (Example) and when it is not (Comparative Example).
  • Figure 2 shows the results for the hot-rolled steel sheets of Examples Nos. 3, 14, 22, and 29.
  • t Figure 3 shows a longitudinal yield strength before and after decarburization annealing, Example N o. And 5, 6, 1 5, have One hot-rolled steel sheet 1 6, the plate thickness in the longitudinal direction It is a figure which shows accuracy (difference between target value and actual board thickness).
  • Figure 4 shows the effect of the hot rolled steel sheet thickness and the initial C content of the steel on the decarburization annealing time.
  • Figure 5 shows the effects of the total cold pressure ratio of primary cold rolling and secondary cold rolling, the finishing temperature of hot rolling, and the amount of carbon after decarburizing annealing on the yield strength of the secondary annealed material.
  • the present inventors studied a method for producing a primary cold-rolled material with high plate thickness accuracy.
  • the mechanical properties of the top part and the bottom part of the hot-rolled steel sheet coil were moderate.
  • the rolling load hunts due to the thickness control function of the primary cold rolling performed in tandem and the thickness in the longitudinal direction tends to fluctuate. Ascertained.
  • the present invention has been made on the basis of this finding, and thus, the mechanical properties of a non-uniform coil in the longitudinal direction up to hot rolling are made uniform by decarburization annealing to obtain a primary coil.
  • An object of the present invention is to facilitate the control of rolling load in cold rolling and to obtain a cold-rolled steel sheet having good thickness accuracy.
  • a steel plate for shadow masks having excellent thickness accuracy can be obtained by reducing the number of times of secondary cold rolling. Furthermore, secondary cold rolling can be omitted.
  • the steel sheet for shadow mask obtained by the method of the present invention is subjected to secondary annealing (annealing before press forming) and press forming after drilling by a photo-etching method. If a spring back strain occurs after press molding, the curved surface shape and hole shape will change, and the color shift image will be distorted. Wake up. Therefore, the properties of the steel sheet for shadow mask after secondary annealing are required to have low yield strength and low yield point elongation. In recent years, the secondary annealing temperature has tended to be lower due to energy saving and rationalization, and Ti, which increases the recrystallization temperature of steel sheets, has been increasing.
  • Si Since Si forms nonmetallic inclusions and deteriorates the etching property, the content is set to 0.05% by mass or less.
  • Mn content is 0.1 mass to prevent hot brittleness due to S. /. It is necessary to add the above, but the amount is 0.5 mass. /. If it exceeds 0.1%, the steel hardens and the press formability deteriorates.
  • P is an element that hardens steel and is also an element that easily generates etching mura due to segregation.
  • the amount of P suitable as a steel plate for shadow masks shall be 0.03 mass% or less.
  • S is an element inevitably contained in steel. If the amount of S is large, it causes hot embrittlement and also causes etching mura due to segregation of S. I do. Conversely, if the S content is less than 0.001% by mass, nitriding occurs during annealing, and nitriding causes shape defects during pressing. Therefore, it is preferable that the s content be as small as possible within a range that does not cause nitriding, and a preferred range is from 0.001 to 0.05 mass%.
  • A1 is necessary to fix solid solution N as A1N, to reduce the yield point elongation and to suppress aging, but it is necessary to add more than necessary. Since the cost increases even after squeezing, the content should be 0.002 to 0.15 mass%.
  • N should be as small as possible because N increases the yield point elongation and the shape of the holes during pressurization due to aging. Below.
  • the steel having the above composition is hot-rolled.
  • This hot rolling can be performed according to a conventional method.However, the purpose of the purpose is to equalize the temperature in the width direction and the longitudinal direction of the rough rolled material and to control the temperature during finish rolling.
  • the finish rolling is performed after reheating the hot-rolled steel sheet, the thickness accuracy of the hot-rolled steel sheet in the width direction and in the longitudinal direction is improved.
  • the method of reheating is not particularly limited, but includes an induction heating method, an open flame method, a method in which a roughly rolled material is wound into a coil and placed in a box furnace for heating.
  • finish rolling is performed after the temperature of the rough rolled material falls below Ar 3 points, or finish rolling is performed by controlling the temperature so that the temperature becomes lower than Ar 3 points during finish rolling.
  • the grains of the hot-rolled steel sheet can be coarsened, and the characteristics after secondary annealing (annealing before press forming) can be further softened.
  • the thickness of the hot-rolled steel sheet increases, the time required for decarburization annealing becomes longer, and in addition, it is necessary to increase the pressure in cold rolling.
  • the increase in the cold rolling reduction leads to the refinement of the structure after the secondary annealing, which causes the steel sheet to harden. Therefore, the thickness of the hot-rolled steel sheet is preferably as thin as possible, and there is no particular limitation.
  • the work roll In hot rolling, the work roll is crossed and rolled. If the conventional methods described above are used together, the thickness accuracy of the hot-rolled steel sheet in the width direction can be further improved, and a steel sheet for shadow masks having a higher thickness accuracy can be obtained.
  • Decarburization annealing is performed to minimize the amount of C. Further, the decarburization annealing after the hot rolling of the present invention is performed in order to make the mechanical properties in the longitudinal direction of the hot-rolled material uniform.
  • the decarburizing annealing conditions can be in accordance with a conventional method.
  • the annealing atmosphere is a mixture of hydrogen and nitrogen
  • the annealing temperature is 65 to 800 ° C
  • the dew point is 10 to 30 ° C. That's it.
  • the annealing time is appropriately set depending on the target decarburization level, coil weight, sheet thickness, etc., but it is difficult to decarburize during secondary annealing (annealing before press forming). Taking the case into consideration, it is desirable from the viewpoint of moldability that decarburization be performed until the C content becomes 0.0015% by mass or less.
