WO2000025012A1 - Kohlenstoffkolben für eine brennkraftmaschine - Google Patents

Kohlenstoffkolben für eine brennkraftmaschine Download PDF

Info

Publication number
WO2000025012A1
WO2000025012A1 PCT/DE1999/003379 DE9903379W WO0025012A1 WO 2000025012 A1 WO2000025012 A1 WO 2000025012A1 DE 9903379 W DE9903379 W DE 9903379W WO 0025012 A1 WO0025012 A1 WO 0025012A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
axis
hub
cylinder
crown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/DE1999/003379
Other languages
German (de)
English (en)
French (fr)
Inventor
Peter Greiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7885251&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2000025012(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to JP2000578551A priority Critical patent/JP2002528669A/ja
Priority to DE59909956T priority patent/DE59909956D1/de
Priority to EP99960799A priority patent/EP1042601B1/de
Priority to US09/581,581 priority patent/US6883418B1/en
Publication of WO2000025012A1 publication Critical patent/WO2000025012A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/02Pistons  having means for accommodating or controlling heat expansion
    • F02F3/022Pistons  having means for accommodating or controlling heat expansion the pistons having an oval circumference or non-cylindrical shaped skirts, e.g. oval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0084Pistons  the pistons being constructed from specific materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0448Steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/042Expansivity

