WO2000055983A1 - Module de commutation haute frequence - Google Patents

Module de commutation haute frequence Download PDF

Info

Publication number
WO2000055983A1
WO2000055983A1 PCT/JP2000/001670 JP0001670W WO0055983A1 WO 2000055983 A1 WO2000055983 A1 WO 2000055983A1 JP 0001670 W JP0001670 W JP 0001670W WO 0055983 A1 WO0055983 A1 WO 0055983A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
circuit
reception
frequency
switch module
Prior art date
Application number
PCT/JP2000/001670
Other languages
English (en)
French (fr)
Inventor
Shigeru Kemmochi
Mitsuhiro Watanabe
Hiroyuki Tai
Tsuyoshi Taketa
Toshihiko Tanaka
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to US09/700,671 priority Critical patent/US6987984B1/en
Priority to DE60034747T priority patent/DE60034747T2/de
Priority to EP00909731A priority patent/EP1083672B1/en
Priority to DK00909731T priority patent/DK1083672T3/da
Priority to JP2000605318A priority patent/JP4257481B2/ja
Publication of WO2000055983A1 publication Critical patent/WO2000055983A1/ja
Priority to US11/090,640 priority patent/US7171234B2/en
Priority to US11/090,218 priority patent/US7130655B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2135Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using strip line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/15Auxiliary devices for switching or interrupting by semiconductor devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching

Definitions

  • the present invention relates to a high-frequency composite component used for a wireless device that can be used for a plurality of different communication systems, and particularly to a high-frequency switch module used for a wireless device that handles three communication systems.
  • GSM Global System for Mobile Communications
  • DCS1800 Digital Cellular System 1800
  • PCS Personal Communications Services
  • PDC Personal Digital Cellular
  • the frequency band allocated to each system In such cases, all system users cannot be covered, and connection is difficult, and there are problems such as disconnection during a call. Therefore, it is proposed that the user be able to use a plurality of systems to substantially increase the available frequencies, further expand service areas and make effective use of the communication infrastructure of each system. ing.
  • the mobile communication device may be configured using components for each system.However, in a signal transmission system, for example, transmission of a desired transmission frequency is performed.
  • a high-frequency switch for switching a transmission / reception circuit, an antenna for transmitting / receiving a transmission / reception signal, and a high-frequency circuit such as a filter for passing a desired frequency of a reception signal passing through the high-frequency switch in a signal reception system. Parts are required for each system. As a result, a portable communication device becomes expensive, and both its volume and weight increase, making it unsuitable for portable use.
  • High-frequency circuit components that satisfy the frequency configuration of multiple systems and that are multifunctional are required.
  • an object of the present invention is to enable switching between a transmission circuit and a reception circuit of a plurality of (especially three) systems by using a high-frequency switch as a high-frequency circuit component used for a portable communication device that can support a plurality of systems with one unit.
  • An object of the present invention is to provide a compact, high-performance, high-frequency switch module. Disclosure of the invention
  • the high-frequency switch module of the present invention switches between a transmission circuit and a reception circuit of a plurality of different transmission / reception systems, and includes a first and second filter circuits having different pass bands from each other, and a first filter circuit.
  • a first switch circuit connected to the first transmission / reception system for switching between the transmission circuit and the reception circuit of the first transmission / reception system, and a transmission circuit for the second and third transmission / reception systems connected to the second filter circuit and a second transmission / reception system.
  • a second switch circuit for switching between the receiving circuit and the receiving circuit of the third transmitting / receiving system is provided.
  • the first and second filter circuits function as a branching circuit that branches the received signal of the first transmitting / receiving system and the receiving signal of the second and third transmitting / receiving systems.
  • the first and second switch circuits are diode switches having a diode and a distribution constant line as main elements, and the diode is supplied with a voltage from a power supply means (control circuit). And the diode switch is turned on / off to select one of the first, second and third transmission / reception systems.
  • the second switch circuit inputs the received signals of the second and third transmission / reception systems from the second filter circuit and transmits the transmission signals coming from the transmission circuits of the second and third transmission / reception systems.
  • Input and output terminals for inputting the transmission signals from the second and third transmission / reception system transmission circuits, and a first output terminal for outputting the second transmission / reception system reception signals to the reception circuit.
  • a first diode disposed between the input / output terminal and the input terminal, the first diode having a second output terminal for outputting a third transmission / reception system signal to a receiving circuit; and the input terminal.
  • the first and second distributed constant lines have line lengths such that their resonance frequencies are within the range of the maximum frequency and the minimum frequency in the frequency band of the transmission signal of the second and third transmission / reception systems. It is preferable that the frequency be intermediate between the maximum frequency and the minimum frequency.
  • the second switch circuit receives the received signals of the second and third transmission / reception systems from the second filter circuit and comes from the transmission circuits of the second and third transmission / reception systems.
  • An input / output terminal for outputting a transmission signal an input terminal for receiving a transmission signal coming from the transmission circuits of the second and third transmission / reception systems, and a third input / output terminal for outputting reception signals of the second and third transmission / reception systems.
  • a fourth output terminal for outputting a reception signal of the second transmission / reception system to the reception circuit, and a fifth output terminal for outputting a reception signal of the third transmission / reception system to the reception circuit.
  • the first distributed constant line has a line length such that its resonance frequency falls within the range from the maximum frequency to the minimum frequency of the frequency band of the transmission signal of the second and third transmission / reception systems
  • the second distributed constant The line has a line length such that its resonance frequency falls within the range from the maximum frequency to the minimum frequency of the frequency band of the transmission signal of the second and third transmission / reception systems
  • the third distributed constant line has the resonance frequency.
  • the fourth distributed constant line has a line length whose frequency falls within the range from the maximum frequency to the minimum frequency of the frequency band of the reception signal of the third transmission / reception system. It is preferable to have a line length that falls within the range from the maximum frequency to the minimum frequency of the frequency band of the received signal.
  • a one-pass filer circuit comprising a distributed constant line and a capacitor between the second filter circuit and the transmission circuits of the second and third transmission / reception systems.
  • the line length of the distributed constant line constituting the low-pass filter circuit is preferably ⁇ / 8 to person / 12 with respect to the intermediate frequency of the transmission signal of the second and third transmission / reception systems.
  • the filter circuit 2 is preferably composed of a distributed constant line and a capacitor.
  • the distributed constant lines and capacitors of the first and second filter circuits, and at least a part of the distributed constant lines of the first and second switch circuits are formed by electrodes in a laminated body composed of a dielectric layer having an electrode pattern. It is preferable to configure by a pattern.
  • the diodes of the first and second switch circuits are arranged on the laminate.
  • a single-pass filter composed of a distributed constant line and a capacitor is arranged between the second filter circuit and the transmission circuits of the second and third transmission / reception systems, and the distributed constant line and at least a part of the capacitor are arranged. Is preferably constituted by an electrode pattern in the laminate.
  • the distributed constant line of the switch circuit is preferably composed of an electrode pattern formed in a region sandwiched between a pair of ground electrodes. It is preferable that the capacitors of the first and second filter circuits are formed above the pair of ground electrodes, and the distributed constant lines of the first and second filter circuits are formed above the capacitors.
  • the distributed constant line of the switch circuit is preferably composed of an electrode pattern formed in a region sandwiched between a pair of ground electrodes.
  • a capacitor for the single-pass filter circuit and capacitors for the first and second filter circuits are formed above the ground electrode, and a distributed constant line for the low-pass filter circuit and the first and second filters are formed thereon. It is preferable to form a distributed constant line of the evening circuit.
  • the first and second filter circuits and the low-pass filter circuit are preferably formed in separate regions that do not overlap in the stacking direction of the stack.
  • FIG. 1 is a block diagram showing a circuit of a high-frequency switch module according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing an equivalent circuit of a high-frequency switch module according to one embodiment of the present invention
  • FIG. 3 is a plan view showing a high-frequency switch module according to one embodiment of the present invention
  • FIG. 4 is a perspective view showing a laminate of the high-frequency switch module according to one embodiment of the present invention.
  • FIG. 5 is a diagram showing the internal structure of the laminated body of the high-frequency switch module according to one embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing an equivalent circuit of a high-frequency switch module according to another embodiment of the present invention.
  • FIG. 7 is a plan view showing a high-frequency switch module according to another embodiment of the present invention.
  • FIG. 8 is a view showing the internal structure of a laminate of a high-frequency switch module according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing an equivalent circuit of a high-frequency switch module according to still another embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing an equivalent circuit of a high-frequency switch module according to still another embodiment of the present invention.
  • FIG. 11 (a) is a graph showing the insertion loss characteristics between TX1 and ANT in the GSM TX mode of the high-frequency switch module of Embodiment 1.
  • FIG. 11B is a graph showing the isolation characteristics between TX1 and RX1 in the GSM TX mode of the high-frequency switch module of Embodiment 1.
  • FIG. 12 (a) is a graph showing the insertion loss characteristics between the ANT-RX1 in the GSM RX mode of the high-frequency switch module of the first embodiment.
  • FIG. 12 (b) is a graph showing the isolation characteristics between the ANT-TX1 in the GSM RX mode of the high-frequency switch module according to the first embodiment.
  • Fig. 13 (a) is a graph showing the insertion loss characteristics between TX2 and ANT in the DCS / PCS TX mode of the high-frequency switch module of Example 1.
  • FIG. 13 (b) is a graph showing the isolation characteristics between TX2 and RX2 in the DCS / PCS TX mode of the high-frequency switch module of Embodiment 1.
  • FIG. 13 (c) is a graph showing the isolation characteristics between TX2 and RX3 in the DCS / PCS TX mode of the high-frequency switch module according to the first embodiment.
  • FIG. 14 (a) is a graph showing the insertion loss characteristics between the ANT-RX2 in the DCS RX mode of the high-frequency switch module of the first embodiment.
  • FIG. 14 (b) is a graph showing the isolation characteristics between the ANT-TX2 in the DCS RX mode of the high-frequency switch module of the first embodiment
  • FIG. 14C is a graph showing the isolation characteristics between the ANT-RX3 in the DCS RX mode of the high-frequency switch module of the first embodiment.
  • Figure l 5 (a) is a graph showing the insertion loss characteristics between ANT-RX3 in PCS RX mode one de high-frequency sweep rate Tutsi module of Example 1,
  • FIG. 15 (b) is a graph showing the isolation characteristics between the ANT-TX2 in the PCS RX mode of the high-frequency switch module according to the first embodiment.
  • FIG. 15 (C) is a graph showing the isolation characteristics between the ANT-RX2 in the PCS RX mode of the high-frequency switch module according to the first embodiment.
  • FIG. 16 is a block diagram showing a circuit of a high-frequency switch module according to still another embodiment of the present invention.
  • FIG. 1 shows a high-frequency switch module according to an embodiment of the present invention.
  • the high-frequency switch module switches the three reception system, (a) receiving signals of the incoming shines signal to the antenna ANT first transceiver system and the received signal and the demultiplexed second and third transmitting and receiving system (B) a first transmission / reception circuit which is disposed downstream of the first filter circuit F1 and is provided with a voltage supplied from the control circuit VC1.
  • the first switch circuit SW1 for switching between the transmission circuit TX1 and the reception circuit RX1 of the system, and (C) the second filter circuit F2, which is disposed after the second filter circuit F2, is connected to the second switch circuit F2 by a voltage supplied from the control circuits VC2 and VC3.
  • a second switch circuit SW2 for switching between a transmission circuit TX2 of the third transmission / reception system, a reception circuit RX2 of the second transmission / reception system, and a reception circuit RX3 of the third transmission / reception system.
  • the high-frequency switch module In order to share the transmission circuit TX2 of the second and third transmission / reception systems, it is preferable to configure the high-frequency switch module with an equivalent circuit as shown in FIG.
  • the first transmitting and receiving system GSM transmission frequency 880 to 915 MHz, reception frequency 925 to 960 MHz
  • the second transmission and reception system is DCS1800 (transmission frequency 1710 to 1785 MHz, reception frequency 1805 to 1880 MHz)
  • the third transmission and reception system is PCS (transmission frequency 1850 to 850 MHz). 1910 ⁇ ; reception frequency 1930 ⁇ : 1990MHz).
  • the first and second filter circuits Fl and F2 connected to the antenna ANT consist of distributed constant lines and capacitors, respectively.
  • the equivalent circuit in Fig. 2 has a single-pass filter F1 as a first filter circuit F1 that allows transmission and reception signals of GSM to pass and attenuates transmission and reception signals of DCS1800 and PCS, and passes transmission and reception signals of DCS1800 and PCS.
  • a high-pass filter is provided as a second filter circuit F2 for attenuating GSM transmission and reception signals.
  • the low-pass filter F1 is composed of a distributed parameter line LF1 and a capacitor CF1 connected in parallel, and a capacitor CF3 connected between LF1 and CF1 and the ground.
  • the high-pass filter F2 is connected to the distributed constant line L F2 and capacitor CF2 connected in parallel, the distributed constant line LF3 connected between LF and CF2 and ground, and the distributed constant line L F2 and capacitor CF2. It consists of a capacitor CF4 connected in series.
  • the first and second filter circuits Fl and F2 are not limited to such a configuration, and for example, the following configurations (a) to (h) can be adopted.
  • the first fill circuit has a band bass fill circuit as F1 and the second fill circuit Configuration with bandpass filter as F2.
  • the first switch circuit SW1 that switches between the GSM transmission circuit TX1 and the reception circuit RX1 that is placed after the first and second filter circuits Fl and F, and the transmission circuit TX2 of the DCS1800 and PCS and the reception circuit of the DCS1800
  • the second switch circuit SW2 which switches between RX2 and the received signal RX3 of the PCS, has a diode and a distributed constant line as main elements.
  • the first switch circuit SW1 is a switch circuit on the upper side of FIG. 2, and switches between the GSM transmission circuit TX1 and the reception circuit RX1.
  • the first switch circuit SW1 has two diodes DG1, DG2 and two distributed constant lines LG1, LG2 as main elements.
  • Diode DG1 is placed between input / output terminal IP1 and transmitting circuit TX1, its anode is connected to input / output terminal IP1, and distributed constant line LG1 is connected between cathode and ground.
  • a distributed constant line LG2 is connected between the input / output terminal IP1 and the receiving circuit RX1, and a diode DG2 cathode is connected between one end of the distributed constant line LG2 on the receiving circuit RX1 side and ground.
  • the capacitor CG6 is connected between the anode of the diode DG2 and the ground.
  • An inductor LG and a resistor R1 are connected in series between the node and the control circuit VC1.
  • Each of the distributed constant lines LG1 and LG2 has a line length such that the resonance frequency is within the frequency band of the GSM transmission signal. For example, if each resonance frequency is set to be approximately the intermediate frequency (897.5 MHz) of the GSM transmission signal frequency, excellent insertion loss characteristics can be obtained in a desired frequency band. It is preferable that the low-pass filter circuit LPF inserted between the first filter circuit F1 and the transmission circuit TX1 be composed of a distributed constant line and a capacitor. In the equivalent circuit shown in FIG. 2, a 7 ⁇ open-path filter composed of a distributed constant line LG3 and capacitors CG3, CG4 and CG7 is inserted between the diode DG1 and the distributed constant line LG1.
  • the second switch circuit SW2 is a switch circuit on the lower side of FIG. 2, and switches between the receiving circuit RX2 of the DCS1800, the receiving circuit RX3 of the PCS, and the transmitting circuit TX2 of the DCS1800 and the PCS.
  • the second switch circuit SW2 has three diodes DP1, DP2 and DP3 and two distributed parameter lines LP1 and LP2 as main elements.
  • the diode DPI is placed between the input / output terminal IP2 and the transmitting circuit TX2, its cathode is connected to the input / output terminal IP2, and the distributed constant line LP1 is connected between its node and ground.
  • a capacitor CGP is connected between the distributed constant line LP1 and the ground, and a control circuit VC3 is connected to one end of the distributed constant line LP1.
  • the distributed constant line LP2 is connected between the input / output terminal IP2 and the receiving circuit RX2, and the diode of the diode DP2 is connected between one end of the distributed constant line LP2 on the receiving circuit RX2 side and ground.
  • a capacitor CP6 and a resistor R3 are connected in parallel between the power source and ground.
  • a diode DP3 is connected between the input / output terminal IP2 and the receiving circuit RX3, and its cathode is connected to the input / output terminal IP2, and the anode is connected to the control circuit VC2 via the distributed constant line LP and the resistor R2. Is connected.
  • the distributed parameter lines LP1 and LP2 preferably have a line length such that their resonance frequencies fall within the range from the maximum frequency to the minimum frequency of the frequency band of the transmission signal of the second and third transmission / reception systems. It is preferable to have a line length so as to be a frequency intermediate between the maximum frequency and the minimum frequency. For example, if the resonance frequency of the distributed parameter lines LP1 and LP2 is set to be approximately the intermediate frequency (1810 MHz) of the transmission signal frequency of the DCS1800 and the PCS, excellent electrical characteristics can be obtained in each mode. Can be handled by one circuit.
  • the low-pass filter circuit LPF inserted between the second filter circuit F2 and the transmission circuit # 2 be composed of a distributed constant line and a capacitor.
  • a 7 ⁇ low-pass filter composed of a distributed parameter line LP3 and capacitors CP3, CP4, and CP7 is inserted between the diode DPI and the distributed parameter line LP1.
  • the line length of the distributed constant line LP3 is set to / 8 to / 12 (where the intermediate frequency of the transmission signal in the second and third transmission / reception systems). Is preferred.
  • the intermediate frequency of the transmission signal in the second and third transmission / reception systems is, for example, assuming that the second transmission / reception system is DCS1800 and the third transmission / reception system is PCS, the transmission signal of DCS1800 is 1710 ⁇ : 1785MHz and the transmission signal of PCS 1850 ⁇ : Intermediate frequency (1810MHz) with 1910MHz.
  • the line length of the distributed constant line LP3 is more than / 8 for an intermediate frequency person, the pass band characteristics become narrower, and the lower limit frequency of the DCS1800 transmission signal and the desired insertion loss characteristics near the PCS transmission signal are reduced. I can't get it. Also, if the line length of the distributed parameter line LP3 is less than human / 12, the attenuation in the high frequency region such as the second harmonic and the third harmonic deteriorates. As described above, in either case, the characteristics of the high-frequency switch module deteriorate, which is not preferable.
  • the low-pass filter circuit LPF is not limited to the one built in the switch module as shown in FIG. 1, and may be arranged after the high-frequency switch module as shown in FIG. In this case, the single-pass filter circuit LPF can be composed of a ceramic filter or the like.
  • the high-frequency switch module controls any one of the first, second, and third transmission / reception systems by supplying a voltage from a power supply means (control circuit) to control the diode switch in an on state / off state. You have to choose one.
  • the operation of the high-frequency switch module having the equivalent circuit shown in FIG. 2 will be described in detail below.
  • a positive voltage is applied from the control circuit VC3 and a voltage of 0 is applied from the control circuit VC2.