  • the steel sheet is pickled and rewound in an open coil, but depending on the case, the steel sheet is deformed by a skimp before or after pickling. May be added to cause grain growth during the decarburization annealing to soften the steel sheet after the decarburization annealing.
  • Cold rolling is performed in accordance with conditions such as the thickness of the cold-rolled material. Usually, only the first cold rolling can obtain a desired thickness accuracy, and there is no need for the second cold rolling. However, if it is necessary to adjust the surface roughness of the steel sheet or if stricter thickness accuracy is required, the secondary cold Perform rolling. However, in this case, the number of rolling times is one, and at most about two. The reason is that the cold-rolled material of the present invention has excellent thickness accuracy in the longitudinal direction, so that a desired thickness accuracy can be easily obtained.
  • the thickness of the primary cold-rolled material and the thickness of the steel plate for shadow mask are not particularly limited, but in recent years, the shadow mask for high definition is 0.02 A steel sheet of 0 to 0.20 mIB is used.
  • Hot rolling was performed on steels A, B, C and D having the components shown in Table 1 to obtain hot rolled materials No. l to No. 72. Of these, only the hot rolled steel sheets No. 1 to No. 37 were subjected to decarburization annealing. Decarburization annealing to the hot rolled steel sheet in an open Coil le, H 2, a mixed gas of N 2, dew point 3 0 ° C, performed in a box furnace atmosphere temperature 7 0 0 ° C, the furnace atmosphere The process was terminated when the CO concentration in the steel sheet became 0.05% or less (the calculation showed that the carbon content S in the steel sheet was 0.001% or less by mass). The hot-rolled steel sheet tested is a relatively good coil with a thickness variation of ⁇ 30 m or less in both the width and longitudinal directions.
  • the decarburized and annealed coil (No. 1 to No. 37) and the annealed and hardened coil (No. 38 to No. 72) were subjected to primary cooling.
  • Cold rolling was performed.
  • the thickness of the primary cold-rolled material is 0.15 mm (No.l to No.33, No.38 to No.68) assuming the omission of the secondary cold-rolling. 0.25 mm (No. 34, 35, 69, 70) and 0.40 mm, assuming that secondary cold rolling is performed.
  • the allowable thickness accuracy of the primary cold-rolled material is considered in consideration of the thickness accuracy required for high-definition shadow mask steel sheets and the thickness accuracy that can be corrected relatively easily by secondary cold rolling. Then, the thickness was set for each sheet thickness type, and the length outside the allowable range was measured as the length of the off-gauge part.
  • the primary cold-rolled material (o.l to No. 37) that has been decarburized and annealed at the hot-rolled steel sheet stage, the one with a sheet thickness of 0.15 mm remains as it is.
  • secondary cold rolling is performed to make the sheet thickness 0.15 mm, and then a small sample is cut out to obtain 100% 1
  • the yield strength was investigated when a secondary anneal was performed for 150 min in an atmosphere at 700 ° C.
  • Tables 2 and 3 show the hot rolling conditions, the C content in the steel sheet after decarburizing annealing, the thickness of the primary cold rolled material, and the allowable plate thickness accuracy as the primary cold rolled material.
  • Figure 1 shows the relationship between the sheet thickness and the gauge length.
  • Figure 2 shows the change in yield strength in the longitudinal direction before and after decarburization annealing for hot-rolled steel sheets of Nos. 3, 14, 22, and 29.
  • Table 2 shows that the C content of the hot-rolled steel sheet after decarburization annealing was almost 0.0015% by mass or less, but the C content of the hot-rolled steel sheet whose thickness was large during annealing. In some cases, the content slightly exceeded 0.0015% by mass.
  • Fig. 1 when compared with the thickness of the primary cold-rolled material, the example in which the hot-rolled steel sheet was decarburized and annealed (No ⁇ 1 to No. 37) did not.
  • the off-gauge length is smaller than the example (No. 38 to No. 72), and the length is uniform in the coil longitudinal direction. It was found that a cold-rolled material having a thickness was obtained. From Fig. 2, it can be seen from Fig. 2 that Nos. 3, 14, 22, and 29 after decarburizing annealing are softer than before decarburizing annealing, and that the variation in yield strength in the longitudinal direction is lower. It was in a very small area. It became clear that the homogenization of the material in the longitudinal direction of the hot rolled steel coil led to the improvement of the thickness accuracy of the primary cold-rolled material.
  • Figure 4 shows the effect of the hot rolled steel sheet thickness and the initial C content of the steel on the decarburization annealing time (the time required for the C ⁇ concentration in the furnace to become 0.05% or less).
  • the decarburization time is shorter as the C content before decarburization annealing is smaller and the thickness of the hot-rolled steel sheet is smaller.
  • the decarburization annealing is appropriate within 20 hours, and the C content is 0.01 mass. /.
  • the hot-rolled steel sheet thickness is 2.8 mm or less and the C content is 0.01 mass. /. Therefore, it was found that it is desirable that the thickness of the hot-rolled steel sheet be 2.3 mm or less for steel of 0.1 mass% or less.
  • Fig. 5 shows the effect of the total cold pressure ratio of the primary cold rolling and secondary cold rolling, the effect of the finishing temperature of hot rolling, and the amount of carbon after decarburizing annealing on the yield strength of the secondary annealed material. .
  • Smaller total cooling pressure ratio is secondary Even if the annealed material is softened and the total cooling pressure ratio is the same, finish rolling is performed after the temperature of the rough rolled material is less than the Ar 3 point in hot rolling, or during finish rolling. It is also evident that the material whose temperature was controlled to be less than the Ar 3 point can soften the secondary annealed material more than the material that was finish rolled at the Ar 3 point or more. In addition, it was found that the material whose C content after primary annealing exceeded 0.0015 mass% had relatively high yield strength after secondary annealing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Description

