WO2000034806A1 - Lentille a microbilles et son procede de fabrication - Google Patents

Lentille a microbilles et son procede de fabrication Download PDF

Info

Publication number
WO2000034806A1
WO2000034806A1 PCT/JP1999/006703 JP9906703W WO0034806A1 WO 2000034806 A1 WO2000034806 A1 WO 2000034806A1 JP 9906703 W JP9906703 W JP 9906703W WO 0034806 A1 WO0034806 A1 WO 0034806A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
lens according
layer
binder layer
lens
Prior art date
Application number
PCT/JP1999/006703
Other languages
English (en)
French (fr)
Inventor
Akira Fujiwara
Chikara Murata
Shuji Mitani
Original Assignee
Tomoegawa Paper Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP35044698A external-priority patent/JP3587437B2/ja
Priority claimed from JP24613699A external-priority patent/JP3734387B2/ja
Priority claimed from JP27655499A external-priority patent/JP2001100012A/ja
Priority claimed from JP28079899A external-priority patent/JP2001228311A/ja
Priority claimed from JP28145299A external-priority patent/JP2001108805A/ja
Priority claimed from JP28476899A external-priority patent/JP2001108806A/ja
Application filed by Tomoegawa Paper Co., Ltd. filed Critical Tomoegawa Paper Co., Ltd.
Publication of WO2000034806A1 publication Critical patent/WO2000034806A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • G02B5/126Reflex reflectors including curved refracting surface
    • G02B5/128Reflex reflectors including curved refracting surface transparent spheres being embedded in matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter

Definitions

  • the present invention is suitably used for, for example, displays such as LCDs, ELs, and FEDs. About the method. Background art
  • LCDs are widely used in all fields, such as notebook computers and mobile terminals, and are expected to be promising in the future.
  • LCDs are broadly divided into reflective and transmissive types depending on the method of taking in the light that illuminates the liquid crystal panel.
  • the reflective type illuminates the LCD panel by attaching an aluminum film or the like with high reflectivity, or disposing a vapor-deposited reflector on the back of the LCD panel, and reflecting external light incident from the display surface side with the reflector.
  • the transmissive type illuminates the LCD panel with a backlight unit arranged on the back of the LCD panel.
  • a medium that diffuses light appropriately between the liquid crystal panel and the reflector is interposed between the liquid crystal panel and the reflector to prevent the contrast from being deteriorated due to the background color of aluminum.
  • the background color is made closer to a white-white color by diffusing light by using aluminum or the like deposited on the mat surface of a film that has been subjected to surface roughening treatment.
  • a backlight unit of a transmission type generally includes a light source such as an acrylic light guide plate having a cold cathode tube and a light diffusion plate for diffusing light from the light source. It is configured to illuminate.
  • a light diffusion medium (hereinafter referred to as a light diffuser) is generally used in both the reflection type and the transmission type.
  • a light diffuser for example, a material in which a binder resin in which a light-diffusing filler is dispersed is laminated on one surface of a transparent resin film is used.
  • a conventional light diffuser is a solution in which a solvent is mixed with a binder resin. The filler was dispersed in the liquid to form a paint, and this paint was applied to the film by spraying the paint all over the place.
  • FIG. 2 schematically shows a light diffuser obtained by such a manufacturing method.
  • a binder layer 12 made of a binder resin is formed on a film 11, and the binder layer 12 is formed in the binder layer 12.
  • Filler 13 is dispersed.
  • the conventional light diffuser described above has almost no difference in the total light diffuse transmittance and the total light diffuse reflectivity or the total light transmittance and the total light diffuse ratio due to the incident light from one side of the filmer and the film side. It can be seen that the light diffusivity is the same irrespective of the light incident direction, that is, there is no directivity. This is because the filler is completely embedded in the binder layer, and the filler overlaps in the thickness direction to form a multilayer. Furthermore, in such a configuration, the diffused light cancels each other, so that the transmittance is attenuated (light energy is lost).
  • a lens film in which a microlens is formed on one surface of a transparent film by a method such as photolithography has been proposed.
  • this lens film there is a large difference between the case where light is incident from the lens side and the case where light is incident from the film side, and it is known that the light diffusivity has directivity. Applying this directivity makes it possible to efficiently reflect external light and obtain a bright image with high contrast, for example, when mounted on the above-mentioned reflective LCD.
  • a light diffuser having a lens shape is very preferable as a light diffuser.
  • photolithography is suitable for making minute lenses of lm or less, but is not suitable for processing larger lenses. If the lenses are too small, Newton rings occur, so photolithography cannot be manufactured. It will be difficult.
  • the present inventors embed the filler in the surface layer of the binding layer so that a part thereof protrudes, and if the protruding filler becomes a fine lens, the same as the lens film described above.
  • lens effect light diffusion with directivity
  • the filler Since the filler is buried deeper than necessary, one layer of the filler is likely to have multiple layers. On the other hand, in a place where the pressure is low, the filler is not sufficiently embedded in the binder layer, so that a defect such as a missing filler is liable to occur in a cleaning process of the excess filler. This phenomenon was remarkable especially when processing was performed on a large area.
  • FIG. 3 (a) shows the surface of a filler lens manufactured using a methyl silicone filler with a volume average particle size of 4.5 m by the above-described manufacturing method using a pressure roller.
  • FIG. 3 (b) is an electron micrograph of a section of the filler lens taken at a magnification of 2000 times. From Fig. 3 (a), it can be seen that the filling density of the filler is not uniform and the filter is partially multilayered. Also, FIG. 3 (b) shows that the filling depth of the filler into the binder layer is not uniform. Disclosure of the invention
  • An object of the present invention is to provide a filler lens having a high light diffusion property and a high light transmissivity, being uniform, and having a superior light transmissivity as compared with a conventional light diffuser having a single-layered filler and a method for producing the same.
  • the purpose is. 1.
  • the filler lens according to the first embodiment of the present invention is made in view of the above-described circumstances in the related art, and includes a base, and a binding layer laminated on the base directly or through another layer. On the surface of the binder layer, there is provided a filler layer composed of a number of fillers embedded so as to partially protrude from the surface of the binder layer. According to the present embodiment, since the protruding portion of the filter in one layer of the filter has a fine lens shape, the above-described lens effect can be obtained.
  • the filler layer in the filler lens of the present invention is a single layer in the surface layer of the binder layer, and a part of the filler is embedded so as to protrude from the surface of the binder layer in that the lens effect by the filler can be remarkably obtained. It is preferable that fillers are arranged at a high density in the plane direction.
  • the single layer in the present invention means that fillers protruding from the surface of the binder layer are formed without overlapping portions.
  • FIG. 1 is a cross-sectional view schematically showing one example of a filler lens of the present invention.
  • a binder layer 2 is directly laminated on a base 1, and a large number of fillers 3 are formed as a single layer on the surface layer of the binder layer 2 and partially protrude from the surface of the binder layer 2.
  • a filler layer 3A is formed by being buried so as to have a high density in the surface direction.
  • the method for manufacturing a filler lens of the present invention is a preferable manufacturing method for manufacturing the filler lens having the above-described configuration.
  • filler (2) as binding layer
  • the pressurized medium is made into a granular material, and the pressurized medium is vibrated so that the pressurized medium hits the filler and embeds the filler in the binder layer.
  • the filling depth of the filler is made uniform, the filler is arranged at a high density in the surface direction, a single layer is formed on the surface of the binder layer, and a part of the filler is bound.
  • a filler lens having a configuration embedded so as to protrude from the surface of the layer can be manufactured.
  • a known transparent film can be used as the substrate used in the present invention.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • TAC triacetyl cellulose
  • polyalate polyimide
  • polyether polycarbonate
  • polysulfone polyether sulfone
  • cellophane aromatic polyamide
  • resin films made of polyethylene, polypropylene, polyvinyl alcohol and the like can be suitably used.
  • the substrate of the present invention is not limited to such a film, and a hard plate made of the above resin, a sheet member made of a glass material such as quartz glass or soda glass other than the resin plate can also be used.
  • the substrate may be a non-transparent material as long as light can pass through it. If it is used for a liquid crystal display, the refractive index (JISK-7142) should be in the range of 1.45 to 1.55. Is desirable. Specific examples include acrylic resin films such as triacetyl cellulose (TAC) and polymethyl methacrylate. The higher the transparency of these transparent substrates, the better, but the total light transmittance (JISC-6714) is 80% or more, more preferably 85% or more, even more preferably 90% or more. (JISK 7 105) is 3.0 or less, more preferably 1.0 or less, and still more preferably 0.5 or less. The following can be suitably used.
  • TAC triacetyl cellulose
  • JISK 7 105 is 3.0 or less, more preferably 1.0 or less, and still more preferably 0.5 or less. The following can be suitably used.
  • the transparent substrate is more preferably a film.
  • the thickness of the transparent substrate it is desirable to be thin from the viewpoint of weight reduction, but considering the productivity, 1 /! It is preferred to use one in the range of 55 mm.
  • a lens having a light collecting property or a diffusing property may be formed on one surface of the base, and a filler lens may be formed directly or via another layer on the other surface of the base.
  • a pressure-sensitive adhesive layer obtained by coating a pressure-sensitive adhesive on the substrate is suitable.
  • this adhesive include acrylic resin, polyester resin, epoxy resin, polyurethane resin, silicone resin, phenol resin, melamine resin, urea resin, diaryl phthalate resin, guanamine resin, amino alkyd resin, and melamine monourea.
  • Resin pressure-sensitive adhesives such as co-condensation resins can be used. These may be used alone or as a mixture of two or more kinds. If necessary, a polymerization accelerator, a solvent, a viscosity modifier and the like may be added.
  • acrylic resin is particularly excellent in transparency, excellent in water resistance, heat resistance, light resistance, etc., adhesive strength, and when used in liquid crystal displays, the refractive index is adjusted to suit it. And so on.
  • acrylic pressure-sensitive adhesive examples include homopolymers or copolymers of acrylic monomers such as acrylic acid and esters thereof, acrylic acid and esters thereof, acrylamide and acryl nitrile, and at least one of the above acrylic monomers.
  • Copolymers of one type with an aromatic vinyl monomer such as vinyl acetate, maleic anhydride, and styrene can be given.
  • main monomers such as ethylene acrylate, butyl acrylate, and 2-ethylhexyl acrylate exhibiting adhesiveness, biel acetate, acryl nitrile, acrylamide, styrene, methacrylate, and methyl acrylate, which are cohesive components.
  • Methacrylate acrylic acid, itaconic acid, hydroxyethyl methyl acrylate, hydroxypropyl methacrylate, dimethylaminoethyl methacrylate, dimethyla Minomethyl methacrylate, acrylamide, A copolymer composed of monomers containing functional groups such as acrylamide, glycidyl methacrylate, and maleic anhydride, with a Tg (glass transition point) in the range of -60 to 115 ° C and a weight average molecular weight of 200,000 Those in the range of 1 to 300,000 are preferred.
  • Tg glass transition point
  • a binder layer having a Tg lower than -60 or a binder layer comprising an adhesive having a weight average molecular weight of less than 200,000 is too soft, and the once adhered filler is peeled off by the impact force of the pressurized medium. Defects such as blowout are likely to occur. Also, once the peeled-off filler is attached to the adhesive, the filler may adhere to the uppermost layer of the filler again. In addition, in the case of a binder layer that is too soft, the area where the adhesive of the filler has adhered appears on the surface of one layer of the filler by the vertical rotation of the filler on the surface of the binder layer due to the impact of the pressurized medium.
  • fillers may adhere, or the binder may seep out from between the fillers due to the impact force or capillary action of the pressurized medium, and other fillers may adhere there.
  • a soft binder layer tends to form a multilayered filter layer and lowers light transmittance.
  • the soft binder layer also reduces the mechanical strength such as the scratch resistance of one of the fillers.
  • the adhesive force of the filler to the binder layer is reduced, and in a step of cleaning excess filler, etc. It is not preferable because the filler tends to drop off.
  • the viscosity of the pressure-sensitive adhesive used in the present invention was measured by dissolving the pressure-sensitive adhesive in ethyl acetate so that the total solid concentration became 25%, and measuring the viscosity at a liquid temperature of 23 ° C with a B-type viscometer.
  • the value is preferably in the range of 500 to 20000 cps, more preferably in the range of 1500 to 5000 cps. If the viscosity is too low, the filler becomes too easy to be embedded, and if the viscosity is too high, it is difficult to be embedded.
  • the holding power (JIS Z 0237 11) of the adhesive is preferably 0.5 mm or less.
  • the filler layer is liable to become a multilayer as described above because of its softness.
  • the adhesive strength (JISZ02378) of the binder is 100 gZ25m or more. If the adhesive strength is less than 100 gZ2 5 mm, the filler may be detached or the environmental resistance may deteriorate. In particular, under high temperature and high humidity, the binder layer may peel off from the transparent substrate.
  • the pressure-sensitive adhesive used in the present invention as a curing agent, for example, a metal chelate type, One or more isocyanate-based or epoxy-based cross-linking agents can be used as necessary, and a photopolymerizable monomer, oligomer, polymer, and photopolymerization initiator can be used as the adhesive.
  • An added UV curable adhesive may be used. This makes it possible to adjust the properties of the pressure-sensitive adhesive appropriately, and if this binder layer is appropriately cured before the step of embedding the filler, the gel fraction after curing is adjusted to be 40% or more. More preferably, it is more preferably 60% or more. If the gel fraction is less than 40%, the binder layer softens under high temperature and high humidity, and the filler may sink in the binder layer, resulting in a change in optical characteristics.
  • Examples of the filler of the present invention include inorganic fillers such as silica, glass, and alumina, acrylic resin, polystyrene resin, polyethylene resin, epoxy resin, silicone resin, polyvinylidene fluoride, Teflon, divinylbenzene, phenol resin, Organic fillers such as urethane resin, cellulose acetate, nylon, cellulose, benzoguanamine and melamine can be used, but organic fillers are preferred from the viewpoint of light transmittance and adhesion to the binder layer, and moreover, light resistance In view of this, acryl beads and silicone beads are particularly preferred.
  • silicone beads such as methyl silicone having high fluidity.
  • Inorganic fillers such as silica and glass have poor adhesion to the binder layer, so the fillers are liable to fall off during the filler embedding step and the washing step, and the fillers are liable to come off.
  • the filler is preferably spherical as described above, and the spherical filler also has the advantage that the embedded depth hardly varies.
  • the roundness is preferably at least 80%, more preferably at least 85%, further preferably at least 90%.
  • the “roundness” in the present invention is defined by the following general formula.
  • the roundness can be obtained by, for example, capturing a filler particle with a transmission electron microscope to obtain a projected image, and analyzing the image using an image analyzer (for example, product name: EXECL II, manufactured by Nippon Avionics, Inc.). It can be calculated from the above A and B. As is evident from the above equation, the roundness is close to 100% when the particle approaches a true sphere, and smaller when the particle is irregular. In the present specification, the average value measured for 10 fillers was defined as roundness.
  • the filler of the present invention may have a volume average particle diameter of about 1 to 50 xm, but is preferably 2 to 15 xm when used for a liquid crystal display or the like, and 2 to 10 m. Is more preferable. In this case, if the particle diameter of the filler is smaller than 2 m, the diffused light interferes with each other to give a rainbow color, and the contrast of the liquid crystal cell is undesirably reduced. On the other hand, when the filler is larger than 15 xm, the edge of the liquid crystal image is blurred and the visibility is reduced, and the gap between the filler and the filler, that is, the part with high light diffusion and the part with low light diffusion are It is not preferable because it becomes visible and the uniformity decreases.
  • the particle size distribution of the filler is preferably in the range of 0.8 to 1.0, and more preferably in the range of 0.9 to 1.0.
  • the refractive index of the filter is preferably in the range of 1.42 to 1.55. Further, the refractive index of the base material and the binder layer and the refractive index of the filter The difference in the ratio is preferably 0.30 or less, more preferably 0.15 or less.
  • a layer or the like may be provided.
  • the adhesive on one or both sides of the substrate, directly or via another layer, by air doctor coating, blade coating, knife coating, river coating, transfer roll coating, gravure roll coating Coating such as coating, kiss coating, cast coating, spray coating, slot orifice coating, calendar coating, electrodeposition coating, dip coating, die coating, etc., relief printing such as flexographic printing, direct printing It is laminated as a binder layer by coating or printing such as gravure printing, intaglio printing such as offset gravure printing, lithographic printing such as offset printing, and stencil printing such as screen printing.
  • a coating using a mouth-to-mouth is preferred because a uniform layer thickness can be obtained.
  • the thickness of the binder layer is preferably 0.5 to 2 times, more preferably 0.5 to 1.5 times the average particle size of the filler to be embedded.
  • the binder layer contains a curing agent component
  • the binder layer is protected with a peelable PET film or the like in order to adjust the embedding of the filler into the binder layer.
  • Aging may be performed for about 3 to 14 days at about the temperature, and the adhesive and the curing agent may react with each other before proceeding to the next step.
  • a filler is attached to the surface of the binder layer on the substrate.
  • the filler filled in the container is fluidized by vibration or fluidizing air, and the substrate is passed through the filler or the filler is sprayed on the binder layer by air spray.
  • Method since the organic filler has higher fluidity than the inorganic filler, it is easy to mix with air when spraying air and to make it into a fluidized state in the container, and to adhere uniformly to the surface of the binder layer. It is preferable that it can be performed.
  • the filler attached to the surface of the binder layer is embedded in the binder layer by the impact force of the pressurized medium.
  • a pressurized medium is charged into an appropriate container, the pressurized medium is vibrated together with the container, and a substrate with a filler adhered to the surface of the binder layer is charged or passed through the medium. Gives impact to the filler. Then, the filler is hit by the pressurized medium and is embedded in the surface layer of the binder layer. Since the pressurized medium can apply a uniform impact to the filler in a very small area, the filler can be embedded in the binder layer with a uniform embedding depth.
  • the filler adhering to the surface of the binder layer in the previous step is used. Since it is possible to push another filler into one gap to a uniform depth by the impact force of the pressurized medium, it is preferable because the filling density of the filler can be made higher and uniform.
  • the filler protrudes from a part of the binder layer in a state where the filling depth is uniform, and is buried at high density throughout, and the filler in a single layer state without being laminated in the binder layer Formed as a layer.
  • rotation may be employed in addition to vibration.
  • rotation a rotating container or a container having a stirring blade inside is used.
  • dropping a V-plender, a tumbler, or the like is used.
  • the pressurized medium is a granular material that acts to embed the filler in the binder layer by hitting the filler by vibration or the like as described above, and includes iron, carbon steel, alloy steel, copper and copper alloys, aluminum and aluminum alloys, and other materials. those made of various metals, alloys, or made of a 1 2 0 3, S i 0 2, T I_ ⁇ 2, Z R_ ⁇ 2, S i C like ceramics, further glass, hard plastics, etc. Is used. Hard rubber may be used as long as sufficient impact force can be applied to the powder.
  • the material of the carobar medium is appropriately selected according to the material of the filler. Also, its shape is It is preferable that the shape is close to a true sphere so that the pressure applied to the filler is uniform, and it is preferable that the overall particle distribution is as narrow as possible.
  • the particle size of the pressurized medium is
  • the material is selected appropriately according to the embedding depth of the filler, but a material having a diameter of about 0.3 to 2.0 mm is preferable.
  • the filler embedment depth is set to be smaller than the diameter of the binder layer by 10 to prevent separation of the filler from the binder layer and protrude from the surface of the binder layer to surely exhibit the lens effect. 990%, preferably 30-90%, more preferably 40-80%, and can be adjusted depending on the optical characteristics of the lens.
  • the surplus filler is, for example, a filler that is incompletely embedded in the binder layer or that is merely attached to the embedded filler by an interparticle force such as electrostatic force or van der Waals force.
  • an excess filler can be removed by applying a fluid pressure by water washing, air blow, or the like to one of the fillers.
  • the particle size of the filler is relatively small, it is preferable to perform wet cleaning using ion-exchanged water or the like.
  • ultrasonic cleaning etc. should be performed using an aqueous solution such as ion-exchanged water to which a surfactant or the like has been added. After that, it is preferable to sufficiently rinse with ion-exchanged water and dry.
  • the filler layer and the binder layer become familiar, and in particular, the total light transmittance and reliability are improved. Therefore, it can be performed as needed.
  • heat alone or heat and moisture may be used in combination.
  • the present inventors have conducted intensive studies on the form of the filler and the surrounding environment of the filler in order to further improve the optical characteristics of the filler lens. As a result, the filler of the present invention, which exhibits more excellent optical characteristics, has been obtained. Complete the preferred embodiment of one lens Reached.
  • the filler layer is formed by an organic filler having a volume average particle diameter of 2 to 15 xm in order to sufficiently obtain uniform light diffusion and light transmission.
  • the filler lens according to the second embodiment of the present invention includes a base, a binder layer laminated on the base directly or via another layer, and a surface layer of the binder layer.
  • a filler layer comprising a plurality of fillers embedded so as to partially protrude from the surface of the layer, wherein the filler layer comprises an organic layer having a volume average particle diameter of 2 to 15 ⁇ zm. It is characterized by being composed of a filter.
  • the volume average particle diameter of the organic filler is 2 to 15 m, preferably 2 to 10 zm.
  • the volume average particle size of the organic filler is smaller than 2 x m, the contrast of the liquid crystal cell is reduced because the diffused light interferes with each other to give a rainbow color.
  • the diffused light becomes coarse, and the edge portion of the liquid crystal image is blurred, and the visibility is reduced.
  • the area of the filler in the plane of the filler lens and the area of the gap between the fillers, that is, the light diffusion part and the light is large, and they can be visually confirmed, and therefore, uneven brightness occurs in the liquid crystal image.
  • the narrower the particle size distribution of the organic filler is, the more uniformly the impact force from the pressurized medium in the production method of the present invention can be transmitted to the organic filler.
  • the packing density of the organic filler in the in-plane direction can be made high and uniform. Therefore, in order to uniformly transmit the impact force from the pressurized medium to the organic filler, the particle size distribution of the organic filler is preferably 0.8 to 1.0, and more preferably 0.9 to 1.0. Hopefully No.
  • volume average particle size is defined as follows, and “particle size distribution” is defined by the following equation.
  • Number average particle diameter the average value of the diameters of 100 organic fillers randomly extracted from the micrograph of the filler lens.
  • the diameter of 100 randomly extracted organic fillers is measured from a micrograph of the filler lens. From the diameter of the obtained organic filler, the volume of each organic filler is determined by regarding the organic filler as a true sphere. Next, the volume of each organic filler is accumulated to calculate the total volume of 100 organic fillers. After that, the volumes are accumulated in the order of volume from the smallest organic filler to the largest organic filler in the 100 organic fillers, and the accumulated volume is the total volume of the above-mentioned total volume. The diameter of the 50% particle.
  • the longest diameter is defined as the diameter of the organic filler.
  • the measurement was performed using a photograph of a transmitted light image of the filler lens taken with a digital microscope (trade name: VH-6300) manufactured by Keyence Corporation.
  • the filler lens according to the third embodiment of the present invention has a standard deviation of the inter-particle distance of the filler in the plane direction of the filler layer of 0.4 or less in order to sufficiently obtain more uniform light diffusion and light transmission. It is assumed that. Therefore, the filler lens according to the third embodiment of the present invention includes a base, a binder layer laminated on the base directly or via another layer, and a surface layer of the binder layer, A filler layer comprising a large number of fillers embedded in a state in which a part of the filler protrudes from the surface of the filler, wherein the standard deviation of the distance between the particles of the filler in the plane direction of one of the fillers is 0.4 or less. It is characterized by the following.
  • the filling density of the filler in the planar direction in one layer of the filler is high and uniform, it is possible to exhibit uniform and higher light transmittance and diffusion performance than the conventional filler lens. Can be. If the standard deviation of the distance between the filler particles is larger than 0.4, the light transmittance becomes non-uniform, and practically sufficient light diffusion performance cannot be obtained.
  • the “distance between particles of a filler” in the present invention is a value measured by the following method.
  • a filler which is a base point is extracted at random from a photograph of a filler lens taken vertically from a planar direction.
  • Fig. 4 (a) is a schematic view of a photograph of the filler lens taken vertically from the plane direction.
  • filler Y is a filler that serves as a base point for measuring the "distance between particles of filler". It is.
  • a straight line is drawn from the center of the filler Y serving as the base point to the centers of all the other fillers adjacent thereto, and the length of the straight line is measured.
  • the length of this straight line divided by the volume average particle diameter of the filler (here, the volume average particle diameter is X) is defined as the particle distance of the filler.
  • fillers 6 and 7 have a size of not more than half of the volume average particle diameter X of the filler, they are not other adjacent fillers.
  • fillers ⁇ 8, ⁇ 9, and ⁇ 10 are not other adjacent fillers because the fillers overlap.
  • the “distance between particles of the filler” in the base filler is defined as each of the fillers 1, 1, 2, 4, and 5 from the center of the base filler. From the distance to the center of the line, the length of the straight line X 1 ⁇ ⁇ , the length of the straight line ⁇ 2 ⁇ ⁇ , the length of the straight line ⁇ 4 ⁇ ⁇ , the length of the straight line ⁇ 5 ⁇ ⁇ This is the “distance between particles of the filler” for the filler Y.
  • the “standard deviation of the distance between filler particles” is determined by measuring the “filament distance between filler particles” for the 30 base fillers by the above measurement method, and calculating the standard deviation from these values.
  • the center of the filler is set at the midpoint P of the longest diameter X11 of the filler Y11.
  • a digital microscope manufactured by KEYENCE CORPORATION is used as an apparatus for measuring the distance between particles of the above-mentioned filler.
  • VH-630 (Trade name: VH-630) was used at a magnification of 50 to 100 fillers on one screen.
  • the filter lens according to the fourth embodiment of the present invention includes a base, a binding layer laminated on the base directly or via another layer, and a surface layer of the binding layer.
  • a filler layer comprising a number of fillers embedded so as to partially protrude from the surface of the bonding layer, wherein the binding layer has a gel fraction of 60% or more; It is characterized in that the rate of protrusion of this filler is 50% or more.
  • the filler 3 is embedded so as to have a high density in the surface direction, and A filler layer 3A with a protrusion ratio of 50% or more is formed, which provides sufficient light diffusion performance and suppresses the background color of aluminum when used in a reflective liquid crystal display. High contrast can be achieved.
  • the binder layer in the fourth embodiment needs to contain a resin having a crosslinking point and a curing agent.
  • the binder layer is sufficiently crosslinked so that the gel fraction is 60% or more, more preferably 70% or more, and most preferably 80% or more.
  • the binder layer having a gel fraction of less than 60% the filler is so deeply embedded that it is soft, and the light diffusion function of the filler cannot be sufficiently exhibited.
  • the binder layer has a gel fraction of less than 60%, the environment resistance (reliability) is poor. Particularly, in a high-temperature and high-humidity environment, the binder layer softens and the filler is deeply embedded in the binder layer. Submersion reduces light diffusion.
  • the “gel fraction” in the present invention can be measured as follows.
  • the binder layer of the filter lens is swollen with a solvent such as alcohol (eg, methanol) which does not attack the base of the filler lens, and then the binder layer is separated from the base.
  • a solvent such as alcohol (eg, methanol) which does not attack the base of the filler lens, and then the binder layer is separated from the base.
  • a separation method for example, a spatula may be used.
  • the gel component suspended in acetone is filtered, dried, and its weight D is measured.
  • the filter in the precipitated acetone is also filtered and dried, and its weight E is measured.
  • the “gel fraction” of the present invention can be obtained from the weights obtained above by the following formula.
  • the ratio of the protrusion of the filler from the binder layer is required to be 50% or more in order to suppress the separation of the filler from the binder layer and to surely exhibit the light diffusion property.
  • the protrusion ratio of the filler in the present invention is preferably 50 to 90%, more preferably 55 to 80%, and most preferably 60 to 80%.
  • Huila's The light diffusion performance is greatly affected by the proportion of filler protrusion, and if it is less than 50%, the diffusion performance is significantly reduced. On the other hand, if the protruding ratio exceeds 90%, the filler is liable to be detached from the binder layer in a step of removing excess filler, which is not preferable.
  • the “projection rate of the filler” can be obtained by analyzing a cross-sectional photograph of one layer of the filler, and is an average value of the projection rate of any 30 fillers.
  • FIG. 5 (b) is a schematic view of a cross-sectional photograph in which the filler 13 is embedded so as to protrude from the binding layer 2 laminated on the base 1.
  • a straight line was drawn at the interfaces a and b between the filler 3 and the binding layer 2 in Fig. 5 (b), and the center line c of the filler 3 and the above straight line were drawn. Get intersection d.
  • the length Y from the tangent to the intersection d of the filler 3 is obtained, and the ratio of the protrusion of one filler can be obtained from the diameter X of the filler 13 by the following equation.
  • the “ratio of protrusion of one filler” according to the present invention can be determined from the average value.
  • a manufacturing method suitable for manufacturing the filler lens of the fourth embodiment having the above-described configuration will be described.
  • the binder layer After attaching a protective film such as a peelable PET film to the surface of the binder layer, the binder layer is allowed to stand for about 3 to 14 days in an environment of about 20 to 80 ° C. to cure the binder layer, and the gel fraction Obtains a binder layer of 60% or more.
  • the curing can be performed by UV irradiation.
  • the method of embedding the filler in the binder layer is almost the same as in the first embodiment, but in the fourth embodiment, the proportion of the protrusion of the filler must be 50% or more.
  • the filler lens according to the fifth embodiment of the present invention has a boundary portion between the surface of the binder layer and the filler, i.e., a peripheral portion of the filler layer in one layer of the binder layer, in order to further improve light transmittance.
  • a swelling portion is provided. Therefore, the filler lens according to the fifth embodiment of the present invention includes a base, a binder layer laminated directly or via another layer on the base, and a surface layer of the binder layer.
  • a filler lens comprising a filler layer composed of a large number of fillers embedded in a state in which a part of the filler protrudes from the surface of the layer, and a raised portion of a binding layer is provided on a periphery of the filler. It is characterized by:
  • the swelling portion 2a is formed in the binding layer 2 around the periphery of the filter 13.
  • the light transmittance of the filler lens with respect to the incident light from the substrate side can be remarkably improved.
  • a description will be given of a manufacturing method suitable for manufacturing the filler lens of the fifth embodiment having the above configuration.
  • the filler lens of the fifth embodiment of the present invention in addition to performing the step of softening the binder layer of the filler layer, a resin having a low molecular weight as a resin for forming the binder layer is used.
  • the binder layer of the laminate is softened.
  • a means for softening there is a method of applying heat or moisture to the binder layer.
  • it depends on the type of adhesive and curing agent that make up the binder layer.
  • the temperature 30 to 80 ° C
  • the humidity 60 to 95% RH It can be obtained by leaving the substrate on which the laminate is formed in the set constant temperature and humidity chamber for about 6 hours to 2 weeks.
  • it may be softened only by heat, or heat and moisture may be used together.
  • the binding layer can also be formed by exposing the substrate on which the laminate has been formed to an environment set at 30 to 80 ° C, for example, to hot air or infrared rays, or by irradiating an electron beam or the like. Can be softened. By softening the binder layer, a raised portion is formed by the binder resin in the periphery of the filler, and light transmittance from the film surface is particularly improved. 6.
  • the filler lens according to the sixth embodiment of the present invention contains a curing agent whose curing is restricted in the binder layer in order to stably maintain the reliability of the optical characteristics, that is, the required specific optical characteristics. It is appropriately cured. Therefore, the filler lens according to the sixth embodiment of the present invention includes a base, a binding layer laminated on the base directly or via another layer, and a surface layer of the binding layer.
  • a filler lens comprising a filler layer composed of a number of fillers embedded in a state where a part thereof protrudes from the surface of the bonding layer, wherein the bonding layer is cured by a curing agent whose curing is restricted. It is characterized by:
  • the hardening of the coating liquid during the formation of the binder layer or the hardening of the binder layer from the formation of this layer to the filling of the filler is prevented, and the degree of filling of the filler is reduced. It can be easily adjusted.Furthermore, by hardening the binder layer after embedding the filler, heat flow of the adhesive does not occur even under high temperature and high humidity conditions, That is, the optical characteristics can be stably maintained.
  • the curing temperature cannot be set high.
  • the temperature is set to 100 ° C. or less. It is desirable to use a curable resin for the binder layer.
  • a curing agent whose curing is restricted as an essential component in the binder layer.
  • the curing agent whose curing is restricted include a curing agent blocked or an encapsulated curing agent such that a reactive group contributing to curing does not cause a curing reaction at room temperature (about room temperature to about 60 ° C).
  • a material that acts as a curing agent only when heat of a certain temperature or higher is applied.
  • the isocyanate group is blocked with a suitable active hydrogen compound (hereinafter, abbreviated as a blocking agent) such as alcohols, phenols, laccums, and oximes.
  • This block isocyanate compound is prepared by charging a polyisocyanate into a reactor equipped with a stirrer, a thermometer, and a reflux condenser, and adding a blocking agent while stirring the mixture. It can be prepared by performing a blocking reaction by heating to 0 ° C.
  • Blocking agents include ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, pen ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, and diethylene glycol monohexyl ether.
  • those having a boiling point equal to or higher than the curing temperature are desirable in order to prevent problems such as firing of the coating film during curing.
  • the isocyanates forming the block isocyanate compound include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 2,2'-diphenylmethane diisocyanate, and 2,4.
  • Diisocyanates such as hydrogenated xylene diisocyanate, monomethylhexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine isocyanate, dodecamethylene diisocyanate, and urethanes and vulcanized products of these diisocyanates Let And isocyanurate (trimerization), carbodiimidation and polymer. These compounds can be used
  • the adhesive strength (180 degree peeling adhesive strength according to JISZ 0237) of the binder layer before curing is 50 to 300 g gZ25 mm, and after the curing. It is practically preferable that the adhesive is blended so that the adhesive strength is 30 g Z 25 mm or less. If the adhesive strength before curing is less than 50 g / 25 mm, it will be difficult for the filler to be embedded. Or the embedded filler is detached. Conversely, if the adhesive strength exceeds 300 OgZ25 mm, the filler is excessively buried or scratches and dents are likely to be formed on the surface of the formed one layer of filler.
  • the adhesive of the binder layer in which the filler is embedded is thermally cured. It is preferable that the adhesive is soft and the filling depth of the filler is controlled until the filling step of the filler above, but after the filler is filled, high temperature is used to maintain the optical characteristics of the filler lens. It must be cured so that heat flow does not occur even under high humidity.
  • FIG. 1 is a cross-sectional view schematically showing one example of the filler lens of the present invention.
  • FIG. 2 is a cross-sectional view schematically illustrating an example of a conventional filler lens.
  • FIG. 3 is a photomicrograph of a filler lens manufactured using a pressure roller.
  • (a) is an optical microscope photograph of the plane of the filter lens taken with a 10x objective lens.
  • (B) is an electron micrograph of the cross section of the filter lens taken at a magnification of 2000 times.
  • FIG. 4 is a diagram for explaining the interparticle distance of the filler.
  • (A) is a schematic diagram of a photograph of a filler lens taken vertically from a plane direction
  • (b) is a schematic diagram of a non-spherical filler.