  • the positive voltage provided by the control circuit VC3 is applied to the circuits including diodes DP1, DP2 and DP3, with the DC component being turned on by the capacitors CGP, CP2, CP3, CP4, CP5, CP6 and CF4. Is done.
  • diodes DP1 and DP2 are turned on, and diode DP3 is turned off.
  • the diode DPI is turned on, the impedance between the second and third transmitting circuits TX2 and the connection point IP2 decreases.
  • the distributed constant line LP2 is grounded at high frequency by the diode DP2 and the capacitor CP6 which are turned on, and resonates. Road The impedance seen at RX2 becomes very large. Further, when the diode DP3 is turned off, the impedance between the connection point IP2 and the third receiving circuit RX3 increases. As a result, the transmission signals coming from the second and third transmission circuits TX2 are transmitted to the second fill circuit F without leaking to the second reception circuit RX2 and the third reception circuit RX3.
  • the second receiving circuit RX2 and the second filter circuit F2 When the second receiving circuit RX2 and the second filter circuit F2 are connected, the voltages from the control circuits VC2 and VC3 are 0, and the diodes DP1, DP2, and DP3 are turned off.
  • the connection point IP2 and the second receiving circuit RX2 are connected via the distributed constant line LP2 by the diode DP2 in the OFF state. Further, since the diode DPI is in the OFF state, the impedance between the connection point IP2 and the second and third transmission circuits TX2 increases. Further, when the diode DP3 is turned off, the impedance between the connection point IP2 and the third receiving circuit RX3 increases. As a result, the reception signal coming from the second filter circuit F2 is transmitted to the second reception circuit RX2 without leaking to the second and third transmission circuits TX2 and the third reception circuit RX3.
  • a positive voltage is applied from the control circuit VC2, and the voltage of the control circuit VC3 is set to 0.
  • the positive voltage supplied from the control circuit VC2 is applied to the circuits including the diodes DP1, DP2 and DP3, with the DC component being forced by the capacitors CP5, CP6, CP8 and CF4.
  • diodes DP2 and DP3 are turned on, and diode DPI is turned off.
  • the diode DP3 is turned on, the impedance between the third receiving circuit RX3 and the connection point IP2 decreases.
  • the distributed parameter line LP2 is grounded at high frequency by the diode DP2 and the capacitor CP6 which are turned on, resonates in the transmission signal frequency band of the DCS1800 and the PCS, and the second reception circuit is connected from the connection point IP2.
  • the impedance looking at RX2 becomes very large in the PCS reception signal band.
  • the diode DPI is turned off, the impedance between the connection point IP2 and the second and third transmission circuits TX2 increases.
  • the received signal coming from the second fill circuit F2 is divided into the second and third transmitting circuits TX2 and the second receiving circuit RX2. The signal is transmitted to the third receiving circuit RX3 without being leaked.
  • the diodes DG2 and DG1 When connecting the first transmission circuit GSM TX and the first filter circuit F1, apply a positive voltage from the control circuit VC1.
  • the positive voltage is applied to the circuit including the diodes DG2 and DG1, with the DC component being turned on by the capacitors CG6, CG5, CG4, CG3, CG2 and CGI.
  • the diodes DG2 and DG1 are turned on.
  • the impedance between the first transmitting circuit TX1 and the connection point IP1 decreases.
  • the distributed parameter line LG2 is grounded at high frequency and resonated by the diode DG2 and the capacitor CG6 which are turned on, and the impedance when the first receiving circuit RX1 is seen from the connection point IP1 becomes very large. As a result, the transmission signal coming from the first transmission circuit TX1 is transmitted to the first filter circuit F1 without leaking to the first reception circuit RX1.
  • the diode DG2 When connecting the first receiving circuit GSM RX and the first filter circuit F1, apply a voltage of 0 to the control circuit VC1 and turn off the diodes DG1 and DG2.
  • the diode DG2 in the OFF state connects the connection point IP1 and the second reception circuit RX1 via the distributed constant line LG2.
  • the diode DG1 When the diode DG1 is turned off, the impedance between the connection point IP1 and the first transmission circuit TX1 increases. As a result, the reception signal coming from the first filter circuit F1 is transmitted to the first reception circuit RX1 without leaking to the first transmission circuit TX1.
  • Example 1 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
  • Example 1
  • FIG. 3 is a plan view showing the high-frequency switch module of the present embodiment
  • FIG. 4 is a perspective view showing the laminated body portion
  • FIG. 5 is an expanded view showing the configuration of each layer constituting the laminated body of FIG. FIG.
  • the distributed constant lines of the first and second filter circuits, the single-pass filter circuit, and the switch circuit are configured in a laminate, and a diode and a capacitor having a high capacitance value that cannot be built in the laminate.
  • the laminate as a chip capacitor
  • This laminate is composed of (a) a ceramic dielectric material that can be fired at a low temperature and has a thickness of 50 / ⁇ ! (B) forming a desired electrode pattern by printing a conductive paste mainly composed of Ag on each green sheet; and (c) forming a plurality of green sheets having a desired electrode pattern. It can be manufactured by laminating green sheets, integrally forming them, and firing them (d). It is preferable that the width of the line electrode is mainly 100 to 400 Zm.
  • the ground electrode 31 is formed on almost the entire surface of the lowermost green sheet 11, and connection portions for connecting to the terminal electrodes 81, 83, 87, 89, 91, 93 and 95 on the side surfaces are provided.
  • a green sheet 12 on which no electrode pattern is printed on a green sheet 11 After laminating a green sheet 12 on which no electrode pattern is printed on a green sheet 11, a green sheet 13 on which one line electrode 41 is formed, and a green on which four line electrodes 42, 43, 44 and 45 are formed
  • the sheet 14 and the green sheet 15 on which the four line electrodes 46, 47, 48 and 49 are formed are sequentially laminated.
  • a green sheet 16 on which two through-hole electrodes (cross-holes are marked in the figure are through-hole electrodes) is laminated thereon, and a green sheet on which a ground electrode 32 is formed. 17 is laminated.
  • distributed constant lines for the first and second switch circuits SW1 and SW2 are formed.
  • distributed electrode line LG1 is formed by connecting line electrodes 41, 42, and 46 with through-hole electrodes, and line electrodes 45 and 49 are connected with through-hole electrodes.
  • line electrodes 43 and 47 are connected with through-hole electrodes to form a distributed constant line LP1, and connect the line electrodes 44 and 48 with through-hole electrodes for distribution. Configure the constant line LP2.
  • Electrodes 61, 62, 63, 64, 65 and 66 for capacitors are formed on the green sheet 18 laminated on the green sheet 17.
  • Green sheet laminated on it 19 also has electrodes 67, 68 and 69 for capacitors.
  • a capacitor electrode 70 is formed on the green sheet 20 laminated thereon.
  • a green sheet 21 having line electrodes 50, 51, 52, 53 and 54 formed thereon and a green sheet 22 having line electrodes 55, 56, 57, 58 and 59 formed thereon are sequentially stacked. Lands for connecting mounted elements are formed on the uppermost green sheet 23.
  • Each of the capacitor electrodes 61, 62, 63, 64 and 66 of the green sheet 18 forms a capacitance with the ground electrode 32 formed on the green sheet 17.
  • the capacitor electrode 61 forms the capacitor CP3
  • the capacitor electrode 62 forms the capacitor CP4
  • the capacitor electrode 63 forms the capacitor CG4, and the capacitor electrode CG4.
  • Electrode 64 forms capacitor CG3, and capacitor electrode 66 forms capacitor CF3.
  • the capacitor electrodes formed on the green sheets 18, 19 and 20 mutually form a capacitance.
  • a capacitor CF4 is formed between the capacitor electrodes 65 and 68, and a capacitor CP7 is similarly formed between the capacitor electrodes 61, 62 and 67.
  • a capacitor CF1 is formed between the electrodes 69 and 70, and a capacitor CF is formed between the capacitor electrodes 68 and 70.
  • the capacitor electrode 65 forms a capacitance in opposition to the capacitor electrode 68, but a cutout is formed in the ground electrode 32 so as not to oppose the ground electrode 32.
  • the through-hole electrode for conducting the distributed constant line is located in the notch.
  • the line electrodes 52 and 59 constitute a distributed constant line LF1
  • the line electrodes 54 and 58 constitute a distributed constant line LF2
  • the line electrode 53 constitutes a distributed constant line LF3
  • the line electrode 51 and 57 constitute a distributed constant line LG3
  • a line electrode 55 constitutes a distributed constant line LP3
  • a line electrode 56 constitutes a distributed constant line LP.
  • the line electrode 50 is a line for wiring.
  • the line electrodes 51 and 57 constituting the distributed constant line LG3 are formed so as to partially oppose each other, and the opposing portion constitutes the capacitor CG7.
  • FIG. 3 is a plan view showing a stacked body on which these elements are mounted. Fig. 3 also shows the mounting configuration (connection structure of each terminal) of this high-frequency switch module. In Fig. 3 etc., GRD means the terminal connected to ground.
  • CP2, CP5, CG2, CG5, R1, LG, R2, and CP8 of the equivalent circuit shown in FIG. 2 are formed on a circuit on which chip components are mounted.
  • the switch circuit, the demultiplexer circuit, and the single-pass filter circuit are provided. To prevent interference. Further, by arranging a region sandwiched between the ground electrodes at the bottom of the laminate, it is easy to obtain a ground potential. At the position facing the upper ground electrode, a capacitor electrode constituting a capacitor is formed between it and the upper ground electrode.
  • the present embodiment has a structure in which terminals are formed on the side surfaces of the laminate, so that surface mounting is possible.
  • the side terminals are ANT terminal (P2), DCS / PCS TX2 terminal (P7), GSM TX1 terminal (P13), GSM RX1 terminal (P16), DCS1800 RX2 terminal (P9), PCS RX3 terminal (P10) , Ground terminal (GRD) and control terminals (VC1, VC2, VC3).
  • at least one ground terminal is arranged on each side of the laminate.
  • the ANT terminal, the TX terminal group, and the RX terminal group are sandwiched by ground terminals.
  • VC1, VC2 and VC3 are also sandwiched between the ground terminals.
  • Table 1 shows the control logic of each control circuit VC1, VC2, and VC3 of the high-frequency switch module of this embodiment. This changes each mode of GSM, DCS1800 and PCS. table 1
  • FIGS. 11 to 15 show the insertion loss characteristics and the isolation characteristics during transmission and reception in each communication mode. As shown in FIGS. 11 to 15, excellent insertion loss characteristics and isolation characteristics were obtained in the desired frequency band in each communication mode, and the high-frequency switch module of the present embodiment was small in size and high in performance. I was separated.
  • Example 2
  • FIG. 6 shows an equivalent circuit of a high-frequency switch module according to another embodiment of the present invention
  • FIG. 7 is a plan view of the high-frequency switch module
  • FIG. 8 shows the internal structure of the laminate. Since this embodiment has many parts similar to the first embodiment, only different parts will be described here.
  • the first and second filter circuits are the same as in the first embodiment.
  • the first switch circuit SW1 of the first transmission / reception system (GSM) is also connected to the control circuit VC3 together with the distributed constant line LP1 of the second switch circuit SW2 without connecting the distributed constant line LG1 to the ground. Except for this, it is the same as Example 1.
  • the direction of the diodes DP1, DP2 and DP3 is opposite to that of the first embodiment, and the series connection of the inductor LD and the resistor R3 is provided between the diode DP2 and the capacitor CP6.
  • Control circuit VC4 is connected via the circuit.
  • the structure of the high-frequency switch module laminate was the same as that of Example 1 in the following points. Different from those.
  • the ground electrode 31 of the green sheet 11 is not connected to the terminal electrode 89.
  • the lead terminal of the line electrode 46 is changed.
  • the ground electrode 32 is not connected to the terminal electrode 89.
  • a line electrode 71 which is a wiring line is added.
  • a through hole connected to the line electrode 71 is added.
  • Green Sheet 23 the land shape has been changed.
  • Diodes DG1, DG2, DP1, DP2 and DP3, chip capacitors CG1, CG6, CGP and CP6 are mounted on the laminate.
  • FIG. 7 shows a laminate on which these elements are mounted.
  • Figure 7 also shows the mounting configuration of the high-frequency switch module (connection structure of each terminal).
  • CP2, CP5, CG2, CG5, Rl, LG, R2, CP8, R3 and LD among the elements constituting the equivalent circuit shown in FIG. 6 are formed on the mounting circuit of the chip component.
  • Table 2 shows the control logic of each control circuit VC1, VC2, VC3 and VC4 of the high-frequency switch module of this embodiment. Thus, each mode is changed.
  • Table 2 shows the control logic of each control circuit VC1, VC2, VC3 and VC4 of the high-frequency switch module of this embodiment. Thus, each mode is changed.
  • Table 2 shows the control logic of each control circuit VC1, VC2, VC3 and VC4 of the high-frequency switch module of this embodiment.
  • the high-frequency switch module of the present embodiment can also use three different communication systems, and has the same effects as the first embodiment.
  • Example 3
  • FIG. 9 shows an equivalent circuit of a high-frequency switch module according to still another embodiment of the present invention.
  • WO 00/55983 PCT / JP-I Since the high-frequency switch module of this embodiment has many parts similar to those of the first embodiment, only different parts will be described here.
  • the first and second filter circuits and the first switch circuit SW1 of the first transmission / reception system are equivalent to the first embodiment in terms of equivalent circuits.
  • the second switch circuit SW2 receives the second and third transmission / reception system reception signals from the second filter circuit F2 and outputs the transmission signal coming from the second and third transmission / reception system transmission circuits TX2.
  • I / O terminal IP2 input terminal to which the transmission signal coming from the second and third transmission / reception system transmission circuits TX2 is input, and third output terminal to output the reception signal of the second and third transmission / reception system IP3, a fourth output terminal for outputting a reception signal of the second transmission / reception system to the reception circuit RX2, and a fifth output terminal for outputting a reception signal of the third transmission / reception system to the reception circuit RX3,
  • a first diode DPI arranged between the input / output terminal IP2 and the input terminal, a first distributed parameter line LP1 provided between the input terminal and the ground, an input / output terminal IP2 and a third output
  • a second distributed constant line LP2 provided between the second output terminal IP3 and the ground, and a second distributed line LP2 provided between the third output terminal IP3 and the ground.
  • a third distributed constant line LD1 provided between the third output terminal IP3 and the fourth output terminal, and a third diode provided between the fourth output terminal and the ground.
  • DDI a fourth diode DD2 disposed between the third output terminal IP3 and the fifth output terminal, and a fourth distribution constant line provided between the fifth output terminal and ground.
  • the second switch circuit SW2 includes a switch circuit SW2-1 for switching between the DCS reception circuit RX2 and the PCS reception circuit RX3, and another switch circuit for switching between the DCS / PCS transmission circuit TX2 and the switch circuit described above. And two switch circuits SW2-2.
  • the switch circuit SW2-1 that switches between the DCS receiving circuit RX2 and PCS receiving circuit RX3 has two diodes DD1 and DD2 and two distributed constant lines LD1 and LD2 as main elements, and the anode of the diode DD2 is a connection point. Connected to IP3, the cathode is connected to the RX3 side, and a distributed constant line LD2 connected to the ground is arranged on the cathode side.
  • a distributed constant line LD1 is connected between the connection point IP3 and the receiving circuit RX2, and a diode DDI connected to the ground via a capacitor CDP2 is arranged on the receiving circuit RX2 side.
  • the control circuit VC5 is connected between the diode DDI and the capacitor CDP2 via the inductor LD and the resistor R6. This is preceded in Suidzuchi circuit SW2-1, c to another Suitsuchi circuit SW2-2 for switching the transmission circuit TX2 and Suitsuchi circuits SW2-1 of DCS / PCS is disposed the switch circuit SW2-2 Has two diodes DP1 and DP2 and two distributed constant paths LP1 and LP2 as main elements.
  • a diode DPI is placed between TX2 and the connection point IP2, and the anode of the diode DPI is connected to the connection point IP2, and a distributed constant line LP1 connected to the ground is placed on the cathode side of the diode DPI.
  • a distribution constant line LP2 is connected between the connection points IP2 and IP3, and a diode DP2 connected to the ground via a capacitor CP6 is arranged on the connection point IP3 side.
  • the control circuit VC3 is connected between the diode DP2 and the capacitor CP6 via the inductor LP and the resistor R3.
  • Table 3 shows the control logic of each control circuit VC1, VC3 and VC5 of the high-frequency switch module of this embodiment. This changes each mode.
  • the high-frequency switch module of the third embodiment can also use three different communication methods, and exhibits the same effect as that of the first embodiment.
  • Example 4
  • FIG. 10 shows an equivalent circuit of a high-frequency switch module according to still another embodiment of the present invention. Shown in Since the high-frequency switch module of this embodiment has many parts similar to those of the first embodiment, only different parts will be described here.
  • the first and second switch circuit portions of the first to third transmission / reception systems (GSM, DCS, PCS) are equivalent to the first embodiment in terms of equivalent circuits.
  • the first and second filter circuits Fl and F2 connected to the antenna ANT are composed of distributed constant lines and capacitors as in the first embodiment.
  • the GSM transmission / reception signal is passed and the DCS and PCS
  • a low-pass filter is provided as a first filter circuit for attenuating transmission / reception signals
  • a high-pass filter is provided as a second filter circuit for passing DCS and PCS transmission / reception signals and attenuating GSM transmission / reception signals.
  • the low-pass filter has a distributed constant line LF5 between the antenna ANT and the first switch circuit F1, and a series resonance including a distributed constant line LF6 and a capacitor CF6 between one end of the distributed constant line LF5 and the ground. Circuit is connected.
  • the high-pass filter has a capacitor CF5 connected between the antenna ANT and the second switch circuit F2, and a series resonance circuit including a distributed constant line LF7 and a capacitor CF7 connected between the antenna ANT and the ground. .
  • the high-frequency switch module of the present embodiment can also use three different communication systems, and exhibits the same effects as the first embodiment.
  • the high-frequency switch module of the present invention has been described in detail with reference to FIGS. 1 to 10, the present invention is not limited to these, and various modifications can be made without departing from the spirit of the present invention.
  • the communication method used for the high-frequency switch module of the present invention is not limited to the one described in the above embodiment, and three different transmission / reception systems, for example, a GPS (Global Positioning System) and a D-PS (Digital Advanced Mobile Service) and PCS, and the combination of GSM and WCDMA (Wide-band Code Division Multiple Access) and PCS, etc., can also switch between the three transmission / reception systems.
  • a GPS Global Positioning System
  • D-PS Digital Advanced Mobile Service
  • WCDMA Wide-band Code Division Multiple Access
  • the high-frequency switch module of the present invention can be used for a portable communication device such as a mobile phone for a triple band of a plurality of communication systems capable of using three different communication systems, for example, an antenna ANT and a transmission / reception system of a first transmission / reception system.
  • Circuit TX1 and receiving circuit RX1, 2nd and 3rd The transmission circuit TX2 of the third transmission / reception system, the reception circuit RX2 of the second transmission / reception system, and the reception circuit RX3 of the third transmission / reception system can be switched, and the transmission circuit of the second transmission / reception system and the third transmission / reception system can be switched.
  • the transmission circuit of the system can be shared.
  • the high-frequency switch module of the present invention can be downsized while maintaining excellent electrical characteristics, and can share some parts (for example, an amplifier) of the transmission circuits of the second and third transmission / reception systems. It is possible. As a result, a portable communication device using the high-frequency switch module can be further reduced in size and weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Description