明 細 書
長手方向の板厚精度に優れたシ ャ ド ウ マス ク用鋼板の製造方 法
技術分野
本発明 は、 カ ラ 一テ レ ビ、 カ ラ ーディ ス プ レイ 等のブラ ウ ン管に色選別機構と して使用 される極低炭素アルミ キル ド鋼 の シャ ドウマス ク 用鋼板の製造方法に関する。
背景技術
カ ラーテ レ ビ、 カ ラ ーディ ス プ レイ 等のブラ ウ ン管には色 選別機構 と して シャ ド ウマ ス ク が使用 されて い る 。 こ の シャ ド ウマ ス ク は低炭素、 極低炭素アル ミ キル ド鋼を熱間圧延、 冷間圧延、 箱型炉で脱炭焼鈍、 二次冷間圧延する (特開昭 5 5 - 6 2 1 2 3 号公報) 、 ある いは極低炭素鋼ア ル ミ キル ド 鋼を熱間圧延、 一次冷間圧延、 連続焼鈍、 二次冷間圧延する (特開平 9 一 5 3 1 2 2 号公報) こ と に よ ってシ ャ ド ウマス ク と して所望の板厚を有する シャ ド ウマ ス ク 用鋼板と し、 フ オ ト エ ッ チン グ法に よ り 多数の孔をあけた後、 二次焼鈍、 レ ベラ一加工、 プ レス成形、 黒化処理して製造される。
近年、 シャ ド ウ マ ス ク 高精細化に伴レ、、 シャ ド ウ マ ス ク の 板厚は非常に薄 く なつ てお り 、 シ ャ ド ウマ ス ク 用鋼板の コ ィ ルの幅方向、 長手方向の板厚精度に対する要求度 も厳 しいも のになつている。
シャ ド ウマ ス ク 用鋼板の コ イ ルの幅方向、 長手方向の板厚 精度向上のためには、 その前工程であ る一次冷間圧延、 熱間 圧延後の材料の板厚精度向上が必要である。 従来、 熱間圧延の仕上圧延において、 ワ ー ク ロ ールを ク ロ ス して圧延する方法が採 られ、 熱延鋼板の幅方向の板厚精度 向上が図 られてお り 、 効果をあげている。
しか し板厚精度の良好な一次冷間圧延材を得るためには、 熱延鋼板の幅方向、 長手方向の板厚精度向上だけでな く 、 熱 延鋼板の コ イ ル長手方向の機械的特性の均質化が必要である 通常の熱延鋼板は、 コ イ ルの ト ップ、 ボ ト ムの仕上温度や巻 取温度、 冷却速度が中間部 と 差があるため、 コ イ ル長手方向 の機械的特性が大き く ばらついてお り 、 一次冷間圧延におい ては圧延荷重制御が難 し く 、 板厚精度の良い一次冷間圧延材 を高歩留ま り で得る こ と は必ず しもでき なかった。 このため 板厚精度の悪い一次冷間圧延材を高精細シャ ドウマス ク に適 用するために、 二次冷間圧延の通板回数を増や して板厚精度 の改善を図った り 、 コィノレ ト ップ部、 ボ ト ム部のカ ッ ト長さ を長く する な どを行ってお り 、 製造コ ス ト の増加、 歩留ま り 低下の原因 と なっていた。
発明の開示
本発明は上記事情に鑑みてな されたも ので、 その 目的 とす る と こ ろは コ ス ト増加をまねく こ と な く 、 長手方向の板厚精 度の優れたシャ ドウマス ク用鋼板の製造方法を提供する こ と にある。
第 1 の発明は、 C : 0 . 1 質量%以下、 S i : 0 . 0 5 質 量 0/。以下、 M n : 0 . :! 〜 0 . 5 質量。/。、 P : 0 . 0 3 質 量 0/。以下、 S : 0 . 0 0 1 〜 0 . 0 5 質量%、 S o l . A 1 : 0 . 0 0 2 〜 0 . 1 5 質量%、 ?^ : 0 . 0 0 8 質量%以 下、 残部が実質的に F e か ら な る鋼を熱間圧延 し、 その熱延 鋼板を脱炭焼鈍 した後、 冷間圧延に よ って所望板厚 と する こ と を特徴 と する長手方向の板厚精度の優れたシャ ド ウマ ス ク 用鋼板の製造方法、
第 2 の発明は、 熱間圧延は、 粗圧延後に粗圧延材を再加熱 してか ら、 仕上圧延を行 う 第 1 の発明 に記載のシ ャ ド ウマス ク 用鋼板の製造方法、
第 3 の発明は、 熱間圧延は、 A r 3 点以上で粗圧延 し、 少 な く と も圧延最終ス タ ン ドで A r 3 点未満 と な る よ う に温度 制御 して仕上圧延を行 う 第 1 又は第 2 の発明に記載のシャ ド ゥマス ク用鋼板の製造方法、
第 4 の発明は、 冷間圧延は、 一次冷間圧延工程 と 二次冷間 圧延工程と を備えている第 1 〜第 3 のいずれかに記載の発明 のシャ ドウマス ク用鋼板の製造方法、
第 5 の発明は、 冷間圧延は、 一回の冷間圧延のみである第 1 〜第 3 のいずれかに記載の発明のシャ ドウマス ク用鋼板の 製造方法である。
本発明 に よれば熱間圧延後に脱炭焼鈍を行 う こ と で、 長手 方向の板厚精度の良いシャ ド ウマ ス ク 用鋼板を安価に製造す る こ と ができ る。
図面の簡単な説明
図 1 は、 熱延鋼板を脱炭焼鈍 した場合 (実施例) と 、 しな い場合 (比較例) の一次冷間圧延材の板厚 と オフゲージ部長 さの関係を示す図である。
図 2 は、 実施例 N o . 3 , 1 4 , 2 2 , 2 9 の熱延鋼板に ついて、 脱炭焼鈍前後の長手方向の降伏強度を示す図である t 図 3 は、 実施例 N o . 5 , 6 , 1 5 , 1 6 の熱延鋼板につ いて、 その長手方向の板厚精度 ( 目標値 と 実板厚 と の差) を 示す図である。
