WO2000062286A1 - Disque optique multicouche et procede et dispositif d'enregistrement d'informations optiques sur ce disque - Google Patents

Disque optique multicouche et procede et dispositif d'enregistrement d'informations optiques sur ce disque Download PDF

Info

Publication number
WO2000062286A1
WO2000062286A1 PCT/JP2000/002159 JP0002159W WO0062286A1 WO 2000062286 A1 WO2000062286 A1 WO 2000062286A1 JP 0002159 W JP0002159 W JP 0002159W WO 0062286 A1 WO0062286 A1 WO 0062286A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
reproducing
area
data
reproducing surface
Prior art date
Application number
PCT/JP2000/002159
Other languages
English (en)
French (fr)
Inventor
Ryutaro Futakuchi
Shunji Ohara
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to DE60031536T priority Critical patent/DE60031536T2/de
Priority to EP00913086A priority patent/EP1191524B1/en
Priority to AU34597/00A priority patent/AU3459700A/en
Priority to KR10-2001-7012702A priority patent/KR100470468B1/ko
Priority to US09/913,358 priority patent/US6735158B1/en
Publication of WO2000062286A1 publication Critical patent/WO2000062286A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00745Sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/24Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by sensing features on the record carrier other than the transducing track ; sensing signals or marks recorded by another method than the main recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/21Disc-shaped record carriers characterised in that the disc is of read-only, rewritable, or recordable type
    • G11B2220/215Recordable discs
    • G11B2220/216Rewritable discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/23Disc-shaped record carriers characterised in that the disc has a specific layer structure
    • G11B2220/235Multilayer discs, i.e. multiple recording layers accessed from the same side
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/28Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording
    • G11B27/30Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording
    • G11B27/3027Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording used signal is digitally coded