明細書 高周波スィツチモジュール
技術分野
本発明は複数の異なる通信方式に使用できる無線機に用いる高周波複合部品に 関し、特に 3つの通信方式を取り扱う無線機に使用する高周波スィッチモジュ一ル に関する。 背景技術
携帯無線システムには、例えば主に欧州で盛んな GSM (Global System for Mobile Communications) 方式及び DCS1800 (Digital Cellular System 1800) 方式、 米国で盛 んな PCS (Personal Communications Services) 方式、 日本で採用されている PDC (Personal Digital Cellular)方式等の様々なシステムがあるが、 昨今の携帯電話の急 激な普及にともない、特に先進国の主要な大都市部においては各システムに割り当 てられた周波数帯では全システム利用者を賄い切れず、接続が困難であったり、通 話途中で接続が切断する等の問題が生じている。そこで、前記利用者が複数のシス テムを利用できるようにして、実質的に利用可能な周波数の増加を計り、 さらにサ 一ビス区域の拡充や各システムの通信ィンフラの有効活用することが提唱されて いる。
しかしながら、複数のシステムを利用したい場合には、各システムに対応した携 帯通信機を必要な分だけ持たねばならないが、従来 1台で複数のシステムを通信で きる小型軽量の携帯通信機はなかった。単に 1台の携帯通信機で複数のシステムを 利用可能とするには、 システム毎の部品を用いて携帯通信機を構成すればよいが、 信号の送信系においては、例えば希望の送信周波数の送信信号を通過させるフィル 夕、 送受信回路を切り替える高周波スィッチや送受信信号を入放射するアンテナ、 また信号の受信系では、前記高周波スィツチを通過した受信信号の希望の周波数を 通過させるフィル夕等の高周波回路部品がシステム毎に必要となる。このため携帯 通信機が高価になるとともに、体積及び重量がともに増加してしまい、携帯用とし ては不適であって、 1台で複数のシステムを利用可能な携帯通信機を実現するには 複数のシステムの周波数構成を満たし、かつ小型で複合機能化した高周波回路部品 が必要となる。
従って本発明の目的は、 1台で複数のシステムに対応できる携帯通信機に用いる 高周波回路部品として、高周波スィッチを用いて複数(特に 3つ)のシステムの送 信回路と受信回路の切り換えが可能な小型かつ高性能の高周波スィツチモジユー ルを提供することである。 発明の開示
本発明の高周波スィツチモジュールは、複数の異なる送受信系の送信回路と受信 回路を切り替えるもので、 互いに通過帯域 (Pass Band) が異なる第 1及び第 2の フィル夕回路と、第 1のフィル夕回路に接続され第 1の送受信系の送信回路と受信 回路を切り替える第 1のスィツチ回路と、第 2のフィル夕回路に接続され第 2及び 第 3の送受信系の送信回路と第 2の送受信系の受信回路と第 3の送受信系の受信 回路とを切り替える第 2のスィツチ回路とを具備することを特徴とする。
本発明の一実施例においては、第 1及び第 2のフィル夕回路は、第 1の送受信系 の受信信号と第 2及び第 3の送受信系の受信信号とを分波する分波回路として機 能する。
本発明の別の実施例においては、第 1及び第 2のスィツチ回路はダイォ一ドと分 布定数線路を主要素子とするダイォ一ドスィツチであって、ダイォードに電源供給 手段(コントロール回路)から電圧を給電してダイオードスィツチをオン状態/ォ フ状態に制御することにより、第 1、第 2及び第 3の送受信系のいずれか一つを選 択する。
好ましい実施例では、第 2のスィツチ回路は、第 2のフィル夕回路から第 2及び 第 3の送受信系の受信信号を入力するとともに第 2及び第 3の送受信系の送信回 路から来る送信信号を出力する入出力端と、第 2及び第 3の送受信系の送信回路か ら来る送信信号が入力する入力端と、第 2の送受信系の受信信号を受信回路へ出力 する第 1の出力端と、第 3の送受信系の 信信号を受信回路へ出力する第 2の出力 端とを有し、 前記入出力端と前記入力端との間に配置された第 1のダイオードと、 前記入力端とアースとの間に設けられた第 1の分布定数線路と、前記入出力端と前 記第 1の出力端との間に設けられた第 2の分布定数線路と、前記第 1の出力端とァ ースとの間に設けられた第 2のダイオードと、前記入出力端と前記第 2の出力端と の間に設けられた第 3のダイォ一ドとを具備する。
第 1及び第 2の分布定数線路は、そられの共振周波数が第 2及び第 3の送受信系 の送信信号の周波数帯域における最大周波数と最小周波数の範囲内となるような 線路長を有するのが好ましく、特に最大周波数と最小周波数の中間の周波数である のが好ましい。
好ましい別の実施例では、第 2のスィツチ回路は、第 2のフィル夕回路から第 2 及び第 3の送受信系の受信信号が入力するとともに第 2及び第 3の送受信系の送 信回路から来る送信信号を出力する入出力端と、第 2及び第 3の送受信系の送信回 路から来る送信信号が入力する入力端と、第 2及び第 3の送受信系の受信信号を出 力する第 3の出力端と、第 2の送受信系の受信信号を受信回路へ出力する第 4の出 力端と、 第 3の送受信系の受信信号を受信回路へ出力する第 5の出力端とを有し、 前記入出力端と前記入力端との間に配置された第 1のダイォードと、前記入力端と アースとの間に設けられた第 1の分布定数線路と、前記入出力端と前記第 3の出力 端との間に設けられた第 2の分布定数線路と、前記第 3の出力端とアースとの間に 設けられた第 2のダイォードと、前記第 3の出力端と前記第 4の出力端との間に設 けられた第 3の分布定数線路と、前記第 4の出力端とアースとの間に設けられた第 3のダイォ一ドと、前記第 3の出力端と前記第 5の出力端との間に配置された第 4 のダイォ一ドと、前記第 5の出力端とアースとの間に設けられた第 4の分布定数線 路とを具備する。
第 1の分布定数線路はその共振周波数が第 2及び第 3の送受信系の送信信号の 周波数帯域の最大周波数から最小周波数までの範囲内に入るような線路長を有し、 第 2の分布定数線路はその共振周波数が第 2及び第 3の送受信系の送信信号の周 波数帯域の最大周波数から最小周波数までの範囲内に入るような線路長を有し、第 3の分布定数線路はその共振周波数が第 3の送受信系の受信信号の周波数帯域の 最大周波数から最小周波数までの範囲内に入るような線路長を有し、第 4の分布定 数線路はその共振周波数が第 3の送受信系の受信信号の周波数帯域の最大周波数 から最小周波数までの範囲内に入るような線路長を有するのが好ましい。 本発明においては、第 2のフィル夕回路と第 2及び第 3の送受信系の送信回路と の間に分布定数線路とコンデンサからなる口一パスフイリレ夕回路を配置するのが 好ましい。 ローパスフィル夕回路を構成する分布定数線路の線路長は、第 2及び第 3の送受信系の送信信号の中間周波数人に対し、 λ/8〜人 /12であるのが好ましい c 第 1及び第 2のフィル夕回路は分布定数線路とコンデンサにより構成するのが 好ましい。第 1及び第 2のフィルタ回路の分布定数線路及びコンデンサ、及び第 1 及び第 2のスィツチ回路の分布定数線路の少なくとも一部は、電極パターンを有す る誘電体層からなる積層体中の電極パターンにより構成するのが好ましい。また第 1及び第 2のスィッチ回路のダイオードは前記積層体上に配置するのが好ましい。 第 2のフィル夕回路と第 2及び第 3の送受信系の送信回路との間に分布定数線 路及びコンデンサからなる口一パスフィル夕回路を配置し、前記分布定数線路とコ ンデンザの少なくとも一部を積層体内の電極パターンにより構成するのが好まし い。
スィツチ回路の分布定数線路は一対のグランド電極に挟まれた領域に形成され た電極パターンからなるのが好ましい。一対のグランド電極の上側に第 1及び第 2 のフィル夕回路のコンデンサを構成し、その上部に第 1及び第 2のフィル夕回路の 分布定数線路を形成するのが好ましい。
スィツチ回路の分布定数線路は一対のグランド電極に挟まれた領域に形成され た電極パターンからなるのが好ましい。グランド電極の上側に口一パスフィル夕回 路のコンデンサ、及び第 1及び第 2のフィル夕回路のコンデンサを形成し、その上 にローパスフィル夕回路の分布定数線路、及び第 1及び第 2のフィル夕回路の分布 定数線路を形成するのが好ましい。第 1及び第 2のフィル夕回路及びローパスフィ ル夕回路は、 積層体の積層方向に重複しない別々の領域に形成するのが好ましい。 図面の簡単な説明
図 1は、本発明の一実施例による高周波スィッチモジュールの回路を示すブロッ ク図であり、
図 2は、本発明の一実施例による高周波スィツチモジュールの等価回路を示す概 略図であり、 図 3は、本発明の一実施例による高周波スィツチモジュールを示す平面図であり、 図 4は、本発明の一実施例による高周波スィツチモジュールの積層体部を示す斜 視図であり、
図 5は、本発明の一実施例による高周波スィツチモジュールの積層体部の内部構 造を示す図であり、
図 6は、本発明の別の実施例による高周波スィツチモジュールの等価回路を示す 概略図であり、
図 7は、本発明の別の実施例による高周波スィツチモジュールを示す平面図であ り、
図 8は、本発明の別の実施例による高周波スィツチモジュールの積層体の内部構 造を示す図であり、
図 9は、本発明のさらに別の実施例による高周波スィツチモジュールの等価回路 を示す概略図であり、
図 10は、 本発明のさらに別の実施例による高周波スィツチモジュールの等価回 路を示す概略図であり、
図 11( a) は、 実施例 1の高周波スィッチモジュールの GSM TXモードにおける TX1- ANT間の挿入損失特性を示すグラフであり、
図 11 (b) は、 実施例 1の高周波スィッチモジュールの GSM TXモードにおける TX1-RX1間のアイソレ一シヨン特性を示すグラフであり、
図 12(a) は、 実施例 1の高周波スィツチモジュールの GSM RXモ一ドにおける ANT-RX1間の挿入損失特性を示すグラフであり、
図 12(b) は、 実施例 1の高周波スィッチモジュールの GSM RXモードにおける ANT-TX1間のアイソレ一シヨン特性を示すグラフであり、
図 13(a) は、 実施例 1の高周波スィツチモジュールの DCS/PCS TXモードに おける TX2-ANT間の挿入損失特性を示すグラフであり、
図 13(b) は、 実施例 1の高周波スィツチモジュールの DCS/PCS TXモ一ドに おける TX2-RX2間のアイソレ一シヨン特性を示すグラフであり、
図 13( c ) は、 実施例 1の高周波スィツチモジュールの DCS/PCS TXモードに おける TX2-RX3間のアイソレ一シヨン特性を示すグラフであり、 図 14(a) は、 実施例 1の高周波スィツチモジュールの DCS RXモードにおける ANT-RX2間の挿入損失特性を示すグラフであり、
図 14(b) は、 実施例 1の高周波スィツチモジュールの DCS RXモ一ドにおける ANT-TX2の間のアイソレーシヨン特性を示すグラフであり、
図 14( C ) は、 実施例 1の高周波スイッチモジュールの DCS RXモードにおける ANT-RX3の間のアイソレーション特性を示すグラフであり、
図 l5(a) は、 実施例 1の高周波スィツチモジュールの PCS RXモ一ドにおける ANT-RX3間の挿入損失特性を示すグラフであり、
図 15(b) は、 実施例 1の高周波スィツチモジュールの PCS RXモ一ドにおける ANT-TX2間のアイソレーション特性を示すグラフであり、
図 15( C ) は、 実施例 1の高周波スィツチモジュールの PCS RXモードにおける ANT-RX2間のアイソレ一ション特性を示すグラフであり、
図 16は、 本発明のさらに別の実施例による高周波スィツチモジュールの回路を 示すプロック図である。 発明を実施するための最良の形態
[1] 回路構成
図 1は本発明の一実施例による高周波スィツチモジュールを示す。この高周波ス イッチモジュールは 3つの送受信系を切り替えるもので、 (a) アンテナ ANTに入 射した信号を第 1の送受信系の受信信号と第 2及び第 3の送受信系の受信信号と に分波する第 1及び第 2のフィル夕回路 Fl , F2からなる分波回路と、 (b) 第 1の フィル夕回路 F1の後段に配置され、コントロール回路 VC1から供給される電圧に より第 1の送受信系の送信回路 TX1と受信回路 RX1とを切り替える第 1のスィッ チ回路 SW1と、 (C )第 2のフィル夕回路 F2の後段に配置され、 コントロール回路 VC2、 VC3から供給される電圧により第 2及び第 3の送受信系の送信回路 TX2 と 第 2の送受信系の受信回路 RX2と第 3の送受信系の受信回路 RX3とを切り替える 第 2のスィツチ回路 SW2とを具備する。
第 2及び第 3の送受信系の送信回路 TX2を共通化するため、 図 2に示すような 等価回路で高周波スィッチモジュールを構成するのが好ましい。第 1の送受信系が GSM (送信周波数 880〜915MHz、 受信周波数 925〜960MHz) で、 第 2の送受信系 が DCS1800 (送信周波数 1710〜1785MHz、 受信周波数 1805〜1880MHz) で、 第 3 の送受信系が PCS (送信周波数 1850〜; 1910ΜΗζ、 受信周波数 1930〜: 1990MHz) の 場合を例にとって、 以下詳細に説明する。
(A) 第 1及び第 2のフィル夕回路
アンテナ ANT と接続している第 1及び第 2のフィル夕回路 Fl, F2はそれぞれ 分布定数線路とコンデンサにより構成されている。 図 2の等価回路は、 GSMの送 受信信号を通過させるとともに DCS1800及び PCSの送受信信号を減衰させる第 1 のフィル夕回路 F1として口一パスフィル夕を備え、 DCS1800及び PCSの送受信信 号を通過させるとともに GSM の送受信信号を減衰させる第 2のフィル夕回路 F2 としてハイパスフィル夕を備えている。
ローパスフィル夕 F1 は、 並列に接続された分布定数線路 LF1 及びコンデンサ CF1と、 LF1及び CF1とアースとの間に接続されたコンデンサ CF3とからなる。 またハイパスフィル夕 F2は、並列に接続された分布定数線路 L F2及びコンデンサ CF2と、 L F 及び CF2とアースとの間に接続された分布定数線路 LF3と、 分布定 数線路 L F2及びコンデンサ CF2に直列に接続したコンデンサ CF4とからなる。 な お第 1及び第 2のフィル夕回路 Fl , F2はこのような構成に限定されず、 例えば下 記の (a)〜(h)の構成も採用できる。
(a) 第 1のフィルタ回路 F1 として口一パスフィル夕を有し、 第 2のフィル夕回路 F2としてノッチフィル夕を有する構成。
(b) 第 1のフィル夕回路 Flとしてノッチフィルタを有し、 第 2のフィル夕回路 F2 としてバンドパスフィル夕を有する構成。
(c) 第 1のフィルタ回路 F1 としてローパスフィル夕を有し、 第 2のフィル夕回路 F2としてバンドバスフィル夕を有する構成。