図 4 は、 脱炭焼鈍時間に及ぼす熱延鋼板板厚 と 鋼の初期 C 量の影響を示す図である。
図 5 は、 二次焼鈍材の降伏強度に及ぼす一次冷間圧延と 二 次冷間圧延の全冷圧率の影響と熱間圧延の仕上温度の影響、 脱炭焼鈍後の C量の影響を示す図である。
発明を実施するための最良の形態
以下本発明を詳細に説明する。
本発明の 目 的、 すなわち、 長手方向の板厚精度を向上 した 高精細シ ャ ド ウマ ス ク 用鋼板を製造する には一次冷間圧延材 の板厚精度向上を果たす必要があ る。 そ こ で、 本発明者 ら は 一次冷間圧延材を板厚精度良 く 製造する方法を検討 した結果 . 熱延鋼板 コ イ ルの ト ッ プ部およびボ ト ム部の機械的特性が中 間部 と 大き く 違 う 場合には、 タ ンデム式で行われる一次冷間 圧延の板厚制御機能に よ っ て圧延荷重がハ ンチ ン グ し、 長手 方向の板厚が変動 しやすいこ と を突き止めた。
更に鋭意研究を した結果、 従来一次冷間圧延後に行っ てい たオープ ン コ イ ルに よ る脱炭焼鈍に代えて、 これを熱間圧延 後、 一次冷間圧延前に行えば、 多大な コ ス ト ア ッ プを回避 し なが ら、 熱延鋼板の長手方向の機械的特性を非常に均質化で き る ため、 板厚精度の優れた一次冷間圧延材が得られる こ と 、 さ ら に こ の製造法に よ り 従来は必須であっ た二次冷間圧延を 省略する こ と も 可能 と な り 、 大幅な製造コ ス ト 削減につなが る こ と を見出 した。
本発明は、 こ の知見に基づいてな さ れた も ので、 熱間圧延 ま ま では長手方向に不均一な コ イ ルの機械的特性を、 脱炭焼 鈍に よ っ て均一化 し、 一次冷間圧延におけ る圧延荷重制御を 容易 にする と と も に、 板厚精度の良好な冷延鋼板を得る こ と にある。
そ して、 本発明に よれば、 板厚精度の優れたシ ャ ド ウマス ク 用鋼板が二次冷間圧延の通板回数を少な く して得 られ る。 さ ら には、 二次冷間圧延を省略する こ と もでき る。
次に、 熱間圧延さ れる鋼材の組成及び冷間圧延に供せ られ る脱炭焼鈍後の組成に関 して説明する。
C : 本発明方法で得 られる シャ ド ウマス ク 用鋼板は、 フ ォ ト エ ッチン グ法に よ り 穿孔 した後、 二次焼鈍 (プ レス成形前 焼鈍) し、 プ レ ス成形される 。 プ レス成形後にス プ リ ン グバ ッ ク ゃス ト レ ツ チヤ 一ス ト レイ ンが発生 した場合には、 曲面 形状ゃ孔形状が変化 し、 色ズレゃ画像のゆがみな どを引 き起 こす。 そのため、 シャ ドウ マス ク 用鋼板の二次焼鈍後の特性 と しては、 降伏強度が低く 、 降伏点伸びが小 さ いこ と が求め られる。 近年、 省エネや合理化指向か ら二次焼鈍温度は低温 化する傾向 にあ り 、 鋼板の再結晶温度を上げる よ う な T i 、
N b 、 Z r な どの炭化物形成元素の添加は極力避ける必要が ある。 さ ら に二次焼鈍の低温化に よ り 鋼板が二次焼鈍時に脱 炭 さ れに く く な る ため、 シャ ド ウマ ス ク用鋼板は一次焼鈍に おいて十分に脱炭する必要があ る。 脱炭焼鈍前の鋼板の C量 が高い と 、 脱炭焼鈍に要する時間が長 く な り 、 製造コ ス ト の 増加をまね く ため、 一次焼鈍に供する熱延鋼板の C量は 0 . 1 質量%以下と する。
S i : S i は非金属介在物を形成 してエ ッ チン グ性を劣化 させるため、 0 . 0 5 質量%以下とする。
M n : M n 量は S に よ る熱間脆性を防止する た め、 0 . 1 質量。 /。以上添加する 必要がある が、 その量が 0 . 5 質量。 /。を 超え る と 鋼が硬化 し、 プ レ ス成形性を悪 く する た め、 0 . 1
〜 0 . 5 質量% とする。
P : P は鋼を硬化 させる 元素である と と も に、 偏析に起因 するエ ッチン グム ラ を発生 しやすい元素であ る。 シ ャ ド ウマ ス ク 用鋼板と して適 した P 量は 0 . 0 3 質量%以下 とする。
S : S は不可避的に鋼中 に含有 される元素であ り 、 S 量が 多い場合には熱間脆性の原因 と な る と と も に、 S の偏析に起 因するエ ッチングム ラ が発生する。 逆に S 量が 0 . 0 0 1 質 量%未満であ る と焼鈍時に窒化 しゃす く な り 、 窒化はプ レ ス 時に形状不良をまね く 。 したがっ て、 s 量は窒化 しない範囲 ででき る だけ少な く した方が よ く 、 好ま しい範囲は 0 . 0 0 1 〜 0 . 0 5 質量%である。
S o l . A 1 : A 1 は固溶 N を A 1 N と して固定 し、 降伏 点伸びを低下 させる と と も に、 時効を抑制する た め必要 と な るが、 必要以上に添カ卩 して も コ ス ト増加をまね く ので、 0 . 0 0 2 〜 0 . 1 5 質量% とする。
N : Nは降伏点伸びの増大や時効に よ る プ レ ス 時の孔の形 状不良をまね く ため、 少ない方が よ く 、 0 . 0 0 8 質量%以 下とする。
