WO2000068134A1 - Hydraulic-driven fork lift - Google Patents

Hydraulic-driven fork lift Download PDF

Info

Publication number
WO2000068134A1
WO2000068134A1 PCT/JP2000/002944 JP0002944W WO0068134A1 WO 2000068134 A1 WO2000068134 A1 WO 2000068134A1 JP 0002944 W JP0002944 W JP 0002944W WO 0068134 A1 WO0068134 A1 WO 0068134A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
turning
vehicle body
speed
controller
Prior art date
Application number
PCT/JP2000/002944
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Enmeiji
Original Assignee
Tcm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11126500A external-priority patent/JP3140009B2/ja
Priority claimed from JP11126499A external-priority patent/JP3140008B2/ja
Application filed by Tcm Corporation filed Critical Tcm Corporation
Priority to EP00922994A priority Critical patent/EP1118581A1/en
Priority to US09/743,226 priority patent/US6554084B1/en
Priority to TW089124104A priority patent/TW505611B/zh
Publication of WO2000068134A1 publication Critical patent/WO2000068134A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/24Endless track steering specially adapted for vehicles having both steerable wheels and endless track
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/08Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in a single plane transverse to the longitudinal centre line of the vehicle
    • B62D7/09Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in a single plane transverse to the longitudinal centre line of the vehicle characterised by means varying the ratio between the steering angles of the steered wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/07572Propulsion arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/24Electrical devices or systems