Definitions

  • the present invention relates to a multilayer optical disc having a plurality of recording / reproducing surfaces, and a method and an apparatus for recording optical information on the multilayer optical disc.
  • FIG. 7 shows a cross-sectional view of a conventional multilayer optical disc 10 cut in a direction perpendicular to the track direction. The case of a two-layer structure will be described for simplicity.
  • a guide groove 7 for tracking (or an address signal recorded in advance and formed in a pit shape) is formed on one surface of the first substrate 1.
  • a recording / reproducing film for reflecting a part of the light beam 8 focused by the objective lens 9 incident on the first substrate 1 and transmitting a part of the light beam 8 is formed.
  • Surface 3 is formed on the surface of the second substrate 2, and the light beam transmitted through the first recording / reproducing surface 3 is formed.
  • a recording / reproducing film for reflecting 8 is formed, and a second recording / reproducing surface 4 is formed. Further, the first recording / reproducing surface 3 and the second recording / reproducing surface 4 are separated and stretched.
  • a separation layer 5 is provided for matching.
  • Fig. 8 shows the actual sector structure (shown in Fig. 9 (b)) of the multilayer optical disc shown in plan view in Fig. 9 (a) for each recording / playback surface. It is expressed as a sector-one structure.
  • Fig. 9 (b) is an enlarged view of the vicinity 92 of the address area in a certain track of the concentric or spiral track group 91 in the multilayer optical disc as shown in Fig. 9 (a).
  • a part 93 of the groove portion of the (n-1) sector 1; an address pit portion 941 corresponding to the address area of the n-th sector 94; Part of the groove of No. 9 is shown. If this groove is represented as a schematic sector-one structure, it is divided into a gap area and a data area described later.
  • the first substrate 1, the second substrate 2, and the separation layer 5, which are the components shown in FIG. 7, are omitted for convenience of description.
  • 31 is a first recording / reproducing surface
  • 41 is a second recording / reproducing surface
  • 311, 312, and 313 are each on the first recording / reproducing surface 31.
  • 411, 412, and 413 are address areas, data areas on the second recording / reproducing surface 41, and gaps for dividing the address area 411 and the data area 412, respectively. Area.
  • the gap areas 3 13 and 4 13 are used to clearly separate the reproduced address signal and the data signal reproduced from the data area when recording / reproducing data from / to the multilayer optical disc by the drive device. Also for processing That is, the recording operation is performed on the first recording / reproducing surface 31 or the second recording / reproducing surface 41, respectively, avoiding the gap regions 3 13 and 4 13.
  • the heads of the address areas 311 and 4111 that is, the head positions of the sectors 1 are staggered by L1 and the displacement L1 is two recording / reproducing surfaces.
  • the length G 1 of the gap areas 3 13 and 4 13 is larger than G 1
  • the area ⁇ 2 of the front end portion of the data area 4 1 2 in 1 overlaps with the irradiation direction of the light beam 81, that is, when viewed from the top of the paper.
  • the lengths of the areas ⁇ 1 and ⁇ 2 are equal to L 1 ⁇ G 1.
  • the light beam 81 passes through the region ⁇ 1 on the first recording / reproducing surface 31 and irradiates the region ⁇ 2 on the second recording / reproducing surface 41 to record information.
  • the principle of recording on the phase-change type recording / reproducing film is as follows by irradiating a high power light beam. This means that the crystal structure is changed. Therefore, when recording in the area ⁇ 2 on the second recording / reproducing surface 41, that is, in the region of the front end portion of the data area 41 on the second recording / reproducing surface 41, In this case, the high power light beam 81 is also applied to the area # 1 at the rear end of the address area 311 on the first recording / reproducing surface 31.
  • the first position of the sector 1 on the first recording / reproducing surface 31 is The case where the first recording / reproducing surface 31 and the second recording / reproducing surface 41 are bonded to each other with the position shifted to the right side of the paper surface with respect to the second recording / reproducing surface 41 has been described.
  • the first recording / reproducing surface 31 is attached such that the head position of the sector 1 is shifted to the left side of the paper with respect to the second recording / reproducing surface 41, the first recording / reproducing surface 3 At the time of the recording operation for 1, the address area 4 1 1 of the second recording / reproducing surface 4 1 is affected, and the SZN of the reproduction signal from the address area 4 1 1 deteriorates, and the recognition of the address information becomes difficult. There is a problem that it does not work properly.
  • FIG. 10 is a diagram showing the actual sector structure of the conventional multilayer optical disc as a schematic sector-one structure for each recording / reproducing surface, similarly to FIG.
  • the same elements as those in FIG. 8 are denoted by the same reference numerals, and description thereof will be omitted.
  • FIG. 10 (a) will be described.
  • FIG. 10A shows a state in which the first recording / reproducing surface 31 is shifted from the second recording / reproducing surface 41 in the scanning direction of the light beam 81 (the right side of the paper). .
  • FIG. 10A shows a state in which the first recording / reproducing surface 31 is shifted from the second recording / reproducing surface 41 in the scanning direction of the light beam 81 (the right side of the paper). .
  • the section Z 1 or the section Z 3 is defined by a data area 3 1 2 of the first recording / reproducing surface 31 and a data area 4 1 2 of the second recording / reproducing surface 41. This is a non-overlapping area, and corresponds to a predetermined accuracy when the two recording / reproducing surfaces are bonded.
  • the section Z2 indicates an area where the data area 312 of the first recording / reproducing surface 31 and the data area 412 of the second recording / reproducing surface 41 overlap.
  • optical information (data) is already recorded in the data area 3 1 2 of the first recording / reproducing surface 3 1, the optical state of the recording / reproducing surface is different, and the transmittance of the light beam 81 1 is different.
  • the recording power of the irradiated light beam 81 is different.
  • FIG. 10 (b) shows a state in which the first recording / reproducing surface 31 is displaced from the second recording / reproducing surface 41 in a direction opposite to the scanning direction of the light beam 81 (left side in the drawing). Is shown.
  • the data recording area 3 1 2 of the first recording / reproducing surface 31 and the second recording / reproducing surface 4 1 The data area 4 1 2 does not overlap with the data area 4 1 2, and corresponds to a predetermined accuracy when the two recording / reproducing surfaces are bonded.
  • the data area 3 1 2 of the first recording / reproducing surface 31 and the data area 4 1 2 of the second recording / reproducing surface 4 1 overlap as in FIG. 10 (a). The area is shown.
  • the optical state of the recording / reproducing surface is different and the transmittance of the light beam 81 is different.
  • the data area 4 1 2 on the second recording / playback surface 4 1 The recording power of the irradiated light beam 81 is different between the section Z2 and the section Z3.
  • phase state (a crystalline state and an amorphous state) changes due to the recording over time, so that the transmittance before and after the recording is changed.
  • the difference between the two is large, and the above problem becomes prominent. Disclosure of the invention
  • an object of the present invention is to provide a configuration in which a plurality of recording / reproducing surfaces are bonded together in a state where the head positions of the sectors 1 on each recording / reproducing surface do not completely match.
  • An object of the present invention is to provide a multi-layer optical disc capable of reproducing an accurate address signal and a data signal even when the multi-layer optical disc is used, and a method and an apparatus for recording optical information on the multi-layer optical disc.
  • a first multilayer optical disc according to the present invention includes a sector area in which a pre-recorded address area and a data area are divided by a gap area having an area of a predetermined length.
  • a second multilayer optical disc comprises a plurality of recording / reproducing surfaces having a sector-one structure in which a pre-recorded address area and a data area are divided by a gap area.
  • the gap is bonded with a predetermined accuracy based on the head position of the sector one, and a length of the gap area is equal to or more than a predetermined accuracy based on the head position of the sector one.
  • a third multilayer optical disk comprises an address area, a data area for recording information, and a data area between the address area and the data area.
  • a multi-layer optical disc having first and second recording surfaces each having a gap area having a predetermined length, wherein a beam irradiated for recording / reproducing information on the recording surface is provided. When viewed from the direction, the amount of deviation between the head position of the address area on the first recording surface and the head position of the address area on the second recording surface is smaller than the length of the gap area.
  • a fourth multilayer optical disk includes an address area, a data area for recording information, and a data area between the address area and the data area.
  • Gap area of predetermined length placed in A multi-layer optical disc having first and second recording surfaces each having an area, wherein the second surface is viewed from a direction of a beam irradiated for recording and reproducing information Z on the recording surface.
  • the difference between the rear end position of the address area on the first recording surface and the rear end position of the address area on the second recording surface is smaller than the length of the gap area.
  • an optical information recording method has a sector-one structure in which a gap area is provided between an address area and a data area in a scanning direction of a light beam, and has a sector-by-layer structure.
  • the bonding accuracy L of the certain recording / reproducing surface with reference to the start position of the sector 1 and the length G of the gap area in the scanning direction are all the same.
  • a method for recording optical information on a multi-layer optical disc configured to have a relationship of L ⁇ G with respect to a recording / reproducing surface comprising: The shift amount of the head position of the sector 1 is detected, and based on the detected shift amount, the data recording start position and the data recording end position for each of the sectors are recorded on the plurality of recording / reproducing surfaces. The data recording start position and the data recording end position on each recording / reproducing surface are set so as to coincide with each other.
  • the data area on the recording / reproducing surface in which the leading position of the sector 1 is most displaced in the direction opposite to the scanning direction is set as the data recording start position and the data recording end position, respectively.
  • an optical information recording apparatus has a sector-one structure in which a gap area is provided between an address area and a data area in a scanning direction of a light beam.
  • a method for recording optical information on a multi-layer optical disc configured to have a shift amount of a start position of the sector one on another recording and reproduction surface with respect to a start position of the sector one on the certain recording and reproduction surface.
  • Each of the recording / reproducing sections for matching the data recording start position and the data recording end position for each of the sectors on the plurality of recording / reproducing surfaces based on the detecting section to be detected and the deviation amount detected by the detecting section.
  • a gate signal generating unit for generating a gate signal indicating the data recording end position from the data recording start position on the surface.
  • the gate signal may be a recording / reproducing data in which a head position of the sector 1 is most displaced in a direction opposite to the scanning direction among the plurality of recording / reproducing surfaces. It is preferable to indicate a start position and an end position of the data area on a surface as the data recording start position and the data recording end position, respectively.
  • a fifth multilayer optical disc according to the present invention has a sector-one structure in which a gap area is provided between an address area and a data area in a light beam scanning direction.
  • a multi-layer optical disc comprising: a layer on which a plurality of recording / reproducing surfaces are formed; It is characterized in that a guard data recording area having a length equal to or greater than the predetermined precision is allocated to the leading end and the trailing end of the data area.
  • the accuracy of bonding a plurality of recording / reproducing surfaces of the multilayer optical disc is equal to or less than the length of a predetermined gap area.
  • a predetermined accuracy L corresponding to the displacement and a length G of the gap area have a relationship of L ⁇ G.
  • the recording range on one recording / reproducing surface is matched with the data area, and the recording range on the other recording / reproducing surface is set as an area including a part of the gap area in most of the data area. Evening recording start and data recording end positions are matched so that even if one recording / reproducing surface has already been recorded, even recording is performed on another recording / reproducing surface. Can be recorded with power. Accordingly, nonuniform recording power is prevented, and an amplitude difference, that is, an SZN difference in a data reproduction signal is suppressed, so that the recorded data can be accurately reproduced.
  • a guard data recording area for data protection is provided at the leading end and the trailing end of the data area. Even if there is a difference in amplitude due to a difference in the effective power of the recording light in the reproduced signal in the data recording area, the reproduced data is not affected at all and accurate reproduced data information can be obtained.
  • FIG. 1 is a diagram showing a schematic sector structure on each recording / reproducing surface of the multilayer optical disc according to the first embodiment of the present invention.
  • FIG. 2 is a view showing recording / reproducing surfaces of a multilayer optical disc according to a second embodiment of the present invention.
  • FIG. 3 is a diagram showing a schematic one-sector structure in FIG.
  • FIGS. 3 (a) and 3 (b) respectively show a first recording / reproducing surface relative to a second recording / reproducing surface in order to explain an example of a multilayer optical disc recording method according to the third embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a schematic structure of a sector on each recording / reproducing surface of a multilayer optical disc when it is shifted in a scanning direction and when it is shifted in a direction opposite to the scanning direction.
  • FIG. 4 is a block diagram showing a configuration of a multilayer optical disc recording device according to a fourth embodiment of the present invention.
  • FIGS. 5 (a) and 5 (b) show the main signals in the multilayer optical disc recording device shown in FIG. 4 corresponding to the shifts of the recording / reproducing surfaces shown in FIGS. 3 (a) and 3 (b), respectively.
  • FIG. 5 (a) and 5 (b) show the main signals in the multilayer optical disc recording device shown in FIG. 4 corresponding to the shifts of the recording / reproducing surfaces shown in FIGS. 3 (a) and 3 (b), respectively.
  • FIG. 15 is a diagram showing a schematic sector structure on each recording / reproducing surface of a multilayer optical disc according to a fifth embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a conventional multilayer optical disk cut at right angles to the track direction.
  • FIG. 8 is a diagram showing a schematic sector structure on each recording / reproducing surface of a conventional multilayer optical disc.
  • 9 (a) and 9 (b) are a plan view of the multilayer optical disc and an enlarged view of the vicinity of the address area of the track, respectively.
  • FIGS. 10 (a) and 10 (b) show the case where the first recording / reproducing surface is displaced in the scanning direction with respect to the second recording / reproducing surface, and the case where the first recording / reproducing surface is displaced in the direction opposite to the scanning direction, respectively.
  • FIG. 4 is a diagram showing a schematic sector structure on each recording / reproducing surface of a conventional multilayer optical disc. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows the structure of a sector on each recording / reproducing surface in a multilayer optical disc according to Embodiment 1 of the present invention.
  • FIG. It is represented by a schematic sector-one structure.
  • reference numerals 32 and 42 respectively denote a first recording / reproducing surface and a second recording / reproducing surface in the present embodiment as sector-one format.
  • Reference numerals 3 2 1 and 4 2 1 denote address areas of the first recording / reproducing surface 3 2 and the second recording / reproducing surface 42, respectively, and 3 2 2 and 4 2 2 represent a first recording / reproducing surface, respectively.
  • 3 2 and the data area of the second recording / reproducing surface 42, and 32 3 and 42 3 are the first recording / reproducing surface 32 and the second recording / reproducing surface 42 whose lengths are specified in advance. And the length is G2.
  • L2 indicates a shift amount of the head position of the sector 1 on each recording / reproducing surface when the first recording / reproducing surface 32 and the second recording / reproducing surface 42 are bonded to each other. Since the displacement L 2 has a relationship of L 2 ⁇ G 2 compared to the length G 2 of the gap regions 3 2 3 and 3 2 4, the first recording / reproducing surface 3 2 shown in FIG.
  • a high power light beam 82 is irradiated from the head of the data area 42 of the second recording / reproducing surface 42.
  • the region of the first recording / reproducing surface 32 where the high power light beam 82 is irradiated becomes the gap region 3 23. Therefore, irradiation of high power to the address area 3221 of the first recording / reproducing surface 32 can be avoided, which affects the crystal structure of the recording / reproducing film formed in the address area 3221.
  • the SZN of the reproduced signal is degraded. Address information is correctly recognized.
  • the first recording / reproducing surface 32 has the first recording position shifted from the first recording / reproducing surface 32 to the right side of the paper with respect to the second recording / reproducing surface 42.
  • the case where the reproduction surface 32 and the second recording / reproduction surface 42 are bonded has been described. However, the same applies to the case where the first recording / reproducing surface 32 is bonded to the second recording / reproducing surface 42 such that the head of the sector is shifted to the left side of the paper.
  • the high-power light beam 82 is irradiated from the beginning of the data recording area 32 of the first recording / reproducing surface 32, and at that time, the high-power light beam 82 is emitted.
  • the area of the second recording / reproducing surface 42 where 2 is irradiated becomes the gap area 423.
  • the case where the number of recording / reproducing surfaces is 2 has been described.
  • the recording operation on any recording / reproducing surface can be performed by another recording / reproducing surface.
  • the address information on the surface is not affected, and the address information is correctly recognized.
  • FIG. 2 shows the structure of a sector on each recording / reproducing surface in the multilayer optical disc according to the second embodiment of the present invention.
  • a schematic diagram is shown as in the first embodiment. It is expressed by a typical sector structure.
  • reference numerals 33 and 43 denote a first recording / reproducing surface and a second recording / reproducing surface in the present embodiment as sector-one format.
  • 331 and 431 are address areas of the first recording / reproducing surface 33 and the second recording / reproducing surface 43, respectively, and 332 and 4332 are respectively the first recording / reproducing surface.
  • This is a data area of the surface 33 and the second recording / reproducing surface 43
  • 33 3 and 43 3 are a gap region of the first recording / reproducing surface 33 and the second recording / reproducing surface 43, respectively.
  • L 3 indicates the amount of deviation of the start position of one sector on each recording / reproducing surface when the first recording / reproducing surface 33 and the second recording / reproducing surface 43 are adhered to each other.
  • the shift amount L 3 is determined by comparing the first recording / reproducing surface 33 with the second recording / reproducing surface. It shows the limit value of the bonding accuracy, that is, the maximum value of the deviation amount, based on the beginning of each sector when the raw surfaces 43 are bonded. Therefore, in comparison with the length G3 of the gap areas 3 3 3 and 4 3 3, since L 3 ⁇ G 3, the address area 3 on the first recording / reproducing surface 33 shown in FIG.
  • the length G 3 of the gap area is set to be equal to or longer than the limit value L 3 of the bonding accuracy of each recording / reproducing surface.
  • a high power light beam 83 is irradiated from the head of the data area 43 of the second recording / reproducing surface 43.
  • the region of the first recording / reproducing surface 33 to which the high power light beam 83 is irradiated becomes the gap region 33. Therefore, high power irradiation to the address area 331 of the first recording / reproducing surface 33 can be avoided, which affects the crystal structure of the recording / reproducing film formed in the address area 331.
  • the SZN of the reproduced signal is degraded. Address information is correctly recognized.
  • the first recording / reproducing surface 33 has the first recording position shifted from the second recording / reproducing surface 43 to the right side of the paper.
  • the case where the reproduction surface 33 and the second recording / reproduction surface 43 are bonded has been described. However, the same applies to the case where the first recording / reproducing surface 33 is pasted so that the start position of the section 3 is shifted to the left side of the paper with respect to the second recording / reproducing surface 43.
  • the high power light beam 83 The second recording / reproducing surface 43 where the high power light beam 83 is irradiated at the beginning of the data region 3332 of the data recording region 33 becomes the gap region 433.
  • the case where the number of recording / reproducing surfaces is 2 has been described.
  • the features of the present invention can be applied to the case where the number of recording / reproducing surfaces is 3 or more.
  • a recording operation on an arbitrary recording / reproducing surface does not affect an address area on another recording / reproducing surface, and the address information is correctly recognized.
  • the address information can be correctly recognized at the time of reproduction after recording.
  • the same effect as the effect shown in the embodiment can be obtained.
  • first and second embodiments are characterized in that the shift amount at the start position of one sector is equal to or less than the length of the gap area, but the shift amount at the rear end of the address area is equal to the length of the gap area. It is also characterized as follows.
  • FIGS. 3 (a) and 3 (b) are diagrams showing the actual sector structure on each recording / reproducing surface of the multilayer optical disk according to the third embodiment of the present invention as a schematic sector structure.
  • FIG. 3A shows that the first recording / reproducing surface 34 is not in the scanning direction of the light beam 84 with respect to the second recording / reproducing surface 44 (right side in the figure). This shows a state in which the sheets are stuck together.
  • FIG. 3 (b) shows a state in which the first recording / reproducing surface 34 is bonded to the second recording / reproducing surface 44 in a direction opposite to the scanning direction of the light beam 84 (left side in the drawing). ing.
  • reference numerals 341, 343, and 342 indicate an address area, a gap area, and a data area of the first recording / reproducing surface 34, respectively.
  • Reference numeral 2 denotes an address area, a gap area, and a data area of the second recording / reproducing surface 44, respectively.
  • 341 and 441, 344 and 443, 342 and 442 have the same length in the scanning direction of the light beam 84, respectively.
  • the section Z1 indicates a section in which the head of the data area 442 of the second recording / reproducing surface 44 overlaps with the gap area 343 of the first recording / reproducing face 34.
  • the section Z2 indicates a section where the data area 342 of the first recording / reproducing surface 34 and the data area 442 of the second recording / reproducing face 44 overlap, and the section Z1 corresponds to the first recording / reproducing face 34. This corresponds to the bonding accuracy of the second recording / reproducing surface 44.