ついで、 本発明の製造方法について述べる。
(熱間圧延)
上述の組成の鋼を熱間圧延する。 こ の熱間圧延は、 常法に 従 う こ と ができ る が、 粗圧延材の幅方向、 長手方向の温度の 均一化 と 仕上圧延時の温度制御を 目 的 と して、 粗圧延材を再 加熱 してか ら仕上圧延を行 う と 、 熱延鋼板の幅方向、 長手方 向の板厚精度が良好 と な る。 再加熱の方法 と して は特に限定 する も の ではないが、 誘導加熱方式、 直火方式、 粗圧延材を コイ ルに巻き取って箱型炉に入れて加熱する方式等がある。 また粗圧延後に粗圧延材の温度が A r 3 点未満 と なっ てか ら仕上圧延を行 う 、 又は仕上圧延中に A r 3 点未満と な る よ う に温度制御 して仕上圧延を行えば、 熱延鋼板の結晶粒粗大 化を図る こ と ができ 、 二次焼鈍 (ブ レ ス成形前焼鈍) 後の特 性を よ り いっそ う 軟質化でき る。 こ こ で、 熱延鋼板の板厚は 厚 く な る ほ ど脱炭焼鈍に時間が要する と と も に、 冷間圧延に おいて強圧化を必要 と する。 冷間圧延率の増加は二次焼鈍後 の組織の微細化をまねき 、 鋼板の硬質化の原因 と なる。 従つ て、 熱延鋼板板厚はでき る だけ薄い方がよ く 、 特に限定 しな いが、 C 量が 0 . 0 1 質量%以下の鋼では 2 . 8 m m以下、 C量が 0 . 0 1 質量%を超え、 0 . 1 質量%以下の鋼では 2 3 m m以下が好ま しい。 こ の と き数本の粗圧延材を溶接 して つなげ、 連続的に仕上圧延を行えば、 薄物熱延材の通板が安 定 し、 熱延鋼板の長手方向の板厚精度の改善が可能である。
なお、 熱間圧延において ワーク ロ ールをク ロ ス させて圧延 する従来の手法を併せて用いれば、 熱延鋼板の幅方向の板厚 精度を さ ら に向上でき 、 よ り 高い板厚精度のシ ャ ド ウマ ス ク 用鋼板が得られる。
(脱炭焼鈍)
鋼板は、 C量が多い と セ メ ンタ イ 卜 が析出 し、 エ ッ チング 性が悪 く な る と と も に、 降伏強度が高 く な り 、 成形後のス プ リ ングバ ッ ク が大き く なる。 脱炭焼鈍は、 C 量を極力少な く する ために行 う 。 さ ら に、 本発明の熱間圧延後の脱炭焼鈍は 熱間圧延材の長手方向の機械的特性を均一化する ためにおこ な う 。 脱炭焼鈍条件は常法に従 う こ と ができ 、 例えば、 焼鈍 雰囲気 : 水素 と 窒素の混合気体、 焼鈍温度 : 6 5 0 〜 8 0 0 °C、 露点 : 1 0 〜 3 0 °Cでお こ な う 。 焼鈍時間は、 目 標 と する脱炭 レベル、 コ イ ル重量、 板厚等に条件に よ り 適宜設定 されるが、 二次焼鈍 (プ レ ス成形前焼鈍) 時に脱炭 さ れに く い場合を考慮する と 、 成形性の観点か ら C 量が 0 . 0 0 1 5 質量%以下 と な る ま で脱炭する こ と が望ま しい。 なお、 熱延 鋼板を脱炭焼鈍に供する に際 しては、 酸洗い して、 オープン コイ ル巻き 直すが、 場合に よ っ ては酸洗前あ る いは後にス キ ンパス で鋼板に歪みを加えて脱炭焼鈍中に粒成長 させ、 脱炭 焼鈍後の鋼板の軟質化を図っても よい。
(冷間圧延)
冷間圧延は、 冷間圧延材の板厚な どの条件に応 じて行われ 通常は一次冷間圧延のみで所望の板厚精度が得られ、 二次冷 間圧延の必要はない。 但 し、 鋼板の表面粗さ調整が必要な場 合や、 よ り 厳格な板厚精度が要求 される場合には、 二次冷間 圧延をお こ な う 。 しか し、 こ の場合 も圧延回数は一回、 多 く て も 二回程度ですむ。 その理由 は、 本発明の冷間圧延材は、 長手方向の板厚精度が優れてい る ため、 容易 に所望の板厚精 度が得られる ためである。
なお、 本発明において一次冷間圧延材の板厚、 シャ ドウマ ス ク 用鋼板の板厚は特に限定する ものではないが、 近年では 高精細化用シャ ドウマス ク と して、 0 . 0 0 2 0 〜 0 . 2 0 m IBの鋼板が用い られる。
以下に本発明の実施例を説明する。
表 1 に示す成分の鋼 A、 B 、 C 、 D に熱間圧延を施 し、 熱 間圧延材 N o . l 〜 N o . 7 2 を得た。 こ の う ち、 N o . 1 〜 N o . 3 7 の熱延鋼板のみに脱炭焼鈍を施 した。 脱炭焼鈍 は熱延鋼板をオープン コ イ ルに して、 H 2 、 N 2 の混合 気体、 露点 3 0 °C、 温度 7 0 0 °Cの雰囲気の箱型炉で行い、 炉内雰囲気中の C O濃度が 0 . 0 5 %以下 (計算上、 鋼板中 の C 量力 S 0 . 0 0 1 5 質量%以下 と な る) と なっ た時点で終 了 と した。 なお、 供試 した熱延鋼板は幅方向、 長手方向 と も に、 板厚のばらつき が ± 3 0 m以下の比較的良好な コ イル である。
