WO1999040639A1 - Electrode, son procede de fabrication, et batterie utilisant cette electrode - Google Patents

Electrode, son procede de fabrication, et batterie utilisant cette electrode Download PDF

Info

Publication number
WO1999040639A1
WO1999040639A1 PCT/JP1998/000488 JP9800488W WO9940639A1 WO 1999040639 A1 WO1999040639 A1 WO 1999040639A1 JP 9800488 W JP9800488 W JP 9800488W WO 9940639 A1 WO9940639 A1 WO 9940639A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
battery
conductive material
positive electrode
active material
Prior art date
Application number
PCT/JP1998/000488
Other languages
English (en)
French (fr)
Inventor
Makiko Kise
Shoji Yoshioka
Jun Aragane
Hiroaki Urushibata
Hisashi Shiota
Hideo Horibe
Shigeru Aihara
Daigo Takemura
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP1998/000488 priority Critical patent/WO1999040639A1/ja
Priority to CN98804959A priority patent/CN1129199C/zh
Priority to PCT/JP1998/002854 priority patent/WO1999040640A1/ja
Priority to US09/402,442 priority patent/US6399252B1/en
Priority to JP51764999A priority patent/JP3786973B2/ja
Priority to EP98929695A priority patent/EP0975037A4/en
Priority to KR1019997009103A priority patent/KR20010006025A/ko
Publication of WO1999040639A1 publication Critical patent/WO1999040639A1/ja
Priority to US10/116,029 priority patent/US6773633B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/106PTC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Electrode manufacturing method of this electrode, battery using this electrode
  • the present invention relates to an electrode, a method for manufacturing the electrode, and a battery using the electrode. More specifically, the present invention relates to an electrode whose resistance increases with an increase in temperature, a method for manufacturing the electrode, and a method for manufacturing the electrode. It concerns the batteries used. Background art
  • lithium-ion secondary battery has the advantage of high energy density, but requires sufficient measures for safety due to the use of non-aqueous electrolyte.
  • safety measures have been proposed, such as using a safety valve to release the rise in internal pressure, or incorporating a PTC element into the battery that increases the resistance in response to heat generated by an external short circuit and shuts off current.
  • a method of mounting a safety valve and a PTC element on a positive electrode cap of a cylindrical battery is known.
  • the safety valve operates, moisture in the air can enter the battery, and exothermic reaction may occur if lithium is present at the negative electrode.
  • the PTC element shuts off the external short circuit and there is no adverse effect due to operation.
  • This PTC element is designed to operate when the temperature of the battery reaches 90 (degrees) or higher due to, for example, an external short circuit. It can be a safety component that operates first.
  • the polyethylene or polypropylene separator placed between the positive electrode and the negative electrode softens or melts, blocking the hole in the separator.
  • the non-aqueous electrolyte contained in the separator will be pushed out or sealed, thereby reducing the ionic conductivity of the separator and reducing the short-circuit current. .
  • the separation at a distance from the heat generating area does not always melt. If the temperature rises further, the separator melts and flows, losing the function of electrically insulating the positive and negative electrodes, which may lead to a short circuit.
  • the negative electrode contains a negative electrode active material such as graphite, a binder such as PVDF (polyvinylidene fluoride), and a solvent on a base material such as a copper foil serving as a current collector.
  • a negative electrode active material such as graphite
  • a binder such as PVDF (polyvinylidene fluoride)
  • a solvent on a base material such as a copper foil serving as a current collector.
  • the slurry is applied and dried to form a thin film.
  • the positive electrode is formed as a thin film on a base material such as an aluminum foil serving as a current collector.
  • the positive electrode is one containing a positive electrode active material and the binder one and Shirubedensuke agent such as L i C o 0 2.
  • the conductive additive is used to increase the electron conductivity of the positive electrode when the electron conductivity of the positive electrode active material is poor.
  • the conductive auxiliary agent is, for example, carbon black (eg, acetylene black), graphite (eg, KS-6).
  • the battery temperature of these positive and negative electrodes is more than 100 (degrees) due to internal short-circuits. When the temperature rises, a large short-circuit current is generated, which causes a problem that the temperature of the battery further rises due to heat generation, and the short-circuit current further increases.
  • the present invention has been made in order to solve the above-mentioned problem.
  • An electrode whose resistance increases with an increase in temperature, a method of manufacturing this electrode, and the use of this electrode increases the temperature of the battery due to heat generation.
  • An object of the present invention is to obtain a battery having an electrode that suppresses an increase in short-circuit current.
  • the first electrode according to the present invention comprises: an active material
  • the electronic conductive material contains a conductive filler and a crystalline resin, and is configured so that its resistance increases as the temperature rises. An increase in flowing current can be suppressed.
  • the second electrode according to the present invention is characterized in that a crystalline resin of an electronic conductive material having a melting point in a range of 90 (degrees) to 160 (degrees) is used. .
  • the electronic conductive material since the crystalline resin of the electronic conductive material has a melting point within the range of 90 (degrees) to 160 (degrees), the electronic conductive material has a melting point of 90 (degrees) to 90 (degrees). It is possible to increase the rate of change of resistance around a predetermined temperature in the range of 160 (degrees).
  • the third electrode according to the present invention contains the electronic conductive material in an amount of 0.2 to 15 parts by weight based on 100 parts by weight of the active material. According to this method, since a material containing 0.2 to 15 parts by weight of the electroconductive material with respect to 100 parts by weight of the active material is used, before the phenomenon in which the rate of change in the resistance of the electrode increases increases. The resistance of the electrodes can be reduced.
  • the fourth electrode according to the present invention is characterized in that the ratio of the conductive filler of the electronic conductive material is 40 to 70 parts by weight.
  • the ratio of the conductive filler in the electronic conductive material is set to 40 parts by weight to 70 parts by weight, the rate of change of the resistance of the electrode near a predetermined temperature is large, and The discharge capacity of the battery when applied to the battery can be increased.
  • the fifth electrode according to the present invention is characterized in that the particle size of the electron conductive material is 0.05 (/ I!) To 100 ( ⁇ m).
  • a sixth electrode according to the present invention is characterized in that the conductive filler is a carbon material or a conductive non-oxide.
  • the conductivity of the electrode can be increased.
  • a seventh electrode according to the present invention is characterized in that it includes a conductive auxiliary material.
  • the seventh electrode contains a conductive additive, the resistance of the electrode can be adjusted to an appropriate value even if an electronic conductive material having low electronic conductivity is used.
  • a first battery according to the present invention includes a positive electrode, a negative electrode, and an electrolyte between the positive electrode and the negative electrode.
  • Either the first electrode to the seventh electrode is connected to the positive electrode or the negative electrode. It is characterized by using.
  • any one of the first electrode to the seventh electrode is used for the positive electrode or the negative electrode, when the internal temperature of the battery rises above a predetermined temperature, the resistance of the electrode increases. Since the increase in short-circuit current is suppressed, the safety of the battery is improved.
  • the first method for producing a battery according to the present invention comprises:
  • the method since the method includes the steps (a) to (c), the adhesiveness between the electron conductive material and the active material is increased, so that the resistance of the manufactured electrode can be suppressed low.
  • a second electrode manufacturing method is characterized in that in the first electrode manufacturing method, the predetermined temperature is a melting point of the crystalline resin or a temperature near the melting point.
  • the predetermined temperature is set to the melting point of the crystalline resin or a temperature near the melting point, so that the adhesion between the electronic conductive material and the active material is further improved, and the resistance of the manufactured electrode is further reduced.
  • FIG. 1 is a diagram for explaining the structure of the battery of Example 1, and FIG. 2 shows the volume specific resistance of the electrode, the rate of resistance change, and the discharge capacity of the battery in Example 2.
  • Table, FIG. 3 is a graph showing the relationship between the elapsed time and the battery temperature when performing the nail penetration test in Example 2, and FIG. 4 is the result of performing the nail penetration test in Example 2.
  • FIG. 5 is a graph showing the relationship between the elapsed time and the battery temperature.
  • FIG. 6 is a graph showing the relationship between the ratio of the electronic conductive material and the resistance value of the electrode, and the relationship between the ratio of the electronic conductive material and the discharge capacity in Example 2.
  • FIG. 1 is a diagram for explaining the structure of the battery of Example 1
  • FIG. 2 shows the volume specific resistance of the electrode, the rate of resistance change, and the discharge capacity of the battery in Example 2.
  • Table, FIG. 3 is a graph showing the relationship between the elapsed time and the battery temperature when performing the nail penetration test in Example 2
  • FIG. 7 is a graph showing the relationship between the particle size of the electron conductive material and the volume resistivity of the electrode and the relationship between the particle size of the electron conductive material and the discharge capacity in Example 2.
  • FIG. 9 is a table showing the porosity, volume resistivity, and discharge capacity of the electrode.
  • FIG. 11 is a diagram showing an example of a cylindrical battery.
  • FIG. 1 is a diagram for explaining the battery of the present invention, and is a longitudinal sectional view of the battery.
  • 1 is a positive electrode
  • 2 is a negative electrode
  • 3 is a separator provided between the positive electrode 1 and the negative electrode 2.
  • the positive electrode 1 has a positive electrode current collector 4 and a positive electrode active material layer 6.
  • the negative electrode 2 has a negative electrode current collector 5 and a negative electrode active material layer 7.
  • the positive electrode 1 is obtained by forming a positive electrode active material layer 6 on a surface of a metal film (for example, a metal film of aluminum or the like) serving as a positive electrode current collector 4.
  • a metal film for example, a metal film of aluminum or the like
  • the negative electrode 2 has a negative electrode active material layer 7 formed by molding a negative electrode active material such as carbon particles with a binder on a metal film (for example, a metal film such as copper) serving as a negative electrode current collector 5. It is formed.
  • a negative electrode active material such as carbon particles with a binder on a metal film (for example, a metal film such as copper) serving as a negative electrode current collector 5. It is formed.
  • Separation 3 holds, for example, an electrolyte containing lithium ions.
  • the positive electrode active material layer 6 includes a positive electrode active material 8, an electronic conductive material 9, and a binder 10.
  • Positive electrode active material 8 and electronic conductive material 9 are bound by binder 10 o
  • the positive electrode active material 8 is a particle, and the electron conductive material 9 is a particle having a smaller shape than the positive electrode active material 8.
  • the electronic conductive material 9 contains, for example, a conductive filler and a crystalline resin.
  • the electronic conductive material 9 has such a characteristic that the rate of change of its resistance value becomes large near a predetermined temperature within a range of 90 (degrees) to 160 (degrees), for example. Positive Temperature Coefficient)).
  • the conductive filler is, for example, a carbon material or a conductive non-oxide.
  • Examples of the carbon material include carbon black, graphite, carbon fiber, and metal carbide.
  • the carbon black is, for example, acetylene black, furnace black, lamp black and the like.
  • the conductive non-oxide is, for example, a metal carbide, a metal nitride, a metal silicate, or a metal boride.
  • the metal carbide for example, T i C, Z rC, VC ;, VbC, T a C, M o 2 C, WC, B 4 C, Cr 3 C 2 , etc.