Definitions

  • the present invention relates to an engine-type fork lift employing a hydraulic drive system.
  • a clutch type and a torque converter type are mainly used, but other engine type forklifts using a hydraulic drive system are also common.
  • Engine-powered forklifts that use this hydraulic drive system are available in one-pump, one-motor and one-motor, two-motor and one-pump configurations, and are characterized by high efficiency and no need for a front differential.
  • the turning system is rear-wheel turning.
  • the brake system is a type that attaches a drum brake to the front quad, just like a normal forklift, and has problems in terms of cost and space. Moreover, it was not possible with a type in which a hydraulic motor was attached to the front wheel directly. Disclosure of the invention
  • a first object of the present invention is to provide a hydraulically driven fork lift that can improve the mobility and reduce the turning radius by employing a two-pump two-motor type. It is in.
  • a second object of the present invention is to provide a hydraulically driven forklift capable of using a hydraulic brake of a hydraulic drive system for a service brake.
  • a hydraulically driven forklift of the present invention is provided with a pair of left and right front wheels and a pair of left and right rear wheels on a vehicle body, and a front end of the vehicle body.
  • This is a hydraulically driven fork lift provided with a mast and a fork on the side, and each front wheel is interlocked with a drive shaft on the hydraulic motor mounted on the vehicle body, and connected to the vehicle body side.
  • Each rear wheel is characterized by being provided so as to be able to turn around the longitudinal axis with respect to the vehicle body side.
  • the speed control in forward and backward traveling is performed by changing the direction of the oil flow of both hydraulic pumps by the change lever to change the rotation direction of each hydraulic motor, and
  • the speed of the engine and the flow rate of oil in the hydraulic pump are controlled by the accelerator pedal, so that the speed of the hydraulic motor can be changed.
  • the turning control is based on the steering wheel angle and the rear wheel angle (rotation angle), etc., to control the number of rotations (same number and difference) and to control the rotation direction for the left and right front wheels. Control (same direction and reverse direction)
  • a two-pump two-motor hydraulic drive system (HST system) is used as the drive system for the fork lift, and the left and right front wheels, which are the drive wheels, are controlled separately.
  • HST system two-pump two-motor hydraulic drive system
  • the mobility can be improved and the turning radius can be reduced.
  • the power transmission section can be simplified and the degree of freedom in layout can be increased.
  • low fuel consumption can be expected by optimal control of the engine.
  • a preferred embodiment of the present invention is characterized in that the change of the traveling speed at the time of turning is performed by controlling the number of revolutions of the hydraulic motor in accordance with the steering angle of the handle.
  • the traveling speed during turning can be automatically changed by controlling the rotation speed of the hydraulic motor in accordance with the steering angle of the handle without changing the rotation speed of the engine.
  • the structure can be simplified and In addition, the traveling speed during turning can be set arbitrarily regardless of the accelerator pedal.
  • a preferred embodiment of the present invention is characterized in that the change of the traveling speed at the time of turning is performed by controlling the rotation speed of the hydraulic motor in accordance with the turning angle of the rear wheel.
  • the traveling speed during turning can be automatically changed by controlling the rotation speed of the hydraulic motor according to the turning angle of the rear wheel without changing the rotation speed of the engine.
  • the traveling speed during turning can be set arbitrarily regardless of the accelerator pedal.
  • the hydraulic pump is of an electric control type in which a swash plate angle is controlled by a traveling command signal from a controller. Then, by inputting a detection signal from a detecting means for detecting the amount of depression of the brake pedal to the controller, a running command signal is output from the controller to the hydraulic pump.
  • the detection means detects the amount of depression and a detection signal is input to the controller, and the controller travels from the controller to the hydraulic pump according to the detection signal.
  • the swash plate angle of the hydraulic pump can be controlled. That is, it is possible to play by controlling the speed at which the swash plate angle of the hydraulic pump returns to 0 ° according to the brake pedal depression amount. At that time, the swash plate angle of the hydraulic pump was 0 just before the stroke of the brake pedal.
  • the brakes are set so that the brakes can be operated at the same time.
  • the hydraulic brake provided by the hydraulic drive system can be used effectively as a service brake, which makes it possible to save cost and space, and also allows the hydraulic motor to be mounted directly on the front wheels. Can be made possible.
  • an inching operation using a brake pedal can be performed in the same manner as a normal torque converter type forklift vehicle.
  • FIG. 1 shows a first embodiment of the present invention, and is a side view of a hydraulically driven forklift.
  • Figure 2 is a partially cutaway plan view of the wheel portion of the hydraulically driven fork lift.
  • Fig. 3 is a system configuration diagram of a hydraulically driven forklift.
  • FIG. 4 is a schematic plan view illustrating the steering state of the hydraulically driven forklift.
  • FIG. 5 shows a second embodiment of the invention, and is a system configuration diagram of a hydraulically driven forklift.
  • FIG. 6 is a control explanatory diagram of the hydraulically driven forklift. BEST MODE FOR CARRYING OUT THE INVENTION
  • the fork lift 1 is provided with a pair of left and right front wheels (drive wheels) 3A and 3B at the front of the vehicle body 2, and a pair of left and right rear wheels (redirect wheels) 4A and 4B at the rear. Is provided. And up at the front of body 2 Is provided with a driver's seat 5.
  • a mast 6 that can expand and contract in the vertical direction is attached via a connecting shaft 7 in the vehicle width direction so as to be rotatable in the front and rear direction, and a tilting lever that rotates in the front and rear direction.
  • a tosylinder 8 is provided between the vehicle body 2 and the mast 6.
  • the mast 6 includes a pair of left and right outer frames 9 on the vehicle body 2 side and a pair of left and right inner frames 10 guided by the outer frames 9 and capable of moving up and down. And a lift cylinder 11 is provided between them.
  • a lift bracket 12 that is guided by the inner frame 10 and that can be moved up and down is provided, and a pair of left and right forks 1 is provided on the lift bracket 12 through a pair of upper and lower fingers. Three are provided.
  • the driver's seat 5 includes a seat 15 and a handle 16 positioned in front of the seat 15.
  • a head guide 19 is disposed above the driver's seat 5 via a front pipe 17 and a rear pipe 18 erected from the main body 2 side.
  • a countdown 20 is provided behind the seats 15, on the main body 2.
  • the pair of left and right front wheels 3A, 3B are connected to the rims 3a of the hydraulic motors 21A, 21B rotating flanges (an example of a drive shaft) 22A, 22B. By directly mounting via 3 A and 23 B, they are linked to hydraulic motors 21 A and 2 IB.
  • the mounts of the hydraulic motors 21 A and 21 B are fixed to the vehicle body 2, that is, to the front frame.
  • An engine 25 is provided on the vehicle body 2 side, and a pair (plurality) of hydraulic pumps (HST tandem pumps) 26 A and 26 B are directly attached to the engine 25.
  • the mounting method is rubber mounting with the engine 25 and the frame.
  • One hydraulic pump 26 A, 26 B corresponds to the pressure motor 21 A, 21 B, that is, a two-pump, two-motor type hydraulic drive system (HST system).
  • the corresponding hydraulic pumps 26A, 268 and hydraulic motors 218, 21B are connected via pipes (such as hydraulic hoses) 27A, 27B.
  • a pair of left and right rear wheels 4 A, 4 B are provided to be able to turn around the longitudinal axes 29 A, 29 B with respect to the vehicle body 2, respectively.
  • Reference numeral 30 denotes an electric change lever
  • 31 denotes a controller
  • 32 denotes an electric accelerator pedal
  • 33 denotes an electric brake pedal. The operation of the first embodiment will be described below.
  • Figures 1, 2, and 4 show normal forward and backward travel.
  • the left and right front wheels 3A, 3B and the left and right rear wheels 4A, 4B are oriented in the front-rear direction.
  • the forward / backward traveling is performed by the change lever 30.