  • FIG. 5A is a cross-sectional view schematically illustrating a filler lens according to a fourth embodiment of the present invention
  • FIG. 5B illustrates a method for calculating the ratio of the filler projecting from the binding layer.
  • FIG. 6A is a cross-sectional view schematically illustrating a filler lens according to a fifth embodiment of the present invention
  • FIG. 6B is an enlarged view of one peripheral portion of the filler.
  • FIG. 7 is a front sectional view of a vibrating device suitable for manufacturing the filler lens of the present invention.
  • FIG. 8 is an electron micrograph showing the plane of the filler lens of Sample 1-1 of the present invention at 1000 ⁇ (a), 2000 ⁇ (b), and 5000 ⁇ (c).
  • FIG. 9 is an electron micrograph showing the cross section of the filler lens of Sample 1-1 of the present invention at 2000 ⁇ (a) and 50000 ⁇ (b).
  • FIG. 10 is an electron micrograph showing the plane of the filler lens of Sample No. 12 of the present invention at 1000 ⁇ (a), 2000 ⁇ (b), and 5000 ⁇ (c).
  • FIG. 11 is an electron micrograph showing 2000 ⁇ (a) and 5000 ⁇ (b) cross sections of the filler lens of Sample 1-2 of the present invention.
  • FIG. 12 is a diagram for explaining the direction of incident light on the filmer lens, and is a schematic diagram showing incident light (a) from the film side and incident light (b) from the filmer side.
  • FIG. 13 is a diagram for explaining a method for measuring the light scattering property, and is a schematic diagram showing a method for measuring the total light diffuse transmittance (a) and the total light diffuse reflectance (b).
  • FIG. 14 is an electron micrograph showing the plane (a) and cross section (b) of the filler lens of Sample 2-1 of the present invention at a magnification of 1000 ⁇ .
  • FIG. 15 is an electron micrograph showing the plane (a) and cross section (b) of the filler lens of Sample 2-2 of the present invention at a magnification of 1,000.
  • FIG. 16 is an electron micrograph showing the plane (a) and cross section (b) of the filler lens of Sample 2-3 of the present invention at a magnification of 1,000.
  • FIG. 17 is an electron micrograph showing the plane (a) and cross section (b) of the filler lens of Sample 2-4 of the present invention at a magnification of 1,000.
  • FIG. 18 is an electron micrograph showing the plane (a) and cross section (b) of the filler lens of Sample 2-5 of the present invention at a magnification of 1,000.
  • FIG. 19 is an electron micrograph showing the plane (a) and cross section (b) of the filler lens of Comparative Sample 2-6 at a magnification of 1,000.
  • FIG. 20 is an electron micrograph showing the plane (a) and cross section (b) of the filler lens of Comparative Sample 2-7 at a magnification of 1,000.
  • FIG. 21 is an electron micrograph showing the plane (a) and cross section (b) of the filler lens of Sample 2-8 for comparison at a magnification of 1,000.
  • FIG. 22 is an electron micrograph showing the plane (a) and cross section (b) of the filter lens of Sample 3-1 of the present invention at a magnification of 1,000.
  • FIG. 23 is an electron micrograph showing the plane (a) and cross section (b) of the filler lens of Sample 3-2 of the present invention at a magnification of 500.
  • FIG. 24 is an electron micrograph showing the plane (a) and cross-section (b) of the filler lens of Sample 3-3 of the present invention at 500 ⁇ magnification.
  • Fig. 25 is an electron micrograph showing the plane (dense area (a1), rough area (a2)) and cross section (b) of the filler lens of Sample 3-4 for comparison at a magnification of 1,000.
  • Fig. 26 is an electron micrograph showing the plane (dense area (a 1), rough area (a 2)) and cross section (b) of the filler lens of Sample 3-5 for comparison at a magnification of 1,000. is there.
  • Fig. 27 is an electron micrograph showing the plane of the filler lens of sample 3-6 for comparison at 500x magnification.
  • FIG. 28 is an electron micrograph showing the plane of the filler lens of Sample 3-7 for comparison at a magnification of 500 ⁇ .
  • FIG. 29 is an electron micrograph showing the plane (a) and cross section (b) of the filler lens of Sample 3-8 for comparison at a magnification of 1,000.
  • FIG. 30 shows the filler lenses of Sample 3-1 of the present invention and Sample 3-4 for comparison. It is the optical microscope photograph which image
  • FIG. 31 is an electron micrograph showing the plane (a) and cross section (b) of the filler lens of Sample 4-1 of the present invention at a magnification of 20000.
  • FIG. 32 is an electron micrograph showing the plane (a) and cross section (b) of the filter lens of Sample 412 of the present invention at a magnification of 20000.
  • FIG. 33 is an electron micrograph showing the plane (a) and cross-section (b) of the filler lens of Comparative Sample 4-3 at a magnification of 20000.
  • FIG. 34 is an electron micrograph showing the plane (a) and cross-section (b) of the filler lens of Sample 4-4 for comparison at a magnification of 2000 ⁇ .
  • FIG. 35 is an electron micrograph showing the plane (a) and cross section (b) of the filler lens of Sample 5-1 of the present invention at 50,000 magnification.
  • FIG. 36 is an electron micrograph showing the plane (a) and cross-section (b) of the filler lens of Sample 5-2 of the present invention at 50,000 magnification.
  • FIG. 37 is an electron micrograph showing a plan view (a) and a cross section (b) of the filler lens of Comparative Sample 5-3 at 50,000 magnification.
  • FIG. 38 is a cross-sectional view schematically showing an example in which the filler lens of the present invention is applied to a transmission type liquid crystal display.
  • FIG. 39 is a cross-sectional view schematically showing an example in which the filler lens of the present invention is applied to a reflective liquid crystal display.
  • FIG. 40 is a cross-sectional view schematically showing an example in which the filler lens of the present invention is applied to a liquid crystal display as a light diffusing lens.
  • 80-thick triacetyl cellulose (trade name: FUJI UVD80, manufactured by Fuji Photo Film Co., Ltd., refractive index 1.49) was used.
  • an acrylic pressure-sensitive adhesive (trade name: SK Dyne 81 L, manufactured by Soken Chemical Co., Ltd., total solid content of 23% ethyl acetate solution) 100 parts by weight of isocyanate-based curing agent (Trade name: D-90, manufactured by Soken Chemical Co., Ltd., total solid content: 90% ethyl acetate solution), and the paint was added to 1.5 parts, and the dried thickness was reversed to 10 m. Coating was carried out with a coater and dried at 100 ° C. for 2 minutes to form a binder layer.
  • an acrylic filler made of a monodisperse polymer acrylate having a particle diameter of 5 m and a refractive index of 50 was used, and this filler was used as a perforated plate container for blowing air from the bottom. It was put in. Then, this container is vibrated, and the filler is fluidized by the synergistic effect of the vibration and the jet air.
  • the above-mentioned film having the binder layer formed on the surface was passed through the appropriate time, and a filler was attached to the surface of the binder layer.
  • a filler was buried in the surface layer of the binder layer to form a filler layer by the vibration device shown in FIG.
  • a pressurized medium, a filler, and the above-described film are charged into a container C set on a vibration mechanism V, and the input material is vibrated together with the container C by the vibration mechanism V, Fillers are embedded in the binder layer of the film.
  • the container C is made of a hard material such as a hard synthetic resin or a metal, and is formed in a bowl shape having an opening c1 at the top, and swells upward at the center of the bottom c2.
  • a columnar part c3 reaching the same height as the opening c1 is provided in a protruding manner.
  • a diaphragm f3 is mounted on the machine base F via coil springs f1 and ⁇ 2, and a vertical axis f4 extending upward at the center of the upper surface of the diaphragm f3 projects.
  • the motor f5 is fixed to the center of the lower surface of the diaphragm f3, and the weight f7 is eccentrically attached to the output shaft f6 of the motor f5.
  • the container C is set by fixing the upper end of the columnar part c3 to the upper end of the vertical axis f4 while being placed on the diaphragm f3, and the motor f5 is driven to drive the weight f. When 7 rotates, it is vibrated.
  • the filler layer is hydraulically showered with ion-exchanged water to wash one layer of the filler to remove the excess filler, and then the whole is dried by air blow to obtain a sample of the present invention.
  • Sample 1-1
  • a paint obtained by dispersing a mixture consisting of the following components in a sand mill for 30 minutes is applied to a transparent substrate, triacetyl cellulose having a thickness of 80 m and a transmittance of 92% (trade name: Fujitack UVD80, Fuji Photo Film) Coated on one side with a refractive index of 1.49) by a reverse coating method, dried at 100 ° C for 2 minutes, and then irradiated with ultraviolet light with one 120 WZ cm condensing high pressure mercury lamp (irradiation distance) (10 cm, irradiation time 30 seconds), the coated film was cured. In this way, a conventional light diffusion film as shown in FIG. 2 was obtained and used as a sample 13 for comparison.
  • Figures 8 (a), (b), and (c) are electron micrographs of the plane of the lens lens of Sample 1-1 at 1000x, 2000x, and 5000x magnification, respectively, and Figure 9 (a).
  • Panels (b) and (b) are electron micrographs of the cross section of the sampler 1-1 lens lens taken at 2,000 and 5,000 times magnification, respectively.
  • (a), (b), and (c) are electron micrographs taken at 1000, 2000, and 5000 magnifications of the plane of the filter lens of Samples 12 and 12, respectively.
  • (b) is an electron micrograph of the cross section of the filmer lens of Samples 1-2 at 2000 ⁇ and 5000 ⁇ magnification, respectively.
  • the fillers of samples 11 and 1 are almost uniformly distributed in the binder layer in a dense state.
  • the cross-sectional photograph in the case of sample 1-1, about 70% of the diameter was embedded in the binding layer in the case of sample 1-1, and in the case of sample 1-2, about 40% of the diameter was embedded. It protrudes uniformly from the surface of the binding layer.
  • the measurement method is as follows: For total light diffuse transmittance: T%, as shown in Fig. 13 (a), a filter lens L is interposed between the incident light and the reference white plate (magnesium sulfate) 10. The total light diffuse transmittance of light scattered forward was measured.
  • T% total light diffuse transmittance: T%
  • a filter lens L is interposed between the incident light and the reference white plate (magnesium sulfate) 10.
  • the total light diffuse transmittance of light scattered forward was measured.
  • the total light diffuse reflectance R%, first, irradiate light to a reference white plate (magnesium sulfate), measure the total light diffuse reflection value of light scattered behind, and set the value to 100. Next, as shown in Fig. 13 (b), light is incident on the The diffuse reflection value was measured and calculated as a ratio to the total light diffuse reflection value of the reference white plate. Note that in Fig. 13 (b), the force of light entering from the film side as shown in Fig. 12 (a) is also applied when light is incident from the filler side as shown in Fig. 12 (b). Was. The measurement wavelength in this case was 400 to 700 nm, and the measured value was shown as an average value in this wavelength region. The results are shown in Table 1.
  • the total light diffuse transmittance was about 91% and the total light diffuse reflectance was about 26% regardless of whether the light was incident from the film side or the filler side. No difference was seen.
  • the total light diffuse transmittance is lower than that of samples 1-3, but the total light diffuse reflectance is high.
  • the total light diffuse transmittance is extremely high, and conversely, the total light diffuse reflectance is low. That is, according to the filler lens of the present invention, the light scattering property differs depending on whether the incident direction of light is front or back, and a lens effect is recognized. By utilizing this, it is possible to obtain optical characteristics according to the purpose.
  • a triacetyl cellulose having a thickness of 80 (trade name: Fuji Yuk UVD 80, manufactured by Fuji Photo Film Co., Ltd., refractive index 1.49, total light transmittance 92.4) was used.
  • 0.2 parts by weight of an isocyanate-based curing agent (trade name: L-145, manufactured by Soken Chemical Co., Ltd.) and 100 parts by weight of an epoxy-based curing agent Name: E-5XM (manufactured by Soken Chemical Co., Ltd.) and 0.1 parts by weight of a binder were applied over the entire surface of Reverseco to a thickness of 3 / m after drying.
  • the film was dried at 0 ° C for 2 minutes to form a binder layer, and this film was cut into A5 size plates.
  • the volume average particle size is 4. and the particle size distribution is 0.
  • Methyl silicone beads with a refractive index of 43, roundness of 96% (trade name: Tospearl 14.5, manufactured by GE Toshiba Silicone Co., Ltd.), and blow out this organic filler and air from the bottom.
  • the container was vibrated, and the organic filler was fluidized by the synergistic effect of the vibration and the jet air.
  • the above-mentioned film having the binder layer formed on the surface was passed through the film with appropriate time, and a filler was attached to the surface of the binder layer.
  • an organic filler is embedded in the surface layer of the binder layer to form one layer of a filler, and then a surfactant (product name: Liponox NC-95, Lion Corporation) is added to ion-exchanged water.
  • a surfactant product name: Liponox NC-95, Lion Corporation
  • the excess organic filter was washed and removed by applying ultrasonic waves while immersing the filter lens in an aqueous solution containing 0.1% by weight of the filter. This was removed from the aqueous solution, rinsed thoroughly with ion-exchanged water, and the surface was drained with an air knife. Then, it was left in a constant temperature bath at 40 ° C. for 5 days, dried, and cooled to room temperature to obtain a filter lens of Sample 2-1 of the present invention.
  • Sample 2-2
  • sample 2-1 On one side of the same film as sample 2-1, apply the binder of sample 2-1 over the entire surface of the film so that the thickness after drying will be 3 im. After drying for 5 minutes to form a binder layer, the film was cut into A5 plates.
  • the organic filler used was methyl silicone beads with a volume average particle size of 2.6 m, a refractive index of 1.43, a particle size distribution of 0.90, and a roundness of 94% (trade name: Tospearl 1) 30, GE Toshiba Silicone Co., Ltd.), and a sample lens of Sample 2-2 of the present invention was obtained in the same manner as Sample 2-1.
  • Sample 2-3 Sample 2-3
  • sample 2-1 On one side of the same film as sample 2-1, apply the binder of sample 2-1 over the entire river to a thickness of 4 m after drying. After drying to form a binder layer, the film was cut into A5 plates. In the subsequent steps, methyl methacrylate beads with a volume average particle size of 5.0 urn, a refractive index of 1.50, a particle size distribution of 0.94, and a roundness of 93% were used. Except that the sample was changed to MX-500 (manufactured by Soken Chemical Co., Ltd.), a filler lens of Sample 2-3 of the present invention was obtained in the same manner as Sample 2-1. Sample 2-4
  • sample 2-1 On one side of the same film as sample 2-1 apply the binder of sample 2-1 with reverseco overnight so that the thickness after drying is 5 / m, and at 100 ° C for 2 minutes After drying to form a binder layer, the film was cut into A5 plates.
  • the organic filter used was methyl methyl acrylate beads with a volume average particle size of 10.8 ⁇ m, a refractive index of 1.50, a particle size distribution of 0.94, and a roundness of 94% (trade name). : MX-1100, manufactured by Soken Chemical Co., Ltd.), and a filler lens of Sample 2-4 of the present invention was obtained in the same manner as Sample 2-1.
  • Sample 2-5 MX-1100, manufactured by Soken Chemical Co., Ltd.
  • sample 2-8 On one side of the same film as sample 2-1, apply the binder of sample 2-1 all over the river so that the thickness after drying becomes 15, and apply it at 100 for 2 minutes. After drying to form a binder layer, the film was cut into A5 plates.
  • the filler used was a methyl methyl acrylate filter with a volume average particle size of 21.0 m, a refractive index of 1.50, a particle size distribution of 0.29, and a roundness of 94% (trade name: MR- 20 G, manufactured by Soken Chemical Co., Ltd.), and a filler lens of Sample 2-7 for comparison was obtained in the same manner as Sample 2-1.
  • Sample 2-8
  • sample 2-1 On one side of the same film as sample 2-1, apply the binder of sample 2-1 with Reverseco overnight so that the thickness after drying becomes 20 m, and then apply at 100 for 2 minutes. Dry After forming the binder layer, the film was cut into A5 plates.
  • the filler used was soda glass with a volume average particle size of 29.3111, a refractive index of 1.52, a particle size distribution of 0.23, and a roundness of 94% (trade name: GB- 731, manufactured by Toshiba Baroiti 12 Co., Ltd.), and a sample 2-8 lens for comparison was obtained in the same manner as sample 2-1.
  • Figs. 14 to 21 are electron micrographs of the filler lenses of Samples 2-1 to 2-8 taken at a magnification of 1000 times, in a plane and a cross section.
  • Sample 2 The filler lenses of! To 2-8 were visually observed through the transmitted light to evaluate the uniformity of the transmitted light. A If the 5th plate is uniform over the entire surface, the light transmittance may be unusually high depending on the location, such as gaps between fillers and fillers, or light transmittance may be abnormal due to the presence of multiple layers of filler. When a low and dark part can be visually confirmed, it was set to X. Table 2 shows the evaluation results of the uniformity of transmitted light.
  • Sample 2-1 to 2-8 visually observe the filler lens through the transmitted light and transmit The fineness of the light grain was evaluated. If the transmitted light looks smooth, it is marked as ⁇ , and if it is grainy, it is marked as X. Table 2 shows the evaluation results of the grain size of the transmitted light.
  • Tt is preferably 70% or more and Hz is preferably 60% or more. is there.
  • the optical properties of the filler lens having the configuration as in the present invention show practically sufficient values for both the total light transmittance and the total light diffusivity. It has sufficient light diffusivity and transparency. And, because of the use of a fine organic filler, it had uniform and finely grained transmitted light. Also, from Table 3, it can be understood that by changing the volume average particle diameter of the organic filler, it is possible to change and adjust the light diffusivity and transmittance.
  • the acryl polymer 1a used in the second embodiment was used as a pressure-sensitive adhesive for the binder layer.
  • triacetyl cellulose with a thickness of 80 ⁇ zm (trade name: Fuji Yuk UVD80, manufactured by Fuji Photo Film Co., Ltd., refractive index 49, total light transmittance 92.4, haze 0.15) ) was used.
  • 100 parts by weight of acrylic polymer a 0.45 parts by weight of an isocyanate-based curing agent (trade name: L-145, manufactured by Soken Chemical Co., Ltd.) and an epoxy-based curing agent (product Name: E-5XM (manufactured by Soken Chemical Co., Ltd.) was coated with 0.15 parts by weight of reverse adhesive so that the thickness after drying was 5 ⁇ m.
  • the film was dried at 0 ° C. for 2 minutes to form a binder layer, and this film was cut into A5 size plates.
  • a methyl silicone filler with a volume average particle diameter of 4.5 ⁇ , a particle diameter distribution of 0.94, a refractive index of 1.43, and a roundness of 96% (trade name: Tospearl 14) 5, GE Toshiba Silicone Co., Ltd.), and this filler was put into a perforated plate container that blows air from the bottom. Then, this container is vibrated, and the filler is fluidized by the synergistic effect of the vibration and the jet air. The above with a binding layer formed on the surface The film was passed through the film for an appropriate time, and the filler was attached to the surface of the binder layer.
  • a filler is embedded in the surface layer of the binder layer to form one layer of the filler, and then a surfactant (trade name: Ribonox NC-95, manufactured by Lion Corporation) is added to the ion-exchanged water.
  • a surfactant trade name: Ribonox NC-95, manufactured by Lion Corporation
  • the filler was washed away by applying ultrasonic waves while immersing the filler lens in the added 0.1% by weight aqueous solution. This was taken out of the water solution, rinsed sufficiently with ion-exchanged water, and the surface was drained with an air knife. After that, it was left in a constant temperature bath at 40 ° C. for 7 days, dried, and cooled to room temperature to obtain a filler lens of Sample 3-1 of the present invention.
  • Sample 3-2
  • the filter to be used is a methyl methacrylate having a volume average particle size of 14.9, a particle size distribution of 0.96, a refractive index of 1.50, and a roundness of 92% (trade name: MX- The procedure was the same as that for Sample 3-1 except that the sample was changed to 1500 H (manufactured by Soken Chemical Co., Ltd.) to obtain a filler lens of Sample 3-3 of the present invention.
  • Sample 3-1 On one side of the same transparent substrate film as Sample 3-1, apply the adhesive of Sample 3-1 with a reverse coater so that the thickness after drying becomes 5 m. After drying for 5 minutes to form a binder layer, the film was cut into A5 plates. Next, using the filler of sample 3-3, changing the gap between the YB A type and the application, the surface was leveled so that the thickness of the adhesion layer was 25 im. . Subsequent steps were performed in the same manner as in Sample 3-4 to obtain a filler lens of Sample 3-7 for comparison. Sample 3-8
  • FIGS. 22A and 22B are micrographs of the filler lens of Sample 3-1 taken at a magnification of 1000 ⁇
  • FIG. 22A shows a plane
  • FIG. 22B shows a cross section
  • Figures 23 and 24 are 500 times the plane (a) and cross section (b) of the filter lens of samples 3-2 and 3-3.
  • Figures 25 and 26 are the filters of samples 3-4 and 3-5.
  • the plane (a) and cross-section (b) of one lens are 1 000 times
  • Figures 27 and 28 are 500 times the plane of the lens of Samples 3-6 and 3-7.
  • Filers 4 is an electron micrograph of a plane (a) and a cross section (b) of one lens taken at a magnification of 1000 times.
  • samples 3_4 and 3-5 are not uniform, resulting in dense (al) and coarse (a2) areas where the filler is filled.
  • the other binder is exposed to the binder layer exposed from the gap of the first filler.
  • sample 3-8 which is a conventional filler lens, as shown in (a) of Fig. 29, the filler is completely buried in the binding layer, and the cross section of (b) According to the photograph, it was observed that the filler was present in multiple layers in the binder layer.
  • FIG. 30 is an optical microscope photograph (magnification: 50) of a state where transmitted light is used for the filler lenses of Samples 3_1 and 3-4.
  • the filler lens of Sample 3-1 having a uniform filler depth in the filler showed uniform light transmission.
  • the filler lens of Sample 3-4, in which the filling depth of the binder binding layer was uneven and the filler partially overlapped, showed that the light transmittance was uneven.
  • the distance between the fillers in the surface direction of the filler lenses of Samples 3-1 to 3-8 was measured with a digital microscope (trade name: VH-6300) manufactured by Keyence Corporation. body
  • the filler lens with a filler with an average particle size of less than 10 / zm is 30000 times, and the filler lens with a filler with a particle diameter of 10 zm or more is 10000 times the magnification.
  • the distance between particles was measured, and the standard deviation was calculated.
  • the filler lenses of Samples 3-1 to 3-8 were visually observed through the transmitted light to evaluate the uniformity of light transmission.
  • uniform 1, and in the case where there are bright spots (transparency) with extraordinarily high transmittance or dark spots with low transmittance in some places, it was evaluated as X, and the uniformity of light transmission and diffusion was evaluated.
  • the standard deviation of the distance between the filler particles in the filler lenses of samples 3-1 to 3-3 is 0.4 or less, while the standard deviation of the sample 3_4 to 3-7 is less than 0.4. The deviation was greater than 0.4. Also, sample 3-8 filter In the lens, since the filler was completely buried in the binder layer, it was impossible to focus with an optical microscope using transmitted light, and the distance between the particles of the filler could not be measured.
  • the filler lenses of Samples 3-1 to 3-7 having the structure shown in Fig. 1 are more complete than the filler lenses of the conventional Sample 3-8, which has multiple filler layers as shown in Fig. 2.
  • the total light transmittance is high despite the high light diffusivity, it can be said that it has excellent light transmittance and light diffusivity.
  • the filler lenses of Samples 3-1 to 3-3 have a higher and more uniform packing density and a uniform single-layer structure. Therefore, both the total light transmittance and the total light diffusivity show high values.
  • the acryl polymer 1a used in the second embodiment was used as a pressure-sensitive adhesive for the binder layer.
  • An 80 / m-thick triacetyl cellulose (trade name: Fuji Yuk UVD 80, manufactured by Fuji Photo Film Co., Ltd., refractive index 49) was used as the transparent substrate.
  • an isocyanate-based curing agent (trade name: L-45, manufactured by Soken Kagaku Co., Ltd.) was added to 100 parts by weight of the acryl polymer a and an epoxy-based curing agent (trade name).
  • a filler made of methyl silicone having a volume average particle diameter of 4.5 im, a particle diameter distribution of 0.94, a refractive index of 1.43, and a roundness of 96% (trade name: Tospearl 145, GE Toshiba) This filler was put into a perforated plate container that spouted an air from the bottom using Silicone Co., Ltd.). After that, this container is vibrated, The synergistic effect of the outflow air fluidizes the filler.
  • the above-mentioned film having a binder layer formed on the surface thereof in the fluidized filler was passed through the film with appropriate time, and a filler was adhered to the surface of the binder layer.
  • a filler is embedded in the surface layer of the binder layer to form one layer of a filler, and then a surfactant (trade name: Liponox NC-95, manufactured by Lion Corporation) is added to the ion-exchanged water.
  • a surfactant trade name: Liponox NC-95, manufactured by Lion Corporation
  • the filler was washed and removed by applying ultrasonic waves while immersing the filter lens in a 0.1 weight solution to which was added. This was taken out of the aqueous solution, rinsed sufficiently with ion-exchanged water, and then the surface was drained with an air knife. Thereafter, the sample was allowed to stand in a constant temperature bath at 40 ° C. for 5 days, dried, and cooled to room temperature to obtain a sample 4-1 lens of the present invention. The gel fraction of the binder layer of this filler lens was 64%.
  • the adhesive was mixed with 0.2 parts by weight of an isocyanate-based curing agent (trade name: L-45, manufactured by Soken Kagaku Co., Ltd.) based on 100 parts by weight of the acrylic polymer a.
  • System hardener (trade name: E-5 XM manufactured by Soken Chemical Co., Ltd.) Except that the amount was changed to 0.1 part by weight, the same procedure was performed to obtain a sample 4-4 filter lens for comparison.
  • the gel fraction of the binder layer of this filler lens was 42%.
  • FIGS. 31 to 34 are photomicrographs of the filler lenses of Samples 4-1 to 414 taken at a magnification of 2000 times.
  • the filler lens of Sample 4-1 has a uniform single layer of one layer of the filler, with the filler projecting from the binder layer so that the percentage of the protrusion is 55%.
  • the filler lens of sample 4-2 has a uniform single layer with the filler projecting from the binder layer so that the percentage of filler projection is 66%.
  • one filler layer is a uniform single layer with the filler projecting from the binder layer so that the ratio of the protrusion is 24%.
  • the filler layer is a uniform single layer with the filler protruding from the binder layer so that the proportion of protrusion is 39%.
  • Fig. 12 The haze (total light diffusivity (H z))% when light is incident from the filmer 13 side as shown in b) and when light is incident from the film 1 side as shown in FIG.
  • the measurement was performed using a spectrophotometer UV3100 manufactured by Shimadzu Corporation. Table 5 shows the measurement results.
  • the initial haze of the filter lenses of Samples 4-1 and 4-2 is about 87-90% for the incident light in both directions of the filler side and the film side. Thus, it had practically sufficient light diffusing properties and good paper whiteness.
  • the initial haze of the filter lenses of Samples 4-13 and 4-4 was about 75-81%, and the paper whiteness was insufficient.
  • the haze values of the filter lenses of Samples 4-1 and 4-2 were almost unchanged, and the reliability was good.
  • the haze of the filter lenses of Samples 4-3 and 4-4 was reduced by 10 to 15%, making it difficult to use them for displays and the like.
  • an acryl polymer b was prepared by adding ethyl acetate to the acryl polymer solution polymerized in the second embodiment so that the solid content was 20% by weight. was used for the binder layer of the filler lens.
  • 80-thick triacetylcellulose (trade name: Fuji Yuk UVD80, manufactured by Fuji Photo Film Co., Ltd., refractive index: 1.49) was used.
  • an isocyanate-based curing agent (trade name: L-45, manufactured by Soken Chemical Co., Ltd.) was added to 100 parts by weight of the acryl polymer, and an epoxy-based curing agent ( Product name: E-5 XM (manufactured by Soken Chemical Co., Ltd.) Coated with a binder containing 0.2 parts by weight of Riba-Isco overnight so that the thickness after drying becomes 5 m.
  • the film was dried at 0 ° C for 2 minutes to form a binder layer, and this film was cut into A5 size plates.
  • a filler made of methyl silicone having a number average particle diameter of 4.5 m, a particle diameter distribution of 0.94, a refractive index of 1.43, and a roundness of 96% (trade name: Tospearl 1) 45, GE Toshiba Silicone Co., Ltd.), and this filler was put into a perforated plate container that gushes the air from the bottom. Then, the container is vibrated, and the filter is fluidized by the synergistic effect of the vibration and the jet air.
  • the above-mentioned film having a binder layer formed on the surface thereof in the fluidized filler was passed through the appropriate time, and the filler was attached to the surface of the binder layer.
  • a filler is buried in the surface layer of the binder layer to form one layer of a filler, and then a surfactant (trade name: Liponox NC-95, manufactured by Rion) is ionized.
  • a surfactant trade name: Liponox NC-95, manufactured by Rion
  • a water pressure shower to wash the one layer of the filter, and the excess filter is removed. I rinsed. Thereafter, the whole was sufficiently dried by air blow.
  • a step of attaching the filler of the sample 5-1 and a step of embedding the filler in the binding layer with a pressurized medium were performed. After that, the laminate is put into the same washing aqueous solution as in Sample 5-1. After removing excess filler by applying ultrasonic waves, the sample is sufficiently rinsed with ion-exchanged water, and air blown. The whole was dried.
  • a filler lens of Sample 5-3 for comparison was obtained in the same manner as in Sample 5-2 except that the step of softening the binder layer was omitted.
  • FIGs 35 to 37 show the planes of the filter lenses of Samples 5-1 to 5-3 and This is a micrograph of a cross section taken at a magnification of 5,000.
  • the filler lenses of Samples 5-1 and 5-2 have a swelling portion of the binder layer at the periphery of the filler.
  • a part was protruding, and the configuration was as shown in Fig. 6.
  • the filler edge of the filler lens of Sample 5-3 had a configuration in which there was no swelling portion of the binder layer.
  • the total light transmittance when incident from the film side is about 91 to 92% for the filler lenses of Samples 5-1 and 5-2, whereas the transmittance of Sample 5-3 is about 9 to 92%. It was about 75% for an ira lens. In other words, it was confirmed that the light transmittance of the film lenses of Samples 5-1 and 5-2 to the incident light from the film side was 16 to 17% higher than that of Sampler 5-3. And about the haze, Sample 5 ::! It was about 78-81% for filler lenses of ⁇ 5-3, indicating that it had sufficient light diffusion.
  • the total light transmittance of the filler lenses of Samples 5-1 to 5-3 is about 96 to 97%, which is extremely high. I was Also, the haze was about 79 to 81%, indicating that it had sufficient light diffusion.
  • the filter lenses of Samples 5-1 and 5-2 are designed to prevent incident light on the filler side.
  • it has the same light diffusing property and light transmitting property as the conventional product.
  • the transmittance was about 16 to 17% higher than that of the conventional product. Since the total light transmittance of the TAC film itself is about 92% and the haze is about 0.2%, the filmer lens of the present invention has sufficient light diffusivity for incident light from both directions. It was confirmed that there was almost no loss of light transmission while holding.
  • the following composition was charged into a four-necked flask equipped with a reflux condenser, a thermometer and a stirrer, and subjected to polyurethane until the desired isocyanate content was reached. Then, 4 parts of ethylene glycol mono-n-hexyl ether was added thereto. In addition, a blocking reaction of an isocyanate group was performed to prepare a block isocyanate curing agent, which was used in the following coating solution for a binder layer of a filler lens.
  • Triacetyl cellulose (trade name: Fuji Yuk UVD 80, manufactured by Fuji Photo Film Co., Ltd., refractive index 49) having a thickness of 80 ⁇ was used as the transparent substrate.
  • On one side of this film apply the following coating solution for binder layer mixed with a disperser for 15 minutes with a disperser, and apply it all over the river so that the thickness after drying becomes 10 m. After drying at 100 ° C. for 2 minutes, aging was performed at 30 ° C. for 1 week to form a binder layer.
  • a filler was embedded in the surface layer of the binder layer to form one layer of the filler, and then the coated film of the film was heated at 120 ° C. for 5 minutes and thermally cured. . Thereafter, the filler is removed by applying a water pressure shower to the one layer of the filter using ion-exchanged water to wash the one layer of the filter, and then drying the whole with an air filter to obtain the sample 6-1 of the present invention. I got a lens.
  • Sample 6-2
  • a sample of the present invention was prepared in the same manner as in Sample 6-1 except that dipentyl erythritol triacrylate was used instead of tripentaerythritol polyacrylate as the acrylic compound in the binder layer coating liquid. I got a 6-2 filler lens.
  • a paint obtained by dispersing a mixture of the following components in a sand mill for 30 minutes is applied to a transparent substrate triacetyl cellulose having a film thickness of 80 ⁇ m and a transmittance of 92% (trade name: Fujitack UVD 8 0, manufactured by Fuji Photo Film Co., Ltd., refractive index 1.4 Apply to one side of (9) by the reverse coating method, dry at 100 ° C for 2 minutes, and irradiate with one 12 OWZ cm condensing type high pressure mercury lamp (irradiation distance 10 cm) The irradiation time was 30 seconds), and the coated film was cured to obtain a comparative sample 6-3 filter lens.
  • a filter lens of Sample 6-4 for comparison was obtained in the same manner as in Sample 6-1 except that the composition of the coating solution for the binder layer of Sample 6-1 was changed as follows.
  • the total light diffuse reflectance R%, first, irradiate light to a reference white plate (magnesium sulfate), measure the total light diffuse reflection value of light scattered behind, and set the value to 100. Next, as shown in FIG. 13 (b), light was incident on the filler lens L, and the total light diffuse reflection value was measured, and was calculated as a ratio to the total light diffuse reflection value of the reference white plate. In Fig. 13 (b), light is incident from the film side as shown in Fig. 12 (a), but when light is incident from one side of the filter as in Fig. 12 (b), the same applies. went. The measurement wavelength in this case was 400 to 70 O nm, and the measured value was shown as the average value in this wavelength region.
  • Sample 6 above Leave the filmer lens of ⁇ 6-4 under high temperature and high humidity (80T: 90%) condition for 3 days, and then perform the light diffusion test in the same manner as above to perform high temperature and high humidity resistance, that is, high temperature and high humidity The reliability was evaluated below.
  • the total light diffusion transmittance was about 91%, and the total light diffusion was about 91%, regardless of whether the light was incident from the film side or the filler side.
  • the diffuse reflectance was not different at about 26%.
  • the total light diffuse transmittance is lower than that of sample 6-3, but the total light diffuse reflectance is high, and when light is incident from the filler side, the total light diffuse The transmittance was extremely high, and conversely the total light diffuse reflectance was low.
  • sample 6— After leaving the sample under high temperature and high humidity, sample 6— :! No change was observed in the light scattering properties of samples 6 to 3, but for sample 6-4 in which the adhesive of the binder layer was not cured, the total light when the light was incident from the film side Diffuse transmittance increased, while total light diffuse reflectance decreased. That is, the filler lens of the present invention has a lens effect in which the light scattering property differs depending on whether the incident direction of light is front or back, and the filler lens keeps a specific light scattering property even under high temperature and high humidity. It is possible to obtain In addition, the filler lens of Sample 6-4 has poor optical characteristics because a uniform curing layer is not formed due to the partial curing reaction during drying and aging before the filler is embedded. Met.
  • the filler lens of the present invention when used for a transmissive liquid crystal display, as shown in FIG. 38 (a), a liquid crystal cell 21 having polarizing plates 20 provided on both sides is used. Insert the filler lens L between the backlight unit 22 and the liquid crystal cell 21 side, or apply adhesive processing to the film 1 surface as shown in Fig. 38 (b) to form an adhesive layer 2 3
  • the light transmittance of the backlight unit 22 is extremely high, and additionally, the light enters from the front side of the display (upper side in the figure). Sunlight and electric light are easily reflected.
  • the amount of light illuminating the liquid crystal cell 21 becomes extremely large, and a clearer liquid crystal image and a power saving effect can be obtained. Furthermore, since the filler lens L of the present invention is excellent in light diffusion, the background color of the backlight unit 22 can be made closer to a nearly white color, and the contrast of the liquid crystal display can be improved. it can.
  • the filler lens of the present invention When the filler lens of the present invention is used for a reflection type liquid crystal display, as shown in FIG. 39 (a), a liquid crystal cell 21 provided with polarizing plates 20 on both sides and a reflection plate 24 are provided.
  • the filler lens L of the present invention is inserted between them, or as shown in FIG. 39 (b), two films 1 of the filler lens L are bonded together via the adhesive layer 23, and light diffusion is performed. It can also be used as a body. In this case, instead of one filler lens L, it can be used by being bonded to another light diffuser. Further, as shown in FIG. 39 (c), it is also possible to form an aluminum deposition layer 25 on the film 1 of the filler lens L and use it as a diffuse reflection plate.
  • the filter lens of the present invention can efficiently take in light and diffuse light efficiently.
  • the filler lens L when the filler lens L is disposed on the front side of the liquid crystal cell 21 with the film 1 facing forward, the transmittance of the backlight unit 22 is high, so that the viewing angle is extremely large. It can also be used as a wide light diffusion lens.
  • a single-layer filler layer is formed on the surface layer of the binder layer laminated on the base, with a part protruding from the surface of the binder layer. Since the filler layer is formed and the filler density in the planar direction of the filler layer is high and uniform, the light diffusivity differs between the substrate side and the one-layer filler side, and the lens effect of the filler is increased.
  • the film lens of the present invention is used for displays such as LCD, EL, FED, etc.
  • the attenuation of incident light is small, it is possible to design a liquid crystal display having a wide viewing angle, high brightness, and high contrast. It has extremely excellent effects.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