(d) 第 1のフィル夕回路 F1としてノッチフィル夕を有し、 第 2のフィル夕回路 F2 としてノツチフィル夕を有する構成。
(e) 第 1のフィル夕回路 Fl としてノッチフィル夕を有し、 第 2のフィル夕回路 F2 としてハイパスフィル夕を有する構成。
(f) 第 1のフィル夕回路 F1 としてバンドバスフィル夕を有し、 第 2フィル夕回路 F2としてバンドパスフィル夕を有する構成。
(g) 第 1のフィル夕回路 F1 としてバンドパスフィルタを有し、 第 2のフィル夕回 路 F としてノッチフィル夕を有する構成。
(h) 第 1のフィル夕回路 F1 としてバンドパスフィル夕を有し、 第 2のフィル夕回 路 F2としてハイパスフィル夕を有する構成。
(B ) スィツチ回路
第 1及び第 2のフィル夕回路 Fl , F の後段に配置された GSMの送信回路 TX1 と受信回路 RX1とを切り替える第 1のスィツチ回路 SW1、及び DCS1800及び PCS の送信回路 TX2と DCS1800の受信回路 RX2と PCSの受信信号 RX3とを切り替え る第 2のスィッチ回路 SW2は、 いずれもダイオードと分布定数線路を主要素子と する。
第 1のスィツチ回路 SW1は図 2の上側にあるスィツチ回路であり、 GSMの送信 回路 TX1 と受信回路 RX1 とを切り換えるものである。 第 1のスィッチ回路 SW1 は、 2つのダイオード DG1、 DG2及び 2つの分布定数線路 LG1、 LG2を主要素子 とする。 ダイォ一ド DG1は入出力端子 IP1と送信回路 TX1との間に配置され、 そ のアノードは入出力端子 IP1に接続され、カソ一ドとアースとの間には分布定数線 路 LG1が接続されている。 入出力端子 IP1 と受信回路 RX1との間には分布定数線 路 LG2が接続し、受信回路 RX1側の分布定数線路 LG2の一端とアースとの間にダ ィォ一ド DG2のカソ一ドが接続され、ダイォード DG2のアノードとアースとの間 にコンデンサ CG6が接続されている。前記ァノードとコント口一ル回路 VC1との 間にはィンダク夕 LG及び抵抗 R1が直列に接続している。
分布定数線路 LG1及び分布定数線路 LG2はいずれも共振周波数が GSMの送信 信号の周波数帯域内となるような線路長を有する。例えばそれぞれの共振周波数を GSMの送信信号周波数のほぼ中間周波数(897.5MHz) とすると、 所望の周波数帯 域内で優れた挿入損失特性を得ることができる。 第 1のフィル夕回路 F1と送信回 路 TX1との間に挿入されたローパスフィル夕回路 LPFは、 分布定数線路とコンデ ンサにより構成するのが好ましい。図 2に示す等価回路においては、分布定数線路 LG3とコンデンサ CG3、 CG4及び CG7とにより構成された 7Γ型の口一パスフィル 夕が、 ダイォード DG1と分布定数線路 LG1との間に挿入されている。 第 2のスィツチ回路 SW2は図 2の下側にあるスィツチ回路であり、 DCS1800の 受信回路 RX2と、 PCSの受信回路 RX3と、 DCS1800及び PCSの送信回路 TX2と を切り換えるものである。 第 2のスィッチ回路 SW2は、 3つのダイオード DP1、 DP2及び DP3と、 2つの分布定数線路 LP1及び LP2とを主要素子とする。 ダイォ —ド DPIは入出力端子 IP2と送信回路 TX2との間に配置され、 そのカソ一ドは入 出力端子 IP2に接続され、そのァノードとアースとの間には分布定数線路 LP1が接 続されている。分布定数線路 LP1とアースとの間にはコンデンサ CGPが接続され、 分布定数線路 LP1の一端にコントロール回路 VC3が接続されている。
入出力端子 IP2と受信回路 RX2との間には分布定数線路 LP2が接続され、 受信 回路 RX2側の分布定数線路 LP2の一端とアースとの間にダイォ一ド DP2のァノ一 ドが接続され、 その力ソードとアースとの間にコンデンサ CP6及び抵抗 R3が並 列に接続されている。
入出力端子 IP2と受信回路 RX3との間にダイォ一ド DP3が接続され、 そのカソ ―ドは入出力端子 IP2と接続し、 またアノードには分布定数線路 LP及び抵抗 R2 を介してコントロール回路 VC2が接続している。
分布定数線路 LP1及び LP2はそれらの共振周波数が第 2及び第 3の送受信系の 送信信号の周波数帯域の最大周波数から最小周波数までの範囲内に入るような線 路長を有するのが好ましく、特に最大周波数と最小周波数の中間の周波数となるよ うな線路長を有するのが好ましい。 例えば分布定数線路 LP1及び LP2の共振周波 数を DCS1800と PCSの送信信号周波数のほぼ中間周波数 (1810MHz) とすると、 それぞれのモードにおいて優れた電気的特性を得ることができ、 2つの送信信号を 1つの回路で扱うことができる。
第 2のフィル夕回路 F2と送信回路 ΤΧ2との間に挿入されたローパスフィル夕回 路 LPFは、 分布定数線路とコンデンサにより構成するのが好ましい。 図 2に示す 等価回路においては、 分布定数線路 LP3及びコンデンサ CP3、 CP4及び CP7によ り構成された 7Γ型のローパスフィル夕が、 ダイオード DPIと分布定数線路 LP1と の間に挿入されている。
ローパスフィル夕回路 LPFにおいては、 分布定数線路 LP3の線路長をえ /8〜入 /12 (ただしえは第 2及び第 3の送受信系における送信信号の中間周波数) とする のが好ましい。第 2及び第 3の送受信系における送信信号の中間周波数人は、例え ば第 2の送受信系を DCS1800、 第 3の送受信系を PCSとすると、 DCS1800の送信 信号 1710〜: 1785MHz と PCS の送信信号 1850〜: 1910MHz との中間の周波数 (1810MHz) となる。 中間周波数人に対し、 分布定数線路 LP3の線路長が人 /8超 であると、 通過帯域特性が狭帯域となり、 DCS1800 の送信信号の下限周波数及び PCS の送信信号近傍で所望の挿入損失特性が得られない。 また分布定数線路 LP3 の線路長が人 /12未満であると、 2倍波、 3倍波等の高周波数域における減衰量が 劣化する。 このように、 いずれの場合も高周波スィッチモジュールとしての特性が 劣化するため好ましくない。
なおローパスフィル夕回路 LPFとしては、 図 1に示すようにスィッチモジユー ルに内蔵したものに限定されず、 図 16に示すように高周波スィツチモジュールの 後段に配置しても良い。 この場合、 口一パスフィル夕回路 LPFはセラミックフィ ル夕等により構成することができる。
[2] 動作の説明
本発明の高周波スィツチモジュールは、 電源供給手段(コントロール回路) から 電圧を給電してダイオードスィヅチをオン状態/オフ状態に制御することにより、 第 1、第 2及び第 3の送受信系のいずれか一つを選択するようになつている。図 2 に示す等価回路の高周波スィツチモジュールについて、その動作を以下詳細に説明 する。
(A) DCS/PCS TXモード
第 2及び第 3の送信回路 TX2と第 2のフィル夕回路 F2とを接続する場合、コン トロ一ル回路 VC3から正の電圧を与え、 コントロール回路 VC2から 0の電圧を与 える。コントロール回路 VC3から与えられた正の電圧は、 CGP、 CP2、 CP3、 CP4、 CP5、 CP6及び CF4のコンデンサにより直流分が力ットされて、 ダイォ一ド DP1、 DP2及び DP3を含む回路に印加される。 その結果、 ダイォ一ド DP1、 DP2は ON 状態となり、 ダイォード DP3は OFF状態となる。 ダイオード DPIが ON状態とな ると、 第 2及び第 3の送信回路 TX2と接続点 IP2 との間のインピーダンスが低く なる。 また ON状態となったダイォード DP2及びコンデンサ CP6により分布定数 線路 LP2は高周波的に接地されることにより共振し、接続点 IP2から第 2の受信回 路 RX2を見たインピーダンスが非常に大きくなる。 さらにダイオード DP3が OFF 状態となることにより接続点 IP2と第 3の受信回路 RX3 との間のインピーダンス が大きくなる。 その結果、 第 2及び第 3の送信回路 TX2から来る送信信号は第 2 の受信回路 RX2及び第 3の受信回路 RX3に漏洩することなく、第 2のフィル夕回 路 F に伝送される。
(B) DCS RXモ一ド
第 2の受信回路 RX2と第 2のフィル夕回路 F2を接続する場合、コントロール回 路 VC2及び VC3からの電圧は 0であり、 ダイォ一ド DP1、 DP2及び DP3は OFF 状態となる。 OFF状態となったダイォード DP2により、 分布定数線路 LP2を介し て接続点 IP2と第 2の受信回路 RX2が接続される。またダイォ一ド DPIが OFF状 態となることにより、 接続点 IP2と第 2及び第 3の送信回路 TX2との間のインピ 一ダンスが大きくなる。 さらにダイオード DP3が OFF状態となることにより、 接 続点 IP2と第 3の受信回路 RX3との間のインピーダンスが大きくなる。その結果、 第 2のフィル夕回路 F2から来る受信信号は、第 2及び第 3の送信回路 TX2及び第 3の受信回路 RX3に漏洩することなく、 第 2の受信回路 RX2に伝送される。
(C) PCS RXモード
第 3の受信回路 RX3と第 2のフィル夕回路 F2とを接続する場合、コントロール 回路 VC2から正の電圧を与え、 コントロール回路 VC3の電圧は 0とする。 コント ロール回路 VC2から与えられた正の電圧は、 CP5、 CP6、 CP8及び CF4のコンデン サにより直流分が力ッ卜されて、 ダイォード DP1、 DP2及び DP3を含む回路に印 加される。その結果、ダイォ一ド DP2及び DP3が ON状態となり、ダイオード DPI が OFF状態となる。 ダイオード DP3が ON状態となることにより、 第 3の受信回 路 RX3 と接続点 IP2の間のインピーダンスが低くなる。 また ON状態となったダ ィォ一ド DP2及びコンデンサ CP6により分布定数線路 LP2は高周波的に接地され て、 DCS1800及び PCSの送信信号周波数帯域で共振し、 接続点 IP2から第 2の受 信回路 RX2を見たィンピーダンスは PCSの受信信号帯域で非常に大きくなる。 さ らにダイオード DPIが OFF状態となることにより接続点 IP2と第 2及び第 3の送 信回路 TX2 との間のインピーダンスが大きくなる。 その結果、 第 2のフィル夕回 路 F2から来る受信信号は、第 2及び第 3の送信回路 TX2及び第 2の受信回路 RX2 に漏洩することなく、 第 3の受信回路 RX3に伝送される。
(D ) GSM TXモード
第 1の送信回路 GSM TXと第 1のフィルタ回路 F1とを接続する場合、 コント口 —ル回路 VC1 から正の電圧を与える。 正の電圧は CG6、 CG5、 CG4、 CG3、 CG2 及び CGIのコンデンサにより直流分が力ットされて、 ダイオード DG2及び DG1 を含む回路に印加される。その結果、ダイオード DG2及び DG1は ON状態となる。 ダイォード DG1が ON状態となることにより、 第 1の送信回路 TX1と接続点 IP1 の間のインピーダンスが低くなる。 また ON状態となったダイオード DG2及びコ ンデンサ CG6により分布定数線路 LG2は高周波的に接地されて共振し、接続点 IP1 から第 1の受信回路 RX1 を見たインピーダンスは非常に大きくなる。 その結果、 第 1の送信回路 TX1から来る送信信号は第 1の受信回路 RX1に漏洩することなく、 第 1のフィル夕回路 F1に伝送される。
(E) GSM RXモード
第 1の受信回路 GSM RXと第 1のフィル夕回路 F1とを接続する場合、 コント口 ール回路 VC1に 0の電圧を与え、 ダイォード DG1及び DG2を OFF状態とする。 OFF状態となったダイォード DG2により、 分布定数線路 LG2を介して接続点 IP1 と第 2の受信回路 RX1が接続される。 またダイォ一ド DG1が OFF状態となるこ とにより接続点 IP1と第 1の送信回路 TX1との間のインピ一ダンスが大きくなる。 その結果、第 1のフィル夕回路 F1から来る受信信号は第 1の送信回路 TX1に漏洩 することなく、 第 1の受信回路 RX1に伝送される。
本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定さ れるものではない。 実施例 1
図 3は本実施例の高周波スィツチモジュールを示す平面図であり、図 4はその積 層体部分を示す斜視図であり、図 5は図 4の積層体を構成する各層の構成を示す展 開図である。実施例 1では、第 1及び第 2のフィル夕回路、口一パスフィル夕回路、 スィツチ回路の分布定数線路を積層体内に構成し、 ダイォードと、積層体内に内蔵 することのできない高容量値のコンデンサをチヅプコンデンサとして積層体上に 搭載することにより、ワンチヅブイ匕したトリプルバンド用の高周波スィツチモジュ
—ルを構成した。なお図 4に示す外部端子に付与した記号 P1〜P16は、図 2の等価 回路図に付した P2、 P4等の記号と合致している。
この積層体は、 (a)低温焼成が可能なセラミック誘電体材料からなり、 厚さが 50 /π!〜 200 /mのグリーンシートを作製し、 (b) 各グリーンシート上に Agを主体と する導電ペーストを印刷することにより所望の電極パターンを形成し、 (c)所望の 電極パターンを有する複数のグリーンシートを積層して一体ィ匕し、 (d)焼成するこ とにより製造することができる。 ライン電極の幅は主として 100〜400 Zm とする のが好ましい。
積層体の内部構造を積層順に従って説明する。 まず最下層のグリーンシート 11 のほぼ全面にグランド電極 31 を形成するとともに、 側面の端子電極 81、 83、 87、 89、 91、 93及び 95に接続するための接続部を設ける。
グリーンシー卜 11の上に電極パターンが印刷されていないグリーンシート 12を 積層した後で、 1つのライン電極 41を形成したグリーンシート 13、 4つのライン 電極 42、 43、 44及び 45を形成したグリーンシート 14、及び 4つのライン電極 46、 47、 48及び 49を形成したグリーンシート 15を順に積層する。 その上に 2つのス ルーホール電極 (図中、 十字の印を付けたものがスル一ホール電極である。) を形 成したグリーンシート 16を積層し、その上にグランド電極 32を形成したグリーン シート 17を積層する。
2つのグランド電極 31、 32に挟まれた領域にあるライン電極を適宜接続するこ とにより、第 1及び第 2のスィッチ回路 SW1 , SW2用の分布定数線路を形成する。 具体的には図 2の等価回路を参照して、 ライン電極 41、 42及び 46をスルーホール 電極で接続することにより分布定数線路 LG1を構成し、 ライン電極 45及び 49を スル一ホール電極で接続することにより分布定数線路 LG2を構成し、 ライン電極 43及び 47をスル一ホール電極で接続することにより分布定数線路 LP1を構成し、 ライン電極 44及び 48をスル一ホール電極で接続することにより分布定数線路 LP2 を構成する。