Definitions

  • the invention relates to a piston made of carbon for an internal combustion engine with the preamble of claim 1. Furthermore, the invention relates to various pairings of such a carbon piston with cylinders made of different materials.
  • mesophase is a raw material which, as an intermediate product in the liquid phase pyrolysis of hydrocarbons, preferably originates from coal and petroleum-derived pitches, and consists of polyaromatics. From these polyaromatics, mesophase spherulites with a particle size in the ⁇ -range are formed by carbonizing and graphitizing, which Represent material grains. This enables bending strengths of over 200 MPa to be achieved.
  • the object of the present invention is therefore to propose a carbon piston for internal combustion engines, which allows it to take the place of the standard aluminum pistons with the usual required service life, in particular for cars and trucks, without the reduced density of carbon in the Compared to aluminum and the lower thermal expansion achievable advantages.
  • the piston crown thicknesses are now 15 to 20% higher, ie. H. for petrol engines at 0.084D and for diesel engines at 0.12D to 0.3D.
  • the design of the piston skirt also differs from that of the aluminum piston.
  • the cross section is also enlarged in the skirt area, so that the temperature field prevailing in the piston is changed as a result of the reinforced connection of the piston shaft via the ring section to the piston crown.
  • the wall thickness of the piston skirt is approximately 0.05D to 0.075D, preferably approximately 0.056D to 0.07D.
  • the axial profile of the piston skirt outer surface in the area of the hub must be clearly spherical in the case of aluminum pistons in order to master the different expansion behavior compared to the cooler cylinder wall, this sphericity can be dispensed with in the carbon piston according to the invention.
  • the outer surface of the piston skirt can therefore advantageously be designed as a conical surface, the generatrix of which runs in a straight line between the connection to the ring section and the lower skirt edge.
  • the deviation of this conical surface from a cylindrical surface is considerably smaller than in the described profile of an aluminum piston, i. H. the diameter of the piston skirt when connecting to the ring section is only 0.075 to 0.8% less than the diameter at the lower skirt edge.
  • the carbon piston according to the invention it is possible with the carbon piston according to the invention to use as piston rings those which are also used with the aluminum pistons.
  • it is advantageous to also use carbon piston rings with the carbon pistons since different expansion behavior need not be taken into account here.
  • the described flexural strength and the modulus of elasticity of the carbons available today make it possible to form the piston rings in one piece in the same way and to mount them, as is known from metallic piston rings.
  • the piston rings made of carbon can be reduced in cross-section by 10 to 15% in comparison to the metallic piston rings, and due to the thermal expansion behavior which corresponds to the piston, considerably smaller axial clearances of the piston rings to the groove flanks can also be selected in the ring grooves.
  • the known increase in strength in the case of carbon with increasing temperature also makes it possible to dispense with separate ring supports or the like, even with the piston ring in the ring groove closest to the top land.
  • radii can be provided which are in the order of about 20 to 50% of the groove width.
  • the described design of the carbon piston according to the invention also has an effect on the design of the hub for the piston pin.
  • the bore for the piston pin can be made purely cylindrical, deviating from the known designs for aluminum pistons, because stress peaks in the bore surfaces are reduced due to the material-related damping. Additional holes for the oil supply to the piston pin are not necessary, because even if a Piston pin made of hardened steel or a piston pin made of ceramic (silicon nitride) slide well on carbon.
  • the carbon piston according to the invention can also be combined with different cylinder running surfaces.
  • the installation clearance of the piston to be observed when cold depends on the material selected for the cylinder barrel surface.
  • the games are less when using cylinder treads made of ceramic and become larger with metallic cylinder treads made of aluminum, cast iron or steel.
  • different thermal expansion coefficients of the cylinder surfaces can largely be compensated for by their more or less strong cooling.
  • Figure 1 is a partial section along the line I-I in Figure 3 with a partial view of the piston outer surface.
  • Figure 2 is a partial section along the line II-II in Figure 3 with a partial view of the piston outer surface.
  • FIG. 3 shows a section along the line III-III in Fig. 1.