  • the forward / backward traveling signal 51 is input to the controller 31.
  • the traveling commands 52 and 53 through the controller 31 cause the hydraulic pump 26 to travel. Switch the direction of oil flow of A and 26B, and change the rotation direction of hydraulic motor 21A and 21B.
  • the turning control is performed by an operator sitting in seat 15 of driver's seat 5.
  • the traveling speed is changed by operating the handle 16 or the like.
  • the inclination of the hydraulic pumps 26 A and 26 B is changed by the position signal 61 based on the cutting angle (rotation angle) of the handle 16. This can be done by controlling the plate and controlling the number of rotations 58, 59 and the direction of rotation of the hydraulic motors 21A and 21B.
  • the left and right rotation speeds 58 and 59 are made different by the left and right rotation in the same direction (for example, 58> 59).
  • the left and right rotation speeds 58 and 59 are the same. In this case, the turning radius can be minimized.
  • the hydraulic motor 21 A, 21 regardless of the accelerator pedal 32
  • the upper limit of B rotation speeds 58 and 59 is automatically controlled. In other words, up to the rotation speeds 58 and 59 of the hydraulic motors 21 A and 2 IB set at the time of a sharp turn can be controlled by the accelerator pedal 32, but they must not exceed the set value. You. To do that,
  • the two-pump two-motor type hydraulic drive system (HST system) is used as the drive type of the fork lift 1, and turning is performed by the front wheels 3A and 3B. It is not necessary to steer with rear wheels 4A and 4B. However, when turning In this case, turning of the tires occurs, but in this case, the use of the turning caster type can follow the forward and backward movement and turning by the front wheels 3A and 3B.
  • a hydraulic drive system (HST system) with two pumps and two motors is used as the drive type of the fork lift 1, and the left and right front wheels 3A and 3B as drive wheels are used. By controlling them separately, mobility can be improved and the turning radius can be reduced.
  • the power transmission section can be simplified and It can increase the degree of freedom in layout. Furthermore, in addition to the high efficiency that is characteristic of the hydraulic drive system, the front differential is not required, and low fuel consumption can be expected by the optimal control of the engine.
  • Such a forklift 1 is generated by an operator sitting in the seat 15 of the driver's seat 5, for example, by operating a lift lever and operating the lift cylinder 11.
  • the fork 13 can be moved up and down along the mast 6 via the lift bracket 12 and the like, so that the intended fork work can be performed.
  • the tilt lever 18 to operate the tilt cylinder 18, the master 6 can be rotated (tilted) around the connecting shaft 7, so that the lift bracket 12 and the like can be moved. Can change the attitude of forks 1 through 3.
  • FIGS. 5 and 6 the overall configuration and the like are the same as those of the first embodiment described above (FIGS. 1, 2, and Same as 4).
  • a rotation sensor 134 is attached to the center of rotation of the electric brake pedal 33.
  • the hydraulic pumps 26A and 26B are The swash plate angle is controlled by running command signals 52 and 53 from 31 and the electric control system is used.
  • the rotation sensor 34 is an example of detecting means for detecting the amount of depression of the brake pedal 33, and a stroke sensor or the like may be employed as the detecting means. Then, by inputting the brake signal (detection signal) 62 from the rotation sensor 34 to the controller 31, a travel command is issued from the controller 31 to the hydraulic pumps 26 A and 26 B. It is configured to output signals 52 and 53.
  • the stop and the like can be performed by inputting the brake signal 62 to the controller 31 in accordance with the amount of depression of the brake pedal 33 (stepping allowance).
  • the hydraulic brake of the hydraulic drive system works when the swash plate angle of the hydraulic pump is set to ⁇ °. Therefore, the hydraulic pumps 26A and 26B of electric control are used, and they are electrically linked with the brake pedal 33.
  • the brake pedal 33 When the brake pedal 33 is depressed, the swash plates of the hydraulic pumps 26A and 26B are depressed. Control the angle to be 0 °.
  • the swash plate angle of the hydraulic pumps 26A and 26B becomes 0 ° as soon as the brake pedal 33 is depressed, sudden braking is applied, and the feeling differs greatly from the ordinary fork lift. Will be.
  • control is performed by the following system to achieve the same feeling as ordinary forklift.
  • the brake pedal 33 when the brake pedal 33 is depressed, the amount of depression is detected by the rotation sensor 34, and the brake signal 62 is input to the controller 31.
  • the controller 31 In response to the brake signal 62, the controller 31 outputs drive command signals 52, 53 to the hydraulic pumps 26A, 26B, respectively. Accordingly, the swash plate angles of the hydraulic pumps 26A and 26B are controlled. That is, braking is performed by controlling the speed at which the swash plate angle is returned to 0 ° according to the amount of stepping on the brake pedal 3.
  • the swash plate angles of the hydraulic pumps 26A and 26B were set to 0 ° just before the stroke of the brake pedal 33, and the hydraulic motor was set on the stroke Also activate the parking brake built in 21A, 2IB. Then, the swash plate angles of the hydraulic pumps 26 A and 26 B are changed according to the depression of the accelerator pedal 32 by the hydraulic drive system of the automobile type. Is set so that the swash plate angle slowly returns to 0 ° when you release.
  • the brake circuit has the highest priority.
  • the hydraulic brake provided in the hydraulically driven system can be effectively used for the service brake, and can be suitably configured in terms of cost and space. It is also possible to use hydraulic motors 21 A and 21 B attached directly to A and 3 B. In addition, the inching operation using the brake pedal 33 can be performed in the same manner as a normal torque converter type forklift vehicle.
  • FIG. 6 is an explanatory diagram of a control example (brake characteristics). That is, (A) in FIG. 6 shows the output range of the brake potentiometer. Here, the brake starts to work at 1.5 V, and the motor decelerates at MAX at 3.5 V. When the brake voltage is between 3.5 and 4.5 V, the characteristics are the same as at 3.5 V. If the brake voltage is 0.5 V or less, or 4.5 V or more, determine that there is an error (disconnection) and stop immediately. Brake voltage is 1.5 V or more when key switch is on In the case of, it is judged that the brake return is poor, and the vehicle cannot travel until the brake voltage is less than 1.5 V.
  • FIG. 6B shows the deceleration time when the accelerator pedal is released and the brake pedal is depressed.
  • FIG. 6 (C) shows a case where the brake pedal is depressed to the position of 2.5 V two seconds after the accelerator pedal is released, and then the brake pedal is released two seconds later.
  • FIG. 6 shows the characteristics when the brake pedal is depressed while the accelerator pedal is depressed. Here, 100% is when the brake pedal is not depressed.
  • FIG. 6E shows the deceleration time when the accelerator pedal is released.
  • the left and right rear wheels 4A and 4B employ a turning casing type in which a follow-up direction is adopted.
  • one of the rear wheels 4 may be of a steering type in which the rear wheel 4 is forcibly turned by a cylinder or the like by a handle wheel, and the other rear wheel 4 may be of a turning castor type.
  • the steering angle of the rear wheel 4 on the other hand is fed back to control the hydraulic pumps 26 A and 26 B, thereby reducing the rotational speeds 58 and 59 of the hydraulic motors 21 A and 2 IB. It performs straight ahead and turns under control.
  • the traveling speed during turning is changed by controlling the rotational speeds 58, 59 of the hydraulic motors 21A, 2IB according to the turning angle of the handle 16.
  • the traveling speed at the time of turning regardless of the turning angle of the handle 16 is controlled by the accelerator pedal 32 2.
  • the control may be performed by controlling the rotation speeds 58 and 59 of 1 A and 21 B.
  • the traveling speed is changed on the basis of the position signal 61 based on the turning angle of the handle 16, which is the same as the normal fork lift.
  • the steering may be performed based on the turning angles of the rear wheels 4A and 4B.
  • the swash plates of the hydraulic pumps 26A and 26B are controlled by the detection signals based on the angle of the rear wheels 4A and 4B (the angle of the handle 16), and the hydraulic motor This can be done by controlling the number of rotations 58 and 59 of 1 A and 2 IB and the direction of rotation.
  • the turning center position is determined by the turning angles of the rear wheels 4A and 4B, and the controller 31 is controlled so as to match the turning center position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)