グリーンシ一ト 17の上に積層するグリーンシ一ト 18には、コンデンサ用の電極 61、 62、 63、 64、 65及び 66が形成されている。 その上に積層するグリーンシート 19にもコンデンサ用の電極 67、 68及び 69が形成されている。 その上に積層する グリーンシ一ト 20にはコンデンサ電極 70が形成されている。
その上にライン電極 50、 51、 52、 53及び 54が形成されたグリーンシート 21、 及びラィン電極 55、 56、 57、 58及び 59が形成されたグリーンシ一ト 22を順に積 層する。 最上部のグリーンシート 23には搭載素子接続用のランドが形成されてい る。
グリーンシート 18のコンデンサ用電極 61、 62、 63、 64及び 66の各々は、 グリ —ンシート 17上に形成されたグランド電極 32との間で容量を構成する。具体的に は図 2の等価回路を参照して、 コンデンサ用電極 61はコンデンサ CP3を構成し、 コンデンサ用電極 62はコンデンサ CP4を構成し、 コンデンサ用電極 63はコンデ ンサ CG4を構成し、 コンデンサ用電極 64はコンデンサ CG3を構成し、 コンデン サ用電極 66はコンデンサ CF3を構成する。
グリーンシート 18、 19及び 20に形成されたコンデンサ用電極は相互に容量を形 成する。具体的には図 2の等価回路を参照して、 コンデンサ電極 65と 68との間で コンデンサ CF4を構成し、 同様にコンデンサ電極 61、 62と 67との間でコンデン サ CP7を構成し、 コンデンサ電極 69と 70との間でコンデンサ CF1を構成し、 コ ンデンサ電極 68と 70との間でコンデンサ CF を構成する。 なおコンデンサ電極 65はコンデンサ電極 68と対向して容量を形成するが、 グランド電極 32とは対向 しないようにグランド電極 32には切り欠き部が形成されている。 分布定数線路を 導通するためのスルーホール電極は切り欠き部内に位置している。
グリーンシート 21、 22では、 ライン電極 52、 59は分布定数線路 LF1を構成し、 ライン電極 54、 58は分布定数線路 L F2を構成し、 ライン電極 53は分布定数線路 LF3を構成し、 ライン電極 51、 57は分布定数線路 LG3を構成し、 ライン電極 55 は分布定数線路 LP3を構成し、 ラィン電極 56は分布定数線路 LPを構成する。 ま たライン電極 50は配線用のラインである。また分布定数線路 LG3を構成するライ ン電極 51、 57を部分的に対向するように形成し、その対向部分でコンデンサ CG7 を構成する。
積層したこれらのグリーンシートを一体的に圧着し、 900°Cの温度で焼成して、 外形寸法が 6.7mm X 5.0mm X 1.0mmの積層体を得た。この積層体の側面に端子電極 81〜96を形成した。 積層体の外観を図 4に示す。
この積層体の上に、 ダイオード DG1、 DG2、 DP1、 DP2及び DP3、 チヅプコンデ ンサ CG1、 CG6、 CGP及び CP6、 及びチップ抵抗 R3を搭載した。 図 3はこられの 素子を搭載した積層体を示す平面図である。図 3はこの高周波スィツチモジュール の実装構成 (各端子の接続構造) を併せて示す。 なお図 3等において GRDはグラ ンド接続される端子を意味する。
本実施例では、 図 2に示す等価回路のうち、 CP2、 CP5、 CG2、 CG5、 Rl、 LG、 R2及び CP8を、 チップ部品を搭載する回路上に形成する。
本実施例では、第 1及び第 2のスィツチ回路の分布定数線路を積層体内のグラン ド電極で挟まれた領域に形成しているので、スィツチ回路と分波回路及び口一パス フィル夕回路との干渉を防いでいる。またグランド電極で挟まれた領域を積層体の 下部に配置することにより、 グランド電位を取り易くしている。上側のグランド電 極に対向する位置には、それとの間にコンデンサを構成するコンデンサ用電極を形 成している。
図 3及び 4に示すように、本実施例では積層体の側面に端子が形成された構造と なっているので、 面実装が可能である。 側面の端子はそれぞれ ANT端子 (P2)、 DCS/PCSの TX2端子(P7)、 GSMの TX1端子(P13)、 GSMの RX1端子(P16)、 DCS1800 RX2端子 (P9)、 PCS RX3端子 (P10)、 グランド端子 (GRD) 及びコン トロール端子 (VC1、 VC2、 VC3) である。 その他にこの積層体の各側面には、 少 なくとも 1つのグランド端子を配置している。
本実施例では、 ANT端子、 TX端子群及び RX端子群はそれぞれグランド端子で 挟まれている。また VC1、 VC2及び VC3もそれぞれグランド端子で挟まれている。 本実施例の高周波スィツチモジュールの各コントロール回路 VC1、VC2及び VC3 の制御ロジックを表 1に示す。 これにより GSM、 DCS1800及び PCSの各モードを 変更する。 表 1
Figure imgf000018_0001
図 11〜図 15は各通信モ一ドにおける送受信時の挿入損失特性及びアイソレーシ ヨン特性を示す。 図 11〜図 15に示すように、 各通信モードにおいて所望の周波数 帯域で優れた挿入損失特性及びアイソレーション特性が得られ、本実施例の高周波 スィッチモジュ一ルは小型かつ高性能であることが分かつた。 実施例 2
図 6は本発明の別の実施例による高周波スィツチモジュールの等価回路を示し、 図 7は高周波スィツチモジュールの平面図であり、図 8はその積層体の内部構造を 示す。本実施例は実施例 1と類似する部分が多いので、 ここでは異なる部分のみ説 明する。
第 1及び第 2のフィル夕回路は、実施例 1と同一である。第 1の送受信系(GSM) の第 1のスィッチ回路 SW1も、 分布定数線路 LG1がアースに接続されずに、 第 2 のスィツチ回路 SW2の分布定数線路 LP1とともにコントロール回路 VC3に接続さ れている以外、 実施例 1と同一である。第 2のスィツチ回路においては、 ダイォ一 ド DP1、 DP2及び DP3の向きが実施例 1と逆になつており、 またダイォ一ド DP2 とコンデンサ CP6との間に、 ィンダク夕 LDと抵抗 R3の直列回路を経てコントロ —ル回路 VC4が接続されている。
また高周波スィツチモジュール積層体の構造については、以下の点で実施例 1の ものと相違する。 グリーンシ一ト 11のグランド電極 31は端子電極 89に接続して いない。グリーンシ一ト 15では、ライン電極 46の引き出し端子が変更されている。 グリーンシート 17では、 グランド電極 32は端子電極 89に接続していない。 グリ 一ンシ一ト 21では、配線用ラインであるライン電極 71が追加されている。グリ一 ンシート 22では、 ライン電極 71に接続するスルーホールが追加されている。また グリーンシート 23では、 ランド形状が変更されている。
積層体上には、 ダイオード DG1、 DG2、 DP1、 DP2及び DP3、 チップコンデンサ CG1、 CG6、 CGP及び CP6を搭載する。 図 7はこれらの素子を搭載した積層体を 示す。図 7は高周波スィツチモジュールの実装構成(各端子の接続構造) を併せて 示す。本実施例では、図 6に示す等価回路を構成する素子のうち、 CP2、 CP5、 CG2、 CG5、 Rl、 LG、 R2、 CP8、 R3及び LDは、 チップ部品の搭載回路上に形成する。 本実施例の高周波スィッチモジュールの各コントロール回路 VC1、 VC2、 VC3 及び VC4の制御ロジックを表 2に示す。 これにより各モ一ドを変更する。 表 2
Figure imgf000019_0001
本実施例の高周波スィツチモジュールも 3つの異なる通信方式を使用でき、実施 例 1と同様の効果を有している。 実施例 3
本発明のさらに別の実施例による高周波スィツチモジュールの等価回路を図 9 WO 00/55983 PCT/JP -一: に示す。本実施例の高周波スィツチモジュールは実施例 1のものと類似する部分が 多いので、 ここでは異なる部分のみ説明することにする。
第 1及び第 2のフィルタ回路、 及び第 1の送受信系 (GSM) の第 1のスィッチ 回路 SW1については、 等価回路的に実施例 1と同一である。 第 2のスィッチ回路 SW2は、第 2のフィル夕回路 F2から第 2及び第 3の送受信系の受信信号が入力す るとともに第 2及び第 3の送受信系の送信回路 TX2から来る送信信号を出力する 入出力端 IP2と、 第 2及び第 3の送受信系の送信回路 TX2から来る送信信号が入 力する入力端と、 第 2及び第 3の送受信系の受信信号を出力する第 3の出力端 IP3 と、 第 2の送受信系の受信信号を受信回路 RX2へ出力する第 4の出力端と、 第 3 の送受信系の受信信号を受信回路 RX3へ出力する第 5の出力端とを有し、 入出力 端 IP2と入力端との間に配置された第 1のダイオード DPI と、 入力端とアースと の間に設けられた第 1の分布定数線路 LP1と、入出力端 IP2と第 3の出力端 IP3と の間に設けられた第 2の分布定数線路 LP2と、第 3の出力端 IP3とアースとの間に 設けられた第 2のダイオード DP2と、 第 3の出力端 IP3 と第 4の出力端との間に 設けられた第 3の分布定数線路 LD1 と、 第 4の出力端とアースとの間に設けられ た第 3のダイオード DDIと、 第 3の出力端 IP3と第 5の出力端との間に配置され た第 4のダイオード DD2と、 第 5の出力端とアースとの間に設けられた第 4の分 布定数線路 LD2とを具備する。
上記の通り、 第 2のスイッチ回路 SW2は、 DCSの受信回路 RX2と PCSの受信 回路 RX3とを切り替えるスィッチ回路 SW2-1と、 DCS/PCSの送信回路 TX2と前 記スィッチ回路とを切り換えるもう一つのスィッチ回路 SW2-2 とからなる。 DCS の受信回路 RX2と PCSの受信回路 RX3とを切り替えるスィッチ回路 SW2-1は、 2つのダイオード DD1、 DD2、 及び 2つの分布定数線路 LD1、 LD2を主要素子と し、 ダイオード DD2のアノードは接続点 IP3に接続され、 カソ一ドは RX3側に接 続され、 カソ一ド側にアースに接続される分布定数線路 LD2が配置されている。 接続点 IP3と受信回路 RX2との間に分布定数線路 LD1が接続され、 受信回路 RX2 側にコンデンサ CDP2を介してアースに接続されるダイォ一ド DDIが配置されて いる。 ダイオード DDIとコンデンサ CDP2との間に、 インダク夕 LD及び抵抗 R6 を介してコントロール回路 VC5が接続されている。 このスィヅチ回路 SW2-1の前段には、 DCS/PCSの送信回路 TX2とスィツチ回 路 SW2-1とを切り換えるためのもう一つのスィツチ回路 SW2-2が配置されている c このスィッチ回路 SW2-2は、 2つのダイォ一ド DP1、 DP2及び 2つの分布定数線 路 LP1、 LP2を主要素子とする。 TX2と接続点 IP2との間にダイォ一ド DPIが配置 され、 ダイォ一ド DPIのアノードは接続点 IP2に接続し、 そのカソ一ド側にァー スに接続される分布定数線路 LP1が配置されている。接続点 IP2と IP3との間に分 布定数線路 LP2が接続され、 その接続点 IP3側にコンデンサ CP6を介してアース に接続するダイオード DP2が配置されている。 またダイオード DP2とコンデンサ CP6との間に、 ィンダク夕 LP及び抵抗 R3を介してコントロール回路 VC3を接続 している。
本実施例の高周波スィツチモジュールの各コントロール回路 VC1、VC3及び VC5 の制 j御ロジックを表 3に示す。 これにより各モードを変更する。
表 3
Figure imgf000021_0001
実施例 3の高周波スィツチモジュールも 3つの異なる通信方式を使用でき、実施 例 1と同様の効果を発揮することが分かる。 実施例 4
本発明のさらに別の実施例による高周波スィッチモジュールの等価回路を図 10 に示す。本実施例の高周波スィツチモジュールは実施例 1のものと類似する部分が 多いので、 ここでは異なる部分のみ説明することにする。 第 1〜第 3の送受信系 (GSM、 DCS, PCS) の第 1及び第 2のスィッチ回路部分は、 等価回路的に実施例 1と同一である。
アンテナ ANTと接続している第 1及び第 2のフィル夕回路 Fl , F2は実施例 1 と同様に分布定数線路及びコンデンサにより構成され、 等価回路では GSMの送受 信信号を通過させ DCS及び PCSの送受信信号を減衰させる第 1のフィル夕回路と してローパスフィル夕を具備し、 DCS及び PCSの送受信信号を通過させ GSMの 送受信信号を減衰させる第 2のフィル夕回路としてハイパスフィル夕を具備する。 前記ローパスフィル夕はアンテナ ANTと第 1のスィツチ回路 F1との間に分布定数 線路 LF5を有し、 分布定数線路 LF5の一端とアースとの間に分布定数線路 LF6及 びコンデンサ CF6からなる直列共振回路が接続している。 一方ハイパスフィル夕 は、 アンテナ ANTと第 2のスィッチ回路 F2との間に接続されたコンデンサ CF5 と、 アースとの間に接続された分布定数線路 LF7及びコンデンサ CF7からなる直 列共振回路とを有する。
本実施例の高周波スィツチモジュールも 3つの異なる通信方式を使用でき、実施 例 1と同様の効果を発揮する。
本発明の高周波スィツチモジュールを図 1〜図 10を参照して詳細に説明したが、 これらに限定されるものではなく、本発明の思想を逸脱しない限り種々の変更をす ることができる。また本発明の高周波スィツチモジュールに使用する通信方式も上 記実施例に示したものに限られることはなく、 3つの異なる送受信系、例えば GPS (Global Positioning System) と D-雇 PS (Digital Advanced Mobile Service) と PCS との組合せ、 GSMと WCDMA (Wide-band Code Division Multiple Access) と PCS との組合せ等の場合でも、 同様に 3つの送受信系の切り換えが可能である。 産業上の利用可能性
本発明の高周波スィツチモジュールは、例えば 3つの異なる通信方式を使用でき る複数通信方式のトリプルバンド用の携帯電話等の携帯通信機に利用できるもの で、 アンテナ ANTと、第 1の送受信系の送信回路 TX1及び受信回路 RX1、第 2及 び第 3の送受信系の送信回路 TX2、 第 2の送受信系の受信回路 RX2、 及び第 3の 送受信系の受信回路 RX3が切り換え可能になっており、 第 2送受信系の送信回路 と第 3送受信系の送信回路とを共通化できる。このため本発明の高周波スイッチモ ジュールは、優れた電気的特性を維持しながら小型化できるとともに、第 2及び第 3の送受信系の送信回路の幾つかの部品(例えばアンプ)を共用化することも可能 である。その結果、 高周波スイッチモジュールを用いた携帯通信機を更に小型'軽 量化し得る。