明 細 書 フィラーレンズ及びその製造方法 技術分野
本発明は、 例えば、 L C D、 E L、 F E D等のディスプレイに好適に用いられ、 特に、 これらディスプレイの輝度ムラ防止、 コントラスト向上、 広視野角化に優 れた効果を発揮するフイラ一レンズおよびその製造方法に関する。 背景技術
L C D , E L、 F E D等のディスプレイは、 近年開発が目覚ましい。 特に、 L C Dは、 ノートパソコン、 携帯端末等あらゆる分野に普及しており、 将来への期 待も大きい。 この L C Dは、 液晶パネルを照明する光の取り入れ方式により、 反 射型と透過型とに大別される。 反射型は、 反射率の高いアルミニウム膜等を貼つ たり、 または蒸着した反射板を液晶パネルの背面に配し、 ディスプレイ表面側か ら入射する外光を反射板で反射させて液晶パネルを照明し液晶画像を得る。一方、 透過型は、 液晶パネルの背面に配したバックライトュニットにより液晶パネルを 照明する方式である。 反射型にあっては、 アルミニウムの地色が出てコントラス 卜が悪化することを防ぐために、 液晶パネルと反射板との間に光を適度に拡散す る媒体を介装したり、 マット加工 (表面の粗面化処理) を施したフィルムのマツ 卜面にアルミニウムを蒸着したもの等を用いて光を拡散させることにより、 背景 色をべ一パ一ホワイト色に近づけることが行われている。 また、 透過型における バックライ トュニッ卜は、一般に、冷陰極管を備えたアクリル導光板等の光源と、 この光源の光を拡散する光拡散板とを備え、 均一な面状の光が液晶パネルを照明 する構成となっている。
このように、 反射型、 透過型のいずれの方式にあっても、 概ね光拡散性の媒体 (以下光拡散体と記す) は用いられている。 この光拡散体としては、 例えば、 透 明樹脂フィルムの片面に、 光拡散性のフィラーが分散された結着樹脂を積層した ものが挙げられる。 このような従来の光拡散体は、 結着樹脂に溶剤を混合した溶 液中にフィラーを分散させて塗料とし、 この塗料をスプレーゃコ一夕一でフィル ム上に塗工するといつた方法で製造されていた。 図 2は、 そのような製造方法で 得られる光拡散体を模式的に示しており、 フィルム 1 1上に結着樹脂からなる結 着層 1 2が形成され、 この結着層 1 2中にフィラー 1 3が分散している。
上記従来の光拡散体は、 フイラ一側からとフィルム側からの入射光による全光 線拡散透過率および全光線拡散反射率または全光線透過率および全光線拡散率に 大差なく、 ほぼ同じ値を示し、 光の入射方向によらず、 光拡散性が同じであるこ と、 すなわち、 指向性がないことが分かる。 これは、 フィラーが結着層中に完全 に埋め込まれ、 さらに、 フィラーが厚さ方向に重なり複層の状態になっているか らである。 さらに、 このような構成では、 拡散した光が互いに打ち消し合う結果 となるため、 透過率が減衰 (光エネルギーが損失) してしまう。
また、 同じ様な光拡散性を示す媒体として、 透明フィルムの片面上に、 フォト リソグラフ等の方法でマイクロレンズを形成したレンズフィルムが提案されてい る。 このレンズフィルムでは、 レンズ側から光を入射した場合と、 フィルム側か ら光を入射した場合で、 大きな差があり、 光拡散性に指向性があることが分かつ ている。 この指向性を応用することで、 例えば、 上記反射型 L C Dに搭載した場 合など、 外光を効率よく反射させ、 高コントラストで明るい画像を得ることが可 能となる。
このように、 レンズ形状を有する光拡散体は、 光拡散体として非常に好ましい ことが理解される。 しかしながら、 フォトリソグラフは、 l m以下の微小レン ズをつくるのには向いているが、 それ以上大きなレンズ加工には不向きであり、 レンズが小さすぎると、 ニュートンリングが発生するためフォトリソグラフでは 製造が困難となる。
そこで、 本発明者らは、 フイラ一を結着層の表層に一部が突出するよう埋め込 み、 突出したフイラ一が微細なレンズとなるような構成であれば、 上記レンズフ イルムと同様の指向性がある光拡散性 (以下レンズ効果と記す) が発現されるの ではないかと考え、 次のような製造方法を試みた。 それは、 まずフィルム上に結 着層を形成し、 次いで結着層にフイラ一を付着させ、 その後、 加圧ローラを用い て、 該フイラ一を結着層に埋め込むというものである。 この方法は、 加圧ローラの圧力バランスが重要となるため、 フィルム厚のバラ ツキや加圧ローラのしなり等で両端部と中央部に圧力差が生じて大きな圧力の加 わった場所では、 フィラーが必要以上に深く埋め込まれるためフイラ一層が複層 になり易い。 一方、 圧力が小さかった場所では、 フィラーが結着層に十分埋め込 まれないため余剰フイラ一の洗浄工程等でフィラー抜け等の欠陥が発生し易い。 この現象は、 特に大きな面積で処理する場合に顕著であった。
また、 粒子径が 1 5 m以下のフィラーを埋め込む場合は、 フイラ一の比表面 積が大きくなることにより、 ファンデルワールスカ等の粒子間力や摩擦帯電によ る電気的付着力等の影響を受けて、 フィラーの流動性が悪くなり、 さらに、 加圧 ローラーの圧力が分散し、 個々のフイラ一へ加わる圧力が低下するため、 すでに 結着層上に付着しているフイラ一とフィラーと間隙に他のフィラーを均一な深さ にまで埋め込むことができない。
以上の問題点から、 フィラーの結着層への埋め込み深さのバラツキが大きく、 また、 面方向におけるフイラ一の充填密度が不均一になり易く、 粒子の充填密度 が密な部分と粗な部分が発生し易い。 そのため、 場所により光の拡散性や透過性 が異なる不均一なフィラーレンズとなり、 実用上使用できるものではなかった。 図 3 ( a ) は加圧ローラ一を用いた上記製造方法により体積平均粒子径が 4 . 5 mのメチルシリコーンフィラ一を用いて製造したフィラーレンズの平面を 1 0倍の対物レンズで撮影した光学顕微鏡写真であり、 図 3 ( b ) は同フイラーレ ンズの断面を 2 0 0 0倍の倍率で撮影した電子顕微鏡写真である。 図 3 ( a ) か ら、 フイラ—の充填密度が不均一で、 部分的に複層になっていることがわかる。 また、 図 3 ( b ) からフィラーの結着層への埋め込み深さが不均一であることが わかる。 発明の開示
本発明は、 光拡散性および光透過性が高く均一であり、 フイラ一層が複層であ る従来の光拡散体に比べて光透過性に優れたフィラーレンズおよびその製造方法 を提供することを目的としている。 1 . 第 1実施形態
本発明の第 1実施形態のフィラ一レンズは、 従来技術における上記した実情に 鑑みてなされたもので、 基体と、 この基体上に、 直接または他の層を介して積層 された結着層と、 この結着層の表層に、 当該結着層の表面から一部が突出する状 態で埋め込まれた多数のフイラ一からなるフィラ一層とを備えることを特徴とし ている。 本実施形態によれば、 フイラ一層におけるフイラ一の突出している部分 が微細なレンズ形状を呈しているため、 上述のレンズ効果を得ることが可能とな る。
本発明のフィラーレンズにおけるフィラー層は、 フィラーによるレンズ効果を 顕著に得ることができる点で、 結着層表層に単層で、 フィラーの一部が結着層の 表面から突出するように埋め込まれている構成が好ましく、 さらに、 一個一個の フィラーが、 面方向で高密度に配置していることが好ましい。 なお、 本発明でい う単層とは、 結着層の表面に突出したフィラーどうしが重なり部分をもたないで 形成されていることを意味する。
図 1は、 本発明のフイラ一レンズの一例を模式的に示した断面図である。 この フィラーレンズ Lは、 基体 1上に結着層 2が直接積層され、 この結着層 2の表層 に、 多数のフィラー 3が、 単層で、 結着層 2の表面から一部突出する状態で、 さ らに、 面方向で高密度になるように埋め込まれることにより、 フイラ一層 3 Aが 形成されている。 また、 本発明のフイラ一レンズは、 フイラ一層の表面に、 光拡 散性を向上させるようなコーティングゃ他の層を形成してもよい。 次に、 本発明のフイラ一レンズの製造方法は、 上記構成のフィラーレンズを製 造するにあたって好適な製造方法であり、
①基体上に、 直接または他の層を介して結着層を積層する工程、
②フイラ一を加圧媒体によって結着層に埋め込む工程、
③前記工程で得た積層体に付着した余剰フイラ一を除去する工程
を具備していることを特徴としている。 また、 ②の工程の前に、 フイラ一を結着 層上に付着する工程を行うことにより、フィラーの抜け等外観上の欠点が減少し、 フィラーの埋め込みが確実に行えることから好ましい。 ②のフィラ一を結着層に 埋め込む具体的方法としては、 加圧媒体を粒状物とし、 この加圧媒体を振動させ ることにより、 加圧媒体がフィラーを打撃して結着層に埋め込むといった形態が 挙げられる。
本発明のフィラーレンズの製造方法によれば、 フィラーの埋め込み深さが均一 化され、 フイラ一が面方向に高密度で配置し、 結着層表層に単層で、 フィラーの 一部が結着層の表面から突出するように埋め込まれている構成のフィラーレンズ を製造することができる。 以下、 本発明によって得られるフィラーレンズに好適な構成材料および製造方 法について説明する。
A. 構成材料
(1) 基体
本発明に用いる基体としては、公知の透明なフィルムを使用することができる。 具体的には、 ポリエチレンテレフタレート (PET)、 ポリエチレンナフタレ一 ト (PEN)、 卜リアセチルセルロース (TAC)、 ポリアレート、 ポリイミド、 ポリエーテル、 ボリカーボネート、 ポリスルホン、 ポリエーテルスルホン、 セロ ファン、 芳香族ポリアミド、 ポリエチレン、 ポリプロピレン、 ポリビニルアルコ ール等からなる各種樹脂フィルムを好適に使用することができる。 本発明の基体 は、 このようなフィルムに限定されず、 上記樹脂からなる硬質板や、 樹脂板以外 にも石英ガラス、 ソーダガラス等ガラス材料からなるシート状部材も用いること ができる。
基体としては、 光が透過されるものであれば非透明状物のものでもかまわない 力、 液晶ディスプレイに用いる場合等は、 屈折率( J I S K— 7 142)が 1. 45〜 1. 55の範囲にある透明基体が望ましい。 具体例には、 トリァセチルセ ルロース (TAC) やポリメチルメタクリレート等のアクリル系樹脂フィルム等 を挙げることができる。 これら透明基体は、 透明性が高いもの程良好であるが、 全光線透過率 ( J I S C - 67 14) としては 80 %以上、 より好ましくは 8 5 %以上、 さらに好ましくは 90 %以上のもの、 ヘイズ ( J I S K 7 105) としては、 3. 0以下、 より好ましくは 1. 0以下、 さらに好ましくは 0. 5以 下のものが好適に使用できる。 また、 その透明基体を小型軽量の液晶ディスプレ ィに用いる場合には、 透明基体はフィルムであることがより好ましい。 透明基材 の厚さに関しては、 軽量化の観点から薄いほうが望ましいが、 その生産性を考慮 すると、 1 /!〜 5 mmの範囲のものを使用することが好適である。 さらに、 基体 の片面に集光性または拡散性を有するレンズを形成し、 この基体の反対側の片面 に、 直接または他の層を介してフィラ一レンズを形成することもできる。
( 2 ) 結着層
本発明における結着層は、 例えば、 粘着剤を上記基体上にコーティングして得 られる粘着剤層が好適である。 この粘着剤としては、 アクリル系樹脂、 ポリエス テル樹脂、 エポキシ樹脂、 ポリウレタン系樹脂、 シリコーン樹脂、 フエノール樹 脂、 メラミン樹脂、 尿素樹脂、 ジァリルフタレート樹脂、 グアナミン樹脂、 アミ ノアルキッド樹脂、 メラミン一尿素共縮合樹脂等の樹脂製粘着剤を挙げることが できる。 これらは、 単独もしくは 2種以上混合して使用してもよく、 必要に応じ て、 重合促進剤、 溶剤、 粘度調整剤等を加えることもできる。 これらの中でも特 に、 アクリル系樹脂は透明性がよく、 耐水性、 耐熱性、 耐光性等に優れ、 粘着力、 さらに、 液晶ディスプレイに用いる場合には屈折率をそれに適合するように調整 しゃすい等から好ましい。
アクリル系粘着剤としては、 アクリル酸およびそのエステル、 メ夕クリル酸お よびそのエステル、 アクリルアミド、 アクリル二トリル等のアクリルモノマーの 単独重合体もしくはこれらの共重合体、 さらに、 前記アクリルモノマーの少なく とも 1種と、 酢酸ビニル、 無水マレイン酸、 スチレン等の芳香族ビニルモノマ一 との共重合体を挙げることができる。 特に、 粘着性を発現するエチレンァクリレ ート、 ブチルァクリレート、 2—ェチルへキシルァクリレート等の主モノマー、 凝集力成分となる酢酸ビエル、 アクリル二トリル、 アクリルアミド、 スチレン、 メタクリレート、 メチルァクリレート等のモノマー、 さらに粘着力向上や、 架橋 化起点を付与するメ夕クリル酸、 アクリル酸、 ィタコン酸、 ヒドロキシェチルメ 夕クリレート、 ヒドロキシプロピルメタクリレ一ト、 ジメチルアミノエチルメタ クリレート、 ジメチルァミノメチルメタクリレート、 アクリルアミ ド、 メチ口一 ルアクリルアミド、 グリシジルメ夕クリレート、 無水マレイン酸等の官能基含有 モノマーからなる共重合体で、 Tg (ガラス転移点) がー 6 0〜一 1 5°Cの範囲 にあり、 重量平均分子量が 20万〜 1 30万の範囲にあるものが好ましい。
T gがー 60 より低い結着層や重量平均分子量が 20万未満の粘着剤からな る結着層では柔らかすぎて、 一度付着したフイラ一が加圧媒体の衝撃力により剥 がされ、 フイラ一抜け等の欠陥が発生し易くなる。 また、 一度剥がされたフイラ 一には粘着剤が付着しており、 そのフィラーが再度フイラ一層上に付着してしま うこともある。 さらに、 柔らかすぎる結着層では、 加圧媒体の衝撃によりフイラ 一が結着層の表面で縦方向に回転することによりフィラーの粘着剤が付着した部 位がフイラ一層の表面に現れ、 そこに他のフィラーが付着したり、 加圧媒体の衝 撃力や毛細管現象により結着剤がフィラーの間から染みあがり、 そこに他のフィ ラーが付着することがある。 このような現象により、 柔らかい結着層ではフイラ —層が複層になり易く光透過性が低くなるので好ましくない。 さらに、 柔らかい 結着層ではフイラ一層の耐スクラッチ性等の機械的強度も低下する。 一方、 Tg がー 1 5 より高い結着層や、重量平均分子量が 1 30万より大きい結着層では、 フィラーの結着層への付着力が低下し、 余剰フイラ一を洗浄する工程等において フィラーの脱落が発生しやすくなるので好ましくない。
また、 本発明に用いる粘着剤の粘度は、 粘着剤を酢酸ェチルに全固形分濃度が 2 5 %になるように溶解し、 液温 2 3°Cにおける粘度を B型粘度計により測定し た値で、 500〜20000 c p sの範囲が好ましく、 より好ましくは 1 500 〜5000 c p sの範囲が良い。 粘度が低過ぎるとフイラ一が過度に埋め込まれ やすくなり、粘度が高過ぎると埋め込まれ難い。 さらに、 この粘着剤の保持力 ( J I S Z 0237 1 1) は 0. 5 mm以下が好ましい。 この保持力が 0. 5 mmより大きいと、 柔らかいため前述したようにフィラー層が複層になり易い。 また、 この結着剤の粘着力 (J I S Z 02 3 7 8) は、 1 00 gZ2 5m m以上になるよう配合されると実用上好ましい。 粘着力が 1 0 0 gZ2 5mm未 満ではフイラ一の脱離が起きたり、 耐環境性が悪くなつたりする。 特に、 高温高 湿下では、 結着層が透明基体から剥離したりするおそれがある。
さらに、 本発明に用いる粘着剤には、 硬化剤として、 例えば金属キレート系、 イソシァネート系、 エポキシ系の架橋剤を必要に応じて 1種あるいは 2種以上混 合して用いることができ、 また、 この粘着剤には光重合性モノマ一、 オリゴマー、 ポリマーおよび光重合開始剤を加えた U V硬化性の粘着剤を用いても良い。 これ により、 粘着剤の特性を適宜調整することができ、 フィラーを埋め込む工程の前 にこの結着層を適度に硬化させる場合、 硬化後のゲル分率は 4 0 %以上になるよ う配合されると好ましく、 より好ましくは 6 0 %以上が好適である。 ゲル分率が 4 0 %未満では、 高温高湿下では結着層が軟化し、 フィラーが結着層中に沈み、 光学特性が変化してしまう恐れがある。
( 3 ) フィラー
本発明のフイラ一としては、 シリカ、 ガラス、 アルミナ等の無機フィラーや、 アクリル榭脂、 ポリスチレン樹脂、 ポリエチレン樹脂、 エポキシ榭脂、 シリコー ン榭脂、 ポリフッ化ビニリデン、 テフロン、 ジビニルベンゼン、 フエノール樹脂、 ウレタン樹脂、 酢酸セルロース、 ナイロン、 セルロース、 ベンゾグアナミン、 メ ラミン等の有機フィラ一等を使用することができるが、 光透過性および結着層と の密着性の観点から有機フィラーが好ましく、 さらに耐光性の点でァクリルビー ズ、 シリコーンビーズが特に好ましい。 さらに、 フイラ一層をより均一かつ高密 度に形成するには、 流動性の高いメチルシリコーン等のシリコーンビーズを用い ることが最も好ましい。 シリカやガラス等の無機フィラ一では結着層との密着性 が悪いため、 フィラー埋め込み工程や洗浄工程でフイラ一が脱落しフィラー抜け が発生し易いため好ましくない。
フイラ一は、 前述したように球状であることが好ましく、 球状フイラ一は、 埋 め込み深さのばらつきが生じ難いというメリットもある。 その真円度は、 8 0 % 以上、 より好ましくは 8 5 %、 さらに好ましくは 9 0 %以上が良い。 なお、 本発 明における 「真円度」 とは、 下記一般式で定義される。
真円度 (%) = ( 4 π A/ B 2) X 1 0 0
A: フィラ一粒子の投影面積
B : フィラー粒子の周囲長 この真円度は、例えばフィラー粒子を透過型電子顕微鏡で撮影して投影像を得、 それを画像解析装置 (例えば日本アビォニクス社製、 商品名: EXECL I I ) を用いて画像解析することにより得た上記 A、 Bから算出することができる。 上 式から明らかなように、 真円度は粒子が真球に近づけば 100 %に近くなり、 不 定形の場合はそれより小さな値となる。 本明細書では、 10個のフィラーについ て測定した平均値を真円度とした。
また、 本発明のフィラーの体積平均粒子径は、 1〜 50 xm程度のものを使用 することができるが、 液晶ディスプレイ等に用いる場合は 2〜 1 5 xmが好適で あり、 2〜 1 0 mであればより好ましい。 この場合、 フィラーの粒子径が 2 mよりも小さい場合には拡散された光どうしが干渉して虹色を呈するため液晶セ ルのコントラストが低下してしまうので好ましくない。 一方、 1 5 xmよりも大 きいフィラーの場合は、液晶画像のエツジ部がぼやけて視認性が低下することと、 フイラ一部とフィラーの間隙、 すなわち、 光拡散性の高い部位と低い部位が目視 で見えるようになり、 均一性が低下するので好ましくない。
さらに、 フィラ一層の平面方向における充填密度を高く均一にするとともに、 フィラーの結着層への埋め込み深さをも均一にするためには、 加圧媒体の衝撃力 をフィラーに均一に伝える必要があり、そのためには、 フィラーの粒径分布は 0. 8〜 1. 0の範囲が好ましく、 より好ましくは 0. 9〜1. 0であることが望ま しい。 また、 高い光透過性を得るためには、 フイラ一の屈折率は、 1. 42〜1. 55の範囲にあることが好ましく、 さらに、 基材および結着層の屈折率とフイラ —の屈折率の差が 0. 30以下であることが好ましく、 より好ましくは、 0. 1 5以下がよい。
(4) 他の層
本発明を構成する基体と結着層との間には他の層として、 光の屈折率や透過性 を調整するための調整層、 または基体と結着層とを強固に接着させるための接着 層等を設けてもよい。 B . 製造方法
次に、 本発明のフィラーレンズの製造方法の具体例を示す。
「結着層の積層工程」
上記基体の片面または両面に、 直接あるいは他の層を介して、 上記粘着剤を、 エアドクターコーティング、 ブレードコーティング、 ナイフコ一ティング、 リバ 一スコ一ティング、 トランスファロールコ一ティング、 グラビアロールコ一ティ ング、 キスコーティング、 キャス卜コーティング、 スプレーコーティング、 スロ ットオリフィスコーティング、 カレンダ一コ一ティング、 電着コーティング、 デ ィップコ一ティング、 ダイコーティング等のコ一ティングゃフレキソ印刷等の凸 版印刷、 ダイレクトグラビア印刷、 オフセットグラビア印刷等の凹版印刷、 オフ セット印刷等の平版印刷、 スクリーン印刷等の孔版印刷等の塗布または印刷によ り、結着層として積層させる。特に、 口一ルコ一夕一を使用するコーティングが、 均一な層厚が得られることから好ましい。 結着層の厚さは、 埋め込むフイラ一の 平均粒子径の 0 . 5〜2倍、 より好ましくは 0 . 5〜1 . 5倍が好ましい。
また、 結着層に硬化剤成分が含まれる場合には、 フィラーの結着層への埋め込 みを調整するため、 剥離 P E Tフィルム等で結着層を保護した状態とし、 2 0 ~ 8 O t:程度の温度で 3〜 1 4日程度熟成させ、 粘着剤と硬化剤とを反応させてか ら次工程に移ってもよい。
「結着層へのフィラーの付着工程」
次いで、 基体上の結着層表面にフイラ一を付着させる。 その方法としては、 例 えば、容器内に充填したフィラ一を振動もしくは流動化エア一により流動化させ、 そのフィラ一中に基体をくぐらせたり、 エアースプレーによりフィラーを結着層 に吹き付けたりする方法が挙げられる。 この時、 有機フイラ一は無機フイラ一よ りも流動性が高いため、 エア一スプレーの際の空気との混合や、 容器内で流動化 状態にさせ易く、 結着層の表面に均一に付着させることができて好適である。 結 着層表面にフィラーを付着させることにより、 フイラ一の抜け等の欠点を少なく するとともに、 後の加圧媒体によりフィラ一を結着層に埋め込む工程において加 圧媒体が結着層に付着することを防止することもできる。 したがって、 この工程 ではフィラーが結着層表面に、結着層の粘着力によって単に付着していればよい。
「結着層へのフィラーの埋め込み工程」
結着層の表面に付着させたフイラ一を、 加圧媒体の衝撃力により結着層に埋め 込む。 その方法としては、 適当な容器に加圧媒体を投入し、 容器ごと加圧媒体を 振動させ、 この中に、 フィラーが結着層表面に付着した状態の基体を投入するか、 あるいはくぐらせることにより、 フィラーに衝撃力を与える。 すると、 フィラー は加圧媒体により打撃され、 結着層の表層に埋め込まれる。 加圧媒体は微小面積 でフィラーに均一な打撃を与えることができるので、 フィラーを均一な埋め込み 深さで結着層に埋め込むことができる特徴がある。 この時、 加圧媒体 1 0 0重量 部に対して 0 . 5〜 2 . 0重量部程度のフィラーを予め混合した混合加圧媒体を 用いると、 前工程で結着層の表面に付着したフイラ一の間隙に他のフィラーを加 圧媒体の衝撃力により均一な深さに押し込むことが可能なため、 フィラーの充填 密度をより高く均一にすることができるので好適である。このような方法により、 フイラ一は、 埋め込み深さが均一な状態で結着層の一部から突出し、 かつ全体に 高密度に埋め込まれ、 結着層中において積層せず単層の状態のフィラー層として 形成される。
なお、 フィラーを埋め込むために与える外力としては、 振動の他に、 回転、 落 下等を採用してもよい。 回転の場合には、 回転容器や、 内側に撹拌羽を有する容 器等が用いられる。 また、 外力として落下を採用する場合には、 Vプレンダー、 タンブラ一等が用いられる。
ここで、 フィラーの埋め込みに用いる加圧媒体を例示する。 加圧媒体は、 上記 のように振動等によりフィラーを打撃して結着層に埋め込む作用をなす粒状物で あり、 鉄、 炭素鋼、 合金鋼、 銅および銅合金、 アルミニウムおよびアルミニウム 合金、 その他の各種金属、 合金からなるもの、 あるいは、 A 1 20 3、 S i 02、 T i〇2、 Z r〇2 、 S i C等のセラミックスからなるもの、 さらには、 ガラス、 硬質プラスチックス等からなるものが用いられる。 また、 十分な打撃力を粉体に 与えることができるのであれば、 硬質のゴムを用いてもよい。 いずれにしろ、 カロ 圧媒体の材質はフイラ一の材質等に応じて適宜選択される。 また、 その形状は、 フィラーに対する加圧力が均一になるように真球に近いものが好ましく、 かつ全 体の粒子分布がなるべく狭い方が好ましい。 加圧媒体の粒子径としては、 フイラ
—の材質ゃフイラ一の埋め込み深さに応じて適宜選択されるが、 直径が概ね 0 . 3〜 2 . 0 mm程度のものが好適である。
また、 フィラーの埋め込み深さは、 結着層からのフィラーの剥離が抑えられ、 かつ結着層の表面から突出して確実にレンズ効果が発現され得るために、 結着層 に、 直径の 1 0〜 9 0 %、 好ましくは 3 0〜 9 0 %、 より好ましくは 4 0〜 8 0 %埋め込まれていることが望ましく、 レンズの光学特性に応じて、 調整すること が可能である。
「余剰フィラーの除去工程」
結着層へのフィラーの埋め込み工程の後は、 余剰フイラ一を除去する。 余剰フ イラ一とは、 例えば、 結着層へ不完全に埋め込まれていたり、 埋め込まれたフィ ラーに静電気力やファンデルワールス力等の粒子間力によって付着しているだけ のフイラ一等を言い、 このような余剰フイラ一は、 水洗浄やエアーブロー等によ る流体圧をフイラ一層に与えることにより除去することができる。 この時、 フィ ラーの粒子径が比較的小さい場合は、 イオン交換水等を用いて湿式洗浄すること が好ましい。 さらに、 フイラ一の粒子径が小さい場合には、 流体圧による除去の みでは不完全となり易いので、 界面活性剤等が添加されたイオン交換水等の水溶 液を用いて超音波洗浄等を行った後、 イオン交換水等で十分にすすぎ、 乾燥させ ることが好ましい。
さらに、 前工程またはこの工程の後に熱や湿気を与え、 積層体の結着層を軟化 させる工程を行うと、 フイラ一と結着層とが馴染み、 特に全光線透過率および信 頼性が向上するので必要に応じて行うこともできる。 軟化させる工程は、 熱のみ でも、 熱と湿気とを併用しても良い。 また、 本発明者らは、 フィラーレンズの光学的特性をより向上させるために、 フィラーの形態およびフイラ一の周辺環境について鋭意研究を重ねた結果、 より 優れた光学特性を発揮する本発明のフィラ一レンズの好適な実施形態を完成する に至った。 以下、 本発明の第 2実施形態から第 6実施形態のフイラ一レンズに好 適な構成材料および製造方法について説明する。 なお、 第 1実施形態と同様な組 成、 構成、 および製造方法は省略し、 各実施形態に特有な点についてのみを記載 する。
2 . 第 2実施形態
本発明の第 2実施形態のフィラーレンズは、 均一な光拡散性と光透過性とを十 分に得るために、 体積平均粒子径が 2〜 1 5 x mである有機フイラ一によりフィ ラー層を形成するものである。 よって、 本発明の第 2実施形態のフィラーレンズ は、 基体と、 この基体上に、 直接または他の層を介して積層された結着層と、 こ の結着層の表層に、 当該結着層の表面から一部が突出する状態で埋め込まれた多 数のフィラーからなるフィラ一層とを備えるフィラーレンズであって、 このフィ ラー層は、 体積平均粒子径が 2〜 1 5 ^z mの有機フイラ一からなることを特徴と している。
この有機フィラーの体積平均粒子径は 2〜 1 5 m、 好ましくは 2〜 1 0 z m がよい。 有機フィラーの体積平均粒子径が 2 x mよりも小さい場合には、 拡散さ れた光どうしが干渉して虹色を呈するため液晶セルのコントラス卜が低下する。 一方、 1 5 mよりも大きい有機フィラーの場合は、 木目の荒い拡散光となり、 液晶画像のエッジ部がぼやけて視認性が低下する。 さらに、 体積平均粒子径が 1 5 mより大きい有機フィラ一を用いた場合には、 フィラーレンズの平面におけ るフイラ一の面積と、 フィラーの間隙の面積、 すなわち、 光を拡散する部位と光 を拡散しない部位の面積が共に大きくなり、 それらが目視でも確認できるように なり、 そのため液晶画像に輝度ムラが発生する。