  • FIG. 4 shows an axial section of a further embodiment of a piston according to the invention.
  • FIG. 5 shows a section corresponding to FIG. 2 of a further embodiment of a piston according to the invention
  • FIG. 6 shows an axial section analogous to FIG. 4 of a further embodiment of a piston according to the invention
  • Fig. 7 is a partial view of the piston of FIG. 6, seen in the direction of arrow VII in Fig. 6, and
  • Fig. 8 is a diagram showing the profile of a carbon piston according to the invention and its play against the cylinder surface.
  • the piston for a diesel engine shown in FIGS. 1 to 3 has, in a conventional manner, a piston crown 1, a top land 2, a ring section 3 and a piston skirt 4.
  • a trough 11 is formed on the upper side of the piston head 1.
  • a diametrically opposite hub bore 5 for a piston pin opens into the lateral surface 41 of the piston skirt 4 and extends into hub thickenings 51 extending from the inner wall 42 of the piston skirt 4.
  • the hub bore 5 has a transverse axis 53 which corresponds to the piston pin axis.
  • three ring grooves 31 are formed for piston rings, not shown, of which the lowermost ring groove serves to receive an oil scraper ring.
  • an outlet opening 32 is provided in the lower groove flank of the annular groove 31 for the oil scraper ring, in the circumferential direction of the piston, in addition to the hub bore 5, which opens into a flat oil pocket 33 in the outer surface of the piston shaft 4.
  • the oil pocket 33 has a depth of, for example, 3 mm in the vicinity of the oil drain opening 32 and runs in an arc outside the hub thickening 54 surrounding the hub bore 5. Their depth decreases at the lower end tapering to the lateral surface 41.
  • the underside 12 of the piston head 1 has an arch-like surface, which in the exemplary embodiment shown is approximately a circular cylinder surface, the cylinder axis (not shown) of which intersects the piston axis at right angles.
  • the piston crown lower surface 12 is formed by a straight line which is perpendicular to the plane of the drawing in FIG. 2 and merges into the opposite end faces 55 of the hub thickenings 51 (FIG. 1). Between the two opposite hub thickenings 51, the piston crown lower surface 12 runs with the radius of the circular cylinder, and adjoins the inner wall 42 of the piston skirt 4 with a rounded radius. This transition extends beyond the lower end of the ring section 3, on which the piston skirt 4 is attached.
  • the diameter of the piston crown 1, that is to say the piston diameter D, is 86.835 mm in the exemplary embodiment shown; the thickness of the piston crown 1, starting from the upper edge of the top land 2 and without taking into account the recess 11 at the apex of the piston crown lower surface 12, is 22 mm.
  • the total height of the Piston from the upper edge of the top land 2 to the lower shaft edge 44 is 76.3 mm, the piston skirt 4 having a jacket thickness of 7.5 mm. This results in a piston crown thickness of 0.25D, ie a ratio that for a diesel engine piston of this size is considerably higher than the corresponding value of an aluminum or cast iron piston.
  • Fig. 4 shows in longitudinal section a carbon piston with a combustion chamber bowl for a direct injection diesel engine.
  • the piston crown lower surface 12 represents a vaulted surface which, in deviation from the embodiment according to FIGS. 1 to 3, is not a practically continuous circular cylinder surface up to the inner wall of the piston, but rather - three circular cylindrical surfaces - transverse to the piston pin axis put together.
  • the major part a of this surface has a radius R, the center A of which lies on the piston axis 14.
  • the two opposite surface sections b which are symmetrical with respect to the piston center plane lying in the piston pin axis, on the other hand have a radius Rt > , the center point B of which lies on a transverse axis intersecting the piston pin axis. It goes without saying that the surface sections b each have a shorter extension perpendicular to the plane of the drawing in FIG. 4 than the central surface section a because they have to run into the inner wall of the piston skirt with a transition radius.
  • the piston according to FIG. 4 has a diameter of 68.87 mm.
  • the radii R a and R in this case are 41 and 12 mm, respectively.
  • the embodiment of the piston according to FIG. 5 corresponds approximately in size and design to that according to FIG. 4. It differs therefrom and from the embodiment according to FIGS. 1 to 3 in that in addition to the drain opening 32 'in the lower groove flank of the annular groove 31 'several in that Drain bores 35 leading inside the piston are provided. These support the oil drainage through the outer oil pocket 33 '.
  • the piston according to FIGS. 6 and 7, like that according to FIG. 4, has a combustion chamber trough at the top of the piston head and is also intended for a direct-injection diesel engine.