  • Metal nitrides are, for example, TiN, ZrN, VN, NbN, TaN, C r 2 N and so on.
  • the metal borides e.g. T i B 2, Z rB 2 , NbB 2, T aB 2, C rB, Mo B, a WB like.
  • the crystalline resin includes, for example, high-density polyethylene (melting point: 130 (degrees) to 140 (degrees)), low-density polyethylene (melting point: 110 (degrees) to 112 (degrees)), and polyurethane elastomer. (Melting point: 140 (degrees) to 160 (degrees)), polyvinyl chloride (melting point: about 145 (degrees)), and other polymers having a melting point of 90 (degrees) to 160 (degrees). ).
  • the function of the PTC develops by changing the material of the crystalline resin. It is possible to adjust the temperature to between 90 (degrees) and 160 (degrees).
  • This PTC property may be reversible such that it can be expressed two or more times, or it may be reversible such that it returns to the original resistance value once the temperature is reduced after the PTC function has been developed once May be used, or may be non-reversible.
  • the temperature at which the function of the PTC develops is 90 (degrees) or less, from the viewpoint of ensuring safety, but since the resistance of the electrode increases in the temperature range where the battery is normally used, Battery performance is reduced in load factor characteristics.
  • the internal temperature of the battery rises to this temperature, which is not preferable from the viewpoint of safety.
  • the electronic conductive material 9 it is desirable to design the electronic conductive material 9 so that the temperature at which the function of the PTC appears is in the range of 90 (degrees) to 160 (degrees). Since the temperature at which the function of PTc is exhibited depends on the melting point of the crystalline resin, a crystalline resin having a melting point in the range of 90 (degrees) to 160 (degrees) is selected.
  • the magnitude of the resistance of the electrode in a normal state is determined by changing the ratio of the electronic conductive material 9 to the entire positive electrode active material layer 8. Can be adjusted.
  • the crystalline resin contained therein softens, melts, and expands in volume, thereby increasing its own resistance value, thereby exhibiting the function of PTC.
  • the temperature of the positive electrode 1 exhibits the function of PTC in the electronic conductive material 9.
  • the resistance value of the positive electrode active material layer 6 increases.
  • the positive electrode active material layer 6 has the positive electrode active material 8, the electronic conductive material 9, and the binder 10 as an example.
  • the present invention is not limited to this.
  • a conductive auxiliary is further added to the positive electrode active material layer 6. This makes it possible to compensate for this.
  • the electron conductive material 9 is a particle, the shape may be a fiber-like or scale-like small piece. The point is that any shape may be used as long as it has a size such that the electron conductive material 9 can be located between the adjacent positive electrode active materials 8.
  • the configuration of the electron conductive material including the conductive filler and the crystalline resin in the positive electrode 1, particularly the positive electrode active material layer 6, is disclosed.
  • the present invention is not limited thereto. The same effect can be obtained by applying the configuration described above and configuring the battery using the configuration.
  • Example 1 An example of a method of manufacturing the positive electrode 1 and an example of a method of manufacturing the negative electrode 2 shown in Example 1, and an example of a method of manufacturing a battery using the positive electrode 1 and the negative electrode 2 will be described.
  • Electronic conductive materials such as conductive fillers and crystals that have a sufficiently low volume resistivity at room temperature and a large volume resistivity at a temperature higher than a predetermined temperature between 90 (degrees) and 160 (degrees). Is finely ground to obtain fine particles of an electronically conductive material.
  • a method of pulverizing the electronic conductive material it is preferable to use compressed air or compressed inert gas such as nitrogen or argon. Particularly when the particle size is reduced, a supersonic airflow is generated by the above-described method, and in this airflow, powders of the electronic conductive material collide with each other or the powders are applied to a wall surface (not shown). By causing the particles to collide, fine particles of an electron conductive material having a small particle diameter can be obtained (the method of obtaining fine particles by this method is called a jet mill method).
  • the electronically conductive material may be put into a ball mill and rotated to be pulverized. (This gives fine particles The method is called the ball mill method).
  • the fine particles of the electron conductive material, the positive electrode active material (for example, LiCoO 2 ), and the binder (for example, PVDF) are dispersed in a dispersion medium (for example, N-methylbiopenidone (hereinafter abbreviated as NMP)).
  • NMP N-methylbiopenidone
  • the above-mentioned positive electrode active material paste was applied on a current collector base material (for example, a metal film having a predetermined thickness) to be the positive electrode current collector 4.
  • a current collector base material for example, a metal film having a predetermined thickness
  • a positive electrode active material layer 6 having a desired thickness After drying this, it was pressed at a predetermined temperature and a predetermined surface pressure to form a positive electrode active material layer 6 having a desired thickness, and a positive electrode 1 was obtained.
  • the electrode specifically, the positive electrode 1
  • the pressing since the pressing is performed at a predetermined temperature and a predetermined surface pressure, the close contact between the electronic conductive material 9 and the active material (here, the positive electrode active material) is performed.
  • the resistance of the electrode during normal operation can be reduced.
  • the resistance of the manufactured electrode can be adjusted by adjusting the temperature and pressure (here, surface pressure) when pressing the electrode.
  • the predetermined temperature is set to the melting point of the crystalline resin contained in the electronic conductive material or a temperature close to the melting point, the adhesion between the electronic conductive material and the active material is further improved, and the resistance of the electrode in a normal state is reduced. It can be even lower.
  • a predetermined temperature preferably, a melting point or The positive electrode 1 may be obtained by heating the positive electrode active material paste at a temperature near the melting point).
  • Negative active material paste prepared by dispersing mesophase force micro-beads (hereinafter abbreviated as MCMB) and PVDF in NMP It is possible to obtain the negative electrode 2 in which the negative electrode active material layer 7 is formed by coating on a current collector base material (for example, a metal film having a predetermined thickness).
  • Example 1 Next, a method for manufacturing the battery shown in Example 1 will be described.
  • a pair of batteries each having a positive electrode and a negative electrode were obtained by sandwiching a positive electrode and a negative electrode between a positive electrode and a negative electrode obtained by the above method, for example, a porous polypropylene sheet.
  • the battery obtained by the above method has the characteristic that the resistance of the positive electrode rises as the temperature rises, so even if a short circuit accident occurs outside or inside the battery and the battery temperature rises, Since the rise of short-circuit current is suppressed, the safety of the battery itself is improved.
  • Example 2
  • An electronically conductive material with a volume resistivity at room temperature of 0.2 ( ⁇ ⁇ cm) and a volume resistivity at 135 (degrees) of 20 ( ⁇ -cm) are finely pulverized by a jet mill method to obtain fine particles of an electronic conductive material.
  • a positive electrode active material for example, LiCoO 2
  • a binder for example, PVDF
  • pressing is performed at a predetermined temperature (for example, room temperature) and a predetermined surface pressure (for example, 2 (ton / cm 2 )) to obtain a thickness of about A positive electrode active material layer 6 of 100 m was formed, and a positive electrode 1 was obtained.
  • a predetermined temperature for example, room temperature
  • a predetermined surface pressure for example, 2 (ton / cm 2 )
  • Negative active material base prepared by dispersing 90 parts by weight and 10 parts by weight of PVDF in NMP, copper foil of 20 (m) thickness
  • a negative electrode 2 was formed by coating the negative electrode current collector 5 made of the above by a doctor blade method to form a negative electrode active material layer.
  • a porous polypropylene sheet (Celgard # 2400, trade name, manufactured by Hext Co.), which becomes the separator 3, is sandwiched between the positive electrode 1 and the negative electrode 2 obtained by the above-described method, and the two electrodes are attached to each other.
  • a pair of batteries having a positive electrode 1 and a negative electrode 2 were obtained.
  • the electrodes and batteries of the present invention were evaluated using the following methods.
  • Aluminum foil was fused to both sides of the electrode, and the positive side voltage terminal and current terminal were connected to one side of one aluminum foil, and the negative side was connected to the other side of the aluminum foil.
  • the terminals are in contact with each other, and the resistance value is measured by measuring the voltage drop of the element to which a constant current is applied while heating the electrode at a rate of 5 (degrees / minute). Volume specific resistance ( ⁇ ⁇ cm)) was determined. (Capacity test)
  • Both the positive electrode and the negative electrode of the fabricated electrode were cut into a size of 14 (mm) X 14 (mm), and a porous polypropylene sheet (Celgard # 2400 0) was sandwiched between a positive electrode and a negative electrode, and both electrodes were attached to form a battery.
  • the positive and negative current collecting terminals of this battery were attached by spot welding, respectively, -The cell was placed in a bag made from the battery, filled with an electrolyte, and sealed to form a cell. A charge / discharge test at room temperature of this battery was performed.
  • the fabricated electrode was cut into 50 (mm) x 50 (mm) pieces, and a porous polypropylene sheet (Celgard # 2400, a product of Hoechst) was sandwiched between the positive and negative electrodes.
  • a porous polypropylene sheet (Celgard # 2400, a product of Hoechst) was sandwiched between the positive and negative electrodes.
  • Each battery is electrically connected in parallel by spot-welding the current collectors connected to the ends of the paired, positive and negative current collectors to each other by spot welding between the positive and negative electrodes. Formed body.
  • the battery was charged at room temperature until it reached 4.2 (V) at 800 (mA). After charging, an iron nail with a diameter of 2.5 (mm) was inserted into the center of the battery, and the battery temperature was measured.
  • FIG. 2 is a table showing characteristics of the electrode and the battery shown in Example 2, and more specifically, a table showing the volume resistivity of the electrode, the rate of change of the volume resistivity, and the discharge capacity of the battery. .
  • Comparative Example 1 is the same as the positive electrode manufacturing method of Example 2, except that artificial graphite KS-6 (manufactured by Lonza) was used as the electron conductive material 9 to produce the positive electrode 1.
  • artificial graphite KS-6 manufactured by Lonza
  • Comparative Example 1 the method for manufacturing the negative electrode 2 and the method for manufacturing the battery are the same as those described in Example 2.
  • the rate of resistance change is defined as the value obtained by dividing the volume resistivity after the PTC function was developed by the volume resistivity before the PTC function was developed. Things.
  • Comparative Example 1 has a smaller discharge capacity than Example 2.
  • Example 2 since the crystalline resin was mixed in the electrode, particularly the electron conductive material 9 of the positive electrode active material layer 6 of the positive electrode 1, the resistance after the PTC function was developed and before the resistance was developed was 5%. You can see that it has increased by 0 times.
  • the function of the PTC is exhibited when the internal temperature of the battery becomes higher than a predetermined temperature, thereby suppressing an increase in short-circuit current and improving the safety and reliability of the battery. Further improve.
  • the resistance change rate is 50 has been described as an example.However, the present invention is not limited to this. If the resistance change rate is about 1.5 to 1000, the above-described effect can be obtained. be able to.
  • FIG. 3 is a graph showing the relationship between battery temperature and elapsed time when a nail penetration test was performed on the batteries of Example 2 and Comparative Example 1.
  • the PTC function When the temperature of the battery of Example 2 rises to around a predetermined temperature, the PTC function is activated. Therefore, after the temperature rises to around 150 (degrees), the temperature starts to decrease within 5 minutes. The temperature of the battery of Comparative Example 1 keeps increasing with time.