また、 有機フイラ一の粒子径分布が狭いほど、 本発明の製造方法における加圧 媒体からの衝撃力を均一に有機フィラーに伝えることができるので、 有機フィラ 一の結着層へ埋め込まれる深さが均一になり、 また、 同様の理由により、 面方向 の有機フイラ一の充填密度も高く均一にすることができる。 よって、 加圧媒体か らの衝撃力を均一に有機フィラ一に伝えるためには有機フィラーの粒子径分布は 0 . 8〜 1 . 0が好ましく、 より好ましくは 0 . 9〜 1 . 0であることが望まし い。
なお、 本発明では、 「体積平均粒子径」 は次のように定義され、 「粒子径分布」 は下記式で定義される。
粒子径分布-個数平均粒子径 Z体積平均粒子径
•個数平均粒子径=フィラーレンズの顕微鏡写真から無作為に抽出した 1 0 0 個の有機フイラ一の直径を測定した平均値。
,体積平均粒子径=先ず、 フィラーレンズの顕微鏡写真から、 無作為に抽出し た 1 0 0個の有機フイラ一の直径を測定する。得られた有機フイラ一の直径から、 有機フィラーを真球とみなし個々の有機フィラーの体積を求める。 次に個々の有 機フイラ一の体積を累積して 1 0 0個の有機フィラーの合計体積を算出する。 そ の後、 1 0 0個の有機フィラーの内で最小体積の有機フィラーから最大体積の有 機フイラ一まで体積の大きさの順に体積を累積していき、 その累積体積が上記の 合計体積の 5 0 %となった粒子の直径。
このとき、 有機フイラ一の粒子が真球でない場合には、 その最長径を有機フィ ラーの直径とする。
なお、 本明細書では、 フィラーレンズをキーエンス社製のデジタルマイクロス コープ (商品名: V H— 6 3 0 0 ) で撮影した透過光映像の写真を用いて測定し た。
3 . 第 3実施形態
本発明の第 3実施形態のフィラーレンズは、 より均一な光拡散性と光透過性と を十分に得るために、 フィラ一層の面方向におけるフイラ一の粒子間距離の標準 偏差を 0 . 4以下とするものである。 よって、 本発明の第 3実施形態のフィラー レンズは、 基体と、 この基体上に、 直接または他の層を介して積層された結着層 と、 この結着層の表層に、 当該結着層の表面から一部が突出する状態で埋め込ま れた多数のフィラーからなるフィラー層とを備えるフィラーレンズであって、 こ のフイラ一層の面方向におけるフィラーの粒子間距離の標準偏差が 0 . 4以下で あることを特徴としている。 この第 3実施形態によれば、 フイラ一層における平面方向のフイラ一の充填密 度が高く均一であるため、 従来のフィラ一レンズよりも高く均一な光の透過性お よび拡散性能を発揮することができる。 フィラーの粒子間距離の標準偏差が 0 . 4よりも大きいものでは、 光透過性が不均一となり、 実用上十分な光拡散性能を 得ることができない。
なお、 本発明での 「フイラ一の粒子間距離」 は、 次の方法により測定した値で ある。 まず、 フイラ一レンズを平面方向から垂直に撮影した写真を用いて、 該写 真から無作為に基点となるフィラーを抽出する。 図 4 ( a ) は、 フイラ一レンズ を平面方向から垂直に撮影した写真の模式図であり、 この図においてはフイラ一 Yが 「フイラ一の粒子間距離」 を測定するための基点となるフィラーである。 そ して、 この基点となるフィラ一Yの中心から全ての隣接する他のフィラーの中心 へ直線を引き、 その直線の長さを測定する。 次に、 この直線の長さをフイラ一の 体積平均粒子径 (ここで体積平均粒子径を Xとする) で割ったものをフイラ一の 粒子間距離とする。
ただし、 この時、 該直線が他のフイラ一と接触するものや、 フイラ一の体積平 均粒子径 Xの半分以下の大きさのフィラーや、 重複しているフイラ一は、 隣接す る他のフイラ一とはしない。 また、 フイラ一の体積平均粒子径 Xの半分以下の大 きさのフィラーおよび重複しているフィラーは、基点となるフィラーとはしない。 すなわち、 図 4 ( a ) では、 フイラ一 Y l、 フイラ一 Υ 2、 フィラー Υ 4および フイラ一 Υ 5が隣接する他のフイラ一である。 フイラ一 Υ 3は、 基点となるフィ ラ一 Υの中心からの直線 X 3がフィラ一 Υ 2に接触するため、 隣接する他のフィ ラーではない。 また、 フイラ一 Υ 6および Υ 7は、 フィラーの体積平均粒子径 X の半分以下の大きさであるから、 隣接する他のフィラーではない。 さらに、 フィ ラー Υ 8、 Υ 9および Υ 1 0は、 フイラ一が重複しているため隣接する他のフィ ラーではない。
したがって、 基点となるフイラ一 Υにおける 「フイラ一の粒子間距離」 は、 基 点となるフィラー Υの中心からフイラ一 Υ 1、 フイラ一 Υ 2、 フイラ一 Υ 4およ びフィラー Υ 5の各々の中心までの距離から求めることができ、 直線 X 1の長さ Ζ Χ、 直線 χ 2の長さ Ζ Χ、 直線 χ 4の長さ Ζ Χ、 直線 χ 5の長さ Ζ Χ力 基点 となるフィラー Yにおける 「フイラ一の粒子間距離」 である。
さらに、 「フイラ一の粒子間距離の標準偏差」 は、 上記測定方法により 3 0個 の基点となるフィラーについて 「フイラ一の粒子間距離」 を測定し、 これらの値 から標準偏差を計算して求める。 ただし、 3 0個の基点となるフィラーの 「フィ ラーの粒子間距離」 を測定する場合、 一度基点となるフィラーおよび隣接する他 のフイラ一として特定し 「フイラ一の粒子間距離」 を求めたフイラ一は、 再度基 点となるフィラ一および隣接する他のフィラーとして特定してはならない。また、 図 4 ( b ) のように球形ではないフィラーの場合は、 フイラ一 Y 1 1の最長径 X 1 1の中間点 Pをそのフィラーの中心とする。 なお、 本明細書では、 上記フイラ 一の粒子間距離の測定装置として、 キーエンス社製のデジタルマイクロスコープ
(商品名: V H— 6 3 0 0 ) の透過光映像写真を用いて、 一画面に 5 0〜 1 0 0 個のフィラーが写る倍率で測定したものを用いた。
4 . 第 4実施形態
本発明の第 4実施形態のフィラーレンズは、 光の拡散性および均一性をさらに 向上させるために、 結着層からのフィラーの突出割合を 5 0 %以上とし、 結着層 のゲル分率を 6 0 %以上としたものである。 よって、 本発明の第 4実施形態のフ イラ一レンズは、 基体と、 この基体上に、 直接または他の層を介して積層された 結着層と、 この結着層の表層に、 当該結着層の表面から一部が突出する状態で埋 め込まれた多数のフィラーからなるフィラー層とを備えるフィラーレンズであつ て、 この結着層は、 ゲル分率が 6 0 %以上であり、 このフイラ一の突出の割合が 5 0 %以上であることを特徴としている。
この第 4実施形態によれば、特定の製造方法で製造することにより、 図 5 ( a ) に示すように、 フィラー 3が面方向で高密度になるように埋め込まれ、 かつ、 フ ィラー 3の突出の割合が 5 0 %以上であるフィラ一層 3 Aが形成されており、 十 分な光の拡散性能が得られ、 反射型液晶ディスプレーに用いた際に、 アルミニゥ ムの地色を抑えて優れたコントラストを奏することができる。
そのため、 第 4実施形態における結着層には、 架橋点を有する樹脂と硬化剤を 含有することが必要である。また、 この結着層表面にフィラ一を埋め込む際には、 結着層を十分に架橋させて、 ゲル分率が 6 0 %以上とすることが好ましく、 より 好ましくは 7 0 %以上、 最も好ましくは 8 0 %以上がよい。 ゲル分率が 6 0 %未 満の結着層では、 柔らかいため、 フイラ一が深く埋め込まれるのでフイラ一によ る光拡散機能が十分に発揮されなくなる。 一方、 ゲル分率が 6 0 %未満の結着層 では、 耐環境性 (信頼性) が悪く、 特に、 高温高湿環境下では、 結着層が軟化し、 フィラーが結着層中に深く沈み込むため、 光拡散性が低下する。
なお、 本発明における 「ゲル分率」 は、 次のように測定することができる。
①任意の大きさのフィラーレンズの重量 Aを測定する。
②フィラーレンズの基体を侵さないアルコール等の溶剤(例えばメタノ一ル等) でフイラ一レンズの結着層を膨潤させ、 その後結着層を基体から分離する。 (分 離する方法としては、 例えばヘラ等で搔き取ればよい。)
③結着層が分離された基体の重量 Bを測定し、 A— Bを計算して結着層の重量 Cを得る。
④基体から分離された結着層をアセトン中で常温常湿環境下 2 4時間浸漬させ た後、 超音波分散機で撹拌する。 撹拌後のアセトン中には結着層のゲル分と結着 層中に含有されていたフィラーが混在している状態となる。
⑤アセトン中の結着層のゲル分とフイラ一とを分離するため、 ゲル分とフイラ —が分離するような比重の液体 (例えばクロ口ホルム等) をアセトン中に加え、 フイラ一を沈殿させ、 一方ゲル分を浮遊させる。
⑥次に、 アセトン中に浮遊されたゲル分を濾過、 乾燥してその重量 Dを測定す る。 一方、 沈殿されたアセトン中のフイラ一も濾過、 乾燥してその重量 Eを測定 する。
⑦上記得られた各重量から下記式により本発明でいう 「ゲル分率」 を得ること ができる。
ゲル分率 (%) = D / ( C - E ) X 1 0 0
結着層からのフィラーの突出の割合は、 結着層からのフィラーの剥離が抑えら れ、 かつ、 確実に光拡散性が発現され得るために 5 0 %以上であることが必要で ある。 また、 本発明でいうフイラ一の突出の割合は、 5 0〜 9 0 %が好ましく、 より好ましくは 5 5〜 8 0 %、 最も好ましくは 6 0〜 8 0 %である。 フイラ一の 光拡散性能は、 フィラーの突出の割合に大きく影響を受け、 5 0 %未満では著し く拡散性能が低下する。 一方、 突出割合が 9 0 %を超えると、 余剰フィラーを除 去する工程等でフィラーが結着層から脱離し易くなるため好ましくない。
本発明における 「フイラ一の突出の割合」 とは、 フイラ一層の断面写真を解析 することにより得ることができ、 任意の 3 0個のフィラーの突出の割合の平均値 である。
すなわち、 図 5 ( b ) にフイラ一 3が基体 1上の積層された結着層 2から突出 するように埋め込まれた断面写真の模式図を示した。 フイラ一の突出の割合を得 るには、 図 5 ( b ) において、 フイラ一 3と結着層 2との界面 aと bに直線をひ き、 フィラー 3の中心線 cと上記直線との交点 dを得る。 次にフィラー 3の接線 から交点 dまでの長さ Yを求めて、 フィラ一 3の直径 Xから下記式により 1個の フィラーの突出の割合を求めることができる。
1個のフィラーの突出の割合 (%) = Y / X X 1 0 0
このようにして 3 0個のフィラーの突出の割合を求めた後、 その平均値から本 発明でいう 「フイラ一の突出の割合」 を求めることができる。 次に、 上記構成の第 4実施形態のフィラーレンズを製造するにあたって好適な 製造方法について説明する。
①基体上に、 直接または他の層を介して結着層を積層する工程、
②結着層を硬化させゲル分率を 6 0 %以上にする工程、
③フィラーを加圧媒体によってフィラーの突出の割合が 5 0 %以上となるよう に結着層に埋め込む工程、
④前記工程で得た積層体に付着した余剰フィラーを除去する工程
を具備していることを特徴としている。 この時、 工程②の後に、 フイラ一を結着 層上に付着させる工程を有することが好ましく、 さらに、 工程④の後に、 熱等を 与える乾燥工程を加えることもできる。 熱や湿度を加えることにより、 結着層と フイラ一とが馴染み、 光の透過性が向上するので好適である。 また、 この時、 必 要に応じて湿度を加えることもできる。 以下、 第 4実施形態に特有な工程につい て説明する。 「結着層の硬化工程」
前記結着層の表面に剥離 P E Tフィルム等の保護フィルムを貼り付けた後に、 2 0〜8 0 °C程度の環境下に 3〜 1 4日程度放置し結着層を硬化させ、 ゲル分率 が 6 0 %以上の結着層を得る。 このとき、 結着剤の硬化系として U V硬化系を用 いた場合は、 U V照射により硬化させることもできる。
「結着層へのフィラーの埋め込み工程」
フィラーを結着層に埋め込む方法は、 前記第 1実施形態とほぼ同様であるが、 第 4実施形態においては、 フィラーの突出の割合を 5 0 %以上としなければなら ない。
5 . 第 5実施形態
本発明の第 5実施形態のフィラーレンズは、光透過性をより向上させるために、 結着層の表面とフイラ一との境界部、 すなわち、 フイラ一層におけるフイラ一の 周縁部に結着層の盛り上がり部分を設けたものである。 よって、 本発明の第 5実 施形態のフィラーレンズは、 基体と、 この基体上に、 直接または他の層を介して 積層された結着層と、 この結着層の表層に、 当該結着層の表面から一部が突出す る状態で埋め込まれた多数のフィラーからなるフィラー層とを備えるフィラ一レ ンズであって、 このフイラ一の周縁部に、 結着層の盛り上がり部分を設けたこと を特徴としている。
この第 5実施形態によれば、特定の製造方法で製造することにより、 図 6 ( a ) および (b ) に示すように、 フイラ一 3の周縁の結着層 2に盛り上がり部分 2 a を有し、 フィラーレンズの基体側からの入射光に対する光透過性を格段に向上さ せることができる。 次に、 上記構成の第 5実施形態のフィラーレンズを製造するにあたって好適な 製造方法について説明する。
①基体上に、 直接または他の層を介して結着層を積層する工程、
②フィラ一を加圧媒体によって結着層に埋め込む工程、 ③前記工程で得た積層体に付着した余剰フイラ一を除去する工程、
④前記積層体の結着層を軟化させる工程
を具備していることを特徴としている。 この時、 工程①の後に、 フイラ一を結着 層上に付着させる工程を有することが好ましい。 また、 工程③と④の順番は入れ 替えることも可能である。 そして、 積層体の結着層を軟化させる工程を行うこと によって、 フィラーの周縁部に結着層の盛り上がり部分を設けることができる。 さらに、 本発明の第 5実施形態のフィラーレンズを製造するにあたっては、 上 記フイラ—層の結着層を軟化させる工程を行うこと以外に、 結着層を形成する榭 脂として分子量が小さいものや、 架橋密度の低いものを選択することによつても フィラーの周縁部に結着層の盛り上がり部分を設けることができるが、 このよう な結着層を用いた場合はフイラ一層の耐スクラッチ性等の機械的強度が低下する と同時に、 高温高湿環境下に放置した場合等に粘着層のハジキゃ剥がれが発生し 易くなる。 以下、 第 5実施形態に特有な工程について説明する。
「積層体の結着層の軟化工程」
積層体の結着層を軟化させる。 軟化させる手段としては、 結着層に熱または湿 気を与える方法が挙げられる。 結着層を軟化させるためには、 結着層を構成する 粘着剤や硬化剤の種類にもよるが、 例えば、 温度: 3 0〜8 0 °C、 湿度: 6 0〜 9 5 % R Hに設定した恒温恒湿槽内に積層体を形成した基体を 6時間〜 2週間程 度放置することにより得られる。 もちろん、 熱のみにより軟化させても良いし、 熱と湿気とを併用しても良い。
さらに、 3 0〜8 0 °Cに設定された環境下、 例えば熱風や赤外線ヒー夕一等に 積層体を形成した基体をさらしたり、 電子線等を照射することによつても結着層 を軟化させることができる。 結着層を軟化させることにより、 フィラー周辺部に 結着樹脂による盛り上がり部分が形成され、 特に、 フィルム面からの光透過性が 格段に向上する。 6 . 第 6実施形態
本発明の第 6実施形態のフイラ一レンズは、 光学特性の信頼性、 すなわち要求 される特定の光学特性を安定に維持するため、 硬化制限された硬化剤を結着層に 含有し、 これを適宜硬化させたものである。 よって、 本発明の第 6実施形態のフ イラ一レンズは、 基体と、 この基体上に、 直接または他の層を介して積層された 結着層と、 この結着層の表層に、 当該結着層の表面から一部が突出する状態で埋 め込まれた多数のフィラーからなるフィラ一層とを備えるフィラーレンズであつ て、 この結着層は、 硬化制限された硬化剤により硬化されていることを特徴とし ている。
この第 6実施形態によれば、 結着層の形成の際の塗工液の硬化、 またはこの層 形成からフィラーの埋め込みまでの間の結着層の硬化を防ぎ、 フィラーの埋め込 み度を容易に調整することができ、 さらに、 フイラ一を埋め込んだ後に結着層を 硬化させることにより、 高温高湿の条件下にあっても粘着剤の熱流動が生じるこ となく、 フィラーの埋め込み度、 すなわち光学特性を安定に維持することが可能 となる。
また、 第 6実施形態においては、 基体としてプラスチックフィルムを用いる場 合には、 硬化温度を高く設定することができないため、 特に、 P E T、 T A Cを 使用する場合には、 1 0 0 °C以下で硬化できる樹脂を結着層に使用することが望 ましい。
さらに、 この結着層には、 必須成分として硬化制限された硬化剤を用いる必要 がある。 この硬化制限された硬化剤としては、 硬化に寄与する反応基が室温 (常 温〜 6 0 °C程度) では硬化反応を生じないようにブロック化された硬化剤または カプセル化された硬化剤等が挙げられ、 例えば、 ある特定温度以上の熱を加える ことにより始めて硬化剤として作用するものを言う。 具体的には、 例えばイソシ ァネート系硬化剤の場合、 イソシァネート基をアルコール類、 フエノール類、 ラ ク夕ム類、ォキシム類等の適当な活性水素化合物(以後、ブロック剤と略称する。) でブロック (マスク) したブロックイソシァネート化合物が挙げられる。 このブ ロックイソシァネート化合物は、 攪拌器、 温度計、 還流冷却器を備えた反応器に ポリイソシァネートを仕込み、 これを攪拌しながらブロック剤を加え、 7 0〜8 0 °cに加熱してブロック化反応を行うことにより調製することができる。
ブロック剤としては、 エチレングリコ一ルモノブチルェ一テル、 ジエチレング リコールモノブチルエーテル、 トリエチレングリコールモノブチルエーテル、 テ トラエチレングリコールモノブチルエーテル、 ペン夕エチレングリコールモノブ チルエーテル、 エチレングリコールモノへキシルエーテル、 ジエチレングリコー ルモノへキシルェ一テル、 エチレングリコールモノ— 2—ェチルへキシルエーテ ル、 ジエチレングリコールモノ— 2—ェチルェ一テル、 プロピレングリコールモ ノメチルェ一テル、 ジプロピレングリコールモノメチルエーテル、 ァリルアルコ ール、 2—ヒドロキシェチルァクリレート、 2—ヒドロキシプロピルァクリレー ト、 2—ヒドロキシェチルメ夕クリレ一ト等のヒドロキシァクリレート類化合物 およびァセト酢酸ァリル、 マロン酸ジァリル等の二重結合を有する活性メチレン 化合物等が挙げられる。 これらの中でも、 硬化時に塗膜の発砲等の問題を防ぐた めに、 硬化温度以上の沸点を有するものが望ましい。
また、プロックイソシァネート化合物を形成するィソシァネートとしては、 2, 4 一トリレンジイソシァネート、 2, 6 —トリレンジイソシァネート、 2, 2 ' —ジフエニルメタンジイソシァネート、 2 , 4 ' —ジフエニルメタンジイソシァ ネート、 キシレンジイソシァネート、 フエ二レンジイソシァネート、 へキサメチ レンジイソシァネート、 イソホロンジイソシァネート、 水素化トリレンジイソシ ァネート、 水素化ジフエニルメタンジイソシァネート、 水素化キシレンジイソシ ァネート、 モノメチルへキサメチレンジイソシァネート、 トリメチルへキサメチ レンジイソシァネート、 リジンイソシァネート、 ドデカメチレンジイソシァネ一 ト等のジイソシァネート類や、 これらジイソシァネート類のウレタン化物、 ビュ レット化物、 イソシァヌレート化 (トリマー化) 物、 カルポジイミド化物および 重合物を挙げることができ、 これらの化合物を単独で、 または 2種以上混合して 用いることができる。
本実施形態において、 硬化する前の結着層の粘着力 (J I S Z 0 2 3 7によ る 1 8 0度引き剥がし粘着力) が 5 0〜 3 0 0 0 g Z 2 5 mm、 硬化後の粘着力 が 3 0 g Z 2 5 mm 以下になるように配合されていることが実用上好ましい。 硬化前の粘着力が 5 0 g / 2 5 mm未満の場合は、 フィラーが埋め込み難くなつ たり、 埋め込んだフィラーが脱離したりする。 逆に、 粘着力が 3 0 0 O g Z 2 5 mmを越えると、 フイラ一が過度に埋め込まれたり、 形成されるフイラ一層の表 面に傷や圧痕が付き易くなる。 また、 硬化後の粘着力が 3 0 g Z 2 5 mmを越え ると、 フイラ一層表面に傷や圧痕が付き易くなつたり、 耐環境性が悪く、 特に、 高温高湿下において光学特性が変化するという問題を生ずるおそれがある。 次に、 上記構成の第 6実施形態のフィラーレンズを製造するにあたって好適な 製造方法について説明する。
①基体上に、 直接または他の層を介して結着層を積層する工程
②フィラーを加圧媒体によって結着層に埋め込む工程、
③結着層を硬化する工程
④前記工程で得た積層体に付着した余剰フィラーを除去する工程
を具備することを特徴としている。 また、 ②の工程の前に、 フイラ一を結着層上 に積層する工程を行うことにより、 フイラ一の抜け等外観上の欠点が減少し、 フ イラ一の埋め込みが確実に行えることから好ましい。 以下、 第 6実施形態に特有 な工程について説明する。
「結着層の硬化工程」
フィラーを埋め込んだ結着層の粘着剤を熱硬化する。 上記フイラ一の埋め込み 工程までは、 粘着剤が柔らかく、 フィラーの埋め込み深さをコントロールしゃす いことが好ましいが、 フィラーを埋め込んだ後には、 フイラ一レンズの光学的特 性を維持するために、 高温高湿下においても熱流動を生じないように硬化させる 必要がある。 図面の簡単な説明
図 1は、 本発明のフィラーレンズの一例を模式的に示す断面図である。
図 2は、 従来のフィラーレンズの一例を模式的に示す断面図である。
図 3は、 加圧ローラ一を用いて製造したフィラーレンズの顕微鏡写真である。 ( a ) はフイラ一レンズの平面を 1 0倍の対物レンズで撮影した光学顕微鏡写真 であり、 (b) はフイラ一レンズの断面を 2000倍の倍率で撮影した電子顕微 鏡写真である。
図 4は、 フイラ一の粒子間距離を説明する図である。 (a) はフイラ一レンズ を平面方向から垂直に撮影した写真の模式図であり、 (b) は球形ではないフィ ラーの場合の模式図である。
図 5の (a) は、 本発明の第 4実施形態のフィラーレンズを模式的に示す断面 図であり、 (b) は結着層から突出されたフイラ一の割合を算出する方法を説明 する図である。
図 6の (a) は、 本発明の第 5実施形態のフィラーレンズを模式的に示す断面 図であり、 (b) はフイラ一周縁部の拡大図である。
図 7は、 本発明のフィラーレンズを製造するにあたって好適な加振装置の正面 断面図である。
図 8は、 本発明の試料 1— 1のフィラーレンズの平面を 1000倍 (a)、 2 000倍 (b)、 5000倍 (c) で示す電子顕微鏡写真である。
図 9は、 本発明の試料 1— 1のフィラーレンズの断面を 2000倍 (a)、 5 000倍 (b) で示す電子顕微鏡写真である。
図 1 0は、 本発明の試料 1一 2のフィラーレンズの平面を 1000倍 (a)、 2000倍 (b)、 5000倍 (c) で示す電子顕微鏡写真である。
図 1 1は、 本発明の試料 1— 2のフィラーレンズの断面を 2000倍 (a)、 5000倍 (b) で示す電子顕微鏡写真である。
図 12は、フイラ一レンズに対する入射光の方向を説明するための図であって、 フィルム側からの入射光 (a) とフイラ一側からの入射光 (b) を示す模式図で ある。
図 1 3は、 光散乱性の測定方法を説明するための図であって、 全光線拡散透過 率 (a)、 全光線拡散反射率 (b) の測定方法を示す模式図である。
図 14は、 本発明の試料 2— 1のフィラ一レンズの平面(a)および断面(b) を 1000倍で示す電子顕微鏡写真である。
図 1 5は、 本発明の試料 2— 2のフィラーレンズの平面(a)および断面(b) を 1 000倍で示す電子顕微鏡写真である 図 1 6は、 本発明の試料 2— 3のフィラーレンズの平面(a) および断面(b) を 1 000倍で示す電子顕微鏡写真である。
図 1 7は、 本発明の試料 2— 4のフィラ一レンズの平面 (a) および断面(b) を 1 000倍で示す電子顕微鏡写真である。
図 1 8は、 本発明の試料 2— 5のフィラーレンズの平面(a) および断面(b) を 1 000倍で示す電子顕微鏡写真である。
図 1 9は、 比較用の試料 2— 6のフィラーレンズの平面 (a) および断面(b) を 1 000倍で示す電子顕微鏡写真である。
図 20は、 比較用の試料 2— 7のフィラーレンズの平面(a) および断面(b) を 1 000倍で示す電子顕微鏡写真である。
図 2 1は、 比較用の試料 2— 8のフィラ一レンズの平面 (a) および断面(b) を 1 000倍で示す電子顕微鏡写真である。
図 22は、 本発明の試料 3— 1のフイラ一レンズの平面(a) および断面(b) を 1 000倍で示す電子顕微鏡写真である。
図 23は、 本発明の試料 3— 2のフィラーレンズの平面(a) および断面(b) を 500倍で示す電子顕微鏡写真である。
図 24は、 本発明の試料 3— 3のフィラ一レンズの平面 (a) および断面(b) を 500倍で示す電子顕微鏡写真である。
図 2 5は、 比較用の試料 3— 4のフィラーレンズの平面 (密な領域 (a 1)、 粗な領域 (a 2)) および断面 (b) を 1 000倍で示す電子顕微鏡写真である。 図 2 6は、 比較用の試料 3— 5のフィラ一レンズの平面 (密な領域 (a 1 )、 粗な領域 (a 2)) および断面 (b) を 1 000倍で示す電子顕微鏡写真である。 図 2 7は、 比較用の試料 3— 6のフィラ一レンズの平面を 500倍で示す電子 顕微鏡写真である。
図 28は、 比較用の試料 3— 7のフィラーレンズの平面を 5 0 0倍で示す電子 顕微鏡写真である。
図 2 9は、 比較用の試料 3— 8のフィラ一レンズの平面 (a) および断面 (b) を 1 000倍で示す電子顕微鏡写真である。
図 30は、 本発明の試料 3— 1および比較用の試料 3— 4のフィラーレンズの 平面を 5 0倍の対物レンズで透過光を用いて撮影した光学顕微鏡写真である。 図 3 1は、 本発明の試料 4— 1のフィラーレンズの平面 (a ) および断面(b ) を 2 0 0 0倍で示す電子顕微鏡写真である。
図 3 2は、 本発明の試料 4一 2のフイラ一レンズの平面(a ) および断面(b ) を 2 0 0 0倍で示す電子顕微鏡写真である。
図 3 3は、 比較用の試料 4— 3のフィラ一レンズの平面 (a ) および断面(b ) を 2 0 0 0倍で示す電子顕微鏡写真である。
図 3 4は、 比較用の試料 4— 4のフィラーレンズの平面 (a ) および断面(b ) を 2 0 0 0倍で示す電子顕微鏡写真である。
図 3 5は、 本発明の試料 5— 1のフィラ一レンズの平面 (a ) および断面(b ) を 5 0 0 0倍で示す電子顕微鏡写真である。
図 3 6は、 本発明の試料 5— 2のフィラーレンズの平面(a ) および断面(b ) を 5 0 0 0倍で示す電子顕微鏡写真である。
図 3 7は、 比較用の試料 5— 3のフィラーレンズの平面 (a ) および断面(b ) を 5 0 0 0倍で示す電子顕微鏡写真である。
図 3 8は、 本発明のフィラーレンズを透過型の液晶ディスプレイに適用した例 を模式的に示す断面図である。
図 3 9は、 本発明のフィラーレンズを反射型の液晶ディスプレイに適用した例 を模式的に示す断面図である。
図 4 0は、 本発明のフィラーレンズを光拡散レンズとして液晶ディスプレイに 適用した例を模式的に示す断面図である。 発明を実施するための最良の形態
次に、 本発明をより具体化した実施例を説明する。 なお、 下記において部とは 重量部を示す。
1 . 第 1実施形態
( 1 ) フィラ一レンズの製造
試料 1 一 1