  • the section Z1 is configured to be shorter than the length of the gap region 3443 of the first recording / reproducing surface 34 and the gap region 443 of the second recording / reproducing surface 44.
  • a hatched area X 1 on the first recording / reproducing surface 34 indicates a recording range when information is recorded on the first recording / reproducing surface 34. That is, the recording range X1 for recording information on the first recording / reproducing surface 34 is the range of the sum of the sections Z1 and Z2 at the rear end of the gap area 343 on the first recording / reproducing surface 34. Is equivalent to
  • the amount of information to be recorded is the same on the two recording / reproducing surfaces. This amount of information is equal to the amount of information predetermined by the data areas 342 and 442.
  • an area X2 indicated by oblique lines on the second recording / reproducing surface 44 indicates a recording range when information is recorded on the second recording / reproducing surface 44. That is, the recording range X2 when information is recorded on the second recording / reproducing surface 44 corresponds to the sum of the sections Z1 and Z2 at the rear end of the gap area 443 on the second recording / reproducing surface 44. I do.
  • the recording range when recording information on the second recording / reproducing surface 44 is set, and the recording range when recording information on the first recording / reproducing surface 34 is the same as the data area 342, the first The recording ranges on the recording / reproducing surface 34 and the second recording / reproducing surface 44 match. In other words, the data recording start position and the data recording end position coincide on the two recording / reproducing surfaces. Again, the amount of information recorded is the same on the two recording and playback surfaces, and this amount of information is equal to the amount of information predetermined by the data areas 342 and 442.
  • a predetermined accuracy L corresponding to the amount of the shift (see the interval in FIG. 3 (a) and FIG. 3 (b)).
  • the length of Z1) and the length G of the gap areas 343 and 443 have a relationship of L ⁇ G, and the recording range on one recording / reproducing surface is the defocused area (Fig. 3 (a) Is 442, and in the case of Fig. 3 (b), it matches 342), and the recording range on the other recording / reproducing surface is the area where most of the data area includes some gap areas (Fig. 3 (a)).
  • the amount of information recorded on the two recording / reproducing surfaces does not decrease from the amount specified in advance in the data area of each recording / reproducing surface. Furthermore, if the bonding accuracy of the two recording / reproducing surfaces is set to be equal to or less than the length of the gap area between the address area and the data area, even if the recording start positions on the two recording / reproducing surfaces are matched, either The recording start position on the recording / reproducing surface does not interrupt the address area on the recording / reproducing surface. Therefore, the reproduction signal in the address area is not affected.
  • the multi-layer optical disc recording method allows optical information to be recorded on all recording / reproducing surfaces with a uniform recording power without affecting the reproduction signal of the information amount address area to be recorded. It is possible to record.
  • the data recording range is matched with the data area of one of the recording / reproducing surfaces.
  • the fourth embodiment relates to an information recording / reproducing device for recording information on the multilayer optical disc described in the third embodiment.
  • FIG. 4 is a block diagram showing the configuration of the information recording / reproducing device according to the fourth embodiment of the present invention.
  • reference numeral 101 denotes a reproducing light
  • 102 denotes a recording light.
  • a signal is reproduced or information is recorded on the rotating multi-layer optical disc 100 (having the two-layer structure shown in FIGS. 3A and 3B).
  • Reference numeral 150 denotes a motor for rotating the multilayer optical disc 100
  • reference numeral 1501 denotes a motor for rotating the multilayer optical disk 100, and a mouth for outputting one pulse 152 per rotation. It is a re-encoder.
  • reference numeral 104 denotes a photoelectric converter for obtaining a reproduction signal 105 as an electric signal from the reproduction light 101.
  • the reproduced signal 105 is input to an address signal reproduction processing unit 106 (portion surrounded by a dotted line in FIG. 4), and an envelope detection circuit 107 and a comparator 109 constituting the address signal reproduction processing unit 106 are provided.
  • an edge detection circuit 110, and a reset signal 115 for the counter 123 is output from the address signal reproduction processing unit 106.
  • the clock 111 is input to its clock input terminal, and the set values P and Q are input to its data input terminal.
  • the set values P 1 and Q 1 are set in the counter 1 23 via the selection circuit 130.
  • the set values P and Q are set.
  • the set values P2 and Q2 are set to the counters 123 via the selection circuit 130. It becomes.
  • the selection circuit 130 is controlled by the state of the control command 131, and the state of the control command 131 indicates that the recording operation is not performed on the first recording / reproducing surface 34. Or the recording operation is performed on the second recording / reproducing surface 44.
  • the counter 123 sets the flip-flop 124 after the first predetermined time determined by the set value P and the frequency of the clock 111 from the time when the reset signal 115 becomes active. Outputs input signal 1 19. Further, the counter 123 outputs the reset input signal 120 of the flip-flop 124 after a second predetermined time determined by the set value Q and the frequency of the clock 111 from the above time. Therefore, the first predetermined time and the second predetermined time are different times when recording on the first recording / reproducing surface 34 and the second recording / reproducing surface 44, respectively.
  • the switch 112 controls the switch 112 with the output signal 121 of the flip-flop 124, the supply of the recording data 113 to the optical modulator 103 is controlled, and the recording signal 125 is generated. can get. Further, from the recording signal 125, a recording light 102 is obtained by the action of the optical modulator 103, and the recording light 102 is irradiated on the multilayer optical disc 100 via the objective lens 122. Then, desired data is recorded.
  • the counter 123, the set values P, Q, and the flip-flops 124 constitute a recording gate generator that generates a recording gate signal.
  • Fig. 5 (a) shows the first recording / reproducing surface 34 and the second recording / reproducing surface 44, which are bonded together with the accuracy of Z1 and shifted to the right on the paper.
  • Fig. 3 (a) shows the process of generating the timing that determines the operation during recording on the multilayer optical disc shown in Fig. 3 (a). (Note that in Fig. 3 (a), the recording light emitted from the top of the paper is shown. Light beam 8 4 is a reproduction light during reproduction).
  • 105a, 116a, 117a and 115a respectively represent a reproduced signal 105 (address area) when the first recording / reproducing surface 34 is reproduced.
  • 119 a and 120 a are set when the set values P and Q of the counter 123 become P 1 and Q 1 respectively by the selection circuit 130, that is, the first recording / reproducing.
  • T 1 a is the time from the time when 115 a becomes active to the time when 119 a becomes active, and corresponds to the first predetermined time
  • T 2 a is 1 1 This is the time from when 9a becomes active to when 120a becomes active, and corresponds to the second predetermined time.
  • T 2a is equal to the output signal 12 1 of the flip-flop 124 (the control signal of the switch 112), that is, the time when 121 a is active. Is the timing of the recording signal 125 in which the recording data 113 is gated by the switch 112.
  • 105 b, 1 16 b, 1 17 b, and 1 15 b are reproduction signals 105 when the second recording / reproduction surface 44 is reproduced (only the address reproduction signal is shown).
  • the output signal of the envelope detection circuit 107, the output signal of the comparator 109, the output signal of the edge detection circuit 110, the output signal of the edge detection circuit 110 (the reset signal of the power supply 123) Is equivalent to Also, 1 19 b and 120 b are set by the selection circuit 130 to the set values P and And Q become P 2 and Q 2 respectively, that is, the set signal 1 19 and the reset signal 1 20 to the flip-flop 124 when the recording is attempted on the second recording / reproducing surface 44.
  • T ib is the time from the time when 115 b becomes active to the time when 119 b becomes active, and corresponds to the first predetermined time
  • T 2b is the time when 1 19 b becomes active. This is the time from when the active state becomes active until 120b becomes active, and corresponds to the second predetermined time.
  • T 2 b is equal to the output signal 121 of the flip-flop 124 (the control signal of the switch 112), that is, the time when 121 b is active. Is the timing of the recording signal 125 obtained when the recording data 113 is gated by the switch 112.
  • T la and T la + T 2a are determined by the set values P 1 and Q 1 and the clock frequency of the counter 123, respectively, and T 1b and T 1b + T 2b are The values are determined by the set values P2 and Q2 and the clock frequency of the counter 123, respectively, and D1 & D1, Tla + T2a and Tlb + T2 b are respectively It will be a different time.
  • the first recording / reproducing surface 34 and the second recording / reproducing surface 44 of the target multilayer optical disc 100 are bonded as shown in FIG. 3A, and the multilayer optical disc 100 rotates at a predetermined linear velocity V.
  • the value of T1a is set to (A2 + G2—Z1) ZV (where A2 and G2 are
  • the set value P1 is determined so as to be equal to the length of the address area 341 and the length of the gap area 343 of the first recording / reproducing surface 34
  • the value of T1a + T2a is set to (A 2 + G 2 + Z 2) Determine the set value Q 1 to be equal to ZV.
  • the control input of the selection circuit 130 is set so that these values become the set values to the counter 123. Determine the state of 1 3 1
  • the value of T ib is set to (A 3 + G 3) no V (where A3 and G 3 are the addresses of the second recording / reproducing surface 44, respectively).
  • Q2 the state of the control input 13 1 of the selection circuit 130 is determined so that these values become the set values to the counter 123.
  • the recording range corresponds to the section XI shown in FIG. 3A on the first recording / reproducing surface 34, and corresponds to the data area 442 on the second recording / reproducing surface 44.
  • the recording start position is advanced from the beginning of the data area 342 by the accuracy Z1 of bonding the two recording / reproducing surfaces (that is, the scanning direction is Displace in the opposite direction), and set the recording end position to the rear end of the area Z2 where the data area 342 of the first recording / reproducing surface 34 and the data area 442 of the second recording / reproducing surface 44 overlap.
  • the data recording start position and the data recording end position on the two recording / reproducing surfaces match, that is, the recording range Will match.
  • FIG. 5 (b) shows that the first recording / reproducing surface 34 is bonded to the second recording / reproducing surface 44 with a bonding accuracy of Z1 and shifted to the left side of the paper.
  • This figure shows the process of generating the timing for determining the operation during recording on the multilayer optical disk shown in b) (note that in Fig. 3 (b), the light as the recording light emitted from the top of the paper is shown).
  • the beam 84 becomes a reproduction light at the time of reproduction.
  • 105a, 116a, 117a, and 115a are reproduction signals 105 when reproducing the first recording / reproducing surface 34 (address reproduction from the address area).
  • Signal the output signal 1 16 of the envelope detection circuit 107, the output signal 1 17 of the comparator 1 109, the output signal 1 1 5 of the edge detection circuit 1 1 0 (the counter 1 2 3 Reset signal).
  • 1 19 a and 1 20 a are set when the set values P and Q of the counter 1 and 2 respectively become P 1 and Q 1 by the selection circuit 130, that is, the first recording / reproduction
  • the set signal 1 19 to the flip-flop 124 and the reset signal 120 at the time of recording on the surface 34 are equivalent to the reset signal 120
  • 1 2 a is the output signal 1 2 1 of the flip-flop 1 24 (switch 1 1 2 control signal).
  • T la is the time from the time when 115 a becomes active to the time when 119 a becomes active, and corresponds to the first predetermined time
  • T 2 a is obtained as 1 19 a Is the time from the time at which the signal becomes active to the time at which 120a becomes active, and corresponds to the second predetermined time.
  • T 2a is equal to the output signal 12 1 of the flip-flop 124 (the control signal of the switch 112), that is, the time when 121 a is active.
  • the recorded data 1 1 3 This is the timing of the recorded signal 125.
  • 105 b, 1 16 b, 1 17 b, and 1 15 b are reproduction signals 105 when the second recording / reproduction surface 44 is reproduced (only the address reproduction signal is shown). Equivalent to the output signal 1 16 of the envelope detection circuit 107, the output signal 1 17 of the comparator 1 1 0, and the output signal 1 1 5 of the edge detection circuit 1 1 0 (reset signal of the power counter 1 2 3). I do.
  • T 1b is the time from the time when 115 b becomes active to the time when 119 b becomes active, and corresponds to the first predetermined time
  • T 2b is 1 1 This is the time from the time when 9b becomes active to the time when 120b becomes active, and corresponds to the second predetermined time.
  • T 2 b is equal to the output signal 121 of the flip-flop 124 (the control signal of the switch 112), that is, the time when 121 b is active. Is the timing of the recording signal 125 obtained when the recording data 113 is gated by the switch 112.
  • T1a and T1a + T2a are determined by the set values P1 and Q1 and the clock frequency of the counter 123, respectively, and T1b, T1b + T2b Are determined by the set values P2 and Q2 and the clock frequency of the counter 123, respectively, so that T1 & T113, T1a + T2a and Tlb + T2b Are different times.
  • the first recording / reproducing surface 34 and the second recording / reproducing surface 44 of the target multilayer optical disc 100 are bonded as shown in FIG.
  • the value of T1a is equal to (A2 + G2) / V.
  • the set value P1 is determined so that the value of T1a + T2a is equal to (A2 + G2 + D2) ZV, and the set value Q1 is determined.
  • the selection circuit 1 is set so that these values become the set values for the counters 123.
  • T ib (A 3 + G 3 — Z 1) / V (where A 3 and G 3 are the second recording / reproducing surface
  • the predetermined data area 342 is used as the recording range
  • the data recording start position is set. From the beginning of the data area 442, the two recording / reproducing surfaces are advanced by the bonding accuracy Z1 (that is, displaced in the direction opposite to the scanning direction), and the data recording end position is set to the data of the first recording / reproducing surface 34 2 and the data area 442 of the second recording / reproducing surface 442 are overlapped with each other by setting the trailing end of the area Z2 to open the data recording on the two recording / reproducing surfaces.
  • the start position and the data recording end position match, that is, the recording range matches.
  • the calculation of the bonding accuracy Z1 (detection of the amount of displacement) between the first recording / reproducing surface 34 and the second recording / reproducing surface 44 may be performed as follows. That is, the output signal 1 of the envelope detection circuit 107 when the first recording / reproducing surface 34 is reproduced from the time when the pulse 15 2 is output once per rotation output from the rotary encoder 15 1 First, the time at which 1 6 is output is measured, and then the second recording / reproducing surface 4 The time when the output signal 1 16 of the envelope detection circuit 107 is output when the 4 is reproduced is measured, the time difference between the two is obtained, and the time difference may be divided by the linear velocity V.
  • the calculation of the section Z 2 where the data area 3 42 of the first recording / reproducing surface 34 and the data area 44 2 of the second recording / reproducing surface 44 overlap is performed by calculating the length of the data area of the two recording / reproducing surfaces. Can be easily obtained based on the previously calculated value of Z 1.
  • the configuration of the multilayer optical disc used in the description of the present embodiment is the same as that shown in FIGS. 3A and 3B described in the third embodiment, except that a gap area is inserted. If the location is the address area of the data area and the next sector, the data recording start position of the first recording / reproducing surface 34 or the second recording / reproducing surface 44 is delayed by the bonding accuracy. Thereby, the data recording start position and the data recording end position, that is, the recording range can be matched on the two recording / reproducing surfaces as described above.
  • the first recording / reproducing surface 34 and the second recording / reproducing surface 44 as shown in FIGS. 3 (a) and 3 (b) are pasted in such a manner that they are shifted by a predetermined accuracy Z1. Even if they are matched, if the recording range on the first recording / reproducing surface 34 and the recording range on the second recording / reproducing surface 44 are set as described above, Even if 34 has already been recorded, the transmittance of the recording light is constant in the recording range on the second recording / reproducing surface 44, and the recording range on the second recording / reproducing surface 44 is irradiated during recording. The power of the recording light is made uniform.
  • the difference in the signal amplitude of the reproduction signal due to the non-uniformity of the power of the recording light within the recorded range is eliminated, and correct data can be read from the reproduction signal.
  • the phase state changes depending on the recording, and the difference in transmittance before and after recording is large, so that a more remarkable effect can be obtained. it can.
  • FIGS. 6 (a) and 6 (b) are diagrams showing the actual sector structure on each recording / reproducing surface of the multilayer optical disk according to the fifth embodiment of the present invention as a schematic sector structure.
  • FIG. 6 (a) shows that when the first recording / reproducing surface 35 and the second recording / reproducing surface 45 are bonded, the first recording / reproducing surface 35 This shows a state in which it is shifted in the scanning direction (right side of the paper).
  • reference numerals 35 and 45 denote the first recording / reproducing surface and the second recording / reproducing surface in the present embodiment, respectively, as a sector-one format.
  • the address areas of the first recording / reproducing surface 35 and the second recording / reproducing surface 45, respectively, are denoted by 352 and 452, respectively, of the first recording / reproducing surface 35 and the second recording / reproducing surface 45.
  • the data areas 35 3 and 45 3 indicate the gap areas of the first recording / reproducing surface 35 and the second recording / reproducing surface 45, respectively.
  • 354 and 454 are guard areas (guard data recording areas) assigned to the leading end (start end) of the data area of the first recording / reproducing surface 35 and the second recording / reproducing surface 45, respectively. Is shown.
  • 3 5 5 and 4 5 Reference numeral 5 denotes a guard area assigned to the rear end (end) of the first recording / reproducing surface 35 and the second recording / reproducing surface 45, respectively.
  • the above four guard areas are areas provided for protecting data recorded in the data area, and for example, a signal having a single frequency is recorded.
  • guard areas 35 4 and 45 5 respectively assigned to the leading end portions of the first recording / reproducing surface 35 and the second recording / reproducing surface 45 have the same length L2, and the first recording / reproducing surface 3
  • the guard areas 365 and 455 assigned to the rear end portions of the fifth and second recording / reproducing surfaces 45 also have the same length L3.
  • L 1 indicates the amount of deviation of the start position of sector 1 on each recording / reproducing surface when the first recording / reproducing surface 35 and the second recording / reproducing surface 45 are bonded to each other,
  • This shift amount L1 is equal to the shift amount at the beginning of the data area of the first recording / reproducing surface 35 and the second recording / reproducing surface 45,
  • the bonding accuracy is shown, and when compared with the length L2 of the guard regions 354 and 454, L1 ⁇ L2.
  • the data area 352 of the first recording / reproducing surface 35 has already been recorded including the guard data, and then the data area 3552 of the second recording / reproducing surface 45 is guarded.
  • the recording light due to the difference in the transmittance of the light beam 85 between the area of the length L 1 at the beginning of the data area 45 2 of the second recording / reproducing surface 45 and the remaining area
  • the effective power of the reproduced signal fluctuates, resulting in a difference in the amplitude of the reproduced signal.
  • the area of length L1 at the beginning of the data area 45 2 of the second recording / reproducing surface 45 is a part of the guard area 4 54 of the second recording / reproducing surface 45, and Since the guard area is an area provided to protect the data recorded in the data area as shown in FIG. 2, the reproduced signal in this area contains a difference in amplitude due to a difference in the effective power of the recording light. Even if it's hot, it won't have any effect in the evening, and you will get the right evening.
  • the bonding accuracy of the first recording / reproducing surface 35 and the second recording / reproducing surface 45 is 1 at the leading end of the data area of the first recording / reproducing surface 35 and the second recording / reproducing surface 45, respectively.
  • the lengths of the assigned guard areas 354 and 454 are not more than 2, even if there is a difference in the amplitude of the playback signal due to the difference in the effective power of the recording light, the There is no effect and correct playback data can be obtained.
  • FIG. 6 (b) shows that when the first recording / reproducing surface 35 and the second recording / reproducing surface 45 are bonded, the first recording / reproducing surface 35 This figure shows a state in which it is shifted in the direction opposite to the scanning direction (left side on the paper).
  • L1 is the same as in FIG. 6 (a), when the first recording / reproducing surface 35 and the second recording / reproducing surface 45 are bonded to each other.
  • the deviation amount L1 is equal to the deviation amount at the rear end portion of the data area of the first recording / reproducing surface 35 and the second recording / reproducing surface 45. It shows the bonding accuracy between the reproducing surface 35 and the second recording / reproducing surface 45, and when compared with the length L3 of the guard areas 365 and 4555, L1 ⁇ L3.
  • the data recording area 352 of the first recording / reproducing surface 35 has already been recorded including the guard data, and then the data area 452 of the second recording / reproducing surface 45 is guarded.
  • the difference between the transmittance of the light beam 85 and the area of the length L1 at the rear end of the data area 45 of the second recording / reproducing surface 45 was different from that of the remaining area. Fluctuations occur in the effective power of light, resulting in a difference in the amplitude of the reproduced signal.
  • the area of length L 1 at the rear end of the data area 45 2 of the second recording / reproducing surface 45 is a part of the guard area 4 55 of the second recording / reproducing surface 45, As described above, the guard area stores data recorded in the data area. Since this is an area provided for protection, even if the reproduced signal in this area has a difference in amplitude due to the difference in the effective power of the recording light, there is no effect on the reproduced data at all. Reproduced data is obtained.
  • the bonding accuracy L1 of the first recording / reproducing surface 35 and the second recording / reproducing surface 45 is the rear end of the data recording / reproducing area of the first recording / reproducing surface 35 and the second recording / reproducing surface 45.
  • the lengths of the guard areas 355 and 455 assigned to the respective parts are 3 or less, even if there is a difference in the amplitude of the reproduced signal due to the difference in the effective power of the recording light, the reproduced data will not There is no effect and correct playback data can be obtained.
  • the bonding accuracy of the first recording / reproducing surface 35 and the second recording / reproducing surface 45 is determined by the data of the first recording / reproducing surface 35 and the second recording / reproducing surface 45.
  • the case where the number of recording / reproducing surfaces is 2 has been described. Even when the number of recording / reproducing surfaces is 3 or more, the bonding accuracy of the recording / reproducing surfaces is assigned to the leading end of the data area.
  • the length of the guard area assigned and the length of the guard area assigned to the trailing end of the guard area should be shorter than the length of the guard area. Record can be made.