  • the piston crown lower surface 112 forms a partial surface of an ellipsoid of revolution whose axis of rotation 113 coincides with the piston axis 114.
  • the large main axis 115 of the ellipsoid of revolution runs at right angles to the piston axis 114 and at the same time also at right angles to the axis 153 (FIG.
  • the hub bore 105 which is also the pin axis of the piston pin (not shown).
  • the major major axis 115 intersects the axis 153 of the hub bore 105 and at the same time the piston axis 114.
  • the center M of the ellipsoid of revolution coincides with the intersection of the piston axis 114 and the axis 153 and corresponds to the partial surface forming the piston crown underside 113 thus largely half the spherical surface of the ellipsoid of revolution.
  • Rotationselipsoids be approximated by the surface of a spherical cap of radius R 'a, which is followed in each case 115 connects to the two ends of the large major axis of the area of a half-spherical dome with radius R' b.
  • the center point A 'for the radius R' a lies on the piston axis 114; the center point B 'for the radii R'b lies in each case on the major axis 115.
  • the radius R'a which essentially corresponds to the surface course of the Piston bottom underside 112 determined can be according to the formula
  • ri denotes the distance of the center M from the piston crown underside 112; ri m in is thus the smallest distance of the center M from the piston crown underside, measured along the piston axis 114.
  • d denotes the diameter of the inner wall 142 of the piston skirt 104 at the height of the major axis 115, here equivalent to the height of the axis 153 Hub bore 105.
  • the position of the center point can be determined A 'on the piston axis 114 and the position of the center points B' on the main axis 115 are determined in each case.
  • D nominal piston diameter
  • the lowest annular groove in the ring section 103 is sufficiently far above the curved piston crown underside so as not to impair the flow of force and heat at this point by reducing the cross section.
  • transitions between the partial spherical surfaces produced in this way are smoothed by transition surfaces to the surface of an ellipsoid of revolution.
  • the piston crown lower surface 112 extends in the direction of the axis 153 of the hub bore 105 over a shorter distance than transversely thereto, because in the area of the hub thickenings 151 it must be taken into account that there is still sufficient clearance for the connecting rod eye.
  • the transitions to the hub thickenings 151 are each rounded.
  • the inner contour of the piston crown in the piston according to the invention differs significantly from the inner contour of conventional aluminum pistons, in which the piston crown is essentially plate-shaped and is only rounded in the transition to the top land and to the ring section carrying the piston rings.
  • the resistance moments of the piston crown corresponding to the resistance moments of hollow elliptical bodies with a constant cavity ratio can be approximated and calculated using the formula:
  • r a max D / 2. 6
  • the elliptical hollow body on which this calculation is based is shown with cross hatching.
  • both the piston crown thickness and the skirt wall thickness s can be selected at the lower limit of the specified design ranges.
  • the calculation of the section modulus of the piston crown the calculation of the section modulus of hollow elliptical bodies with constant wall thickness can be done using the simplified formula
  • transition surfaces are only indicated qualitatively by contour lines 116, which are created by cross sections transverse to the piston axis 114.
  • the dashed profile of the piston skirt starts from the lower edge of the ring section 3, runs largely in a straight line towards the lower shaft edge 44, ie a conical surface without the crowning required for aluminum pistons results. Furthermore, it can be seen that with this carbon, because of the higher thermal load to be expected, the top land 2 does not have a cylindrical but a conical outer surface. However, no ovality is foreseen in its area.
  • the installation clearance of the piston in the cold state is 0.010 to 0.035% of the piston diameter, this value being defined transversely to the piston pin axis if the piston already has an ovality due to its size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
PCT/DE1999/003379 1998-10-22 1999-10-21 Kohlenstoffkolben für eine brennkraftmaschine Ceased WO2000025012A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000578551A JP2002528669A (ja) 1998-10-22 1999-10-21 内燃機関用カーボンピストン
DE59909956T DE59909956D1 (de) 1998-10-22 1999-10-21 Kohlenstoffkolben für eine brennkraftmaschine
EP99960799A EP1042601B1 (de) 1998-10-22 1999-10-21 Kohlenstoffkolben für eine brennkraftmaschine
US09/581,581 US6883418B1 (en) 1998-10-22 1999-10-21 Carbon piston for an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19848649.9 1998-10-22
DE19848649A DE19848649C5 (de) 1998-10-22 1998-10-22 Kohlenstoffkolben für eine Brennkraftmaschine