  • Example 2 shows that the crystalline resin was mixed in the electrode (here, in the positive electrode 1), particularly in the electron conductive material 9 of the positive electrode active material layer 6,
  • the electrode here, in the positive electrode 1
  • the function of PTC is developed, and the increase in short-circuit current is suppressed before the battery temperature exceeds 160 (degrees). Therefore, the safety and reliability of the battery are further improved.
  • FIG. 4 shows a nail penetration test performed on the batteries of Example 2 and Comparative Example 1.
  • FIG. 3 is a diagram showing the relationship between time and the temperature of a battery and the passage of time.
  • Comparative Example 2 is different from Example 2 in that an electrode was formed using a kneaded material of carbon black and polypropylene resin (melting point: 168 (degrees)) as the electronic conductive material 9, A battery was constructed using these electrodes.
  • Comparative Example 2 the method for manufacturing the negative electrode 2 and the method for manufacturing the battery are the same as those in Example 2.
  • Example 2 since the crystalline resin was polyethylene having a melting point lower than 160 (degrees), the increase in short-circuit current was suppressed before the battery temperature exceeded 160 (degrees). Therefore, the safety and reliability of the battery are further improved.
  • the PTC function was activated when the temperature rose, and after the temperature rose to around 150 (degrees), the temperature began to decrease.
  • the battery of Comparative Example 2 exhibited the PTC function. The temperature keeps rising even if the temperature is higher than 200 (degrees).
  • the crystalline resin (here, polypropylene) contained in the electronic conductive material 9 has a high melting point.
  • the crystalline resin contained in the electronic conductive material 9 has a melting point in the range of 90 (degrees) to 160 (degrees), the performance of the battery does not deteriorate, and The temperature at which the PTC function appears can be made lower than 160 (degrees).
  • Fig. 5 shows the volume resistivity of the electrode, the rate of change in resistance when the temperature rises, the discharge capacity at 2 C (C: time rate) of the battery, and the nail penetration test at 10 minutes. It is a table
  • Comparative Example 3 differs from Example 2 in that the electrode (the positive electrode 1 in this example) was obtained by kneading 38 parts by weight of carbon black and 62 parts by weight of polyethylene as the electronic conductive material 9. ) And a battery using this electrode.
  • Comparative Example 3 the method for manufacturing the negative electrode 2 and the method for manufacturing the battery are the same as those in Example 2.
  • Comparative Example 4 was used to manufacture an electrode (positive electrode 1 in this case) using, as an electronic conductive material 9, a material obtained by kneading carbon black at a ratio of 71 parts by weight and polyethylene at a ratio of 29 parts by weight. A battery was manufactured using these electrodes.
  • Comparative Example 4 the method for producing the negative electrode 2 and the method for producing the battery are the same as those in Example 2.
  • Comparative Example 3 had a larger resistance change rate than Example 2, but had a higher electrode resistance and a lower discharge capacity.
  • the ratio of the conductive filler contained in the electrode is 40 to 70 parts by weight, the resistance of the electrode in a normal state (before the PTC function is developed) is reduced, and the resistance of the electrode is changed. Rate can be increased, and the discharge capacity can be increased when a battery is formed using this electrode. Further, by setting the ratio of the conductive filler contained in the electronic conductive material 9 to 50 to 68 parts by weight, the characteristics of the electrode and the characteristics of the battery shown in FIG. 5 can be further improved. can do.
  • FIG. 6 is a graph showing the relationship between the ratio of the electronic conductive material 9 and the volume resistivity of the electrode and the relationship between the ratio of the electronic conductive material 9 and the discharge capacity.
  • the relationship between the ratio of the electronic conductive material to 100 parts by weight of the total solid content of the positive electrode and the volume resistivity of the electrode ((a) in the figure) and the total solid content of the battery electrode (positive electrode in this case) was 100%.
  • FIG. 5 is a diagram showing the relationship between the ratio of the electron conductive material to 0 parts by weight and the discharge capacity ((b) in the figure).
  • the discharge capacity is reduced due to the decrease in the amount of the active material.
  • the ratio of the electron conductive material 9 contained in the electrode is set to 0.5 parts by weight to 15 parts by weight, so that the resistance of the electrode in a normal state is reduced and the discharge capacity of the battery using this electrode is reduced. Can be higher.
  • the ratio of the electronic conductive material 9 to 100 parts by weight of the total solid content of the electrode (here, the positive electrode 1) is 0.7 parts by weight to 12 parts by weight, more preferably 1 part by weight.
  • the above-mentioned characteristics can be made more desirable.
  • Fig. 7 shows the relationship between the particle size of the electronic conductive material and the resistance of the electrode ((a) in the figure) and the relationship between the particle size of the electronic conductive material and the discharge capacity ((b) in the figure). is there.
  • the filling rate of the electronic conductive material 9 decreases, and the electron conductivity per unit volume of the positive electrode active material layer 6 increases. This means that the volume of the conductive material 9 increases, that is, the weight of the positive electrode active material decreases. For this reason, when the particle size of the electronic conductive material 9 becomes 0.05 (jum) or less, the discharge capacity becomes small.
  • the particle size of the electronic conductive material 9 is 100 (m) or more, the resistance value of the electrode itself is high, and the discharge capacity is low.
  • the average particle size of the electronic conductive material 9 is 0.05 ( ⁇ !) To 100 ( ⁇ m), the resistance of the electrode in a normal state can be reduced and the discharge capacity can be increased. .
  • the average particle size of the electronic conductive material 9 is 0.1 (// m) to 50 (jum), more preferably 0.5 ( ⁇ ! To 20 (jum),
  • the volume fraction of the conductive material 9, the volume specific resistance of the electrode itself, and the discharge capacity can be made more desirable.
  • FIG. 8 is a table showing the average particle size of the electronic conductive material, the resistance of the electrode, and the discharge capacity of the battery.
  • Comparative Example 5 is one in which an electrode (here, a positive electrode) was manufactured by using a material obtained by pulverizing an electronic conductive material by a ball mill method.
  • Comparative Example 5 the method for manufacturing the negative electrode 2 and the method for manufacturing the battery are the same as those in Example 2.
  • Example 3 is different from Example 2 in that the positive electrode active material paste is applied on an aluminum foil, dried at 80 (degrees), and then dried at 0.5 (tons / cm 2 ) at 135 (degrees). It is characterized by manufacturing electrodes (here, positive electrode) by partial pressure.
  • Example 3 the method for manufacturing the negative electrode and the method for manufacturing the battery are the same as those in Example 2.
  • FIG. 9 is a table showing characteristics of the electrode and the battery of Example 3.
  • Example 3 when the positive electrode active material paste was dried and pressed at a temperature near the melting point of the crystalline resin contained in the electronic conductive material, the electron conductive material 9 and the active material were pressed. (Here, the positive electrode active material 8) has good adhesion, and as a result, the resistance of the electrode during normal operation can be reduced.
  • the resistance value of the obtained electrode can be adjusted by adjusting the temperature or pressure (here, surface pressure) when pressing the dried positive electrode active material paste.
  • the temperature at which the dried positive electrode active material paste is pressed is the melting point of the crystalline resin contained in the electronic conductive material 9 or a temperature near the melting point, even if the pressure is reduced to some extent, the crystalline resin Since the pressing is performed at a temperature near the melting point, the value of the volume resistivity of the obtained electrode in a normal state can be reduced.
  • Example 4 the temperature at which the dried positive electrode active material paste is pressed is the melting point of the crystalline resin contained in the electronic conductive material 9 or a temperature near the melting point
  • An electronic conductive material e.g., Rikibon Black having a characteristic that the volume resistivity at room temperature is 0.2 ( ⁇ ⁇ cm) and the volume resistivity at an operating temperature of 135 (degrees) is 500 ( ⁇ ⁇ cm).
  • polyethylene at a predetermined ratio was milled with a jet mill to obtain fine particles having an average particle size of 9.0 (m).
  • the fine particles of the electronically conductive material 4.5 parts by weight, the artificial black lead KS- 6 as a conductive additive (produced by Lonza) 1.5 part by weight, the active material (e.g., L i C o 0 2) 9 1
  • a positive electrode active material base was prepared by dispersing a binder containing 3 parts by weight of a binder (for example, PVDF) in NMP as a dispersion medium.
  • the above-mentioned positive electrode active material paste was applied on a metal film (in this case, aluminum foil) having a thickness of 20 m) serving as the positive electrode current collector 4 by a doctor blade method. Furthermore, after drying at 80 (degrees), it is pressed at a predetermined temperature (for example, room temperature) and a predetermined surface pressure (for example, 2 (ton / cm 2 )) to obtain a positive electrode having a thickness of about 100 ⁇ m. The material layer 6 was formed, and the positive electrode 1 was obtained.
  • a predetermined temperature for example, room temperature
  • a predetermined surface pressure for example, 2 (ton / cm 2
  • the method for producing the negative electrode 2 and the method for producing the battery are the same as those described in Example 2.
  • FIG. 10 is a table showing the characteristics of the electrodes and batteries of Example 4 and the characteristics of the electrodes and batteries of Example 2. Specifically, the volume resistivity, the rate of change of resistance, and the discharge capacity of each electrode are shown in FIG. FIG.
  • Example 4 As compared with Example 2, the electrode of Example 4 showed almost the same value as Example 2 in both the resistance and the rate of change in resistance.
  • the volume resistivity of the normal electrode can be reduced and the discharge capacity can be increased by adding the conductive assistant.
  • the conductive auxiliary agent is graphite (here, artificial graphite KS-6 (manufactured by Lonza)), but it is not necessary to limit to this, and PTC functions such as acetylene black, lamp black, etc. If the material does not have a function of enhancing the conductivity of the positive electrode active material layer, The agent can be anything.
  • the electrodes and batteries shown in the above-described embodiments are not only organic electrolyte type, solid electrolyte type and gel electrolyte type lithium ion secondary batteries, but also primary batteries such as lithium / manganese dioxide batteries, and other secondary batteries. It can be used in secondary batteries.
  • aqueous primary batteries and secondary batteries Furthermore, it is also effective for aqueous primary batteries and secondary batteries. Furthermore, it can be used for primary and secondary batteries such as a stacked type, a wound type, and a button type regardless of the battery shape.
  • FIG. 11 is a schematic cross-sectional view showing the structure of a cylindrical lithium ion secondary battery.
  • 200 is an outer can made of stainless steel or the like also serving as a negative electrode terminal
  • 100 is a battery body housed inside the outer can 1
  • 2 is a positive electrode 1, a separator 3 and a negative electrode 2. Is spirally wound.
  • the positive electrode 1 of the battery body 100 has the configuration of the electrode described in any of Examples 1 to 4.
  • the negative electrode active material layer of the negative electrode 2 may be configured to include an electronic conductive material containing a crystalline resin and a conductive filler.
  • the electrodes and batteries according to the present invention can be used not only in organic electrolyte type, solid electrolyte type and gel electrolyte type lithium ion secondary batteries, but also in primary batteries such as lithium / manganese dioxide batteries and other secondary batteries. Is possible ⁇
  • aqueous primary batteries and secondary batteries Furthermore, it is also effective for aqueous primary batteries and secondary batteries. Furthermore, it can be used for primary and secondary batteries such as a stacked type, a wound type, and a button type regardless of the battery shape.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