透明基体として、 厚さ 8 0 のトリアセチルセルロース (商品名 :富士夕ッ ク U V D 8 0、 富士写真フィルム社製、 屈折率 1 . 4 9 ) を用いた。 このフィル ムの片面上に、 アクリル系粘着剤(商品名 : S Kダイン 8 1 1 L、総研化学社製、 全固形分 2 3 %ェチルァセテ一卜溶解液) 1 0 0部に対しイソシァネート系硬化 剤(商品名 : D - 9 0、総研化学社製、全固形分 9 0 %ェチルアセテート溶解液) を 1 . 5部添加した塗料を、 乾燥後の厚さが 1 0 mになるようにリバースコー ターで塗工、 1 0 0 °Cで 2分間乾燥し、 結着層を形成した。
次に、 フイラ一として、 粒子径が 5 mの単分散で、 屈折率 5 0のポリメ チルメ夕クリレートからなるアクリル系フイラ一を用い、 このフイラ一を、 底部 からエア一を噴出する多孔板容器に投入した。 その後、 この容器を振動させ、 振 動と噴出エアーの相乗効果によって、 フィラーを流動化させる。 結着層を表面に 形成した上記フィルムを適宜時間をかけてくぐらせ、 結着層の表面にフィラーを 付着させた。
次いで、 図 7に示す加振装置により、 結着層の表層にフィラーを埋め込みフィ ラー層を形成した。 この加振装置は、 加振機構 V上にセットされた容器 C内に、 加圧媒体、 フィラーおよび上記フィルムが投入され、 これら投入物を、 加振機構 Vで容器 Cごと振動させることにより、 フィルムの結着層にフィラーを埋め込む ものである。
容器 Cは、 硬質合成樹脂あるいは金属等の硬質材からなるもので、 上部に開口 部 c 1を有する椀状に形成されており、 その底部 c 2の中央部には、 上方に膨出 して開口部 c 1と同程度の高さに達する柱状部 c 3が突設されている。 一方、 カロ 振機構 Vは、 機台 F上にコイルスプリング f 1、 ί 2を介して振動板 f 3が取り 付けられ、 振動板 f 3の上面中央部に上方に延びる垂直軸 f 4が突設され、 振動 板 f 3の下面中央部にモー夕 f 5が固定され、 このモー夕 f 5の出力軸 f 6に重 錘 f 7が偏心して取り付けられた構成となっている。 容器 Cは、 振動板 f 3に置 かれた状態で、 柱状部 c 3の上端が垂直軸 f 4の上端に固定されることによりセ ッ卜され、 モー夕 f 5が駆動されて重錘 f 7が回転すると加振されるようになつ ている。
この加振装置の容器 C内に、 加圧媒体として粒子径が 0 . 5 mmの真球状ジル コニァ球を 3 k gを投入し、 さらに、 上記フィラーを 3 0 gを投入して両者を混 合した。 次に、 加振装置を、 容器 Cが図 7に示す状態から 45度傾く状態に保持 して容器 Cを振動させながら、 上記フィルムを、 フイラ一が付着された結着層側 を上方に向くようにして容器 Cの底を 30 cmZ分の速度で移動させることによ り加圧媒体中にくぐらせた。 これによつて、 フイラ一を振動する加圧媒体により 打撃して結着層の表層に埋め込み、 フイラ一層を形成した。
次に、 イオン交換水を用いてフィラー層に水圧シャヮーをかけてフィラ一層を 洗浄することにより余剰フイラ一を除去し、 この後、 エア一ブローにより全体を 乾燥させて本発明の試料 1一 1のフィラーレンズを得た。 試料 1一 2
体積平均粒子径が 1 5 /zmのフイラ一を用いた点、 および粒子径が 1. 0mm の加圧媒体を用いた点を変更点とし、 これ以外は試料 1一 1と同様にして本発明 の試料 1— 2のフィラ一レンズを得た。 試料 1一 3
下記成分からなる混合物をサンドミルにて 30分間分散することによって得ら れた塗料を、 膜厚 80 m、 透過率 92 %からなる透明基体のトリァセチルセル ロース (商品名:富士タック UVD 80、 富士写真フィルム社製、 屈折率 1. 4 9) の片面上に、 リバースコーティング方式にて塗布し、 100°Cで 2分間乾燥 後、 120 WZ c m集光型高圧水銀灯 1灯で紫外線照射を行い (照射距離 1 0 c m、 照射時間 30秒)、 塗工膜を硬化させた。 このようにして図 2に示すような 従来型の光拡散フィルムを得て比較用の試料 1一 3とした。
•エポキシァクリレート系 UV樹脂
(商品名: KR— 566、 旭電化社製、 固形 95 %溶液) 95部
•架橋ァクリルビーズ顔料
(商品名: MX 1 50、 綜研化学社製、 粒径 1. 5 m±0. 5) 1 0部 'イソプロピルアルコール 230部 (2) フィラーレンズの評価
①フィラー層の観察
試料 1一 1および 1一 2のフィラ一レンズの平面および断面を電子顕微鏡によ つて観察した。 図 8 (a), (b), (c) は、 それぞれ試料 1— 1のフイラ一レ ンズの平面を 1000倍、 2000倍、 5000倍の倍率で撮影した電子顕微鏡 写真、 図 9 (a), (b) は、 それぞれ試料 1— 1のフイラ一レンズの断面を 2 000倍、 5000倍の倍率で撮影した電子顕微鏡写真である。 また、 図 1 0
(a) , (b), (c ) は、 それぞれ試料 1一 2のフイラ一レンズの平面を 100 0倍、 2000倍、 5000倍の倍率で撮影した電子顕微鏡写真、 図 1 1 (a),
(b) は、 それぞれ試料 1— 2のフイラ一レンズの断面を 2000倍、 5000 倍の倍率で撮影した電子顕微鏡写真である。 試料 1一 1, 1一 2ともに、 平面写 真からわかるようにフイラ一はほぼ均一に結着層中に密な状態で分散している。 また、 断面写真からわかるように、 フイラ一は、 試料 1— 1の場合は直径の 70 %程度が結着層に埋め込まれ、 試料 1一 2では直径の 40%程度が埋め込まれた 状態で、 結着層の表面から一様に突出している。
②光拡散性試験
上記試料 1— 1〜 1一 3のフイラ一レンズについて、 図 12 (a) に示すよう に光をフィルム 1側から入射させた場合と図 12 (b) に示すように光をフイラ 一 3側から入射させた場合の全光線拡散透過率: T%と全光線拡散反射率: R% を、 島津製作所製の分光光度計 UV 3100を用いて測定した。
その測定方法は、 全光線拡散透過率: T%については、 図 1 3 (a) に示すよ うに、 入射光と基準白色板 (硫酸マグネシウム) 10との間にフイラ一レンズ L を介在させて前方に散乱した光の全光線拡散透過率を測定した。 なお、 図 1 3
(a) では図 12 (a) のようにフィルム側から光を入射させている力 図 12
(b) のようにフィラー側から光を入射させた場合も同様に行った。
また、 全光線拡散反射率: R%は、 まず、 基準白色板 (硫酸マグネシウム) に 光をあてその後方に散乱した光の全光線拡散反射値を測定しその値を 100とす る。 次に、 図 13 (b) に示すように、 フイラ一レンズ Lに光を入射して全光線 拡散反射値を測定し、 上記基準白色板の全光線拡散反射値との割合で算出した。 なお、 図 1 3 ( b ) では図 1 2 ( a ) のようにフィルム側から光を入射させてい る力 図 1 2 ( b ) のようにフィラー側から光を入射させた場合も同様に行った。 この場合の測定波長は 4 0 0〜 7 0 0 n mであり、 測定値はこの波長領域の平均 値で示した。 その結果を、 表 1に示す。
表 1
Figure imgf000032_0001
表 1によれば、 試料 1 一 3においては、 光がフィルム側とフィラー側のいずれ から入射しても、 全光線拡散透過率は約 9 1 %、 全光線拡散反射率は約 2 6 %と 差はみられなかった。 一方、 試料 1— 1 , 1— 2の光散乱性は、 光の入射方向が フィルム側からとフィラー側からとで差が認められた。 光がフィルム側から入射 する場合の全光線拡散透過率は試料 1 - 3より低いが、全光線拡散反射率は高い。 また、 光がフィラー側から入射する場合の全光線拡散透過率はきわめて高く、 逆 に全光線拡散反射率は低い。 すなわち、 本発明のフィラーレンズによれば、 光の 入射方向が表裏いずれであるかによって光散乱性が異なり、 レンズ効果が認めら れる。 これを利用して目的に応じた光学的な特性を得ることが可能である。
2 . 第 2実施形態
( 1 ) フィラーレンズの製造
まず、 本発明の第 2実施形態において、 粘着剤として結着層に用いたアクリル ポリマー aについて説明する。
温度計、 攪拌機、 還流冷却管、 窒素導入管を備えたフラスコ中に n—プチルァ クリレート 9 4重量部、 アクリル酸 3重量部、 2 —ヒドロキシァクリレー卜 1重 量部、 過酸化ベンゾィル 0 . 3重量部、 酢酸ェチル 4 0重量部、 トルエン 6 0重 量部を加え、 次いで窒素導入管から窒素を導入してフラスコ内を窒素雰囲気とし た後、 6 5 °Cに加温して 1 0時間重合反応を行い、 重量平均分子量約 1 0 0万、 T g約一 5 0 のアクリルポリマー溶液を得た。 このァクリルポリマー溶液に固 形分が 2 0重量%となるようにメチルイソプチルケトンを加え、 アクリルポリマ — aを調製し、 以下のフィラーレンズの結着層に用いた。 試料 2一 1
透明基体として、 厚さ 8 0 のトリアセチルセルロース (商品名 :富士夕ッ ク U V D 8 0、 富士写真フィルム社製、 屈折率 1 . 4 9、 全光線透過率 9 2 . 4 ) を用いた。 このフィルムの片面上に、 アクリルポリマ一 aの 1 0 0重量部に対し イソシァネート系硬化剤 (商品名: L一 4 5、 綜研化学社製) を 0 . 2重量部、 エポキシ系硬化剤 (商品名 : E— 5 X M、 綜研化学社製) を 0 . 1重量部添加し た結着剤を、 乾燥後の厚さが 3 / mになるようにリバースコ一夕一で塗工し、 1 0 0 °Cで 2分間乾燥し結着層を形成し、 このフィルムを A 5版の大きさに切断し た。
次に、 有機フイラ一として、 体積平均粒子径が 4 . で、 粒子径分布が 0 .
9 4、 屈折率 4 3、 真円度 9 6 %のメチルシリコーンビーズ (商品名: トス パール 1 4 5、 G E東芝シリコーン社製) を用い、 この有機フイラ一を、 底部か らエア一を噴出する多孔板容器に投入した。 その後、 この容器を振動させ、 振動 と噴出エアーの相乗効果によって、 有機フィラーを流動化状態にさせた。 結着層 を表面に形成した上記フィルムを適宜時間をかけてこの中をくぐらせ、 結着層の 表面にフィラーを付着させた。
次いで、 上記第 1実施形態と同様にして、 結着層の表層に有機フィラーを埋め 込みフイラ一層を形成した後、 イオン交換水に界面活性剤 (商品名 : リポノック ス N C— 9 5、 ライオン社製) を加えた 0 . 1重量%水溶液中に該フイラ一レン ズを浸漬しつつ超音波を与えることにより余剰な有機フイラ一を洗浄除去した。 これを水溶液から取り出し、 イオン交換水で十分にすすいだ後、 エアーナイフに より表面の水切りをした。 その後、 4 0 °Cの恒温槽で 5日間放置し、 乾燥させた 後、 常温まで冷却し、 本発明の試料 2— 1のフイラ一レンズを得た。 試料 2 - 2
試料 2— 1と同様のフィルムの片面上に、 試料 2— 1の結着剤を乾燥後の厚さ が 3 imになるようにリバ一スコ一夕一で塗工し、 100°Cで 2分間乾燥して結 着層を形成した後、 このフィルムを A 5版に切断した。 その後の工程は、 使用す る有機フイラ一を体積平均粒子径が 2. 6 m,屈折率 1. 43、 粒子径分布 0. 90、 真円度 94 %のメチルシリコーンビーズ (商品名: トスパール 1 30、 G E東芝シリコーン社製) に変更した以外は、 試料 2— 1と同様に行い本発明の試 料 2— 2のフィラ一レンズを得た。 試料 2 - 3
試料 2— 1と同様のフィルムの片面上に、 試料 2— 1の結着剤を乾燥後の厚さ が 4 mになるようにリバ一スコ一夕一で塗工し、 100でで 2分間乾燥して結 着層を形成した後、 このフィルムを A 5版に切断した。 その後の工程は、 使用す る有機フイラ一を体積平均粒子径が 5. 0 urn,屈折率 1. 50、 粒子径分布 0. 94、 真円度 93%のメチルメタクリレ一トビーズ (商品名: MX— 500、 綜 研化学社製) に変更した以外は、 試料 2— 1と同様に行い本発明の試料 2— 3の フィラーレンズを得た。 試料 2— 4
試料 2— 1と同様のフィルムの片面上に、 試料 2— 1の結着剤を乾燥後の厚さ が 5 /mになるようにリバースコ一夕一で塗工し、 100°Cで 2分間乾燥して結 着層を形成した後、 このフィルムを A5版に切断した。 その後の工程は、 使用す る有機フイラ一を体積平均粒子径が 10. 8 ^m、 屈折率 1. 50、 粒子径分布 0. 94、 真円度 94%のメチルメ夕クリルレートビーズ (商品名: MX— 10 00、 綜研化学社製) に変更した以外は、 試料 2— 1と同様に行い本発明の試料 2— 4のフィラーレンズを得た。 試料 2 - 5
試料 2— 1と同様のフィルムの片面上に、 試料 2— 1の結着剤を乾燥後の厚さ が 6 ^umになるようにリバースコ一夕一で塗工し、 1 00°Cで 2分間乾燥して結 着層を形成した後、 このフィルムを A 5版に切断した。 その後の工程は、 使用す る有機フイラ一を体積平均粒子径が 14. 9 m、 屈折率 1. 50、 粒子径分布 0. 96、 真円度 9 2 %のメチルメ夕クリルレートビーズ (商品名 : MX— 1 5 00H、 綜研化学社製) に変更した以外は、 試料 2— 1と同様に行い本発明の試 料 2— 5のフィラ一レンズを得た。 試料 2 - 6
試料 2— 1と同様のフィルムの片面上に、 試料 2— 1の結着剤を乾燥後の厚さ が 3 imになるようにリバースコ一ターで塗工し、 1 00°Cで 2分間乾燥して結 着層を形成した後、 このフィルムを A 5版に切断した。 その後の工程は、 使用す るフイラ一を体積平均粒子径が 4. l m、 屈折率 1. 52、 粒子径分布 0. 3 4、真円度 67 %のソーダガラス (商品名: MB— 1 0、東芝バロティー二社製) に変更した以外は、 試料 2— 1と同様に行い比較用の試料 2— 6のフイラ一レン ズを得た。 なお、 このフィラーには不定形の粒子も含まれており、 最長径を個々 のフィラーの直径として測定した。 試料 2 - 7
試料 2— 1と同様のフィルムの片面上に、 試料 2— 1の結着剤を乾燥後の厚さ が 1 5 になるようにリバ一スコ一夕一で塗工し、 1 00 で 2分間乾燥して 結着層を形成した後、 このフィルムを A 5版に切断した。 その後の工程は、 使用 するフィラーを体積平均粒子径が 2 1. 0 m, 屈折率 1. 50、 粒子径分布 0. 2 9、 真円度 94 %のメチルメ夕クリレートフイラ一 (商品名: MR— 20 G、 綜研化学社製) に変更した以外は、 試料 2— 1と同様に行い比較用の試料 2— 7 のフィラーレンズを得た。 試料 2— 8
試料 2— 1と同様のフィルムの片面上に、 試料 2— 1の結着剤を乾燥後の厚さ が 2 0 mになるようにリバースコ一夕一で塗工し、 1 00でで 2分間乾燥して 結着層を形成した後、 このフィルムを A 5版に切断した。 その後の工程は、 使用 するフィラーを体積平均粒子径が 2 9 . 3 111、 屈折率1 . 5 2、 粒子径分布 0 . 2 3、 真円度 9 4 %のソーダガラス (商品名 : G B— 7 3 1、 東芝バロティ一二 社製) に変更した以外は、 試料 2— 1と同様に行い比較用の試料 2— 8のフイラ 一レンズを得た。
( 2 ) フィラーレンズの評価
①フィラーレンズの観察
試料 2— 1〜2 _ 8のフィラーレンズのフィラー層の平面および断面を電子顕 微鏡によって観察した。 図 1 4〜2 1は試料 2— 1〜2— 8のフィラーレンズの 平面および断面を 1 0 0 0倍の倍率で撮影した電子顕微鏡写真である。
図 1 4〜 1 8からわかるように、 試料 2—:!〜 2— 5のフィラーレンズは面方 向の充填密度が高く均一であり、 さらに、 結着層への埋め込まれ深さも均一であ る。 一方、 図 1 9および図 2 1から明らかなように試料 2— 6および 2— 8のフ ィラーレンズでは、 余剰フィラーの洗浄工程等でフィラーが脱落した痕と思われ る、 脱落痕(図 1 9および図 2 1の図中央部の空隙部) が多数観察された。 また、 図 2 0および 2 1の試料 2— 7および 2 - 8ではフィラーの体積平均粒子径が大 きいので、 フィラ一およびフィラ一の間隙の面積が広くなつていることが明白で ある。
②透過光の均一性の評価
試料 2—:!〜 2— 8のフィラーレンズを透過光に透かして目視で観察し、 透過 光の均一性を評価した。 A 5版全面において均一な場合は〇、 フィラー抜けゃフ イラ一の間隙等、 場所により光の透過性が異常に高い明るい個所や、 フィラーが 複層に存在するため光の透過性が異常に低く暗い個所が目視により確認できる場 合は Xとした。 透過光の均一性の評価結果を表 2に記した。
③透過光の木目の細かさの評価
試料 2— 1〜2— 8のフィラーレンズを透過光に透かして目視で観察し、 透過 光の木目の細かさを評価した。 透過光が滑らかに見える場合は〇、 ざらついて見 える場合は Xとした。 透過光の木目の細かさの評価結果を表 2に記した。
④光学特性試験
試料 2— 1〜2— 5のフイラ一レンズについて、 図 12 (b) のように光をフ イラ一側から入射させた場合の全光線透過率: T t (%)、 全光線拡散率: H z (%) を島津製作所製の分光光度計 UV 3 1 00を用いて測定した。 測定結果を 表 3に記す。
なお、実用上ディスプレイ用としてフィラーレンズに要求される特性としては、 輝度と視野角とのバランスがそのディスプレイの使用用途により異なるが、 T t は 70%以上、 H zは 60 %以上が好適である。
表 2
表 3
Figure imgf000037_0001
表 2および表 3から明らかなように、 本発明のような構成を有するフィラーレ ンズの光学特性は全光線透過率、全光線拡散率共に実用上十分な値を示しており、 十分な光拡散性と透過性とを有している。 そして、 微小な有機フイラ一を用いて るため、 均一で木目の細かな透過光を有していた。 また、 表 3から有機フィラー の体積平均粒子径を変化させることにより、 光の拡散性および透過性を変化させ 調整することが可能であることが理解できる。
一方、 試料 2— 6および 2— 8のように、 無機フィラーを用いたフィラーレン ズでは、 結着層とフィラーとの密着性が悪いため、 洗浄時にフィラーの脱落が発 生し、 そのため、 その個所が異常に明るく透過光が不均一であった。 また、 試料 2 _ 7および 2— 8のように体積平均粒子径が 1 5 mより大きなフイラ一を用 いたものでは、 透過光の木目が荒く、 ディスプレー用途には用いることができな いレベルであった。
3. 第 3実施形態
( 1 ) フィラーレンズの製造
本発明の第 3実施形態においても、 上記第 2実施形態で用いたァクリルポリマ 一 aを粘着剤として結着層に用いた。
試料 3— 1
透明基体として、 厚さ 8 0 ^zmのトリアセチルセルロース (商品名:富士夕ッ ク UVD 8 0、 富士写真フィルム社製、 屈折率 49、 全光線透過率 9 2. 4、 ヘイズ 0. 1 5) を用いた。 このフィルムの片面上に、 アクリルポリマー aの 1 0 0重量部に対しイソシァネート系硬化剤 (商品名 : L一 4 5、 綜研化学社製) を 0. 4 5重量部、 エポキシ系硬化剤 (商品名: E— 5 XM、 綜研化学社製) を 0. 1 5重量部添加した粘着剤を、 乾燥後の厚さが 5 ^mになるようにリバース コ一夕—で塗工し、 1 0 0°Cで 2分間乾燥し結着層を形成し、 このフィルムを A 5版の大きさに切断した。
次に、 フイラ一として、 体積平均粒子径 4. 5 τ , 粒子径分布 0. 94、 屈 折率 1. 4 3、 真円度 9 6 %のメチルシリコーンフイラ一 (商品名 : トスパール 1 4 5、 GE東芝シリコーン社製) を用い、 このフイラ一を、 底部からエアーを 噴出する多孔板容器に投入した。 その後、 この容器を振動させ、 振動と噴出エア 一の相乗効果によって、 フィラーを流動化させる。 結着層を表面に形成した上記 フィルムを適宜時間をかけてこの中にくぐらせ、 結着層の表面にフィラーを付着 させた。
次いで、 上記第 1実施形態と同様にして、 結着層の表層にフィラーを埋め込み フイラ一層を形成した後、 イオン交換水に界面活性剤 (商品名 : リボノックス N C— 9 5、 ライオン社製) を加えた 0 . 1重量%水溶液中に該フイラ一レンズを 浸漬しつつ超音波を与えることにより余剰なフィラーを洗浄除去した。 これを水 溶液から取り出し、 イオン交換水で十分にすすいだ後、 エアーナイフにより表面 の水切りをした。 その後、 4 0 °Cの恒温槽で 7日間放置し、 乾燥させた後、 常温 まで冷却し、 本発明の試料 3— 1のフィラ一レンズを得た。 試料 3— 2
試料 3— 1と同様の透明基体フィルムの片面上に、 試料 3— 1の粘着剤を乾燥 後の厚さが 5 になるようにリバースコ一夕一で塗工し、 1 0 0 °Cで 2分間乾 燥して結着層を形成した後、 このフィルムを A 5版に切断した。その後の工程は、 使用するフイラ一を体積平均粒子径 1 0 . 、 粒子径分布 0 . 9 4、 屈折率
1 . 5 0、 真円度 9 4 %のメチルメ夕クリルレート (商品名 : M X— 1 0 0 0、 綜研化学社製) に変更した以外、 試料 3— 1と同様に行い、 本発明の試料 3— 2 のフィラーレンズを得た。 試料 3— 3
試料 3— 1と同様の透明基体フィルムの片面上に、 試料 3— 1の粘着剤を乾燥 後の厚さが 5 / mになるようにリバースコ一夕一で塗工し、 1 0 O t:で 2分間乾 燥して結着層を形成した後、 このフィルムを A 5版に切断した。その後の工程は、 使用するフイラ一を体積平均粒子径 1 4 . 9 , 粒子径分布 0 . 9 6、 屈折率 1 . 5 0、 真円度 9 2 %のメチルメ夕クリルレート (商品名: M X— 1 5 0 0 H、 綜研化学社製) に変更した以外、 試料 3— 1と同様に行い、 本発明の試料 3— 3 のフィラーレンズを得た。 試料 3— 4
試料 3— 1と同様の透明基体フィルムの片面上に、 試料 3— 1の粘着剤を乾燥 後の厚さが 5 になるようにリバースコ一夕一で塗工し、 100°Cで 2分間乾 燥して結着層を形成した後、 このフィルムを A 5版に切断した。 次いで、 試料 3 — 1で用いたフイラ一を試料 3— 1と同様に結着層に付着させた。 次に、 YBA 型べ一力一アプリケ一夕一 (ヨシミツ精機社製) を用いてフィラー付着層の厚さ が 12. 5 mになるように表面を均した。 その後、 加圧ローラ一 (商品名: L am i p a c k e r PD 3204、 Fu j i p l a I n c. 社製) を用いて、 1. 5 cmZ秒のスピードでフィラーの付着したフィルムを加圧ローラ一に挿入 してフィラーを結着層に埋め込んだ。 その後の工程は試料 3— 1と同様に行い、 比較用の試料 3— 4のフィラーレンズを得た。 試料 3— 5
試料 3— 1と同様の透明基体フィルムの片面上に、 試料 3— 1の粘着剤を乾燥 後の厚さが 5 zzmになるようにリバ一スコ一ターで塗工し、 100 で 2分間乾 燥して結着層を形成した後、 そのフィルムを A 5版に切断した。 次いで、 試料 3 - 1で用いたフィラーを試料 3— 1と同様に結着層に付着させ、 YBA型べ一力 —アプリケ一夕一を用いてフィラ一付着層の厚さが 12. 5 mになるように表 面を均した。次工程の加圧口一ラーに挿入する際に、 フイラ一の付着した基材を、 2枚重ねした 125 厚の PETフィルムの間に挟み込むことによりローラー の圧力を高め、 結着層にフィラーを埋め込んだ。 その後の工程は試料 3— 1と同 様に行い、 比較用の試料 3 _ 5のフィラーレンズを得た。 試料 3— 6
試料 3— 1と同様の透明基体フィルムの片面上に、 試料 3— 1の粘着剤を乾燥 後の厚さが 5 になるようにリバ一スコーターで塗工し、 1 00°Cで 2分間乾 燥して結着層を形成した後、 このフィルムを A 5版に切断した。 次に、 試料 3— 2のフイラ一を用い、 YB A型べ一カーアプリケ一ターのギヤップを変更してフ イラ一付着層の厚さが 25 //mになるように表面を均した。 その後の工程は試料 3 -4と同様に行い、 比較用の試料 3— 6のフィラ一レンズを得た。 試料 3 - 7
試料 3— 1と同様の透明基体フィルムの片面上に、 試料 3— 1の粘着剤を乾燥 後の厚さが 5 mになるようにリバースコ一夕一で塗工し、 1 00°Cで 2分間乾 燥して結着層を形成した後、 このフィルムを A 5版に切断した。 次に、 試料 3— 3のフイラ一を用い、 YB A型べ一力一アプリケ一夕一のギヤップを変更してフ イラ一付着層の厚さが 2 5 imになるように表面を均した。 その後の工程は試料 3 -4と同様に行い、 比較用の試料 3— 7のフィラーレンズを得た。 試料 3— 8
試料 3— 1で用いた粘着剤の固形分 1 00重量部に対して、 試料 3— 1で用い たフイラ一を 1 0重量部添加し、 アジ夕一ゼで 1時間攪拌して塗料を作成した。 作成した塗料を、 試料 3— 1と同様の透明基体フィルムの片面上にコンマコ一夕 一で乾燥後の厚さが 2 5 mになるよう塗布し、乾燥してフィラー層を形成した。 このフイラ一層の表面に剥離 P ETフィルム (商品名: 38 1 1、 リンテック社 製) をラミネートし、 40での恒温槽中に 1週間放置した後、常温まで冷却した。 その後、 A 5版に切断し、 剥離 PETを剥がして、 比較用の試料 3— 8のフイラ —レンズを得た。
(2) フィラーレンズの評価
①フィラーレンズの観察
上記方法で得られた試料 3— 1〜 3— 8のフイラ一レンズの平面および断面を 電子顕微鏡によって観察した。 図 22は試料 3― 1のフィラーレンズの平面およ び断面を 1 0 0 0倍で撮影した顕微鏡写真であり、 (a) は平面、 (b) は断面 を示している。 図 2 3, 24は試料 3— 2, 3— 3のフイラ一レンズの平面( a) および断面 (b) を 500倍で、 図 2 5, 2 6は試料 3— 4, 3— 5のフイラ一 レンズの平面 (a) および断面 (b) を 1 000倍で、 図 2 7, 2 8は試料 3— 6, 3— 7のフイラ一レンズの平面を 5 00倍で、 図 29は試料 3— 8のフイラ 一レンズの平面 (a ) および断面 (b ) を 1 0 0 0倍の倍率で撮影した電子顕微 鏡写真である。
上記図 2 2〜 2 4の (a ) に示した平面写真からわかるように、 試料 3—:!〜 3— 3のフイラ一レンズは面方向の充填密度が高く均一であり、 また、 図 2 2〜 2 4の (b ) の断面写真から、 試料 3— 1〜 3— 3のフイラ一レンズでは、 フィ ラー層は単層で、 かつ、 フイラ一が結着層の表面から一部が突出した構成で均一 な深さに埋め込まれていることが示された。 これに対し、 ローラ一によってフィ ラーを結着剤層に埋め込んだ試料 3— 4〜 3 _ 7のフィラーレンズでは、 図 2 5 〜2 8の平面写真に示すように、 フイラ一の充填密度が不均一であり、 特に、 試 料 3 _ 4および 3— 5においては、 フイラ一の充填が密な領域 (a l ) や粗な領 域 (a 2 ) が生じてしてしまうことが明らかとなった。 このフイラ一の充填密度 が高い領域では、 図 2 5および 2 6の (b ) に示した断面写真から明らかなよう に、 1層目のフイラ一の間隙から露出した結着層に他のフイラ一が付着したコロ 二一のような構成になってる部位が多数存在していた。 これは、 この部位に高い 圧力が加わり、 1層目のフィラーが結着層に深く埋め込まれ、 フイラ一の間隙に 押し出された結着層に他のフイラ一が付着したものと考える。
また、 従来型のフイラ一レンズである試料 3— 8では、 図 2 9の (a ) に示す ように、 フイラ一が完全に結着層中に埋没しており、 さらに、 (b ) の断面写真 によれば、 フイラ一が結着層中に複層に存在していることが観察された。