Publications (1)

Publication Number Publication Date
WO2000025012A1 true WO2000025012A1 (de) 2000-05-04

Family

ID=7885251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/003379 Ceased WO2000025012A1 (de) 1998-10-22 1999-10-21 Kohlenstoffkolben für eine brennkraftmaschine

Country Status (6)

Country Link
US (1) US6883418B1 (enExample)
EP (1) EP1042601B1 (enExample)
JP (1) JP2002528669A (enExample)
DE (2) DE19848649C5 (enExample)
ES (1) ES2222045T3 (enExample)
WO (1) WO2000025012A1 (enExample)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7117828B2 (en) 2001-07-25 2006-10-10 Shuttleworth Axial Motor Company Limited Axial motors
WO2012097893A1 (de) 2011-01-21 2012-07-26 Geist, Bertwin Hubkolben für eine hubkolbenmaschine sowie hubkolbenmaschine, sowie zylinder einer hubkolbenmaschine

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19952097B4 (de) * 1999-10-29 2005-09-08 Daimlerchrysler Ag Brennkraftmaschine
GB2429991A (en) * 2005-09-07 2007-03-14 Alan Barrows Water powered impulsive unit
US7293497B2 (en) * 2005-11-03 2007-11-13 Dresser, Inc. Piston
US7302884B2 (en) * 2005-11-03 2007-12-04 Dresser, Inc. Piston
DE102006038180A1 (de) 2006-08-14 2008-02-21 Peter Greiner Kohlenstoffkolben für eine Brennkraftmaschine
JP2008144638A (ja) * 2006-12-08 2008-06-26 Across Corp ピストン
WO2008092294A1 (fr) * 2007-01-17 2008-08-07 Dennis Tien Lam Piston de moteur à combustion interne
DE102007060473A1 (de) 2007-12-14 2009-06-18 Mahle International Gmbh Bolzennabe sowie damit versehener Kolben für einen Verbrennungsmotor
DE102009017609A1 (de) 2009-04-08 2010-10-21 Golle Motor Ag Schmierölfreie Kolben/Zylinder-Gruppe für Kolbenmaschinen
FR2957337B1 (fr) 2010-03-15 2012-07-13 Ind Dev Etude Construction Machine de retournement automatique d'objets conditionnes sur claies
US20120085313A1 (en) * 2010-10-12 2012-04-12 Reisser Heinz-Gustav A Piston-head design for use in an internal combustion engine
US20130269666A1 (en) * 2011-08-12 2013-10-17 Mcalister Technologies, Llc Combustion chamber inserts and associated methods of use and manufacture
JP7137786B2 (ja) * 2018-09-25 2022-09-15 スズキ株式会社 内燃機関のピストン
DE102021208696B4 (de) * 2021-08-10 2024-07-25 Federal-Mogul Nürnberg GmbH Kolben für einen Verbrennungsmotor
DE102021134520A1 (de) 2021-12-23 2023-06-29 Newgreen Ag Kolben, Kurbeltrieb sowie Hubkolben-Verbrennungsmotor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2084696A (en) * 1980-09-30 1982-04-15 Alcan Aluminiumwerke Piston for an internal combustion engine
US4450610A (en) * 1980-10-24 1984-05-29 Audi Nsu Auto Union Aktiengesellschaft Method of making a piston
DE3406479A1 (de) * 1984-02-23 1985-08-29 Sigri Elektrographit Gmbh, 8901 Meitingen Kolben fuer brennkraftmaschinen und verfahren zur herstellung des kolbens
DE3605918A1 (de) * 1985-02-25 1986-08-28 Peter Greiner Zweitaktmotor
EP0258330A1 (de) 1986-02-25 1988-03-09 Peter Greiner Kolbenmotor.
US4736676A (en) * 1986-07-30 1988-04-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Composite piston
EP0420618A1 (en) * 1989-09-28 1991-04-03 Nissan Motor Co., Ltd. Piston for internal combustion engine
US5054375A (en) * 1989-06-19 1991-10-08 Aisin Seiki Kabushiki Piston for internal combustion engine
EP0752525A1 (en) * 1995-07-07 1997-01-08 Isuzu Motors Limited Piston