明 細 書 電極、 この電極の製造方法、 この電極を用いた電池 技術分野
この発明は、 電極、 この電極の製造方法、 およびこの電極を用いた電 池に関するものであり、 詳しくは温度の上昇に伴い、 その抵抗が大きく なる電極、 この電極の製造方法および、 この電極を用いた電池に関する ものである。 背景技術
近年、 電子機器の発達にともない電源として使用されている電池の高 容量化および高出力密度化が進みつつある。 これらの要求を満たす電池 として、 リチウムイオン二次電池が注目されている。 このリチウムィォ ン二次電池はエネルギー密度が高いという利点の反面、 非水電解液を使 用することなどから安全性に対する十分な対応策が必要とされる。 従来、 安全に対する対応策として、 安全弁により内部圧力の上昇を逃 がす、 あるいは外部短絡による発熱に応じて抵抗が上昇して電流を遮断 する P T C素子を電池に組み込むなどが提案されていた。
たとえば、 特開平 4— 3 2 8 2 7 8号公報に開示されているように、 円筒型電池の正極キヤップ部分に安全弁と P T C素子を装着する方法が 知られている。 しかし、 安全弁が動作すると、 大気中の水分が電池内部 に侵入し、 リチウムが負極に存在すると発熱反応が起こる恐れがある。 一方、 P T C素子は外部短絡回路を遮断し、 動作による弊害もない。 この P T C素子は例えば、 外部短絡によって電池が 9 0 (度) 以上の温 度になると動作するように設計することによって、 電池異常時にまず最 初に動作する安全部品とすることができる。
従来のリチウム二次電池は上述のような構成を有しているため、 以下 に示すような問題を有している。
従来のリチウム二次電池はリチウム二次電池内部に短絡が発生し温度 が上昇したとき、 この短絡電流の増加を抑制できないことである。
リチウム二次電池内部における短絡が発生し温度が上昇した時に、 正 極と負極の間に配置した、 ポリエチレンやポリプロピレン製のセパレー 夕が軟化または溶融することにより、 セパレー夕の孔部が閉塞され、 こ れによってセパレ一夕に含有された非水電解液を押し出したり、 封じ込 めたりしてセパレー夕部分のイオン電導性が低下し、 短絡電流が減衰す る機能がセパレー夕に期待されている。
しかし、 発熱部分から離れたところのセパレ一夕は必ずしも溶融する とは限らない。 また、 さらに温度が上昇した場合にはセパレー夕が溶融、 流動することにより、 正負極を電気的に絶縁する機能が失われ、 短絡に つながることも考えられる。
また、 特にリチウムイオン二次電池の場合、 負極は集電体となる銅箔 などの基材上に黒鉛などの負極活物質と、 P V D F (ポリフッ化ビニリ デン) などのバインダーと、 溶剤とを含むスラリーを塗布し、 乾燥して 薄膜を形成している。 正極も同様に集電体となるアルミ箔などの基材上 に薄膜として形成される。
ただし、 正極は L i C o 0 2などの正極活物質とバインダ一と導電助 剤とを含むものである。
導電助剤とは正極活物質の電子伝導性が悪いとき、 正極の電子電導性 をより高くするためのものである。 導電助剤は例えば力一ボンブラック (例えばアセチレンブラック) 、 黒鉛 (例えば K S— 6 ) などである。 このような正極、 負極は内部短絡などで電池温度が 1 0 0 (度) 以上 に上昇したとき、 大きな短絡電流を発生するため、 発熱により電池の温 度が更に上昇し、 短絡電流が更に増大するといった問題がある。
この発明は上述の問題を解決するためになされたものであり、 温度の 上昇に伴い抵抗が上昇する電極、 この電極の製造方法、 この電極を用い ることにより、 発熱により電池の温度が上昇しても、 短絡電流が増大す ることを抑制する電極を有する電池を得ることを目的とするものである 発明の開示
この発明に係る第 1の電極は、 活物質と、
この活物質に接触する電子導電性材料とを有する電極であって、 上記電子導電性材料は、 導電性充填材と結晶性樹脂とを含有し、 温度 が上昇するとともに、 その抵抗が増加するように構成したことを特徴と するものである。
これによれば、 上記電子導電性材料は、 導電性充填材と結晶性樹脂とを 含有し、 温度が上昇するとともに、 その抵抗が増加するように構成した ので、 温度が上昇したとき、 電極に流れる電流の増大を抑制することが できる。
この発明に係る第 2の電極は、 電子導電性材料の結晶性樹脂は 9 0 (度) 〜 1 6 0 (度) の範囲内で融点を有するものを用いたことを特徴 とするものである。
これによれば、電子導電性材料の結晶性樹脂は 9 0 (度)〜 1 6 0 (度) の範囲内で融点を有するものを用いたので、電子導電性材料は 9 0 (度) 〜 1 6 0 (度) の範囲内の所定の温度付近での抵抗の変化率を大きくす ることができる。
この発明に係る第 3の電極は、 電子導電性材料を活物質 1 0 0重量部 に対して 0 . 2〜 1 5重量部含有したものである。 これによれば、 電子導電性材料を活物質 1 0 0重量部に対して 0 . 2 〜 1 5重量部含有したものを用いたので、 電極の抵抗の変化率が増大す る現象が生じる前の電極の抵抗を低くすることができる。
この発明に係る第 4の電極は、 電子導電性材料の導電性充填材の割合 が 4 0重量部〜 7 0重量部としたことを特徴とするものである。
これによれば、 電子導電性材料の導電性充填材の割合が 4 0重量部〜 7 0重量部としたので、 所定の温度付近での電極の抵抗の変化率が大き く、 かっこの電極を電池に適用したときの電池の放電容量を大きくする ことができる。
この発明に係る第 5の電極は、 電子導電性材料の粒径が 0 . 0 5 ( / I!) 〜 1 0 0 (〃 m) としたことを特徴とするものである。
これによれば、 電子導電性材料の粒径を 0 . 0 5 (〃 n!) 〜 1 0 0 、n m) としたので、 所定の温度付近での電極の抵抗の変化率が大きく、 かつ この電極を電池に適用したときの放電容量を大きくすることができる。 この発明に係る第 6の電極は、 導電性充填材はカーボン材料または導 電性非酸化物としたことを特徴とするものである。
これによれば、 導電性充填材はカーボンまたは導電性非酸化物とした ので、 電極の導電性を高めることができる。
この発明に係る第 7の電極は、 導電助材とを含むことを特徴とするも のである。
これによれば、 第 7の電極は導電助剤を含むので、 電子導電性材料の 電子導電性が低いものを用いても電極の抵抗を適切なものに調節するこ とができる。
この発明に係る第 1の電池は、 正極と、 負極と、 上記正極および上記 負極の間に電解液を備え、
上記正極または上記負極に第 1の電極から第 7の電極のいずれかを 用いたことを特徴とするものである。
これによれば、 上記正極または上記負極に第 1の電極から第 7の電極 のいずれかを用いたので、 電池の内部の温度が所定の温度以上に上がつ たとき電極の抵抗が大きくなり短絡電流の増大を抑制するので電池の安 全性が向上する。
この発明に係る第 1の電池の製造方法は、
( a ) 導電性充填材と結晶性樹脂とを含有する電子導電性材料を粉碎 し、 前記電子導電性材料の微粒子を形成する工程
( b ) 上記電子導電性材料の微粒子と活物質とを分散させることによ り正極活物質ペーストを製造する工程
( c ) 上記正極活物質ペーストを乾燥させたものを所定の温度、 所定 の圧力でプレスする工程
なる工程を有することを特徴とする。
これによれば、 (a ) 〜 ( c ) の工程を有するので、 電子導電性材料 と活物質との密着性が高くなるので、 製造される電極の抵抗を低く抑え ることができる。
この発明に係る第 2の電極の製造方法は、 第 1の電極の製造方法にお いて、 所定の温度を結晶性樹脂の融点または融点付近の温度としたこと を特徴とする。
これによれば、 所定の温度を結晶性樹脂の融点または融点付近の温度 としたので、 電子導電性材料と活物質との密着性が更に良くなり、 製造 される電極の抵抗を更に低くすることができる。 図面の簡単な説明
第 1図は実施例 1の電池の構成を説明するための図、 第 2図は実施例 2において、 電極の体積固有抵抗、 抵抗変化率、 電池の放電容量を示す 表図、 第 3図は実施例 2において、 釘刺し試験を行ったとき経過時間と 電池の温度との関係を示すグラフ図、 第 4図は実施例 2において、 釘刺 し試験を行ったとき経過時間と電池の温度との関係を示すグラフ図、 第 5図は実施例 2において、 電極の体積固有抵抗、 温度上昇時の抵抗変化 率、 電池の放電容量、 および釘刺し試験開始 1 0分後の電池の温度を示 す表図、 第 6図は実施例 2において、 電子導電性材料の割合と電極の抵 抗値との関係および電子導電性材料の割合と放電容量との関係示すグラ フ図、 第 7図は実施例 2において、 電子導電性材料の粒径と電極の体積 固有抵抗との関係及び電子導電性材料の粒径と放電容量との関係を示す グラフ図、 第 8図は電子導電性材料の平均粒径、 電極の抵抗、 及び電池 の放電容量を示す表図、 第 9図は電極の気孔率、 体積固有抵抗、 放電容 量を示す表図、 第 1 0図は電極の抵抗、 昇温時の抵抗変化率、 電池の放 電容量を示す表図、 第 1 1図は円筒型の電池の一例を示した図である。 発明を実施するための最良の形態
実施例 1 .
第 1図は本発明の電池を説明するための図であり、 詳しくは電池の縦 断面図である。
図において、 1は正極、 2は負極、 3は正極 1と負極 2との間に設け られたセパレ一夕である。
正極 1は正極集電体 4と正極活物質層 6とを有する。
負極 2は負極集電体 5と負極活物質層 7とを有する。
正極 1は正極集電体 4となる金属膜 (例えばアルミニウムなどの金属 膜) の表面に正極活物質層 6を形成したものである。
負極 2は負極集電体 5となる金属膜 (例えば銅などの金属膜) の上に、 カーボン粒子などの負極活物質をバインダで成形した負極活物質層 7を 形成したものである。
セパレ一夕 3は例えばリチウムイオンを含有する電解液を保持したも のである。
正極活物質層 6は正極活物質 8と電子導電性材料 9とバインダ 10と を有する。
正極活物質 8と電子導電性材料 9とはバインダ 10により結合してい る o
正極活物質 8は粒子、 電子導電性材料 9は正極活物質 8よりも小さな 形状を有する粒子である。
電子導電性材料 9は例えば導電性充填材と結晶性樹脂とを含有するも のである。
電子導電性材料 9は例えば温度が 90 (度) 〜 160 (度) 範囲内の 所定の温度に付近で、 その抵抗値の変化率が大きくなる特性を有するも のである (以後この特性を PTC (Positive Temperature Coefficient) と称す) 。
導電性充填材とは、 例えばカーボン材料、 導電性非酸化物といったも のである。
力一ボン材料とは、 例えばカーボンブラック、 グラフアイ ト、 カーボ ンファイバ一、 金属炭化物等である。
カーボンブラックとは、 例えばアセチレンブラック、 ファーネスブラ ック、 ランプブラック等である。
導電性非酸化物とは、 例えば金属炭化物、 金属窒化物、 金属ケィ素化 物、 金属ホウ化物といったものである。
金属炭化物とは例えば、 T i C、 Z rC、 VC;、 VbC、 T a C、 M o2C、 WC、 B4C、 Cr3C2等である
金属窒化物とは、 例えば T iN、 Z rN、 VN、 NbN、 TaN、 C r 2N等である。
金属ホウ化物とは、 例えば T i B2、 Z rB2、 NbB2、 T aB2、 C rB、 Mo B、 WB等である。
また、結晶性樹脂とは、例えば高密度ポリエチレン(融点: 1 30 (度) 〜 140 (度) ) 、 低密度ポリエチレン (融点 : 1 1 0 (度) 〜 1 1 2 (度))、ポリウレタンエラストマ一(融点: 140 (度)〜 1 60 (度))、 ポリ塩化ビニル (融点:約 145 (度) ) 等の重合体であり、 これらは その融点が 9 0 (度) 〜 1 60 (度) の範囲にある。
電子導電性材料 9において、 P T Cの機能が発現する温度は電子導電 性材料 9に含まれる結晶性樹脂の融点に依存するため、 結晶性樹脂の材 質を変えることにより、 P T Cの機能が発現する温度を 90 (度) 〜 1 60 (度) の間の温度に調節することが可能である。
この P T C特性は、 2回以上複数回発現できるような可逆性のあるも のでもよいし、 一度 P T Cの機能が発現した後に温度を下げたときに、 もとの抵抗値にもどるような可逆性がある物でも良いし、 可逆性が無い ものでも良い。