Description

明 細 書 油圧駆動式のフォーク リ フ ト 技術分野
本発明は、 油圧駆動システムを採用したエンジン式のフォーク リ フ 卜に関するものである。 背景技術
従来、 一般的なエンジン式フォーク リ フ トの動力伝達装置と して は、 クラ ッチ式や トルクコンバータ式が主流であるが、 その他には 油圧駆動システムを採用したエンジン式フォーク リ フ ト もある。 こ の油圧駆動システムを採用したエンジン式フォーク リ フ トは 1 ボン プ 1 モー夕形式や 1 ポンプ 2モー夕形式などであり、 その特徴と し ては、 高効率化、 フロン トデフ不要などがあるが、 旋回システムと しては後輪換向となっている。
さらに従来の一般的なフォーク リ フ 卜は、 乗用車に比べて重心位 置が高く、 またク レイ ドルを有しているため、 旋回時の安定性が悪 く、 高速で急旋回を行えば横転する恐れもあ り、 この対策の一例と して、 ク レイ ドル量を速度に応じて制御している。 また旋回時の横 転は、 走行速度が速いほど、 また急旋回ほど起りやすいことから、 旋回時の走行速度を遅く すればよいが、 この場合に運転者 (ォペレ —夕) の意志 (アクセルペダルの踏み代) が関係することで、 操作 ミスも生じ易い。 そこで、 自動的に走行速度を制御するシステムと して、 ハン ドルの切れ角をフ ィ ー ドバック し、 電子ガバナなどを使 つてエンジンの回転数を変更させる方式が提供されている。
しかし、 上記した従来構成によると、 駆動輪である左右の前車輪 に対して共通のポンプが使用されることによ り、 機動性が悪く、 旋 回半径も大きいものになる。 また旋回時の走行速度を、 エンジンの 回転数を変更させて制御する方式によると、 構造が複雑になるとと もに、 走行速度を任意に設定できなかった。
さらに、 ブレーキシステムは、 通常のフォーク リ フ ト と同様にフ ロン トクヽブに ドラムブレーキを取り付けるタイ プであ り、 コス ト的 やスペース的に問題があった。 また前車輪に油圧モー夕をダイ レク 卜に取り付ける形式では不可能であった。 発明の開示
そこで本発明の第 1の目的とするところは、 2ポンプ 2モー夕形 式の採用によ り、 機動性を向上できるとともに、 旋回半径を小さ く できる油圧駆動式フォーク リ フ ト を提供することにある。
また本発明の第 2の目的とするところは、 油圧駆動システムの持 つ油圧ブレーキを常用ブレーキに用いることのできる油圧駆動式フ オーク リ フ トを提供するこ とにある。
前述した第 1 の目的を達成するために、 本発明の油圧駆動式のフ ォ一ク リ フ トは、 車体に左右一対の前車輪と左右一対の後車輪が設 けられるとともに、 車体の前端側にはマス 卜 とフォーク とが設けら れた油圧駆動式のフォーク リ フ トであって、 各前車輪は、 それぞれ 車体に取り付けた油圧モー夕側の駆動軸に連動連結され、 車体側に はエンジンによ り駆動される複数の油圧ポンプが設けられる ととも に、 一個の油圧モー夕に一個の油圧ポンプが対応されて接続され、 各後車輪は、 車体側に対して縦軸心の周りに旋回自在に設けられて いることを特徴と したものである。
上記の本発明の構成によると、 前後進走行におけるスピー ドのコ ン トロールは、 チェンジレバーによ り両油圧ポンプの油の流れの方 向を切り換え、 各油圧モ一夕の回転方向を変えるとともに、 ァクセ ルペダルによ りエンジンの回転数、 および油圧ポンプの油の流量を 制御し、 以て油圧モー夕の回転数を変えて行う ことができる。 そし て旋回のコン ト ロールは、 ハン ドル切れ角や後車輪切れ角 (回転角 ) などに基づいて、 左右の前車輪に対して、 各回転数の制御 (同数 や差) や各回転方向の制御 (同方向や逆方向) 行う ことで可能とな る o
また、 フォーク リ フ トの駆動形式と して、 2ポンプ 2モー夕タイ プの油圧駆動システム ( H S Tシステム) を採用し、 駆動輪である 左右の前車輪を別々に制御することによ り、 機動性を向上でき、 旋 回半径も小さ く できる。 そして各前車輪を、 それぞれ車体に取り付 けた油圧モー夕側にダイ レク トに取り付けることによ り、 動力伝達 部を簡素化できるとともに、 レイ アウ ト上の自由度を広げることが できる。 さらに油圧駆動システムの特徴である高効率化、 フロン ト デフ不要のほか、 エンジン最適制御による低燃費も期待できる。 本発明における好適な実施態様では、 旋回時の走行速度の変更が 、 ハン ドルの切れ角に応じて油圧モー夕の回転数を制御して行われ ることを特徴と したものである。
この好適な実施態様によると、 旋回時の走行速度は、 エンジンの 回転数を変えずに、 ハン ドルの切れ角に応じて油圧モー夕の回転数 を制御して自動的に変更することができ、 構造を簡単にできると と もに、 旋回時の走行速度をアクセルペダルに関係な く任意に設定で きる。
本発明における好適な実施態様では、 旋回時の走行速度の変更が 、 後車輪の切れ角に応じて油圧モー夕の回転数を制御して行われる ことを特徴と したものである。
この好適な実施態様によると、 旋回時の走行速度は、 エンジンの 回転数を変えずに、 後車輪の切れ角に応じて油圧モー夕の回転数を 制御して自動的に変更することができ、 構造を簡単にできると とも に、 旋回時の走行速度をアクセルペダルに関係な く任意に設定でき る。
前述した第 2の目的を達成するために、 本発明における別の実施 態様では、 油圧ポンプは、 コン ト ローラからの走行指令信号によ り 斜板角が制御される電気コン ト ロール式に構成され、 ブレーキぺダ ルの踏み込み量を検出する検出手段からの検出信号をコン ト ローラ に入れることで、 このコン ト ローラから油圧ポンプに走行指令信号 が出されることを特徴と したものである。
この別の実施態様によると、 ブレーキペダルを踏み込むことで、 検出手段によ り踏み込み量を検出して検出信号をコン ト ローラに入 れ、 そして検出信号に応じてコン ト ローラから油圧ポンプに走行指 令信号を出し、 以て油圧ポンプの斜板角を制御できる。 すなわち、 ブレーキペダルの踏み代に応じて、 油圧ポンプの斜板角を 0 ° に戻 す速度を制御してプレーキングを行える。 その際に、 ブレーキぺダ ルのス トロークェン ドの少し前で油圧ポンプの斜板角が 0 。 になる ように設定し、 ス 卜 口一クェン ドには油圧モ一夕に内蔵しているノ、' 一キングブレーキも作動できる。 したがって、 油圧駆動システムの持っている油圧ブレーキを常用 ブレーキに有効に使う ことができて、 コス ト的ゃスペース的に好適 にできるとともに、 前車輪に油圧モー夕をダイ レク 卜に取り付けた 形式でも可能にできる。 さ らに、 通常の トルクコンバータ式のフォ 一ク リ フ ト車と同様に、 ブレーキペダルによるイ ンチング操作も行 う ことができる。 図面の簡単な説明
図 1 は本発明の第一の実施例を示し、 油圧駆動式フオーク リ フ ト の側面図である。
図 2は油圧駆動式フォーク リ フ トの車輪部分の一部切り欠き平面 図である。
図 3は油圧駆動式フォーク リ フ 卜のシステム構成図である。
図 4は同油圧駆動式フォーク リ フ 卜の操縦状態を説明する概略平 面図である。
図 5は発明の第二の実施例を示し、 油圧駆動式フォーク リ フ トの システム構成図である。
図 6は油圧駆動式フォーク リ フ 卜の制御説明図である。 発明を実施するための最良の形態
以下に、 本発明の第一の実施例を、 図 1 〜図 4に基づいて説明す る。
フォーク リ フ ト 1 は、 その車体 2の前部に左右一対の前車輪 (駆 動輪) 3 A , 3 Bが設けられるとともに、 後部に左右一対の後車輪 (換向輪) 4 A , 4 Bが設けられている。 そして車体 2の前部で上 方には運転席 5が設けられる。 前記車体 2の前端部には上下方向で 伸縮自在なマス ト 6が、 車幅方向の連結軸 7を介して前後方向に回 動自在に取り付けられるとともに、 前後方向の回動を行わせるティ ル トシリ ンダー 8が、 車体 2 とマス ト 6 との間に設けられる。