Claims

請求の範囲
1. 複数の異なる送受信系の送信回路と受信回路を切り替える高周波スイッチモ ジュールであって、互いに通過帯域が異なる第 1及び第 2のフィル夕回路と、前記 第 1のフィル夕回路に接続され第 1の送受信系の送信回路と受信回路を切り替え る第 1のスィッチ回路と、前記第 2のフィル夕回路に接続され第 2及び第 3の送受 信系の送信回路と第 2の送受信系の受信回路と第 3の送受信系の受信回路とを切 り替える第 2のスィツチ回路とを具備することを特徴とする高周波スィツチモジ ュ——レ。
2. 請求項 1に記載の高周波スィッチモジュールにおいて、前記第 1及び第 2のフ ィル夕回路が第 1の送受信系の受信信号と第 2及び第 3の送受信系の受信信号を 分波する分波回路であることを特徴とする高周波スィツチモジュール。
3. 請求項 1又は 2に記載の高周波スィッチモジュールにおいて、前記第 1及び第 2のスィツチ回路はダイオードと分布定数線路を主要素子とするダイオードスィ ツチであって、前記ダイオードスィツチに電源供給手段から電圧を給電しオン状態 /オフ状態に制御することにより、第 1、第 2及び第 3の送受信系のいずれか一つ を選択することを特徴とする高周波スィツチモジュール。
4. 請求項 3に記載の高周波スィツチモジュールにおいて、前記第 2のスィツチ回 路は、第 2のフィル夕回路から第 2及び第 3の送受信系の受信信号が入力するとと もに第 2及び第 3の送受信系の送信回路から来る送信信号を出力する入出力端と、 第 2及び第 3の送受信系の送信回路から来る送信信号が入力する入力端と、第 2の 送受信系の受信信号を受信回路へ出力する第 1の出力端と、第 3の送受信系の受信 信号を受信回路へ出力する第 2の出力端とを有し、前記入出力端と前記入力端との 間に配置された第 1のダイォードと、前記入力端とアースとの間に設けられた第 1 の分布定数線路と、前記入出力端子と前記第 1の出力端との間に設けられた第 2の 分布定数線路と、前記第 1の出力端とアースとの間に設けられた第 2のダイォード と、前記入出力端と前記第 2の出力端との間に設けられた第 3のダイォードとを具 備することを特徴とする高周波スィツチモジュール。
5. 請求項 4に記載の高周波スィッチモジュールにおいて、前記第 1及び第 2の分 布定数線路はそれらの共振周波数が第 2及び第 3の送受信系の送信信号の周波数 帯域の最大周波数から最小周波数までの範囲内に入るような線路長を有すること を特徴とする高周波スィツチモジュール。
6. 請求項 3に記載の高周波スィツチモジュールにおいて、 前記第 2のスィツチ 回路は、第 2のフィル夕回路から第 2及び第 3の送受信系の受信信号が入力すると ともに第 2及び第 3の送受信系の送信回路から来る送信信号を出力する入出力端 と、第 2及び第 3の送受信系の送信回路から来る送信信号が入力する入力端と、第 2及び第 3の送受信系の受信信号を出力する第 3の出力端と、第 2の送受信系の受 信信号を受信回路へ出力する第 4の出力端と、第 3の送受信系の受信信号を受信回 路へ出力する第 5の出力端とを有し、前記入出力端と前記入力端との間に配置され た第 1のダイォードと、前記入力端とアースとの間に設けられた第 1の分布定数線 路と、前記入出力端と前記第 3の出力端との間に設けられた第 2の分布定数線路と、 前記第 3の出力端とアースとの間に設けられた第 2のダイオードと、前記第 3の出 力端と前記第 4の出力端との間に設けられた第 3の分布定数線路と、前記第 4の出 力端とアースとの間に設けられた第 3のダイォードと、前記第 3の出力端と前記第 5の出力端との間に配置された第 4のダイォードと、前記第 5の出力端とアースと の間に設けられた第 4の分布定数線路とを具備することを特徴とする高周波スィ ッチモジュ——ノレ。
7. 請求項 6に記載の高周波スィッチモジュールにおいて、 前記第 1の分布定数線 路はその共振周波数が第 2及び第 3の送受信系の送信信号の周波数帯域の最大周 波数から最小周波数までの範囲内に入るような線路長を有し、第 2の分布定数線路 はその共振周波数が第 2及び第 3の送受信系の送信信号の周波数帯域の最大周波 数から最小周波数までの範囲内に入るような線路長を有し、第 3の分布定数線路は その共振周波数が第 3の送受信系の受信信号の周波数帯域の最大周波数から最小 周波数までの範囲内に入るような線路長を有し、第 4の分布定数線路はその共振周 波数が第 3の送受信系の受信信号の周波数帯域の最大周波数から最小周波数まで の範囲内に入るような線路長を有することを特徴とする高周波スィツチモジユー ル。
8. 請求項 1 〜 7のいずれかに記載の高周波スィッチモジュールにおいて、第 2の フィル夕回路と第 2及び第 3の送受信系の送信回路との間に分布定数線路とコン デンサにより構成する口一パスフィルタ回路が配置されていることを特徴とする 高周波スィツチモジュール。
9. 請求項 8に記載の高周波スィッチモジュールにおいて、 第 2及び第 3の送受信 系の送信信号の中間周波数人に対し、口一パスフィル夕回路を構成する分布定数線 路の線路長がえ /8〜人 /12であることを特徴とする高周波スィッチモジュ一ル。
10. 請求項 1〜 9のいずれかに記載の高周波スィッチモジュールにおいて、 前記 第 1及び第 2のフィル夕回路は分布定数線路とコンデンサにより構成されている ことを特徴とする高周波スィツチモジュール。
11. 請求項 10に記載の高周波スィッチモジュールにおいて、 前記第 1及び第 2の フィル夕回路の分布定数線路及びコンデンサ、及び前記第 1及び第 2のスィッチ回 路の分布定数線路の少なくとも一部は、電極パターンを有する誘電体層からなる積 層体中の前記電極パターンにより構成されており、前記第 1及び第 2のスィツチ回 路のダイォードは前記積層体上に配置されていることを特徴とする高周波スィッ チモジュール。
12. 請求項 11に記載の高周波スイッチモジュールにおいて、 前記第 2のフィル夕 回路と前記第 2及び第 3の送受信系の送信回路との間に分布定数線路及びコンデ ンサからなる口一パスフィル夕回路を備え、前記分布定数線路とコンデンサの少な くとも一部は前記積層体内の前記電極パターンにより構成されていることを特徴 とする高周波スィッチモジュール。
13. 請求項 11に記載の高周波スィツチモジュールにおいて、 前記スィツチ回路の 分布定数線路は一対のグランド電極に挟まれた領域に形成された電極パターンか らなることを特徴とする高周波スィツチモジュール。
14. 請求項 13に記載の高周波スィツチモジュールにおいて、 前記一対のグランド 電極の上側に前記第 1及び第 2のフィル夕回路のコンデンザが形成され、その上に 前記第 1及び第 2のフィル夕回路の分布定数線路が形成されていることを特徴と する高周波スィツチモジュール。
15. 請求項 12に記載の高周波スィツチモジュールにおいて、 前記スィツチ回路の 分布定数線路は一対のグランド電極に挟まれた領域に形成された電極パターンか らなり、前記グランド電極の上側に前記口一パスフィル夕回路のコンデンサ及び前 記第 1及び第 2のフィル夕回路のコンデンザが形成され、—その上に前記口一パスフ ィル夕回路の分布定数線路、及び前記第 1及び第 2のフィル夕回路の分布定数線路 が形成されていることを特徴とする高周波スイッチモジュ一ル。
16. 請求項 15に記載の高周波スィッチモジュールにおいて、前記第 1及び第 2の フィル夕回路と前記ローパスフィル夕回路とが、前記積層体の積層方向に重複しな い領域に別々に形成されていることを特徴とする高周波スィツチモジュール。
PCT/JP2000/001670 1999-03-18 2000-03-17 Module de commutation haute frequence WO2000055983A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US09/700,671 US6987984B1 (en) 1999-03-18 2000-03-17 High-frequency switch module
DE60034747T DE60034747T2 (de) 1999-03-18 2000-03-17 Hochfrequenzschaltermodul
EP00909731A EP1083672B1 (en) 1999-03-18 2000-03-17 High-frequency switch module
DK00909731T DK1083672T3 (da) 1999-03-18 2000-03-17 Höjfrekvensomskiftermodul
JP2000605318A JP4257481B2 (ja) 1999-03-18 2000-03-17 高周波スイッチモジュール
US11/090,640 US7171234B2 (en) 1999-03-18 2005-03-28 High-frequency switch circuit
US11/090,218 US7130655B2 (en) 1999-03-18 2005-03-28 High-frequency switch circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/73234 1999-03-18
JP07323499A JP2002064301A (ja) 1999-03-18 1999-03-18 トリプルバンド用高周波スイッチモジュール

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/090,640 Division US7171234B2 (en) 1999-03-18 2005-03-28 High-frequency switch circuit
US11/090,218 Division US7130655B2 (en) 1999-03-18 2005-03-28 High-frequency switch circuit

Publications (1)

Publication Number Publication Date
WO2000055983A1 true WO2000055983A1 (fr) 2000-09-21

Family

ID=13512301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001670 WO2000055983A1 (fr) 1999-03-18 2000-03-17 Module de commutation haute frequence

Country Status (6)

Country Link
US (3) US6987984B1 (ja)
EP (3) EP1804390B1 (ja)
JP (2) JP2002064301A (ja)
DE (1) DE60034747T2 (ja)
DK (1) DK1083672T3 (ja)
WO (1) WO2000055983A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036806A1 (fr) * 2001-10-24 2003-05-01 Matsushita Electric Industrial Co., Ltd. Module de commutation composee haute frequence, et terminal de communication equipe de ce module
EP1223634A3 (en) * 2000-12-26 2003-08-13 Matsushita Electric Industrial Co., Ltd. High-frequency switch, laminated high-frequency switch, high-frequency radio unit, and high-frequency switching method
JP2004536508A (ja) * 2001-07-03 2004-12-02 キョウセラ ワイヤレス コーポレイション Gps有効アンテナのためのシステムおよび方法
US6972636B2 (en) 2002-05-20 2005-12-06 Seiko Epson Corporation Method of manufacturing a high-frequency switch, a high-frequency switch and an electronic apparatus
JP2006237978A (ja) * 2005-02-24 2006-09-07 Hitachi Metals Ltd マルチバンド高周波モジュールおよびこれを用いたマルチバンド通信装置
US7167687B2 (en) 2002-01-31 2007-01-23 Hitachi Metals, Ltd. Switch circuit and composite high-frequency part
US7221922B2 (en) 2003-02-14 2007-05-22 Hitachi Metals, Ltd. Switch circuit and composite high frequency elements
US7545759B2 (en) 2004-06-07 2009-06-09 Hitachi Metals, Ltd. High-frequency switching module and its control method
JP2010278547A (ja) * 2009-05-26 2010-12-09 Murata Mfg Co Ltd 高周波モジュール
EP2437400A1 (en) 2000-11-01 2012-04-04 Hitachi Metals, Ltd. High-frequency switch module