次に、 脱炭焼鈍 した コ イ ル ( N o . 1 〜 N o . 3 7 ) と 焼 鈍 しな力 つ た コ ィ ノレ ( N o . 3 8 〜 N o . 7 2 ) に、 一次冷 間圧延を施 した。 一次冷間圧延材の板厚は、 二次冷間圧延省 略を想定 した 0 . 1 5 m m ( N o . l 〜 N o . 3 3 , N o . 3 8 〜 N o . 6 8 ) と 、 二次冷間圧延を行 う 場合を想定 した 0 . 2 5 m m ( N o . 3 4 , 3 5 , 6 9 , 7 0 ) 、 0 . 4 0 m m ( N o . 3 6 , 7 1 ) 、 0 . 6 5 m m ( N o . 3 7 , 7 2 ) の計 4 種類 と した。 一次冷間圧延材の許容板厚精度を高 精細シ ャ ド ウマ ス ク 用鋼板 と して求め られる板厚精度、 二次 冷間圧延で比較的容易 に矯正でき る板厚精度等を考慮 して、 各板厚種類 ごと に設定 し、 その許容範囲か ら外れた部分の長 さ をオフゲージ部長さ と して測定 した。
さ ら に熱延鋼板の段階で脱炭焼鈍を行っ た一次冷間圧延材 ( o . l 〜 N o . 3 7 ) に対 しては、 板厚 0 . 1 5 m m の ものはそのま ま で、 板厚 ◦ . 2 5 m m以上の も のには二次冷 間圧延を施 し、 すべて板厚 0 . 1 5 m m と した後、 小サンプ ルを切出 して、 1 0 0 % 1" 雰囲気中で 7 0 0 °じ、 1 5 m i n の二次焼鈍を施 した場合の降伏強度を調査 した。
熱間圧延条件、 脱炭焼鈍後の鋼板中の C量、 一次冷間圧延 材の板厚、 一次冷間圧延材 と して の許容板厚精度を表 2 、 3 に、 一次冷間圧延材の板厚 と オ フ ゲージ部長 さ の関係を図 1 に示す。 また N o . 3 , 1 4 , 2 2 , 2 9 の熱延鋼板につい て、 脱炭焼鈍前後の長手方向の降伏強度変化を図 2 に示す。 表 2 か ら脱炭焼鈍後の熱延鋼板の C量はほ と ん どが 0 . 0 0 1 5 質量%以下であつ たが、 焼鈍時の板厚が厚かった熱延鋼 板では C 量が 0 . 0 0 1 5 質量%をわずかに超えてレヽる も の もあった。
図 1 において、 一次冷間圧延材の板厚ご と に比較する と 、 熱延鋼板に脱炭焼鈍を施 した実施例 ( N o · 1 〜 N o . 3 7 ) の方が施さ なかっ た比較例 ( N o . 3 8 〜 N o . 7 2 ) に比べてオフゲージ長 さ が小さ く 、 コ イ ル長手方向に均一な 板厚の冷間圧延材が得 られている こ と がわかった。 ま た図 2 から 、 脱炭焼鈍後の N o . 3 , 1 4 , 2 2 , 2 9 は、 脱炭焼 鈍前に比べて軟質化 してお り 、 しかも降伏強度の長手方向の バラ ツキが非常に小 さ い範囲に収ま っ てレ、た。 熱延鋼板コ ィ ルの長手方向での材質の均質化が一次冷間圧延材の板厚精度 向上につながつている こ と が明 らかになった。
熱間圧延において、 粗圧延材を再加熱せずに仕上圧延を行 つた N o . 5 , 1 5 と 再加熱 して仕上圧延を行っ た N o . 6 1 6 の熱延鋼板の長手方向の板厚精度 ( 目 標板厚 と 実板厚の 差) を比較 して図 3 に示す。 粗圧延材を再加熱 して仕上圧延 を行った N O . 6 , 1 6 の熱延鋼板の板厚精度は再加熱 しな かっ た N o . 5 , 1 5 よ り も良好であ り 、 こ の こ と に よ り 表 2 の よ う に一次冷間圧延後のオフ ゲージ長 さ を大幅に低減で き る こ と が分かった。
脱炭焼鈍時間 (炉内の C 〇濃度が 0 . 0 5 %以下 と な るの に要 した時間) に及ぼす熱延鋼板板厚 と鋼の初期 C量の影響 を図 4 に示す。 脱炭時間は脱炭焼鈍前の C 量が少ないほ ど、 熱延鋼板の板厚が薄いほ ど短い。 製造コ ス ト を考慮する と 、 脱炭焼鈍は 2 0 時間以内が適当 であ り 、 C 量 0 . 0 1 質量。 /。 以下の鋼では熱延鋼板板厚を 2 . 8 m m以下、 C量 0 . 0 1 質量。 /。超え、 0 . 1 質量%以下の鋼では熱延鋼板板厚を 2 . 3 m m以下とする こ と が望ま しレ、こ と が分かった。
二次焼鈍材の降伏強度について、 一次冷間圧延 と 二次冷間 圧延の全冷圧率の影響、 熱間圧延の仕上温度の影響、 脱炭焼 鈍後の C 量の影響を図 5 に示す。 全冷圧率が小さ いほ ど二次 焼鈍材の軟質化が図 られ、 また全冷圧率が同 じ場合でも 、 熱 間圧延において粗圧延材の温度が A r 3 点未満 と なつ てか ら 仕上圧延を行 う 、 又は仕上圧延中 に A r 3 点未満 と な る よ う に温度制御 した材料は A r 3 点以上で仕上圧延を行つ た材料 よ り も二次焼鈍材の軟質化が図 られる こ と も明 ら かにな った また、 一次焼鈍後の C 量が 0 . 0 0 1 5 質量%を超えていた 材料では二次焼鈍後の降伏強度が比較的高い こ と が分かつた
表 1
Figure imgf000014_0001
表 2
Figure imgf000015_0001
(続く)
Figure imgf000016_0001
表 3
Figure imgf000017_0001
(続く)
Figure imgf000018_0001