前記マス ト 6は、 車体 2側の左右一対の外枠 9 と、 この外枠 9に 案内されて昇降自在な左右一対の内枠 1 0 とからな り、 そして外枠 9 と内枠 1 0 との間に リ フ トシ リ ンダ一 1 1が設けられている。 ま た内枠 1 0側に案内されて昇降自在な リ フ トブラケッ ト 1 2が設け られるとともに、 このリ フ ト ブラケッ ト 1 2に上下一対のフィ ンガ —バを介して、 左右一対のフォーク 1 3が設けられている。
前記運転席 5には、 座席 1 5や、 この座席 1 5の前方に位置され るハン ドル 1 6などが配設されている。 そして運転席 5の上方には 、 本体 2側から立設されたフロン トパイ プ 1 7ゃリャパイ プ 1 8を 介してへッ ドガ一 ド 1 9が配設されている。 さ らに座席 1 5の後方 で本体 2上にはカウン夕一ウェイ ト 2 0が設けられている。
左右一対の前車輪 3 A, 3 Bは、 そのリ ム 3 aがそれぞれ油圧モ 一夕 2 1 A , 2 1 Bの回転フランジ (駆動軸の一例) 2 2 A, 2 2 Bに連結具 2 3 A , 2 3 Bを介して直接に取り付けることで、 油圧 モー夕 2 1 A , 2 I B側に連動連結されている。 そして、 油圧モー 夕 2 1 A , 2 1 Bのマウン トは、 車体 2側、 すなわちフロン ト フ レ ームに固定されている。
前記車体 2側にはエンジン 2 5が設けられ、 このエンジン 2 5に は一対 (複数) の油圧ポンプ ( H S Tタンデムポンプ) 2 6 A, 2 6 Bが直接に取り付けられている。 その際にマウン ト方法は、 ェン ジン 2 5 とフ レームでラバーマウン ト している。 そして、 一個の油 圧モー夕 2 1 A , 2 1 Bに一個の油圧ポンプ 2 6 A, 2 6 Bが対応 するように、 すなわち、 2ポンプ 2モ一夕タイ プの油圧駆動システ ム ( H S Tシステム) になるように、 対応する油圧ポンプ 2 6 A, 2 6 8と油圧モ一夕 2 1 八, 2 1 Bとが配管 (油圧ホースなど) 2 7 A , 2 7 Bを介して接続されている。
左右一対の後車輪 4 A , 4 Bは、 それぞれ車体 2に対して縦軸心 2 9 A , 2 9 Bの周り に旋回自在に設けられている。 3 0は電気式 のチェンジレバ一、 3 1 はコ ン ト ローラ、 3 2は電気式のアクセル ペダル、 3 3は電気式のブレーキペダルをそれぞれ示している。 以下に、 上記した第一の実施例における作用を説明する。
図 1、 図 2、 ならびに図 4の (A) は通常の前後進走行時を示し ている。 このとき左右の前車輪 3 A , 3 Bならびに左右の後車輪 4 A , 4 Bは前後方向に向いている。 そして前後進走行はチェンジレ バ一 3 0で行い、 前後進信号 5 1 をコ ン ト ローラ 3 1に入れ、 この コン ト ローラ 3 1 を通じての走行指令 5 2, 5 3によ り油圧ポンプ 2 6 A , 2 6 Bの油の流れの方向を切り換え、 油圧モー夕 2 1 A, 2 1 Bの回転方向を変える。
さ らにァクセルペダル 3 2にて車速指令信号 5 4をコン ト ローラ 3 1 に入れることで、 エンジン 2 5の回転数 5 5、 および油圧ボン プ 2 6 A , 2 6 Bからの油圧 (油の流量) 5 6, 5 7の流量を制御 し、 以て油圧モー夕 2 1 A , 2 1 Bの回転数 5 8 , 5 9を変えてス ピー ドのコン ト ロールを行う。 なお停止などは、 ブレーキペダル 3 3によ り ブレーキ信号 6 0をコ ン ト ローラ 3 1 に入れることで行え る。
旋回のコン ト ロールは、 運転席 5の座席 1 5に座った作業者がハ ン ドル 1 6などを操作することで行い、 その際に走行速度の変更は 、 ハン ドル 1 6の切れ角 (回転角) による位置信号 6 1によって、 油圧ポンプ 2 6 A , 2 6 Bの斜板をコン ト ロールし、 油圧モー夕 2 1 A , 2 1 Bの回転数 5 8, 5 9や回転方向を制御することで行え る。
すなわち、 以下のように、 ノヽン ドル 1 6の切れ角に応じて両油圧 モ一夕 2 1 A, 2 I Bの回転数 5 8, 5 9や回転方向を制御するこ とで行える。
a : ノヽン ドル 1 6がニュー トラルの場合 図 4の ( A ) に示 されるように、 左右の油圧モー夕 2 1 A , 2 1 Bの回転数 5 8 , 5 9は同じとな り、 直進を行う。
b : ハン ドル切れ角 (位置信号 6 1 ) が小さい場合 図 4の
( B ) に示されるように、 左右同方向の回転で、 左右の回転数 5 8 , 5 9に差を持たせる (たとえば、 5 8 > 5 9 ) 。
c : ハン ドル切れ角 (位置信号 6 1 ) が中間の場合 図 4の
( C ) に示されるように、 片側の前車輪のみ回転させる (たとえば 、 左側の前車輪 3 Aのみ回転させる) 。
d : ハン ドル切れ角 (位置信号 6 1 ) が中間よ り も大きい場合… 図 4の ( D ) に示されるように、 左右逆方向の回転で、 左右の 回転数 5 8, 5 9に差を持たせる (たとえば、 5 8 > 5 9 ) 。
e : ハン ドル切れ角 (位置信号 6 1 ) が最大 (ハン ドルロ ック) の場合 図 4の ( E ) に示されるように、 左右逆方向の回転で
、 左右の回転数 5 8 , 5 9は同じとする。 この場合には、 旋回半径 を極小化し得る。
上記において、 図 4の ( B ) 〜図 4の ( E ) は右旋回の場合を示 しているが、 ノヽン ドル 1 6の切れ方向を逆にすることで、 左旋回も 同様に行われるものである。 また前進の場合を示しているが、 後進 の場合も同様に行われるものである。 そして左右の旋回の際に、 旋 回キャス夕形式である左右の後車輪 4 A, 4 Bは追従換向される。 また、 ノヽン ドル 1 6の切れ角と左右の油圧モー夕 2 1 A , 2 I Bの 回転数 5 8, 5 9との関係は、 コン ト ローラ 3 1の設定で任意に変 えることができる。
さ らに、 ハン ドル 1 6の切れ角が一定 (たとえば、 片輪のみ回転 するピボッ トターン) 以上の急旋回になれば、 アクセルペダル 3 2 に関係な く油圧モ一夕 2 1 A, 2 1 Bの回転数 5 8, 5 9の上限を 自動的に制御している。 すなわち、 急旋回時に設定された油圧モ一 夕 2 1 A, 2 I Bの回転数 5 8, 5 9まではアクセルペダル 3 2に よ り制御することができるが、 設定値以上にならないようにしてい る。 その方法と しては、
1速固定モ一夕の場合 : コ ン ト ローラ 3 1によ りノヽン ドル 1 6の 切れ角、 油圧モー夕 2 1 A, 2 I Bの回転数 5 8, 5 9を入力し、 油圧モ一夕 2 1 A, 2 1 Bの斜板を制御する。
2速容量切換モー夕の場合 : ハン ドル 1 6の切れ角が一定以上に なると、 油圧モ一夕 2 1 A, 2 1 Bの容量切換えを制御して、 1速 のみで回転させ、 回転数 5 8, 5 9を制限する。
などがある。
上述したようにフォーク リ フ ト 1の駆動形式と して、 2ポンプ 2 モー夕タイ プの油圧駆動システム (H S Tシステム) を採用してい ることで、 旋回は前車輪 3 A, 3 Bで行う ことができ、 後車輪 4 A , 4 Bでステアする必要はない。 ただし、 リゼッ トであれば旋回時 にタイヤの滑りが発生するが、 この場合、 旋回キャス夕形式を用い たことで前車輪 3 A, 3 Bによる前後進、 旋回に追従させ得る。 また、 フォーク リ フ ト 1 の駆動形式と して、 2ポンプ 2モ一夕夕 イ ブの油圧駆動システム ( H S Tシステム) を採用し、 駆動輪であ る左右の前車輪 3 A, 3 Bを別々に制御することによ り、 機動性を 向上でき、 旋回半径も小さ く できる。 そして各前車輪 3 A, 3 Bを 、 それぞれ車体 2 に取り付けた油圧モー夕 2 1 A , 2 1 B側にダイ レク トに取り付けることによ り、 動力伝達部を簡素化できるととも に、 レイ アウ ト上の自由度を広げ得る。 さ らに油圧駆動システムの 特徴である高効率化、 フロン トデフ不要のほか、 エンジン最適制御 による低燃費も期待できる。