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7395056B2 (en) * 2000-05-31 2008-07-01 Wahoo Communications Corporation Time-shared full duplex protocol for use with a wireless communications system with artificial intelligence-based distributive call routing
WO2002017504A1 (fr) * 2000-08-22 2002-02-28 Hitachi Metals, Ltd. Module de commutation stratifié à haute fréquence
DE10102201C2 (de) * 2001-01-18 2003-05-08 Epcos Ag Elektrisches Schaltmodul, Schaltmodulanordnung und verwendung des Schaltmoduls und der Schaltmodulanordnung
FR2822612B1 (fr) * 2001-03-20 2003-07-11 Sagem Dispositif de mulitplexage radiofrequence a commande croisee pour telephone mobile bi-bande
JP2002290269A (ja) * 2001-03-27 2002-10-04 Sanyo Electric Co Ltd 複合高周波部品及びこれを用いた情報端末装置
WO2002080388A2 (en) * 2001-03-29 2002-10-10 Matsushita Electric Industrial Co., Ltd. High frequency switch, radio communication apparatus, and high frequency switching method
US6683512B2 (en) * 2001-06-21 2004-01-27 Kyocera Corporation High frequency module having a laminate board with a plurality of dielectric layers
EP1418680A4 (en) * 2001-08-10 2005-04-06 Hitachi Metals Ltd DERIVATION FILTER, MUTIBAND ANTENNA SWITCHING CIRCUIT, LAMINATED MODULE COMPOSITE ELEMENT, AND COMMUNICATION DEVICE USING SAME
JP2003087002A (ja) * 2001-09-14 2003-03-20 Matsushita Electric Ind Co Ltd 高周波スイッチ
US20050059371A1 (en) * 2001-09-28 2005-03-17 Christian Block Circuit arrangement, switching module comprising said circuit arrangement and use of switching module
US7492565B2 (en) * 2001-09-28 2009-02-17 Epcos Ag Bandpass filter electrostatic discharge protection device
US6975841B2 (en) 2001-11-12 2005-12-13 Matsushita Electric Industrial Co., Ltd. Diplexer, and high-frequency switch and antenna duplexer using the same
JP2003264348A (ja) * 2002-03-07 2003-09-19 Sony Corp 高周波モジュール
DE10246098A1 (de) 2002-10-02 2004-04-22 Epcos Ag Schaltungsanordnung
US7242268B2 (en) * 2002-10-25 2007-07-10 Hitachi Metals, Ltd. Unbalanced-balanced multiband filter module
US20040185795A1 (en) * 2003-02-05 2004-09-23 Khosro Shamsaifar Electronically tunable RF Front End Module
US7373171B2 (en) * 2003-02-14 2008-05-13 Tdk Corporation Front end module
JP3810011B2 (ja) * 2003-08-08 2006-08-16 Tdk株式会社 高周波スイッチモジュールおよび高周波スイッチモジュール用多層基板
JP4123435B2 (ja) * 2003-10-14 2008-07-23 富士通メディアデバイス株式会社 高周波スイッチモジュール
WO2005046070A1 (ja) * 2003-11-11 2005-05-19 Murata Manufacturing Co., Ltd. 高周波モジュール
EP1768269B1 (en) * 2004-06-30 2016-06-22 Hitachi Metals, Ltd. High frequency circuit, high frequency component, and multi-band communication apparatus
JP4288529B2 (ja) * 2004-06-30 2009-07-01 日立金属株式会社 高周波部品及びマルチバンド通信装置
DE102004040967B4 (de) * 2004-08-24 2019-02-21 Snaptrack, Inc. Schaltung mit hoher Isolation zwischen Sende- und Empfangspfad und Bauelement mit der Schaltung
WO2006057173A1 (ja) 2004-11-25 2006-06-01 Murata Manufacturing Co., Ltd. 高周波スイッチモジュール
KR100890711B1 (ko) * 2005-04-28 2009-03-27 가부시키가이샤 무라타 세이사쿠쇼 고주파 스위칭모듈 및 고주파회로의 주파수특성 조정방법
US7564664B2 (en) * 2006-05-11 2009-07-21 Infineon Technologies Ag ESD protection circuit for a high frequency circuit
DE602007001682D1 (de) * 2007-05-22 2009-09-03 Alcatel Lucent Basisstation und Übertragungsverfahren
US7702296B2 (en) * 2007-08-01 2010-04-20 Mediatek Usa Inc. Transmit/receive switch
JP5625453B2 (ja) 2009-05-26 2014-11-19 株式会社村田製作所 高周波スイッチモジュール
TWI408910B (zh) * 2009-10-14 2013-09-11 Ralink Technology Corp 訊號分路裝置及無線通訊裝置
US9100060B2 (en) * 2011-12-14 2015-08-04 Infineon Technologies Ag System and method for a radio frequency switch
JP5594318B2 (ja) 2012-05-24 2014-09-24 株式会社村田製作所 スイッチモジュール
EP3580853B1 (en) 2017-02-10 2023-04-05 Telefonaktiebolaget LM Ericsson (publ) Time division duplex transceiver with an integrated isolator circuit
JP2021145282A (ja) * 2020-03-13 2021-09-24 株式会社村田製作所 高周波モジュールおよび通信装置
JP2021158554A (ja) * 2020-03-27 2021-10-07 株式会社村田製作所 高周波モジュールおよび通信装置
JP2021158556A (ja) * 2020-03-27 2021-10-07 株式会社村田製作所 高周波モジュールおよび通信装置
CN114257265B (zh) * 2022-03-01 2022-05-10 四川鸿创电子科技有限公司 一种射频至中频收发系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135702A (ja) * 1996-10-29 1998-05-22 Hitachi Metals Ltd ダイオードスイッチ
JP2000165288A (ja) * 1998-11-27 2000-06-16 Murata Mfg Co Ltd 複合高周波部品及びそれを用いた移動体通信装置
JP2000165274A (ja) * 1998-11-20 2000-06-16 Murata Mfg Co Ltd 複合高周波部品及びそれを用いた移動体通信装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4222190A1 (de) * 1992-07-07 1994-01-13 Philips Patentverwaltung Funkgerät mit einer Antennenumschaltvorrichtung
US5442812A (en) * 1992-07-08 1995-08-15 Matsushita Electric Industrial Co., Ltd. Antenna switching apparatus for selectively connecting antenna to transmitter or receiver
DE4343719C2 (de) * 1992-12-22 1997-08-07 Murata Manufacturing Co Hochfrequenzschalter
JP2874496B2 (ja) 1992-12-26 1999-03-24 株式会社村田製作所 高周波スイッチ
CN1034044C (zh) * 1993-03-31 1997-02-12 摩托罗拉公司 转换电路及其方法
JP3291913B2 (ja) * 1994-05-17 2002-06-17 株式会社村田製作所 高周波スイッチ
JP3198808B2 (ja) * 1994-06-30 2001-08-13 株式会社村田製作所 高周波スイッチ
JP3196539B2 (ja) * 1994-12-05 2001-08-06 株式会社村田製作所 高周波スイッチ
JP3299065B2 (ja) * 1995-01-30 2002-07-08 株式会社村田製作所 高周波複合スイッチ
US5699023A (en) * 1995-07-24 1997-12-16 Murata Manufacturing Co., Ltd. High-frequency switch
US5999065A (en) * 1995-08-24 1999-12-07 Murata Manufacturing Co., Ltd. Composite high-frequency component
US6070059A (en) * 1995-12-05 2000-05-30 Murata Manufacturing Co., Ltd. High-frequency switch
EP0778671B1 (en) * 1995-12-05 2005-07-27 Murata Manufacturing Co., Ltd. High-frequency switch
JPH1032521A (ja) * 1996-07-17 1998-02-03 Murata Mfg Co Ltd デュプレクサ
US6006105A (en) * 1996-08-02 1999-12-21 Lsi Logic Corporation Multi-frequency multi-protocol wireless communication device
US5768691A (en) * 1996-08-07 1998-06-16 Nokia Mobile Phones Limited Antenna switching circuits for radio telephones
JP3223848B2 (ja) * 1996-08-21 2001-10-29 株式会社村田製作所 高周波部品
US5778306A (en) * 1996-11-08 1998-07-07 Motorola Inc. Low loss high frequency transmitting/receiving switching module
JP3258922B2 (ja) * 1997-01-08 2002-02-18 三洋電機株式会社 デュアルバンド無線通信装置
US6108527A (en) * 1997-07-31 2000-08-22 Lucent Technologies, Inc. Wide range multiple band RF power detector
JP3848445B2 (ja) 1997-09-26 2006-11-22 松下電器産業株式会社 複数通信方式対応の無線機
JP3191213B2 (ja) 1998-04-28 2001-07-23 日立金属株式会社 高周波スイッチモジュール
DE69827912T2 (de) * 1997-12-03 2005-08-04 Hitachi Metals, Ltd. Mehrband-HF-Schaltmodul
JP2983016B2 (ja) 1997-12-03 1999-11-29 日立金属株式会社 マルチバンド用高周波スイッチモジュール
DE69930453T2 (de) * 1998-10-27 2006-09-28 Murata Manufacturing Co., Ltd., Nagaokakyo Zusammengestellte Hochfrequenzkomponente und damit ausgerüstetes mobiles Kommunikationsgerät
JP3484090B2 (ja) * 1998-12-22 2004-01-06 株式会社日立製作所 スイッチ型アンテナ共用器および移動無線端末
JP2001102957A (ja) * 1999-09-28 2001-04-13 Murata Mfg Co Ltd 複合高周波部品及びそれを用いた移動体通信装置
JP3711846B2 (ja) * 2000-07-27 2005-11-02 株式会社村田製作所 高周波モジュール及びそれを用いた移動体通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135702A (ja) * 1996-10-29 1998-05-22 Hitachi Metals Ltd ダイオードスイッチ
JP2000165274A (ja) * 1998-11-20 2000-06-16 Murata Mfg Co Ltd 複合高周波部品及びそれを用いた移動体通信装置
JP2000165288A (ja) * 1998-11-27 2000-06-16 Murata Mfg Co Ltd 複合高周波部品及びそれを用いた移動体通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1083672A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2437400A1 (en) 2000-11-01 2012-04-04 Hitachi Metals, Ltd. High-frequency switch module
US7023296B2 (en) 2000-12-26 2006-04-04 Matsushita Electric Industrial Co., Ltd. High-frequency switch, laminated high-frequency switch, high-frequency radio unit, and high-frequency switching method
EP1223634A3 (en) * 2000-12-26 2003-08-13 Matsushita Electric Industrial Co., Ltd. High-frequency switch, laminated high-frequency switch, high-frequency radio unit, and high-frequency switching method
JP2004536508A (ja) * 2001-07-03 2004-12-02 キョウセラ ワイヤレス コーポレイション Gps有効アンテナのためのシステムおよび方法
JPWO2003036806A1 (ja) * 2001-10-24 2005-02-17 松下電器産業株式会社 高周波複合スイッチモジュールおよびそれを用いた通信端末
US6995630B2 (en) 2001-10-24 2006-02-07 Matsushita Electric Industrial Co., Ltd. High-frequency compound switch module and communication terminal using it
WO2003036806A1 (fr) * 2001-10-24 2003-05-01 Matsushita Electric Industrial Co., Ltd. Module de commutation composee haute frequence, et terminal de communication equipe de ce module
US7167687B2 (en) 2002-01-31 2007-01-23 Hitachi Metals, Ltd. Switch circuit and composite high-frequency part
US6972636B2 (en) 2002-05-20 2005-12-06 Seiko Epson Corporation Method of manufacturing a high-frequency switch, a high-frequency switch and an electronic apparatus
US7221922B2 (en) 2003-02-14 2007-05-22 Hitachi Metals, Ltd. Switch circuit and composite high frequency elements
US7545759B2 (en) 2004-06-07 2009-06-09 Hitachi Metals, Ltd. High-frequency switching module and its control method
JP2006237978A (ja) * 2005-02-24 2006-09-07 Hitachi Metals Ltd マルチバンド高周波モジュールおよびこれを用いたマルチバンド通信装置
JP4552193B2 (ja) * 2005-02-24 2010-09-29 日立金属株式会社 マルチバンド高周波モジュールおよびこれを用いたマルチバンド通信装置
JP2010278547A (ja) * 2009-05-26 2010-12-09 Murata Mfg Co Ltd 高周波モジュール
US8334731B2 (en) 2009-05-26 2012-12-18 Murata Manufacturing Co., Ltd. High-frequency module

Also Published As

Publication number Publication date
EP1804390B1 (en) 2011-05-11
EP1083672B1 (en) 2007-05-09
EP1801990A1 (en) 2007-06-27
DE60034747D1 (de) 2007-06-21
JP2002064301A (ja) 2002-02-28
EP1804390A1 (en) 2007-07-04
US7171234B2 (en) 2007-01-30
DE60034747T2 (de) 2008-01-17
US20050221768A1 (en) 2005-10-06
US6987984B1 (en) 2006-01-17
DK1083672T3 (da) 2007-08-06
EP1083672A4 (en) 2004-06-23
EP1083672A1 (en) 2001-03-14
US20050221769A1 (en) 2005-10-06
JP4257481B2 (ja) 2009-04-22
US7130655B2 (en) 2006-10-31

Similar Documents

Publication Publication Date Title
JP4257481B2 (ja) 高周波スイッチモジュール
JP4458304B2 (ja) 高周波スイッチモジュール
JP4450260B2 (ja) 高周波回路
JP2983016B2 (ja) マルチバンド用高周波スイッチモジュール
JP3191213B2 (ja) 高周波スイッチモジュール
JP2001211097A (ja) マルチバンド用高周波スイッチモジュール
JP3874237B2 (ja) 低歪高周波スイッチモジュール
JP3642062B2 (ja) 高周波スイッチ
JP3824230B2 (ja) マルチバンド用高周波スイッチモジュール
JP4210861B2 (ja) 高周波スイッチモジュール
JP2004007756A5 (ja)
JP2001352202A (ja) 高周波スイッチモジュール
JP3550668B2 (ja) 高周波スイッチモジュール
JP2006203946A (ja) 高周波スイッチモジュール
JP4174779B2 (ja) 高周波スイッチモジュール
JP3824231B2 (ja) スイッチ回路
JP4135015B2 (ja) 高周波スイッチモジュール
JP2004080793A (ja) トリプルバンド用高周波スイッチモジュール
JP2005237019A (ja) 高周波スイッチ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000909731

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09700671

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000909731

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000909731

Country of ref document: EP