Claims

請 求 の 範 囲
1 . 質量。/。で、 C : 0 . 1 以下、 S i : 0 . 0 5 %以下、
M n : 0 . :! 〜 0 . 5 %、 P : 0 . 0 3 %以下、 S : 0 . 0
0 1 〜 0 . 0 5 %、 S o l . A 1 : 0 . 0 0 2 〜 0 . 1 5 %
N : 0 . 0 0 8 %以下、 残部が実質的に F e カゝ ら なる鋼を熱 間圧延 し、 そ の熱延鋼板を脱炭焼鈍 した後、 冷間圧延に よ つ て所望板厚 と する こ と を特徴 と する長手方向の板厚精度の優 れたシャ ドウマス ク用鋼板の製造方法。
2 . 熱間圧延は、 粗圧延後に粗圧延材を再加熱 してか ら、 仕上圧延を行な う 請求項 1 に記載のシ ャ ド ウマ ス ク 用鋼板の 製造方法。
3 . 熱間圧延は、 A r 3 点以上で粗圧延 し、 少な く と も圧 延最終ス タ ン ドで A r 3 未満と な る よ う に温度制御 して仕上 圧延を行な う 請求項 1 又は 2 に記載のシャ ド ウマ ス ク 用鋼板 の製造方法。
4 . 冷間圧延は、 一次冷間圧延工程と 二次冷間圧延工程と を備えている請求項 1 〜 3 のいずれかに記載のシャ ド ウマス ク用鋼板の製造方法。
5 . 冷問圧延は、 一回の冷間圧延のみであ る請求項 1 〜 3 のいずれかに記載のシャ ドウマス ク用鋼板の製造方法。
PCT/JP2000/003491 1999-05-31 2000-05-31 Procede de production de feuilles d'acier pour masques perfores d'une epaisseur extremement precise dans le sens longitudinal WO2000073518A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10081707T DE10081707C2 (de) 1999-05-31 2000-05-31 Verfahren zur Herstellung von Stahlblech für Schattenmasken mit ausgezeichneter Dickengenauigkeit in Längsrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP15269699A JP2000345242A (ja) 1999-05-31 1999-05-31 長手方向の板厚精度に優れたシャドウマスク用鋼板の製造方法
JP11/152696 1999-05-31

Publications (1)

Publication Number Publication Date
WO2000073518A1 true WO2000073518A1 (fr) 2000-12-07

Family

ID=15546152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003491 WO2000073518A1 (fr) 1999-05-31 2000-05-31 Procede de production de feuilles d'acier pour masques perfores d'une epaisseur extremement precise dans le sens longitudinal

Country Status (4)