図 3 0は試料 3 _ 1および 3— 4のフィラーレンズに透過光を用いた状態の 5 0倍の光学顕微鏡写真である。 この光学顕微鏡写真から明らかなように、 フイラ 一の埋め込み深さが均一である試料 3— 1のフィラーレンズでは、 光の透過性が 均一であることが示された。一方、フィラーの結着層の埋め込み深さが不均一で、 部分的にフィラーが重なっているような試料 3— 4のフィラーレンズでは、 光の 透過性が不均一であることが示された。
②フイラ一の粒子間距離の測定
試料 3— 1〜 3— 8のフィラーレンズの面方向のフィラー間距離をキ一エンス 社のデジタルマイクロスコープ (商品名 : V H— 6 3 0 0 ) により測定した。 体 積平均粒子径が 1 0 /zm未満のフィラーを用いたフィラーレンズについては 30 00倍で、 1 0 z m以上のフィラーを用いたフィラーレンズについては 1 000 倍の倍率で、 透過光を用いてフィラーの粒子間距離を測定し、 その標準偏差を計 算した。
③光学特性試験
試料 3— 1〜 3— 8のフイラ一レンズについて、 図 1 2 (b) に示すように光 をフイラ一側から入射させた場合の全光線透過率: T t (%), 全光線拡散率: Hz (%) を島津製作所製の分光光度計 UV 3 1 00を用いて測定した。
④光の透過性および拡散性の均一性の評価
試料 3— 1〜 3— 8のフィラ一レンズを透過光に透かして目視で観察し、 光透 過性の均一性を評価した。 均一な場合は〇、 場所により透過性が異常に高い明る い個所 (透け) や透過性が低く暗い個所が存在する場合は Xとし、 光の透過性お よび拡散性の均一性を評価した。
以上の結果を表 4に記した。
表 4
Figure imgf000043_0001
表 4から明らかなように、 試料 3— 1〜3— 3のフィラーレンズにおけるフィ ラーの粒子間距離の標準偏差は 0. 4以下であるのに対し、 試料 3 _ 4〜3— 7 の標準偏差は 0. 4より大きい数値となっていた。 また、 試料 3— 8のフイラ一 レンズでは、 フィラーが結着層に完全に埋没しているため、 透過光による光学顕 微鏡ではピントを合わせることが不可能であり、 フィラーの粒子間距離の測定が できなかった。
また、 図 1のような構造の試料 3— 1〜 3— 7のフイラ一レンズは、 図 2のよ うにフィラー層が複層である従来型の試料 3— 8のフィラ一レンズよりも、 全光 線拡散率が高いにもかかわらず全光線透過率も高いので、 光透過性と光拡散性に 優れているといえる。 さらに、 試料 3— 1〜 3— 3のフイラ一レンズは、 試料 3 — 4〜 3— 7のフィラーレンズと比較して、 フィラーの充填密度が高く均一であ り、 かつ、 均一な単層構造であるため、 全光線透過率および全光線拡散率ともに 高い値を示している。
4. 第 4実施形態
( 1 ) フィラーレンズの製造
本発明の第 4実施形態においても、 上記第 2実施形態で用いたァクリルポリマ 一 aを粘着剤として結着層に用いた。
試料 4一 1
透明基体として、 厚さ 80 / mのトリアセチルセルロース (商品名:富士夕ッ ク UVD 80、 富士写真フィルム社製、 屈折率 49) を用いた。 このフィル ムの片面上に、 ァクリルポリマー aの 1 00重量部に対しイソシァネート系硬化 剤 (商品名 : L一 45、 総研化学社製) を 0. 4重量部と、 エポキシ系硬化剤 (商 品名: E— 5XM 綜研化学社製) 0. 2重量部とを添加した粘着剤を、 乾燥後 の厚さが 5 /xmになるようにリバースコ一夕一で塗工、 100°Cで 2分間乾燥し た後に、 剥離 PETフィルム (商品名: 38 1 1 リンテック社製) をラミネ一 卜し、 40 の恒温槽中に 7日間放置し、 結着層を硬化させた。 このフィルムを A 5版に切断し、 剥離 P ETフィルムを剥がした。
フイラ一として、 体積平均粒子径が 4. 5 imで粒子径分布が 0. 94、 屈折 率 1. 43、 真円度 96 %のメチルシリコーンからなるフイラ一 (商品名: トス パール 145、 GE東芝シリコーン社製) を用い、 このフイラ一を、 底部からェ ァーを噴出する多孔板容器に投入した。 その後、 この容器を振動させ、 振動と噴 出エアーの相乗効果によって、 フイラ一を流動化させる。 流動化状態のフィラー 中に結着層を表面に形成した上記フィルムを適宜時間をかけてくぐらせ、 結着層 の表面にフィラ一を付着させた。
次いで、 上記第 1実施形態と同様にして、 結着層の表層にフィラーを埋め込み フイラ一層を形成した後、 イオン交換水に界面活性剤 (商品名 : リポノックス N C— 9 5、 ライオン社製) を加えた 0 . 1重量溶液中に該フイラ一レンズを浸漬 しつつ超音波を与えることにより余剰なフィラーを洗浄除去した。 これを水溶液 から取り出し、 イオン交換水で十分にすすいだ後、 エアーナイフにより表面の水 切りをした。 その後、 4 0 °Cの恒温槽で 5日間放置し、 乾燥させた後、 常温まで 冷却し、 本発明の試料 4— 1のフイラ一レンズを得た。 このフィラーレンズの結 着層のゲル分率は 6 4 %であった。 試料 4一 2
試料 4 - 1と同様のフィルムの片面上に、 アクリルポリマー aの 1 0 0重量部 に対しィソシァネート系硬化剤 (商品名: L一 4 5、 総研化学社製) を 1 . 0重 量部と、 エポキシ系硬化剤 (商品名: E— 5 X M、 綜研化学社製) 0 . 5重量部 とを添加した粘着剤を、 乾燥後の厚さが 5 /X mになるようにリバースコ一ターで 塗工し、 1 0 0 ^で 2分間乾燥した後に、 剥離 P E Tフィルム (商品名: 3 8 1 1、 リンテック社製) をラミネートし、 4 0 °Cの恒温槽中に 7日間放置して結着 層を硬化させた。 このフィルムを A 5版に切断し、 剥離 P E Tフィルムを剥がし た。 その後の工程は、 試料 4一 1と同様に行い本発明の試料 4— 2のフイラ一レ ンズを得た。 このフィラーレンズの結着層のゲル分率は 9 0 %であった。 試料 4一 3
試料 4— 1において、 粘着剤の配合に硬化剤を全く用いない以外は同様に行い 比較用の試料 4— 3のフィラーレンズを得た。 このフィラーレンズの結着層のゲ ル分率は 1 %であった。 試料 4一 4
試料 4一 1において、 粘着剤の配合を、 アクリルポリマー aの 1 0 0重量部に 対しイソシァネート系硬化剤 (商品名 : L— 4 5、 総研化学社製) を 0 . 2重量 部と、 エポキシ系硬化剤 (商品名 : E— 5 X M 綜研化学社製) 0 . 1重量部に 変更した以外は同様に行い比較用の試料 4— 4のフイラ一レンズを得た。 このフ ィラ一レンズの結着層のゲル分率は 4 2 %であった。
( 2 ) フィラーレンズの評価
①フィラー層の観察およびフィラーの突出の割合の測定
試料 4— 1〜4— 4のフィラーレンズの平面および断面を電子顕微鏡によって 観察した。 図 3 1〜 3 4は、 試料 4— 1〜4一 4のフィラーレンズの平面および 断面を 2 0 0 0倍の倍率で撮影した顕微鏡写真である。
図 3 1から試料 4— 1のフィラーレンズでは、 フィラーの突出の割合が 5 5 % となるように結着層から突出した状態で、フイラ一層が均一な単層となっている。 図 3 2から試料 4— 2のフイラ一レンズでは、 フィラーの突出の割合が 6 6 %と なるように結着層から突出した状態で、 フィラー層が均一な単層となっている。 一方、 図 3 3から試料 4一 3のフイラ一レンズでは、 フィラーの突出の割合が 2 4 %となるように結着層から突出した状態で、 フイラ一層が均一な単層となって いる。 図 3 4から試料 4— 4のフイラ一レンズでは、 フィラーの突出の割合が 3 9 %となるように結着層から突出した状態で、 フィラー層が均一な単層となって いる。
②光学特性試験
上記試料 4一 1〜4一 4のフイラ一レンズについて、 図 1 2 ( b ) に示すよう に光をフイラ一 3側から入射させた場合と、 図 1 2 ( a ) に示すようにフィルム 1側から入射させた場合のヘイズ (全光線拡散率 (H z ) ) %を島津製作所製の 分光光度計 U V 3 1 0 0を用いて測定した。 測定結果を表 5に記した。 ③信頼性試験
上記試料 4一 1〜4一 4のフイラ一レンズを 6 0 で 9 0 % R Hの高温高湿槽 に 5 0 0時間放置し、 常温常湿下で 2 4時間放置した後、 図 1 2 ( b ) に示すよ うに光をフイラ一 3側から入射させた場合と、 同図 (a ) に示すようにフィルム 1側から入射させた場合のヘイズ (全光線拡散率 (H z ) ) %を島津製作所製の 分光光度計 U V 3 1 0 0を用いて測定した。 測定結果を表 5に記した。
④ペーパーホワイ ト性と均一性の確認
上記試料 4一 1〜4一 4のフィラーレンズについて、 表面にアルミニウム蒸着 を施した平板の上に、 フイラ一面が上向きになるように置き、 目視によりぺーパ 一ホワイ ト性を確認した。 背景がペーパーホワイトに近い場合は〇、 アルミニゥ ムの地の色が出ている場合は Xとした。 この時、 ペーパーホワイ ト色の均一性も 目視により評価し、 均一な場合は〇、 部分的にムラがある場合は Xとした。 ベー パーホワイ ト性、 均一性の評価結果を表 5に記した。
表 5
Figure imgf000047_0001
表 5によれば、 試料 4— 1, 4一 2のフイラ一レンズでは、 フィラー側、 フィ ルム側のどちらの方向の入射光に対しても初期のヘイズは約 8 7〜 9 0 %であ り、 実用上十分な光拡散性を有し、 さらにペーパーホワイ ト性も良好であった。 これに対し、 試料 4一 3 , 4— 4のフイラ一レンズでは、 初期のヘイズは約 7 5 〜8 1 %であり、 ペーパーホワイ ト性が不十分であった。 また、 信頼性試験にお いては、 試料 4— 1 , 4— 2のフイラ一レンズでは、 ヘイズの値の変化がほとん どなく信頼性は良好であった。一方、 試料 4一 3、 4— 4のフイラ一レンズでは、 ヘイズが 1 0〜 1 5 %も低下しており、 ディスプレー等に用いるには困難であつ た
5 . 第 5実施形態
( 1 ) フィラーレンズの製造
本発明の第 5実施形態においては、 上記第 2実施形態で重合させたァクリルポ リマ一溶液に、 固形分が 2 0重量%となるように酢酸ェチルを加え、 アクリルポ リマ一 bを調製し、 以下のフィラーレンズの結着層に用いた。
試料 5— 1
透明基体として、 厚さ 8 0 のトリアセチルセルロース (商品名 :富士夕ッ ク U V D 8 0、 富士写真フィルム社製、 屈折率 1 . 4 9 ) を用いた。 このフィル ムの片面上に、 ァクリルポリマー の 1 0 0重量部に対しイソシァネート系硬化 剤 (商品名: L— 4 5、 総研化学社製) を 0 . 5重量部と、 エポキシ系硬化剤 (商 品名 : E— 5 X M 綜研化学社製) 0 . 2重量部とを添加した結着剤を、 乾燥後 の厚さが 5 mになるようにリバ一スコ一夕一で塗工、 1 0 0 °Cで 2分間乾燥し て結着層を形成し、 このフィルムを A 5版の大きさに切断した。
フイラ一として、 個数平均粒子径が 4 . 5 mで粒子径分布が 0 . 9 4、 屈折 率 1 . 4 3、 真円度 9 6 %のメチルシリコーンからなるフイラ一 (商品名 : トス パール 1 4 5、 G E東芝シリコーン社製) を用い、 このフイラ一を、 底部からェ ァーを噴出する多孔板容器に投入した。 その後、 この容器を振動させ、 振動と噴 出エアーの相乗効果によって、 フイラ一を流動化させる。 流動化状態のフィラー 中に結着層を表面に形成した上記フィルムを適宜時間をかけてくぐらせ、 結着層 の表面にフィラーを付着させた。
次いで、 上記第 1実施形態と同様にして、 結着層の表層にフィラーを埋め込ん でフイラ一層を形成した後、 界面活性剤 (商品名: リポノックス N C— 9 5、 ラ イオン社製) をイオン交換水 1 0 0重量部に対して 0 . 1重量部添加した水溶液 を用いて、 フイラ一層に水圧シャワーをかけてフイラ一層を洗浄し、 余剰フイラ 一を除去した後、 イオン交換水で十分に濯いだ。 その後、 エアーブローにより全 体を十分に乾燥させた。
次に、 上記結着層の表層に埋め込まれたフイラ一層を有するフィルムを、 6 0 °Cに設定された恒温槽中に 2日間放置して結着層を軟化させ、 結着層とフィラー とを馴染ませることにより、 フィラーの周辺部に結着層の盛り上がり部分を形成 した。 その後、 恒温槽から取り出して自然冷却し、 本発明の試料 5 — 1のフイラ 一レンズを得た。 試料 5 - 2
試料 5— 1と同様のフィルムの片面上に、 試料 5— 1と同様の結着剤を、 乾燥 後の厚さが 5 mになるようにリバースコ一夕一で塗工し、 1 0 O :で 2分間乾 燥した後に、 剥離 P E Tフィルム (商品名: 3 8 1 1、 リンテック社製) をラミ ネートし、 4 0での恒温槽中に 1週間放置した後、剥離 P E Tフィルムを剥がし、 結着層を形成した。 この後、 このフィルムを A 5版の大きさに切断した。
次いで、 試料 5— 1のフイラ一を用い、 試料 5— 1のフイラ一を付着させるェ 程および加圧媒体によって結着層にフィラ一を埋め込む工程を行った。 その後、 試料 5— 1と同様の洗浄水溶液中に該積層体を投入し、 超音波を与えることによ り余剰フィラーを除去した後、 イオン交換水を用いて十分に濯ぎを行い、 エアー ブローにより全体を乾燥させた。
次に、 上記結着層の表層に埋め込まれたフイラ一層を有するフィルムを、 4 0 °Cおよび 9 0 % R Hに設定された恒温高湿槽に 3日間放置して結着層を軟化さ せ、 その後、 恒温高湿槽から取り出して自然冷却し、 本発明の試料 5— 2のフィ ラーレンズを得た。 試料 5 _ 3
結着層を軟化させる工程を除いた以外は、 試料 5— 2と同様にして、 比較用の 試料 5— 3のフィラ一レンズを得た。
( 2 ) フィラーレンズの評価
①フィラー層の観察
試料 5— 1〜5— 3のフィラ一レンズの平面および断面を電子顕微鏡によって 観察した。 図 3 5〜3 7は、 試料 5— 1〜 5— 3のフイラ一レンズの平面および 断面を 5 000倍で撮影した顕微鏡写真である。図 3 5, 3 6からわかるように、 試料 5— 1, 5— 2のフイラ一レンズでは、 フィラーの周縁部に結着層の盛り上 がり部分を有し、 フィラーが均一な単層で、 かつ一部が突出しており、 図 6に示 すような構成であった。 また、 図 3 7からわかるように、 試料 5— 3のフイラ一 レンズのフィラー周縁部には結着層の盛り上がり部分がない構成であった。
②光学特性試験
上記試料 5— 1〜 5— 3のフイラ一レンズについて、 図 1 2 (a) に示すよう に光をフィルム 1側から入射させた場合と図 1 2 (b) に示すように光をフイラ 一 3側から入射させた場合の全光線透過率: T t (%) とヘイズ(全光線拡散率) : Hz (%) を島津製作所製の分光光度計 UV 3 1 00を用いて測定した。 上記 の測定結果を、 表 6に示す。
表 6
Figure imgf000050_0001
表 6によれば、 フィルム側から入射した場合の全光線透過率は、 試料 5— 1, 5— 2のフィラーレンズでは約 9 1〜92 %であるのに対して、 試料 5— 3のフ イラ一レンズでは約 7 5 %であった。 すなわち、 試料 5— 1, 5— 2のフイラ一 レンズのフィルム側からの入射光に対する光透過性は、 試料 5— 3のフイラーレ ンズよりも 1 6 ~ 1 7 %も高いことが確認された。 そして、 ヘイズに関しては、 試料 5—:!〜 5— 3のフィラーレンズでは約 7 8〜8 1 %であり、 十分な光拡散 性を有していた。 一方、 フイラ一側からの入射光に対しては、 試料 5— 1〜5— 3のフィラーレンズでは全光線透過率が約 96〜 9 7 %であり、 非常に高い光透 過性を有していた。 また、 ヘイズも約 7 9〜8 1 %であり、 十分な光拡散性を有 していた。
すなわち、 試料 5— 1, 5— 2のフイラ一レンズは、 フィラー側の入射光に対 して従来品と同等の光拡散性と光透過性を有している。 そして、 フィルム側から の入射光に対しては十分な光拡散性を所持しつつ、 従来品より約 1 6〜 1 7 %も 透過性に優れていることが確認された。 T A Cフィルム自体の全光線透過率が約 9 2 %でヘイズが約 0 . 2 %程度であることから、 本発明のフイラ一レンズは両 方向からの入射光に対して、 十分な光拡散性を持ちながら光透過性のロスがほと んどないことが確認された。
6 . 第 6実施形態
( 1 ) フィラーレンズの作製
まず、 本発明の第 6実施形態において、 結着層に用いたブロックイソシァネー ト硬化剤について説明する。
還流冷却器、 温度計および攪拌器を取り付けた四つ口フラスコに下記組成を仕 込み、 所望のイソシァネート含量に達するまでポリウレタン化を行い、 次いで、 ここにエチレングリコールモノー n —へキシルエーテルを 4部加えてィソシァネ ート基のブロック化反応を行い、 ブロックイソシァネート硬化剤を調製し、 以下 のフィラーレンズの結着層用塗工液に用いた。
[ブロックイソシァネート硬化剤用配合]
•ポリジフエニルメタンジィソシァネート
(商品名 : ミリオネート M R 1 2 0、 日本ポリウレタン工業社製) 4 5部 • 2—ヒドロキシェチルァクリレート 3 1部
•酢酸ブチル 2 0部 試料 6— 1
透明基体として、 厚さ 8 0 ιηの卜リアセチルセルロース (商品名:富士夕ッ ク U V D 8 0、 富士写真フィルム社製、 屈折率 4 9 ) を用いた。 このフィル ムの片面上に、 ディスパ一にて 1 5分間攪拌 '混合した下記結着層用塗工液を、 乾燥後の厚さが 1 0 mになるようにリバ一スコ一夕一で塗工し、 1 0 0 °Cで 2 分間乾燥した後、 3 0 °Cで 1週間エージングを行い、 結着層を形成した。
[結着層用塗工液の配合] •ァクリル系粘着剤
(商品名 : S Kダイン 1 8 5 2、 綜研化学社製、 全固形分 2 3 %ェチルァセテ一 ト溶解液) 1 0 0部
•ァクリル系化合物
トリペン夕エリスリ トールポリアクリレ一ト 4 5部
•上記ブロックイソシァネート硬化剤 1 . 5部
'イソプロピルアルコール 5部
• メチルェチルケトン 2 1 0部
•ェチルァセテ一ト 6 5 0部 次に、 フイラ一として、 粒子径が 4 . 5 の単分散で、 屈折率 1 . 4 5のメ チルシリコーンからなるフイラ一を用い、 このフイラ一を、 底部からエア一を噴 出する多孔板容器に投入した。 その後、 この容器を振動させ、 振動と噴出エア一 の相乗効果によって、 フィラーを流動化させる。 結着層を表面に形成した上記フ イルムを適宜時間をかけてくぐらせ、 結着層の表面にフイラ一を付着させた。 次いで、 上記第 1実施形態と同様にして、 結着層の表層にフィラーを埋め込み フイラ一層を形成した後、 上記フィルムの塗工膜を 1 2 0 °Cで 5分間加熱して熱 硬化させた。 その後、 イオン交換水を用いてフイラ一層に水圧シャワーをかけて フイラ一層を洗浄することにより余剰フィラーを除去し、 次いで、 エアープロ一 により全体を乾燥して本発明の試料 6— 1のフイラ一レンズを得た。 試料 6— 2
結着層用塗工液におけるアクリル系化合物として、 トリペンタエリスリ トール ポリアクリレートに代えてジペン夕エリスリ トールトリァクリレートを用いた以 外は、 試料 6— 1と同様にして、 本発明の試料 6— 2のフイラ一レンズを得た。
§式料 6— 3
下記成分からなる混合物をサンドミルにて 3 0分間分散することによって得ら れた塗料を、 膜厚 8 0 ^ m、 透過率 9 2 %からなる透明基体のトリァセチルセル ロース (商品名:富士タック U V D 8 0、 富士写真フィルム社製、 屈折率 1 . 4 9) の片面上に、 リバ一スコ一ティング方式にて塗布し、 1 00°Cで 2分間乾燥 後、 1 2 OWZ cm集光型高圧水銀灯 1灯で紫外線照射を行い (照射距離 1 0 c m、 照射時間 3 0秒)、 塗工膜を硬化させ、 比較用の試料 6— 3のフイラ一レン ズを得た。
•エポキシァクリレート系 UV樹脂
(商品名: KR— 566、 旭電化社製、 固形分 9 5 %溶液) 95部
•架橋ァクリルビ一ズ顔料
(商品名: MX 1 50、 綜研化学社製、 粒径 1. 5 zm± 0. 5) 1 0部 •イソプロピルアルコール 230部 試料 6— 4
試料 6— 1の結着層用塗工液の組成を下記に代えた以外は、 試料 6— 1と同様 にして、 比較用の試料 6— 4のフイラ一レンズを得た。
[結着層用塗工液の配合]
•ァクリル系粘着剤
(商品名: SKダイン 8 1 1 L、 綜研化学社製、 全固形分 23 %ェチルァセテ一 ト溶解液) 1 00部
•ィソシァネート系硬化剤
(商品名: D— 90、 綜研化学社製、 全固形分 90 %ェチルアセテート溶解液)
1. 5部
( 2 ) フィラ一レンズの評価
①フイラ一層の観察
試料 6— 1, 6 - 2のフィラーレンズのフィラーの埋め込み状態を電子顕微鏡 によって観察したところ、 フィラーはほぼ均一に結着層中に密な状態で分散して いた。 また、 試料 6— 1の場合、 フイラ一は直径の 7 0 %程度が結着層に埋め込 まれ、 試料 6— 2では直径の 40 %程度が埋め込まれた状態で、 結着層の表面で 均一に突出していた。 ②光拡散性試験
上記試料 6— 1〜 6— 4のフイラ一レンズについて、 図 12 (a) に示すよう に光をフィルム 1側から入射させた場合と図 12 (b) に示すように光をフイラ —3側から入射させた場合の全光線拡散透過率: T%と全光線拡散反射率: R% を、 島津製作所製の分光光度計 UV 3 100で積分球式を用いて測定した。 その測定方法は、 全光線拡散透過率: T%については、 図 1 3 (a) に示すよ うに、 入射光と基準白色板 (硫酸マグネシウム) 10との間にフイラ一レンズ L を介在させて前方に散乱した光の全光線拡散透過率を測定した。 なお、 図 1 3
(a) では図 12 (a) のようにフィルム側から光を入射させているが、 図 12
(b) のようにフイラ一側から光を入射させた場合も同様に行った。
また、 全光線拡散反射率: R%は、 まず、 基準白色板 (硫酸マグネシウム) に 光をあてその後方に散乱した光の全光線拡散反射値を測定しその値を 100とす る。 次に、 図 1 3 (b) に示すように、 フィラーレンズ Lに光を入射して全光線 拡散反射値を測定し、 上記基準白色板の全光線拡散反射値との割合で算出した。 なお、 図 1 3 (b) では図 12 (a) のようにフィルム側から光を入射させてい るが、 図 1 2 (b)のようにフイラ一側から光を入射させた場合も同様に行った。 この場合の測定波長は 400〜70 O nmであり、 測定値はこの波長領域の平均 値で示した。
③信頼性評価
上記試料 6—:!〜 6— 4のフイラ一レンズを高温高湿 (80T:, 90%) 条件 下に 3日間放置し、 その後、 上記と同様に光拡散性の試験を行い耐高温高湿性、 すなわち、 高温高湿下における信頼性の評価を行った。
④粘着力評価
上記試料 6— 1〜6— 4の結着層用塗工液を PETフィルム上に塗布乾燥 (乾 燥塗布厚 1 0 m) したもの用いて、 J I S Z 0237に基づいて粘着力を測 定した。 なお、 評価は硬化前と硬化後 (硬化条件は試料 6— 1と同様) のそれぞ れについて実施した。 これらの結果を、 表 7に示す c
表 7
Figure imgf000055_0001
表 7によれば、 フィラーを樹脂中に分散させた試料 6— 3においては、 光がフ イルム側とフィラー側のいずれから入射しても、 全光線拡散透過率は約 9 1 % , 全光線拡散反射率は約 2 6 %と差はみられなかった。 一方、 試料 6 - 1, 6 - 2 および 6— 4の光散乱性は、 光の入射方向がフィルム側からとフイラ一側からと で差が認められた。 光がフィルム側から入射する場合には、 全光線拡散透過率が 試料 6— 3より低いが、 全光線拡散反射率は高く、 また、 光がフィラー側から入 射する場合には、 全光線拡散透過率がきわめて高く、 逆に全光線拡散反射率は低 かった。
また、 高温高湿下に放置後、 試料 6—:!〜 6— 3の光散乱性には、 ほとんど変 化が見られなかったが、 結着層の粘着剤を硬化させていない試料 6— 4について は、 光がフィルム側から入射する場合の全光線拡散透過率が上昇し、 一方、 全光 線拡散反射率が低下した。 すなわち、 本発明のフィラーレンズは、 光の入射方向 が表裏いずれであるかによって光散乱性が異なるレンズ効果が認められ、 かつ高 温高湿下においても特定の光散乱性を保持し続けるフィラーレンズを得ることが 可能である。 また、 試料 6— 4のフイラ一レンズは、 フイラ一の埋め込み前の乾 燥およびエージング時に部分的に硬化反応が進んでしまうことにより、 均一なフ イラ一層が形成されず、 光学特性に劣るものであった。
7 . フィラーレンズの適用例
例えば、 本発明のフィラーレンズを透過型の液晶ディスプレイに用いる場合に は、 図 3 8 ( a ) に示すように、 両面に偏光板 2 0が設けられた液晶セル 2 1と バックライ トュニット 2 2との間に、 フィラ一レンズ Lを液晶セル 2 1側に向け て挿入したり、 または、 図 3 8 ( b ) のようにフィルム 1面に粘着加工を施して 粘着層 2 3を設け、 フィラーレンズ Lと偏向板 2 0とを貼り合わせて用いると、 バックライトュニット 2 2の光の透過率がきわめて高く、 これに加えてディスプ レイの前面側 (図で上側) から入射する太陽光や電灯光は反射しやすい状態とな る。 したがって、 液晶セル 2 1を照明する光量がきわめて多くなり、 液晶画像の 鮮明化ならびに節電効果を得ることができる。 さらに、 本発明のフイラ一レンズ Lは、 光拡散性に優れているので、 バックライトユニット 2 2による背景色をべ 一パーホワイト色に近づけることができ、 液晶ディスプレーのコントラストを向 上させることができる。
また、本発明のフィラーレンズを反射型の液晶ディスプレイに用いる場合には、 図 3 9 ( a ) に示すように、 両面に偏光板 2 0が設けられた液晶セル 2 1と反射 板 2 4との間に本発明のフィラーレンズ Lを挿入したり、 または、 図 3 9 ( b ) に示すように、 2枚のフィラーレンズ Lのフィルム 1どうしを粘着層 2 3を介し て貼り合せ、 光拡散体として用いることもできる。 この場合、 1枚のフイラーレ ンズ Lの代わりに他の光拡散体と貼り合せて用いることもできる。 さらに、 図 3 9 ( c ) に示すように、 フィラーレンズ Lのフィルム 1にアルミ蒸着層 2 5を形 成して、 拡散反射板として使用することも可能である。 これにより、 本発明のフ イラ一レンズは、 効率よく光を取り入れ、 かつ、 効率良く光を拡散させることが 可能である。
さらに、 図 4 0に示すように、 液晶セル 2 1の前面側にフィルム 1を前方に向 けてフィラーレンズ Lを配置すると、 バックライ卜ュニット 2 2の透過率が高い ことから、 視野角がきわめて広い光拡散レンズとして使用することもできる。 以上説明したように、 本発明のフィラーレンズによれば、 基体上に積層された 結着層の表層に、 当該結着層の表面から一部が突出する状態で、 単層のフイラ一 層が形成され、 該フィラー層の平面方向のフィラーの充填密度が高く均一である ため、 光拡散性が基体側からとフイラ一層側からとでは異なったり、 フィラーの レンズ効果が増大したりし、 その結果、 多様な目的に応じたレンズ効果を提供す ることができる。 したがって、 本発明のフイラ一レンズを L CD、 EL、 FED 等のディスプレイに用いると入射光の減衰が少ないため、 広視野角、 高輝度、 高 コントラストを兼ね備えた液晶ディスプレーの設計が可能となり、 工業的に極め て優れた作用効果を奏する。