この P T Cの機能が発現する温度が 90 (度) 以下であることは安全 性の確保という観点からは好ましいが、 電池が通常使用される温度範囲 において電極の抵抗値が上昇することになるので、 負荷率特性などにお いて電池の性能低下が起こる。
また、 この P T Cの機能が発現する温度が 1 60 (度) を越す場合に は、 電池の内部温度がこの温度まで上昇することになり、 安全面の観点 から好ましくない。
従って、 電子導電性材料 9において、 P T Cの機能が発現する温度は 90 (度) から 1 60 (度) の範囲にあるように設計することが望まし い。 P T cの機能が発現する温度は結晶性樹脂の融点に依存するため、 結 晶性樹脂はその融点が 9 0 (度) から 1 6 0 (度) の範囲にあるものを 選択している。
また、 電子導電性材料 9において、 正常時 (つまり、 P T Cの機能が 発現する前) における電極の抵抗の大きさは、 正極活物質層 8全体に対 する電子導電性材料 9の割合を変えることにより調節することができる。 この電子導電性材料 9は、 その中に含まれる結晶性樹脂が軟化、 溶融 し、 体積膨張することによりそれ自身の抵抗値が上昇するため、 P T C の機能が発現する。
実施例 1に示した正極 1は、 正極活物質層 6に含まれる電子導電性材 料 9自身が P T C特性を有するので、 正極 1の温度が電子導電性材料 9 において、 P T Cの機能が発現する温度よりも大きくなると、 正極活物 質層 6の抵抗値が増大する。
従って、 このような特性を有する電極 (ここでは電池の正極に適用) を電池に適用したとき、 電池の外部または内部における短絡により電流 が増大し、 電池もしくは電極の温度がある程度以上に上昇した場合にお いて正極活物質層 6自体の抵抗値が高くなるので、 電池内部に流れる電 流が抑制される。
従って、 この電極を用いて電池を構成したとき、 電池の安全性は飛躍 的に向上し、 厳しい条件下での短絡、 逆充電あるいは過充電等の異常時 においても電池の安全性が保たれるという効果を奏する。
実施例 1では、 正極活物質層 6は正極活物質 8と電子導電性材料 9と バインダ 1 0とを有するものを例に説明したがこれに限定されるもので はない。
例えば、 正極活物質層 6に含まれる正極活物質 6の電子導電性が低い ような材質を用いている場合、 正極活物質層 6に更に導電助剤を加える ことにより、 これを補うことが可能となる。
また、 電子導電性材料 9は粒子としたが、 その形状はファイバー状、 鱗片状の小片であっても良い。 要は、 隣り合う正極活物質 8の間に電子 導電性材料 9が位置することができるような大きさを有するものであれ ばその形状はどのようなものであっても良い。
実施例 1では正極 1、 特に正極活物質層 6に導電性充填剤と結晶性樹 脂とを含む電子導電性材料の構成を開示したが、 これに限定される必要 はなく、 負極 2に上述の構成を適用し、 これを用いて電池を構成しても 同様の効果を奏する。
次に、 実施例 1に示した正極 1の製造方法、 負極 2の製造方法の一例、 正極 1と負極 2を用いた電池の製造方法の一例を説明する。
(正極の製造方法)
室温における体積固有抵抗が十分低く、 9 0 (度) 〜 1 6 0 (度) の 間の所定の温度よりも大きい温度での体積固有抵抗が大きな電子導電性 材料(例えば導電性充填材と結晶性樹脂とを所定の割合で混練したもの) を細かく粉砕し電子導電性材料の微粒子を得る。
電子導電性材料を粉砕する方法として、 圧縮した空気または圧縮した 窒素またはアルゴン等の不活性ガスを使用して粉砕することが望ましい。 特に粒径を小さくする場合には上述したものにより超音速の気流を発生 させ、 この気流中において、 電子導電性材料の粉体を互いに衝突させる か、 もしくはこの粉体を壁面 (図示せず) に衝突させることにより、 粒 径の小さい電子導電性材料の微粒子を得ることができる (これにより微 粒子を得る方式をジェットミル方式と称す) 。
また、 電子導電性材料の微粒子の粒径を必要以上に小さくする必要が 無い場合であれば、 圧縮空気を用いるかわりに、 電子導電性材料をボー ルミルに入れて回転して粉砕するのでも良い (これにより微粒子を得る 方式をボールミル方式と称す) 。
次に、 この電子導電性材料の微粒子、 正極活物質 (例えば L i C o O 2 ) 、 バインダ一 (例えば、 P V D F ) を分散媒 (例えば N—メチルビ口 リ ドン (以下、 N M Pと略す) ) に分散させることにより調整し、 正極 活物質ペーストを得た。
次に、 上述の正極活物質ペース トを、 正極集電体 4となる集電体基材 (例えば所定の厚さを有する金属膜) 上に塗布した。
さらに、 これを乾燥させた後、 所定の温度でかつ所定の面圧でプレス し、 所望する厚さを有する正極活物質層 6を形成し、 正極 1を得た。 ここで示した電極 (詳しくは正極 1 ) の製造方法では、 所定の温度、 所定の面圧でプレスしているため、 電子導電性材料 9と活物質 (ここで は正極活物質) との密着性が良くなり、 正常時における電極の抵抗を低 くすることができる。
つまり、 電極をプレスするときの温度、 圧力 (ここでは面圧) を調節 することにより、 製造される電極の抵抗を調節することができる。 特に、 所定の温度を電子導電性材料に含まれる結晶性樹脂の融点また は融点付近の温度にすると、 電子導電性材料と活物質との密着性が更に 良くなり、 正常時における電極の抵抗を更に低くすることができる。 ここでは、 所定の温度でかつ所定の面圧で正極活物質ペース トをプレ スする例を説明したが、 所定の面圧で正極活物質ペーストをプレスした 後、 所定の温度 (望ましくは融点または融点付近の温度) で正極活物質 ペース トを加熱することにより、 正極 1を得るにしてもよい。
次に、 実施例 1に示した負極 2の製造方法について説明する。
(負極の製造方法)
メソフェーズ力一ボンマイクロビーズ (以下、 M C M Bと略す) 、 P V D Fを N M Pに分散して作製した負極活物質ペーストを、 負極集電体 となる集電体基材 (例えば所定の厚さを有する金属膜) 上に塗布し、 負 極活物質層 7を形成した負極 2を得ることができる。
次に実施例 1に示した電池の製造方法について説明する。
(電池の製造方法)
例えば多孔性のポリプロピレンシート、 上述の方法により得られた正 極と負極の間に挟み両極を貼りあわせることにより、 正極、 負極を有す る一対の電池を得た。
上述の方法により得られる電池は、 正極が温度の上昇に伴い抵抗が上 昇する特性を有するものであるため、 電池の外部または内部で短絡事故 が発生し、 電池の温度が上昇しても、 短絡電流の上昇を抑制するため電 池自身の安全性が向上する。 実施例 2.
(正極の製造方法)
室温における体積固有抵抗が 0. 2 (Ω · cm) 、 135 (度) にお ける体積固有抵抗が 20 (Ω - cm) の特性を有する電子導電性材料 (例 えば力一ボンブラックを 60重量部、 ポリエチレンを 40重量部の割合 で混練したもの) をジェッ トミル方式により細かく粉碎し、 電子導電性 材料の微粒子を得る。
次に、 この微粒子を 6重量部、 正極活物質 (例えば L i Co02) を 91重量部、 バインダー (例えば PVDF) を 3重量部を分散媒である N MPに分散させることにより調整し、 正極活物質ペーストを得る。 次に、上述の正極活物質ペーストを、正極集電体 4となる厚さ 20、 m)の金属膜(ここではアルミニウム箔)上にドクターブレード法にて塗 布した。 さらに、 80 (度) で乾燥した後、 所定の温度 (例えば室温) でかつ所定の面圧 (例えば 2 (t on/cm2) ) でプレスし、 厚さ約 1 0 0 mの正極活物質層 6を形成し、 正極 1を得た。
(負極の製造方法)
メソフェーズ力一ボンマイクロビーズ(以下、 M C M Bと略す) 9 0 重 量部、 P V D F 1 0重量部を N M Pに分散して作製した負極活物質べ一 ストを、 厚さ 2 0 ( m) の銅箔からなる負極集電体 5上に、 ドクター ブレード法にて塗布し、 負極活物質層 Ίを形成した負極 2を作製した。 (電池の製造方法)
更に、 セパレ一夕 3となる多孔性のポリプロピレンシート (へキス ト 製商品名セルガード # 2 4 0 0 ) を、 上述の方法により得られる正極 1 と負極 2の間に挟み両極を貼りあわせることにより、 正極 1と負極 2と を有する 1対の電池を得た。
(電極及び電池の評価)
本発明の電極、 電池の評価を行うため以下に示すような方法を用いて 評価を行った。
(電極の抵抗測定)
電極の両面にアルミニウム箔を融着し、 一方のアルミニゥム箔の片面 にプラス側の電圧端子、 電流端子を、 もう一方のアルミニウム箔にマイ ナス側を接続した。 端子にはヒ一夕一が接しており、 5 (度/分) の昇 温速度で電極を昇温しながら、 定電流を流した素子の電圧降下を測定す ることにより抵抗値 (ここでは体積固有抵抗 (Ω · c m ) ) を求めた。 (容量試験)
作製した電極の正極、 負極ともに 1 4 ( m m ) X 1 4 ( m m ) の大き さに切断し、 セパレ一夕 3として用いる多孔性のポリプロピレンシ一ト (へキスト製商品名セルガード # 2 4 0 0 ) を、 正極と負極の間にはさ み両極を貼りあわせたものを電池とした。 この電池の正極、 負極の集電 端子をそれぞれスポッ ト溶接にて取り付け、 これをアルミラミネートシ —トより作製した袋に入れて、 電解液を入れて封口して、 単電池とした。 この電池の室温での充放電試験を実施した。
(釘刺し試験)
作製した電極を 50 (mm) X 50 (mm) に切断し、 多孔性のポリ プロピレンシート (へキスト製商品名セルガード # 2400 ) を、 正極 と負極の間にはさみ両極を貼りあわせたものを 10対重ね、 正極、 負極 集電体それぞれの端部に接続した集電夕ブを、 正極同士、 負極同士スポ ッ ト溶接することによって、 各電池を電気的に並列に接続して一つの電 池体を形成した。
これをアルミラミネートシートより作製した袋に入れて、 エチレン力 —ボネートとジェチルカーボネートの混合溶媒 (モル比で 1 : 1) に 6 フヅ化リン酸リチウムを 1. 0 (mo 1/dm3) の濃度で溶解した電 解液を注液した後、 熱融着で封入し電池とした。
この電池を、 800 (mA) で 4. 2 (V) になるまで室温で充電し た。 充電終了後、 電池の中心部分に直径 2.5 (mm)の鉄釘を刺し、 電 池温度の測定を行った。
第 2図は実施例 2に示した電極、 電池の特性を示した表図であり、 詳 しくは電極の体積固有抵抗、 体積固有抵抗の変化率、 電池の放電容量を 示した表図である。
図において、 比較例 1とは実施例 2の正極の製造方法において、 電子 導電性材料 9として人造黒鉛 KS— 6 (ロンザ社製) を用いて正極 1を 製造したものである。
なお、 比較例 1において、 負極 2の製造方法、 電池の製造方法は実施 例 2に示したものと同じである。
また図において、 抵抗変化率とは、 P T Cの機能が発現した後の体積 固有抵抗を P T Cの機能が発現する前の体積固有抵抗で除した値とした ものである。
図に示すように、 比較例 1では電子導電性材料は結晶性樹脂を含まな いため、 実施例 2に比べ抵抗変化率が小さいことが解る。
また、 比較例 1では実施例 2に比べ放電容量が小さいのが分かる。 実施例 2には電極中、 特に正極 1の正極活物質層 6の電子導電性材料 9に結晶性樹脂を混合したので、 P T Cの機能が発現した後の抵抗が発 現する前の抵抗の 5 0倍にも増加しているのが解る。
従って、 この電極を用いて電池を構成すると、 電池の内部の温度が所 定の温度よりも大きくなると P T Cの機能が発現するため、 短絡電流の 増加を抑制し、 電池の安全性、 信頼性が更に向上する。
実施例 2では抵抗変化率が 5 0のものを例に説明したが、 これに限定 される必要はなく、 抵抗変化率は 1 . 5〜 1 0 0 0 0程度とすれば上述 の効果を得ることができる。
第 3図は実施例 2および比較例 1の電池に対して釘刺し試験を行った 時、 電池の温度と時間経過との関係を示すグラフ図である。
実施例 2の電池はその温度が所定の温度付近まで上昇したとき、 P T Cの機能が働くため、 1 5 0 (度) 付近まで温度が上昇した後、 5分以 内に温度が下がり始めているが、 比較例 1の電池は時間とともに温度が 上昇し続ける。