このようなフォ一ク リ フ ト 1 は、 運転席 5の座席 1 5 に座った作 業者が、 たとえば、 リ フ ト用レバ一を操作し リ フ トシ リ ンダ一 1 1 を作動させることで、 リ フ トブラケッ ト 1 2などを介してフォーク 1 3 を、 マス ト 6 に沿って昇降動させ得、 以て所期のフォーク作業 を行える。 また、 ティル ト用レバーを操作してティル トシ リ ンダ一 8 を作動させることで、 マス 卜 6 を連結軸 7の周りで回動 (傾倒) させ得、 以て リ フ トブラケヅ ト 1 2などを介してフォーク 1 3の姿 勢を変化させ得る。
次に、 本発明の第二の実施例を、 図 5、 図 6に基づいて説明する この第二の実施例において、 全体構成などは上述した第一の実施 例 (図 1、 図 2、 図 4 ) と同様である。 この第二の実施例では、 電 気式のブレーキペダル 3 3の回転中心に回転センサ一 3 4が取り付 けられている。 そ して油圧ポンプ 2 6 A , 2 6 Bは、 コン ト ローラ 3 1 からの走行指令信号 5 2 , 5 3 によ り斜板角が制御される電気 コン トロール式に構成されている。
前記回転センサー 3 4は、 ブレーキペダル 3 3の踏み込み量を検 出する検出手段の一例であ り、 この検出手段と してはス ト ロークセ ンサ一などを採用してもよい。 そ して、 回転センサ一 3 4からのブ レーキ信号 (検出信号) 6 2 をコン ト ローラ 3 1 に入れることで、 このコン ト ローラ 3 1 から油圧ポンプ 2 6 A , 2 6 Bに走行指令信 号 5 2 , 5 3 が出されるように構成されている。
この第二の実施例において、 停止などは、 ブレーキペダル 3 3の 踏み込み量 (踏み代) に応じてブレーキ信号 6 2 をコン ト ロ一ラ 3 1 に入れることで行える。
すなわち油圧駆動システムの油圧ブレーキは、 油圧ポンプの斜板角 を ◦ ° にすればブレーキが効く。 そこで電気式コン ト ロールの油圧 ポンプ 2 6 A , 2 6 Bを使い、 ブレーキペダル 3 3 と電気的に連動 させ、 このブレーキペダル 3 3 を踏み込むと油圧ポンプ 2 6 A, 2 6 Bの斜板角が 0 ° になるように制御する。 ただし、 ブレーキぺダ ル 3 3 を踏むと直ぐに油圧ポンプ 2 6 A , 2 6 Bの斜板角が 0 ° に なると、 急制動となって通常のフォーク リ フ ト とフィーリ ングが大 き く異なることになる。
そこで、 通常のフォーク リ フ ト と同様のフ ィーリ ングとなるよう に、 次のようなシステムで制御が行われる。 すなわち、 ブレーキぺ ダル 3 3が踏み込まれることで、 回転センサー 3 4によ り踏み込み 量が検出され、 以てブレーキ信号 6 2がコン ト ローラ 3 1 に入れら れる。 このブレーキ信号 6 2 に応じて、 コ ン ト ローラ 3 1 から両油 圧ポンプ 2 6 A , 2 6 Bにそれぞれ走行指令信号 5 2, 5 3 が出さ れ、 以て油圧ポンプ 2 6 A , 2 6 Bの斜板角が制御される。 すなわ ち、 ブレーキペダル 3 3の踏み代に応じて、 斜板角を 0 ° に戻す速 度を制御してブレーキングを行う。
その際に、 ブレーキペダル 3 3のス ト ロークェン ドの少し前で油 圧ポンプ 2 6 A , 2 6 Bの斜板角が 0 ° になるように設定し、 ス ト ロークエン ドには油圧モー夕 2 1 A , 2 I Bに内蔵されているパ一 キングブレーキも作動させる。 そしてォー トモ一ティ ブ夕ィ プの油 圧駆動システムによ り、 アクセルペダル 3 2の踏み込みに応じて油 圧ポンプ 2 6 A, 2 6 Bの斜板角を変えるが、 アクセルペダル 3 2 を放した時にはゆっ く り斜板角が 0 ° に戻るように設定されている 。 なお、 ブレーキ回路は最優先とされている。
以上によ り、 油圧駆動式のフォーク リ フ トにおいて、 油圧駆動シ ステムの持っている油圧ブレーキを常用ブレーキに有効に使えて、 コス ト的ゃスペース的に好適に構成できるとともに、 前車輪 3 A, 3 Bに油圧モー夕 2 1 A, 2 1 Bをダイ レク トに取り付けた形式で も可能となる。 さ らに、 通常の トルクコンバータ式のフォーク リ フ ト車と同様に、 ブレーキぺダル 3 3によるイ ンチング操作も行える ことになる。
なお、 図 6は制御例 (ブレーキ特性) の説明図である。 すなわち 、 図 6の ( A ) には、 ブレーキポテンショメータ出力範囲が示され ている。 ここで、 ブレーキは 1 . 5 Vから効きはじめ、 3. 5 Vで M A Xの減速にとなるこ と。 ブレーキ電圧が 3. 5〜 4. 5 Vの間 は、 3. 5 Vの時と同じ特性とする。 ブレーキ電圧が 0. 5 V以下 、 または 4. 5 V以上の時は、 異常 (断線) と判断し、 速やかに停 車すること。 キースィ ッチのオン時でブレーキ電圧が 1 . 5 V以上 のときは、 ブレーキ戻り不良と判断し、 ブレーキ電圧が 1 . 5 V未 満になるまでは走行できないこ と。
また、 図 6の ( B ) には、 アクセルペダルを離してブレーキぺダ ルを踏んだときの減速時間が示されている。 そして、 図 6の ( C ) には、 アクセルペダルを離して 2秒後にブレーキペダルを 2 . 5 V の位置まで踏み込み、 さらに 2秒後にブレーキペダルを離した場合 が示されている。
さ らに、 図 6の ( D ) には、 アクセルペダルを踏みながらブレー キペダルを踏んだときの特性が示され、 ここではブレーキペダルを 踏んでいない時を 1 0 0 %と している。 また、 図 6の ( E ) には、 アクセルペダルを離した時の減速時間が示されている。
上記した実施の形態では、 左右一対の後車輪 4 A, 4 B と して、 追従換向される旋回キャス夕形式が採用されているが、 これは左右 一対の後車輪 4 A , 4 Bのう ち、 一方の後車輪 4をハン ドルホイ一 ルによ り シリ ンダ一などによって強制的に換向させるステア形式、 他方の後車輪 4 を旋回キャス夕形式と してもよい。 この場合、 一方 の後車輪 4のステア角をフィ ー ドバック して油圧ポンプ 2 6 A , 2 6 Bを制御し、 以て油圧モー夕 2 1 A, 2 I Bの回転数 5 8 , 5 9 を制御して直進、 旋回を行う ものである。
なお上記した実施の形態では、 旋回時の走行速度の変更が、 ハン ドル 1 6の切れ角に応じて油圧モー夕 2 1 A , 2 I Bの回転数 5 8 , 5 9 を制御して行われているが、 本発明の請求項 1 を遂行するに 際しては、 たとえば旋回時の走行速度は、 ハン ドル 1 6の切れ角に 関係なく、 アクセルペダル 3 2 によ り油圧モ一夕 2 1 A , 2 1 Bの 回転数 5 8 , 5 9 を制御して行ってもよい。 上記した両実施例においては、 走行速度の変更を、 ハン ドル 1 6 の切れ角 (回転角) による位置信号 6 1に基づいて行っているが、 これは通常のフォーク リ フ ト と同様に、 後車輪 4 A, 4 Bにステア リ ング機構を用いた形式においては、 この後車輪 4 A, 4 Bの切れ 角に基づいて行ってもよい。
すなわち、 後車輪 4 A, 4 Bの切れ角 (ハン ドル 1 6の切れ角) による検出信号によって、 油圧ポンプ 2 6 A , 2 6 Bの斜板をコ ン ト ロールし、 油圧モ一夕 2 1 A, 2 I Bの回転数 5 8, 5 9や回転 方向を制御することで行える。 この場合、 後車輪 4 A, 4 Bの切れ 角によ り旋回中心位置が決ま り、 それに合う ようにコン ト ローラ 3 1で制御を行う。