Country Link
JP (1) JP2000345242A (ja)
KR (1) KR100460642B1 (ja)
DE (1) DE10081707C2 (ja)
WO (1) WO2000073518A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102286688A (zh) * 2010-06-21 2011-12-21 宝山钢铁股份有限公司 一种高硬度镀锡原板用钢及其制造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3751891B2 (ja) * 2002-02-15 2006-03-01 日鉱金属加工株式会社 ブリッジ付きテンションマスク用軟鋼素材及びシャドウマスク
JP5455099B1 (ja) 2013-09-13 2014-03-26 大日本印刷株式会社 金属板、金属板の製造方法、および金属板を用いてマスクを製造する方法
JP5516816B1 (ja) 2013-10-15 2014-06-11 大日本印刷株式会社 金属板、金属板の製造方法、および金属板を用いて蒸着マスクを製造する方法
JP5641462B1 (ja) * 2014-05-13 2014-12-17 大日本印刷株式会社 金属板、金属板の製造方法、および金属板を用いてマスクを製造する方法
TWI696708B (zh) 2015-02-10 2020-06-21 日商大日本印刷股份有限公司 有機el顯示裝置用蒸鍍遮罩之製造方法、欲製作有機el顯示裝置用蒸鍍遮罩所使用之金屬板及其製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031092B1 (ja) * 1971-05-25 1975-10-07
JPS5629933B2 (ja) * 1976-07-07 1981-07-11
JPS6340848B2 (ja) * 1982-07-03 1988-08-12 Nisshin Steel Co Ltd

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943974B2 (ja) * 1979-08-22 1984-10-25 日本鋼管株式会社 シヤドウマスクの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031092B1 (ja) * 1971-05-25 1975-10-07
JPS5629933B2 (ja) * 1976-07-07 1981-07-11
JPS6340848B2 (ja) * 1982-07-03 1988-08-12 Nisshin Steel Co Ltd

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102286688A (zh) * 2010-06-21 2011-12-21 宝山钢铁股份有限公司 一种高硬度镀锡原板用钢及其制造方法

Also Published As

Publication number Publication date
DE10081707T1 (de) 2001-09-13
KR20010072126A (ko) 2001-07-31
JP2000345242A (ja) 2000-12-12
KR100460642B1 (ko) 2004-12-08
DE10081707C2 (de) 2003-06-05

Similar Documents

Publication Publication Date Title
US5587027A (en) Method of manufacturing canning steel sheet with non-aging property and superior workability
WO2001023625A1 (fr) Tole d'acier et son procede de fabrication
KR20080038141A (ko) 연질 주석도금강판 및 그 제조방법
JPH07278654A (ja) 成形加工性に優れ、塗装焼付け硬化性を有し、かつ幅方向の塗装焼付け硬化性の変動の少ない自動車用高強度冷延鋼板の製造方法
WO2000073518A1 (fr) Procede de production de feuilles d'acier pour masques perfores d'une epaisseur extremement precise dans le sens longitudinal
JPS6169928A (ja) 連続焼鈍によるしごき加工用鋼板の製造方法
JPS6369923A (ja) 焼付硬化性をもつ深絞り用冷延鋼板の製造方法
WO2005017221A1 (ja) シャドウマスク用素材、その製造方法、シャドウマスク用素材からなるシャドウマスク及びそのシャドウマスクを組み込んだ受像管
JP2002088446A (ja) 異方性の優れた電池外筒成形用鋼板及びその製造方法
KR20040010563A (ko) 섀도우 마스크용 소재, 그 제조방법, 그 소재로이루어지는 섀도우 마스크 및 그 섀도우 마스크를 사용한수상관
JPH1046289A (ja) パネル加工後のパネル外観と耐デント性に優れた鋼板
JPH07188771A (ja) 成形加工性に優れ、塗装焼付け硬化性を有し、かつ幅方向の塗装焼付け硬化性の変動の少ない冷延鋼板の製造方法
JP3508491B2 (ja) 組織安定性に優れた軟質冷延鋼板およびその製造方法
KR100470664B1 (ko) 내압특성 및 확관가공성이 우수한 주석도금원판 및 그제조방법
KR20090068906A (ko) 주석 도금 원판 및 이의 제조 방법
JPS63183128A (ja) 耐爪とび性の優れたホ−ロ−用冷延鋼板の製造方法
JPS59123720A (ja) 深絞り用冷延鋼板の製造方法
KR20230094158A (ko) 강도와 가공성이 우수한 캔용 냉연강판 및 이의 제조 방법
JPH04191331A (ja) 耐面歪み、耐デント性を有する深絞り用冷延鋼板の製造方法
JPH07103424B2 (ja) 深絞り性に優れた熱延鋼板の製造方法
JPS59123721A (ja) 加工性にすぐれた冷延鋼板の製造方法
JPH02104614A (ja) 高加工性熱延鋼板の製造方法
JPS62205232A (ja) 延性及び深絞り性にすぐれる極薄冷延軟鋼板の低温箱焼鈍による製造方法
JP3403637B2 (ja) 加工性に優れる熱延鋼板およびその製造方法
JPH05179359A (ja) 高張力熱間圧延鋼板の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE KR

WWE Wipo information: entry into national phase

Ref document number: 1020017001302

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017001302

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 10081707

Country of ref document: DE

Date of ref document: 20010913

WWE Wipo information: entry into national phase

Ref document number: 10081707

Country of ref document: DE

WWG Wipo information: grant in national office

Ref document number: 1020017001302

Country of ref document: KR