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1467255A (en) * 1922-04-17 1923-09-04 Thomson John Engine piston
US1514022A (en) * 1924-01-24 1924-11-04 Smith Sydney Piston
GB364787A (en) * 1930-12-08 1932-01-14 Harry Noel Bates Improvements in pistons
DE1062486B (de) * 1954-01-13 1959-07-30 Augsburg Nuernberg A G Zweigni Zwangsumlaufschmierung und -kuehlung fuer den Arbeitskolben von Brennkraftmaschinen
US3613521A (en) * 1968-11-07 1971-10-19 Komatsu Mfg Co Ltd Piston for internal combustion engine
DE2046862A1 (de) * 1970-09-23 1972-03-30 Dr.Ing.H.C. F. Porsche Kg, 7000 Stuttgart Oberflächenbeschichtung für einen aus einer Magnesiumlegierung bestehenden Kolben von Brennkraftmaschinen
US4074616A (en) * 1975-09-02 1978-02-21 Caterpillar Tractor Co. Aluminum piston with steel reinforced piston ring grooves
GB1560792A (en) * 1976-03-31 1980-02-13 Perkins Engines Ltd Pistons for internal combustion engines
US4137887A (en) * 1976-06-11 1979-02-06 Perkins Engines Limited Pistons for internal combustion engines
GB1583019A (en) * 1978-05-31 1981-01-21 Ass Eng Italia Aluminium alloys and combination of a piston and cylinder
JPS54163208A (en) * 1978-06-15 1979-12-25 Toyota Motor Co Ltd Builttup piston for engine
JPS5922272Y2 (ja) * 1978-06-27 1984-07-03 株式会社リケン ピストン
DE2912786B1 (de) * 1979-03-30 1980-05-14 Audi Nsu Auto Union Ag Kolben fuer Brennkraftmaschinen sowie Verfahren zur Herstellung des Kolbens
JPS5856112A (ja) 1981-09-30 1983-04-02 Fujitsu Ltd スイツチング・レギユレ−タ
JPS5856112U (ja) * 1981-10-12 1983-04-16 株式会社クボタ 内燃機関のピストン冷却装置
JPS58130054A (ja) 1982-01-29 1983-08-03 株式会社アドバンス イオントフオレ−ゼ用プラスタ−構造体
JPS58130054U (ja) * 1982-02-26 1983-09-02 ヤンマーディーゼル株式会社 内燃機関のピストン
JPS5922272A (ja) 1982-07-26 1984-02-04 Sankyo Seiki Mfg Co Ltd デイスクのクランプ装置
DE3240224A1 (de) * 1982-09-08 1984-03-08 Alcan Aluminiumwerk Nürnberg GmbH, 6000 Frankfurt Kolben fuer brennkraftmaschinen
DE3301724C2 (de) * 1983-01-20 1986-08-14 Klöckner-Humboldt-Deutz AG, 5000 Köln Leichtmetall-Kolben für eine Brennkraftmaschine mit Brennraummulde im Kolbenboden
JPS6030455A (ja) * 1983-07-29 1985-02-16 Toyota Motor Corp 内燃機関のピストン
HU191095B (en) 1983-09-09 1987-01-28 Egyt Gyogyszervegyeszeti Gyar,Hu Process for the production of 3,5 diamino-1,2,4-triazole-derivatives
JPS60100543U (ja) * 1983-12-15 1985-07-09 トヨタ自動車株式会社 内燃機関のピストン構造
JPH0610452B2 (ja) * 1983-12-27 1994-02-09 フォ−ド モ−タ− カンパニ− セラミックを収容するように改変されたエンジン装置
JPH0736009B2 (ja) 1984-02-24 1995-04-19 テルモ株式会社 イオン濃度測定装置
JPS60178347U (ja) * 1984-05-04 1985-11-27 トヨタ自動車株式会社 内燃機関用ピストン冷却構造
DE3420571C1 (de) * 1984-06-01 1986-01-09 Alcan Aluminiumwerk Nürnberg GmbH, 6000 Frankfurt Bauteil fuer Verbrennungsmotoren und Verfahren zu dessen Herstellung
JPS6139455A (ja) 1984-07-31 1986-02-25 Toshiba Corp 燃料電池
JPS6139455U (ja) * 1984-08-16 1986-03-12 トヨタ自動車株式会社 オイル冷却ピストン
DE3441713A1 (de) * 1984-11-15 1986-05-22 Mahle Gmbh, 7000 Stuttgart Tauchkolben fuer verbrennungsmotoren
DE3527447A1 (de) * 1985-07-31 1987-02-12 Alcan Aluminiumwerke Kolben aus leichtmetall
DE3638533C1 (en) * 1986-11-11 1988-01-14 Peter Greiner Cylindrical running surfaces
BR8700527A (pt) * 1987-01-29 1988-08-16 Metal Leve Sa Processo de fabricacao de embolo e embolo para motores de combustao interna
DE3843761A1 (de) * 1988-12-24 1990-07-05 Mahle Gmbh Leichter tauchkolben fuer verbrennungsmotoren
JPH06330813A (ja) * 1993-05-21 1994-11-29 Yamaha Motor Co Ltd 2サイクルエンジンのピストン
DE4326978A1 (de) * 1993-08-11 1995-02-16 Alcan Gmbh Kolben für Brennkraftmaschinen, insbesondere für Dieselmotoren
DE9412637U1 (de) * 1994-08-05 1995-11-30 Eisenwerk Brühl GmbH, 50321 Brühl Zylinderblock für eine Brennkraftmaschine mit einem Wassermantel aus Aluminium
DE19547226B4 (de) * 1994-12-23 2004-07-22 Mahle Gmbh Faserverstärktes Leichtmetallbauteil
US5660399A (en) * 1995-08-16 1997-08-26 Northrop Grumman Corporation Piston rings particularly suited for use with ceramic matrix composite pistons and cylinders
KR970062277A (ko) * 1996-02-29 1997-09-12 도오다 고오이찌로 내연 기관용 피스톤
DE19616474A1 (de) * 1996-04-25 1997-08-07 Bayerische Motoren Werke Ag Kolben mit Ringanordnung für Hubkolbenmaschinen, insbesondere Brennkraftmaschinen
DE19643778C2 (de) * 1996-10-23 2000-04-13 Alcan Gmbh Leichtbaukolben