Claims

請 求 の 範 囲
1. 基体と、 この基体上に、 直接または他の層を介して積層された結着層と、 この結着層の表層に、 当該結着層の表面から一部が突出する状態で埋め込まれた 多数のフィラ一からなるフィラ一層とを備えることを特徴とするフィラ一レン ズ。
2. 前記フイラ一層は、 フイラ一が、 面方向で高密度に、 かつ単層で埋め込ま れ形成されたものであることを特徴とする請求項 1に記載のフイラ一レンズ。
3. 前記フイラ一は、 真円度が 80 %以上の球であることを特徴とする請求項 2に記載のフィラーレンズ。
4. 前記フイラ一が、 前記結着層に、 その直径の 1 0〜90 %埋め込まれてい ることを特徴とする請求項 2または 3に記載のフィラーレンズ。
5. 基体が透明基体であることを特徴とする請求項 1〜4のいずれかに記載の フィラーレンズ。
6. 前記フィラーの屈折率が 1. 45〜 1. 5 5であることを特徴とする請求 項 2〜 5のいずれかに記載のフィラーレンズ。
7. 前記基体、 結着層およびフィラーの各々の屈折率の差が 0. 30以下であ ることを特徴とする請求項 6に記載のフィラーレンズ。
8. 前記フイラ一層は、 体積平均粒子径が 2〜 1 5 mの有機フィラーからな ることを特徴とする請求項 1に記載のフィラーレンズ。
9. 前記有機フィラーの粒子径分布が 0. 8〜 1. 0であることを特徴とする 請求項 8に記載のフイラ一レンズ。
1 0. 前記有機フイラ一は球形であり、 その真円度が 8 5 %以上であることを 特徴とする請求項 8または 9に記載のフィラーレンズ。
1 1. 前記有機フイラ一の屈折率が 1. 42〜 1. 55であることを特徴とす る請求項 8〜 1 0のいずれかに記載のフィラーレンズ。
1 2. 前記有機フイラ一が、 アクリル樹脂またはシリコーン榭脂であることを 特徴とする請求項 8〜 1 1のいずれかに記載のフィラーレンズ。
1 3. 基体が、 全光線透過率 80 %以上の透明基体であることを特徴とする請 求項 8〜 1 2のいずれかに記載のフィラーレンズ。
14. 前記フイラ一層の面方向におけるフィラーの粒子間距離の標準偏差が 0. 4以下であることを特徴とする請求項 1に記載のフィラーレンズ。
1 5. 前記フイラ一は、 粒子径分布が 0. 8〜 1. 0であることを特徴とする 請求項 14に記載のフイラ一レンズ。
1 6. 前記フイラ一は、 体積平均粒子径が 2〜 1 5 ζζιηであることを特徴とす る請求項 14または 1 5に記載のフィラーレンズ。
1 7. 前記フイラ一は球形であり、 その真円度が 8 5 %以上であることを特徴 とする請求項 14〜 1 6のいずれかに記載のフィラ一レンズ。
1 8. 前記フイラ一は、 屈折率が 1. 42〜 1. 55であることを特徴とする 請求項 14〜 1 7のいずれかに記載のフィラーレンズ。
19. 前記基体は、 全光線透過率 80 %以上の透明基体であることを特徴とす る請求項 14〜 1 8のいずれかに記載のフィラーレンズ。
20. 前記結着層のゲル分率が 60 %以上であり、 前記フィラーの突出の割合 が 50 %以上であることを特徴とする請求項 1に記載のフィラ一レンズ。
2 1. 前記フイラ一は、 有機フイラ一であることを特徴とする請求項 20に記 載のフィラーレンズ。
22. 前記フィラーの体積平均粒子径が 2〜 1 5 であることを特徴とする 請求項 20または 2 1に記載のフィラーレンズ。
23. 前記フイラ一は、 粒子径分布が 0. 8〜1. 0であることを特徴とする 請求項 20〜22のいずれかに記載のフィラーレンズ。
24. 前記フイラ一は、 真円度が 80 %以上の球であることを特徴とする請求 項 20〜23のいずれかに記載のフィラーレンズ。
25. 前記フィラーの屈折率が 1. 42〜1. 55であることを特徴とする請 求項 20〜24のいずれかに記載のフィラーレンズ。
26. 前記基体は、 全光線透過率が 85 %以上の透明基体であることを特徴と する請求項 20〜 25のいずれかに記載のフィラーレンズ。
27. 前記フイラ一の周縁部に、 結着層の盛り上がり部分を設けたことを特徴 とする請求項 1に記載のフイラ一レンズ。
28. 前記フイラ一層は、 フイラ一が単層で埋め込まれ形成されたものである ことを特徴とする請求項 27に記載のフィラ一レンズ。
2 9. 前記フイラ一は、 有機フィラーであることを特徴とする請求項 28に記 載のフィラーレンズ
30. 前記フィラーの個数平均粒子径が 2〜 1 0 mであることを特徴とする 請求項 28または 2 9に記載のフィラーレンズ。
3 1. 前記フイラ一は、 粒子径分布が 0. 8〜 1. 0であることを特徴とする 請求項 2 8〜30のいずれかに記載のフィラーレンズ。
32. 前記フイラ一は、 真円度が 80 %以上の球であることを特徴とする請求 項 28〜 3 1のいずれかに記載のフィラーレンズ。
33. 前記フイラ一は、 前記結着層に、 その直径の 30〜 90 %埋め込まれて いることを特徴とする請求項 28〜32のいずれかに記載のフィラーレンズ。
34. 基体の全光線透過率が 8 5 %以上の透明基体であることを特徴とする請 求項 2 7〜33のいずれかに記載のフィラ一レンズ。
3 5. 前記フイラ一の屈折率が 1. 42〜1. 5 5であることを特徴とする請 求項 28〜 34のいずれかに記載のフィラーレンズ。
36. 前記結着層は、 硬化制限された硬化剤により硬化されていることを特徴 とする請求項 1に記載のフィラーレンズ。
37. 前記硬化制限された硬化剤は、 ブロック化された硬化剤またはカプセル 化された硬化剤であることを特徴とする請求項 36に記載のフィラーレンズ。
38. 前記硬化制限された硬化剤は、 ブロックイソシァネート化合物であるこ とを特徴とする請求項 36または 3 7に記載のフィラ一レンズ。
3 9 . 前記フイラ一は、 面方向で高密度に、 かつ単層で埋め込まれることを特 徴とする請求項 3 6〜3 8のいずれかに記載のフィラーレンズ。
4 0 . 前記フイラ一は、 前記結着層に、 その直径の 1 0〜 9 0 %埋め込まれる ことを特徴とする請求項 3 6〜 3 9のいずれかに記載のフィラーレンズ。
4 1 . 前記請求項 1〜4 0のいずれかに記載のフィラーレンズを製造する方法 であって、 基体上に、 直接または他の層を介して結着層を積層する工程と、 フィ ラーを加圧媒体によって結着層に埋め込む工程と、 前記工程で得た積層体に付着 した余剰フイラ一を除去する工程とを具備することを特徴とするフィラーレンズ の製造方法。
4 2 . 前記請求項 2 0〜 2 6のいずれかに記載のフイラ一レンズを製造する方 法であって、 前記基体上に直接または他の層を介して結着層を積層する工程の後 に、 前記結着層を硬化させゲル分率を 6 0 %以上にする工程を有し、 前記フイラ —を加圧媒体によって結着層に埋め込む工程では、 フィラーの突出の割合が 5 0 %以上となるように埋め込むことを特徴とする請求項 4 1に記載のフィラーレン ズの製造方法。
4 3 . 前記請求項 2 7〜3 5のいずれかに記載のフィラーレンズを製造する方 法であって、 前記余剰フイラ一を除去する工程の後に、 前記工程で得た積層体に おいて結着層を軟化させる工程を有することを特徴とする請求項 4 1に記載のフ ィラーレンズの製造方法。
4 4 . 前記請求項 3 6〜4 0のいずれかに記載のフィラーレンズを製造する方 法であって、 前記フイラ一を加圧媒体によって結着層に埋め込む工程の後に、 前 記結着層を硬化する工程を有することを特徴とする請求項 4 1に記載のフィラー レンズの製造方法。
4 5 . 前記フィラーを加圧媒体によって結着層に埋め込む工程の前に、 フイラ —を結着層の表面に付着させる工程を有することを特徴とする請求項 4 1〜4 4 のいずれかに記載のフィラーレンズの製造方法。
4 6 . 前記加圧媒体は粒状物であり、 この加圧媒体を振動させて前記フィラー を打撃することにより、 当該フィラーを前記結着層に埋め込むことを特徴とする 請求項 4 1〜4 5のいずれかに記載のフィラーレンズの製造方法。
4 7 . 前記粒状物は、 直径が 2 mm以下であることを特徴とする請求項 4 6に 記載のフィラーレンズの製造方法。
4 8 . 余剰フィラーを除去する工程において、 水または水溶液を用いて除去す ることを特徴とする請求項 4;!〜 4 7のいずれかに記載のフィラ一レンズの製造 方法。
PCT/JP1999/006703 1998-12-09 1999-11-30 Lentille a microbilles et son procede de fabrication WO2000034806A1 (fr)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP10/350446 1998-12-09
JP35044698A JP3587437B2 (ja) 1998-12-09 1998-12-09 フィラーレンズの製造方法
JP11/246136 1999-08-31
JP24613699A JP3734387B2 (ja) 1999-08-31 1999-08-31 フィラーレンズ及びその製造方法
JP11/276554 1999-09-29
JP27655499A JP2001100012A (ja) 1999-09-29 1999-09-29 フィラーレンズおよびその製造方法
JP28079899A JP2001228311A (ja) 1999-09-30 1999-09-30 フィラーレンズ及びその製造方法
JP11/280798 1999-09-30
JP28145299A JP2001108805A (ja) 1999-10-01 1999-10-01 フィラーレンズ及びその製造方法
JP11/281452 1999-10-01
JP28476899A JP2001108806A (ja) 1999-10-05 1999-10-05 フィラーレンズおよびその製造方法
JP11/284768 1999-10-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09601329 A-371-Of-International 2000-09-25
US10/351,302 Division US20030165666A1 (en) 1998-12-09 2003-01-27 Filler lens and production method therefor

Publications (1)

Publication Number Publication Date
WO2000034806A1 true WO2000034806A1 (fr) 2000-06-15

Family

ID=27554169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006703 WO2000034806A1 (fr) 1998-12-09 1999-11-30 Lentille a microbilles et son procede de fabrication

Country Status (3)

Country Link
US (1) US20030165666A1 (ja)
KR (1) KR100429098B1 (ja)
WO (1) WO2000034806A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085916A1 (ja) * 2004-03-03 2005-09-15 Kimoto Co., Ltd. 光制御フィルムおよびそれを用いたバックライト装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4499329B2 (ja) * 1999-08-25 2010-07-07 日立化成工業株式会社 接着剤、配線端子の接続方法及び配線構造体
JP4759245B2 (ja) * 2004-10-22 2011-08-31 出光興産株式会社 ポリカーボネート系光拡散性樹脂組成物
JP4914027B2 (ja) * 2005-06-08 2012-04-11 出光興産株式会社 光拡散性ポリカーボネート系樹脂組成物、および同樹脂組成物を用いた光拡散板
DE102006000993B4 (de) * 2006-01-05 2010-12-02 Merck Patent Gmbh OLEDs mit erhöhter Licht-Auskopplung
FR2899513B1 (fr) * 2006-04-10 2012-05-11 Textiles Plastiques Chomarat Procede de fabrication d'un complexe incluant une couche de support presentant une texture specifique
TWI354807B (en) * 2007-06-12 2011-12-21 Eternal Chemical Co Ltd Optical film
US20110141596A1 (en) * 2009-12-13 2011-06-16 Shih Yu Chen High reflection ratio material
US20120230740A1 (en) * 2011-03-11 2012-09-13 Ricoh Company, Ltd. Intermediate transfer belt and image forming apparatus using the same
EP2817153A4 (en) * 2012-02-22 2016-07-20 3M Innovative Properties Co MICROSPHERES ARTICLES AND ARTICLES OF TRANSFER
US20180313985A1 (en) * 2015-09-30 2018-11-01 Sekisui Plastics Co., Ltd. Molded article made of light-diffusing resin composition and use thereof
JP6892655B2 (ja) * 2019-11-01 2021-06-23 ユニチカスパークライト株式会社 再帰性反射性材料
CN114907604A (zh) * 2022-04-29 2022-08-16 深圳市华星光电半导体显示技术有限公司 减反膜及其制作方法以及显示面板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304604A (ja) * 1996-05-14 1997-11-28 Nitto Denko Corp 光拡散フィルムおよびそれを用いた面光源装置
JPH1048754A (ja) * 1996-05-30 1998-02-20 Sony Corp 背面投射型映像表示装置
JPH10206973A (ja) * 1997-01-20 1998-08-07 Nitto Denko Corp 透過型スクリーン

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2539491Y2 (ja) * 1991-10-09 1997-06-25 惠和商工株式会社 光拡散シート材
US4265938A (en) * 1978-09-21 1981-05-05 Alcan Research & Development Limited Retro-reflecting sheet material and method of making same
US4569857A (en) * 1979-10-01 1986-02-11 Minnesota Mining And Manufacturing Company Retroreflective sheeting
US4950525A (en) * 1983-04-11 1990-08-21 Minnesota Mining And Manufacturing Company Elastomeric retroreflective sheeting
EP0582999B1 (en) * 1992-08-10 1997-02-05 Intermetallics Co., Ltd. Method for forming a coating
JPH0727905A (ja) * 1993-07-14 1995-01-31 Keiwa Shoko Kk 反射シート材
US5563738A (en) * 1993-09-03 1996-10-08 Jenmar Visual Systems Light transmitting and dispersing filter having low reflectance
US5417515A (en) * 1994-05-20 1995-05-23 Minnesota Mining And Manufacturing Company Retroreflective article with dual reflector
US5650213A (en) * 1994-11-30 1997-07-22 Reflective Technologies, Inc. Retroreflective composition
JPH08220310A (ja) * 1995-02-08 1996-08-30 Reiko Co Ltd 光拡散フイルム
JPH095508A (ja) * 1995-06-22 1997-01-10 Fuji Photo Film Co Ltd 光学フイルムの製造方法
US5631064A (en) * 1995-09-15 1997-05-20 Minnesota Mining And Manufacturing Company Retroreflective transfer sheet and applique
JP3330269B2 (ja) * 1995-11-17 2002-09-30 三菱レイヨン株式会社 透過型スクリーン用拡散板
US5888695A (en) * 1995-11-20 1999-03-30 Aluminum Company Of America Lithographic sheet material including a metal substrate, thermoplastic adhesive layer and mineral or metal particles
US6262840B1 (en) * 1996-05-30 2001-07-17 Sony Corporation Plano lens, rear-projection type projector screen employing the same, and rear-projection type video display apparatus
JP3829358B2 (ja) * 1996-05-30 2006-10-04 ソニー株式会社 平面型レンズとその製造方法
JPH1010304A (ja) * 1996-06-25 1998-01-16 Keiwa Shoko Kk 光拡散シート
KR100662534B1 (ko) * 1999-07-15 2006-12-28 가부시키가이샤 도모에가와 세이시쇼 분체 단층 피막 형성방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304604A (ja) * 1996-05-14 1997-11-28 Nitto Denko Corp 光拡散フィルムおよびそれを用いた面光源装置
JPH1048754A (ja) * 1996-05-30 1998-02-20 Sony Corp 背面投射型映像表示装置
JPH10206973A (ja) * 1997-01-20 1998-08-07 Nitto Denko Corp 透過型スクリーン

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085916A1 (ja) * 2004-03-03 2005-09-15 Kimoto Co., Ltd. 光制御フィルムおよびそれを用いたバックライト装置
CN100409037C (zh) * 2004-03-03 2008-08-06 木本股份有限公司 光控制薄膜以及使用了它的背照光装置
US7699503B2 (en) 2004-03-03 2010-04-20 Kimoto Co., Ltd. Light control film and backlight unit using the same

Also Published As

Publication number Publication date
US20030165666A1 (en) 2003-09-04
KR100429098B1 (ko) 2004-04-29
KR20010040828A (ko) 2001-05-15

Similar Documents

Publication Publication Date Title
TWI429725B (zh) 光學機能性薄膜用之黏著劑、附有黏著劑之光學機能性薄膜及其製法
KR100447671B1 (ko) 광학시트 및 그 제조방법
TWI428422B (zh) 光學機能性薄膜貼合用黏著劑、光學機能性薄膜及其製法
KR101066635B1 (ko) 광학 시트
EP3075800A1 (en) Coating material composition, and light-diffusing member manufactured using said coating material composition
KR100662534B1 (ko) 분체 단층 피막 형성방법
JP2007011303A (ja) 遮光層付フライアイレンズシートおよびその製造方法、透過型スクリーンならびに背面投影型画像表示装置
WO2000034806A1 (fr) Lentille a microbilles et son procede de fabrication
JP2007203712A (ja) 積層フィルム及びその製造方法、並びに積層フィルムを用いた光学シート及び表示装置
JP2005181564A (ja) 表面保護膜およびこれを用いた表面保護フィルム
JP2007233329A (ja) 光拡散シート用コーティング材及び光拡散シート
WO2007020870A1 (ja) 光拡散シート用コーティング材及び光拡散シート
JP3741415B2 (ja) 光学シート
KR20090103756A (ko) 플라즈마 디스플레이용 감압 접착제 조성물 및 그것을 성형해서 이루어진 점착 시트
KR20160072329A (ko) 고투명 배리어 필름
JP7104742B2 (ja) 工程用再剥離型の粘着シート
JP3509703B2 (ja) 光学シートおよびその製造方法
JP2001108806A (ja) フィラーレンズおよびその製造方法
JP3587437B2 (ja) フィラーレンズの製造方法
TW202103965A (zh) 防眩性積層體
JP2001100012A (ja) フィラーレンズおよびその製造方法
JP2001108805A (ja) フィラーレンズ及びその製造方法
TW421720B (en) Filler lens and process for producing it
JP2019200400A (ja) モアレ抑制フィルム、モアレ抑制フィルム積層体、モアレ抑制フィルムを備えた複合表示装置
JP2001228311A (ja) フィラーレンズ及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

WWE Wipo information: entry into national phase

Ref document number: 1020007008723

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09601329

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020007008723

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007008723

Country of ref document: KR