Claims

請 求 の 範 囲
1 . 車体に左右一対の前車輪と左右一対の後車輪が設けられる と ともに、 車体の前端側にはマス 卜 とフォーク とが設けられた油圧駆 動式のフォーク リ フ トであって、 各前車輪は、 それぞれ車体に取り 付けた油圧モ一夕側の駆動軸に連動連結され、 車体側にはエンジン によ り駆動される複数の油圧ポンプが設けられるとともに、 一個の 油圧モー夕に一個の油圧ポンプが対応されて接続され、 各後車輪は 、 車体側に対して縦軸心の周 り に旋回自在に設けられていることを 特徴とする。
2 . 請求項 1記載の油圧駆動式のフォーク リ フ トであって、 旋回 時の走行速度の変更が、 ハン ドルの切れ角に応じて油圧モー夕の回 転数を制御して行われることを特徴とする。
3 . 請求項 1記載の油圧駆動式のフォーク リ フ トであって、 旋回 時の走行速度の変更が、 後車輪の切れ角に応じて油圧モー夕の回転 数を制御して行われることを特徴とする。
4 . 請求項 1〜 3のいずれかに記載の油圧駆動式のフォーク リ フ 卜であって、 油圧ポンプは、 コ ン ト ローラからの走行指令信号によ り斜板角が制御される電気コン ト ロール式に構成され、 プレーキぺ ダルの踏み込み量を検出する検出手段からの検出信号をコン ト ロー ラに入れることで、 このコン ト ローラから油圧ポンプに走行指令信 号が出されることを特徴とする。
PCT/JP2000/002944 1999-05-07 2000-05-08 Hydraulic-driven fork lift WO2000068134A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00922994A EP1118581A1 (en) 1999-05-07 2000-05-08 Hydraulic-driven fork lift
US09/743,226 US6554084B1 (en) 1999-05-07 2000-05-08 Hydraulically driven forklift
TW089124104A TW505611B (en) 2000-05-08 2000-11-14 Hydraulic-driven fork lift

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/126499 1999-05-07
JP11/126500 1999-05-07
JP11126500A JP3140009B2 (ja) 1999-05-07 1999-05-07 油圧駆動式フォークリフト
JP11126499A JP3140008B2 (ja) 1999-05-07 1999-05-07 油圧駆動式フォークリフト

Publications (1)

Publication Number Publication Date
WO2000068134A1 true WO2000068134A1 (en) 2000-11-16

Family

ID=26462676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002944 WO2000068134A1 (en) 1999-05-07 2000-05-08 Hydraulic-driven fork lift

Country Status (4)

Country Link
US (1) US6554084B1 (ja)
EP (1) EP1118581A1 (ja)
CN (1) CN1126707C (ja)
WO (1) WO2000068134A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2369333B (en) * 2000-11-28 2004-11-10 Nippon Yusoki Co Ltd Cargo handling vehicle