実施例 2と比較例 1とを比較すると、 実施例 2には電極中 (ここでは 正極 1中) 、 特に正極活物質層 6の電子導電性材料 9に結晶性樹脂を混 合したので、 この電極を用いて電池を構成すると、 電池の内部の温度が 所定の温度よりも大きくなると P T Cの機能が発現し、 電池の温度が 1 6 0 (度) を越える前に短絡電流の増加を抑制するため、 電池の安全性、 信頼性が更に向上する。
第 4図は実施例 2および比較例 1の電池に対して釘刺し試験を行つた 時、 電池の温度と時間経過との関係を示す図である。
図において、 比較例 2とは、 実施 2において、 電子導電性材料 9とし て、 力一ボンブラックとポリプロピレン樹脂 (融点: 1 6 8 (度) ) の 混練材料を用いて電極を構成するとともに、 この電極を用いて電池を構 成したものである。
比較例 2において、 負極 2の製造方法、 電池の製造方法は実施例 2に 同じである。
図に示すように比較例 2では、 融点が 1 6 8 (度) であるポリプロピ レン樹脂を結晶性樹脂としたので、 この結晶性樹脂を含む電極を電池に 適用したとき、 P T Cの機能が発現する温度は 1 6 0 (度) を越えてし まうと考えられる。
これに対し、 実施例 2では融点が 1 6 0 (度) よりも低いポリェチレ ンを結晶性樹脂としたので、 電池の温度が 1 6 0 (度) を越える前に短 絡電流の増加を抑制するため、 電池の安全性、 信頼性が更に向上する。 実施例 2の電池は温度上昇時に P T Cの機能が働いて、 1 5 0 (度) 付近まで温度が上昇した後、 温度が下がり始めているが、 比較例 2の電 池は P T Cの機能の発現する温度が高く、 2 0 0 (度) 以上になっても 温度が上昇し続ける。
これは電子導電性材料 9に含まれる結晶性樹脂 (ここではポリプロビ レン) の融点が高いためである。
よって、 電子導電性材料 9に含まれる結晶性樹脂はその融点が 9 0 (度) 〜 1 6 0 (度) の範囲にあるものを選択すれば、 電池の性能の低 下を起こさず、 かつ P T Cの機能が発現する温度を 1 6 0 (度) よりも 小さくすることができる。
第 5図は、 電極の体積固有抵抗、 温度上昇時の抵抗変化率、 電池の 2 C ( C :時間率) における放電容量の値、 および釘刺し試験開始 1 0分 後の電池の温度を示す表図である。
図において、 比較例 3とは実施例 2において、 電子導電性材料 9とし て、 カーボンブラックを 3 8重量部、 ポリエチレンを 6 2重量部の割合 で混練したものを用いて電極 (ここでは正極 1 ) を製造するとともに、 この電極を用いて電池を製造したものである。
比較例 3において、 負極 2の製造方法、 電池の製造方法は実施例 2に 同じである。
また、 比較例 4とは電子導電性材料 9として、 カーボンブラックを 7 1重量部、 ポリエチレンを 2 9重量部の割合で混練したものを用いて電 極 (ここでは正極 1 ) を製造するとともに、 この電極を用いて電池を製 造したものである。
比較例 4において、 負極 2の製造方法、 電池の製造方法は実施例 2に 同じである。
図に示すように、 比較例 3は実施例 2に比べ抵抗変化率は大きいが、 電極の抵抗値が高く、 放電容量が低くなつた。
また、 比較例 4は実施例 2に比べ放電容量は高いが、 カーボンブラッ クの割合が多すぎて P T Cの機能の働きが不十分なため、 釘刺し試験を 行うと 1 0分後の温度は非常に高くなつた。
従って、 電子導電性材料 9に含まれる導電性充填剤の割合を変えるこ とにより、 電極の抵抗変化率、 および電池の放電容量適切な値にするこ とが可能となる。
特に電極に含まれる導電性充填剤の割合を 4 0重量部〜 7 0重量部と することにより、 正常時 (P T Cの機能が発現する前) の電極の抵抗を 低くするともに、 電極の抵抗変化率を高いものにできるとともに、 この 電極を用いて電池を構成したときの放電容量を高いものにすることがで ぎる。 更には電子導電性材料 9に含まれる導電性充填剤の割合を 5 0重量部 〜6 8重量部とすることにより、 第 5図に示した電極の特性、 電池の特 性を更に望ましいものにすることができる。
第 6図は電子導電性材料 9の割合と電極の体積固有抵抗との関係およ び電子導電性材料 9の割合と放電容量との関係を示すグラフ図であり、 詳しくは電池の電極 (ここでは正極) の全固形分 1 0 0重量部に対する 電子導電性材料の割合と電極の体積固有抵抗 (図中 (a ) ) との関係お よび電池の電極 (ここでは正極) 全固形分 1 0 0重量部に対する電子導 電性材料の割合と放電容量との関係 (図中 (b ) ) 示す図である。
図に示すように、 電子導電性材料 9の割合が 0 . 5重量部以下である と正常時の電極自体の抵抗値が高すぎて放電容量が低く、 電池の性能の 面で問題がある。
また、 1 5重量部以上になると活物質量が減ることにより放電容量は 低くなる。
従って、 電極に含まれる電子導電性材料 9の割合は 0 . 5重量部〜 1 5重量部とすることにより、 正常時における電極の抵抗を低くし、 かつ この電極を用いた電池の放電容量を高くすることができる。
更に好ましくは、 電極 (ここでは正極 1 ) の全固形分 1 0 0重量部に 対する電子導電性材料 9の割合を 0 . 7重量部〜 1 2重量部、 更に好ま しくは、 1重量部〜 1 0重量部とすることにより上述の特性をより望ま しいものにできる。
第 7図は電子導電性材料の粒径と電極の抵抗との関係 (図中 (a ) ) 及び電子導電性材料の粒径と放電容量との関係を示す図 (図中 (b ) ) である。
電子導電性材料 9の粒径が 0 . 0 5 ( m ) 以下になると、 電子導電 性材料 9の充填率が下がり、 正極活物質層 6の単位体積当たりの電子導 電性材料 9の体積が増加すること、 つまり正極活物質重量が減少するこ とを意味する。 このため、 電子導電性材料 9の粒径が 0. 0 5 (jum) 以下になると、 放電容量が小さくなる。
また、 電子導電性材料 9の粒径が 1 0 0 ( m) 以上の粒径になると、 電極自体の抵抗値が高く、 放電容量は低くなる。
従って、 電子導電性材料 9の平均粒径は 0. 0 5 (〃π!)〜 1 0 0 (〃 m) とすれば正常時の電極の抵抗を低く、 かつ放電容量を高くすること ができる。
また、 電子導電性材料 9の平均粒径を 0. 1 (//m) 〜5 0 (jum) , 更に好ましくは 0. 5 (〃π!) 〜 2 0 (jum) とすれば、 電子導電性材 料 9の体積分率、 電極自体の体積固有抵抗、 および放電容量をより望ま しいものにすることができる。
第 8図は、 電子導電性材料の平均粒径、 電極の抵抗、 及び電池の放電 容量を示す表図である。
図において比較例 5とはボールミル方式により電子導電性材料を粉 砕したものを用いて電極 (ここでは正極) を製造したものである。
比較例 5において負極 2の製造方法、 電池の製造方法は実施例 2に同 じである。
比較例 5はボールミル方式により電子導電性材料を粉砕しているため、 得られる電子導電性材料の粒子の平均粒径が大きくなり、 その結果電極 の体積固有抵抗が高く、 放電容量が小さいことがわかる。
従って、 正常時の電極の抵抗をより小さく、 かつ電池の放電容量をよ り高くするためにはジエツ トミル方式により電子導電性材料を粉砕する のが望ましいことが分かる。 実施例 3. 実施例 3は実施例 2において、 正極活物質ペーストをアルミニウム箔 上に塗布し、 8 0 (度) で乾燥した後、 1 3 5 (度) で 0 . 5 ( t o n / c m 2 ) で 3 0分加圧し、 電極 (ここでは正極) を製造したことを特 徴とするものである。
実施例 3において、 負極の製造方法、 電池の製造方法は実施例 2に同 じである。
第 9図は、 実施例 3の電極、 電池の特性を示す表図である。
図に示すように実施例 3では正極活物質ペースト乾燥させたものをプ レスするとき電子導電性材料に含まれる結晶性樹脂の融点付近の温度で プレスするため、 電子導電性材料 9と活物質 (ここでは正極活物質 8 ) との密着性がよくなつており、 その結果、 正常動作時の電極の抵抗を低 くおさえることができる。
これは、 正極活物質ペーストを乾燥させたものをプレスするときの温 度または圧力 (ここでは面圧) を調節することにより、 得られる電極の 抵抗の値を調節できることを意味する。
特に正極活物質ペーストを乾燥させたものをプレスするときの温度を 電子導電性材料 9に含まれる結晶性樹脂の融点または融点付近の温度と すると、 圧力をある程度小さくしたとしても、 結晶性樹脂の融点付近の 温度でプレスしているので、 得られる電極の正常時での体積固有抵抗の 値を小さくすることができる。 実施例 4 .
(正極の製造方法)
室温における体積固有抵抗が 0 . 2 ( Ω · c m)、動作温度 1 3 5 (度) における体積固有抵抗が 5 0 0 ( Ω · c m ) の特性を有する電子導電性 材料 (例えば力一ボンブラックとポリエチレンとを所定の割合で混練し たもの) をジェッ トミルで粉砕して平均粒径 9 . 0 ( m) の微粒子を 得た。
この電子導電性材料の微粒子を 4 . 5重量部、 導電助剤として人造黒 鉛 K S— 6 (ロンザ社製) を 1 . 5重量部、 活物質 (例えば L i C o 0 2 ) を 9 1重量部、 バインダー (例えば P V D F ) を 3重量部含むもの を分散媒である N M Pに分散させることにより調整した正極活物質べ一 ス トを得た。
次に、上述の正極活物質ペーストを、正極集電体 4となる厚さ 2 0 m) の金属膜(ここではアルミニウム箔)上にドク夕一ブレード法にて塗 布した。 さらに、 8 0 (度) で乾燥した後、 所定の温度 (例えば室温) でかつ所定の面圧 (例えば 2 ( t o n/ c m 2 ) ) でプレスし、 厚さ約 1 0 0〃 mの正極活物質層 6を形成し、 正極 1を得た。
また、 負極 2の製造方法、 および電池の製造方法は実施例 2に述べた 方法に同じである。
第 1 0図は、 実施例 4の電極、 電池の特性及び実施例 2の電極、 電池 の特性を示す表図であり、 詳しくは各々の電極の体積固有抵抗、 抵抗変 化率、 放電容量を示す表図である。
実施例 2と比較して、 実施例 4の電極は抵抗、 抵抗変化率ともに実施 例 2とほぼ同様の値を示した。
つまり、 体積固有抵抗が高い電子導電性材料 9を用いたときでも、 導 電助剤を加えることにより、 正常時の電極の体積固有抵抗を低くすると ともに、 放電容量を高いものにすることができる。
ここで、 導電助剤を黒鉛 (ここでは人造黒鉛 K S— 6 (ロンザ社製) ) としたがこれに限定する必要はなく、 アセチレンブラック、 ランプブラ ック等の力一ボンブラヅクといったように P T Cの機能を有しないでか つ、 正極活物質層の導電性を高める機能を有する物質であれば、 導電助 剤は何であってもよい。
また、 上述した実施例に示した電極、 電池は、 有機電解液型、 固体電 解質型、 ゲル電解質型のリチウムイオン二次電池のみならず、 リチウム /二酸化マンガン電池などの一次電池、 その他二次電池において用いる ことが可能である。
更には、 水溶液系一次電池、 二次電池についても有効である。 更には、 電池形状によらず、 積層型、 及び巻き型、 ボタン型などの一次、 二次電 池にも用いることが可能である。
第 1 1図は、 円筒型のリチウムイオン二次電池の構造を示す断面模式 図である。 図において、 2 0 0は負極端子を兼ねるステンレス製などの 外装缶、 1 0 0はこの外装缶 1内部に収納された電池体であり、 電池体 2は正極 1、 セパレ一夕 3および負極 2を渦巻状に巻いた構造になって いる。
電池体 1 0 0の正極 1は実施例 1〜実施例 4のいずれかに記載した電 極の構成を有する。
または、 負極 2の負極活物質層に結晶性樹脂および導電性充填剤を含 有する電子導電性材料を含むような構成にしてもよい。 産業上の利用可能性
この発明による電極、 電池は、 有機電解液型、 固体電解質型、 ゲル電 解質型のリチウムイオン二次電池のみならず、 リチウム /二酸化マンガ ン電池などの一次電池、 その他二次電池において用いることが可能であ る ο
更には、 水溶液系一次電池、 二次電池についても有効である。 更には、 電池形状によらず、 積層型、 及び巻き型、 ボタン型などの一次、 二次電 池にも用いることが可能である。