Landscapes

  • Optical Recording Or Reproduction (AREA)

Description

明 細 書 多層光ディスクおよびそれに光学情報を記録する方法および装置 技術分野
本発明は、 複数の記録再生面を有する多層光ディスク、 およびその多 層光ディスクに光学情報を記録する方法および装置に関する。 背景技術
従来、 複数の記録再生面に対して記録再生可能な多層光ディスクとし ては、 例えば、 特表平 1 0— 5 0 5 1 8 8号公報に記載されたものが知 られている。
以下、 従来の多層光ディスクの構造について、 図面を参照しながら説 明する。 図 7は、 従来の多層光ディスク 1 0をトラック方向と直角の方 向に切断したときの断面図を示したものである。 なお、 簡単のために 2 層構造の場合について説明する。
図 7に示すように、 第 1基板 1の片側の表面には、 トラッキング用の ガイド溝 7 (またはあらかじめ記録され、 ピット状に形成されたァドレ ス信号).が形成されており、 さらにこの表面には、 前記第 1基板 1に入 射した対物レンズ 9で絞り込まれた光ビーム 8の一部を反射し、 かつ一 部を透過させるための記録再生膜が成膜されて、 第 1記録再生面 3が形 成されている。 また、 第 2基板 2の表面にも、 トラッキング用のガイド 溝 6 (またはあらかじめ記録され、 ピット状に形成されたァドレス信号) が形成されており、 第 1記録再生面 3を透過してきた光ビーム 8を反射 させるための記録再生膜が成膜されて、 第 2記録再生面 4が形成されて いる。 さらに、 第 1記録再生面 3と第 2記録再生面 4とを分離して張り 合わせるための分離層 5が介在されている。
しかしながら、 上記のような多層構造 (従来例では 2層構造) では、 上記の断面と直角である、 即ちトラック方向に切断したときの断面図が 図 8のように張り合わされている場合には、 以下の問題が生じる。
なお、 図 8は、 説明の便宜上、 図 9 ( a ) に平面図で示す多層光ディ スクにおける実際のセクタ一構造 (図 9 ( b ) に示す) を各々の記録再 生面について模式的なセクタ一構造として表現したものである。
図 9 ( b ) は、 図 9 ( a ) に示すように、 多層光ディスクにおいて同 心円または螺旋状に形成されたトラック群 9 1のうちのあるトラックに おけるアドレス領域近傍 9 2を拡大した図であり、 第 (n— 1 ) セクタ 一の溝部の一部 9 3と、 第 nセクタ一 9 4の後述するァドレス領域に相 当するアドレスピット部 9 4 1と、 それに続く第 nセクタ一 9 4の溝部 の一部 9 4 2を示している。 この溝部を模式的なセクタ一構造として表 現すると、 後述するギャップ領域とデータ領域に区分される。
また、 図 8においては、 図 7に示した構成要素である第 1基板 1、 第 2基板 2、 分離層 5については、 説明の便宜上省略している。
図 8において、 3 1は第 1記録再生面、 4 1は第 2記録再生面であり、 3 1 1、 3 1 2、 および 3 1 3は、 それぞれ、 第 1記録再生面 3 1にお けるァドレス領域、 デ一夕領域、 およびァドレス領域 3 1 1とデ一タ領 域 3 1 2を分割するためのギヤップ領域である。 また、 4 1 1、 4 1 2、 および 4 1 3は、それぞれ、第 2記録再生面 4 1におけるァドレス領域、 データ領域、 およびァドレス領域 4 1 1とデータ領域 4 1 2を分割する ためのギヤップ領域である。
ギャップ領域 3 1 3、 4 1 3は、 ドライブ装置によって多層光デイス クに対して記録再生を行う際に、 再生されたアドレス信号とデータ領域 から再生されたデータ信号とを明確に分離して信号処理を行うためのも のであり、 ギャップ領域 3 1 3、 4 1 3を避けてその記録動作が第 1記 録再生面 3 1または第 2記録再生面 4 1に対してそれぞれ行われる。
ところが、 図 8に示すように、 ァドレス領域 3 1 1と 4 1 1の先頭、 即ち、 セクタ一の先頭位置が L 1だけずれて張り合わされ、 かつそのず れ量 L 1が二つの記録再生面におけるギャップ領域 3 1 3及び 4 1 3の 長さ G 1より大きい場合には、 第 1記録再生面 3 1におけるァドレス領 域 3 1 1の後端部分の領域△ 1と第 2記録再生面 4 1におけるデータ領 域 4 1 2の前端部分の領域△ 2とが、 光ビーム 8 1の照射方向、 即ち紙 面上部から見て重なることになる。 なお、 領域△ 1及び△ 2の長さは L 1— G 1に等しいものである。
また、 光ビーム 8 1は第 1記録再生面 3 1における領域△ 1を透過し て、 第 2記録再生面 4 1における領域 Δ 2に照射されて情報が記録され ることになる。
ここで、 この多層光ディスクの二つの記録再生面が相変化型の記録再 生膜で構成されているとすると、 相変化型の記録再生膜に対する記録の 原理は、 高いパワーの光ビームの照射によってその結晶構造を変えるこ とであって、 従って、 第 2記録再生面 4 1における領域 Δ 2、 即ち第 2 記録再生面 4 1におけるデータ領域 4 1 2の前端部分の領域への記録の 際には、 第 1記録再生面 3 1におけるアドレス領域 3 1 1の後端部分の 領域△ 1にも高いパワーの光ビーム 8 1が照射されることになる。 従って、 第 1記録再生面 3 1におけるァドレス領域 3 1 1の一部に成 膜された記録再生膜の結晶構造にも影響することになり、 その結果、 第 2記録再生面 4 1への記録動作終了後、 第 1記録再生面 3 1のアドレス 領域 3 1 1を再生しょうとすると、 その再生信号の S Z Nが劣化し、 ァ ドレス情報の認識が正しく行われなくなるという問題が発生する。 また、 図 8に示した例では、 第 1記録再生面 3 1のセクタ一の先頭位 置が第 2記録再生面 4 1に対して紙面の右側にずれた状態で、 第 1記録 再生面 3 1と第 2記録再生面 4 1が張り合わされた場合について説明し た。 同様に、 第 1記録再生面 3 1のセクタ一の先頭位置が第 2記録再生 面 4 1に対して紙面の左側にずれるように張り合わされている場合につ いても、 第 1記録再生面 3 1に対する記録動作の際に、 第 2記録再生面 4 1のアドレス領域 4 1 1に影響を及ぼすことになり、 アドレス領域 4 1 1からの再生信号の S Z Nが劣化して、 アドレス情報の認識が正しく 行われなくなるという問題が発生する。
また、 従来例として記録再生面の数が 2の場合について説明したが、 記録再生面の数が 3以上の場合においても、 任意の記録再生面への記録 動作が、 他の記録再生面におけるァドレス領域に影響を及ぼすことにな り、 そのアドレス情報の認識が正しく行われなくなるという問題が発生 する。
さらに、 両方の記録再生面のデータ領域にあらかじめデータが記録さ れている場合においては、 どちらか一方の記録再生面への記録動作の際 には、 他の記録再生面のデータ領域に対しても、 各々のデータ領域が重 なった領域 (図 8に示す△ 3 ) では高いパワーの光ビームが照射される ことになり、 再生信号の S / Nの劣化によってエラーの発生が生じる。 一般に、 データには誤り訂正用コードが付加されているため、 その働き によって、 再生されたデータの内容がある程度修復されるが完全ではな レ このデ一夕領域における再生信号の S Z Nの劣化について、 以下で さらに詳しく説明する。
図 1 0は、 図 8と同様に、 従来の多層光ディスクにおける実際のセク ター構造を各々の記録再生面について模式的なセクタ一構造として表現 した図である。 なお、 図 1 0において、 図 8と同様の要素については同 一の符号を付記し説明を省略する。 まず、 図 1 0 (a) について説明する。 図 1 0 (a) は、 第 1記録再 生面 3 1が第 2記録再生面 4 1に対して光ビーム 8 1の走査方向 (紙面 右側) にずれて貼り合わされている状態を示している。 図 1 0 (a) に おいて、 区間 Z 1または区間 Z 3は、 第 1記録再生面 3 1のデ一夕領域 3 1 2と第 2記録再生面 4 1のデータ領域 4 1 2とが重ならない領域で あり、 二つの記録再生面の貼り合わせ時における所定の精度に相当する ものである。 また、 区間 Z 2は、 第 1記録再生面 3 1のデータ領域 3 1 2と第 2記録再生面 4 1のデータ領域 4 1 2とが重なる領域を示してい る。
第 1記録再生面 3 1のデータ領域 3 1 2にすでに光学情報 (データ) が記録されていると、 記録再生面の光学的状態が異なり、 光ビーム 8 1 の透過率が相違することから、 第 2記録再生面 4 1のデータ領域 4 1 2 における区間 Z 1と区間 Z 2とでは、 照射される光ビーム 8 1の記録パ ヮ一が異なることになる。
次に、 図 1 0 (b) について説明する。 図 1 0 (b) は、 第 1記録再 生面 3 1が第 2記録再生面 4 1に対して光ビーム 8 1の走査方向とは逆 方向 (紙面左側) にずれて貼り合わされている状態を示している。 図 1 0 (b) に示す区間 Z 1または区間 Z 3は、 図 1 0 (a) と同様に、 第 1記録再生面 3 1のデ一夕領域 3 1 2と第 2記録再生面 4 1のデータ領 域 4 1 2とが重ならない領域であり、 二つの記録再生面の貼り合わせ時 における所定の精度に相当するものである。 また、 区間 Z 2も、 図 1 0 (a) と同様に、 第 1記録再生面 3 1のデータ領域 3 1 2と第 2記録再 生面 4 1のデ一夕領域 4 1 2とが重なる領域を示している。
ここで、 第 1記録再生面 3 1のデータ領域 3 1 2にすでにデータが記 録されていると、 記録再生面の光学的状態が異なり、 光ビーム 8 1の透 過率が相違することから、 第 2記録再生面 4 1のデータ領域 4 1 2にお ける区間 Z 2と区間 Z 3とでは、 照射される光ビーム 8 1の記録パワー が異なることになる。
仮に、 記録前の透過率が記録後の透過率より小さいとすれば、 その透 過率を考慮して第 2記録再生面 4 1に記録した場合、 区間 Z 2には最適 な記録パワーでデ一夕記録できたとしても、 区間 Z 1 (図 1 0 (a) の 場合) もしくは区間 Z 3 (図 1 0 (b) の場合) に相当する部分には、 過大なパワーの記録光が照射されることになる。 一方、 記録前の透過率 が記録後の透過率より大きいとすれば、 その透過率を考慮して第 2記録 再生面 4 1に記録した場合、 区間 Z 2には最適な記録パワーでデータ記 録できたとしても、 区間 Z 1 (図 1 0 (a) の場合) もしくは区間 Z 3 (図 1 0 (b) の場合) に相当する部分には、 過小なパワーの記録光が 照射されることになる。
その結果、 第 2記録再生面 4 1から再生信号を得ようとすると、 再生 信号の区間 Z 1と Z 2 (図 1 0 (a) の場合) もしくは区間 Z 2と Z 3 (図 1 0 (b) の場合) に相当する部分において信号振幅の差が生じ、 それによりデータ領域内で SZN差が生じることで、 データに付加され る誤り訂正用コードを用いたとしても、 第 2記録再生面 4 1に記録され たデータの一部が正しく読み出せない場合がある。
特に、記録再生面を構成する記録膜に相変化型の材料を用いた場合は、 デ一夕の記録によってその相状態 (結晶状態とアモルファス状態) が変 化するため、 記録の前後における透過率の差が大きく、 上記問題が顕著 に現れることになる。 発明の開示
したがって、 本発明の目的は、 各記録再生面におけるセクタ一の先頭 位置が完全に一致しない状態で、 複数の記録再生面を張り合わせて構成 した多層光ディスクを用いたとしても、 正確なァドレス信号およびデー 夕信号を再生することが可能な多層光ディスク、 およびかかる多層光デ イスクに光学情報を記録する方法および装置を提供することにある。 前記の目的を達成するため、 本発明に係る第 1の多層光ディスクは、 あらかじめ記録されたアドレス領域とデ一夕領域が、 あらかじめ長さが 規定された領域を有するギャップ領域で分割されたセクタ一構造を有す る複数の記録再生面を有し、 前記複数の記録再生面におけるセクタ一の 先頭位置が前記ギヤップ領域の有する長さ以下の精度になるように、 前 記複数の記録再生面が張り合わされたことを特徴とする。
また、 前記の目的を達成するため、 本発明に係る第 2の多層光デイス クは、 あらかじめ記録されたァドレス領域とデータ領域がギヤップ領域 で分割されたセクタ一構造を有する複数の記録再生面が、 前記セクタ一 の先頭位置を基準とした所定の精度で張り合わせられており、 前記ギヤ ップ領域の有する長さが、 前記セクタ一の先頭位置を基準とした所定の 精度以上であることを特徴とする。
また、 前記の目的を達成するため、 本発明に係る第 3の多層光デイス クは、 アドレス領域と、 情報を記録するためのデータ領域と、 前記アド レス領域と前記データ領域との間に配置された所定の長さのギヤップ領 域とをそれぞれ有する第 1と第 2の記録面を備えた多層光ディスクであ つて、 前記記録面に対して情報の記録/再生のために照射されるビーム の方向から見た場合の、 前記第 1の記録面のァドレス領域の先頭位置と 前記第 2の記録面のァドレス領域の先頭位置とのずれ量が、 前記ギヤッ プ領域の長さよりも小さいことを特徴とする。
また、 前記の目的を達成するため、 本発明に係る第 4の多層光デイス クは、 アドレス領域と、 情報を記録するためのデ一夕領域と、 前記アド レス領域と前記データ領域との間に配置された所定の長さのギャップ領 域とをそれぞれ有する第 1と第 2の記録面を備えた多層光ディスクであ つて、 前記記録面に対して情報の記録 Z再生のために照射されるビーム の方向から見た場合の、 前記第 1の記録面のァドレス領域の後端位置と 前記第 2の記録面のァドレス領域の後端位置とのずれ量が、 前記ギヤッ プ領域の長さよりも小さいことを特徴とする。
また、前記の目的を達成するため、本発明に係る光学情報記録方法は、 光ビームの走査方向でァドレス領域とデータ領域との間にギヤップ領域 を設けたセクタ一構造を有して層毎に形成された複数の記録再生面にお ける、 ある記録再生面の前記セクタ一の先頭位置を基準とした張り合わ せ精度 Lと、 前記ギャップ領域の前記走査方向における長さ Gとが、 全 ての記録再生面について L≤Gなる関係を有するように構成された多層 光ディスクに光学情報を記録する方法であって、 前記ある記録再生面に おける前記セクタ一の先頭位置に対する、 他の記録再生面における前記 セクタ一の先頭位置のずれ量を検出し、検出した前記ずれ量に基づいて、 前記セクタ一ごとのデータ記録開始位置およびデータ記録終了位置が前 記複数の記録再生面において一致するように、 各記録再生面における前 記データ記録開始位置および前記データ記録終了位置を設定することを 特徴とする。
なお、 本発明に係る前記光学情報記録方法においては、 前記複数の記 録再生面のうちで前記セクタ一の先頭位置が前記走査方向とは逆方向に 最も変位した記録再生面における前記データ領域の開始位置および終了 位置をそれぞれ前記データ記録開始位置および前記データ記録終了位置 として設定することが好ましい。
また、 前記の目的を達成するため、本発明に係る光学情報記録装置は、 光ビームの走査方向でァドレス領域とデ一夕領域との間にギヤップ領域 を設けたセクタ一構造を有して層毎に形成された複数の記録再生面にお ける、 ある記録再生面の前記セクタ一の先頭位置を基準とした張り合わ せ精度 Lと、 前記ギャップ領域の前記走査方向における長さ Gとが、 全 ての記録再生面について L≤Gなる関係を有するように構成された多層 光ディスクに光学情報を記録する方法であって、 前記ある記録再生面に おける前記セクタ一の先頭位置に対する、 他の記録再生面における前記 セクタ一の先頭位置のずれ量を検出する検出部と、 前記検出部により検 出した前記ずれ量に基づいて、 前記セクタ一ごとのデータ記録開始位置 およびデータ記録終了位置を前記複数の記録再生面において一致させる ために、 各記録再生面における前記データ記録開始位置から前記データ 記録終了位置を指示するゲート信号を発生するゲ一ト信号発生部とを備 えたことを特徴とする。