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080087484A1 (en) * 2000-04-14 2008-04-17 Airtrax, Inc. Omni-directional wheels and methods and vehicles employing same
US20050183896A1 (en) * 2000-04-14 2005-08-25 Airtrax, Inc. Omni-directional wheels and methods and vehicles employing same
IES20010241A2 (en) * 2001-03-13 2002-09-18 Combilift Res & Dev Ltd Steering circuit for forklift trucks
FR2837809B1 (fr) * 2002-03-29 2004-11-12 Manitou Bf Chariot elevateur a portee variable a trois roues
FR2840045B1 (fr) * 2002-05-27 2004-11-12 Manitou Bf Dispositif de transmission hydrostatique et chariot articule correspondant
US7316288B1 (en) * 2003-01-27 2008-01-08 Polaris Industries Inc. All terrain vehicle with multiple steering modes
EP1586775A3 (en) * 2004-04-13 2011-11-09 Kanzaki Kokyukoki Mfg. Co., Ltd. Hydraulic pump unit, hydraulic pump set and working vehicle
US8635867B2 (en) * 2004-07-15 2014-01-28 Parker-Hannifin Corporation Hydrostatic transmission
JP4807028B2 (ja) * 2005-09-30 2011-11-02 株式会社豊田自動織機 フォークリフトの走行制御装置
JP4793134B2 (ja) * 2005-09-30 2011-10-12 株式会社豊田自動織機 フォークリフトの走行制御装置
US20070137918A1 (en) * 2005-11-23 2007-06-21 Xingen Dong Mounting of hydrostatic transmission for riding lawn mower
US20080120974A1 (en) * 2006-11-24 2008-05-29 Parker-Hannifin Corporation Integrated hydrostatic transmission for left and right wheel drive
EP1975115A1 (en) * 2006-01-16 2008-10-01 Mitsubishi Heavy Industries, Ltd. Forklift truck and control method for preventing overturning of forklift truck
US20090145249A1 (en) * 2006-10-20 2009-06-11 Dubbeldam Arthur J Modular scanner assembly
EP2155533A4 (en) * 2007-05-07 2013-01-30 Princeton Delivery Systems Inc FOUR-WAY FORKLIFT WITH OUTDOOR SWING WHEEL SPOKES
CA2707540C (en) * 2009-06-26 2016-06-21 Jireh Industries Ltd. Modular scanner apparatus and probe holding apparatus for inspection
US8857171B2 (en) * 2010-02-11 2014-10-14 Parker-Hannifin Corporation Integrated hydrostatic transmission
DE102010016470B4 (de) * 2010-04-16 2012-03-08 Hubtex Maschinenbau Gmbh & Co. Kg Lenkverfahren und Lenksysteme für ein Flurförderzeug
JP5063760B2 (ja) * 2010-08-31 2012-10-31 株式会社小松製作所 フォークリフト
JP5073798B2 (ja) 2010-08-31 2012-11-14 株式会社小松製作所 フォークリフト
US8893831B2 (en) * 2011-09-22 2014-11-25 Macdon Industries Ltd. Swather tractor with rear wheel active steering
CN102555797A (zh) * 2012-01-06 2012-07-11 浙江中力机械有限公司 双驱四支点叉车
US9581654B2 (en) 2013-02-12 2017-02-28 Johnson Controls Technology Company Vehicle battery monitoring system
FR3008465B1 (fr) * 2013-07-15 2015-08-07 Poclain Hydraulics Ind Commande amelioree d'une transmission hydraulique par cote pour un vehicule.
JP2015221593A (ja) * 2014-05-22 2015-12-10 Ntn株式会社 車両
DE102014115582B4 (de) * 2014-10-27 2024-02-29 Still Gmbh Verfahren zur Lenkungssteuerung bei einem Flurförderzeug
CN105857214B (zh) * 2016-05-20 2017-12-22 湖北先行专用汽车有限公司 一种多功能作业汽车的安全控制装置和方法
CA3054160C (en) 2017-02-25 2022-05-03 Pride Mobility Products Corporation Mobility vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168580A (ja) * 1987-12-22 1989-07-04 Toyota Autom Loom Works Ltd 産業車両における旋回制御装置
US4986387A (en) * 1989-08-07 1991-01-22 Teledyne Princeton, Inc. Fork-lift truck having three drive wheels with third wheel steerable
JPH1192094A (ja) * 1997-09-19 1999-04-06 Toyota Autom Loom Works Ltd 走行用油圧回路

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2598865A (en) * 1948-10-05 1952-06-03 Clark Equipment Co Industrial truck
US2651377A (en) * 1949-11-14 1953-09-08 Clark Equipment Co Steering by driving interlocked with manual steering
US3005562A (en) * 1959-10-29 1961-10-24 Towmotor Corp Hydraulic drive for lift truck
US3315759A (en) * 1964-12-16 1967-04-25 Strick Corp Tractor with means to effect zero turning radius
US3827528A (en) * 1972-10-10 1974-08-06 Towmotor Corp Low cost auxiliary hydrostatic drive for trucks
US3858675A (en) * 1973-06-11 1975-01-07 Koehring Co Self-propelled vehicle having combined directional and acceleration pedal control
US4325442A (en) * 1979-12-31 1982-04-20 Groenig Robert E Fork lift
US4366671A (en) * 1980-03-14 1983-01-04 Clark Equipment Company Hydrostatic transmission
JPS57177876A (en) 1981-04-23 1982-11-01 Kurosaki Refract Co Ltd Gas sealing method between sliding surfaces of plate bricks of sliding nozzle device
JPS6218335A (ja) 1985-07-17 1987-01-27 Shimadzu Corp 車両用減速制御システム
JPH0248476A (ja) 1988-08-09 1990-02-19 Osaka Gas Co Ltd 多孔質無機構造体およびその製造方法
US6283237B1 (en) * 1999-06-01 2001-09-04 Caterpillar Inc. Method and apparatus for steering articulated machines using variable speed devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168580A (ja) * 1987-12-22 1989-07-04 Toyota Autom Loom Works Ltd 産業車両における旋回制御装置
US4986387A (en) * 1989-08-07 1991-01-22 Teledyne Princeton, Inc. Fork-lift truck having three drive wheels with third wheel steerable
JPH1192094A (ja) * 1997-09-19 1999-04-06 Toyota Autom Loom Works Ltd 走行用油圧回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2369333B (en) * 2000-11-28 2004-11-10 Nippon Yusoki Co Ltd Cargo handling vehicle
US6901323B2 (en) 2000-11-28 2005-05-31 Nippon Yusoki Co., Ltd. Cargo handling vehicle

Also Published As

Publication number Publication date
CN1126707C (zh) 2003-11-05
CN1313831A (zh) 2001-09-19
EP1118581A1 (en) 2001-07-25
US6554084B1 (en) 2003-04-29

Similar Documents

Publication Publication Date Title
WO2000068134A1 (en) Hydraulic-driven fork lift
US7357215B2 (en) Steering apparatus for electric industrial vehicle
EP2682648B1 (en) Travel control unit of working vehicle
JP3963050B2 (ja) 産業用四輪駆動車の油圧駆動装置及び産業用四輪駆動車
US6732831B2 (en) Fork lift with laterally travelling system
WO2001060733A1 (fr) Vehicule de travail a systeme transversal
JPH10244951A (ja) フォークリフト
CA2296249C (en) Steering responsive power boost
JP3140009B2 (ja) 油圧駆動式フォークリフト
JP3406271B2 (ja) 産業用車両の走行駆動装置
JP3140008B2 (ja) 油圧駆動式フォークリフト
JP5992237B2 (ja) 転舵アシスト制御装置
KR100660981B1 (ko) 유압구동식 포크리프트
JP4650065B2 (ja) 車両用制駆動力制御装置
JP4544197B2 (ja) 産業車両の油圧駆動装置
JP2772540B2 (ja) ホイール式ショベルの走行制御装置
JP3272338B2 (ja) 油圧駆動式フォークリフト
TW505611B (en) Hydraulic-driven fork lift
JP2002234387A (ja) 産業用車両の尾灯制動灯制御装置
JP3140005B2 (ja) 横行システムを持ったフォークリフト
WO2001064575A1 (fr) Vehicule de chantier a commande hydraulique
JP2003252225A (ja) 荷役車両のステアリング制御装置
JP2001226090A (ja) 横行システムを持った作業車両
JPH09275878A (ja) スピードスプレーヤ
JPH0853859A (ja) 建設機械の走行ペダル装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00801044.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000922994

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09743226

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000922994

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000922994

Country of ref document: EP