Claims

請 求 の 範 囲
1 . 活物質と、
この活物質に接触する電子導電性材料とを有する電極であって、 上記電子導電性材料は、 導電性充填材と結晶性樹脂とを含有し、 温度 が上昇するとともに、 その抵抗が増加するように構成したことを特徴と する電極。
2 . 電子導電性材料の結晶性樹脂は 9 0 (度) 〜 1 6 0 (度) の範囲内 で融点を有するものを用いたことを特徴とする特許請求の範囲第 1項に 記載の電極。
3 .電子導電性材料を活物質 1 0 0重量部に対して 0 . 2〜 1 5重量部含 有した特許請求の範囲第 1項に記載の電極。
4 . 電子導電性材料の導電性充填材の割合が 4 0重量部〜 7 0重量部と したことを特徴とする特許請求の範囲第 1項に記載の電極。
5 . 電子導電性材料の粒径が 0 . 0 5 (〃m) 〜 1 0 0 ( / m) としたこ とを特徴とする特許請求の範囲第 1項に記載の電極。
6 . 導電性充填材はカーボン材料または導電性非酸化物としたことを特 徴とする特許請求の範囲第 1項に記載の電極。
7 . 電極は導電助剤を含むことを特徴とする特許請求の範囲第 1項に記 載の電極。
8 . 正極と、
負極と、
上記正極および上記負極の間に電解液を備え、
上記正極または上記負極に特許請求の範囲第 1項から第 7項のいずれ かに記載の電極を用いたことを特徴とする電池。
9 . 電極の製造方法であって、
( a ) 導電性充填材と結晶性樹脂とを含有する電子導電性材料を粉砕 し、 前記電子導電性材料の微粒子を形成する工程
( b ) 上記電子導電性材料の微粒子と活物質とを分散させることによ り正極活物質ペース トを製造する工程
( c ) 上記正極活物質ペーストを乾燥させたものを所定の温度、 所定 の圧力でプレスする工程
なる工程を有することを特徴とする電極の製造方法。
1 0 . 所定の温度を結晶性樹脂の融点または融点付近の温度としたこと を特徴とする特許請求の範囲第 9項に記載の電極の製造方法。
PCT/JP1998/000488 1998-02-06 1998-02-06 Electrode, son procede de fabrication, et batterie utilisant cette electrode WO1999040639A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP1998/000488 WO1999040639A1 (fr) 1998-02-06 1998-02-06 Electrode, son procede de fabrication, et batterie utilisant cette electrode
CN98804959A CN1129199C (zh) 1998-02-06 1998-06-25 电极、其制造方法以及使用这种电极的电池
PCT/JP1998/002854 WO1999040640A1 (fr) 1998-02-06 1998-06-25 Electrode, procede de production de l'electrode et cellule comprenant cette derniere
US09/402,442 US6399252B1 (en) 1998-02-06 1998-06-25 Electrode, method of producing electrode, and cell comprising the electrode
JP51764999A JP3786973B2 (ja) 1998-02-06 1998-06-25 電極、この電極の製造方法、この電極を用いた電池
EP98929695A EP0975037A4 (en) 1998-02-06 1998-06-25 ELECTRODE, METHOD FOR THE PRODUCTION AND CELL USING THIS
KR1019997009103A KR20010006025A (ko) 1998-02-06 1998-06-25 전극,그 전극의 제조방법, 그 전극을 사용한 전지
US10/116,029 US6773633B2 (en) 1998-02-06 2002-04-05 Process for producing an electrode with positive temperature coefficient (PTC) function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/000488 WO1999040639A1 (fr) 1998-02-06 1998-02-06 Electrode, son procede de fabrication, et batterie utilisant cette electrode