なお、 本発明に係る前記光学情報記録装置においては、 前記ゲート信 号は、 前記複数の記録再生面のうちで前記セクタ一の先頭位置が前記走 査方向とは逆方向に最も変位した記録再生面における前記データ領域の 開始位置および終了位置をそれぞれ前記データ記録開始位置および前記 データ記録終了位置として指示することが好ましい。
さらに、 前記の目的を達成するため、 本発明に係る第 5の多層光ディ スクは、 光ビームの走査方向でァドレス領域とデータ領域との間にギヤ ップ領域を設けたセクタ一構造を有する複数の記録再生面が形成された 層を、 各記録再生面における前記セクタ一の先頭位置が前記走査方向に おいて所定の精度で近接するように張り合わせてなる多層光ディスクで あって、 前記走査方向における前記データ領域の先端部分および後端部 分に、 前記所定の精度以上の長さを有するガードデ一夕記録領域が割り 当てられたことを特徵とする。
上記構成によれば、 多層光ディスクにおける複数の記録再生面の張り 合わせの精度をあらかじめ規定されたギャップ領域の長さ以下、 もしく はギヤップ領域の長さを複数の記録再生面の張り合わせの精度以上とす ることによって、 任意の記録再生面への記録動作が、 他の記録再生面に おけるアドレス領域に影響を及ぼすことがなく、 記録終了後の再生時に おいて、 そのァドレス情報の認識を正しく行うことができる。
また、 複数の記録再生面が互いに一致せずにずれた状態で貼り合わさ れていても、 そのずれ量に相当する所定の精度 Lとギヤップ領域の長さ Gとに L≤Gなる関係を持たせ、 ある記録再生面への記録範囲をデータ 領域に一致させ、 他の記録再生面への記録範囲を大半のデータ領域に一 部のギヤップ領域を含めた領域として、 複数の記録再生面においてデー 夕記録開始位置及びデータ記録終了位置を一致させて記録することによ り、 ある記録再生面が既に記録済みであっても、 他の記録再生面への記 録の際には、 均一な記録パワーで記録することができる。 従って、 記録 パワーの不均一化が防止され、 データの再生信号における振幅差、 すな わち S Z N差が抑制されので、 記録されたデ一夕情報を正確に再生する ことができる。
さらに、 複数の記録再生面における各デ一夕領域に走査方向で重なる 部分があつたとしても、 データ領域の先端部分および後端部分にデータ 保護用のガードデータ記録領域を設けることで、 このガードデータ記録 領域の再生信号に記録光の実効パワーの違いに起因する振幅の差異があ あても、 再生デ一夕情報には何ら影響がなく、 正確な再生データ情報を 得ることができる。 図面の簡単な説明
図 1は、 本発明の第 1実施形態による多層光ディスクの各記録再生面 における模式的なセクタ一構造を示す図である。
図 2は、 本発明の第 2実施形態による多層光ディスクの各記録再生面 における模式的なセクタ一構造を示す図である。
図 3 (a) および図 3 (b) は、 それぞれ、 本発明の第 3実施形態に よる多層光ディスク記録方法の一例を説明するために、 第 1記録再生面 が第 2記録再生面に対して走査方向にずれた場合、 および走査方向とは 逆方向にずれた場合での、 多層光ディスクの各記録再生面における模式 的なセクタ一構造を示す図である。
図 4は、 本発明の第 4実施形態による多層光ディスク記録装置の一構 成を示すブロック図である。
図 5 (a) および図 5 (b) は、 それぞれ、 図 3 (a) および図 3 (b) に示す各記録再生面のずれに対応した、 図 4に示す多層光ディスク記録 装置における主要な信号のタイミング図である。
図 6 (a) および図 6 (b) は、 それぞれ、 第 1記録再生面が第 2記 録再生面に対して走査方向にずれた場合、 および走査方向とは逆方向に ずれた場合での、 本発明の第 5実施形態による多層光ディスクの各記録 再生面における模式的なセクタ一構造を示す図である。
図 7は、 従来の多層光ディスクをトラック方向と直角に切った断面図 である。
図 8は、 従来の多層光ディスクの各記録再生面における模式的なセク ター構造を示す図である。
図 9 (a) および図 9 (b) は、 それぞれ、 多層光ディスクの平面図、 およびトラックのァドレス領域近傍の拡大図である。
図 1 0 (a) および図 1 0 (b) は、 それぞれ、 第 1記録再生面が第 2記録再生面に対して走査方向にずれた場合、 および走査方向とは逆方 向にずれた場合での、 従来の多層光ディスクの各記録再生面における模 式的なセクタ一構造を示す図である。 発明を実施するための最良の形態
以下、 本発明の好ましい実施の形態について図面を参照しながら説明 する。 ここでは、 簡単のため、 2層構造の多層光ディスクを対象とした 場合について説明する。
(第 1実施形態)
図 1は、 本発明の実施の形態 1による多層光ディスクにおける各記録 再生面のセクタ一構造を示したものであり、 本発明の特徴を明確にする ために、 従来例を示す図 8と同様に、 模式的なセクタ一構造で表現して いる。
図 1において、 3 2及び 4 2は、 それぞれ、 本実施形態における第 1 記録再生面及び第 2記録再生面をセクタ一フォーマツトとして示したも のである。 また、 3 2 1及び 4 2 1は、 それぞれ、 第 1記録再生面 3 2 及び第 2記録再生面 4 2のァドレス領域であり、 3 2 2及び 4 2 2は、 それぞれ、 第 1記録再生面 3 2及び第 2記録再生面 4 2のデータ領域で あり、 3 2 3及び 4 2 3は、 あらかじめその長さが規定された、 第 1記 録再生面 3 2及び第 2記録再生面 4 2のそれぞれのギヤップ領域であり, その長さは両者とも G 2である。
また、 L 2は、 第 1記録再生面 3 2及び第 2記録再生面 4 2が張り合 わされたときの、 各々の記録再生面におけるセクタ一の先頭位置のずれ 量を示している。 このずれ量 L 2は、 ギャップ領域 3 2 3及び 3 2 4の 長さ G 2と比較して L 2≤G 2なる関係にあるため、 図 8に示したよう な第 1記録再生面 3 2におけるアドレス領域 3 2 1の後端と、 第 2記録 再生面 4 2のデ一夕領域 4 2 2の前端において、 光ビーム 8 2が照射さ れる方向、 即ち、 紙面上部から見たとき、 重なる領域が存在しなくなり、 この重なる領域が存在しなくなるずれ量 L 2の許容値は、 ギャップ領域 3 2 3及び 4 2 3の有する長さ G 2に相当する。 換言すれば、 セクタ一 の先頭位置における張り合わせの精度 L 2をギャップ領域の長さ G 2以 下にしておけば重なる領域は存在しなくなる。
従って、 図 1によると、 第 2記録再生面 4 2への記録の際には、 高い パワーの光ビーム 8 2が第 2記録再生面 4 2のデータ領域 4 2 2の先頭 から照射され、 その際に、 高いパワーの光ビーム 8 2が照射される第 1 記録再生面 3 2の領域はそのギャップ領域 3 2 3となる。 よって、 第 1 記録再生面 3 2のアドレス領域 3 2 1への高いパワーの照射を回避する ことができ、 ァドレス領域 3 2 1に成膜された記録再生膜の結晶構造に 対して影響を及ぼすことがなく、 その結果、 第 2記録再生面 4 2への記 録動作終了後、第 1記録再生面 3 2のアドレス領域 3 2 1を再生しても、 その再生信号の S Z Nが劣化することなく、 アドレス情報の認識が正し く行われる。
また、 本実施形態において、 図 1に示すように、 第 1記録再生面 3 2 のセクタ一の先頭位置が第 2記録再生面 4 2に対して紙面の右側にずれ た状態で、 第 1記録再生面 3 2と第 2記録再生面 4 2が張り合わされて いる場合について説明した。 しかしながら、 第 1記録再生面 3 2のセク ターの先頭位置が第 2記録再生面 4 2に対して紙面の左側にずれるよう に張り合わされている場合についても同様に、 第 1記録再生面 3 2に対 する記録動作の際は、 高いパワーの光ビーム 8 2が第 1記録再生面 3 2 のデ一夕領域 3 2 2の先頭から照射され、 その際に、 高いパワーの光ビ ーム 8 2が照射される第 2記録再生面 4 2の領域はそのギャップ領域 4 2 3となる。
従って、 第 2記録再生面 4 2のアドレス領域 4 2 1への高いパワーの 照射を回避することができ、 ァドレス領域 4 2 1に成膜された記録再生 膜の結晶構造に対して影響を及ぼすことがなく、 その結果、 第 1記録再 生面 3 2への記録動作終了後、 第 2記録再生面 4 2のァドレス領域 4 2 1を再生しても、 その再生信号の S Z Nが劣化することなく、 アドレス 情報の認識が正しく行われる。
さらに、 本実施形態において、 記録再生面の数が 2の場合について説 明したが、 記録再生面の数が 3以上の場合においても、 任意の記録再生 面への記録動作が、 他の記録再生面におけるアドレス領域に影響を及ぼ すことがなく、 そのアドレス情報の認識が正しく行われることは言うま でもない。
このように、複数の記録再生面におけるセクタ一の先頭位置のずれ量、 即ち、 複数の記録再生面の張り合わせ精度が、 あらかじめ規定されたギ ヤップ領域の長さ以下となるように、 複数の記録再生面を張り合わすこ とによって、 記録後の再生時におけるアドレス情報の認識が正しく行わ れることになる。
(第 2実施形態)
図 2は、 本発明の第 2実施形態による多層光ディスクにおける各記録 再生面のセクタ一構造を示したものであり、 本発明の特徴を明確にする ために、第 1実施形態と同様に、模式的なセクタ一構造で表現している。 図 2において、 3 3及び 4 3は、 本実施形態における第 1記録再生面 及び第 2記録再生面をセクタ一フォーマツトとして示したものである。 また、 3 3 1及び 4 3 1は、 それぞれ、 第 1記録再生面 3 3及び第二の 記録再生面 4 3のァドレス領域であり、 3 3 2及び 4 3 2は、それぞれ、 第 1記録再生面 3 3及び第 2記録再生面 4 3のデータ領域であり、 3 3 3及び 4 3 3は、 それぞれ、 第 1記録再生面 3 3及び第 2記録再生面 4 3のギヤップ領域である。
また、 L 3は、 第 1記録再生面 3 3及び第 2記録再生面 4 3が張り合 わされたときの、 各々の記録再生面におけるセクタ一の先頭位置のずれ 量を示している。 このずれ量 L 3は、 第 1記録再生面 3 3と第 2記録再 生面 4 3を張り合わせたときの、 各々のセクタ一の先頭を基準とした、 その張り合わせの精度の限界値、 即ち、 ずれ量の最大値を示している。 従って、 ギヤップ領域 3 3 3及び 4 3 3の長さ G 3との比較すると、 L 3≤G 3であるため、 図 8に示したような第 1記録再生面 3 3におけ るアドレス領域 3 3 1の後端と、 第 2記録再生面 4 3のデータ領域 4 3 2の前端において、 光ビームが照射される方向、 即ち、 紙面上部から見 たとき、 重なる領域が存在しなくなり、 この重なる領域をなくすために は、 ギャップ領域の長さ G 3を、 各々の記録再生面の張り合わせ精度の 限界値 L 3以上の長さに設定することになる。
従って、 図 2によると、 第 2記録再生面 4 3への記録の際には、 高い パワーの光ビーム 8 3が第 2記録再生面 4 3のデータ領域 4 3 2の先頭 から照射され、 この際に、 高いパワーの光ビーム 8 3が照射される第 1 記録再生面 3 3の領域はそのギャップ領域 3 3 3となる。 よって、 第 1 記録再生面 3 3のァドレス領域 3 3 1への高いパワーの照射を回避する ことができ、 アドレス領域 3 3 1に成膜された記録再生膜の結晶構造に 対して影響を及ぼすことがなく、 その結果、 第 2記録再生面 4 3への記 録動作終了後、第 1記録再生面 3 3のアドレス領域 3 3 1を再生しても、 その再生信号の S Z Nが劣化することなく、 アドレス情報の認識が正し く行われる。
また、 本実施形態において、 図 2に示すように、 第 1記録再生面 3 3 のセクタ一の先頭位置が第 2記録再生面 4 3に対して紙面の右側にずれ た状態で、 第 1記録再生面 3 3と第 2記録再生面 4 3が張り合わされて いる場合について説明した。 しかしながら、 第 1記録再生面 3 3のセク 夕一の先頭位置が第 2記録再生面 4 3に対して紙面の左側にずれるよう に張り合わされている場合についても同様に、 第 1記録再生面 3 3に対 する記録動作の際は、 高いパワーの光ビーム 8 3が第 1記録再生面 3 3 のデータ領域 3 3 2の先頭から照射され、 その際に、 高いパワーの光ビ ーム 8 3が照射される第 2記録再生面 4 3の領域はそのギャップ領域 4 3 3となる。
従って、 第 2記録再生面 4 3のアドレス領域 4 3 1への高いパワーの 照射を回避することができ、 アドレス領域 4 3 1に成膜された記録再生 膜の結晶構造に対して影響することがなく、 その結果、 第 1記録再生面 3 3への記録動作終了後、 第 2記録再生面 4 3のアドレス領域 4 3 1を 再生しても、 その再生信号の S Z Nが劣化することなく、 アドレス情報 の認識が正しく行われる。
さらに、 本実施形態において、 記録再生面の数が 2の場合について説 明したが、 本発明の特徴は、 記録再生面の数が 3以上の場合にも適用可 能であり、 本発明によれば、 任意の記録再生面への記録動作が、 他の記 録再生面におけるァドレス領域に影響を及ぼすことがなく、 そのァドレ ス情報の認識が正しく行われる。
このように、 ギャップ領域の長さを、 複数の記録再生面の張り合わせ 精度の限界値以上に確保することによって、 記録後の再生時におけるァ ドレス情報の認識が正しく行われることになり、 第 1実施形態に示した 効果と同様の効果が得られる。
また、 第 1および第 2実施形態は、 セクタ一先頭位置のずれ量がギヤ ップ領域の長さ以下であることを特徴としたが、 アドレス領域の後端の ずれ量がギヤップ領域の長さ以下であることも特徴としている。
(第 3実施形態)
図 3 ( a ) および図 3 ( b ) は、 本発明の第 3実施形態による多層光 ディスクの各記録再生面における実際のセクタ一構造を模式的なセクタ 一構造として表現した図である。 図 3 ( a ) は、 第 1記録再生面 3 4が 第 2記録再生面 4 4に対して光ビーム 8 4の走査方向 (図示右側) にず れた状態で貼り合わされた状態を示している。 また、 図 3 (b) は、 第 1記録再生面 34が第 2記録再生面 44に対して光ビーム 84の走査方 向と逆方向 (図示左側) にずれた状態で貼り合わされた状態を示してい る。
図 3 (a) 及び図 3 (b) において、 34 1、 34 3、 34 2はそれ ぞれ第 1記録再生面 34のアドレス領域、 ギャップ領域、 データ領域を 示し、 44 1、 44 3、 44 2はそれぞれ第 2記録再生面 44のァドレ ス領域、 ギャップ領域、 データ領域を示す。 なお、 34 1と 44 1、 3 4 3と 44 3、 3 4 2と 44 2とは、光ビ一ム 84の走査方向について、 それぞれ等しい長さを有する。 また、 区間 Z 1は、 図 3 (a) において は、 第 2記録再生面 44のデータ領域 442の先頭部分が第 1記録再生 面 34のギャップ領域 34 3と重なる区間を示し、 図 3 (b) において は、 第 1記録再生面 34のデータ領域 3 42の先頭部分が第 2記録再生 面 44のギャップ領域 44 3と重なる区間を示す。従って、 区間 Z 2は、 第 1記録再生面 34のデ一夕領域 34 2と第 2記録再生面 44のデータ 領域 442とが重なる区間を示し、 区間 Z 1は、 第 1記録再生面 34と 第 2記録再生面 44の貼り合わせ精度に相当する。 また、 区間 Z 1は、 第 1記録再生面 34のギャップ領域 3 4 3、 及び第 2記録再生面 44の ギャップ領域 44 3の長さ以下となるように構成されている。