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2084696A (en) * 1980-09-30 1982-04-15 Alcan Aluminiumwerke Piston for an internal combustion engine
US4450610A (en) * 1980-10-24 1984-05-29 Audi Nsu Auto Union Aktiengesellschaft Method of making a piston
DE3406479A1 (de) * 1984-02-23 1985-08-29 Sigri Elektrographit Gmbh, 8901 Meitingen Kolben fuer brennkraftmaschinen und verfahren zur herstellung des kolbens
DE3605918A1 (de) * 1985-02-25 1986-08-28 Peter Greiner Zweitaktmotor
EP0258330A1 (de) 1986-02-25 1988-03-09 Peter Greiner Kolbenmotor.
US4736676A (en) * 1986-07-30 1988-04-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Composite piston
US5054375A (en) * 1989-06-19 1991-10-08 Aisin Seiki Kabushiki Piston for internal combustion engine
EP0420618A1 (en) * 1989-09-28 1991-04-03 Nissan Motor Co., Ltd. Piston for internal combustion engine
EP0752525A1 (en) * 1995-07-07 1997-01-08 Isuzu Motors Limited Piston

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7117828B2 (en) 2001-07-25 2006-10-10 Shuttleworth Axial Motor Company Limited Axial motors
WO2012097893A1 (de) 2011-01-21 2012-07-26 Geist, Bertwin Hubkolben für eine hubkolbenmaschine sowie hubkolbenmaschine, sowie zylinder einer hubkolbenmaschine
DE102011009094A1 (de) 2011-01-21 2012-07-26 Bertwin Geist Hubkolben für eine Hubkolbenmaschine sowie Hubkolbenmaschine, sowie Zylinder einer Hubkolbenmaschine

Also Published As

Publication number Publication date
EP1042601B1 (de) 2004-07-14
DE19848649C2 (de) 2000-09-07
DE59909956D1 (de) 2004-08-19
ES2222045T3 (es) 2005-01-16
EP1042601A1 (de) 2000-10-11
JP2002528669A (ja) 2002-09-03
DE19848649A1 (de) 2000-05-04
DE19848649C5 (de) 2008-11-27
US6883418B1 (en) 2005-04-26

Similar Documents

Publication Publication Date Title
DE19848649C2 (de) Kohlenstoffkolben für eine Brennkraftmaschine
DE2952117C2 (de) Kolbenbolzen
WO2008131739A1 (de) Kolben für einen verbrennungsmotor
EP0356457B1 (de) Leichtmetall-tauchkolben für verbrennungsmotoren
EP0779954A1 (de) Leichtmetallkolben für hochbelastete verbrennungsmotoren
DE19810309A1 (de) Druckring, insbesondere Kolbenring für Aluminiumsylinder sowie Verfahren zu dessen Herstellung
EP0714485A1 (de) Leichtmetallkolben für hochbelastete verbrennungsmotoren
EP2191123A1 (de) Kohlenstoffkolben für eine brennkraftmaschine
EP2162613A1 (de) Kolben einer brennkfraftmaschine mit einer erhöhten schrägstellung der kastenwände des kolbens
DE19752720C2 (de) Verfahren zur Herstellung eines Ölabstreifkolbenrings
AT514076B1 (de) Motorgehäuse einer Brennkraftmaschine sowie damit ausgestattete Brennkraftmaschine
EP1454037A1 (de) Gebautes ventil f r hubkolbenmaschinen
EP3665378A1 (de) Kolben für eine hubkolbenbrennkraftmaschine sowie hubkolbenbrennkraftmaschine
DE2146153A1 (de) Zylinderlaufbuchse fuer einen verbrennungsmotor
WO2021116218A1 (de) Zylinderlaufbuchse für eine brennkraftmaschine
DE10101605B4 (de) Kolben für Brennkraftmaschinen
DE10321034B3 (de) Hubkolbenbrennkraftmaschine
DE3440565A1 (de) Isolierter kolben
DE2135338B2 (de) Kolbenring fuer kolben von verbrennungskraftmaschinen
DE19933036A1 (de) Kühlkanalkolben für eine Verbrennungskraftmaschine
EP0275935A2 (de) Zylinder mit Kolben mit balliger Aussenform
DE3714400A1 (de) Kolben fuer brennkraftmaschinen
WO2021013788A1 (de) Kolben mit reibleistungsreduzierung für eine brennkraftmaschine
DE3243882A1 (de) Kolben fuer verbrennungsmotoren
AT145123B (de) Gleitschuhkolben, insbesondere für Brennkraftmaschinen.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999960799

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09581581

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999960799

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999960799

Country of ref document: EP