Publications (1)

Publication Number Publication Date
WO1999040639A1 true WO1999040639A1 (fr) 1999-08-12

Family

ID=14207565

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP1998/000488 WO1999040639A1 (fr) 1998-02-06 1998-02-06 Electrode, son procede de fabrication, et batterie utilisant cette electrode
PCT/JP1998/002854 WO1999040640A1 (fr) 1998-02-06 1998-06-25 Electrode, procede de production de l'electrode et cellule comprenant cette derniere

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002854 WO1999040640A1 (fr) 1998-02-06 1998-06-25 Electrode, procede de production de l'electrode et cellule comprenant cette derniere

Country Status (6)

Country Link
US (2) US6399252B1 (ja)
EP (1) EP0975037A4 (ja)
JP (1) JP3786973B2 (ja)
KR (1) KR20010006025A (ja)
CN (1) CN1129199C (ja)
WO (2) WO1999040639A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999040639A1 (fr) * 1998-02-06 1999-08-12 Mitsubishi Denki Kabushiki Kaisha Electrode, son procede de fabrication, et batterie utilisant cette electrode
WO1999067840A1 (fr) 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cellule et procede de fabrication correspondant
EP1128451A4 (en) * 1999-06-10 2007-05-02 Mitsubishi Electric Corp CELL
US20030090021A1 (en) * 2000-02-25 2003-05-15 Mitsubishi Denki Kabushiki Kaisha Electrode, method of fabricating thereof, and battery using thereof
DE102005045032A1 (de) * 2005-09-16 2007-03-22 Varta Microbattery Gmbh Galvanisches Element mit Sicherheitseinrichtung
KR100751633B1 (ko) 2006-01-11 2007-08-22 엘에스전선 주식회사 Ptc특성을 갖는 이차전지용 전극재료 및 전극의제조방법
JP5264099B2 (ja) * 2007-04-12 2013-08-14 パナソニック株式会社 非水電解質二次電池
US20080292834A1 (en) * 2007-05-22 2008-11-27 Steven Vincent Haldeman Multiple layer glazing bilayer having a masking layer
JP4774426B2 (ja) * 2008-06-27 2011-09-14 日立ビークルエナジー株式会社 リチウム二次電池
CN108028515B (zh) 2015-09-10 2020-05-12 劳里安·彼得鲁·基里拉 多电极火花塞
US10818927B2 (en) * 2015-12-16 2020-10-27 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Lithium battery current collector comprising conductive pillared structures on a substrate
JP6864536B2 (ja) 2017-04-25 2021-04-28 株式会社東芝 二次電池システム、充電方法、プログラム、及び車両
CN107611516B (zh) * 2017-07-17 2020-06-26 上海工程技术大学 一种电池内部温度实时管理方法
CN108110216A (zh) * 2017-12-30 2018-06-01 山东精工电子科技有限公司 锂离子电池正极极片及其制备方法和锂电池
CN110510883B (zh) * 2019-08-16 2022-05-03 江苏聚盈新材料科技有限公司 一种钒基无铅玻璃粉及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151971A (ja) * 1991-11-29 1993-06-18 Fuji Elelctrochem Co Ltd リチウム電池
JPH05335034A (ja) * 1992-06-01 1993-12-17 Nippon Telegr & Teleph Corp <Ntt> リチウム二次電池
JPH07161389A (ja) * 1993-12-02 1995-06-23 Japan Storage Battery Co Ltd 非水電解質電池
JPH1064549A (ja) * 1996-08-23 1998-03-06 Matsushita Electric Ind Co Ltd 非水電解液二次電池

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2305309A1 (de) 1973-02-03 1974-08-08 Varta Batterie Akkumulatorenplatte und verfahren zu ihrer herstellung
US4416915A (en) 1982-02-04 1983-11-22 Combustion Engineering, Inc. Method of making chalcogenide cathodes
JPS59120641A (ja) 1982-12-27 1984-07-12 Meidensha Electric Mfg Co Ltd 導電性プラスチツク材料
JPS6174257A (ja) * 1984-09-20 1986-04-16 Fuji Elelctrochem Co Ltd 電池
JPH01197963A (ja) * 1988-02-02 1989-08-09 Matsushita Electric Ind Co Ltd 電池
GB8815800D0 (en) * 1988-07-02 1988-08-10 Dowty Electronic Components Improvements relating to batteries
JPH0458455A (ja) 1990-06-25 1992-02-25 Yuasa Corp リチウム電池
JP3035677B2 (ja) * 1991-09-13 2000-04-24 旭化成工業株式会社 安全素子付き二次電池
SE470081B (sv) 1992-05-19 1993-11-01 Gustavsson Magnus Peter M Elektriskt uppvärmt plagg eller liknande
US5665212A (en) 1992-09-04 1997-09-09 Unisearch Limited Acn 000 263 025 Flexible, conducting plastic electrode and process for its preparation
JPH06231749A (ja) 1993-02-08 1994-08-19 Japan Storage Battery Co Ltd 蓄電素子
JPH07220755A (ja) * 1994-02-07 1995-08-18 Tdk Corp 積層型リチウム二次電池
US5582770A (en) * 1994-06-08 1996-12-10 Raychem Corporation Conductive polymer composition
US5705259A (en) 1994-11-17 1998-01-06 Globe-Union Inc. Method of using a bipolar electrochemical storage device
JP3069509B2 (ja) * 1995-04-10 2000-07-24 株式会社日立製作所 非水系二次電池および黒鉛粉末製造方法
JPH08306354A (ja) 1995-05-11 1996-11-22 Toray Ind Inc 電極およびそれを用いた非水溶媒系二次電池
US5599644A (en) 1995-06-07 1997-02-04 Eveready Battery Company, Inc. Cathodes for electrochemical cells having additives
US5569564A (en) * 1995-06-07 1996-10-29 Eveready Battery Company, Inc. Alkaline cell having a cathode including a titanate additive
US5532085A (en) 1995-08-22 1996-07-02 Duracell Inc. Additives for alkaline electrochemical cells having manganese dioxide cathodes
JPH09213305A (ja) 1996-01-30 1997-08-15 Sony Corp 非水電解液二次電池
JP3567618B2 (ja) * 1996-05-28 2004-09-22 Jsr株式会社 2次電池電極用導電性結着組成物とその製造方法
JP3630510B2 (ja) 1996-10-02 2005-03-16 旭化成エレクトロニクス株式会社 導電性端子およびポリマーシートパッケージ電池
US5856773A (en) 1996-11-04 1999-01-05 Raychem Corporation Circuit protection device
JP3303694B2 (ja) 1996-12-17 2002-07-22 三菱電機株式会社 リチウムイオン二次電池及びその製造方法
EP0851517B1 (en) * 1996-12-26 2001-03-21 Mitsubishi Denki Kabushiki Kaisha Electrode having PTC characteristics and battery using the same
JP3677975B2 (ja) * 1996-12-26 2005-08-03 三菱電機株式会社 電極及びこれを用いた電池
WO1999040639A1 (fr) * 1998-02-06 1999-08-12 Mitsubishi Denki Kabushiki Kaisha Electrode, son procede de fabrication, et batterie utilisant cette electrode
EP1058331A4 (en) 1998-12-22 2004-07-07 Mitsubishi Electric Corp ELECTROLYTIC SOLUTION FOR CELLS AND CELLS MADE WITH SUCH A SOLUTION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151971A (ja) * 1991-11-29 1993-06-18 Fuji Elelctrochem Co Ltd リチウム電池
JPH05335034A (ja) * 1992-06-01 1993-12-17 Nippon Telegr & Teleph Corp <Ntt> リチウム二次電池
JPH07161389A (ja) * 1993-12-02 1995-06-23 Japan Storage Battery Co Ltd 非水電解質電池
JPH1064549A (ja) * 1996-08-23 1998-03-06 Matsushita Electric Ind Co Ltd 非水電解液二次電池

Also Published As

Publication number Publication date
KR20010006025A (ko) 2001-01-15
CN1255246A (zh) 2000-05-31
US6399252B1 (en) 2002-06-04
EP0975037A4 (en) 2007-09-26
CN1129199C (zh) 2003-11-26
US6773633B2 (en) 2004-08-10
US20020109126A1 (en) 2002-08-15
EP0975037A1 (en) 2000-01-26
JP3786973B2 (ja) 2006-06-21
WO1999040640A1 (fr) 1999-08-12

Similar Documents

Publication Publication Date Title
JP4011635B2 (ja) 電極の製造方法
JP4011852B2 (ja) 電池及びその製造方法
US6579641B2 (en) Battery and process for preparing the same
WO1999067833A1 (en) Cell and method of producing the same
WO1999040639A1 (fr) Electrode, son procede de fabrication, et batterie utilisant cette electrode
US6440605B1 (en) Electrode, method or producing electrode, and cell comprising the electrode
US20010005559A1 (en) Battery and process for preparing the same
WO1999067839A1 (fr) Cellule et procede de production
WO1999067838A1 (en) Cell and method of producing the same
JP4011636B2 (ja) 電池及びその製造方法
JP4394857B2 (ja) 電池
JP2002042886A (ja) 電 池
US20030090021A1 (en) Electrode, method of fabricating thereof, and battery using thereof
KR100335030B1 (ko) 전지 및 그 제조방법
KR100337116B1 (ko) 전지 및 그 제조방법
KR20010020338A (ko) 전극, 이 전극의 제조방법, 이 전극을 사용한 전지
WO1999067834A1 (en) Electrode, method of producing electrode, and cell comprising the electrode
KR20010020337A (ko) 전극, 이 전극의 제조방법, 이 전극을 사용한 전지

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 2000530954

Format of ref document f/p: F