また、 図 3 (a) において、 第 1記録再生面 34に斜線で示した領域 X 1は、 第 1記録再生面 34に情報を記録する際の記録範囲を示してい る。 即ち、 第 1記録再生面 3 4に情報を記録する際の記録範囲 X 1は、 第 1記録再生面 34におけるギャップ領域 34 3の後端部分の区間 Z 1 と区間 Z 2との和の範囲に相当する。
このように、 第 1記録再生面 34に情報を記録する際の記録範囲を設 定し、 第 2記録再生面 44に情報を記録する際の記録範囲をデータ領域 442と同一とすると、 第 1記録再生面 34及び第 2記録再生面 44に おける記録範囲は一致する。 換言すれば、 データ記録開始位置とデータ 記録終了位置とが二つの記録再生面で一致することになる。
記録される情報量は、二つの記録再生面で同一である。 この情報量は、 データ領域 342および 442により予め定められた情報量に等しくな る。
一方、 図 3 (b) において、 第 2記録再生面 44に斜線で示した領域 X 2は、 第 2記録再生面 44に情報を記録する際の記録範囲を示してい る。 即ち、 第 2記録再生面 44に情報を記録する際の記録範囲 X 2は、 第 2記録再生面 44におけるギャップ領域 443の後端部分の区間 Z 1 と区間 Z 2との和の領域に相当する。
このように、 第 2記録再生面 44に情報を記録する際の記録範囲を設 定し、 第 1記録再生面 34に情報を記録する際の記録範囲をデータ領域 342と同一とすると、 第 1記録再生面 34及び第 2記録再生面 44に おける記録範囲は一致する。 換言すれば、 データ記録開始位置とデータ 記録終了位置とが二つの記録再生面で一致することになる。 ここでも、 記録される情報量は、 二つの記録再生面で同一であり、 この情報量は、 データ領域 342および 442により予め定められた情報量に等しくな る。
このように、 二つの記録再生面が互いに一致せずにずれた状態で貼り 合わされていても、 そのずれ量に相当する所定の精度 L (図 3 (a) 及 び図 3 (b) における区間 Z 1の長さ) とギャップ領域 343および 4 43の長さ Gとに L≤Gなる関係を持たせ、 一方の記録再生面への記録 範囲をデ一夕領域 (図 3 (a) の場合は 442、 図 3 (b) の場合は 3 42) に一致させ、 他方の記録再生面への記録範囲を大半のデータ領域 に一部のギャップ領域を含めた領域(図 3 (a)の場合は X 1、図 3 (b) の場合は X 2 ) として、 二つの記録再生面における記録範囲、 即ち、 デ 一夕記録開始位置及びデータ記録終了位置を一致させて記録することに より、 第 1記録再生面が既に記録済みであっても、 第 2記録再生面への 記録の際には、 均一な記録パワーで記録することができる。 従って、 従 来例で説明したような記録パワーの不均一化が防止され、 再生信号の振 幅差も抑制される。 こうして、 記録された情報が正確に再生されること になる。
しかも、 二つの記録再生面に記録される情報量は、 各々の記録再生面 のデータ領域にあらかじめ規定された量から減るわけではない。さらに、 二つの記録再生面の貼り合わせ精度を、 アドレス領域とデータ領域との 間のギヤップ領域の長さ以下とすれば、 二つの記録再生面における記録 開始位置を一致させても、 いずれか一方の記録再生面における記録開始 位置がその記録再生面のァドレス領域に割り込むことがない。 従って、 ァドレス領域の再生信号にも影響は及ばない。
以上説明したように、 本実施形態による多層光ディスク記録方法は、 記録する情報量ゃァドレス領域の再生信号に影響を及ぼすことなく、 す ベての記録再生面に、 均一な記録パワーで光学情報を記録することを可 能とするものである。
なお、 上記のように、 記録再生面が二つである場合には、 データを記 録する範囲をいずれか一方の記録再生面のデータ領域と一致させること が好ましい。
(第 4実施形態)
第 4実施形態は、 第 3実施形態で説明した多層光ディスクに情報を記 録するための情報記録再生装置に関するものである。
以下、 図面を参照して、 本実施形態における情報記録再生装置につい て説明する。 なお、 対象とする多層光ディスクは、 第 3実施形態にて説 明したものであるため、 図 3 (a) 及び図 3 (b) を順次引用しながら 説明する。
図 4は、 本発明の第 4実施形態による情報記録再生装置の構成を示す ブロック図である。 図 2において、 1 0 1は再生光、 1 02は記録光で あり、 再生光 1 0 1または記録光 1 0 2により、 対物レンズ 1 2 2を介 して所定の線速度を得る回転数で回転している多層光ディスク 1 0 0 (図 3 (a) 及び図 3 (b) に示す二層構造を有する) に対して、 信号 の再生または情報の記録が行われる。 また、 1 50は多層光ディスク 1 0 0を回転駆動させるためのモ一夕、 1 5 1はモ一夕に装着され、 一回 転に一回のパルス 1 5 2を出力するための口一夕リエンコーダである。
さらに、 1 04は光電変換器であり、 再生光 1 0 1から電気信号とし ての再生信号 1 0 5を得るためのものである。 再生信号 1 0 5は、 アド レス信号再生処理部 1 06 (図 4の点線で囲んだ部分) に入力され、 ァ ドレス信号再生処理部 1 06を構成するエンベロープ検出回路 1 0 7、 コンパレータ 1 09、 およびエッジ検出回路 1 1 0によって処理され、 ァドレス信号再生処理部 1 0 6から、 カウン夕 1 2 3に対するリセット 信号 1 1 5が出力される。 一方、 カウンタ 1 2 3には、 クロック 1 1 1 がそのクロック入力端子に、 設定値 P及び Qがそのデータ入力端子に入 力されている。
図 3 (a) 及び図 3 (b) における第 1記録再生面 34に対して記録 動作がなされるときは、 設定値 P 1及び Q 1が選択回路 1 30を介して カウンタ 1 2 3に設定される設定値 P及び Qとなる。 一方、 第 2記録再 生面 44に対して記録動作がなされるときは、 設定値 P 2及び Q 2が選 択回路 1 3 0を介してカウンタ 1 2 3に設定される設定値 P及び Qとな る。 また、 選択回路 1 3 0は制御指令 1 3 1の状態によって制御され、 制御指令 1 3 1の状態は、 第 1記録再生面 34に対して記録動作がなさ れるか、 第 2記録再生面 4 4に対して記録動作がなされるかによつて決 定される。
また、 カウンタ 1 2 3は、 リセット信号 1 1 5によりァクティブにな つた時刻から、 設定値 Pとクロック 1 1 1の周波数で決定される第 1所 定時間の後に、 フリップフロップ 1 2 4のセット入力信号 1 1 9を出力 する。 また、 カウン夕 1 2 3は、 上記時刻から、 設定値 Qとクロック 1 1 1の周波数で決定される第 2所定時間の後に、 フリップフロップ 1 2 4のリセット入力信号 1 2 0を出力する。 従って、 第 1所定時間と第 2 所定時間は、 第 1記録再生面 3 4と第 2記録再生面 4 4への記録時にお いてそれぞれ異なる時間となる。
さらに、 フリップフロップ 1 2 4の出力信号 1 2 1によってスィツチ 1 1 2を制御することにより、 記録データ 1 1 3の光変調器 1 0 3への 供給が制御されて、 記録信号 1 2 5が得られる。 さらに、 記録信号 1 2 5から、 光変調器 1 0 3の働きによって記録光 1 0 2が得られ、 この記 録光 1 0 2が対物レンズ 1 2 2を介して多層光ディスク 1 0 0に照射さ れ、 所望のデータが記録されることになる。
このように、 カウンタ 1 2 3とその設定値 P、 Q、 フリップフロップ 1 2 4は、 記録ゲート信号を発生させる記録ゲート発生部を構成する。 次に、 以上のように構成された本実施形態による情報記録再生装置の 動作について、 まず、 その主要な信号のタイミングを示す図 5 ( a ) を 用いて説明する。
図 5 ( a ) は、 第 1記録再生面 3 4が第 2記録再生面 4 4に対して、 その貼り合わせの精度が Z 1であり、 かつ紙面右側にずれた状態で貼り 合わされた、 図 3 ( a ) に示した多層光ディスクへの記録時の動作を決 定するタイミングを生成する過程について示したものである (なお、 図 3 ( a ) において、 紙面上部より照射される記録光としての光ビーム 8 4は、 再生時には再生光となる)。
図 5 (a) において、 1 0 5 a、 1 1 6 a, 1 1 7 a、 1 1 5 aは、 それぞれ、 第 1記録再生面 34を再生したときの再生信号 1 0 5 (アド レス領域からのァドレス再生信号のみを示す)、エンベロープ検出回路 1 07の出力信号 1 1 6、 コンパレー夕 1 0 9の出力信号 1 1 7、 エッジ 検出回路 1 1 0の出力信号 1 1 5 (カウン夕 1 23のリセット信号) に 相当する。 また、 1 1 9 a、 1 2 0 aは、 それぞれ、 選択回路 1 30に よってカウンタ 1 2 3への設定値 P及び Qがそれぞれ P 1 , Q 1となつ た時、 即ち、 第 1記録再生面 34に対して記録を行おうとしたときのフ リップフロップ 1 24へのセット信号 1 1 9、 リセット信号 1 2 0に相 当し、 1 2 1 aはフリップフロップ 1 24の出力信号 1 2 1 (スィッチ 1 1 2の制御信号) に相当する。 また、 T 1 aは、 1 1 5 aがァクティ ブとなる時刻から 1 1 9 aがァクティブとなるまでの時間であって、 上 記第 1所定時間に相当し、 T 2 aは、 1 1 9 aがアクティブとなる時刻 から 1 20 aがアクティブとなるまでの時間であって、 上記第 2所定時 間に相当する。
また、 T 2 aは、 フリップフロップ 1 24の出力信号 1 2 1 (スイツ チ 1 1 2の制御信号)、即ち、 1 2 1 aがアクティブとなっている時間に 等しく、 従って、 1 2 5 aは、 記録データ 1 1 3がスィツチ 1 1 2でゲ ートされた記録信号 1 2 5のタイミングである。
また、 1 0 5 b、 1 1 6 b、 1 1 7 b、 1 1 5 bは、 それぞれ、 第 2 記録再生面 44を再生したときの再生信号 1 0 5 (アドレス再生信号の みを示す)、エンベロープ検出回路 1 0 7の出力信号 1 1 6、 コンパレー 夕 1 0 9の出力信号 1 1 7、エッジ検出回路 1 1 0の出力信号 1 1 5 (力 ゥン夕 1 2 3のリセット信号) に相当する。 また、 1 1 9 b、 1 20 b は、 それぞれ、 選択回路 1 3 0によってカウンタ 1 2 3への設定値 P及 び Qがそれぞれ P 2、 Q 2となった時、 即ち、 第 2記録再生面 44に対 して記録を行おうとしたときのフリップフロップ 1 24へのセット信号 1 1 9、 リセット信号 1 2 0に相当し、 1 2 1 bはフリップフロップ 1 24の出力信号 1 2 1 (スィッチ 1 1 2の制御信号) に相当する。 また、 T i bは、 1 1 5 bがアクティブとなる時刻から 1 1 9 bがアクティブ となるまでの時間であって、 上記第 1所定時間に相当し、 T 2 bは、 1 1 9 bがアクティブとなる時刻から 1 20 bがアクティブとなるまでの 時間であって、 上記第 2所定時間に相当する。
また、 T 2 bは、 フリップフロップ 1 24の出力信号 1 2 1 (スイツ チ 1 1 2の制御信号)、即ち、 1 2 1 bがアクティブとなっている時間に 等しく、 従って、 1 2 5 bは、 記録デ一夕 1 1 3がスィツチ 1 1 2でゲ 一卜された記録信号 1 2 5のタイミングである。
従って、 T l aと T l a + T 2 aとは、 設定値 P 1及び Q 1とカウン 夕 1 2 3のクロック周波数とによってそれぞれ決定され、 T 1 bと T 1 b + T 2 bとは、 設定値 P 2及び Q 2とカウン夕 1 23のクロック周波 数とによってそれぞれ決定されることになり、 丁 1 &と丁 1 13、 T l a + T 2 aと T l b + T 2 bとはそれぞれ異なる時間となる。
従って、 対象とする多層光ディスク 1 00の第 1記録再生面 34と第 2記録再生面 44が図 3 (a) に示すように貼り合わされていて、 多層 光ディスク 1 00が所定の線速度 Vで回転しているとするとすると、 第 1記録再生面 34への記録の際には、 T 1 aの値を(A 2 + G 2— Z 1 ) ZV (ここで、 A2、 G 2は、 それぞれ、 第 1記録再生面 34のァドレ ス領域 34 1の長さ、 ギャップ領域 343の長さを示す) に等しくなる ように設定値 P 1を決定し、 T 1 a + T 2 aの値を(A 2 +G 2 + Z 2) ZV、 に等しくなるように設定値 Q 1を決定する。 そして、 これらの値 がカウンタ 1 2 3への設定値となるように、 選択回路 1 3 0の制御入力 1 3 1の状態を決定する。
一方、 第 2記録再生面 44への記録の際には、 T i bの値を (A 3 + G 3) ノ V (ここで、 A3、 G 3は、 それぞれ、 第 2記録再生面 44の アドレス領域 44 1の長さ、 ギャップ領域 443の長さを示す) に等し くなるように設定値 P 2を決定し、 T l b + T 2 bの値を (A 3 +G 3 + Z 1 + Z 2) /V, 即ち、 (A 3 +G 3 +D 3) /V (ここで、 D 3は 第 2記録再生面 44のデータ領域 442の長さを示す) に等しくなるよ うに設定値 Q 2を決定する。 そして、 上記と同様、 これらの値がカウン 夕 1 2 3への設定値となるように、 選択回路 1 30の制御入力 1 3 1の 状態を決定する。
このようにして、 第 1記録再生面 34への記録信号 1 2 5 aと第 2記 録再生面 44への記録信号 1 2 5 bがァクティブな状態となっている時 間、 T 2 aと T 2 bとは両者とも同一のタイミングとなり、 データ記録 開始位置とデータ記録終了位置とが、 第 1記録再生面 34と第 2記録再 生面 44とにおいて一致することになる。 即ち、 その記録範囲が、 第 1 記録再生面 34では図 3 (a) に示す区間 X Iとなり、 第 2記録再生面 44ではそのデータ領域 442となって一致することになる。
換言すれば、 第 1記録再生面 34への記録時においては、 その記録開 始位置をデータ領域 342の先頭から二つの記録再生面の貼り合わせの 精度 Z 1だけ進め (すなわち、 走査方向とは逆方向に変位させ)、 記録終 了位置を第 1記録再生面 34のデータ領域 342と第 2記録再生面 44 のデータ領域 442とが重なる領域 Z 2の後端とし、 第 2記録再生面 4 4への記録時においては、 あらかじめ決められたデータ領域 442を記 録範囲とすることにより、 二つの記録再生面でのデータ記録開始位置と データ記録終了位置とがー致する、 即ち、 記録範囲が一致することにな る。 次に、図 4に示す本実施形態による情報記録再生装置の動作について、 その主要な信号のタイミングを示す図 5 (b) を用いて説明する。
図 5 (b) は、 第 1記録再生面 34が第 2記録再生面 44に対して、 その貼り合わせの精度が Z 1であり、 かつ紙面左側にずれた状態で張り 合わされた、 図 3 (b) に示した多層光ディスクへの記録時の動作を決 定するタイミングが生成される過程について示したものである (なお、 図 3 (b) において、 紙面上部より照射される記録光としての光ビーム 84は再生時には再生光となる)。
図 5 (b) において、 1 0 5 a、 1 1 6 a、 1 1 7 a、 1 1 5 aは第 1記録再生面 34を再生したときの再生信号 1 0 5 (アドレス領域から のアドレス再生信号のみを示す)、エンベロープ検出回路 1 0 7の出力信 号 1 1 6、 コンパレー夕 1 0 9の出力信号 1 1 7、 エツジ検出回路 1 1 0の出力信号 1 1 5 (カウンタ 1 2 3のリセット信号) に相当する。 ま た、 1 1 9 a、 1 20 aは、 それぞれ、 選択回路 1 30によってカウン 夕 1 2 3への設定値 P及び Qがそれぞれ P 1、 Q 1となった時、 即ち、 第 1記録再生面 34に対して記録を行おうとしたときのフリップフロッ プ 1 24へのセット信号 1 1 9、 リセット信号 1 20に相当し、 1 2 1 aは、 フリップフロップ 1 24の出力信号 1 2 1 (スィッチ 1 1 2の制 御信号) に相当する。 また、 T l aは、 1 1 5 aがアクティブとなる時 刻から 1 1 9 aがアクティブとなるまでの時間であって、 上記第 1所定 時間に相当し、 T 2 aは、 1 1 9 aがアクティブとなる時刻から 1 20 aがァクティブとなるまでの時間であって、 上記第 2所定時間に相当す る。
また、 T 2 aは、 フリップフロップ 1 24の出力信号 1 2 1 (スイツ チ 1 1 2の制御信号)、即ち、 1 2 1 aがアクティブとなっている時間に 等しく、 従って、 1 2 5 aは、 記録データ 1 1 3がスィツチ 1 1 2でゲ ートされた記録信号 1 2 5のタイミングである。
また、 1 0 5 b、 1 1 6 b、 1 1 7 b、 1 1 5 bは、 それぞれ、 第 2 記録再生面 44を再生したときの再生信号 1 0 5 (アドレス再生信号の みを示す)、 エンベロープ検出回路 1 0 7の出力信号 1 1 6、 コンパレー 夕 1 0 9の出力信号 1 1 7、エッジ検出回路 1 1 0の出力信号 1 1 5 (力 ゥンタ 1 2 3のリセット信号) に相当する。 また、 1 1 9 b、 1 20 b は、 それぞれ、 選択回路 1 3 0によってカウンタ 1 2 3への設定値 P及 び Qがそれぞれ P 2、 Q 2となった時、 即ち、 第 2記録再生面 44に対 して記録を行おうとしたときのフリップフロップ 1 24へのセット信号 1 1 9、 リセット信号 1 20に相当し、 1 2 1 bは、 フリップフロップ 1 24の出力信号 1 2 1 (スィッチ 1 1 2の制御信号) に相当する。 ま た、 T 1 bは、 1 1 5 bがアクティブとなる時刻から 1 1 9 bがァクテ イブとなるまでの時間であって、 上記第 1所定時間に相当し、 T 2 bは、 1 1 9 bがアクティブとなる時刻から 1 20 bがアクティブとなるまで の時間であって、 上記第 2所定時間に相当する。
また、 T 2 bは、 フリップフロップ 1 24の出力信号 1 2 1 (スイツ チ 1 1 2の制御信号)、即ち、 1 2 1 bがァクティブとなっている時間に 等しく、 従って、 1 2 5 bは、 記録デ一夕 1 1 3がスィッチ 1 1 2でゲ 一卜された記録信号 1 2 5のタイミングである。
従って、 T 1 aと T 1 a + T 2 aとは、 設定値 P 1及び Q 1とカウン 夕 1 2 3のクロック周波数とによってそれぞれ決定され、 T 1 bと T 1 b + T 2 bとは、 設定値 P 2及び Q 2とカウンタ 1 2 3のクロック周波 数とによってそれぞれ決定されることになり、 丁 1 &と丁 113、 T 1 a + T 2 aと T l b + T 2 bとはそれぞれ異なる時間である。
従って、 対象とする多層光ディスク 1 00の第 1記録再生面 34と第 2記録再生面 44が図 3 (b) に示すように貼り合わされていて、 多層 光ディスク 1 0 0が所定の線速度 Vで回転しているとするとすると、 第 1記録再生面 34への記録の際には、 T 1 aの値を (A 2 + G 2 ) /V に等しくなるように設定値 P 1を決定し、 T 1 a + T 2 aの値を (A 2 + G 2 +D 2) ZV、 に等しくなるように設定値 Q 1を決定する。 そし て、 これらの値がカウン夕 1 2 3への設定値となるように、 選択回路 1
3 0の制御入力 1 3 1の状態を決定する。
一方、 第 2記録再生面 44への記録の際には、 T i bの値を (A 3 + G 3— Z 1 ) /V (ここで、 A 3、 G 3は、 それぞれ、 第 2記録再生面
44のアドレス領域 44 1の長さ、 ギャップ領域 443の長さを示す) に等しくなるように設定値 P 2を決定し、 T l b + T 2 bの値を (A 3
+ G 3 + Z 2)ノ Vに等しくなるように設定値 Q 2を決定する。そして、 これらの値がカウンタ 1 2 3への設定値となるように、 選択回路 1 3 0 の制御入力 1 3 1の状態を決定すれば、 第 1記録再生面 34への記録信 号 1 2 5 aと、 第 2記録再生面 44への記録信号 1 2 5 bがアクティブ な状態となっている時間 T 2 aと T 2 bとは、 両者とも同一のタイミン グとなり、 デー夕記録開始位置とデータ記録終了位置とが第 1記録再生 面 3 4と第 2記録再生面 44とで一致することになる。 即ち、 その記録 範囲が、 第 1記録再生面 34ではデータ領域 3 42となり、 第 2記録再 生面 44では図 3 (b) に示す区間 X 2となって一致することになる。 換言すれば、 第 1記録再生面 34への記録時においては、 あらかじめ 決められたデータ領域 34 2を記録範囲とし、 第 2記録再生面 44への 記録時においては、 デ一夕記録開始位置をデータ領域 44 2の先頭から 二つの記録再生面の張り合わせ精度 Z 1だけ進め (すなわち、 走査方向 とは逆方向に変位させ)、データ記録終了位置を第 1記録再生面 34のデ —夕領域 34 2と第 2記録再生面 44 2のデータ領域 44 2とが重なる 領域 Z 2の後端とすることにより、 二つの記録再生面でのデータ記録開 始位置とデータ記録終了位置とがー致する、 即ち、 記録範囲が一致する ことになる。
なお、 第 1記録再生面 3 4と第 2記録再生面 4 4の貼り合わせ精度 Z 1の算出 (ずれ量の検出) は、 次のように行えばよい。 即ち、 ロータリ エンコーダ 1 5 1より出力される一回転に一回のパルス 1 5 2が出力さ れる時刻から、 第 1記録再生面 3 4を再生したときのエンベロープ検出 回路 1 0 7の出力信号 1 1 6が出力される時刻をまず測定し、 次に、 口 一夕リエンコーダ 1 5 1より出力される一回転に一回のパルス 1 5 2が 出力される時刻から、 第 2記録再生面 4 4を再生したときのェンベロー プ検出回路 1 0 7の出力信号 1 1 6が出力される時刻を測定して、 両者 の時間差を求め、 線速度 Vで割ればよい。
また、 第 1記録再生面 3 4のデータ領域 3 4 2と第 2記録再生面 4 4 のデータ領域 4 4 2とが重なる区間 Z 2の算出については、 二つの記録 再生面のデータ領域の長さが既知であることから、 先に算出した Z 1の 値に基づいて容易に求めることができる。
なお、 本実施形態の説明に用いた多層光ディスクの構成は、 第 3実施 形態にて説明した図 3 ( a ) 及び図 3 ( b ) に示す構成としたが、 ギヤ ップ領域が挿入される場所が、 データ領域と次のセクタ一のァドレス領 域である場合には、 第 1記録再生面 3 4もしくは第 2記録再生面 4 4の デ一夕記録開始位置をその貼り合わせ精度分だけ遅らせることにより、 上記のような二つの記録再生面でそのデータ記録開始位置及びデータ記 録終了位置、 即ち、 その記録範囲を一致させることができる。
以上のように、 図 3 ( a ) および図 3 ( b ) に示すような第 1記録再 生面 3 4と第 2記録再生面 4 4とが所定の精度 Z 1だけずれた状態で貼 り合わされていても、 第 1記録再生面 3 4における記録範囲と第 2記録 再生面 4 4の記録範囲を上記のように設定しておけば、 第 1記録再生面 3 4がすでに記録済みであっても、 第 2記録再生面 4 4における記録範 囲においては記録光の透過率が一定となり、 記録時に第 2記録再生面 4 4のその記録範囲に照射される記録光のパワーが均一化される。
従って、 記録された範囲内で記録光のパワーの不均一さに起因する再 生信号の信号振幅の差が解消され、 再生信号から正しいデータの読み出 しをすることができる。 特に、 記録再生面を構成する記録膜に相変化型 の材料を用いた場合は、 記録によってその相状態が変わり、 記録の前後 における透過率の差が大きいため、より顕著な効果を得ることができる。
(第 5実施形態)
図 6 ( a ) および図 6 ( b ) は、 本発明の第 5実施形態による多層光 ディスクの各記録再生面における実際のセクタ一構造を模式的なセクタ 一構造として表現した図である。
まず、 図 6 ( a ) を用いて説明する。 図 6 ( a ) は、 第 1記録再生面 3 5と第 2記録再生面 4 5の貼り合わせ時に、 第 1記録再生面 3 5が第 2記録再生面 4 5に対して光ビーム 8 5の走査方向 (紙面右側) にずれ た状態を示したものである。
図 6 ( a ) において、 3 5及び 4 5は、 それぞれ、 本実施形態におけ る第 1記録再生面及び第 2記録再生面をセクタ一フォーマツトとして示 し、 3 5 1及び 4 5 1は、 それぞれ、 第 1記録再生面 3 5及び第 2記録 再生面 4 5のアドレス領域を、 3 5 2及び 4 5 2は、 それぞれ、 第 1記 録再生面 3 5及び第 2記録再生面 4 5のデータ領域を、 3 5 3及び 4 5 3は、 それぞれ、 第 1記録再生面 3 5及び第 2記録再生面 4 5のギヤッ プ領域を示す。
また、 3 5 4及び 4 5 4は、 それぞれ、 第 1記録再生面 3 5及び第 2 記録再生面 4 5のデータ領域の先端部分 (始端部分) に割り当てられた ガード領域 (ガードデータ記録領域) を示す。 さらに、 3 5 5及び 4 5 5は、 それぞれ、 第 1記録再生面 3 5及び第 2記録再生面 4 5の後端部 分 (終端部分) に割り当てられたガード領域を示す。 上記 4つのガード 領域は、 データ領域に記録されるデータを保護するために設けられた領 域であり、 例えば、 単一周波数を有する信号が記録される。 また、 第 1 記録再生面 3 5及び第 2記録再生面 4 5の先端部分にそれぞれ割り当て られたガード領域 3 5 4及び 4 5 4は等しい長さ L 2を有し、 第 1記録 再生面 3 5及び第 2記録再生面 4 5の後端部分にそれぞれ割り当てられ たガード領域 3 5 5及び 4 5 5も等しい長さ L 3を有する。
また、 L 1は、 第 1記録再生面 3 5及び第 2記録再生面 4 5が貼り合 わされたときの、 各々の記録再生面におけるセクタ一の先頭位置のずれ 量を示すものであり、 このずれ量 L 1は、 第 1記録再生面 3 5及び第 2 記録再生面 4 5のデータ領域の先頭部分におけるずれ量に等しく、 第 1 記録再生面 3 5と第 2記録再生面 4 5の貼り合わせ精度を示し、 ガード 領域 3 5 4及び 4 5 4の長さ L 2と比較すると、 L 1≤L 2である。
ここで、 第 1記録再生面 3 5のデータ領域 3 5 2がガードデータを含 めて既に記録済みであったとし、 その後、 第 2記録再生面 4 5のデ一夕 領域 4 5 2にガードデータを含めて記録したとき、 第 2記録再生面 4 5 のデータ領域 4 5 2の先頭部分における長さ L 1の領域と残りの領域と では、 光ビーム 8 5の透過率の違いによる記録光の実効パワーに変動が 発生し、 結果として再生信号の振幅に差異が生じる。
ところが、 第 2記録再生面 4 5のデータ領域 4 5 2の先頭部分におけ る長さ L 1の領域は、 第 2記録再生面 4 5のガード領域 4 5 4の一部で あって、 上記のようにガード領域はデ一夕領域に記録されるデータを保 護するために設けられた領域であるため、 この領域の再生信号に、 記録 光の実効パワーの違いに起因する振幅の差異があつたとしても、 再生デ —夕には何ら影響がなく、 正しい再生デ一夕が得られることになる。 換言すれば、 第 1記録再生面 3 5と第 2記録再生面 4 5の貼り合わせ 精度し 1が、 第 1記録再生面 3 5及び第 2記録再生面 4 5のデータ領域 の先端部分にそれぞれ割り当てられたガード領域 3 5 4及び 4 5 4の長 さし 2以下であれば、 記録光の実効パワーの違いに起因する再生信号の 振幅の差異があつたとしても、 再生デ一夕には何ら影響がなく、 正しい 再生データが得られることになる。
次に、 図 6 ( b ) を用いて説明する。 図 6 ( b ) は、 第 1記録再生面 3 5と第 2記録再生面 4 5の貼り合わせ時に、 第 1記録再生面 3 5が第 2記録再生面 4 5に対して光ビーム 8 5の走査方向と逆方向(紙面左側) にずれた状態を示したものである。
図 6 ( b ) において、 L 1は、 図 6 ( a ) と同様に、 第 1記録再生面 3 5と第 2記録再生面 4 5が貼り合わされたときの、 各々の記録再生面 におけるセクタ一の先頭位置のずれ量を示すものであり、 このずれ量 L 1は、 第 1記録再生面 3 5及び第 2記録再生面 4 5のデータ領域の後端 部分におけるずれ量に等しく、 第 1記録再生面 3 5と第 2記録再生面 4 5の張り合わせ精度を示し、 ガード領域 3 5 5及び 4 5 5の長さ L 3と 比較すると、 L 1≤L 3である。
ここで、 第 1記録再生面 3 5のデ一夕領域 3 5 2がガードデータを含 めて既に記録済みであったとし、 その後、 第 2記録再生面 4 5のデータ 領域 4 5 2にガードデータを含めて記録したとき、 第 2記録再生面 4 5 のデータ領域 4 5 2の後端部分における長さ L 1の領域と残りの領域で は、 光ビーム 8 5の透過率の違いによる記録光の実効パワーに変動が発 生し、 結果として再生信号の振幅に差異が生じる。
ところが、 第 2記録再生面 4 5のデータ領域 4 5 2の後端部分におけ る長さ L 1の領域は、 第 2記録再生面 4 5のガード領域 4 5 5の一部で あって、 上記のようにガ一ド領域はデータ領域に記録されるデータを保 護するために設けられた領域であるため、 この領域の再生信号に、 記録 光の実効パワーの違いに起因する振幅の差異があつたとしても、 再生デ 一夕には何ら影響がなく、 正しい再生データが得られることになる。 換言すれば、 第 1記録再生面 3 5と第 2記録再生面 4 5の貼り合わせ 精度 L 1が、 第 1記録再生面 3 5及び第 2記録再生面 4 5のデ一夕領域 の後端部分にそれぞれ割り当てられたガード領域 3 5 5及び 4 5 5の長 さ 3以下であれば、 記録光の実効パワーの違いに起因する再生信号の 振幅の差異があつたとしても、 再生データには何ら影響がなく、 正しい 再生データが得られることになる。
以上のように、 本実施形態によれば、 第 1記録再生面 3 5と第 2記録 再生面 4 5の貼り合わせ精度を、 第 1記録再生面 3 5及び第 2記録再生 面 4 5のデータ領域の先端部分にそれぞれ割り当てられたガード領域 3 5 4及び 4 5 4の長さ、 また、 その後端部分にそれぞれ割り当てられた ガード領域 3 5 5及び 4 5 5の長さ以下とすることによって、 常に正し い再生データが得られる記録を行うことができる。
さらに、 本実施形態は、 記録再生面の数が 2の場合について説明した が、 記録再生面の数が 3以上の場合においても、 記録再生面の張り合わ せ精度が、 データ領域の先端部分に割り当てられたガード領域の長さ、 及びその後端部分に割り当てられたガード領域の長さ以下となるように. 各々の記録再生面を貼り合わせることによって、 任意の記録再生面から 常に正しい再生データが得られる記録を行うことができる。

Claims

請求の範囲
1 . あらかじめ記録されたアドレス領域とデータ領域が、 あらかじめ長 さが規定された領域を有するギヤップ領域で分割されたセクタ一構造を 有する複数の記録再生面を有し、 前記複数の記録再生面におけるセクタ 一の先頭位置が前記ギャップ領域の有する長さ以下の精度になるように、 前記複数の記録再生面が張り合わされたことを特徴とする多層光ディス ク。
2 . あらかじめ記録されたアドレス領域とデ一夕領域がギャップ領域で 分割されたセクタ一構造を有する複数の記録再生面が、 前記セクタ一の 先頭位置を基準とした所定の精度で張り合わせられており、 前記ギヤッ プ領域の有する長さが、 前記セクタ一の先頭位置を基準とした所定の精 度以上であることを特徴とする多層光ディスク。
3 . アドレス領域と、 情報を記録するためのデータ領域と、 前記アドレ ス領域と前記データ領域との間に配置された所定の長さのギャップ領域 とをそれぞれ有する第 1と第 2の記録面を備えた多層光ディスクであつ て、
前記記録面に対して情報の記録 再生のために照射されるビームの方 向から見た場合の、 前記第 1の記録面のァドレス領域の先頭位置と前記 第 2の記録面のアドレス領域の先頭位置とのずれ量が、 前記ギャップ領 域の長さよりも小さいことを特徴とする多層光ディスク。
4 . アドレス領域と、 情報を記録するためのデータ領域と、 前記アドレ ス領域と前記データ領域との間に配置された所定の長さのギヤップ領域 とをそれぞれ有する第 1と第 2の記録面を備えた多層光ディスクであつ て、
前記記録面に対して情報の記録 Z再生のために照射されるビームの方 向から見た場合の、 前記第 1の記録面のァドレス領域の後端位置と前記 第 2の記録面のァドレス領域の後端位置とのずれ量が、 前記ギヤップ領 域の長さよりも小さいことを特徴とする多層光ディスク。
5 . 光ビームの走査方向でァドレス領域とデータ領域との間にギャップ 領域を設けたセクタ一構造を有して層毎に形成された複数の記録再生面 における、 ある記録再生面の前記セクタ一の先頭位置を基準とした張り 合わせ精度 Lと、前記ギヤップ領域の前記走査方向における長さ Gとが、 全ての記録再生面について L≤Gなる関係を有するように構成された多 層光ディスクに光学情報を記録する方法であって、
前記ある記録再生面における前記セクタ一の先頭位置に対する、 他の 記録再生面における前記セクタ一の先頭位置のずれ量を検出し、
検出した前記ずれ量に基づいて、 前記セクタ一ごとのデータ記録開始 位置およびデータ記録終了位置が前記複数の記録再生面において一致す るように、 各記録再生面における前記データ記録開始位置および前記デ 一夕記録終了位置を設定することを特徴とする光学情報記録方法。
6 . 前記複数の記録再生面のうちで前記セクタ一の先頭位置が前記走査 方向とは逆方向に最も変位した記録再生面における前記データ領域の開 始位置および終了位置をそれぞれ前記データ記録開始位置および前記デ 一夕記録終了位置として設定する請求項 5記載の光学情報記録方法。
7 . 光ビームの走査方向でアドレス領域とデータ領域との間にギャップ 領域を設けたセクタ一構造を有して層毎に形成された複数の記録再生面 における、 ある記録再生面の前記セクタ一の先頭位置を基準とした張り 合わせ精度 Lと、前記ギャップ領域の前記走査方向における長さ Gとが、 全ての記録再生面について L≤Gなる関係を有するように構成された多 層光ディスクに光学情報を記録する方法であって、
前記ある記録再生面における前記セクタ一の先頭位置に対する、 他の 記録再生面における前記セクタ一の先頭位置のずれ量を検出する検出部 と、
前記検出部により検出した前記ずれ量に基づいて、 前記セクタ一ごと のデ一夕記録開始位置およびデータ記録終了位置が前記複数の記録再生 面において一致させるために、 各記録再生面における前記データ記録開 始位置から前記データ記録終了位置を指示するゲー卜信号を発生するゲ ート信号発生部とを備えたことを特徴とする光学情報記録装置。
8 . 前記ゲート信号は、 前記複数の記録再生面のうちで前記セクタ一の 先頭位置が前記走査方向とは逆方向に最も変位した記録再生面における 前記データ領域の開始位置および終了位置をそれぞれ前記データ記録開 始位置および前記データ記録終了位置として指示する請求項 7記載の光 学情報記録方法。
9 . 光ビームの走査方向でァドレス領域とデ一夕領域との間にギャップ 領域を設けたセクタ一構造を有する複数の記録再生面が形成された層を, 各記録再生面における前記セクタ一の先頭位置が前記走査方向において 所定の精度で近接するように張り合わせてなる多層光ディスクであって, 前記走査方向における前記データ領域の先端部分および後端部分に、 前記所定の精度以上の長さを有するガードデ一夕記録領域が割り当てら れたことを特徴とする多層光ディスク。
PCT/JP2000/002159 1999-04-07 2000-04-03 Disque optique multicouche et procede et dispositif d'enregistrement d'informations optiques sur ce disque WO2000062286A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE60031536T DE60031536T2 (de) 1999-04-07 2000-04-03 Mehrschichtige optische Platte, und Verfahren und Vorrichtung zum Aufzeichnen von optischen Informationen auf dieser Platte
EP00913086A EP1191524B1 (en) 1999-04-07 2000-04-03 Multilayer optical disk, and method and device for recording optical information thereon
AU34597/00A AU3459700A (en) 1999-04-07 2000-04-03 Multilayer optical disk, and method and device for recording optical informationthereon
KR10-2001-7012702A KR100470468B1 (ko) 1999-04-07 2000-04-03 다층 광 디스크 및 그것에 광학 정보를 기록하는 방법 및장치
US09/913,358 US6735158B1 (en) 1999-04-07 2000-04-03 Multilayer optical disk, and method and device for recording optical information thereon

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/99664 1999-04-07
JP9966499 1999-04-07
JP11/151078 1999-05-31
JP15107899 1999-05-31

Publications (1)

Publication Number Publication Date
WO2000062286A1 true WO2000062286A1 (fr) 2000-10-19

Family

ID=26440777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002159 WO2000062286A1 (fr) 1999-04-07 2000-04-03 Disque optique multicouche et procede et dispositif d'enregistrement d'informations optiques sur ce disque

Country Status (6)

Country Link
US (1) US6735158B1 (ja)
EP (1) EP1191524B1 (ja)
KR (1) KR100470468B1 (ja)
AU (1) AU3459700A (ja)
DE (1) DE60031536T2 (ja)
WO (1) WO2000062286A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038689A1 (ja) * 2004-10-07 2006-04-13 Pioneer Corporation 情報記録装置及び方法、並びに記録制御用のコンピュータプログラム
WO2006073078A1 (ja) * 2005-01-06 2006-07-13 Pioneer Corporation 記録装置及び記録方法、並びにコンピュータプログラム
WO2006073079A1 (ja) * 2005-01-06 2006-07-13 Pioneer Corporation 記録装置及び記録方法、並びにコンピュータプログラム
WO2006075696A1 (ja) * 2005-01-14 2006-07-20 Pioneer Corporation 情報記録媒体、情報記録装置及び方法、並びに記録制御用のコンピュータプログラム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002092939A (ja) * 2000-09-12 2002-03-29 Pioneer Electronic Corp 多層光学式記録媒体及びその製造方法
TW588346B (en) * 2000-12-22 2004-05-21 Koninkl Philips Electronics Nv Multilayer record carrier and method of manufacturing thereof and recording thereon
US7180849B2 (en) * 2001-05-18 2007-02-20 Sharp Kabushiki Kaisha Optical storage medium enabling uniform light transmittance, optical read/write apparatus for same, and optical read/write method for same
US7710854B2 (en) 2003-05-30 2010-05-04 Doug Carson & Associates, Inc. Multi-layer optical disc format
JP2005063589A (ja) 2003-08-18 2005-03-10 Sony Corp 記録装置、記録方法
US7800999B2 (en) 2004-07-05 2010-09-21 Pioneer Corporation Information recording medium, information recording device and method, and computer program
US20080305324A1 (en) * 2005-09-12 2008-12-11 Kirill Donetzkiy Multilayer Optical Disc Construction and Fabrication
US20110194390A1 (en) * 2010-02-09 2011-08-11 Chia-Tao Hsu Control method for adjusting laser power of laser beam irradiating multi-layer optical storage medium and related controller thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265748A (ja) * 1985-05-20 1986-11-25 Matsushita Electric Ind Co Ltd 光デイスク
JPH01286129A (ja) * 1988-05-12 1989-11-17 Nippon Telegr & Teleph Corp <Ntt> 光ディスク装置
JPH0554393A (ja) * 1991-08-27 1993-03-05 Hitachi Maxell Ltd 情報記録媒体およびその駆動装置
JPH07211048A (ja) * 1994-01-14 1995-08-11 Matsushita Electric Ind Co Ltd 光ディスク及び光学的記録再生装置
WO1996031875A2 (en) * 1995-04-07 1996-10-10 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, manufacturing method therefor, manufacturing apparatus therefor, and optical information recording and reproducing apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303225A (en) * 1989-10-30 1994-04-12 Matsushita Electrical Industrial Co., Ltd. Multi-layered optical disk with track and layer identification
JPH08212561A (ja) * 1994-11-30 1996-08-20 Sony Corp データ記録媒体およびそのデータ記録媒体を使用する記録/再生装置
DE69514630T9 (de) * 1994-11-30 2012-08-30 Sony Corp. Datenaufzeichnungsträger und dessen Aufzeichnen/Wiedergabe
TW414892B (en) * 1996-05-28 2000-12-11 Ibm Optical data storage system with multiple rewriteable phase-change recording layers
JPH1139657A (ja) 1997-07-22 1999-02-12 Toshiba Corp 光ディスク及びその再生装置
JP2002092939A (ja) * 2000-09-12 2002-03-29 Pioneer Electronic Corp 多層光学式記録媒体及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265748A (ja) * 1985-05-20 1986-11-25 Matsushita Electric Ind Co Ltd 光デイスク
JPH01286129A (ja) * 1988-05-12 1989-11-17 Nippon Telegr & Teleph Corp <Ntt> 光ディスク装置
JPH0554393A (ja) * 1991-08-27 1993-03-05 Hitachi Maxell Ltd 情報記録媒体およびその駆動装置
JPH07211048A (ja) * 1994-01-14 1995-08-11 Matsushita Electric Ind Co Ltd 光ディスク及び光学的記録再生装置
WO1996031875A2 (en) * 1995-04-07 1996-10-10 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, manufacturing method therefor, manufacturing apparatus therefor, and optical information recording and reproducing apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038689A1 (ja) * 2004-10-07 2006-04-13 Pioneer Corporation 情報記録装置及び方法、並びに記録制御用のコンピュータプログラム
KR100792271B1 (ko) * 2004-10-07 2008-01-07 파이오니아 가부시키가이샤 정보 기록 장치, 정보 기록 방법, 및 기록 제어용 컴퓨터프로그램
US7502285B2 (en) 2004-10-07 2009-03-10 Pioneeer Corporation Information recording apparatus and method, and computer program for recording control
WO2006073078A1 (ja) * 2005-01-06 2006-07-13 Pioneer Corporation 記録装置及び記録方法、並びにコンピュータプログラム
WO2006073079A1 (ja) * 2005-01-06 2006-07-13 Pioneer Corporation 記録装置及び記録方法、並びにコンピュータプログラム
KR100852227B1 (ko) * 2005-01-06 2008-08-13 파이오니아 가부시키가이샤 기록 장치, 기록 방법 및 컴퓨터 프로그램
KR100852226B1 (ko) * 2005-01-06 2008-08-13 파이오니아 가부시키가이샤 기록 장치, 기록 방법, 및 컴퓨터 프로그램
US7940633B2 (en) 2005-01-06 2011-05-10 Pioneer Corporation Recording device, recording method and computer program
US8023383B2 (en) 2005-01-06 2011-09-20 Pioneer Corporation Recording device, recording method, and computer program
WO2006075696A1 (ja) * 2005-01-14 2006-07-20 Pioneer Corporation 情報記録媒体、情報記録装置及び方法、並びに記録制御用のコンピュータプログラム
US7697390B2 (en) 2005-01-14 2010-04-13 Pioneer Corporation Efficient recording of information on an information recording medium having a plurality of layers

Also Published As

Publication number Publication date
KR20010111297A (ko) 2001-12-17
AU3459700A (en) 2000-11-14
EP1191524A4 (en) 2004-07-28
DE60031536T2 (de) 2007-06-14
US6735158B1 (en) 2004-05-11
KR100470468B1 (ko) 2005-02-05
EP1191524A1 (en) 2002-03-27
DE60031536D1 (de) 2006-12-07
EP1191524B1 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
US7471305B2 (en) Constant angular velocity disk label printing
US4530020A (en) Self-timed runout correction pattern
WO2000062286A1 (fr) Disque optique multicouche et procede et dispositif d&#39;enregistrement d&#39;informations optiques sur ce disque
EP0516125B1 (en) Disk apparatus
JPS6260730B2 (ja)
CN1161760C (zh) 信息记录再生用光盘及信息记录再生用光盘的形成方法
JPH04153919A (ja) 書換型光ディスクの記録方法
JPH11328681A (ja) 消去・書換え可能光ディスク
EP1810289B1 (en) Method for recording information on and/or reproducing information from a multilayer recording medium
WO2005104100A1 (ja) 光ディスク及び光ディスク記録再生装置
JPH0765434A (ja) 磁気記録媒体とその製造方法、磁気ヘッドおよび磁気記録再生装置
JP2004152429A (ja) 光ディスクのコード記録方法及びコード記録装置
JPH0341671A (ja) トラック構造を有する情報記録媒体の情報読取装置
JPS5938976A (ja) デイスク再生装置
JPH0765385A (ja) レーザ記録装置
JPH0547006A (ja) 光記録方法及び装置
JPS63104262A (ja) デイスク状情報記録再生装置
JPS62277627A (ja) 光学デイスク記録装置
JP3028547B2 (ja) 光ディスクのトラッキング制御方法
JPH0793767A (ja) 光学ヘッド制御装置
JPS6192435A (ja) 光デイスク装置
JPH0636464A (ja) デジタルデータ記録ディスク
KR900009184B1 (ko) 광학적 정보기록재생장치
WO2014045389A1 (ja) 光記録再生装置および方法
JPS58203621A (ja) 磁気デイスクのトラツキング方式

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09913358

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 611274

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020017012702

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2000913086

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017012702

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2000913086

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017012702

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2000913086

Country of ref document: EP